Sample records for instantaneous flow fields

  1. The development of laser speckle velocimetry for the study of vortical flows

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.

    1991-01-01

    A new experimental technique commonly known as PIDV (particle image displacement velocity) was developed to measure an instantaneous two dimensional velocity fluid in a selected plane of the flow field. This technique was successfully applied to the study of several problems: (1) unsteady flows with large scale vortical structures; (2) the instantaneous two dimensional flow in the transition region of a rectangular air jet; and (3) the instantaneous flow over a circular bump in a transonic flow. In several other experiments PIDV is routinely used as a non-intrusive measurement technique to obtain instantaneous two dimensional velocity fields.

  2. The development of laser speckle velocimetry for the study of vortical flows

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.

    1991-01-01

    A research program was undertaken to develop a new experimental technique commonly known as particle image displacement velocity (PIVD) to measure an instantaneous two dimensional velocity field in a selected plane of flow field. This technique was successfully developed and applied to the study of several aerodynamic problems. A detailed description of the technique and a broad review of all the research activity carried out in this field are reported. A list of technical publications is also provided. The application of PIDV to unsteady flows with large scale structures is demonstrated in a study of the temporal evolution of the flow past an impulsively started circular cylinder. The instantaneous two dimensional flow in the transition region of a rectangular air jet was measured using PIDV and the details are presented. This experiment clearly demonstrates the PIDV capability in the measurement of turbulent flows. Preliminary experiments were also conducted to measure the instantaneous flow over a circular bump in a transonic flow. Several other experiments now routinely use PIDV as a non-intrustive measurement technique to obtain instantaneous two dimensional velocity fields.

  3. Instantaneous and Time Averaged Flow Fields of Multiple Vortices in the Tip Region of a Ducted Propulsor

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Steven, Ceccio

    2003-11-01

    PIV data of the flow field in the immediate vicinity of the trailing edge of a ducted propeller at the tip revealed the existence of multiple vorticity concentrations. The multiple vortices in each instantaneous PIV field were identified and individually characterized. The measurements of the multiple vortices were combined with a Gaussian vortex model to reconstruct the vorticity and velocity fields. The major features of the original experimental field were recovered, and the correlation between the two fields was good. The time averaged field and velocity fluctuations were also measured. We will discuss why the "typical" instantaneous tip vortex and the tip vortex from the time averaged field are substantially different. We attempt to explain the cause of these differences. Knowledge of the instantaneous flow field variability is used to understand the causes of the measured velocity fluctuations. The results from this study have an impact on the understanding of the roll-up of tip vortices, and the dynamics of multiple vortices.

  4. Tomographic PIV behind a prosthetic heart valve

    NASA Astrophysics Data System (ADS)

    Hasler, D.; Landolt, A.; Obrist, D.

    2016-05-01

    The instantaneous three-dimensional velocity field past a bioprosthetic heart valve was measured using tomographic particle image velocimetry. Two digital cameras were used together with a mirror setup to record PIV images from four different angles. Measurements were conducted in a transparent silicone phantom with a simplified geometry of the aortic root. The refraction indices of the silicone phantom and the working fluid were matched to minimize optical distortion from the flow field to the cameras. The silicone phantom of the aorta was integrated in a flow loop driven by a piston pump. Measurements were conducted for steady and pulsatile flow conditions. Results of the instantaneous, ensemble and phase-averaged flow field are presented. The three-dimensional velocity field reveals a flow topology, which can be related to features of the aortic valve prosthesis.

  5. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    NASA Astrophysics Data System (ADS)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  6. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  7. Analysis of Tip Vortices Identified in the Instantaneous Wake of a Horizontal-Axis Model Wind Turbine Placed in a Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Mehdi, Faraz; Sheng, Jian

    2014-11-01

    The near-wake field, a short region characterized by the physical specifications of a turbine, is of particular interest for flow-structure interactions responsible for asymmetric loadings, premature structural breakdown, noise generation etc. Helical tip vortices constitute a distinctive feature of this region and are dependent not only on the turbine geometry but also on the incoming flow profile. High-spatial resolution PIV measurements are made in the wake of a horizontal-axis model wind turbine embedded in a neutrally stratified turbulent boundary layer. The data is acquired over consecutive locations up to 10 diameters downstream of the turbine but the focus here is on the tip vortices identified in the instantaneous fields. Contrary to previous studies, both top and bottom tip vortices are clearly distinguishable in either ensemble fields or instantaneous realizations. The streamwise extent of these vortices stretches from the turbine till they merge into the expanding mid-span wake. The similarities and differences in the top and bottom tip vortices are explored through the evolution of their statistics. In particular, the distributions of the loci of vortex cores and their circulations are compared. The information will improve our understanding of near wake vortical dynamics, provide data for model validation, and aid in the devise of flow control strategies.

  8. Three-dimensional flow structures past a bio-prosthetic valve in an in-vitro model of the aortic root.

    PubMed

    Hasler, David; Obrist, Dominik

    2018-01-01

    The flow field past a prosthetic aortic valve comprises many details that indicate whether the prosthesis is functioning well or not. It is, however, not yet fully understood how an optimal flow scenario would look, i.e. which subtleties of the fluid dynamics in place are essential regarding the durability and compatibility of a prosthetic valve. In this study, we measured and analyzed the 3D flow field in the vicinity of a bio-prosthetic heart valve in function of the aortic root size. The measurements were conducted within aortic root phantoms of different size, mounted in a custom-built hydraulic setup, which mimicked physiological flow conditions in the aorta. Tomographic particle image velocimetry was used to measure the 3D instantaneous velocity field at various instances. Several 3D fields (e.g. instantaneous and mean velocity, 3D shear rate) were analyzed and compared focusing on the impact of the aortic root size, but also in order to gain general insight in the 3D flow structure past the bio-prosthetic valve. We found that the diameter of the aortic jet relative to the diameter of the ascending aorta is the most important parameter in determining the characteristics of the flow. A large aortic cross-section, relative to the cross-section of the aortic jet, was associated with higher levels of turbulence intensity and higher retrograde flow in the ascending aorta.

  9. Instantaneous velocity measurement of AC electroosmotic flows by laser induced fluorescence photobleaching anemometer with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Qiao, Rui; Wang, Guiren; Rui Qiao Collaboration

    2015-11-01

    Understanding the instantaneous response of flows to applied AC electric fields may help understand some unsolved issues in induced-charge electrokinetics and enhance performance of microfluidic devices. Since currently available velocimeters have difficulty in measuring velocity fluctuations with frequency higher than 1 kHz, most experimental studies so far focus only on the average velocity measurement in AC electrokinetic flows. Here, we present measurements of AC electroosmotic flow (AC-EOF) response time in microchannels by a novel velocimeter with submicrometer spatial resolution and microsecond temporal resolution, i.e. laser-induced fluorescence photobleaching anemometer (LIFPA). Several parameters affecting the AC-EOF response time to the applied electric signal were investigated, i.e. channel length, transverse position and solution conductivity. The experimental results show that the EOF response time under a pulsed electric field decreases with the reduction of the microchannel length, distance between the detection position to the wall and the conductivity of the solution. This work could provide a new powerful tool to measure AC electrokinetics and enhance our understanding of AC electrokinetic flows.

  10. Tectonic predictions with mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth's mantle.

  11. Dynamic PIV measurement of a compressible flow issuing from an airbag inflator nozzle

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Jang, Young Gil; Kim, Seok; Kim, Chang Soo

    2006-12-01

    Among many equipment for passenger safety, the air bag system is the most fundamental and effective device for an automobile. The inflator housing is a main part of the curtain-type air bag system, which supplies high-pressure gases in pumping up the air bag-curtain which is increasingly being adapted in deluxe cars for protecting passengers from the danger of side clash. However, flow information on the inflator housing is very limited. In this study, we measure the instantaneous velocity fields of a high-speed compressible flow issuing from the exit nozzle of an inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluate the variation of the mass flow rate with time. The dynamic PIV system consists of a high-repetition Nd:YLF laser, a high-speed CMOS camera, and a delay generator. The flow images are taken at 4000 fps with synchronization of the trigger signal for inflator ignition. From the instantaneous velocity field data of flow ejecting from the airbag inflator housing at the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing is found to have very high velocity fluctuations, with the maximum velocity at about 700 m/s. The time duration of the high-speed flow is very short, and there is no perceptible flow after 100 ms.

  12. Effect of vortical structures on velocity and turbulent fields in the near region of an impinging turbulent jet

    NASA Astrophysics Data System (ADS)

    Yadav, Harekrishna; Agrawal, Amit

    2018-03-01

    This experimental study pertains to the formation of a secondary peak in heat transfer distribution for an axisymmetric turbulent impinging submerged jet. The analysis of instantaneous fields is undertaken at various Reynolds numbers based upon the bulk velocity and nozzle diameter (Re = 1300-10 000) and surface spacings (L/D = 0.25-6). Our analysis shows that flow separation and reattachment correspond to decrease/increase in local pressure and are caused by primary vortices; these are further linked to the location of maxima in streamwise and cross-stream velocities. It is further observed that the locations of maxima and minima in velocities are linked to fluctuations in rms velocities and thickening/thinning of the boundary layer. The vortices transported along the surface either coalesce among themselves or combine with other eddies to form a primary vortex. The primary vortex while getting convected downstream makes multiple interactions with the inner shear layer and causes waviness in instantaneous flow fields. In their later stage, the primary vortex moves away from the wall and accelerates, while the flow decelerates in the inner shear layer. The accelerated fluid in the outer shear layer pulls the downstream fluid from the inner shear layer and leads to the formation of a secondary vortex. After a certain distance downstream, the secondary vortex rolling between the primary vortex and the wall eventually breaks down, while the flow reattaches to the wall. The behavior of time average and instantaneous velocity fields suggests that unsteadiness in the heat transfer is linked to the location of maximum streamwise velocity, location of flow attachment, location of rms velocity, and thickness of the boundary layer. The instantaneous velocity fields show that for a given surface spacing, the chances for the appearance of the secondary vortex reduce with an increase in Reynolds number because of the reduction in space available for the secondary vortex to develop. It is further deduced that the strength of the secondary vortex is primarily dependent upon the strength of the primary vortex. However, the velocity field estimated using the linear stochastic estimation technique shows a tendency for the formation of the secondary vortex at higher Reynolds number, suggesting that most measurements do not resolve them well. Our analysis explains the reason for the appearance of the secondary peak in heat transfer distribution and helps resolve the contradictions in the literature regarding this phenomenon.

  13. Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas

    2017-11-01

    Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.

  14. 3-D Flow Visualization with a Light-field Camera

    NASA Astrophysics Data System (ADS)

    Thurow, B.

    2012-12-01

    Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.

  15. Instantaneous Doppler Global Velocimetry Measurements of a Rotor Wake: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Meyers, James; Fleming, Gary A.; Gorton, Susan Althoff; Berry, John D.

    1998-01-01

    A combined Doppler Global Velocimetry (DGV) and Projection Moir Interferometry (PMI) investigation of a helicopter rotor wake flow field and rotor blade deformation is presented. The three-component DGV system uses a single-frequency, frequency-doubled Nd:YAG laser to obtain instantaneous velocity measurements in the flow. The PMI system uses a pulsed laser-diode bar to obtain blade bending and twist measurements at the same instant that DGV measured the flow. The application of pulse lasers to DGV and PMI in large-scale wind tunnel applications represents a major step forward in the development of these technologies. As such, a great deal was learned about the difficulties of using these instruments to obtain instantaneous measurements in large facilities. Laser speckle and other image noise in the DGV data images were found to be traceable to the Nd:YAG laser. Although image processing techniques were used to virtually eliminate laser speckle noise, the source of low-frequency image noise is still under investigation. The PMI results agreed well with theoretical predictions of blade bending and twist.

  16. Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy

    NASA Astrophysics Data System (ADS)

    Inagaki, Atsushi; Castillo, Marieta Cristina L.; Yamashita, Yoshimi; Kanda, Manabu; Takimoto, Hiroshi

    2012-02-01

    Instantaneous flow structures "within" a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields "within" the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.

  17. Some comments on particle image displacement velocimetry

    NASA Technical Reports Server (NTRS)

    Lourenco, L. M.

    1988-01-01

    Laser speckle velocimetry (LSV) or particle image displacement velocimetry, is introduced. This technique provides the simultaneous visualization of the two-dimensional streamline pattern in unsteady flows as well as the quantification of the velocity field over an entire plane. The advantage of this technique is that the velocity field can be measured over an entire plane of the flow field simultaneously, with accuracy and spatial resolution. From this the instantaneous vorticity field can be easily obtained. This constitutes a great asset for the study of a variety of flows that evolve stochastically in both space and time. The basic concept of LSV; methods of data acquisition and reduction, examples of its use, and parameters that affect its utilization are described.

  18. The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Bernstein, E. L.; Nunes, A. C., Jr.

    2000-01-01

    The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.

  19. Detection and reconstruction of large scale flow structures in a river by means of empirical mode decomposition combined with Hilbert transform

    NASA Astrophysics Data System (ADS)

    Franca, Mário J.; Lemmin, Ulrich

    2014-05-01

    The occurrence of large scale flow structures (LSFS) coherently organized throughout the flow depth has been reported in field and laboratory experiments of flows over gravel beds, especially under low relative submergence conditions. In these, the instantaneous velocity is synchronized over the whole vertical profile oscillating at a low frequency above or below the time-averaged value. The detection of large scale coherently organized regions in the flow field is often difficult since it requires detailed simultaneous observations of the flow velocities at several levels. The present research avoids the detection problem by using an Acoustic Doppler Velocity Profiler (ADVP), which permits measuring three-dimensional velocities quasi-simultaneously over the full water column. Empirical mode decomposition (EMD) combined with the application of the Hilbert transform is then applied to the instantaneous velocity data to detect and isolate LSFS. The present research was carried out in a Swiss river with low relative submergence of 2.9, herein defined as h/D50, (where h is the mean flow depth and D50 the bed grain size diameter for which 50% of the grains have smaller diameters). 3D ADVP instantaneous velocity measurements were made on a 3x5 rectangular horizontal grid (x-y). Fifteen velocity profiles were equally spaced in the spanwise direction with a distance of 10 cm, and in the streamwise direction with a distance of 15 cm. The vertical resolution of the measurements is roughly 0.5 cm. A measuring grid covering a 3D control volume was defined. The instantaneous velocity profiles were measured for 3.5 min with a sampling frequency of 26 Hz. Oscillating LSFS are detected and isolated in the instantaneous velocity signal of the 15 measured profiles. Their 3D cycle geometry is reconstructed and investigated through phase averaging based on the identification of the instantaneous signal phase (related to the Hilbert transform) applied to the original raw signal. Results for all the profiles are consistent and indicate clearly the presence of LSFS throughout the flow depth with impact on the three components of the velocity profile and on the bed friction velocity. A high correlation of the movement is found throughout the flow depth, thus corroborating the hypothesis of large-scale coherent motion evolving over the whole water depth. These latter are characterized in terms of period, horizontal scale and geometry. The high spatial and temporal resolution of our ADVP was crucial for obtaining comprehensive results on coherent structures dynamics. EMD combined with the Hilbert transform have previously been successfully applied to geophysical flow studies. Here we show that this method can also be used for the analysis of river dynamics. In particular, we demonstrate that a clean, well-behaved intrinsic mode function can be obtained from a noisy velocity time series that allowed a precise determination of the vertical structure of the coherent structures. The phase unwrapping of the UMR and the identification of the phase related velocity components brings new insight into the flow dynamics Research supported by the Swiss National Science Foundation (2000-063818). KEY WORDS: large scale flow structures (LSFS); gravel-bed rivers; empirical mode decomposition; Hilbert transform

  20. Flow visualization in long neck Helmholtz resonators with grazing flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1976-01-01

    Both oscillating and steady flows were applied to a single plexiglass resonator cavity with colored dyes injected in both the orifice and grazing flow field to record the motion of the fluid. For oscillatory flow, the instantaneous dye streamlines were similar for both the short and long-neck orifices. The orifice flow blockage appears to be independent of orifice length for a fixed amplitude of flow oscillation and magnitude of the grazing flow. The steady flow dye studies showed that the acoustic and steady flow resistances do not necessarily correspond for long neck orifices.

  1. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    van Gent, P. L.; Michaelis, D.; van Oudheusden, B. W.; Weiss, P.-É.; de Kat, R.; Laskari, A.; Jeon, Y. J.; David, L.; Schanz, D.; Huhn, F.; Gesemann, S.; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, D. E.; Schneiders, J. F. G.; Schrijer, F. F. J.

    2017-04-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences of four subsequent particle images (representing multi-pulse data) as well as continuous time-resolved data which can realistically only be obtained for low-speed flows. Particle images were processed using tomographic PIV processing as well as the LPT algorithm `Shake-The-Box' (STB). Multiple pressure field reconstruction techniques have subsequently been applied to the PIV results (Eulerian approach, iterative least-square pseudo-tracking, Taylor's hypothesis approach, and instantaneous Vortex-in-Cell) and LPT results (FlowFit, Vortex-in-Cell-plus, Voronoi-based pressure evaluation, and iterative least-square pseudo-tracking). All methods were able to reconstruct the main features of the instantaneous pressure fields, including methods that reconstruct pressure from a single PIV velocity snapshot. Highly accurate reconstructed pressure fields could be obtained using LPT approaches in combination with more advanced techniques. In general, the use of longer series of time-resolved input data, when available, allows more accurate pressure field reconstruction. Noise in the input data typically reduces the accuracy of the reconstructed pressure fields, but none of the techniques proved to be critically sensitive to the amount of noise added in the present test case.

  2. Concentration Measurements in Self-Excited Momentum Dominated Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yildirim, B. S.; Pasumarthi, K. S.; Agrawal, A. K.

    2004-01-01

    Flow structure of self-excited, laminar, axisymmetric, momentum-dominated helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry technique. Measurements were obtained at temporal resolution of 1 ms and spatial resolution of 0.19 mm for two test cases with Richardson number of 0.034 and 0.018. Power spectra revealed that the oscillation frequency was independent of spatial coordinates, suggesting global oscillations in the flow. Abel inversion algorithm was used to reconstruct the concentration field of helium. Instantaneous concentration contours revealed changes in the flow field and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial locations provided detailed information about the instability in the flow field.

  3. Fluid-structure-interaction of a flag in a channel flow

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe

    2017-11-01

    The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.

  4. Feasibility and accuracy assessment of light field (plenoptic) PIV flow-measurement technique

    NASA Astrophysics Data System (ADS)

    Shekhar, Chandra; Ogawa, Syo; Kawaguchi, Tatsuya

    A light field camera can enable measurement of all the three velocity components of a flow field inside a three-dimensional volume when implemented in a PIV measurement. Due to the usage of only one camera, the measurement procedure gets greatly simplified, as well as measurement of the flows with limited visual access also becomes possible. Due to these advantages, light field cameras and their usage in PIV measurements are actively studied. The overall procedure of obtaining an instantaneous flow field consists of imaging a seeded flow at two closely separated time instants, reconstructing the two volumetric distributions of the particles using algorithms such as MART, followed by obtaining the flow velocity through cross-correlations. In this study, we examined effects of various configuration parameters of a light field camera on the in-plane and the depth resolutions, obtained near-optimal parameters in a given case, and then used it to simulate a PIV measurement scenario in order to assess the reconstruction accuracy.

  5. Structure and statistics of turbulent flow over riblets

    NASA Astrophysics Data System (ADS)

    Henderson, R. D.; Crawford, C. H.; Karniadakis, G. E.

    1993-01-01

    In this paper we present comparisons of turbulence statistics obtained from direct numerical simulation of flow over streamwise aligned triangular riblets with experimental results. We also present visualizations of the instantaneous velocity field inside and around the riblet valleys. In light of the behavior of the statistics and flowfields inside the riblet valleys, we investigate previously reported physical mechanisms for the drag reducing effect of riblets; our results here support the hypothesis of flow anchoring by the riblet valleys and the corresponding inhibition of spanwise flow motions.

  6. Visualization and Measurement of Flow in a Model Rotating-Wall Bioreactor

    NASA Astrophysics Data System (ADS)

    Brown, Jason B.; Neitzel, G. Paul

    1997-11-01

    Fluid shear has been observed to have an effect on the in vitro growth of mammalian cells and is expected to play a role in the in vitro development of aggregates of cells into tissue. The interactions between culture media and cell constructs within a circular Couette flow bioreactor with independently rotating cylinders are investigated in model studies using flow visualization. Particle-Image Velocimetry (PIV) is used to quantify the velocity field in a plane perpendicular to the vessel axis which contains a cell construct model. This velocity field is then used to compute the instantaneous shear field. Experiments show the path of the model cell construct is dependent on the rotation rates of the cylinders.

  7. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    PubMed

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  8. An overview of a Lagrangian method for analysis of animal wake dynamics.

    PubMed

    Peng, Jifeng; Dabiri, John O

    2008-01-01

    The fluid dynamic analysis of animal wakes is becoming increasingly popular in studies of animal swimming and flying, due in part to the development of quantitative flow visualization techniques such as digital particle imaging velocimetry (DPIV). In most studies, quasi-steady flow is assumed and the flow analysis is based on velocity and/or vorticity fields measured at a single time instant during the stroke cycle. The assumption of quasi-steady flow leads to neglect of unsteady (time-dependent) wake vortex added-mass effects, which can contribute significantly to the instantaneous locomotive forces. In this paper we review a Lagrangian approach recently introduced to determine unsteady wake vortex structure by tracking the trajectories of individual fluid particles in the flow, rather than by analyzing the velocity/vorticity fields at fixed locations and single instants in time as in the Eulerian perspective. Once the momentum of the wake vortex and its added mass are determined, the corresponding unsteady locomotive forces can be quantified. Unlike previous studies that estimated the time-averaged forces over the stroke cycle, this approach enables study of how instantaneous locomotive forces evolve over time. The utility of this method for analyses of DPIV velocity measurements is explored, with the goal of demonstrating its applicability to data that are typically available to investigators studying animal swimming and flying. The methods are equally applicable to computational fluid dynamics studies where velocity field calculations are available.

  9. Velocity measurements of heterogeneous RBC flow in capillary vessels using dynamic laser speckle signal.

    PubMed

    Li, Chenxi; Wang, Ruikang

    2017-04-01

    We propose an approach to measure heterogeneous velocities of red blood cells (RBCs) in capillary vessels using full-field time-varying dynamic speckle signals. The approach utilizes a low coherent laser speckle imaging system to record the instantaneous speckle pattern, followed by an eigen-decomposition-based filtering algorithm to extract dynamic speckle signal due to the moving RBCs. The velocity of heterogeneous RBC flows is determined by cross-correlating the temporal dynamic speckle signals obtained at adjacent locations. We verify the approach by imaging mouse pinna in vivo, demonstrating its capability for full-field RBC flow mapping and quantifying flow pattern with high resolution. It is expected to investigate the dynamic action of RBCs flow in capillaries under physiological changes.

  10. Vesicle electrohydrodynamics.

    PubMed

    Schwalbe, Jonathan T; Vlahovska, Petia M; Miksis, Michael J

    2011-04-01

    A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.

  11. The development of laser speckle or particle image displacement velocimetry. Part 1: The role of photographic parameters

    NASA Technical Reports Server (NTRS)

    Lourenco, L. M. M.; Krothapalli, A.

    1987-01-01

    One of the difficult problems in experimental fluid dynamics remains the determination of the vorticity field in fluid flows. Recently, a novel velocity measurement technique, commonly known as Laser Speckle or Particle Image Displacement Velocimetry became available. This technique permits the simultaneous visualization of the 2 dimensional streamline pattern in unsteady flows and the quantification of the velocity field. The main advantage of this new technique is that the whole 2 dimensional velocity field can be recorded with great accuracy and spatial resolution, from which the instantaneous vorticity field can be easily obtained. A apparatus used for taking particle displacement images is described. Local coherent illumination by the probe laser beam yielded Young's fringes of good quality at almost every location of the flow field. These fringes were analyzed and the velocity and vorticity fields were derived. Several conclusions drawn are discussed.

  12. Velocity measurements of heterogeneous RBC flow in capillary vessels using dynamic laser speckle signal

    PubMed Central

    Li, Chenxi; Wang, Ruikang

    2017-01-01

    Abstract. We propose an approach to measure heterogeneous velocities of red blood cells (RBCs) in capillary vessels using full-field time-varying dynamic speckle signals. The approach utilizes a low coherent laser speckle imaging system to record the instantaneous speckle pattern, followed by an eigen-decomposition-based filtering algorithm to extract dynamic speckle signal due to the moving RBCs. The velocity of heterogeneous RBC flows is determined by cross-correlating the temporal dynamic speckle signals obtained at adjacent locations. We verify the approach by imaging mouse pinna in vivo, demonstrating its capability for full-field RBC flow mapping and quantifying flow pattern with high resolution. It is expected to investigate the dynamic action of RBCs flow in capillaries under physiological changes. PMID:28384709

  13. The effects of non-Newtonian blood flow on curved stenotic coronary artery

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Chin, Cheng; Monty, Jason; Barlis, Peter; Ooi, Andrew

    2017-11-01

    Direct numerical simulations (DNS) are carried out using both Newtonian and non-Newtonian viscosity models under a pulsatile physiological flow condition to study the influences of the non-Newtonian blood property on the flow fields in the idealised curved stenotic artery model. Quemada model is adopted to simulate the non-Newtonian blood in the simulations. Both time-averaged and selected instantaneous velocity, vorticity and pressure data are examined and the differences between the Newtonian and non-Newtonian flows are examined. The non-Newtonian simulations tend to have blunted axial velocity profile compared to the Newtonian cases. In the proximal of post-stenotic region, smaller recirculation bubbles are observed because of the non-Newtonian effects. Decreased secondary flow strengths are observed upstream of stenosis while higher magnitudes of secondary flows are found out downstream of stenosis. The deviation of mean cross-sectionally axial vorticity is minimal except at the peak systole, where an additional vortice appears near the centre of the 90 degrees plane that is more pronounced in the Newtonian case. The influence of blood-analog viscosity increases the mean pressure drops. However, lower instantaneous pressure losses at peak systole are observed in contrast to the Newtonian blood analog fluid.

  14. Regularized Stokeslet representations for the flow around a human sperm

    NASA Astrophysics Data System (ADS)

    Ishimoto, Kenta; Gadelha, Hermes; Gaffney, Eamonn; Smith, David; Kirkman-Brown, Jackson

    2017-11-01

    The sperm flagellum does not simply push the sperm. We have established a new theoretical scheme for the dimensional reduction of swimming sperm dynamics, via high-frame-rate digital microscopy of a swimming human sperm cell. This has allowed the reconstruction of the flagellar waveform as a limit cycle in a phase space of PCA modes. With this waveform, boundary element numerical simulation has successfully captured fine-scale sperm swimming trajectories. Further analyses on the flow field around the cell has also demonstrated a pusher-type time-averaged flow, though the instantaneous flow field can temporarily vary in a more complicated manner - even pulling the sperm. Applying PCA to the flow field, we have further found that a small number of PCA modes explain the temporal patterns of the flow, whose core features are well approximated by a few regularized Stokeslets. Such representations provide a methodology for coarse-graining the time-dependent flow around a human sperm and other flagellar microorganisms for use in developing population level models that retain individual cell dynamics.

  15. Characteristics of ion flow in the quiet state of the inner plasma sheet

    NASA Technical Reports Server (NTRS)

    Angelopoulos, V.; Kennel, C. F.; Coroniti, F. V.; Pellat, R.; Spence, H. E.; Kivelson, M. G.; Walker, R. J.; Baumjohann, W.; Feldman, W. C.; Gosling, J. T.

    1993-01-01

    We use AMPTE/IRM and ISEE 2 data to study the properties of the high beta plasma sheet, the inner plasma sheet (IPS). Bursty bulk flows (BBFs) are excised from the two databases, and the average flow pattern in the non-BBF (quiet) IPS is constructed. At local midnight this ensemble-average flow is predominantly duskward; closer to the flanks it is mostly earthward. The flow pattern agrees qualitatively with calculations based on the Tsyganenko (1987) model (T87), where the earthward flow is due to the ensemble-average cross tail electric field and the duskward flow is the diamagnetic drift due to an inward pressure gradient. The IPS is on the average in pressure equilibrium with the lobes. Because of its large variance the average flow does not represent the instantaneous flow field. Case studies also show that the non-BBF flow is highly irregular and inherently unsteady, a reason why earthward convection can avoid a pressure balance inconsistency with the lobes. The ensemble distribution of velocities is a fundamental observable of the quiet plasma sheet flow field.

  16. Cylinder wakes in flowing soap films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobieff, P.; Ecke, R.E.; Vorobieff, P.

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. [copyright] [ital 1999] [ital The American Physical Society

  17. Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Lane, David A.

    1996-01-01

    Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.

  18. Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry

    NASA Technical Reports Server (NTRS)

    El-Gabry, Lamyaa A.; Thurman, Douglas R.; Poinsatte, Philip E.

    2014-01-01

    Hotwire anemometers are used to measure instantaneous velocity from which the mean velocity and the velocity fluctuation can be determined. Using a hotwire system, it is possible to deduce not only the velocity components and their fluctuation but to also analyze the energy spectra and from that the turbulence length scales. In this experiment, hotwire anemometry is used to measure the flow field turbulence for an array of film cooling holes. The objective of this paper is to document the procedure that is used to reduce the instantaneous velocity measurements to determine the turbulence length scales using data from the film-cooling experiments to illustrate the procedure.

  19. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  20. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp

    NASA Astrophysics Data System (ADS)

    Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping

    2017-12-01

    Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical data. The spatial structures of the dominated low-frequency dynamic modes are found to be similar to that of the Görtler-like vortices.

  1. The effects of magnetic fields on the growth of thermal instabilities in cooling flows

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Bregman, Joel N.

    1989-01-01

    The effects of heat conduction and magnetic fields on the growth of thermal instabilities in cooling flows are examined using a time-dependent hydrodynamics code. It is found that, for magnetic field strengths of roughly 1 micro-Gauss, magnetic pressure forces can completely suppress shocks from forming in thermally unstable entropy perturbations with initial length scales as large as 20 kpc, even for initial amplitudes as great as 60 percent. Perturbations with initial amplitudes of 50 percent and initial magnetic field strengths of 1 micro-Gauss cool to 10,000 K on a time scale which is only 22 percent of the initial instantaneous cooling time. Nonlinear perturbations can thus condense out of cooling flows on a time scale substantially less than the time required for linear perturbations and produce significant mass deposition of cold gas while the accreting intracluster gas is still at large radii.

  2. Fast instantaneous center of rotation estimation algorithm for a skied-steered robot

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2015-05-01

    Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.

  3. Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Spalart, Philippe R.

    1987-01-01

    The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.

  4. 3D Plenoptic PIV Measurements of a Shock Wave Boundary Layer Interaction

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Bolton, Johnathan; Arora, Nishul; Alvi, Farrukh

    2016-11-01

    Plenoptic particle image velocimetry (PIV) is a relatively new technique that uses the computational refocusing capability of a single plenoptic camera and volume illumination with a double-pulsed light source to measure the instantaneous 3D/3C velocity field of a flow field seeded with particles. In this work, plenoptic PIV is used to perform volumetric velocity field measurements of a shock-wave turbulent boundary layer interaction (SBLI). Experiments were performed in a Mach 2.0 flow with the SBLI produced by an unswept fin at 15°angle of attack. The measurement volume was 38 x 25 x 32 mm3 and illuminated with a 400 mJ/pulse Nd:YAG laser with 1.7 microsecond inter-pulse time. Conventional planar PIV measurements along two planes within the volume are used for comparison. 3D visualizations of the fin generated shock and subsequent SBLI are presented. The growth of the shock foot and separation region with increasing distance from the fin tip is observed and agrees with observations made using planar PIV. Instantaneous images depict 3D fluctuations in the position of the shock foot from one image to the next. The authors acknowledge the support of the Air Force Office of Scientific Research.

  5. Splitting of turbulent spot in transitional pipe flow

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  6. Turbulent flow in a partially filled pipe

    NASA Astrophysics Data System (ADS)

    Ng, Henry; Cregan, Hope; Dodds, Jonathan; Poole, Robert; Dennis, David

    2017-11-01

    Turbulent flow in a pressure driven pipe running partially full has been investigated using high-speed 2D-3C Stereoscopic Particle Imaging Velocimetry. With the field-of-view spanning the entire pipe cross section we are able to reconstruct the full three dimensional quasi-instantaneous flow field by invoking Taylor's hypothesis. The measurements were carried out over a range of flow depths at a constant Reynolds number based on hydraulic diameter and bulk velocity of Re = 32 , 000 . In agreement with previous studies, the ``velocity dip'' phenomenon, whereby the location of the maximum streamwise velocity occurs below the free surface was observed. A mean flow secondary current is observed near the free surface with each of the counter-rotating rollers filling the half-width of the pipe. Unlike fully turbulent flow in a rectangular open channel or pressurized square duct flow where the secondary flow cells appear in pairs about a corner bisector, the mean secondary motion observed here manifests only as a single pair of vortices mirrored about the pipe vertical centreline.

  7. Assessment of swirl spray interaction in lab scale combustor using time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Rajamanickam, Kuppuraj; Jain, Manish; Basu, Saptarshi

    2017-11-01

    Liquid fuel injection in highly turbulent swirling flows becomes common practice in gas turbine combustors to improve the flame stabilization. It is well known that the vortex bubble breakdown (VBB) phenomenon in strong swirling jets exhibits complicated flow structures in the spatial domain. In this study, the interaction of hollow cone liquid sheet with such coaxial swirling flow field has been studied experimentally using time-resolved measurements. In particular, much attention is focused towards the near field breakup mechanism (i.e. primary atomization) of liquid sheet. The detailed swirling gas flow field characterization is carried out using time-resolved PIV ( 3.5 kHz). Furthermore, the complicated breakup mechanisms and interaction of the liquid sheet are imaged with the help of high-speed shadow imaging system. Subsequently, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) is implemented over the instantaneous data sets to retrieve the modal information associated with the interaction dynamics. This helps to delineate more quantitative nature of interaction process between the liquid sheet and swirling gas phase flow field.

  8. Use of instantaneous streamflow measurements to improve regression estimates of index flow for the summer month of lowest streamflow in Michigan

    USGS Publications Warehouse

    Holtschlag, David J.

    2011-01-01

    In Michigan, index flow Q50 is a streamflow characteristic defined as the minimum of median flows for July, August, and September. The state of Michigan uses index flow estimates to help regulate large (greater than 100,000 gallons per day) water withdrawals to prevent adverse effects on characteristic fish populations. At sites where long-term streamgages are located, index flows are computed directly from continuous streamflow records as GageQ50. In an earlier study, a multiple-regression equation was developed to estimate index flows IndxQ50 at ungaged sites. The index equation explains about 94 percent of the variability of index flows at 147 (index) streamgages by use of six explanatory variables describing soil type, aquifer transmissivity, land cover, and precipitation characteristics. This report extends the results of the previous study, by use of Monte Carlo simulations, to evaluate alternative flow estimators, DiscQ50, IntgQ50, SiteQ50, and AugmQ50. The Monte Carlo simulations treated each of the available index streamgages, in turn, as a miscellaneous site where streamflow conditions are described by one or more instantaneous measurements of flow. In the simulations, instantaneous flows were approximated by daily mean flows at the corresponding site. All estimators use information that can be obtained from instantaneous flow measurements and contemporaneous daily mean flow data from nearby long-term streamgages. The efficacy of these estimators was evaluated over a set of measurement intensities in which the number of simulated instantaneous flow measurements ranged from 1 to 100 at a site. The discrete measurement estimator DiscQ50 is based on a simple linear regression developed between information on daily mean flows at five or more streamgages near the miscellaneous site and their corresponding GageQ50 index flows. The regression relation then was used to compute a DiscQ50 estimate at the miscellaneous site by use of the simulated instantaneous flow measurement. This process was repeated to develop a set of DiscQ50 estimates for all simulated instantaneous measurements, a weighted DiscQ50 estimate was formed from this set. Results indicated that the expected value of this weighted estimate was more precise than the IndxQ50 estimate for all measurement intensities evaluated. The integrated index-flow estimator, IntgQ50, was formed by computing a weighted average of the index estimate IndxQ50 and the DiscQ50 estimate. Results indicated that the IntgQ50 estimator was more precise than the DiscQ50 estimator at low measurement intensities of one to two measurements. At greater measurement intensities, the precision of the IntgQ50 estimator converges to the DiscQ50 estimator. Neither the DiscQ50 nor the IntgQ50 estimators provided site-specific estimates. In particular, although expected values of DiscQ50 and IntgQ50 estimates converge with increasing measurement intensity, they do not necessarily converge to the site-specific value of Q50. The site estimator of flow, SiteQ50, was developed to facilitate this convergence at higher measurement intensities. This is accomplished by use of the median of simulated instantaneous flow values for each measurement intensity level. A weighted estimate of the median and information associated with the IntgQ50 estimate was used to form the SiteQ50 estimate. Initial simulations indicate that the SiteQ50 estimator generally has greater precision than the IntgQ50 estimator at measurement intensities greater than 3, however, additional analysis is needed to identify streamflow conditions under which instantaneous measurements will produce estimates that generally converge to the index flows. A preliminary augmented index regression equation was developed, which contains the index regression estimate and two additional variables associated with base-flow recession characteristics. When these recession variables were estimated as the medians of recession parameters compute

  9. Noise produced by turbulent flow into a rotor: Theory manual for noise calculation

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.

    1989-01-01

    An analysis is presented for the calculation of noise produced by turbulent flow into a helicopter rotor. The method is based on the analysis of Amiet for the sound produced by an airfoil moving in rectilinear motion through a turbulent flow field. The rectilinear motion results are used in a quasi-steady manner to calculate the instantaneous spectrum of the rotor noise at any given rotor position; the overall spectrum is then found by averaging the instantaneous spectrum over all rotor azimuth angles. Account is taken of the fact that the rotor spends different amounts of retarded time at different rotor positions. Blade to blade correlation is included in the analysis, leading to harmonics of blade passing frequency. The spectrum of the turbulence entering the rotor is calculated by applying rapid distortion theory to an isotropic turbulence spectrum, assuming that the turbulence is stretched as it is pulled into the rotor. The inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. The analytical basis is provided for a module which was incorporated in NASA's ROTONET helicopter noise prediction program.

  10. Electric-field driven jetting from dielectric liquids

    NASA Astrophysics Data System (ADS)

    Jayasinghe, S. N.; Edirisinghe, M. J.

    2004-11-01

    Three dielectric (electrical conductivity ˜10-13Sm-1) Newtonian liquids with viscosity in the range 1-100 mPa s were passed through a needle at a controlled flow rate under the influence of an electric field. At an electric field strength of 1.5kV/mm, the liquid exiting the needle instantaneously transformed from dripping droplets to an elliptically pendent droplet from the apex of which a fine jet evolved. Thus, a jet can be obtained on demand, and in this letter we define this phenomenon and explain a basis for it.

  11. Quantifying the influence of flow asymmetries on glottal sound sources in speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron; Plesniak, Michael

    2008-11-01

    Human speech is made possible by the air flow interaction with the vocal folds. During phonation, asymmetries in the glottal flow field may arise from flow phenomena (e.g. the Coanda effect) as well as from pathological vocal fold motion (e.g. unilateral paralysis). In this study, the effects of flow asymmetries on glottal sound sources were investigated. Dynamically-programmable 7.5 times life-size vocal fold models with 2 degrees-of-freedom (linear and rotational) were constructed to provide a first-order approximation of vocal fold motion. Important parameters (Reynolds, Strouhal, and Euler numbers) were scaled to physiological values. Normal and abnormal vocal fold motions were synthesized, and the velocity field and instantaneous transglottal pressure drop were measured. Variability in the glottal jet trajectory necessitated sorting of the data according to the resulting flow configuration. The dipole sound source is related to the transglottal pressure drop via acoustic analogies. Variations in the transglottal pressure drop (and subsequently the dipole sound source) arising from flow asymmetries are discussed.

  12. Bubble deformations and segmented flows in corrugated microchannels at large capillary numbers

    NASA Astrophysics Data System (ADS)

    Sauzade, Martin; Cubaud, Thomas

    2018-03-01

    We experimentally investigate the interaction between individual bubble deformations and collective distortions of segmented flows in nonlinear microfluidic geometries. Using highly viscous carrier fluids, we study the evolution of monodisperse trains of gas bubbles from a square to a smoothly corrugated microchannel characterized with a series of extensions and constrictions along the flow path. The hysteresis in the bubble shape between accelerating and decelerating flow fields is shown to increase with the capillary number. Measurements of instantaneous bubble velocities reveal the presence of a capillary pull that produces a nonmonotonic behavior for the front velocity in accelerating flow regions. Functional relationships are developed for predicting the morphology and dynamics of viscous multiphase flow patterns at the pore scale.

  13. Large-scale structures in turbulent Couette flow

    NASA Astrophysics Data System (ADS)

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  14. Transport induced by mean-eddy interaction: II. Analysis of transport processes

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-03-01

    We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.

  15. Potential field cellular automata model for pedestrian flow

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Jian, Xiao-Xia; Wong, S. C.; Choi, Keechoo

    2012-02-01

    This paper proposes a cellular automata model of pedestrian flow that defines a cost potential field, which takes into account the costs of travel time and discomfort, for a pedestrian to move to an empty neighboring cell. The formulation is based on a reconstruction of the density distribution and the underlying physics, including the rule for resolving conflicts, which is comparable to that in the floor field cellular automaton model. However, we assume that each pedestrian is familiar with the surroundings, thereby minimizing his or her instantaneous cost. This, in turn, helps reduce the randomness in selecting a target cell, which improves the existing cellular automata modelings, together with the computational efficiency. In the presence of two pedestrian groups, which are distinguished by their destinations, the cost distribution for each group is magnified due to the strong interaction between the two groups. As a typical phenomenon, the formation of lanes in the counter flow is reproduced.

  16. Fast-dynamo action in unsteady flows and maps in three dimensions

    NASA Technical Reports Server (NTRS)

    Bayly, B. J.; Childress, S.

    1987-01-01

    Unsteady fast-dynamo action is obtained in a family of stretch-fold-shear maps applied to a spatially periodic magnetic field in three dimensions. Exponential growth of a mean field in the limit of vanishing diffusivity is demonstrated by a numerical method which alternates instantaneous deformations with molecular diffusion over a finite time interval. Analysis indicates that the dynamo is a coherent feature of the large scales, essentially independent of the cascade of structure to small scales.

  17. A rigorous solution of the Navier-Stokes equations for unsteady viscous flow at high Reynolds numbers around oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Aksu, H.; Spehert, T.

    1975-01-01

    A method based on the Navier-Stokes equations was developed for analyzing the unsteady incompressible viscous flow around oscillating airfoils at high Reynolds numbers. The Navier-Stokes equations have been integrated in their classical Helmholtz vorticity transport equation form, and the instantaneous velocity field at each time step was determined by the solution of Poisson's equation. A refined finite element was utilized to allow for a conformable solution of the stream function and its first space derivatives at the element interfaces. A corresponding set of accurate boundary conditions was applied; thus obtaining a rigorous solution for the velocity field. The details of the computational procedure and examples of computed results describing the unsteady flow characteristics around the airfoil are presented.

  18. The gust-mitigating potential of flapping wings.

    PubMed

    Fisher, Alex; Ravi, Sridhar; Watkins, Simon; Watmuff, Jon; Wang, Chun; Liu, Hao; Petersen, Phred

    2016-08-02

    Nature's flapping-wing flyers are adept at negotiating highly turbulent flows across a wide range of scales. This is in part due to their ability to quickly detect and counterract disturbances to their flight path, but may also be assisted by an inherent aerodynamic property of flapping wings. In this study, we subject a mechanical flapping wing to replicated atmospheric turbulence across a range of flapping frequencies and turbulence intensities. By means of flow visualization and surface pressure measurements, we determine the salient effects of large-scale freestream turbulence on the flow field, and on the phase-average and fluctuating components of pressure and lift. It is shown that at lower flapping frequencies, turbulence dominates the instantaneous flow field, and the random fluctuating component of lift contributes significantly to the total lift. At higher flapping frequencies, kinematic forcing begins to dominate and the flow field becomes more consistent from cycle to cycle. Turbulence still modulates the flapping-induced flow field, as evidenced in particular by a variation in the timing and extent of leading edge vortex formation during the early downstroke. The random fluctuating component of lift contributes less to the total lift at these frequencies, providing evidence that flapping wings do indeed provide some inherent gust mitigation.

  19. Structure analysis of turbulent liquid phase by POD and LSE techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I.

    2014-10-24

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energymore » containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.« less

  20. Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin.

    PubMed

    Peng, Jifeng; Dabiri, John O; Madden, Peter G; Lauder, George V

    2007-02-01

    Swimming and flying animals generate unsteady locomotive forces by delivering net momentum into the fluid wake. Hence, swimming and flying forces can be quantified by measuring the momentum of animal wakes. A recently developed model provides an approach to empirically deduce swimming and flying forces based on the measurement of velocity and vortex added-mass in the animal wake. The model is contingent on the identification of the vortex boundary in the wake. This paper demonstrates the application of that method to a case study quantifying the instantaneous locomotive forces generated by the pectoral fins of the bluegill sunfish (Lepomis macrochirus Rafinesque), measured using digital particle image velocimetry (DPIV). The finite-time Lyapunov exponent (FTLE) field calculated from the DPIV data was used to determine the wake vortex boundary, according to recently developed fluid dynamics theory. Momentum of the vortex wake and its added-mass were determined and the corresponding instantaneous locomotive forces were quantified at discrete time points during the fin stroke. The instantaneous forces estimated in this study agree in magnitude with the time-averaged forces quantified for the pectoral fin of the same species swimming in similar conditions and are consistent with the observed global motion of the animals. A key result of this study is its suggestion that the dynamical effect of the vortex wake on locomotion is to replace the real animal fin with an ;effective appendage', whose geometry is dictated by the FTLE field and whose interaction with the surrounding fluid is wholly dictated by inviscid concepts from potential flow theory. Benefits and limitations of this new framework for non-invasive instantaneous force measurement are discussed, and its application to comparative biomechanics and engineering studies is suggested.

  1. Full-Field Measurements of Self-Excited Oscillations in Momentum-Dominated Helium Jets

    NASA Technical Reports Server (NTRS)

    Yildirim, B. S.; Agrawal, A. K.

    2005-01-01

    Flow structure of momentum-dominated helium jets discharged vertically into ambient air was investigated using a high-speed rainbow schlieren deflectometry (RSD) apparatus operated at up to 2000 Hz. The operating parameters, i.e., Reynolds number and Richardson number were varied independently to examine the self-excited, flow oscillatory behavior over a range of experimental conditions. Measurements revealed highly periodic oscillations in the laminar region at a unique frequency as well as high regularity in the flow transition and initial turbulent regions. The buoyancy was shown to affect the oscillation frequency and the distance from the jet exit to the flow transition plane. Instantaneous helium concentration contours across the field of view revealed changes in the jet flow structure and the evolution of the vortical structures during an oscillation cycle. A cross-correlation technique was applied to track the vortices and to find their convection velocity. Time-traces of helium concentration at different axial locations provided detailed information about the oscillating flow.

  2. Numerical analysis of tangential slot blowing on a generic chined forebody

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana M.

    1994-01-01

    A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.

  3. Boundary Layer Measurements in the Trisonic Gas-dynamics Facility Using Particle Image Velocimetery with CO2 Seeding

    DTIC Science & Technology

    2012-03-22

    understanding of fluid mechanics and aircraft design. The fundamental theories, concepts and equations developed by men like Newton, Bernoulli ...resulting instantaneous flow field data from PIV, boundary layer effects, turbulence characteristics, vortex formation, and momentum thickness, for...divided by the momentum thickness, δ2, and displacement thickness, δ1, as seen in Equations (2.8) and (2.9

  4. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  5. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies.

    PubMed

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  6. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    PubMed Central

    Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347

  7. Spatial-temporal and modal analysis of propeller induced ground vortices by particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L. L. M.; Eitelberg, G.

    2016-10-01

    During the ground operation of aircraft, there is potentially a system of vortices generated from the ground toward the propulsor, commonly denoted as ground vortices. Although extensive research has been conducted on ground vortices induced by turbofans which were simplified by suction tubes, these studies cannot well capture the properties of ground vortices induced by propellers, e.g., the flow phenomena due to intermittent characteristics of blade passing and the presence of slipstream of the propeller. Therefore, the investigation of ground vortices induced by a propeller is performed to improve understanding of these phenomena. The distributions of velocities in two different planes containing the vortices were measured by high frequency Particle Image Velocimetry. These planes are a wall-parallel plane in close proximity to the ground and a wall-normal plane upstream of the propeller. The instantaneous flow fields feature highly unsteady flow in both of these two planes. The spectral analysis is conducted in these two flow fields and the energetic frequencies are quantified. The flow fields are further evaluated by applying the Proper Orthogonal Decomposition analysis to capture the coherent flow structures. Consistent flow structures with strong contributions to the turbulent kinetic energy are noticed in the two planes.

  8. Modelling of particle-laden flow inside nanomaterials.

    PubMed

    Chan, Yue; Wylie, Jonathan J; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  9. Modelling of particle-laden flow inside nanomaterials

    NASA Astrophysics Data System (ADS)

    Chan, Yue; Wylie, Jonathan J.; Xia, Liang; Ren, Yong; Chen, Yung-Tsang

    2016-08-01

    In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.

  10. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    NASA Astrophysics Data System (ADS)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and instantaneous streamwise velocities, but between the instantaneous temperatures and velocities averaged over certain time interval.

  11. Magnetic flux trapping during field reversal in the formation of a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.

    1985-11-01

    The flow of plasma and magnetic flux toward a wall is examined in a slab geometry where the magnetic field is parallel to the wall. Magnetohydrodynamic (MHD) flow with a quasisteady approximation is assumed that reduces the problem to three coupled ordinary differential equations. The calculated behavior shows that a thin current sheath is established at the wall in which a variety of phenomena appear, including significant resistive heating and rapid deceleration of the plasma flow. The sheath physics determines the speed at which flux and plasma flow toward the wall. The model has been applied to the field-reversal phase of a field-reversed theta pinch, during which the reduced magnetic field near the wall drives an outward flow of plasma and magnetic flux. The analysis leads to approximate expressions for the instantaneous flow speed, the loss of magnetic flux during the field reversal phase, the integrated heat flow to the wall, and the highest possible magnetic flux retained after reversal. Predictions from this model are compared with previous time-dependent MHD calculations and with experimental results from the TRX-1 [Proceedings of the 4th Symposium on the Physics and Technology of Compact Toroids, 27-29 October 1981 (Lawrence Livermore National Laboratory, Livermore, CA, 1982), p. 61] and TRX-2 [Proceedings of the 6th U.S. Symposium on Compact Toroid Research, 20-23 February, 1984 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1984), p. 154] experiments.

  12. Direct-Numerical and Large-Eddy Simulations of a Non-Equilibrium Turbulent Kolmogorov Flow

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Shebalin, J. V.; Hussaini, M. Y.

    1999-01-01

    A non-equilibrium form of turbulent Kolmogorov flow is set up by making an instantaneous change in the amplitude of the spatially-periodic forcing. It is found that the response of the flow to this instantaneous change becomes more dramatic as the wavenumber of the forcing is increased, and, at the same time, that the faithfulness with which the large-eddy-simulation results agree with the direct-numerical results decreases.

  13. Measurements of cross-sectional instantaneous phase distribution in gas-liquid pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roitberg, E.; Shemer, L.; Barnea, D.

    Two novel complementing methods that enable experimental study of gas and liquid phases distribution in two-phase pipe flow are considered. The first measuring technique uses a wire-mesh sensor that, in addition to providing data on instantaneous phase distribution in the pipe cross-section, also allows measuring instantaneous propagation velocities of the phase interface. A novel algorithm for processing the wire-mesh sensor data is suggested to determine the instantaneous boundaries of gas-liquid interface. The second method applied here takes advantage of the existence of sharp visible boundaries between the two phases. This optical instrument is based on a borescope that is connectedmore » to a digital video camera. Laser light sheet illumination makes it possible to obtain images in the illuminated pipe cross-section only. It is demonstrated that the wire-mesh-derived results based on application of the new algorithm improve the effective spatial resolution of the instrument and are in agreement with those obtained using the borescope. Advantages and limitations of both measuring techniques for the investigations of cross-sectional instantaneous phase distribution in two-phase pipe flows are discussed. (author)« less

  14. Development, Calibration and Deployment of an Electromagnetic Flowmeter for Cross-Hole Hydrogeologic Experiments

    NASA Astrophysics Data System (ADS)

    Slovacek, A. E.; Fisher, A. T.; Kirkwood, W.; Wheat, C. G.; Maughan, T.; Gomes, K.

    2011-12-01

    We developed an autonomous electromagnetic flowmeter as part of a cross-hole hydrogeologic experiment using subseafloor borehole observatories (CORKs) that penetrate into the volcanic ocean crust. The cylindrical flowmeter is adapted from a conventional industrial tool and hardened for use at water depths up to 6000 m. In addition, the electronics were modified with a new power controller, and a data logger and communication board was added to enable data storage and long-term, autonomous use for up to eight years. The flowmeter generates a magnetic field and measures a voltage gradient that is created across the orifice as water moves through it. This kind of tool is ideally suited for use in the deep sea, particularly for measuring hydrothermal fluids emanating from the ocean crust, because it requires no moving parts, places no obstructions along the flow path, gives total flow volume as well as instantaneous flow rate, and is highly accurate across a large dynamic range, including bi-directional flow. This flowmeter was deployed on a CORK wellhead using an adapter and ring clamp system located above a 4-inch ball valve. The ball valve can be opened to permit flow (from an overpressured formation) out of the CORK and into the overlying ocean. A polyvinyl chloride "chimney" positioned vertically above the flowmeter is instrumented with autonomous temperature loggers to permit an additional estimate of fluid flow rates with time, based on heat loss during fluid ascent, and to facilitate fluid sampling. Calibration of the new flowmeter was completed in two stages: tank testing using a pump at flow rates of 0.5 to 1.2 L/s, and by lowering the flowmeter on a wireline at sea at rates equivalent to 0.5 to 5.2 L/s. A cross plot of apparent and reference flow rates obtained during calibration indicates a highly linear instrument response. Comparison of instantaneous (once per minute) and integrated (total flow) data collected during calibration indicates good agreement, although the instantaneous data tended to be noisy because of irregularity of flow (turbulence). The flowmeter was deployed in Summer 2011 on a CORK installed in IODP Hole 1362B, on the eastern flank of the Juan de Fuca ridge. Once the flowmeter was attached to the wellhead, the underlying ball valve was opened, which allowed overpressured fluids from the permeable ocean crust to flow upward and out of the seafloor at 5 to 10 L/s (estimated rate). Changes in formation fluid pressure resulting from this flow are being monitored in four additional CORKs located 310 to 2320 m away from Hole 1362B, which will allow large-scale, directional assessment of formation properties. The flowmeter is recording data for instantaneous flow rate and total flow once per hour, and will be recovered to permit collection and analysis of experimental data during a servicing visit in Summer 2012.

  15. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    PubMed

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  16. Flow disturbance due to presence of the vane anemometer

    NASA Astrophysics Data System (ADS)

    Bujalski, M.; Gawor, M.; Sobczyk, J.

    2014-08-01

    This paper presents the results of the preliminary experimental investigations of the disturbance of velocity field resulting from placing a vane anemometer in the analyzed air flow. Experiments were conducted in a wind tunnel with a closed loop. For the measurement process, Particle Image Velocimetry (PIV) method was used to visualize the flow structure and evaluate the instantaneous, two-dimensional velocity vector fields. Regions of inflow on the vane anemometer as well as flow behind it were examined. Ensemble averaged velocity distribution and root-mean-square (RMS) velocity fluctuations were determined. The results below are presented in the form of contour-velocity maps and profile plots. In order to investigate velocity fluctuations in the wake of vane anemometer with high temporal resolution hot-wire anemometry (HWA) technique was used. Frequency analysis by means of Fast Fourier Transform was carried out. The obtained results give evidence to a significant spatially and temporally complex flow disturbance in the vicinity of analyzed instrument.

  17. An experimental technique for performing 3-D LDA measurements inside whirling annular seals

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III.; Wiedner, Brian G.

    1992-01-01

    During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.

  18. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2001-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which con lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in highspeed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  19. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  20. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.

    PubMed

    Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P

    2009-08-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.

  1. Development of Supersonic Combustion Experiments for CFD Modeling

    NASA Technical Reports Server (NTRS)

    Baurle, Robert; Bivolaru, Daniel; Tedder, Sarah; Danehy, Paul M.; Cutler, Andrew D.; Magnotti, Gaetano

    2007-01-01

    This paper describes the development of an experiment to acquire data for developing and validating computational fluid dynamics (CFD) models for turbulence in supersonic combusting flows. The intent is that the flow field would be simple yet relevant to flows within hypersonic air-breathing engine combustors undergoing testing in vitiated-air ground-testing facilities. Specifically, it describes development of laboratory-scale hardware to produce a supersonic combusting coaxial jet, discusses design calculations, operability and types of flames observed. These flames are studied using the dual-pump coherent anti- Stokes Raman spectroscopy (CARS) - interferometric Rayleigh scattering (IRS) technique. This technique simultaneously and instantaneously measures temperature, composition, and velocity in the flow, from which many of the important turbulence statistics can be found. Some preliminary CARS data are presented.

  2. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  3. The state of the art of the development of SMES for bridging instantaneous voltage dips in Japan

    NASA Astrophysics Data System (ADS)

    Nagaya, Shigeo; Hirano, Naoki; Katagiri, Toshio; Tamada, Tsutomu; Shikimachi, Koji; Iwatani, Yu; Saito, Fusao; Ishii, Yusuke

    2012-12-01

    Development of apparatuses for protecting industrial facilities such as semiconductor plants or information industries from instantaneous voltage dips, which requires very large output power, has been expected. A Superconducting magnetic energy storage system (SMES), one of such apparatus, consists of superconducting magnets that must withstand high voltage during operation and require high reliability. We have already development of SMES using conventional superconducting coils and done the field test of the SMES for bridging instantaneous voltage dips. After field test, the commercial SMES for instantaneous voltage dips is working there. Since field test has started, we have confirmed nearly 40 operations, and all have succeeded. In 2011, three commercial SMES units for bridging instantaneous voltage dips are operating in Japan.

  4. Study of Oscillating Electroosmotic Flows with High Temporal and Spatial Resolution.

    PubMed

    Zhao, Wei; Liu, Xin; Yang, Fang; Wang, Kaige; Bai, Jintao; Qiao, Rui; Wang, Guiren

    2018-02-06

    Near-wall velocity of oscillating electroosmotic flow (OEOF) driven by an AC electric field has been investigated using a laser-induced fluorescence photobleaching anemometer (LIFPA). For the first time, an up to 3 kHz velocity response of OEOF has been successfully measured experimentally, even though the oscillating velocity is as low as 600 nm/s. It is found that the oscillating velocity decays with the forcing frequency f f as f f -0.66 . In the investigated range of electric field intensity (E A ), below 1 kHz, the linear relation between oscillating velocity and E A is also observed. Because the oscillating velocity at high frequency is very small, the contribution of noise to velocity measurement is significant, and it is discussed in this manuscript. The investigation reveals the instantaneous response of OEOF to the temporal change of electric fields, which exists in almost all AC electrokinetic flows. Furthermore, the experimental observations are important for designing OEOF-based micro/nanofluidics systems.

  5. Estimating maximum instantaneous distortion from inlet total pressure rms and PSD measurements. [Root Mean Square and Power Spectral Density methods

    NASA Technical Reports Server (NTRS)

    Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.

    1975-01-01

    An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.

  6. Criterion for Identifying Vortices in High-Pressure Flows

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2007-01-01

    A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.

  7. Predicting atmospheric states from local dynamical properties of the underlying attractor

    NASA Astrophysics Data System (ADS)

    Faranda, Davide; Rodrigues, David; Alvarez-Castro, M. Carmen; Messori, Gabriele; Yiou, Pascal

    2017-04-01

    Mid-latitude flows are characterized by a chaotic dynamics and recurring patterns hinting to the existence of an atmospheric attractor. In 1963 Lorenz described this object as: "the collection of all states that the system can assume or approach again and again, as opposed to those that it will ultimately avoid" and analyzed a low dimensional system describing a convective dynamics whose attractor has the shape of a butterfly. Since then, many studies try to find equivalent of the Lorenz butterfly in the complex atmospheric dynamics. Most of the studies where focused to determine the average dimension D of the attractor i.e. the number of degrees of freedom sufficient to describe the atmospheric circulation. However, obtaining reliable estimates of D has proved challenging. Moreover, D does not provide information on transient atmospheric motions, such as those leading to weather extremes. Using recent developments in dynamical systems theory, we show that such motions can be classified through instantaneous rather than average properties of the attractor. The instantaneous properties are uniquely determined by instantaneous dimension and stability. Their extreme values correspond to specific atmospheric patterns, and match extreme weather occurrences. We further show the existence of a significant correlation between the time series of instantaneous stability and dimension and the mean spread of sea-level pressure fields in an operational ensemble weather forecast at lead times of over two weeks. Instantaneous properties of the attractor therefore provide an efficient way of evaluating and informing operational weather forecasts.

  8. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  9. High-Resolution Simulations of Turbulent Plumes in a Channel Flow with a Ramp Bottom Configuration

    NASA Astrophysics Data System (ADS)

    Pinto, L.; Espath, L.; Laizet, S.; Silvestrini, J.; Scientific Team of DNS on Gravity Currents

    2013-05-01

    More than 10 billion metric tons of sediment are transported every year from rivers to the continental shelves (Milliman & Syvitski, 1992). It is therefore very important to understand the underlying mechanisms of such phenomena because of their importance in environmental processes and in the formation of hydrocarbon reservoirs (Meiburg and Kneller, 2009). In particular, the underlying mechanisms of a fresh/salty water mixing layer with transport of suspended particles in a channel flow configuration (or in the presence of a slightly tilted ramp) is not fully understood (Henniger et al., 2010). In this work, Direct Numerical Simulation was used to investigate the mixing of fresh water with salty water in a channel flow configuration along with particle settling processes. In particular, we focus on the influence of a slightly tilted ramp inside the computational domain which is modelled using an Immersed Boundary method (Laizet & Lamballais, 2009) in order to mimic a real sea-floor configuration. We will describe and illustrate the underlying physics and the particle settling processes under the influence of the fresh/salty water mixing layer. Results with and without slightly tilted ramps for different Richardson numbers and settling velocities will be presented. The spatial structures as well as the temporal evolution of the flow, the salinity and the particle suspension will be investigated. In particular, we will focus on the fingering instability (Figure 1, 2) and its relationships with the Kelvin-Helmholtz instability and the settling velocity. For the analysis of the data, links will be made with recent experiments in a water tank with a similar set-up (Lamb et al., 2010).; Figure 1: Instantaneous salinity, particle and vorticity fields in an 2D configuration. ; Figure 2: Bellow view of the instantaneous particle concentration field.

  10. Instantaneous Optical Wall-Temperature of Vertical Two-Phase Annular Flow

    NASA Astrophysics Data System (ADS)

    Fehring, Brian; Livingston-Jha, Simon; Morse, Roman; Chan, Jason; Doherty, James; Brueggeman, Colby; Nellis, Gregory; Dressler, Kristofer; Berson, ArganthaëL.; Multiphase Flow Visualization; Analysis Laboratory at University of Wisconsin-Madison Team

    2017-11-01

    We present a non-invasive optical technique for measuring the instantaneous temperature at the inner wall of a flow duct. The technique is used to characterize a fully-developed vertical annular flow of R245fa refrigerant. The test section includes transparent heating windows made of glass coated with fluorine-doped tin-oxide. A 15 mW helium-neon laser is directed through a prism mounted on one of the glass windows and reflected off of the interface between the 150-micron-thick liquid film and the inside wall of the testing section window. The intensity of the laser light reflected at the liquid film-window interface depends on the index of refraction of liquid R245fa, which itself depends on the temperature of the fluid. The intensity of the reflected light is measured using a photodiode and calibrated to a light reflectance model based on the Fresnel equations and Snell's law. Instantaneous temperature data is combined with optical liquid film thickness measurements to calculate the local instantaneous heat transfer coefficient at the wall.

  11. Review and evaluation of recent developments in melic inlet dynamic flow distortion prediction and computer program documentation and user's manual estimating maximum instantaneous inlet flow distortion from steady-state total pressure measurements with full, limited, or no dynamic data

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Dennon, S. R.

    1986-01-01

    A review of the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modelling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions.

  12. Fully Coupled Aero-Thermochemical-Elastic Simulations of an Eroding Graphite Nozzle

    NASA Technical Reports Server (NTRS)

    Blades, E. L.; Reveles, N. D.; Nucci, M.; Maclean, M.

    2017-01-01

    A multiphysics simulation capability has been developed that incorporates mutual interactions between aerodynamics, structural response from aero/thermal loading, ablation/pyrolysis, heating, and surface-to-surface radiation to perform high-fidelity, fully coupled aerothermoelastic ablation simulations, which to date had been unattainable. The multiphysics framework couples CHAR (a 3-D implicit charring ablator solver), Loci/CHEM (a computational fluid dynamics solver for high-speed chemically reacting flows), and Abaqus (a nonlinear structural dynamics solver) to create a fully coupled aerothermoelastic charring ablative solver. The solvers are tightly coupled in a fully integrated fashion to resolve the effects of the ablation pyrolysis and charring process and chemistry products upon the flow field, the changes in surface geometry due to recession upon the flow field, and thermal-structural analysis of the body from the induced aerodynamic heating from the flow field. The multiphysics framework was successfully demonstrated on a solid rocket motor graphite nozzle erosion application. Comparisons were made with available experimental data that measured the throat erosion during the motor firing. The erosion data is well characterized, as the test rig was equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle initially undergoes a nozzle contraction due to thermal expansion before ablation effects are able to widen the throat. A series of parameters studies were conducted using the coupled simulation capability to determine the sensitivity of the nozzle erosion to different parameters. The parameter studies included the shape of the nozzle throat (flat versus rounded), the material properties, the effect of the choice of turbulence model, and the inclusion or exclusion of the mechanical thermal expansion. Overall, the predicted results match the experiment very well, and the predictions were able to bound the data within acceptable limits.

  13. Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartavykh, N. N.; Smorodin, B. L., E-mail: bsmorodin@yandex.ru; Il’in, V. A.

    2015-07-15

    We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimesmore » are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence.« less

  14. Large-scale Observations of a Subauroral Polarization Stream by Midlatitude SuperDARN Radars: Instantaneous Longitudinal Velocity Variations

    NASA Technical Reports Server (NTRS)

    Clausen, L. B. N.; Baker, J. B. H.; Sazykin, S.; Ruohoniemi, J. M.; Greenwald, R. A.; Thomas, E. J.; Shepherd, S. G.; Talaat, E. R.; Bristow, W. A.; Zheng, Y.; hide

    2012-01-01

    We present simultaneous measurements of flow velocities inside a subauroral polarization stream (SAPS) made by six midlatitude high-frequency SuperDARN radars. The instantaneous observations cover three hours of universal time and six hours of magnetic local time (MLT). From velocity variations across the field-of-view of the radars we infer the local 2D flow direction at three different longitudes. We find that the local flow direction inside the SAPS channel is remarkably constant over the course of the event. The flow speed, however, shows significant temporal and spatial variations. After correcting for the radar look direction we are able to accurately determine the dependence of the SAPS velocity on magnetic local time. We find that the SAPS velocity variation with magnetic local time is best described by an exponential function. The average velocity at 00 MLT was 1.2 km/s and it decreased with a spatial e-folding scale of two hours of MLT toward the dawn sector. We speculate that the longitudinal distribution of pressure gradients in the ring current is responsible for this dependence and find these observations in good agreement with results from ring current models. Using TEC measurements we find that the high westward velocities of the SAPS are - as expected - located in a region of low TEC values, indicating low ionospheric conductivities.

  15. Viscous near-wall flow in a wake of circular cylinder at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Okhotnikov, D. I.; Molochnikov, V. M.; Mazo, A. B.; Malyukov, A. V.; Goltsman, A. E.; Saushin, I. I.

    2017-11-01

    Here we present the results of experimental investigation of a cross flow around a circular cylinder mounted near the wall of a channel with rectangular cross section. The experiments were carried out in the range of Reynolds numbers corresponding to the transition to turbulence in a wake of the cylinder. Flow visualization and SIV-measurements of instantaneous velocity fields were carried out. Evolution of the flow pattern behind the cylinder and formation of the regular vortex structures were analyzed. It is shown that in the case of flow around the cylinder, there is no spiral motion of fluid from the side walls of the channel towards its symmetry plane, typical of the flow around a spanwise rib located on the channel wall. The laminar-turbulent transition in the wake of the cylinder is caused by the shear layer instability.

  16. Spatio-Temporal Evolutions of Non-Orthogonal Equatorial Wave Modes Derived from Observations

    NASA Astrophysics Data System (ADS)

    Barton, C.; Cai, M.

    2015-12-01

    Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCF), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. In this study, we propose a methodology that seeks to identify individual wave modes in instantaneous fields of observations by determining their projections on PCF modes according to the equatorial wave theory. The new method has the benefit of yielding a closed system with a unique solution for all waves' spatial structures, including IG waves, for a given instantaneous observed field. We have applied our method to the ERA-Interim reanalysis dataset in the tropical stratosphere where the wave-mean flow interaction mechanism for the quasi-biennial oscillation (QBO) is well-understood. We have confirmed the continuous evolution of the selection mechanism for equatorial waves in the stratosphere from observations as predicted by the theory for the QBO. This also validates the proposed method for decomposition of observed tropical wave fields into non-orthogonal equatorial wave modes.

  17. From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing

    NASA Astrophysics Data System (ADS)

    Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda

    2017-12-01

    Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.

  18. Direct numerical simulation of curved turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moser, R. D.; Moin, P.

    1984-01-01

    Low Reynolds number, mildly curved, turbulent channel flow has been simulated numerically without subgrid scale models. A new spectral numerical method developed for this problem was used, and the computations were performed with 2 million degrees of freedom. A variety of statistical and structural information has been extracted from the computed flow fields. These include mean velocity, turbulence stresses, velocity skewness, and flatness factors, space time correlations and spectra, all the terms in the Reynolds stress balance equations, and contour and vector plots of instantaneous velocity fields. The effects of curvature on this flow were determined by comparing the concave and convex sides of the channel. The observed effects are consistent with experimental observations for mild curvature. The most significant difference in the turbulence statistics between the concave and convex sides was in the Reynolds shear stress. This was accompanied by significant differences in the terms of the Reynolds shear stress balance equations. In addition, it was found that stationary Taylor-Gortler vortices were present and that they had a significant effect on the flow by contributing to the mean Reynolds shear stress, and by affecting the underlying turbulence.

  19. Carotid blood flow changes with behavioral states in the late gestation llama fetus in utero.

    PubMed

    Blanco, C E; Giussani, D A; Riquelme, R A; Hanson, M A; Llanos, A J

    1997-12-19

    This study tested the hypothesis that in the llama fetus changes in cerebral blood flow are closely associated with changes in cerebral oxidative metabolism such as occur during transitions between electrocortical states. For the first time reported in any species, instantaneous changes in common carotid blood flow, employed as a continuous index of cerebrovascular perfusion, were related to instantaneous changes in electrocortical activity. Three late gestation fetal llamas were surgically prepared under general anesthesia with vascular catheters, a tracheal and amniotic catheter, and with electrodes implanted to monitor the fetal electrocorticogram (ECoG). In addition, Transonic flow probes were placed around a common carotid artery and a femoral artery. At least 4 days after surgery fetal arterial blood, amniotic and tracheal pressures, carotid and femoral blood flows and the fetal ECoG were recorded continuously. Our results suggest a close association between increases in common carotid blood flow and low voltage ECoG in the llama fetus. Close coupling between instantaneous changes in carotid blood flow and electrocortical states together with the lack of an increase in brain blood flow without increased cerebral oxygen extraction during hypoxemia in the llama fetus supports a fall in cerebral oxidative metabolism in this species during hypoxemic episodes.

  20. The effects of buoyancy on turbulent nonpremixed jet flames in crossflow

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac G.

    An experimental research study was conducted to investigate what effect buoyancy had on the mean and instantaneous flow-field characteristics of turbulent jet-flames in crossflow (JFICF). The study used an experimental technique wherein a series of normal-gravity, hydrogen-diluted propane JFICF were compared with otherwise identical ones in low-gravity. Experiments were conducted at the University of Texas Drop Tower Facility, a new microgravity science laboratory built for this study at the University of Texas at Austin. Two different diagnostic techniques were employed, high frame-rate digital cinematographic imaging and planar laser Mie scattering (PLMS). The flame-luminosity imaging revealed significant elongation and distortion of the large-scale luminous structure of the JFICF. This was seen to affect the flametip oscillation and burnout characteristics. Mean and root-mean-square (RMS) images of flame-luminosity were computed from the flame-luminosity image sequences. These were used to compare visible flame-shapes, flame chord-lengths and jet centerline-trajectories of the normal- and low-gravity flames. In all cases the jet-centerline penetration and mean luminous flame-width were seen to increase with decreasing buoyancy. The jet-centerline trajectories for the normal-gravity flames were seen to behave differently to those of the low-gravity flames. This difference led to the conclusion that the jet transitions from a momentum-dominated forced convection limit to a buoyancy-influenced regime when it reaches xiC ≈ 3, where xiC is the Becker and Yamazaki (1978) buoyancy parameter based on local flame chord-length. The mean luminous flame-lengths showed little sensitivity to buoyancy or momentum flux ratio. Consistent with the flame-luminosity imaging experiments, comparison of the instantaneous PLMS flow-visualization images revealed substantial buoyancy-induced elongation and distortion of the large-scale shear-layer vortices in the flow. This effect became apparent in the JFICF at around xiy = 3.1 and grew in influence to become a dominant flow-field characteristic approximately xi y = 4.3. The PLMS images also yielded physical-insight into the nature of the fore-aft asymmetry of JFICF characteristics noted by previous researchers. Ensemble-averages of PLMS images were used to investigate centerline mixture fraction decay. Consistent with previous studies of non-reacting JICF studies, the mixture-fraction of the JFICF showed a power-law decay profile which scaled with (rd)-0.66. Over the region these measurements were made (xiy = 0--1.9), the mixture fraction decay scaling showed little sensitivity to buoyancy. Taken as a whole, these measurements show that buoyancy has the potential to significantly modify both the mean and instantaneous flow-field of a turbulent JFICF, even at relatively modest length-scales.

  1. A performance analysis of ensemble averaging for high fidelity turbulence simulations at the strong scaling limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarashvili, Vakhtang; Merzari, Elia; Obabko, Aleksandr

    We analyze the potential performance benefits of estimating expected quantities in large eddy simulations of turbulent flows using true ensembles rather than ergodic time averaging. Multiple realizations of the same flow are simulated in parallel, using slightly perturbed initial conditions to create unique instantaneous evolutions of the flow field. Each realization is then used to calculate statistical quantities. Provided each instance is sufficiently de-correlated, this approach potentially allows considerable reduction in the time to solution beyond the strong scaling limit for a given accuracy. This study focuses on the theory and implementation of the methodology in Nek5000, a massively parallelmore » open-source spectral element code.« less

  2. A performance analysis of ensemble averaging for high fidelity turbulence simulations at the strong scaling limit

    DOE PAGES

    Makarashvili, Vakhtang; Merzari, Elia; Obabko, Aleksandr; ...

    2017-06-07

    We analyze the potential performance benefits of estimating expected quantities in large eddy simulations of turbulent flows using true ensembles rather than ergodic time averaging. Multiple realizations of the same flow are simulated in parallel, using slightly perturbed initial conditions to create unique instantaneous evolutions of the flow field. Each realization is then used to calculate statistical quantities. Provided each instance is sufficiently de-correlated, this approach potentially allows considerable reduction in the time to solution beyond the strong scaling limit for a given accuracy. This study focuses on the theory and implementation of the methodology in Nek5000, a massively parallelmore » open-source spectral element code.« less

  3. PIV measurements of airflow past multiple cylinders

    NASA Astrophysics Data System (ADS)

    Wodziak, Waldemar; Sobczyk, Jacek

    2018-06-01

    Flow characteristics in vicinity of six circular cylinders aligned inline was investigated experimentally by means of PIV method. Experiments were conducted in a low speed closed circuit wind tunnel. Inflow velocity was 1.2 m/s which corresponds to Re=1600 based on the cylinder diameter. Spacing ratio between cylinders L/D was 1.5. Instantaneous and averaged velocity fields were presented. Experiments were designed in order to use their results as a test case for future numerical calculations.

  4. Application of DPIV to Enhanced Mixing Heated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bridges, James

    2002-01-01

    Digital Particle Imaging Velocimetry (DPIV) is a planar velocity measurement technique that continues to be applied to new and challenging engineering research facilities while significantly reducing facility test time. DPIV was used in the GRC Nozzle Acoustic Test Rig (NATR) to characterize the high temperature (560 C), high speed (is greater than 500 m/s) flow field properties of mixing enhanced jet engine nozzles. The instantaneous velocity maps obtained using DPIV were used to determine mean velocity, rms velocity and two-point correlation statistics to verify the true turbulence characteristics of the flow. These measurements will ultimately be used to properly validate aeroacoustic model predictions by verifying CFD input to these models. These turbulence measurements have previously not been possible in hot supersonic jets. Mapping the nozzle velocity field using point based techniques requires over 60 hours of test time, compared to less than 45 minutes using DPIV, yielding a significant reduction in testing time. A dual camera DPIV configuration was used to maximize the field of view and further minimize the testing time required to map the nozzle flow. The DPIV system field of view covered 127 by 267 mm. Data were acquired at 19 axial stations providing coverage of the flow from the nozzle exit to 2.37 in downstream. At each measurement station, 400 image frame pairs were acquired from each camera. The DPIV measurements of the mixing enhanced nozzle designs illustrate the changes in the flow field resulting in the reduced noise signature.

  5. Using nonlinear forecasting to learn the magnitude and phasing of time-varying sediment suspension in the surf zone

    USGS Publications Warehouse

    Jaffe, B.E.; Rubin, D.M.

    1996-01-01

    The time-dependent response of sediment suspension to flow velocity was explored by modeling field measurements collected in the surf zone during a large storm. Linear and nonlinear models were created and tested using flow velocity as input and suspended-sediment concentration as output. A sequence of past velocities (velocity history), as well as velocity from the same instant as the suspended-sediment concentration, was used as input; this velocity history length was allowed to vary. The models also allowed for a lag between input (instantaneous velocity or end of velocity sequence) and output (suspended-sediment concentration). Predictions of concentration from instantaneous velocity or instantaneous velocity raised to a power (up to 8) using linear models were poor (correlation coefficients between predicted and observed concentrations were less than 0.10). Allowing a lag between velocity and concentration improved linear models (correlation coefficient of 0.30), with optimum lag time increasing with elevation above the seabed (from 1.5 s at 13 cm to 8.5 s at 60 cm). These lags are largely due to the time for an observed flow event to effect the bed and mix sediment upward. Using a velocity history further improved linear models (correlation coefficient of 0.43). The best linear model used 12.5 s of velocity history (approximately one wave period) to predict concentration. Nonlinear models gave better predictions than linear models, and, as with linear models, nonlinear models using a velocity history performed better than models using only instantaneous velocity as input. Including a lag time between the velocity and concentration also improved the predictions. The best model (correlation coefficient of 0.58) used 3 s (approximately a quarter wave period) of the cross-shore velocity squared, starting at 4.5 s before the observed concentration, to predict concentration. Using a velocity history increases the performance of the models by specifying a more complete description of the dynamical forcing of the flow (including accelerations and wave phase and shape) responsible for sediment suspension. Incorporating such a velocity history and a lag time into the formulation of the forcing for time-dependent models for sediment suspension in the surf zone will greatly increase our ability to predict suspended-sediment transport.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zentgraf, Florian; Baum, Elias; Dreizler, Andreas

    Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location,more » reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.« less

  7. Three-dimensional control of crystal growth using magnetic fields

    NASA Astrophysics Data System (ADS)

    Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo

    1993-07-01

    Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.

  8. Stereo Particle Image Velocimetry Measurements of Transition Downstream of a Backward-Facing Step in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Yao, Chung-Sheng

    2017-01-01

    Stereo particle image velocimetry measurements were performed downstream of a backward-facing step in a stationary-cross flow dominated flow. The PIV measurements exhibit excellent quantitative and qualitative agreement with the previously acquired hotwire data. Instantaneous PIV snapshots reveal new information about the nature and cause of the \\spikes" that occurred prior to breakdown in both the hotwire and PIV data. The PIV snapshots show that the events occur simultaneously across multiple stationary cross flow wavelengths, indicating that this is not simply a local event, but is likely caused by the 2D Tollmien-Schlichting instability that is introduced by the step. While the TS instability is a 2D instability, it is also modulated in the spanwise direction due to interactions with the stationary cross flow, as are the other unsteady disturbances present. Because of this modulation, the "spike" events cause an instantaneous increase of the spanwise modulation of the streamwise and spanwise velocity initially caused by the stationary cross flow. Breakdown appears to be caused by this instantaneous modulation, possibly due to a high-frequency secondary instability similar to a traveling-cross flow breakdown scenario. These results further illuminate the respective roles of the stationary cross flow and unsteady disturbances in transition downstream of a backward-facing step.

  9. Slab edge interaction with a back-arc spreading center: 3D instantaneous mantle flow models of Vanuatu, SW Pacific

    NASA Astrophysics Data System (ADS)

    McLean, K. A.; Jadamec, M.; Durance-Sie, P. M.; Moresi, L. N.

    2011-12-01

    The Vanuatu area of the south-west Pacific is a dynamic region of high heat-flow and strain-rate, dominated by ongoing plate boundary processes. At the southern termination of the Vanuatu arc the curved geometry of the New Hebrides trench juxtaposes the slab edge perpendicular to its back-arc spreading center. While existing 3D subduction models have demonstrated the importance of mantle flow around a slab edge, the nature of interaction between back-arc upwelling and circum-slab edge mantle flow is not well understood. We use 3D instantaneous numerical models of a Newtonian mantle rheology to test the effect of the slab edge and back-arc upwelling on the mantle flow vector field beneath southern Vanuatu. These high-resolution models simulate temperature-dependent buoyancy-driven deformation of the lithosphere and mantle for a realistic slab geometry. Model results show a small but significant component of vertical mantle flow velocity associated with the slab edge and back-arc spreading center. We also see strain-rate and dynamic topography commensurate with surface observations. Mantle flow by toroidal-type motion brings hotter mantle material from behind the slab into the mantle wedge, elevating geothermal gradients in the slab edge vicinity. The implications of moderate vertical displacement of this hot mantle material at the slab edge are wide-ranging, and such a tectonic framework might aid interpretation of a number of surface observations. For example, induced decompression partial-melting in the mantle wedge and/or slab, and thermal erosion of the slab may contribute to the diverse magma compositions from this region.

  10. The velocity and vorticity fields of the turbulent near wake of a circular cylinder

    NASA Technical Reports Server (NTRS)

    Wallace, James; Ong, Lawrence; Moin, Parviz

    1995-01-01

    The purpose of this research is to provide a detailed experimental database of velocity and vorticity statistics in the very near wake (x/d less than 10) of a circular cylinder at Reynolds number of 3900. This study has determined that estimations of the streamwise velocity component in flow fields with large nonzero cross-stream components are not accurate. Similarly, X-wire measurements of the u and v velocity components in flows containing large w are also subject to the errors due to binormal cooling. Using the look-up table (LUT) technique, and by calibrating the X-wire probe used here to include the range of expected angles of attack (+/- 40 deg), accurate X-wire measurements of instantaneous u and v velocity components in the very near wake region of a circular cylinder has been accomplished. The approximate two-dimensionality of the present flow field was verified with four-wire probe measurements, and to some extent the spanwise correlation measurements with the multisensor rake. Hence, binormal cooling errors in the present X-wire measurements are small.

  11. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan

    2010-08-01

    The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.

  12. The characterisation and application of a pulsed neodymium YAG laser DGV system to a time-varying high-speed flow

    NASA Astrophysics Data System (ADS)

    Thorpe, S. J.; Quinlan, N.; Ainsworth, R. W.

    2000-10-01

    Doppler Global Velocimetry (DGV) is a whole-field measurement technique which has attracted significant interest from the fluid-flow research community since its introduction in 1991. Practical implementations of the methodology have focused on two principal laser light sources: the argon ion laser, applied to steady state or slowly varying flows; and the pulsed neodymium YAG laser for the measurement of instantaneous velocity fields. However, the emphasis in the published literature has been very much on research using the argon laser. This paper reports the application of a Q-switched, injection-seeded neodymium YAG laser to the proven Oxford DGV system, and the use of this combination in a short duration unsteady high-speed flow. The pertinent characteristics of the apparatus are described, and the impact of these on the integrity of the resulting velocity measurements is presented. Adaptations to the commercial laser system that make it suitable for application to the measurement of transient high-speed flows are described. Finally, the application of this system to a short duration unsteady flow is described. This application is based on the flow found in a new type of transdermal drug delivery device, where particles of the drug material are projected at high speed through the skin. Whole-field velocities are recorded, and values as high as 800 m/ s are evident.

  13. On the spatial distribution of small heavy particles in homogeneous shear turbulence

    NASA Astrophysics Data System (ADS)

    Nicolai, C.; Jacob, B.; Piva, R.

    2013-08-01

    We report on a novel experiment aimed at investigating the effects induced by a large-scale velocity gradient on the turbulent transport of small heavy particles. To this purpose, a homogeneous shear flow at Reλ = 540 and shear parameter S* = 4.5 is set-up and laden with glass spheres whose size d is comparable with the Kolmogorov lengthscale η of the flow (d/η ≈ 1). The particle Stokes number is approximately 0.3. The analysis of the instantaneous particle fields by means of Voronoï diagrams confirms the occurrence of intense turbulent clustering at small scales, as observed in homogeneous isotropic flows. It also indicates that the anisotropy of the velocity fluctuations induces a preferential orientation of the particle clusters. In order to characterize the fine-scale features of the dispersed phase, spatial correlations of the particle field are employed in conjunction with statistical tools recently developed for anisotropic turbulence. The scale-by-scale analysis of the particle field clarifies that isotropy of the particle distribution is tendentially recovered at small separations, even though the signatures of the mean shear persist down to smaller scales as compared to the fluid velocity field.

  14. Movement and fate of atrazine and bromide in central Kansas croplands

    USGS Publications Warehouse

    Sophocleous, M.; Townsend, M.A.; Whittemore, Donald O.

    1990-01-01

    Two flooding experiments were conducted at two sites with different soils to study the transport and fate of the commonly used herbicide atrazine and inorganic chemicals in the Great Bend Prairie croplands of south-central Kansas. The instantaneous profile method supplemented by the use of an organic (atrazine) and an inorganic (bromide) tracer chemical was used to characterize in situ the hydraulic and chemical properties of the appropriately instrumented field sites. Atrazine readily degraded to hydroxyatrazine and biodegradation by-products and was not detected deeper in the soil profile and underlying shallow aquifer. The classical processes of chemical movement based on porous media-equilibrium-diffuse flow did not fit the data well at either site. Incompletely mixed, slug flow appeared to predominate at one of the sites and preferential flow at the other. The slug movement caused 'piston-type' displacement of more saline solutions in the soil profile to the shallow water table. Recommendations for conducting related field studies based on our sampling experience are given. ?? 1990.

  15. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  16. Structure identification within a transitioning swept-wing boundary layer

    NASA Astrophysics Data System (ADS)

    Chapman, Keith Lance

    1997-08-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use linear stochastic estimation (LSE) and proper orthogonal decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using streamwise spatial POD solutions which isolate the growth of the primary and secondary instability mechanisms in the first and second modes, respectively. Temporal evolutions of dominant POD modes in all measured fields are calculated. These scalar POD coefficients contain the integrated characteristics of the entire field, greatly reducing the amount of data to characterize the instantaneous field. These modes may then be used to train future flow control algorithms based on neural networks.

  17. Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Chapman, Keith; Glauser, Mark

    1996-01-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using streamwise spatial POD solutions which isolate the growth of the primary and secondary instability mechanisms in the first and second modes, respectively. Temporal evolutions of dominant POD modes in all measured fields are calculated. These scalar POD coefficients contain the integrated characteristics of the entire field, greatly reducing the amount of data to characterize the instantaneous field. These modes may then be used to train future flow control algorithms based on neural networks.

  18. Experimental Study of Instantaneous Evolution of A Scalar Gradient With Small-scale Anisotropic Injection In A 2d, Periodic Flow

    NASA Astrophysics Data System (ADS)

    Godard, G.; Paranthoen, P.; Gonzalez, M.

    Anisotropic small-scale injection of a scalar (e.g. heat) in a turbulent medium can be performed by means of a small-diameter line source as already done in a turbulent plane jet and a turbulent boundary layer (Rosset et al., Phys. Fluids 13, 3729, 2001). In such conditions, however, experiment is revealed delicate especially, as regard to temperature gradient measurements in the near-field of the source. In the present study, we get rid of previous difficulties by setting up the heated line source in a simpler flow namely, a Bénard-von Kármán street. Under this situation, owing to a phase reference, the history of the instantaneous temperature gradient can be scrutinized from the vicinity of the source. Gradient statistics (second-order mo- ments, skewness, kurtosis ...) is derived which allows us to follow the evolution of anisotropy downstream of the line source. Alignment of temperature gradient with respect to strain principal axes is also analyzed. This experiment provides a precise knowledge of the way in which a scalar gradient evolves under the combined actions of strain, vorticity and molecular diffusion.

  19. Application of acoustical methods for estimating water flow and constituent loads in Perdido Bay, Florida

    USGS Publications Warehouse

    Grubbs, J.W.; Pittman, J.R.

    1997-01-01

    Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations from the water samples collected from Perdido Bay indicated a significant amount of mixing of saltwater and freshwater. Mixing effects could greatly reduce the accuracy of estimates of net loads of nutrients or other substances. The study results indicate that acoustical techniques can yield acceptable estimates of instantaneous loads in Perdido Bay. However, estimates of net loads should be interpreted with great caution and may have unacceptably large errors, especially when saltwater and freshwater concentrations differ greatly.

  20. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Pröbsting, Stefan; Dwight, Richard P.; van Oudheusden, Bas W.; Scarano, Fulvio

    2016-04-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the vorticity transport equation. The vorticity field calculated from the measured instantaneous velocity is advanced over a single integration time step using the vortex-in-cell (VIC) technique to update the vorticity field, after which the temporal derivative and material derivative of velocity are evaluated. The pressure in the measurement volume is subsequently evaluated by solving a Poisson equation. The procedure is validated considering data from a turbulent boundary layer experiment, obtained with time-resolved tomographic PIV at 10 kHz, where an independent surface pressure fluctuation measurement is made by a microphone. The cross-correlation coefficient of the surface pressure fluctuations calculated by the single-snapshot pressure method with respect to the microphone measurements is calculated and compared to that obtained using time-resolved pressure-from-PIV, which is regarded as benchmark. The single-snapshot procedure returns a cross-correlation comparable to the best result obtained by time-resolved PIV, which uses a nine-point time kernel. When the kernel of the time-resolved approach is reduced to three measurements, the single-snapshot method yields approximately 30 % higher correlation. Use of the method should be cautioned when the contributions to fluctuating pressure from outside the measurement volume are significant. The study illustrates the potential for simplifying the hardware configurations (e.g. high-speed PIV or dual PIV) required to determine instantaneous pressure from tomographic PIV.

  1. Experimental study of the flow in the wake of a stationary sphere immersed in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry

    2018-02-01

    In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692

  2. Two zero-flow pressure intercepts exist in autoregulating isolated skeletal muscle.

    PubMed

    Braakman, R; Sipkema, P; Westerhof, N

    1990-06-01

    The autoregulating vascular bed of the isolated canine extensor digitorum longus muscle was investigated for the possible existence of two positive zero-flow pressure axis intercepts, a tone-dependent one and a tone-independent one. An isolated preparation, perfused with autologous blood, was used to exclude effects of collateral flow and nervous and humoral regulation while autoregulation was left intact [mean autoregulatory gain 0.50 +/- 0.24 (SD)]. In a first series of experiments, the steady-state (zero flow) pressure axis intercept [mean 8.9 +/- 2.6 (SD) mmHg, tone independent] and the instantaneous (zero flow) pressure axis intercept [mean 28.5 +/- 9.9 (SD) mmHg, tone dependent] were determined as a function of venous pressure (range: 0-45 mmHg) and were independent of venous pressure until the venous pressure exceeded their respective values. Beyond this point the relations between the venous pressure and the steady-state and instantaneous pressure axis intercept followed the line of identity. The findings agree with the predictions of the vascular waterfall model. In a second series it was shown by means of administration of vasoactive drugs that the instantaneous pressure axis intercept is tone dependent, whereas the steady-state pressure axis intercept is not. It is concluded that there is a (proximal) tone-dependent zero-flow pressure at the arteriolar level and a (distal) tone-independent zero-flow pressure at the venous level.

  3. The Effect Of Instantaneous Field Of View Size On The Acquisition Of Low Level Flight And 30?° Manual Dive Bombing Tasks

    NASA Astrophysics Data System (ADS)

    Dixon, Kevin W.; Krueger, Gretchen M.; Rojas, Victoria A.; Hubbard, David C.

    1989-09-01

    Helmet mounted displays provide required field of regard, out of the cockpit visual imagery for tactical training while maintaining acceptable luminance and resolution levels. An important consideration for visual system designers is the horizontal and vertical dimensions of the instantaneous field of view. This study investigated the effect of various instantaneous field of view sizes on the performance of low level flight and 30 degree manual dive bomb tasks. An in-simulator transfer of training design allowed pilots to be trained in an instantaneous field of view condition and transferred to a wide FOV condition for testing. The selected instantaneous field of view sizes cover the range of current and proposed helmet mounted displays. The field of view sizes used were 127° H x 67° V, 140° H x 80° V, 160° H x 80° V, and 180° H x 80° V. The 300° H x 150° V size provided a full field of view control condition. An A-10 dodecahedron simulator configured with a color light valve display, computer generated imagery, and a Polhemus magnetic head tracker provided the cockpit and display apparatus. The Polhemus magnetic head tracker allowed the electronically masked field of view sizes to be moved on the seven window display of the dodecahedron. The dependent measures were: 1) Number of trials to reach criterion for low level flight tasks and dive bombs, 2) Performance measures of the low level flight route, 3) Performance measures of the dive bombing task, and 4) Subjective questionnaire data. Thirty male instructor pilots from Williams AFB, Arizona served as subjects for the study. The results revealed significant field of view effects for the number of trials required to reach criterion in the two smallest FOV conditions for right 180° turns and dive bomb training. The data also revealed pilots performed closer to the desired pitch angle for all but the two smallest conditions. The questionnaire data revealed that pilots felt their performance was degraded and they relied more on information from their instruments in the smaller field of view conditions. The conclusions of this study are that for tasks requiring close course adherence to a desired flight profile a minimum of 160° H X 80° V instantaneous field of view should be used for training. Future investigations into the instantaneous field of view size will be conducted to validate the results on other tactical tasks.

  4. Vortex structure and breakup mechanism of gaseous jet in supersonic crossflow with laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Liang, Jianhan; Zhao, Yuxin

    2016-11-01

    Employing nano-particle planar laser scattering and particle image velocimetry technology, underexpanded jet in supersonic crossflow with laminar boundary layer is experimental investigated in a low noise wind tunnel. Instantaneous flow structures and average velocity distribution of jet plume are captured in experimental images. Horseshoe vortex system is dominated by oscillating and coalescing regime, contributing to vortex generation of jet shear layer. The "tilting-stretching-tearing" mechanism dominating in near field raises average fractal dimension. But vortex structures generated on the windward side of jet plume scatter in jet plume and dissipate gradually, which makes the vortexes break up from outside in near field and break down into small turbulence completely in far field.

  5. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  6. Laboratory investigation of the erosion of cohesive sediments under oscillatory flows using a synchronized imaging technique

    NASA Astrophysics Data System (ADS)

    Sou, I.; Calantoni, J.; Reed, A. H.; Furukawa, Y.

    2012-12-01

    A synchronized dual stereo particle image velocimetry (PIV) measurement technique is used to examine the erosion process of a cohesive sediment core in the Small Oscillatory Flow Tunnel (S-OFT) in the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center, MS. The PIV system uses four cameras and a dual cavity Nd:YAG laser. The system allows for a pair of stereo PIV windows of about 10 cm by 10 cm each to be arbitrarily located within a single light sheet. Image pairs were acquired with all four cameras at 50 Hz for 50 consecutive seconds for each flow condition. The stereo PIV windows were positioned on either side of sediment cores inserted along the centerline of the S-OFT allowing for a total measurement window of about 20 cm long by 10 cm high with sub-millimeter spacing on resolved velocity vectors. The oscillatory flows are generated by two types of driving mechanism (scotch yoke and crank lever) for converting the rotational motion of the flywheel into the linear motion of a piston. The period of oscillation ranged from 2.86 to 6.12 seconds with constant semi-excursion amplitude in the test section of 9 cm. Two kinds of inorganic sediment samples were examined. One was a mixture of 50% kaolinite and 50% 500-micron sand under flows driven by the crank lever mechanism. Another sediment core was a mixture of 50% mud collected in Galveston Bay, TX, and 50% 250-micron sand under flows driven by the scotch-yoke mechanism. During the erosion process, Kelvin-Helmholtz instabilities were observed as the flow accelerated in each direction and eventually were broken down when the flow reversed. An example of the instantaneous velocity field superimposed on the raw image is shown in Figure 1. The relative concentration of suspended sediments under different flow conditions was estimated using the intensity of light scattered from the sediment particles in suspension. By subtracting the initial light scattered from the mud core, the residual light intensity was assumed to be scattered from suspended sediments eroded from the core. Relative comparisons were only made using the same sample mixture since it is difficult, if not impossible, to calibrate the light scattering from different sediments.; Figure 1. An example of the instantaneous time-resolved velocity field superimposed on the raw image.

  7. Estimating the Instantaneous Drag-Wind Relationship for a Horizontally Homogeneous Canopy

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Chamecki, Marcelo; Nepf, Heidi M.

    2016-07-01

    The mean drag-wind relationship is usually investigated assuming that field data are representative of spatially-averaged metrics of statistically stationary flow within and above a horizontally homogeneous canopy. Even if these conditions are satisfied, large-eddy simulation (LES) data suggest two major issues in the analysis of observational data. Firstly, the streamwise mean pressure gradient is usually neglected in the analysis of data from terrestrial canopies, which compromises the estimates of mean canopy drag and provides misleading information for the dependence of local mean drag coefficients on local velocity scales. Secondly, no standard approach has been proposed to investigate the instantaneous drag-wind relationship, a critical component of canopy representation in LES. Here, a practical approach is proposed to fit the streamwise mean pressure gradient using observed profiles of the mean vertical momentum flux within the canopy. Inclusion of the fitted mean pressure gradient enables reliable estimates of the mean drag-wind relationship. LES data show that a local mean drag coefficient that characterizes the relationship between mean canopy drag and the velocity scale associated with total kinetic energy can be used to identify the dependence of the local instantaneous drag coefficient on instantaneous velocity. Iterative approaches are proposed to fit specific models of velocity-dependent instantaneous drag coefficients that represent the effects of viscous drag and the reconfiguration of flexible canopy elements. LES data are used to verify the assumptions and algorithms employed by these new approaches. The relationship between mean canopy drag and mean velocity, which is needed in models based on the Reynolds-averaged Navier-Stokes equations, is parametrized to account for both the dependence on velocity and the contribution from velocity variances. Finally, velocity-dependent drag coefficients lead to significant variations of the calculated displacement height and roughness length with wind speed.

  8. A Theory of Material Spike Formation in Flow Separation

    NASA Astrophysics Data System (ADS)

    Serra, Mattia; Haller, George

    2017-11-01

    We develop a frame-invariant theory of material spike formation during flow separation over a no-slip boundary in two-dimensional flows with arbitrary time dependence. This theory identifies both fixed and moving separation, is effective also over short-time intervals, and admits a rigorous instantaneous limit. Our theory is based on topological properties of material lines, combining objectively stretching- and rotation-based kinematic quantities. The separation profile identified here serves as the theoretical backbone for the material spike from its birth to its fully developed shape, and remains hidden to existing approaches. Finally, our theory can be used to rigorously explain the perception of off-wall separation in unsteady flows, and more importantly, provide the conditions under which such a perception is justified. We illustrate our results in several examples including steady, time-periodic and unsteady analytic velocity fields with flat and curved boundaries, and an experimental dataset.

  9. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  10. The coupling of high-speed high resolution experimental data and LES through data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Harris, S.; Labahn, J. W.; Frank, J. H.; Ihme, M.

    2017-11-01

    Data assimilation techniques can be integrated with time-resolved numerical simulations to improve predictions of transient phenomena. In this study, optimal interpolation and nudging are employed for assimilating high-speed high-resolution measurements obtained for an inert jet into high-fidelity large-eddy simulations. This experimental data set was chosen as it provides both high spacial and temporal resolution for the three-component velocity field in the shear layer of the jet. Our first objective is to investigate the impact that data assimilation has on the resulting flow field for this inert jet. This is accomplished by determining the region influenced by the data assimilation and corresponding effect on the instantaneous flow structures. The second objective is to determine optimal weightings for two data assimilation techniques. The third objective is to investigate how the frequency at which the data is assimilated affects the overall predictions. Graduate Research Assistant, Department of Mechanical Engineering.

  11. Achieving swift equilibration of a Brownian particle using flow-fields

    NASA Astrophysics Data System (ADS)

    Patra, Ayoti; Jarzynski, Christopher

    Can a system be driven to a targeted equilibrium state on a timescale that is much shorter than its natural equilibration time? In a recent experiment, the swift equilibration of an overdamped Brownian particle was achieved by use of an appropriately designed, time-dependent optical trap potential. Motivated by these results, we develop a general theoretical approach for guiding an ensemble of Brownian particles to track the instantaneous equilibrium distribution of a desired potential U (q , t) . In our approach, we use flow-fields associated with the parametric evolution of the targeted equilibrium state to construct an auxiliary potential U (q , t) , such that dynamics under the composite potential U (t) + U (t) achieves the desired evolution. Our results establish a close connection between the swift equilibration of Brownian particles, quantum shortcuts to adiabaticity, and the dissipationless driving of a classical, Hamiltonian system.

  12. 3D SAPIV particle field reconstruction method based on adaptive threshold.

    PubMed

    Qu, Xiangju; Song, Yang; Jin, Ying; Li, Zhenhua; Wang, Xuezhen; Guo, ZhenYan; Ji, Yunjing; He, Anzhi

    2018-03-01

    Particle image velocimetry (PIV) is a necessary flow field diagnostic technique that provides instantaneous velocimetry information non-intrusively. Three-dimensional (3D) PIV methods can supply the full understanding of a 3D structure, the complete stress tensor, and the vorticity vector in the complex flows. In synthetic aperture particle image velocimetry (SAPIV), the flow field can be measured with large particle intensities from the same direction by different cameras. During SAPIV particle reconstruction, particles are commonly reconstructed by manually setting a threshold to filter out unfocused particles in the refocused images. In this paper, the particle intensity distribution in refocused images is analyzed, and a SAPIV particle field reconstruction method based on an adaptive threshold is presented. By using the adaptive threshold to filter the 3D measurement volume integrally, the three-dimensional location information of the focused particles can be reconstructed. The cross correlations between images captured from cameras and images projected by the reconstructed particle field are calculated for different threshold values. The optimal threshold is determined by cubic curve fitting and is defined as the threshold value that causes the correlation coefficient to reach its maximum. The numerical simulation of a 16-camera array and a particle field at two adjacent time events quantitatively evaluates the performance of the proposed method. An experimental system consisting of a camera array of 16 cameras was used to reconstruct the four adjacent frames in a vortex flow field. The results show that the proposed reconstruction method can effectively reconstruct the 3D particle fields.

  13. Improving estimates of subsurface gas transport in unsaturated fractured media using experimental Xe diffusion data and numerical methods

    NASA Astrophysics Data System (ADS)

    Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.

    2017-12-01

    Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution/volatilization in order to identify when the assumption of instantaneous equilibrium is reasonable. These efforts will aid us in our application of such models to larger, field-scale tests and improve our ability to predict gas breakthrough times.

  14. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    NASA Technical Reports Server (NTRS)

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.

  15. High-quality and interactive animations of 3D time-varying vector fields.

    PubMed

    Helgeland, Anders; Elboth, Thomas

    2006-01-01

    In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.

  16. Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry

    NASA Astrophysics Data System (ADS)

    Schäfer, L.; Dierksheide, U.; Klaas, M.; Schröder, W.

    2011-03-01

    A new method to describe statistical information from passive scalar fields has been proposed by Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006)]. They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of the fluctuating scalar field via gradient trajectories, starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points, the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields [L. Wang and N. Peters, "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. In this spirit, dissipation elements are, for the first time, determined from experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u', v', and w' and the instantaneous kinetic energy k', respectively. The measurements are conducted at a Reynolds number of 1.7×104 based on the channel half-height δ and the bulk velocity U. The required three-dimensional velocity data are obtained investigating a 17.75×17.75×6 mm3 (0.355δ×0.355δ×0.12δ) test volume using tomographic particle-image velocimetry. Detection and analysis of dissipation elements from the experimental velocity data are discussed in detail. The statistical results are compared to the DNS data from Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006); "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. Similar characteristics have been found especially for the pdf's of the large dissipation element length regarding the exponential decay. In agreement with the DNS results, over 99% of the experimental dissipation elements possess a length that is smaller than three times the average element length.

  17. Study of oscillating electroosmotic flows with high temporal and spatial resolution

    NASA Astrophysics Data System (ADS)

    Wang, Guiren; Liu, Xin; Yang, Fang; Wang, Kaige; Bai, Jintao; Qiao, Rui; Zhao, Wei

    2017-11-01

    In AC electrokinetic (EK) flow where solid-fluid interface exists, oscillating electroosmotic flow (OEOF) is an inevitable flow phenomenon. However, few experimental investigations have been reported on instantaneous velocity of OEOF driven by AC electric field. Here, we studied the near-wall velocity of OEOF by Laser-induced Fluorescence Photobleaching Anemometer (LIFPA). For the first time, an up to 3 kHz velocity response of OEOF had been successfully measured experimentally, even though the oscillating velocity was as low as 600 nm/s. It was found that the oscillating velocity decays with forcing frequency ff, as ff- 0.66 . This had never been predicted by any known theoretical investigations. In the investigated range of electric field intensity (EA) , when ff is below 1 kHz, the linear relation between oscillating velocity and EA was observed. Besides, we also found the bulk flow velocity can significantly affect the oscillating velocity of OEOF. This was also newly observed and implied the bulk flow can affect the formation process of electric double layer. This investigation could be crucial for understanding all OEOF-related phenomena and designing OEOF-based micro/nanofluidics systems. The work was supported by NSF (CAREER CBET-0954977, MRI CBET-1040227, CBET-1336004) and NSFC (11672229).

  18. Direct simulation of heat transfer in a turbulent swept flow over a wire in a channel

    NASA Astrophysics Data System (ADS)

    Ranjan, Reetesh; Pantano, Carlos; Fischer, Paul; Siegel, Andrew

    2009-11-01

    We present results from direct numerical simulations of heat transfer (considered as a passive scalar) in a turbulent swept flow across a thin, cylindrical wire in a channel. This model mimics the flow through the wire-wrapped fuel pins typical of fast neutron reactor designs. Mean flow develops both along the wire and across the wire, leading to the formation of a turbulent cross-flow regime in the channel. This leads to improvement in heat transfer properties of the channel surface due to enhancement in mixing. The friction Reynolds number in the axial direction is approximately 305. Cross-flow friction Reynolds numbers ranging from 0 to 115 are examined. Two passive scalars at Prandtl number of 1.0 and 0.01 respectively, are simulated in this study. Constant flux boundary conditions are used along the walls of the channel and adiabatic conditions are used along the surface of the wire. The numerical method uses spectral elements in the plane perpendicular to the wire axis and Fourier decomposition in the direction of the axis of the wire. The simulations use up to 107 million collocation points and were performed at the Argonne Leadership BG/P supercomputer. The passive scalar field statistics are investigated, including mean scalar field, turbulence statistics and instantaneous surface scalar distribution.

  19. Experimental analysis of an oblique turbulent flame front propagating in a stratified flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galizzi, C.; Escudie, D.

    2010-12-15

    This paper details the experimental study of a turbulent V-shaped flame expanding in a nonhomogeneous premixed flow. Its aim is to characterize the effects of stratification on turbulent flame characteristics. The setup consists of a stationary V-shaped flame stabilized on a rod and expanding freely in a lean premixed methane-air flow. One of the two oblique fronts interacts with a stratified slice, which has an equivalence ratio close to one and a thickness greater than that of the flame front. Several techniques such as PIV and CH{sup *} chemiluminescence are used to investigate the instantaneous fields, while laser Doppler anemometrymore » and thermocouples are combined with a concentration probe to provide information on the mean fields. First, in order to provide a reference, the homogeneous turbulent case is studied. Next, the stratified turbulent premixed flame is investigated. Results show significant modifications of the whole flame and of the velocity field upstream of the flame front. The analysis of the geometric properties of the stratified flame indicates an increase in flame brush thickness, closely related to the local equivalence ratio. (author)« less

  20. Planar Rayleigh scattering and laser-induced fluorescence for visualization of a hot, Mach 2 annular air jet

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey

    1994-01-01

    Planar Rayleigh scattering (PRS) and planar laser-induced fluorescence (PLIF) were used to investigate the vitiated air component of a coaxial hydrogen/vitiated air nonpremixed turbulent jet flame that is ejected at a Mach number of 2. All experiments were performed with a xenon chloride tunable excimer laser. Planar information for both techniques was obtained using laser sheets 6 cm high, 5 cm wide, and 300 micron thick. In this flow field, the effective Rayleigh cross section of the components in the vitiated air was assumed to be independent of composition. Therefore, the PRS technique produced signals which were proportional to total density. When the flow field was assumed to be at a known and uniform pressure, the PRS signal data for the vitiated air could be converted to temperature information. Also, PLIF images were generated by probing the OH molecule. These images contain striation patterns attributed to small localized instantaneous temperature nonuniformities. The results from the PLIF and PRS techniques were used to show that this flow field contains a nongaseous component, most likely liquid water that can be reduced by increasing the settling chamber wall temperature.

  1. Deep learning of unsteady laminar flow over a cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Sangseung; You, Donghyun

    2017-11-01

    Unsteady flow over a circular cylinder is reconstructed using deep learning with a particular emphasis on elucidating the potential of learning the solution of the Navier-Stokes equations. A deep neural network (DNN) is employed for deep learning, while numerical simulations are conducted to produce training database. Instantaneous and mean flow fields which are reconstructed by deep learning are compared with the simulation results. Fourier transform of flow variables has been conducted to validate the ability of DNN to capture both amplitudes and frequencies of flow motions. Basis decomposition of learned flow is performed to understand the underlying mechanisms of learning flow through DNN. The present study suggests that a deep learning technique can be utilized for reconstruction and, potentially, for prediction of fluid flow instead of solving the Navier-Stokes equations. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).

  2. Thermal characteristics of time-periodic electroosmotic flow in a circular microchannel

    NASA Astrophysics Data System (ADS)

    Moghadam, Ali Jabari

    2015-10-01

    A theoretical analysis is performed to explore the thermal characteristics of electroosmotic flow in a circular microchannel under an alternating electric field. An analytical approach is presented to solve energy equation, and then, the exact solution of temperature profiles is obtained by using the Green's function method. This study reveals that the temperature field repeats itself for each half-period. Frequency has a strong influence on the thermal behavior of the flow field. For small values of the dimensionless frequency (small channel size, large kinematic viscosity, or small frequency), the advection mechanism is dominant in the whole domain and the resultant heating (Joule heating and wall heat flux) can be transferred by the complete flow field in the axial direction; while, the middle portion of the flow field at high dimensionless frequencies does not have sufficient time to transfer heat by advection, and the bulk fluid temperature, especially in heating, may consequently become greater than the wall temperature. In a particular instance of cooling mode, a constant surface temperature case is temporarily occurred in which the axial temperature gradient will be zero. For relatively high frequencies, the unsteady bulk fluid temperature in some radial positions at some moments may be equal to the wall temperature; hence instantaneous cylindrical surfaces with zero radial heat flux may occur over a period of time. Depending on the value and sign of the thermal scale ratio, the quasi-steady-state Nusselt number (time-averaged at one period) approaches a specific value as the electrokinetic radius becomes infinity.

  3. Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts

    NASA Technical Reports Server (NTRS)

    Gedeon, D.; Wood, J. G.

    1996-01-01

    A number of wire mesh and metal felt test samples, with a range of porosities, yield generic correlations for friction factor, Nusselt number, enhanced axial conduction ratio, and overall heat flux ratio. This information is directed primarily toward stirling cycle regenerator modelers, but will be of use to anyone seeking to better model fluid flow through these porous materials. Behind these results lies an oscillating-flow test rig, which measures pumping dissipation and thermal energy transport in sample matrices, and several stages of data-reduction software, which correlate instantaneous values for the above dimensionless groups. Within the software, theoretical model reduces instantaneous quantifies from cycle-averaged measurables using standard parameter estimation techniques.

  4. Paleointensity results for 0 and 4 ka from Hawaiian lava flows: a new approach to sampling

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Tauxe, L.; Staudigel, H.; Ron, H.; Trusdell, F.

    2012-04-01

    Paleointensity data are typically generated from core samples drilled out of the massive parts of lava flows. During Thellier-Thellier type experiments, these massive samples suffer from very low success rates (~20%), as shown by failure to meet statistical criteria. Low success generally occurs for two reasons: 1) alteration of the sample during the heating process, and 2) multi-domain behavior of massive material. Moreover, recent studies of historical lava flows show that massive samples may not accurately reflect the intensity of the magnetic field even when they are successful (Valet et al., 2010). Alternatively, submarine basaltic glasses (SBG) produce high success rates (~80%) for Thellier-Thellier type experiments, likely due to near instantaneous cooling rates which produce single-domain magnetic grains. In addition, SBG have been proven to produce accurate records of the magnetic field (e.g., Pick and Tauxe, 1993). In this study we investigate the success of paleointensity experiments on subaerial quenched basalts from Hawaii in the quest for single domain, rapidly cooled subaerial analogs to SBG. We also examine the effects of grain size and cooling rate on the accuracy of paleointensity results. During March 2011, we collected samples from 31 dated lava flows (0-3800 BP), including the historical 1950 C.E. and 2010 C.E. flows. Each lava flow was additionally subsampled when unique cooling structures within the unit could be identified. Single-domain, rapidly quenched glasses from the 1950 and 2010 flows are ideally behaved, i.e. straight Arai plots, and accurately record the expected geomagnetic field strength. However, slower cooled specimens from the same flows produce sagged Arai plots and consistently underestimate expected geomagnetic field intensity. Results from ideally behaved glasses over the last 4 ka indicate periods of rapid field change in Hawaii and a possible high intensity field spike around 2.7 ka. We will present new results from our comprehensive data set of Hawaii paleointensity on about the last 4 ka.

  5. Analysis of secondary motions in square duct flow

    NASA Astrophysics Data System (ADS)

    Modesti, Davide; Pirozzoli, Sergio; Orlandi, Paolo; Grasso, Francesco

    2018-04-01

    We carry out direct numerical simulations (DNS) of square duct flow spanning the friction Reynolds number range {Re}τ * =150-1055, to study the nature and the role of secondary motions. We preliminarily find that secondary motions are not the mere result of the time averaging procedure, but rather they are present in the instantaneous flow realizations, corresponding to large eddies persistent in both space and time. Numerical experiments have also been carried out whereby the secondary motions are suppressed, hence allowing to quantifying their effect on the mean flow field. At sufficiently high Reynolds number, secondary motions are found to increase the friction coefficient by about 3%, hence proportionally to their relative strength with respect to the bulk flow. Simulations without secondary motions are found to yield larger deviations on the mean velocity profiles from the standard law-of-the-wall, revealing that secondary motions act as a self-regulating mechanism of turbulence whereby the effect of the corners is mitigated.

  6. Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1999-07-01

    Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less

  7. Numerical Investigation of the Hydrogen Jet Flammable Envelope Extent with Account for Unsteady Phenomena

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Boris; Benard, Pierre

    2010-11-01

    An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.

  8. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: Applications to cerebral autoregulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Hu, Kun; Stanley, H. Eugene; Novak, Vera; Ivanov, Plamen Ch.

    2006-03-01

    We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in response to changes in peripheral BP.

  9. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: applications to cerebral autoregulation.

    PubMed

    Chen, Zhi; Hu, Kun; Stanley, H Eugene; Novak, Vera; Ivanov, Plamen Ch

    2006-03-01

    We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in response to changes in peripheral BP.

  10. Coupling between premixed flame propagation and swirl flow during boundary layer flashback

    NASA Astrophysics Data System (ADS)

    Ebi, Dominik; Ranjan, Rakesh; Clemens, Noel T.

    2018-07-01

    Flashback of premixed methane-air flames in the turbulent boundary layer of swirling flows is investigated experimentally. The premix section of the atmospheric model swirl combustor features an axial swirler with an attached center-body. Our previous work with this same configuration investigated the flame propagation during flashback using particle image velocimetry (PIV) with liquid droplets as seed particles that precluded making measurements in the burnt gases. The present study investigates the transient velocity field in the unburnt and burnt gas region by means of solid-particle seeding and high-speed stereoscopic PIV. The global axial and circumferential lab-frame flame propagation speed is obtained simultaneously based on high-speed chemiluminescence movies. By combining the PIV data with the global flame propagation speed, the quasi-instantaneous swirling motion of the velocity field is constructed on annular shells, which provides a more intuitive view on the complex three-dimensional flow-flame interaction. Previous works showed that flashback is led by flame tongues. We find that the important flow-flame interaction occurs on the far side of these flame tongues relative to the approach flow, which we henceforth refer to as the leading side. The leading side is found to propagate as a classical premixed flame front relative to the strongly modified approach flow field. The blockage imposed by flame tongues is not limited to the immediate vicinity of the flame base, but occurs along the entire leading side.

  11. Advanced in Visualization of 3D Time-Dependent CFD Solutions

    NASA Technical Reports Server (NTRS)

    Lane, David A.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.

  12. DIRECT NUMERICAL SIMULATION OF TRANSITIONAL FLOW IN A STENOSED CAROTID BIFURCATION

    PubMed Central

    Lee, Seung E.; Lee, Sang-Wook; Fischer, Paul F.; Bassiouny, Hisham S.; Loth, Francis

    2008-01-01

    The blood flow dynamics of a stenosed, subject-specific, carotid bifurcation were numerically simulated using the spectral element method. Pulsatile inlet conditions were based on in vivo color Doppler ultrasound measurements of blood velocity. The results demonstrated the transitional or weakly turbulent state of the blood flow, which featured rapid velocity and pressure fluctuations in the post-stenotic region of the internal carotid artery during systole and laminar flow during diastole. High-frequency vortex shedding was greatest downstream of the stenosis during the deceleration phase of systole. Velocity fluctuations had a frequency within the audible range of 100–300 Hz. Instantaneous wall shear stress within the stenosis was relatively high during systole (~25-45 Pa) compared to that in a healthy carotid. In addition, high spatial gradients of wall shear stress were present due to flow separation on the inner wall. Oscillatory flow reversal and low pressure were observed distal to the stenosis in the internal carotid artery. This study predicts the complex flow field, the turbulence levels and the distribution of the biomechanical stresses present in vivo within a stenosed carotid artery. PMID:18656199

  13. Oil-Water Flow Investigations using Planar-Laser Induced Fluorescence and Particle Velocimetry

    NASA Astrophysics Data System (ADS)

    Ibarra, Roberto; Matar, Omar K.; Markides, Christos N.

    2017-11-01

    The study of the complex behaviour of immiscible liquid-liquid flow in pipes requires the implementation of advanced measurement techniques in order to extract detailed in situ information. Laser-based diagnostic techniques allow the extraction of high-resolution space- and time resolve phase and velocity information, which aims to improve the fundamental understanding of these flows and to validate closure relations for advanced multiphase flow models. This work shows a novel simultaneous planar-laser induced fluorescence and particle velocimetry in stratified oil-water flows using two laser light sheets at two different wavelengths for fluids with different refractive indices at horizontal and upward pipe inclinations (<5°) in stratified flow conditions (i.e. separated layers). Complex flow structures are extracted from 2-D instantaneous velocity fields, which are strongly dependent on the pipe inclination at low velocities. The analysis of mean wall-normal velocity profiles and velocity fluctuations suggests the presence of single- and counter-rotating vortices in the azimuthal direction, especially in the oil layer, which can be attributed to the influence of the interfacial waves. Funding from BP, and the TMF Consortium is gratefully acknowledged.

  14. Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan

    2017-11-01

    Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.

  15. Modes of cross-shore sediment transport on the shoreface of the Middle Atlantic Bight

    USGS Publications Warehouse

    Wright, L.D.; Boon, John D.; Kim, S.C.; List, J.H.

    1991-01-01

    The mechanisms responsible for onshore and offshore sediment fluxes across the shoreface zone seaward of the surf zone were examined in a 3-year field study. The study was conducted in the southern part of the Middle Atlantic Bight in the depth region 7–17 m using instrumented tripods supporting electromagnetic current meters, pressure sensors, suspended sediment concentration sensors, and sonar altimeters. The observations embraced fairweather, moderate energy, swell-dominated, and storm conditions. Cross-shore mean flows ranged from near zero during fairweather to > 20 cm s−1 during the storm; oscillatory flows were on the order of 10 cm s−1 during fairweather and 100 cm s−1 during the storm. Suspended sediment concentrations at about 10 cm above the bed were < 0.1 kg m−3 under fairweather conditions, 1–2 kg m−3 under moderate swell conditions, and > 5 kg m−3 during the storm.Three methods were applied to evaluate the relative importance of incident waves, long-period oscillations, mean flows and gravity in effecting shoreward or seaward sediment flux: (1) an energetics transport model was applied to instantaneous near-bottom velocity data, (2) higher moments of near-bottom flows were estimated and compared, and (3) suspended sediment fluxes were estimated directly from the instantaneous products of cross-shore velocity and suspended sediment concentration. The results show that measurable contributions were made by all four of the processes. Most significantly, mean flows were seen to dominate and cause offshore fluxes during the storm and to contribute significantly to onshore and offshore flux during fairweather and moderate energy. Incident waves were, in all cases, the major source of bed shear stress but also caused shoreward as well as seaward net sediment advection. Low-frequency effects involving wave groups and long-period waves made secondary contributions to cross-shore sediment flux. Contrary to expectations, low-frequency fluxes were just as often shoreward as seaward. Whereas cross-correlations between suspended sediment concentration and the instantaneous near-bottom current speed were high and in phase under storm conditions, they were weak and out of phase during fairweather conditions. This suggests that simple energetics models are probably inadequate for predicting fairweather transport of suspended sediment.

  16. Sweeping Jet Actuator in a Quiescent Environment

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Melton, Latunia P.

    2013-01-01

    This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).

  17. A Correction to the Stress-Strain Curve During Multistage Hot Deformation of 7150 Aluminum Alloy Using Instantaneous Friction Factors

    NASA Astrophysics Data System (ADS)

    Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui

    2018-04-01

    Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.

  18. Numerical investigation of turbulence in reshocked Richtmyer-Meshkov unstable curtain of dense gas

    NASA Astrophysics Data System (ADS)

    Shankar, S. K.; Lele, S. K.

    2014-01-01

    Moderate-resolution numerical simulations of the impulsive acceleration of a dense gas curtain in air by a Mach 1.21 planar shock are carried out by solving the 3D compressible multi-species Navier-Stokes equations coupled with localized artificial diffusivity method to capture discontinuities in the flow field. The simulations account for the presence of three species in the flow field: air, and acetone (used as a tracer species in the experiments). Simulations at different concentration levels of the species are conducted and the temporal evolution of the curtain width is compared with the measured data from the experimental studies by Balakumar et al. (Phys Fluids 20:124103-124113, 2008). The instantaneous density and velocity fields at two different times (prior and after the reshock) are compared with experimental data and show good qualitative agreement. The reshock process is studied by re-impacting the evolving curtain with the reflected shock wave. Reshock causes enhanced mixing and destroys the ordered velocity field causing a chaotic flow. The unsteady flow field is characterized by computing statistics of certain flow variables using two different definitions of the mean flow. The average profiles conditioned on the heavy gas (comprising and acetone) and the corresponding fluctuating fields provide metrics which are more suitable to comparing with experimentally measured data. Mean profiles (conditioned on the heavy gas) of stream-wise velocity, variance of stream-wise velocity, and turbulent kinetic energy and PDF (probability distribution function) of fluctuating velocity components are computed at two different times along the flow evolution and are seen to show trend towards grid convergence. The spectra of turbulent kinetic energy and scalar energy (of mass fraction of heavy gas) show the existence of more than half decade of inertial sub-range at late times following reshock. The Reynolds stresses in the domain are reported while identifying the term that is dominant in its contribution to the Reynolds stresses.

  19. Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor

    NASA Astrophysics Data System (ADS)

    Sadanandan, R.; Stöhr, M.; Meier, W.

    2008-03-01

    In highly turbulent environments, combustion is strongly influenced by the effects of turbulence chemistry interactions. Simultaneous measurement of the flow field and flame is, therefore, obligatory for a clear understanding of the underlying mechanisms. In the current studies simultaneous PIV and OH-PLIF measurements were conducted in an enclosed gas turbine model combustor for investigating the influence of turbulence on local flame characteristics. The swirling CH4/air flame that was investigated had a thermal power of 10.3 kW with an overall equivalence ratio of ϕ=0.75 and exhibited strong thermoacoustic oscillations at a frequency of approximately 295 Hz. The measurements reveal the formation of reaction zones at regions where hot burned gas from the recirculation zones mixes with the fresh fuel/air mixture at the nozzle exit. However, this does not seem to be a steady phenomenon as there always exist regions where the mixture has failed to ignite, possibly due to the high local strain rates present, resulting in small residence time available for a successful kinetic runaway to take place. The time averaged PIV images showed flow fields typical of enclosed swirl burners, namely a big inner recirculation zone and a small outer recirculation zone. However, the instantaneous images show the existence of small vortical structures close to the shear layers. These small vortical structures are seen playing a vital role in the formation and destruction of reaction zone structures. One does not see a smooth laminar flame front in the instantaneous OH-PLIF images, instead isolated regions of ignition and extinction highlighting the strong interplay between turbulence and chemical reactions.

  20. Instantaneous flow measurements in a supersonic wind tunnel using spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E.; Reeder, Mark F.

    1995-01-01

    Results of a feasibility study to apply laser Rayleigh scattering to non-intrusively measure flow properties in a small supersonic wind tunnel are presented. The technique uses an injection seeded, frequency doubled Nd:YAG laser tuned to an absorption band of iodine. The molecular Rayleigh scattered light is filtered with an iodine cell to block light at the laser frequency. The Doppler-shifted Rayleigh scattered light that passes through the iodine cell is analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode. An intensified CCD camera is used to record the images. The images are analyzed at several subregions, where the flow velocity is determined. Each image is obtained with a single laser pulse, giving instantaneous measurements.

  1. Flow diagnostics in unseeded air

    NASA Technical Reports Server (NTRS)

    Miles, R.; Lempert, W.

    1990-01-01

    Several approaches are presented for the quantitative measurement of flowfield parameters in high-speed flows. The techniques are developed for the study of air flows in the Mach 2 to Mach 3 regime and can be extended to the hypersonic and subsonic regimes in a straightforward manner. Instantaneous two-dimensional cross-sectional images of the density using UV Rayleigh scattering and the measurement of velocity profiles using the RELIEF technique are shown. The RELIEF technique employs two high-powered lasers separated in frequency by the vibrational frequency of oxygen molecules to write lines across the flowfield by stimulated Raman scattering. The preliminary results indicate that the UV Rayleigh scattering may also be extended to the measurement of velocity and temperature fields by using an atomic or molecular absorption filter window, and that the RELIEF technique can be extended to marking shaped volumetric points or arrays of points in the flowfield for velocity and vorticity measurements.

  2. Motion of a cylinder adjacent to a free-surface: flow patterns and loading

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Lin, J.-C.; Unal, M. F.; Rockwell, D.

    The flow structure and loading due to combined translatory and sinusoidal motion of a cylinder adjacent to a free-surface are characterized using a cinema technique of high-image-density particle image velocimetry and simultaneous force measurements. The instantaneous patterns of vorticity and streamline topology are interpreted as a function of degree of submergence beneath the free-surface. The relative magnitudes of the peak vorticity and the circulation of vortices formed from the upper and lower surfaces of the cylinder, as well as vortex formation from the free-surface, are remarkably affected by the nominal submergence. The corresponding streamline topology, interpreted in terms of foci, saddle points, and multiple separation and reattachment points also exhibit substantial changes with submergence. All of these features affect the instantaneous loading of the cylinder. Calculation of instantaneous moments of vorticity and the incremental changes in these moments during the cylinder motion allow identification of those vortices that contribute most substantially to the instantaneous lift and drag. Furthermore, the calculated moments are in general accord with the time integrals of the measured lift and drag acting on the cylinder for sufficiently large submergence.

  3. Uncertainty based pressure reconstruction from velocity measurement with generalized least squares

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng; Scalo, Carlo; Vlachos, Pavlos

    2017-11-01

    A method using generalized least squares reconstruction of instantaneous pressure field from velocity measurement and velocity uncertainty is introduced and applied to both planar and volumetric flow data. Pressure gradients are computed on a staggered grid from flow acceleration. The variance-covariance matrix of the pressure gradients is evaluated from the velocity uncertainty by approximating the pressure gradient error to a linear combination of velocity errors. An overdetermined system of linear equations which relates the pressure and the computed pressure gradients is formulated and then solved using generalized least squares with the variance-covariance matrix of the pressure gradients. By comparing the reconstructed pressure field against other methods such as solving the pressure Poisson equation, the omni-directional integration, and the ordinary least squares reconstruction, generalized least squares method is found to be more robust to the noise in velocity measurement. The improvement on pressure result becomes more remarkable when the velocity measurement becomes less accurate and more heteroscedastic. The uncertainty of the reconstructed pressure field is also quantified and compared across the different methods.

  4. Temporal flow instability for Magnus-Robins effect at high rotation rates

    NASA Astrophysics Data System (ADS)

    Sengupta, T. K.; Kasliwal, A.; de, S.; Nair, M.

    2003-06-01

    The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a rotating and translating cylinder experiences temporal instability-a fact not corroborated by any theoretical studies so far. In the present paper we report very accurate solution of Navier-Stokes equation that displays the above-mentioned instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of /4π, instantaneously as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability sequence in terms of a new theory of instability based on full Navier-Stokes equation that does not require making any assumption about the flow field, unlike other stability theories.

  5. Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics

    NASA Astrophysics Data System (ADS)

    Renfer, Adrian; Tiwari, Manish K.; Brunschwiler, Thomas; Michel, Bruno; Poulikakos, Dimos

    2011-09-01

    Hydrodynamics in microcavities with cylindrical micropin fin arrays simulating a single layer of a water-cooled electronic chip stack is investigated experimentally. Both inline and staggered pin arrangements are investigated using pressure drop and microparticle image velocimetry (μPIV) measurements. The pressure drop across the cavity shows a flow transition at pin diameter-based Reynolds numbers ( Re d ) ~200. Instantaneous μPIV, performed using a pH-controlled high seeding density of tracer microspheres, helps visualize vortex structure unreported till date in microscale geometries. The post-transition flow field shows vortex shedding and flow impingement onto the pins explaining the pressure drop increase. The flow fluctuations start at the chip outlet and shift upstream with increasing Re d . No fluctuations are observed for a cavity with pin height-to-diameter ratio h/ d = 1 up to Re d ~330; however, its pressure drop was higher than for a cavity with h/d = 2 due to pronounced influence of cavity walls.

  6. Lava effusion rate definition and measurement: a review

    USGS Publications Warehouse

    Calvari, Sonia; Dehn, Jonathan; Harris, A.

    2007-01-01

    Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.

  7. Proper orthogonal decomposition analysis for cycle-to-cycle variations of engine flow. Effect of a control device in an inlet pipe

    NASA Astrophysics Data System (ADS)

    Vu, Trung-Thanh; Guibert, Philippe

    2012-06-01

    This paper aims to investigate cycle-to-cycle variations of non-reacting flow inside a motored single-cylinder transparent engine in order to judge the insertion amplitude of a control device able to displace linearly inside the inlet pipe. Three positions corresponding to three insertion amplitudes are implemented to modify the main aerodynamic properties from one cycle to the next. Numerous particle image velocimetry (PIV) two-dimensional velocity fields following cycle database are post-treated to discriminate specific contributions of the fluctuating flow. We performed a multiple snapshot proper orthogonal decomposition (POD) in the tumble plane of a pent roof SI engine. The analytical process consists of a triple decomposition for each instantaneous velocity field into three distinctive parts named mean part, coherent part and turbulent part. The 3rd- and 4th-centered statistical moments of the proper orthogonal decomposition (POD)-filtered velocity field as well as the probability density function of the PIV realizations proved that the POD extracts different behaviors of the flow. Especially, the cyclic variability is assumed to be contained essentially in the coherent part. Thus, the cycle-to-cycle variations of the engine flows might be provided from the corresponding POD temporal coefficients. It has been shown that the in-cylinder aerodynamic dispersions can be adapted and monitored by controlling the insertion depth of the control instrument inside the inlet pipe.

  8. The appearance, motion, and disappearance of three-dimensional magnetic null points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Nicholas A., E-mail: namurphy@cfa.harvard.edu; Parnell, Clare E.; Haynes, Andrew L.

    2015-10-15

    While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field,more » which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.« less

  9. Gas density field imaging in shock dominated flows using planar laser scattering

    NASA Astrophysics Data System (ADS)

    Pickles, Joshua D.; Mettu, Balachandra R.; Subbareddy, Pramod K.; Narayanaswamy, Venkateswaran

    2018-07-01

    Planar laser scattering (PLS) imaging of ice particulates present in a supersonic stream is demonstrated to measure 2D gas density fields of shock dominated flows in low enthalpy test facilities. The technique involves mapping the PLS signal to gas density using a calibration curve that accounts for the seed particulate size distribution change across the shock wave. The PLS technique is demonstrated in a shock boundary layer interaction generated by a sharp fin placed on a cylindrical surface in Mach 2.5 flow. The shock structure generated in this configuration has complicating effects from the finite height of the fin as well as the 3D relief offered by the cylindrical surface, which result in steep spatial gradients as well as a wide range of density jumps across different locations of the shock structure. Instantaneous and mean PLS fields delineated the inviscid, separation, and reattachment shock structures at various downstream locations. The inviscid shock assumed increasingly larger curvature with downstream distance; concomitantly, the separation shock wrapped around the cylinder and the separation shock foot missed the cylinder surface entirely. The density fields obtained from the PLS technique were evaluated using RANS simulations of the same flowfield. Comparisons between the computed and measured density fields showed excellent agreement over the entire measurable region that encompassed the flow processed by inviscid, separation, and reattachment shocks away from viscous regions. The PLS approach demonstrated in this work is also shown to be largely independent of the seed particulates, which lends the extension of this approach to a wide range of test facilities.

  10. Numerical calculations of velocity and pressure distribution around oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.; Kobiske, M.

    1974-01-01

    An analytical procedure based on the Navier-Stokes equations was developed for analyzing and representing properties of unsteady viscous flow around oscillating obstacles. A variational formulation of the vorticity transport equation was discretized in finite element form and integrated numerically. At each time step of the numerical integration, the velocity field around the obstacle was determined for the instantaneous vorticity distribution from the finite element solution of Poisson's equation. The time-dependent boundary conditions around the oscillating obstacle were introduced as external constraints, using the Lagrangian Multiplier Technique, at each time step of the numerical integration. The procedure was then applied for determining pressures around obstacles oscillating in unsteady flow. The obtained results for a cylinder and an airfoil were illustrated in the form of streamlines and vorticity and pressure distributions.

  11. Dense velocity reconstruction from tomographic PTV with material derivatives

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Scarano, Fulvio

    2016-09-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet experiment, where the vortex topology is retrieved with a small number of tracers indicate the potential utilization of VIC+ in low-concentration experiments as for instance occurring in large-scale volumetric PTV measurements.

  12. Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Wang, Qiang

    The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.

  13. Selecting a proper design period for heliostat field layout optimization using Campo code

    NASA Astrophysics Data System (ADS)

    Saghafifar, Mohammad; Gadalla, Mohamed

    2016-09-01

    In this paper, different approaches are considered to calculate the cosine factor which is utilized in Campo code to expand the heliostat field layout and maximize its annual thermal output. Furthermore, three heliostat fields containing different number of mirrors are taken into consideration. Cosine factor is determined by considering instantaneous and time-average approaches. For instantaneous method, different design days and design hours are selected. For the time average method, daily time average, monthly time average, seasonally time average, and yearly time averaged cosine factor determinations are considered. Results indicate that instantaneous methods are more appropriate for small scale heliostat field optimization. Consequently, it is proposed to consider the design period as the second design variable to ensure the best outcome. For medium and large scale heliostat fields, selecting an appropriate design period is more important. Therefore, it is more reliable to select one of the recommended time average methods to optimize the field layout. Optimum annual weighted efficiency for heliostat fields (small, medium, and large) containing 350, 1460, and 3450 mirrors are 66.14%, 60.87%, and 54.04%, respectively.

  14. Paleointensity results for 0 and 3 ka from Hawaiian lava flows: a new approach to sampling

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Tauxe, L.; Staudigel, H.; Ron, H.; Trusdell, F.

    2011-12-01

    Paleointensity data are typically generated from core samples drilled out of the massive parts of lava flows. During Thellier-Thellier type experiments, these massive samples suffer from very low success rates (~20%), as shown by failure to meet statistical criteria. Low success generally occurs for two reasons: 1) alteration of the sample during the heating process, and 2) multi-domain behavior of massive material. Moreover, recent studies of historical lava flows show that massive samples may not accurately reflect the intensity of the magnetic field even when they are successful (Valet et al., 2010). Alternatively, submarine basaltic glasses (SBG) produce high success rates (~80%) for Thellier-Thellier type experiments, likely due to near instantaneous cooling rates which produce single-domain magnetic grains. In addition, SBG have been proven to produce accurate records of the magnetic field (e.g., Pick and Tauxe, 1993). In this study we investigate the success of paleointensity experiments on subaerial quenched basalts from Hawaii in the quest for single domain, rapidly cooled subaerial analogs to SBG. We also examine the effects of grain size and cooling rate on the accuracy of paleointensity results. During March 2011, we collected samples from 31 dated lava flows (0-3360 BP), including the [historical] 1950 C.E. and 2010 C.E. flows. Each lava flow was additionally subsampled when unique cooling structures within the unit could be identified. Results from the 1950 and 2010 glasses accurately record the expected geomagnetic field strength. We will present results of a comprehensive data set of Hawaiian paleointensity focused on about the last 3 ka.

  15. A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Li, Yaofa; Bolster, Diogo; Christensen, Kenneth T.

    2018-04-01

    We implement a phase-field based lattice-Boltzmann (LB) method for numerical simulation of multiphase flows in heterogeneous porous media at pore scales with wettability effects. The present method can handle large density and viscosity ratios, pertinent to many practical problems. As a practical application, we study multiphase flow in a micromodel representative of CO2 invading a water-saturated porous medium at reservoir conditions, both numerically and experimentally. We focus on two flow cases with (i) a crossover from capillary fingering to viscous fingering at a relatively small capillary number, and (ii) viscous fingering at a relatively moderate capillary number. Qualitative and quantitative comparisons are made between numerical results and experimental data for temporal and spatial CO2 saturation profiles, and good agreement is found. In particular, a correlation analysis shows that any differences between simulations and results are comparable to intra-experimental differences from replicate experiments. A key conclusion of this work is that system behavior is highly sensitive to boundary conditions, particularly inlet and outlet ones. We finish with a discussion on small-scale flow features, such as the emergence of strong recirculation zones as well as flow in which the residual phase is trapped, including a close look at the detailed formation of a water cone. Overall, the proposed model yields useful information, such as the spatiotemporal evolution of the CO2 front and instantaneous velocity fields, which are valuable for understanding the mechanisms of CO2 infiltration at the pore scale.

  16. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field.

    PubMed

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q. We explored convection regimes in a parameter range, at 2×10^{3}

  17. Experimental investigation on flow past nine cylinders in a square configuration

    NASA Astrophysics Data System (ADS)

    Ma, Lili; Gao, Yangyang; Guo, Zhen; Wang, Lizhong

    2018-04-01

    An experimental investigation on flow past nine cylinders in a square configuration was carried out using the particle image velocimetry technique and load cell in a water channel. The center-to-center spacing ratio L/D was in the range of 1.5-3.0 and the Reynolds number Re was varied from 1500 to 5000. The effects of spacing ratio and Reynolds number on the instantaneous time-averaged flow fields and force coefficients are investigated. The results show that three distinct flow regimes are categorized with variation of the spacing ratios and Reynolds numbers, namely, shielding flow regime, transition flow regime and vortex shedding flow regime. Depending on the interferences of shear layers around the nine cylinders, each flow regime is further divided into two types of flow patterns. An interesting feature of bistable flow pattern with different flow modes is observed at small spacing ratio L/D = 1.5. The non-dimensional vortex shedding frequencies appear to be more associated with the individual shear layers rather than the multiple cylinders. Moreover, force analysis, streamline topologies and Reynolds stress contours are presented to elucidate the effects of spacing ratio and Reynolds number on the complex wake interference among the nine cylinders. The flow characteristics and force coefficients are found to be more sensitive to L/D rather than Re.

  18. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  19. Statistical summaries of streamflow data for selected gaging stations on and near the Idaho National Engineering Laboratory, Idaho, through September 1990

    USGS Publications Warehouse

    Stone, M.A.J.; Mann, Larry J.; Kjelstrom, L.C.

    1993-01-01

    Statistical summaries and graphs of streamflow data were prepared for 13 gaging stations with 5 or more years of continuous record on and near the Idaho National Engineering Laboratory. Statistical summaries of streamflow data for the Big and Little Lost Rivers and Birch Creek were analyzed as a requisite for a comprehensive evaluation of the potential for flooding of facilities at the Idaho National Engineering Laboratory. The type of statistical analyses performed depended on the length of streamflow record for a gaging station. Streamflow statistics generated for stations with 5 to 9 years of record were: (1) magnitudes of monthly and annual flows; (2) duration of daily mean flows; and (3) maximum, median, and minimum daily mean flows. Streamflow statistics generated for stations with 10 or more years of record were: (1) magnitudes of monthly and annual flows; (2) magnitudes and frequencies of daily low, high, instantaneous peak (flood frequency), and annual mean flows; (3) duration of daily mean flows; (4) exceedance probabilities of annual low, high, instantaneous peak, and mean annual flows; (5) maximum, median, and minimum daily mean flows; and (6) annual mean and mean annual flows.

  20. Three Dimensional Plenoptic PIV Measurements of a Turbulent Boundary Layer Overlying a Hemispherical Roughness Element

    NASA Astrophysics Data System (ADS)

    Johnson, Kyle; Thurow, Brian; Kim, Taehoon; Blois, Gianluca; Christensen, Kenneth

    2016-11-01

    Three-dimensional, three-component (3D-3C) measurements were made using a plenoptic camera on the flow around a roughness element immersed in a turbulent boundary layer. A refractive index matched approach allowed whole-field optical access from a single camera to a measurement volume that includes transparent solid geometries. In particular, this experiment measures the flow over a single hemispherical roughness element made of acrylic and immersed in a working fluid consisting of Sodium Iodide solution. Our results demonstrate that plenoptic particle image velocimetry (PIV) is a viable technique to obtaining statistically-significant volumetric velocity measurements even in a complex separated flow. The boundary layer to roughness height-ratio of the flow was 4.97 and the Reynolds number (based on roughness height) was 4.57×103. Our measurements reveal key flow features such as spiraling legs of the shear layer, a recirculation region, and shed arch vortices. Proper orthogonal decomposition (POD) analysis was applied to the instantaneous velocity and vorticity data to extract these features. Supported by the National Science Foundation Grant No. 1235726.

  1. A filter spectrometer concept for facsimile cameras

    NASA Technical Reports Server (NTRS)

    Jobson, D. J.; Kelly, W. L., IV; Wall, S. D.

    1974-01-01

    A concept which utilizes interference filters and photodetector arrays to integrate spectrometry with the basic imagery function of a facsimile camera is described and analyzed. The analysis considers spectral resolution, instantaneous field of view, spectral range, and signal-to-noise ratio. Specific performance predictions for the Martian environment, the Viking facsimile camera design parameters, and a signal-to-noise ratio for each spectral band equal to or greater than 256 indicate the feasibility of obtaining a spectral resolution of 0.01 micrometers with an instantaneous field of view of about 0.1 deg in the 0.425 micrometers to 1.025 micrometers range using silicon photodetectors. A spectral resolution of 0.05 micrometers with an instantaneous field of view of about 0.6 deg in the 1.0 to 2.7 micrometers range using lead sulfide photodetectors is also feasible.

  2. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.

  3. PIV measurements of the flow at the inlet of a turbocharger centrifugal compressor with recirculation casing treatment near the inducer

    NASA Astrophysics Data System (ADS)

    Gancedo, Matthieu; Gutmark, Ephraim; Guillou, Erwann

    2016-02-01

    Turbocharging reciprocating engines is a viable solution in order to meet the new regulations for emissions and fuel efficiency in part because turbochargers allow to use smaller, more efficient engines (downsizing) while maintaining power. A major challenge is to match the flow range of a dynamic turbomachine (the centrifugal compressor in the turbocharger) with a positive displacement pump (the engine) as the flow range of the latter is typically higher. The operating range of the compressor is thus of prime interest. At low mass flow rate (MFR), the compressor range is limited by the occurrence of surge. To control and improve it, numerous and varied methods have been used. Yet, an automotive application requires that the solution remains relatively simple and preferably passive. A common feature that has been demonstrated to improve the surge line is the use of flow recirculation in the inducer region through a circumferential bleed slot around the shroud, also called "ported shroud", similar to what has been developed for axial compressors in the past. The compressor studied here features such a device. In order to better understand the effect of the recirculation slot on the compressor functioning, flow measurements were performed at the inlet using particle image velocimetry and the results were correlated with pressure measurements nearby. Measurements were taken on a compressor with and without recirculation and across the full range of normal operation and during surge using a phase-locking method to obtain average flow fields throughout the entire surge cycle. When the recirculation is blocked, it was found that strong backflow develops at low MFR perturbing the incoming flow and inducing significant preswirl. The slot eliminated most of the backflow in front of the inducer making the compressor operation more stable. The measurements performed during surge showed strong backflow occurring periodically during the outlet pressure drop and when the instantaneous MFR is near 0 or negative. The flow motion at the inlet is highly three dimensional as flow enters in the center of the inducer at all times, even when the instantaneous flow rate is negative, compared to the reversed flow observed in the entire inlet for surging axial compressors.

  4. Performance Characteristics of a Cross-Flow Hydrokinetic Turbine under Unsteady Conditions

    NASA Astrophysics Data System (ADS)

    Flack, Karen; Lust, Ethan; Bailin, Ben

    2017-11-01

    Performance characteristics are presented for a cross-flow hydrokinetic turbine designed for use in a riverine environment. The test turbine is a 1:6 scale model of a three-bladed device (9.5 m span, 6.5 m diameter) that has been proposed by the Department of Energy. Experiments are conducted in the large towing tank (116 m long, 7.9 m wide, 5 m deep) at the United States Naval Academy. The turbine is towed beneath a moving carriage at a constant speed in combination with a shaft motor to achieve the desired tip speed ratio (TSR) range. The measured quantities of turbine thrust, torque and RPM result in power and thrust coefficients for a range of TSR. Results will be presented for cases with quiescent flow at a range of Reynolds numbers and flow with mild surface waves, representative of riverine environments. The impact of unsteady flow conditions on the average turbine performance was not significant. Unsteady flow conditions did have an impact on instantaneous turbine performance which operationally would result in unsteady blade loading and instantaneous power quality.

  5. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  6. Influence of pulsatile flow on LDL transport in the arterial wall.

    PubMed

    Sun, Nanfeng; Wood, Nigel B; Hughes, Alun D; Thom, Simon A M; Xu, X Yun

    2007-10-01

    The accumulation of low-density lipoprotein (LDL) is one of the important factors in atherogenesis. Two different time scales may influence LDL transport in vivo: (1) LDL transport is coupled to blood flow with a pulse cycle of around 1 s in humans; (2) LDL transport within the arterial wall is mediated by transmural flow in the order of 10(-8) m/s. Most existing models have assumed steady flow conditions and overlooked the interactions between physical phenomena with different time scales. The objective of this study was to investigate the influence of pulsatile flow on LDL transport and examine the validity of steady flow assumption. The effect of pulsatile flow on transmural transport was incorporated by using a lumen-free cyclic (LFC) and a lumen-free time-averaged (LFTA) procedures. It is found that the steady flow simulation predicted a focal distribution in the post-stenotic region, differing from the diffuse distribution pattern produced by the pulsatile flow simulation. The LFTA procedure, in which time-averaged shear-dependent transport properties calculated from instantaneous wall shear stress (WSS) were used, predicted a similar distribution pattern to the LFC simulations. We conclude that the steady flow assumption is inadequate and instantaneous hemodynamic conditions have important influence on LDL transmural transport in arterial geometries with disturbed and complicated flow patterns.

  7. Computational and Experimental Study of the Transient Transport Phenomena in a Full-Scale Twin-Roll Continuous Casting Machine

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Li, Zhongyang; Wang, Zhaohui; Zhu, Miaoyong

    2017-02-01

    To gain a fundamental understanding of the transient fluid flow in twin-roll continuous casting, the current paper applies both large eddy simulation (LES) and full-scale water modeling experiments to investigate the characteristics of the top free surface, stirring effect of the roll rotation, boundary layer fluctuations, and backflow stability. The results show that, the characteristics of the top free surface and the flow field in the wedge-shaped pool region are quite different with/without the consideration of the roll rotation. The roll rotation decreases the instantaneous fluctuation range of the top free surface, but increases its horizontal velocity. The stirring effect of the roll rotating makes the flow field more homogenous and there exists clear shear flow on the rotating roll surface. The vortex shedding induced by the Kármán Vortex Street from the submerged entry nozzle (SEN) causes the "velocity magnitude wave" and strongly influences the boundary layer stability and the backflow stability. The boundary layer fluctuations or the "velocity magnitude wave" induced by the vortex shedding could give rise to the internal porosity. In strip continuous casting process, the vortex shedding phenomenon indicates that the laminar flow can give rise to instability and that it should be made important in the design of the feeding system and the setting of the operating parameters.

  8. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  9. Technique to measure wavenumber mismatch between quadratically interacting modes

    NASA Astrophysics Data System (ADS)

    Hajj, M. R.; Davila, J. B.; Miksad, R. W.; Powers, E. J.

    1995-02-01

    Nonlinear energy cascade by means of three-wave resonant interactions is a characteristic feature of transitioning and turbulent flows. Resonant wavenumber mismatch between these interacting modes can arise from the dispersive characteristics of the interacting waves and from spectral broadening due to random effects. In this paper, a general technique is presented to estimate the average level of instantaneous wavenumber mismatch, (Delta k) = (k(sub m) - k(sub i) - k(sub j)), between components whose frequencies obey the resonant selection condition, f(sub m) - f(sub i) - f(sub j) = 0. Cross-correlation of the auto-bispectrum is used to quantify the level of mismatch. The concept of bispectrum coupling coherency is introduced to determine the confidence level in the wavenumber mismatch estimates. These techniques are then applied to measure wavenumber mismatch in the transitioning field of a plane wake. The results show that the average of the instantaneous mismatch between the actual interacting modes (k(sub m) - k(sub i) - k(sub j)) is in general not equal to the mismatch between the average wavenumbers of each interacting mode (k(sub m) - (k(sub i)) - (k(sub j)).

  10. Examination of the effect of blowing on the near-surface flow structure over a dimpled surface

    NASA Astrophysics Data System (ADS)

    Borchetta, C. G.; Martin, A.; Bailey, S. C. C.

    2018-03-01

    The near surface flow over a dimpled surface with flow injection through it was documented using time-resolved particle image velocimetry. The instantaneous flow structure, time-averaged statistics, and results from snapshot proper orthogonal decomposition were used to examine the coherent structures forming near the dimpled surface. In particular, the modifications made to the flow structures by the addition of flow injection through the surface were studied. It was observed that without flow injection, inclined flow structures with alternating vorticity from neighboring dimples are generated by the dimples and advect downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection was introduced through the surface, the flow structures became more disorganized, but some of the features of the semi-periodic structures observed without flow injection were preserved. The structures with flow injection appear in multiple wall-normal layers, formed from vortical structures shed from upstream dimples, with a corresponding increase in the size of the advecting structures. As a result of the more complex flow field observed with flow injection, there was an increase in turbulent kinetic energy and Reynolds shear stress, with the Reynolds shear stress representing an increase in vertical transport of momentum by sweeping and ejecting motions that were not present without flow injection.

  11. Development and Preliminary Application of High-Resolution Endoscopic Piv for Quantification of Flow Structure Within a Pore Space

    NASA Astrophysics Data System (ADS)

    Blois, G.; Sambrook Smith, G.; Best, J.; Hardy, R.; Lead, J.

    2008-12-01

    Most natural rivers have beds of loose, cohesionless sediment that form a porous bed, thus permitting significant interactions between the free flow above the bed and that within the pore spaces. Many unresolved problems in channel engineering and ecohydraulics are related to an incomplete understanding of this interstitial flow. For example, the mechanisms of pollutant transport and prediction of river bed morphodynamics may be strongly influenced by flow occurring within the pore spaces. While this lack of understanding has been widely acknowledged, the direct experimental investigation of flow within the pore spaces has been restricted by the practical difficulties in collecting such data. This has also created drawbacks in the numerical modeling of pore flow as there remains a dearth of robust experimental data with which to validate such models. In order to help address these issues, we present details of a new endoscopic PIV system designed to tackle some of the challenges highlighted above. The work presented in this paper is also being used to validate a numerical model that is being developed as part of this project. A fully endoscopic PIV system has been developed to collect velocity and turbulence data for flow within the pore space of a gravel bed. The system comprises a pulsed Nd:YAG laser that provides high intensity illumination for single exposure pairs of images on a high-resolution digital camera. The use of rigid endoscopes for both the laser light source and camera allows measurement of quasi-instantaneous flow fields by high-resolution PIV images (2352*1728 pixels). In the first instance, the endoscopic PIV system has been used to study flow within an artificial pore space model constructed from 38 and 51 mm diameter spheres, used to represent a simplified version of a natural gravel-bed river. Across-correlation processing approach has been applied to the PIV images and the processing parameters have been optimized for the experimental conditions. A series of instantaneous two-dimensional flow fields in a simple pore space has been reconstructed permitting quantification of the mean flow. A not symmetric flow structure has been highlighted showing the strong dependence of flow on the bed geometry and presence of the free surface. Preliminary results will be discussed here in order to highlight the critical aspects of the technique. Illumination from the laser endoscope must be optimized in terms of angle of divergence, uniformity and stability, with any source of irregular illumination causing strong reflections from the surface of the spheres resulting in saturation of huge image areas. The preliminary results obtained demonstrate the utility of the fully endoscopic PIV technique for investigation of flow structure in pore spaces. Further developments of the technique will include improving light uniformity, removing reflections from images and increasing the illuminated portion of the pore space area.

  12. Instantaneous 2D Velocity and Temperature Measurements in High Speed Flows Based on Spectrally Resolved Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1995-01-01

    A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel.

  13. Dynamic Distortion in a Short S-Shaped Subsonic Diffuser with Flow Separation. [Lewis 8 by 6 foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stumpf, R.; Neumann, H. E.; Giamati, C. C.

    1983-01-01

    An experimental investigation of the time varying distortion at the diffuser exit of a subscale HiMAT forebody and inlet was conducted at Mach 0.9 in the Lewis 8 by 6 foot Supersonic Wind Tunnel. A transitory separation was detected within the subsonic diffuser. Vortex generators were installed to eliminate the flow separation. Results from a study of the instantaneous pressure variations at the diffuser exit are presented. The time unsteady total pressures at the diffuser exit are computer interpolated and presented in the form of a movie showing the transitory separation. Limited data showing the instantaneous distortion levels is also presented.

  14. Feedback mechanism for smart nozzles and nebulizers

    DOEpatents

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  15. Imaging experiment: The Viking Lander

    USGS Publications Warehouse

    Mutch, T.A.; Binder, A.B.; Huck, F.O.; Levinthal, E.C.; Morris, E.C.; Sagan, C.; Young, A.T.

    1972-01-01

    The Viking Lander Imaging System will consist of two identical facsimile cameras. Each camera has a high-resolution mode with an instantaneous field of view of 0.04??, and survey and color modes with instantaneous fields of view of 0.12??. Cameras are positioned one meter apart to provide stereoscopic coverage of the near-field. The Imaging Experiment will provide important information about the morphology, composition, and origin of the Martian surface and atmospheric features. In addition, lander pictures will provide supporting information for other experiments in biology, organic chemistry, meteorology, and physical properties. ?? 1972.

  16. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    NASA Technical Reports Server (NTRS)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On the nozzle passage endwall surfaces the presence of strong pressure gradients and secondary flow limit the validity of the boundary layer code.

  17. Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan M.; McGinley, Catherine B.

    2005-01-01

    A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears.

  18. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data

    USGS Publications Warehouse

    Jackson, R. D.; Moran, M.S.; Gay, L.W.; Raymond, L.H.

    1987-01-01

    Airborne measurements of reflected solar and emitted thermal radiation were combined with ground-based measurements of incoming solar radiation, air temperature, windspeed, and vapor pressure to calculate instantaneous evaporation (LE) rates using a form of the Penman equation. Estimates of evaporation over cotton, wheat, and alfalfa fields were obtained on 5 days during a one-year period. A Bowen ratio apparatus, employed simultaneously, provided ground-based measurements of evaporation. Comparison of the airborne and ground techniques showed good agreement, with the greatest difference being about 12% for the instantaneous values. Estimates of daily (24 h) evaporation were made from the instantaneous data. On three of the five days, the difference between the two techniques was less than 8%, with the greatest difference being 25%. The results demonstrate that airborne remote sensing techniques can be used to obtain spatially distributed values of evaporation over agricultural fields. ?? 1987 Springer-Verlag.

  19. Safety and Efficacy of Transcatheter Closure of Patent Ductus Arteriosus With Severe Mitral Regurgitation in Adults.

    PubMed

    Wang, Zhongkai; Chen, Tao; Chen, Liang; Qin, Yongwen; Zhao, Xianxian

    2016-01-01

    Transcatheter closure is the usual treatment for patent ductus arteriosus (PDA), but its safety and efficacy have not been reported in adult PDA patients with severe mitral regurgitation. A retrospective study on 27 consecutive patients diagnosed with PDA and severe mitral regurgitation and treated using transcatheter closure between September 2010 and September 2012 at the Department of Cardiology of Changhai Hospital in Changhai, China. Left ventricular (LV) diastolic volume and function, pulmonary artery pressure, and instantaneous reverse-flow volume were examined by echocardiography before PDA closure, immediately after closure, and 1 year after closure. After the procedure, the LV diastolic volume (P<.05) and instantaneous reverse-flow volume (P<.001) were significantly decreased. There was no effect on the ejection fraction (P>.05). Pulmonary arterial systolic pressure was unchanged 1 year after closure (from 46.41 ± 19.92 mm Hg to 45.43 ± 13.64 mm Hg; P=.58). All procedures were uneventful and only mild complications occurred (hemolysis in 2 cases, subcutaneous hematoma in 4 cases, and fever in 2 cases). Transcatheter closure can decrease the LV volume and instantaneous reverse-flow volume in adult PDA patients with severe mitral regurgitation. This procedure is effective and has a good safety profile.

  20. Tomographic PIV Study of Hairpin Vortices

    NASA Astrophysics Data System (ADS)

    Sabatino, Daniel; Rossmann, Tobias

    2014-11-01

    Tomographic PIV is used in a free surface water channel to quantify the flow behavior of hairpin vortices that are artificially generated in a laminar boundary layer. Direct injection from a 32:1 aspect ratio slot at low blowing ratios (0 . 1 < BR < 0 . 2) is used to generate an isolated hairpin vortex in a thick laminar boundary layer (485 < Reδ* < 600). Due to the large dynamic range of length and velocity scales (the resulting vortices have advection velocities 5X greater than their tangential velocities), a tailored optical arrangement and specialized post processing techniques are required to fully capture the small-scale behavior and long-time development of the flow field. Hairpin generation and evolution are presented using the λ2 criterion derived from the instantaneous, three-dimensional velocity field. The insight provided by the tomographic data is also compared to the conclusions drawn from 2D PIV and passive scalar visualizations. Finally, the three-dimensional behavior of the measured velocity field is correlated with that of a simultaneously imaged, passive scalar dye that marks the boundary of the injected fluid, allowing the examination of the entrainment behavior of the hairpin. Supported by the National Science Foundation under Grant CBET-1040236.

  1. Effects of Pump Pulsation on Hydrodynamic Properties and Dissolution Profiles in Flow-Through Dissolution Systems (USP 4).

    PubMed

    Yoshida, Hiroyuki; Kuwana, Akemi; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-06-01

    To clarify the effects of pump pulsation and flow-through cell (FTC) dissolution system settings on the hydrodynamic properties and dissolution profiles of model formulations. Two FTC systems with different cell temperature control mechanisms were used. Particle image velocimetry (PIV) was used to analyze the hydrodynamic properties of test solutions in the flow-through dissolution test cell. Two pulsation pumps (semi-sine, full-sine) and a non-pulsatile pump were used to study the effects of varied flows on the dissolution profiles of United States Pharmacopeia standard tablets. PIV analysis showed periodic changes in the aligned upward fluid flow throughout the dissolution cell that was designed to reduce the temperature gradient during pump pulsation (0.5 s/pulse). The maximum instantaneous flow from the semi-sine pump was higher than that of the full-sine pump under all conditions. The flow from the semi-sine wave pump showed faster dissolution of salicylic acid and prednisone tablets than those from other pumps. The semi-sine wave pump flow showed similar dissolution profiles in the two FTC systems. Variations in instantaneous fluid flow caused by pump pulsation that meets the requirements of pharmacopoeias are a factor that affects the dissolution profiles of tablets in FTC systems.

  2. Diagnostic Imaging in Flames with Instantaneous Planar Coherent Raman Spectroscopy.

    PubMed

    Bohlin, A; Kliewer, C J

    2014-04-03

    Spatial mapping of temperature and molecular species concentrations is vitally important in studies of gaseous chemically reacting flows. Temperature marks the evolution of heat release and energy transfer, while species concentration gradients provide critical information on mixing and chemical reaction. Coherent anti-Stokes Raman spectroscopy (CARS) was pioneered in measurements of such processes almost 40 years ago and is authoritative in terms of the accuracy and precision it may provide. While a reacting flow is fully characterized in three-dimensional space, a limitation of CARS has been its applicability as a point-wise measurement technique, motivating advancement toward CARS imaging, and attempts have been made considering one-dimensional probing. Here, we report development of two-dimensional CARS, with the first diagnostics of a planar field in a combusting flow within a single laser pulse, resulting in measured isotherms ranging from 450 K up to typical hydrocarbon flame temperatures of about 2000 K with chemical mapping of O2 and N2.

  3. Pressure-strain-rate events in homogeneous turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Brasseur, James G.; Lee, Moon J.

    1988-01-01

    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed.

  4. Evidence of sublaminar drag naturally occurring in a curved pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noorani, A.; Schlatter, P., E-mail: pschlatt@mech.kth.se

    Steady and unsteady flows in a mildly curved pipe for a wide range of Reynolds numbers are examined with direct numerical simulation. It is shown that in a range of Reynolds numbers in the vicinity of Re{sub b} ≈ 3400, based on bulk velocity and pipe diameter, a marginally turbulent flow is established in which the friction drag naturally reduces below the laminar solution at the same Reynolds number. The obtained values for friction drag for the laminar and turbulent (sublaminar) flows turn out to be in excellent agreement with experimental measurements in the literature. Our results are also inmore » agreement with Fukagata et al. [“On the lower bound of net driving power in controlled duct flows,” Phys. D 238, 1082 (2009)], as the lower bound of net power required to drive the flow, i.e., the pressure drop of the Stokes solution, is still lower than our marginally turbulent flow. A large-scale traveling structure that is thought to be responsible for that behaviour is identified in the instantaneous field. This mode could also be extracted using proper orthogonal decomposition. The effect of this mode is to redistribute the mean flow in the circular cross section which leads to lower gradients at the wall compared to the laminar flow.« less

  5. Evidence of sublaminar drag naturally occurring in a curved pipe

    NASA Astrophysics Data System (ADS)

    Noorani, A.; Schlatter, P.

    2015-03-01

    Steady and unsteady flows in a mildly curved pipe for a wide range of Reynolds numbers are examined with direct numerical simulation. It is shown that in a range of Reynolds numbers in the vicinity of Reb ≈ 3400, based on bulk velocity and pipe diameter, a marginally turbulent flow is established in which the friction drag naturally reduces below the laminar solution at the same Reynolds number. The obtained values for friction drag for the laminar and turbulent (sublaminar) flows turn out to be in excellent agreement with experimental measurements in the literature. Our results are also in agreement with Fukagata et al. ["On the lower bound of net driving power in controlled duct flows," Phys. D 238, 1082 (2009)], as the lower bound of net power required to drive the flow, i.e., the pressure drop of the Stokes solution, is still lower than our marginally turbulent flow. A large-scale traveling structure that is thought to be responsible for that behaviour is identified in the instantaneous field. This mode could also be extracted using proper orthogonal decomposition. The effect of this mode is to redistribute the mean flow in the circular cross section which leads to lower gradients at the wall compared to the laminar flow.

  6. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.

    PubMed

    Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele

    2011-02-01

    We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.

  7. Iterative Reconstruction of Volumetric Particle Distribution for 3D Velocimetry

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard; Neal, Douglas

    2011-11-01

    A number of different volumetric flow measurement techniques exist for following the motion of illuminated particles. For experiments that have lower seeding densities, 3D-PTV uses recorded images from typically 3-4 cameras and then tracks the individual particles in space and time. This technique is effective in flows that have lower seeding densities. For flows that have a higher seeding density, tomographic PIV uses a tomographic reconstruction algorithm (e.g. MART) to reconstruct voxel intensities of the recorded volume followed by the cross-correlation of subvolumes to provide the instantaneous 3D vector fields on a regular grid. A new hybrid algorithm is presented which iteratively reconstructs the 3D-particle distribution directly using particles with certain imaging properties instead of voxels as base functions. It is shown with synthetic data that this method is capable of reconstructing densely seeded flows up to 0.05 particles per pixel (ppp) with the same or higher accuracy than 3D-PTV and tomographic PIV. Finally, this new method is validated using experimental data on a turbulent jet.

  8. Life stages of wall-bounded decay of Taylor-Couette turbulence

    NASA Astrophysics Data System (ADS)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Spandan, Vamsi; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5 ×104 . The effect of wall friction is analyzed by comparing three separate cases, in which the cylinders are either suddenly made no-slip or stress-free. Different life stages are observed during the decay. In the first stage, the decay is dominated by large-scale rolls. Counterintuitively, when these rolls fade away, if the flow inertia is small a redistribution of energy occurs and the energy of the azimuthal velocity behaves nonmonotonically, first decreasing by almost two orders of magnitude and then increasing during the redistribution. The second stage is dominated by non-normal transient growth of perturbations in the axial (spanwise) direction. Once this mechanism is exhausted, the flow enters the final life stage, viscous decay, which is dominated by wall friction. We show that this stage can be modeled by a one-dimensional heat equation, and that self-similar velocity profiles collapse onto the theoretical solution.

  9. Thermal convection of liquid metal in the titanium reduction reactor

    NASA Astrophysics Data System (ADS)

    Teimurazov, A.; Frick, P.; Stefani, F.

    2017-06-01

    The structure of the convective flow of molten magnesium in a metallothermic titanium reduction reactor has been studied numerically in a three-dimensional non-stationary formulation with conjugated heat transfer between liquid magnesium and solids (steel walls of the cavity and titanium block). A nonuniform computational mesh with a total of 3.7 million grid points was used. The Large Eddy Simulation technique was applied to take into account the turbulence in the liquid phase. The instantaneous and average characteristics of the process and the velocity and temperature pulsation fields are analyzed. The simulations have been performed for three specific heating regimes: with furnace heaters operating at full power, with furnace heaters switched on at the bottom of the vessel only, and with switched-off furnace heaters. It is shown that the localization of the cooling zone can completely reorganize the structure of the large-scale flow. Therefore, by changing heating regimes, it is possible to influence the flow structure for the purpose of creating the most favorable conditions for the reaction. It is also shown that the presence of the titanium block strongly affects the flow structure.

  10. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    The small scale ocean-atmosphere interaction at the water-air interface is one of the most important factors determining the processes of heat, mass, and energy exchange in the boundary layers of both geospheres. Another important aspect of the air-sea interaction is excitation of surface waves. One of the most debated open questions of wave modeling is concerned with the wind input in the wave field, especially for the case of steep and breaking waves. Two physical mechanisms are suggested to describe the excitation of finite amplitude waves. The first one is based on the treatment of the wind-wave interaction in quasi-linear approximation in the frameworks of semi-empirical models of turbulence of the low atmospheric boundary layer. An alternative mechanism is associated with separation of wind flow at the crests of the surface waves. The "separating" and "non-separating" mechanisms of wave generation lead to different dependences of the wind growth rate on the wave steepness: the latter predicts a decrease in the increment with wave steepness, and the former - an increase. In this paper the mechanism of the wind-wave interaction is investigated basing on physical and numerical experiments. In the physical experiment, turbulent airflow over waves was studied using the video-PIV method, based on the application of high-speed video photography. Alternatively to the classical PIV technique this approach provides the statistical ensembles of realizations of instantaneous velocity fields. Experiments were performed in a round wind-wave channel at Institute of Applied Physics, Russian Academy of Sciences. A fan generated the airflow with the centerline velocity 4 m/s. The surface waves were generated by a programmed wave-maker at the frequency of 2.5 Hz with the amplitudes of 0.65 cm, 1.4 cm, and 2 cm. The working area (27.4 × 10.7 cm2) was at a distance of 3 m from the fan. To perform the measurements of the instantaneous velocity fields, spherical polyamide particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the wave slope was retrieved from the DNS results. Similar to the physical experiment the wave growth rate weakly decreased with the wave steepness. The results of physical and numerical experiments were compared with the calculations within the theoretical model of a turbulent boundary layer based on the system of Reynolds equations with the first-order closing hypothesis. Within the model the wind-wave interaction is considered within the quasi-linear approximation and the mean airflow over waves within the model is treated as a non-separated. The calculations within the model represents well profiles of the mean wind velocity, turbulent stress, amplitude and phase of the main harmonics of the wave-induced velocity components and also wave-induced pressure fluctuations and wind wave growth rate obtained both in the physical experiment and DNS. Applicability of the non-separating quasi-linear theory for description of average fields in the airflow over steep and even breaking waves, when the effect of separation is manifested in the instantaneous flow images, can possibly be explained qualitatively by the strongly non-stationary character of the separation process with the typical time being much less than the wave period, and by the small scale of flow heterogeneity in the area of separation. In such a situation small-scale vortices produced within the separation bubble affect the mean flow and wind-induced disturbances as eddy viscosity. Then, the flow turbulence affects the averaged fields as a very viscous fluid, where the effective Reynolds number for the average fields determined by the eddy viscosity was small even for steep waves. It follows from this assumption that strongly nonlinear effects, such as flow separations should not be expected in the flow averaged over turbulent fluctuations, and the main harmonics of the wave-induced disturbances of the averaged flow, which determine the energy flux to surface waves, can be described in the weakly-nonlinear approximation. This paper was supported by a grant from the Government of the Russian Federation under Contract no. 11.G34.31.0048; the European Research Council Advanced Grant, FP7-IDEAS, 227915; RFBF grant 13-05-00865-а, 13-05-12093-ofi-m,15-05-91767.

  11. Development of a temperature measurement system with application to a jet in a cross flow experiment

    NASA Technical Reports Server (NTRS)

    Wark, C.; Foss, J. F.

    1985-01-01

    A temperature measurement system, which allows the simultaneous sampling of up to 80 separate thermocouples, was developed. The minimum resolution for the system corresponds to + or - 0.16 C per least significant bit of the A/D converter. The time constant values lambda, for each of the 64 thermocouples, were determined experimentally at 7 mps. Software routines were used to correct the measured temperatures for the effect of lambda for each thermocouple. The temperature measurement system was utilized to study the thermal field of a heated jet discharging perpendicularly into a low and a high disturbance level cross stream for a given momentum flux ratio and for three overheated values. The peak instantaneous temperatures reveal that strong molecular diffusion was operative. Various measures of the thermal field, for the disturbed case, suggest that the jet column remains relatively compact while being buffeted by the ambient turbulence field and that its penetration, into the cross wind, is inhibited by the presence of the strong disturbance field.

  12. Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils

    NASA Technical Reports Server (NTRS)

    Lee, Byung Joon; Liou, Meng-Sing

    2012-01-01

    This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.

  13. Gibbsian Stationary Non-equilibrium States

    NASA Astrophysics Data System (ADS)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-09-01

    We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.

  14. Explicit and implicit calculations of turbulent cavity flows with and without yaw angle

    NASA Astrophysics Data System (ADS)

    Yen, Guan-Wei

    1989-08-01

    Computations were performed to simulate turbulent supersonic flows past three-dimensional deep cavities with and without yaw. Simulation of these self-sustained oscillatory flows were generated through time accurate solutions of the Reynolds averaged complete Navier-Stokes equations using two different schemes: (1) MacCormack, finite-difference; and (2) implicit, upwind, finite-volume schemes. The second scheme, which is approximately 30 percent faster, is found to produce better time accurate results. The Reynolds stresses were modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses were performed for the instantaneous pressure values on the cavity floor. The time averaged computational results show good agreement with the experimental data along the cavity floor and walls. When the yaw angle is nonzero, there is no longer a single length scale (length-to-depth ratio) for the flow, as is the case for zero yaw angle flow. The dominant directions and inclinations of the vortices are dramatically different for this nonsymmetric flow. The vortex shedding from the cavity into the mainstream flow is captured computationally. This phenomenon, which is due to the oscillation of the shear layer, is confirmed by the solutions of both schemes.

  15. Explicit and implicit calculations of turbulent cavity flows with and without yaw angle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yen, Guan-Wei

    1989-01-01

    Computations were performed to simulate turbulent supersonic flows past three-dimensional deep cavities with and without yaw. Simulation of these self-sustained oscillatory flows were generated through time accurate solutions of the Reynolds averaged complete Navier-Stokes equations using two different schemes: (1) MacCormack, finite-difference; and (2) implicit, upwind, finite-volume schemes. The second scheme, which is approximately 30 percent faster, is found to produce better time accurate results. The Reynolds stresses were modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses were performed for the instantaneous pressure values on the cavity floor. The time averaged computational results show good agreement with the experimental data along the cavity floor and walls. When the yaw angle is nonzero, there is no longer a single length scale (length-to-depth ratio) for the flow, as is the case for zero yaw angle flow. The dominant directions and inclinations of the vortices are dramatically different for this nonsymmetric flow. The vortex shedding from the cavity into the mainstream flow is captured computationally. This phenomenon, which is due to the oscillation of the shear layer, is confirmed by the solutions of both schemes.

  16. Development of ultrasonic methods for hemodynamic measurements

    NASA Technical Reports Server (NTRS)

    Histand, M. B.; Miller, C. W.; Wells, M. K.; Mcleod, F. D.; Greene, E. R.; Winter, D.

    1975-01-01

    A transcutanous method to measure instantaneous mean blood flow in peripheral arteries of the human body was defined. Transcutanous and implanted cuff ultrasound velocity measurements were evaluated, and the accuracies of velocity, flow, and diameter measurements were assessed for steady flow. Performance criteria were established for the pulsed Doppler velocity meter (PUDVM), and performance tests were conducted. Several improvements are suggested.

  17. Examining Passenger Flow Choke Points at Airports Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Brown, Jeremy R.; Madhavan, Poomima

    2011-01-01

    The movement of passengers through an airport quickly, safely, and efficiently is the main function of the various checkpoints (check-in, security. etc) found in airports. Human error combined with other breakdowns in the complex system of the airport can disrupt passenger flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model of passenger flow through an airport using discrete event simulation that will provide a closer look into the possible reasons for breakdowns and their implications for passenger flow. The simulation is based on data collected at Norfolk International Airport (ORF). The primary goal of this simulation is to present ways to optimize the work force to keep passenger flow smooth even during peak travel times and for emergency preparedness at ORF in case of adverse events. In this simulation we ran three different scenarios: real world, increased check-in stations, and multiple waiting lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger flow through the airport.

  18. Organized motions in a jet in crossflow

    NASA Astrophysics Data System (ADS)

    Rivero, A.; Ferré, J. A.; Giralt, Francesc

    2001-10-01

    An experimental study to identify the structures present in a jet in crossflow has been carried out at a jet-to-crossflow velocity ratio U/Ucf = 3.8 and Reynolds number Re = UcfD/v = 6600. The hot-wire velocity data measured with a rake of eight X-wires at x/D = 5 and 15 and flow visualizations using planar laser-induced fluorescence (PLIF) confirm that the well-established pair of counter-rotating vortices is a feature of the mean field and that the upright, tornado-like or Fric's vortices that are shed to the leeward side of the jet are connected to the jet flow at the core. The counter-rotating vortex pair is strongly modulated by a coherent velocity field that, in fact, is as important as the mean velocity field. Three different structures folded vortex rings, horseshoe vortices and handle-type structures contribute to this coherent field. The new handle-like structures identified in the current study link the boundary layer vorticity with the counter-rotating vortex pair through the upright tornado-like vortices. They are responsible for the modulation and meandering of the counter-rotating vortex pair observed both in video recordings of visualizations and in the instantaneous velocity field. These results corroborate that the genesis of the dominant counter-rotating vortex pair strongly depends on the high pressure gradients that develop in the region near the jet exit, both inside and outside the nozzle.

  19. On the relationship between image intensity and velocity in a turbulent boundary layer seeded with smoke particles

    NASA Astrophysics Data System (ADS)

    Melnick, M. Blake; Thurow, Brian S.

    2014-02-01

    Simultaneous particle image velocimetry (PIV) and flow visualization measurements were performed in a turbulent boundary layer in an effort to better quantify the relationship between the velocity field and the image intensity typically observed in a classical flow visualization experiment. The freestream flow was lightly seeded with smoke particles to facilitate PIV measurements, whereas the boundary layer was densely seeded with smoke through an upstream slit in the wall to facilitate both PIV and classical flow visualization measurements at Reynolds numbers, Re θ , ranging from 2,100 to 8,600. Measurements were taken with and without the slit covered as well as with and without smoke injection. The addition of a narrow slit in the wall produces a minor modification of the nominal turbulent boundary layer profile whose effect is reduced with downstream distance. The presence of dense smoke in the boundary layer had a minimal effect on the observed velocity field and the associated proper orthogonal decomposition (POD) modes. Analysis of instantaneous images shows that the edge of the turbulent boundary layer identified from flow visualization images generally matches the edge of the boundary layer determined from velocity and vorticity. The correlation between velocity deficit and smoke intensity was determined to be positive and relatively large (>0.7) indicating a moderate-to-strong relationship between the two. This notion was extended further through the use of a direct correlation approach and a complementary POD/linear stochastic estimation (LSE) approach to estimate the velocity field directly from flow visualization images. This exercise showed that, in many cases, velocity fields estimated from smoke intensity were similar to the actual velocity fields. The complementary POD/LSE approach proved better for these estimations, but not enough to suggest using this technique to approximate velocity measurements from a smoke intensity image. Instead, the correlations further validate the use of flow visualization techniques for determining the edge and large-scale shape of a turbulent boundary layer, specifically when quantitative velocity measurements, such as PIV, are not possible in a given experiment.

  20. Development and integration of sub-hourly rainfall-runoff modeling capability within a watershed model

    USDA-ARS?s Scientific Manuscript database

    Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in w...

  1. Personal computer (PC) based image processing applied to fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processsed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes commputation.

  2. Personal Computer (PC) based image processing applied to fluid mechanics

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.

  3. Laser Doppler Velocimeter measurements in a 3-D impinging twin-jet fountain flow

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.

    1987-01-01

    Mean velocity and turbulence measurements were conducted on the three dimensional fountain flow field generated by the impingement of two axisymmetric jets on a ground plane with application to vertical takeoff and landing (VTOL) aircraft. The basic instantaneous velocity data were obtained using a two component laser Doppler velocimeter in a plane connecting the nozzle centerlines at different heights above the ground emphasizing the jet impingement region and the fountain upwash region formed by the collision of the wall jets. The distribution of mean velocity components and turbulence quantities, including the turbulence intensity and the Reynolds shear stress, were derived from the basic velocity data. Detailed studies of the characteristics of the fountain revealed self-similarity in the mean velocity and turbulence profiles across the fountain. The spread and mean velocity decay characteristics of the fountain were established. Turbulence intensities of the order of 50% were observed in the fountain.

  4. Effects of elevated line sources on turbulent mixing in channel flow

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2016-11-01

    Fluids mixing in turbulent flows has been studied extensively, due to the importance of this phenomena in nature and engineering. Convection effects along with motion of three-dimensional coherent structures in turbulent flow disperse a substance more efficiently than molecular diffusion does on its own. We present here, however, a study that explores the conditions under which turbulent mixing does not happen, when different substances are released into the flow field from different vertical locations. The study uses a method which combines Direct Numerical Simulation (DNS) with Lagrangian Scalar Tracking (LST) to simulate a turbulent channel flow and track the motion of passive scalars with different Schmidt numbers (Sc). The particles are released from several instantaneous line sources, ranging from the wall to the center region of the channel. The combined effects of mean velocity difference, molecular diffusion and near-wall coherent structures lead to the observation of different concentrations of particles downstream from the source. We then explore in details the conditions under which particles mixing would not happen. Results from numerical simulation at friction Reynolds number of 300 and 600 will be discussed and for Sc ranging from 0.1 to 2,400.

  5. Thermonuclear runaways in nova outbursts. 2: Effect of strong, instantaneous, local fluctuations

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David

    1994-01-01

    In an attempt to understand the manner in which nova outbursts are initiated on the surface of a white dwarf, we investigate the effects fluctuations have on the evolution of a thermonuclear runaway. Fluctuations in temperature density, or the composition of material in the burning shell may arise due to the chaotic flow field generated by convection when it occurs, or by the accretion process itself. With the aid of two-dimensional reactive flow calculations, we consider cases where a strong fluctutation in temperature arises during the early, quiescent accretion phase or during the later, more dynamic, explosion phase. In all cases we find that an instantaneous, local temperature fluctuation causes the affected material to become Rayleigh-Taylor unstable. The rapid rise and subsequent expansion of matter immediately cools the hot blob, which prevents the lateral propagation of burning. This suggests that local temperature fluctuations do not play a significant role in directly initiating the runaway, especially during the early stages. However, they may provide an efficient mechanism of mixing core material into the envelope (thereby pre-enriching the fuel for subsequent episodes of explosive hydrogen burning) and of mixing substantial amounts of the radioactive nucleus N-13 into the surface layers, making novae potential gamma-ray sources. This suggests that it is the global not the local, evolution of the core-envelope interface to high temperatures which dominates the development of the runaway. We also present a possible new scenario for the initiation of nova outbursts based on our results.

  6. Measurements of Complex Oceanic Flows, from Turbulence in the Coastal Ocean to Interaction of Zooplankton with its Local Environment

    NASA Astrophysics Data System (ADS)

    Katz, J.

    2004-03-01

    The presentation has two parts, both dealing with flow structure, turbulence and flow-particle interactions in the ocean. The first part examines PIV data obtained in the bottom boundary layer of the coastal ocean in periods when the mean currents are higher, of the same order and weaker than the wave induced motions. The energy spectra display substantial anisotropy at all scales, and the flow consists of periods of "gusts" dominated by large vortical structures, separated by periods of quiescent flows. The frequency of these gusts increases with Reynolds number, and they disappear when the currents are weak. Conditional sampling shows that the Reynolds shear stress, and as a result the shear production, are generated only during periods of gusts. When the mean flow is weak and during quiescent periods of moderate flow the shear stresses are essentially zero. Dissipation, on the other hand, occurs continuously, and increases only slightly during gust periods. The second part focuses on interactions of zooplankton with the local flow. Digital in-line holographic cinematography is used for measuring the three-dimensional trajectory of a free-swimming copepod, and simultaneously the instantaneous 3-D velocity field around this copepod. The velocity field and trajectory of particles entrained by the copepod have a recirculating pattern in the copepod's frame of reference. This pattern is caused by the copepod sinking at a rate that is lower than its terminal sinking speed, due to the propulsive force generated by its feeding current. Consequently, the copepod has to hop periodically to scan different fluid for food. Using Stokeslets to model the velocity field, the measured velocity distributions enable us to estimate the excess weight of the copepod and the propulsive force generated by its feeding appendages. Sponsored in part by the Office of Naval Research and by the National Science Foundation.

  7. Measurement of Separated Flow Structures Using a Multiple-Camera DPIV System. [conducted in the Langley Subsonic Basic Research Tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Bartram, Scott M.

    2001-01-01

    A novel multiple-camera system for the recording of digital particle image velocimetry (DPIV) images acquired in a two-dimensional separating/reattaching flow is described. The measurements were performed in the NASA Langley Subsonic Basic Research Tunnel as part of an overall series of experiments involving the simultaneous acquisition of dynamic surface pressures and off-body velocities. The DPIV system utilized two frequency-doubled Nd:YAG lasers to generate two coplanar, orthogonally polarized light sheets directed upstream along the horizontal centerline of the test model. A recording system containing two pairs of matched high resolution, 8-bit cameras was used to separate and capture images of illuminated tracer particles embedded in the flow field. Background image subtraction was used to reduce undesirable flare light emanating from the surface of the model, and custom pixel alignment algorithms were employed to provide accurate registration among the various cameras. Spatial cross correlation analysis with median filter validation was used to determine the instantaneous velocity structure in the separating/reattaching flow region illuminated by the laser light sheets. In operation the DPIV system exhibited a good ability to resolve large-scale separated flow structures with acceptable accuracy over the extended field of view of the cameras. The recording system design provided enhanced performance versus traditional DPIV systems by allowing a variety of standard and non-standard cameras to be easily incorporated into the system.

  8. Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids

    NASA Astrophysics Data System (ADS)

    Sezer-Uzol, Nilay

    In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.

  9. 3D Seismic Reflection Amplitude and Instantaneous Frequency Attributes in Mapping Thin Hydrocarbon Reservoir Lithofacies: Morrison NE Field and Morrison Field, Clark County, KS

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Totten, Matthew; Vohs, Andrew; Linares, Aria

    2017-12-01

    Thin hydrocarbon reservoir facies pose resolution challenges and waveform-signature opportunities in seismic reservoir characterization and prospect identification. In this study, we present a case study, where instantaneous frequency variation in response to a thin hydrocarbon pay zone is analyzed and integrated with other independent information to explain drilling results and optimize future drilling decisions. In Morrison NE Field, some wells with poor economics have resulted from well-placement incognizant of reservoir heterogeneities. The study area in Clark County, Kanas, USA, has been covered by a surface 3D seismic reflection survey in 2010. The target horizon is the Viola limestone, which continues to produce from 7 of the 12 wells drilled within the survey area. Seismic attributes extraction and analyses were conducted with emphasis on instantaneous attributes and amplitude anomalies to better understand and predict reservoir heterogeneities and their control on hydrocarbon entrapment settings. We have identified a higher instantaneous frequency, lower amplitude seismic facies that is in good agreement with distinct lithofacies that exhibit better (higher porosity) reservoir properties, as inferred from well-log analysis and petrographic inspection of well cuttings. This study presents a pre-drilling, data-driven approach of identifying sub-resolution reservoir seismic facies in a carbonate formation. This workflow will assist in placing new development wells in other locations within the area. Our low amplitude high instantaneous frequency seismic reservoir facies have been corroborated by findings based on well logs, petrographic analysis data, and drilling results.

  10. Modeling magma flow and cooling in dikes: Implications for emplacement of Columbia River flood basalts

    NASA Astrophysics Data System (ADS)

    Petcovic, Heather L.; Dufek, Josef D.

    2005-10-01

    The Columbia River flood basalts include some of the world's largest individual lava flows, most of which were fed by the Chief Joseph dike swarm. The majority of dikes are chilled against their wall rock; however, rare dikes caused their wall rock to undergo partial melting. These partial melt zones record the thermal history of magma flow and cooling in the dike and, consequently, the emplacement history of the flow it fed. Here, we examine two-dimensional thermal models of basalt injection, flow, and cooling in a 10-m-thick dike constrained by the field example of the Maxwell Lake dike, a likely feeder to the large-volume Wapshilla Ridge unit of the Grande Ronde Basalt. Two types of models were developed: static conduction simulations and advective transport simulations. Static conduction simulation results confirm that instantaneous injection and stagnation of a single dike did not produce wall rock melt. Repeated injection generated wall rock melt zones comparable to those observed, yet the regular texture across the dike and its wall rock is inconsistent with repeated brittle injection. Instead, advective flow in the dike for 3-4 years best reproduced the field example. Using this result, we estimate that maximum eruption rates for Wapshilla Ridge flows ranged from 3 to 5 km3 d-1. Local eruption rates were likely lower (minimum 0.1-0.8 km3 d-1), as advective modeling results suggest that other fissure segments as yet unidentified fed the same flow. Consequently, the Maxwell Lake dike probably represents an upper crustal (˜2 km) exposure of a long-lived point source within the Columbia River flood basalts.

  11. Preferential Flow Paths and Recirculation-Disrupting Jets in the Leeside of Self-Forming Coarse-Grained Laboratory Bedforms

    NASA Astrophysics Data System (ADS)

    Lichtner, D.; Christensen, K. T.; Best, J.; Blois, G.

    2014-12-01

    Exchange of fluid in the near-subsurface of a streambed is influenced by turbulence in the free flow, as well as by bed topography and permeability. Macro-roughness elements such as bedforms are known to produce pressure gradients that drive fluid into the streambed on their stoss sides and out of the bed on their lee sides. To study the modification of the near-bed flow field by self-forming permeable bedforms, laboratory experiments were conducted in a 5 mm wide flume filled with 1.3 mm glass beads. The narrow width of the flume permitted detailed examination of the fluid exiting the bed immediately downstream of a bedform. Dense 2-D velocity field measurements were gathered using particle image velocimetry (PIV). In up to 8% of instantaneous PIV realizations, the flow at the near-bed presented a component perpendicular to the streambed, indicating flow across the interface. At the downstream side of the bedform, such flow disrupted the mean recirculation pattern that is typically observed in finer sediment beds. It is hypothesized that the coarse grain size and the resulting high bed permeability promote such near-surface jet events. A qualitative analysis of raw image frames indicated that an in-place jostling of sediment is associated with these jets thus suggesting that subsurface flow may be characterized by impulsive events. These observations are relevant to hyporheic exchange rates in coarse sediments and can have strong morphodynamic implications as they can explain the lack of ripples and characteristics of dunes in high permeability gravels. Overall, further study of the flow structure over highly permeable streambeds is needed to understand subsurface exchange and bedform initiation.

  12. The Turbulent/Non-Turbulent Interface Bounding a Far-Wake

    NASA Technical Reports Server (NTRS)

    Bisset, David K.; Hunt, Julian C. R.; Rogers, Michael M.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    The velocity fields of a turbulent wake behind a flat plate obtained from the direct numerical simulations of Moser et al. are used to study the structure of the flow in the intermittent zone where there are, alternately, regions of fully turbulent flow and non-turbulent velocity fluctuations either side of a thin randomly moving interface. Comparisons are made with a wake that is 'forced' by amplifying initial velocity fluctuations. There is also a random temperature field T in the flow; T varies between constant values of 0.0 and 1.0 on the sides of the wake. The value of the Reynolds number based on the centreplane mean velocity defect and halfwidth b of the wake is Re approx. = 2000. It is found that the thickness of the continuous interface is about equal to 0.07b, whereas the amplitude of fluctuations of the instantaneous interface displacement y(sub I)(t) is an order of magnitude larger, being about 0.5b. This explains why the mean statistics of vorticity in the intermittent zone can be calculated in terms of the probability distribution of y(sub I) and the instantaneous discontinuity in vorticity across the interface. When plotted as functions of y - y(sub I), the conditional mean velocity (U) and temperature (T) profiles show sharp jumps Delta(U) and Delta(T) at the interface adjacent to a thick zone where (U) and (T) vary much more slowly. Statistics for the vorticity and velocity variances, available in such detail only from DNS data, show how streamwise and spanwise components of vorticity are generated by vortex stretching in the bulges of the interface. Flow fields around the interface, analyzed in terms of the local streamline pattern, confirm previous results that the advancement of the vortical interface into the irrotational flow is driven by large-scale eddy motion. It is argued that because this is an inviscid mechanism the entrainment process is not sensitive to the value of Re, and that small-scale nibbling only plays a subsidiary role. While mean Reynolds stresses decrease gradually in the intermittent zone, conditional stresses are found to decrease sharply towards zero at the interface. Using one-point turbulence models applied to either unconditional or conditional statistics for the turbulent region and then averaged, the entrainment rate E(sub b) would, if calculated exactly, be zero. But if computed with standard computational methods, E(sub b) would be non-zero because of numerical diffusion. It is concluded that the current practice in statistical models of approximating entrainment by a diffusion process is computationally arbitrary and physically incorrect. An analysis shows how E(sub b) is related to Delta(U) and the jump in shear stress at the interface, and correspondingly to Delta(T) and the heat flux.

  13. The relationship between the instantaneous velocity field and the rate of moment release in the lithosphere

    USGS Publications Warehouse

    Pollitz, F.F.

    2003-01-01

    Instantaneous velocity gradients within the continental lithosphere are often related to the tectonic driving forces. This relationship is direct if the forces are secular, as for the case of loading of a locked section of a subduction interface by the downgoing plate. If the forces are static, as for the case of lateral variations in gravitational potential energy, then velocity gradients can be produced only if the lithosphere has, on average, zero strength. The static force model may be related to the long-term velocity field but not the instantaneous velocity field (typically measured geodetically over a period of several years) because over short time intervals the upper lithosphere behaves elastically. In order to describe both the short- and long-term behaviour of an (elastic) lithosphere-(viscoelastic) asthenosphere system in a self-consistent manner, I construct a deformation model termed the expected interseismic velocity (EIV) model. Assuming that the lithosphere is populated with faults that rupture continually, each with a definite mean recurrence time, and that the Earth is well approximated as a linear elastic-viscoelastic coupled system, I derive a simple relationship between the instantaneous velocity field and the average rate of moment release in the lithosphere. Examples with synthetic fault networks demonstrate that velocity gradients in actively deforming regions may to a large extent be the product of compounded viscoelastic relaxation from past earthquakes on hundreds of faults distributed over large ( ≥106 km2) areas.

  14. Video Voiding Device for Diagnosing Lower Urinary Tract Dysfunction in Men.

    PubMed

    Shokoueinejad, Mehdi; Alkashgari, Rayan; Mosli, Hisham A; Alothmany, Nazeeh; Levin, Jacob M; Webster, John G

    2017-01-01

    We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events and calculate key voiding parameters such as instantaneous flow rate. The observation of the urinary voiding process along with the instantaneous flow rate can be used to diagnose symptoms of Lower Urinary Tract Dysfunction (LUTD) and improve evaluation of LUTD treatments by providing subsequent follow-up documentations of voiding events after treatments. The VVD enables a patient to have a urinary voiding event in privacy while a urologist monitors, processes, and documents the event from a distance. The VVD consists of two orthogonal cameras which are used to visualize urine leakage from the urethral meatus, urine stream trajectory, and its break-up into droplets. A third, lower back camera monitors a funnel topped cylinder where urine accumulates that contains a floater for accurate readings regardless of the urine color. Software then processes the change in level of accumulating urine in the cylinder and the visual flow properties to calculate urological parameters. Video playback allows for reexamination of the voiding process. The proposed device was tested by integrating a mass flowmeter into the setup and simultaneously measuring the instantaneous flow rate of a predetermined voided volume in order to verify the accuracy of VVD compared to the mass flowmeter. The VVD and mass flowmeter were found to have an accuracy of ±2 and ±3% relative to full scale, respectively. A VVD clinical trial was conducted on 16 healthy male volunteers ages 23-65.

  15. Retrieving accurate temporal and spatial information about Taylor slug flows from non-invasive NIR photometry measurements

    NASA Astrophysics Data System (ADS)

    Helmers, Thorben; Thöming, Jorg; Mießner, Ulrich

    2017-11-01

    In this article, we introduce a novel approach to retrieve spatial- and time-resolved Taylor slug flow information from a single non-invasive photometric flow sensor. The presented approach uses disperse phase surface properties to retrieve the instantaneous velocity information from a single sensor's time-scaled signal. For this purpose, a photometric sensor system is simulated using a ray-tracing algorithm to calculate spatially resolved near-infrared transmission signals. At the signal position corresponding to the rear droplet cap, a correlation factor of the droplet's geometric properties is retrieved and used to extract the instantaneous droplet velocity from the real sensor's temporal transmission signal. Furthermore, a correlation for the rear cap geometry based on the a priori known total superficial flow velocity is developed, because the cap curvature is velocity sensitive itself. Our model for velocity derivation is validated, and measurements of a first prototype showcase the capability of the device. Long-term measurements visualize systematic fluctuations in droplet lengths, velocities, and frequencies that could otherwise, without the observation on a larger timescale, have been identified as measurement errors and not systematic phenomenas.

  16. The role of unsteady effusion rates on inflation in long-lived lava flow fields

    NASA Astrophysics Data System (ADS)

    Rader, E.; Vanderkluysen, L.; Clarke, A.

    2017-11-01

    The emission of volcanic gases and particles can have global and lasting environmental effects, but their timing, tempo, and duration can be problematic to quantify for ancient eruptions where real-time measurements are absent. Lava flows, for example, may be long-lasting, and their impact is controlled by the rate, tempo, and vigor of effusion. These factors are currently difficult to derive from the geologic record but can have large implications for the atmospheric impact of an eruption. We conducted a set of analogue experiments on lava flow inflation aiming at connecting lava morphologies preserved in the rock record to eruption tempo and dynamics through pulsating effusion rates. Inflation, a process where molten material is injected beneath the crust of an active lava flow and lifts it upwards, is a common phenomenon in basaltic volcanic systems. This mechanism requires three components: a) a coherent, insulating crust; b) a wide-spread molten core; and c) pressure built up beneath the crust from a sustained supply of molten material. Inflation can result in a lava flow growing tens of meters thick, even in flow fields that expand hundreds of square kilometers. It has been documented that rapid effusion rates tend to create channels and tubes, isolating the active part of the flow from the stagnant part, while slow effusion rates may cause crust to form quickly and seize up, forcing lava to overtop the crust. However, the conditions that allow for inflation of large flow fields have not previously been evaluated in terms of effusion rate. By using PEG 600 wax and a programmable pump, we observe how, by pulsating effusion rate, inflation occurs even in very low viscosity basaltic eruptions. We show that observations from inflating Hawaiian lava flows correlate well with experimental data and indicate that instantaneous effusion rates may have been 3 times higher than average effusion rates during the emplacement of the 23 January 1988 flow at Kīlauea (Hawai'i). The identification of a causal relationship between pulsating effusion rates and inflation may have implications for eruption tempo in the largest inflated flows: flood basalts.

  17. Measurements of the Time-Averaged and Instantaneous Induced Velocities in the Wake of a Helicopter Rotor Hovering at High Tip Speeds

    NASA Technical Reports Server (NTRS)

    Heyson, Harry H.

    1960-01-01

    Measurements of the time-averaged induced velocities were obtained for rotor tip speeds as great as 1,100 feet per second (tip Mach number of 0.98) and measurements of the instantaneous induced velocities were obtained for rotor tip speeds as great as 900 feet per second. The results indicate that the small effects on the wake with increasing Mach number are primarily due to the changes in rotor-load distribution resulting from changes in Mach number rather than to compressibility effects on the wake itself. No effect of tip Mach number on the instantaneous velocities was observed. Under conditions for which the blade tip was operated at negative pitch angles, an erratic circulatory flow was observed.

  18. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    DOEpatents

    Hermes, Robert E

    2014-02-18

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  19. Magnetic Resonance for Noninvasive Detection of Microcirculatory Disease Associated With Allograft Vasculopathy: Intracoronary Measurement Validation.

    PubMed

    Mirelis, Jesús G; García-Pavía, Pablo; Cavero, Miguel A; González-López, Esther; Echavarria-Pinto, Mauro; Pastrana, Miguel; Segovia, Javier; Oteo, Juan F; Alonso-Pulpón, Luis; Escaned, Javier

    2015-07-01

    Cardiac allograft vasculopathy affects both epicardial and microcirculatory coronary compartments. Magnetic resonance perfusion imaging has been proposed as a useful tool to assess microcirculation mostly outside the heart transplantation setting. Instantaneous hyperemic diastolic flow velocity-pressure slope, an intracoronary physiology index, has demonstrated a better correlation with microcirculatory remodelling in cardiac allograft vasculopathy than other indices such as coronary flow velocity reserve. To investigate the potential of magnetic resonance perfusion imaging to detect the presence of microcirculatory remodeling in cardiac allograft vasculopathy, we compared magnetic resonance perfusion data with invasive intracoronary physiological indices to study microcirculation in a population of heart transplantation recipients with macrovascular nonobstructive disease demonstrated with intravascular ultrasound. We studied 8 heart transplantation recipients (mean age, 61 [12] years, 100% male) with epicardial allograft vasculopathy defined by intravascular ultrasound, nonsignificant coronary stenoses and negative visually-assessed wall-motion/perfusion dobutamine stress magnetic resonance. Quantitative stress and rest magnetic resonance perfusion data to build myocardial perfusion reserve index, noninvasively, and 4 invasive intracoronary physiological indices were determined. Postprocessed data showed a mean (standard deviation) myocardial perfusion reserve index of 1.22 (0.27), while fractional flow reserve, coronary flow velocity reserve, hyperemic microvascular resistance and instantaneous hyperemic diastolic flow velocity-pressure slope were 0.98 (0.02), cm/s/mmHg, 2.34 (0.55) cm/s/mmHg, 2.00 (0.69) cm/s/mmHg and 0.91 (0.65) cm/s/mmHg, respectively. The myocardial perfusion reserve index correlated strongly only with the instantaneous hyperemic diastolic flow velocity-pressure slope (r=0.75; P=.033). Myocardial perfusion reserve index derived from a comprehensive dobutamine stress magnetic resonance appears to be a reliable technique for noninvasive detection of microcirculatory coronary disease associated with cardiac allograft vasculopathy. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model

    NASA Astrophysics Data System (ADS)

    Geoghegan, P. H.; Buchmann, N. A.; Soria, J.; Jermy, M. C.

    2013-05-01

    Compliant (flexible) structures play an important role in several biological flows including the lungs, heart and arteries. Coronary heart disease is caused by a constriction in the artery due to a build-up of atherosclerotic plaque. This plaque is also of major concern in the carotid artery which supplies blood to the brain. Blood flow within these arteries is strongly influenced by the movement of the wall. To study these problems experimentally in vitro, especially using flow visualisation techniques, can be expensive due to the high-intensity and high-repetition rate light sources required. In this work, time-resolved particle image velocimetry using a relatively low-cost light-emitting diode illumination system was applied to the study of a compliant flow phantom representing a stenosed (constricted) carotid artery experiencing a physiologically realistic flow wave. Dynamic similarity between in vivo and in vitro conditions was ensured in phantom construction by matching the distensibility and the elastic wave propagation wavelength and in the fluid system through matching Reynolds ( Re) and Womersley number ( α) with a maximum, minimum and mean Re of 939, 379 and 632, respectively, and a α of 4.54. The stenosis had a symmetric constriction of 50 % by diameter (75 % by area). Once the flow rate reached a critical value, Kelvin-Helmholtz instabilities were observed to occur in the shear layer between the main jet exiting the stenosis and a reverse flow region that occurred at a radial distance of 0.34 D from the axis of symmetry in the region on interest 0-2.5 D longitudinally downstream from the stenosis exit. The instability had an axis-symmetric nature, but as peak flow rate was approached this symmetry breaks down producing instability in the flow field. The characteristics of the vortex train were sensitive not only to the instantaneous flow rate, but also to whether the flow was accelerating or decelerating globally.

  1. Hydrodynamics of larval settlement: The influence of turbulent stress events at potential recruitment sites

    USGS Publications Warehouse

    Crimaldi, John P.; Thompson, Janet K.; Rosman, Johanna H.; Lowe, Ryan J.; Koseff, Jeffrey R.

    2002-01-01

    We describe a laboratory investigation into the effect of turbulent hydrodynamic stresses on clam larvae in the settlement phase of the recruitment process. A two-component laser-Doppler anemometer (LDA) was used to measure time histories of the instantaneous turbulence structure at potential recruitment sites within reconstructed beds of the adult Asian clam, Potamocorbula amurensis. Measurements were made for two flow speeds over beds with three different clam densities and two different clam heights. We analyze the statistical effect of the turbulence on the larval flux to the bed and on the probability of successful anchoring to the substrate. It is shown that the anchoring probability depends on the nature of the instantaneous stress events rather than on mean stresses. The instantaneous turbulence structure near the bed is altered by the flow rate and the spacing and height of adult clams living in the substrate. The ability to anchor quickly is therefore extremely important, since the time sequence of episodic turbulent stress events influences larval settlement success. The probability of successful larval settlement is predicted to decrease as the spacing between adults decreases, implying that the hydrodynamics impose negative feedback on clam bed aggregation dynamics.

  2. A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre; Aubert, Julien; Thébault, Erwan

    2015-05-01

    In the context of the 12th release of the international geomagnetic reference field (IGRF), we present the methodology we followed to design a candidate secular variation model for years 2015-2020. An initial geomagnetic field model centered around 2014.3 is first constructed, based on Swarm magnetic measurements, for both the main field and its instantaneous secular variation. This initial model is next fed to an inverse geodynamo modelling framework in order to specify, for epoch 2014.3, the initial condition for the integration of a three-dimensional numerical dynamo model. The initialization phase combines the information contained in the initial model with that coming from the numerical dynamo model, in the form of three-dimensional multivariate statistics built from a numerical dynamo run unconstrained by data. We study the performance of this novel approach over two recent 5-year long intervals, 2005-2010 and 2009-2014. For a forecast horizon of 5 years, shorter than the large-scale secular acceleration time scale (˜10 years), we find that it is safer to neglect the flow acceleration and to assume that the flow determined by the initialization is steady. This steady flow is used to advance the three-dimensional induction equation forward in time, with the benefit of estimating the effects of magnetic diffusion. The result of this deterministic integration between 2015.0 and 2020.0 yields our candidate average secular variation model for that time frame, which is thus centered on 2017.5.

  3. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    NASA Astrophysics Data System (ADS)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  4. End-diastolic fractional flow reserve: comparison with conventional full-cardiac cycle fractional flow reserve.

    PubMed

    Chalyan, David A; Zhang, Zhang; Takarada, Shigeho; Molloi, Sabee

    2014-02-01

    Diastolic fractional flow reserve (dFFR) has been shown to be highly sensitive for detection of inducible myocardial ischemia. However, its reliance on measurement of left-ventricular pressure for zero-flow pressure correction, as well as manual extraction of the diastolic interval, has been its major limitation. Given previous reports of minimal zero-flow pressure at end-diastole, we compared instantaneous ECG-gated end-diastolic FFR with conventional full-cardiac cycle FFR and other diastolic indices in the porcine model. Measurements of FFR in the left anterior descending and left circumflex arteries were performed in an open-chest swine model with an external occluder device on the coronary artery used to produce varying degrees of epicardial stenosis. An ultrasound flow-probe that was placed proximal to the occluder measured absolute blood flow in ml/min, and it was used as a gold standard for FFR measurement. A total of 17 measurements at maximal hyperemia were acquired in 5 animals. Correlation coefficient between conventional mean hyperemic FFR with pressure-wire and directly measured FFR with flow-probe was 0.876 (standard error estimate=0.069; P<0.0001). The hyperemic end-diastolic FFR with pressure-wire correlated better with FFR measured directly with flow-probe (r=0.941, standard error estimate=0.050; P<0.0001). Instantaneous hyperemic ECG-gated FFR acquired at end-diastole, as compared with conventional full-cardiac cycle FFR, has an improved correlation with FFR measured directly with ultrasound flow-probe.

  5. Acute tamponade alters subendo- and subepicardial pressure-flow relations differently during vasodilation.

    PubMed

    Kingma, J G; Martin, J; Rouleau, J R

    1994-07-01

    Instantaneous diastolic left coronary artery pressure-flow relations (PFR) shift during acute tamponade as pressure surrounding the heart increases. Coronary pressure at zero flow (Pf = 0) on the linear portion of the PFR is the weighted mean of the different myocardial waterfall pressures, the distribution of which varies across the left ventricular wall during diastole. However, instantaneous PFR measured in large epicardial coronary arteries cannot be used to estimate Pf = 0 in the different myocardial tissue layers. During coronary vasodilatation in a capacitance-free model, myocardial PFR differs from subendocardium to subepicardium. Therefore, we studied the effects of acute tamponade during maximal pharmacology induced coronary vasodilatation on myocardial PFR in in situ anesthetized dogs. Tamponade reduced cardiac output, aortic pressure, and coronary blood flow. Results demonstrate that different mechanisms influence distribution of myocardial blood flow during tamponade. Subepicardial vascular resistance is unchanged and the extrapolated Pf = 0 is increased, thereby shifting PFR to a higher intercept on the pressure axis. Subendocardial vascular resistance is increased while the extrapolated Pf = 0 remains unchanged. Results indicate that in the setting of acute tamponade with coronary vasodilatation different mechanisms regulate the distribution of myocardial blood flow: in the subepicardium only outflow pressure increases, whereas in the subendocardium only vascular resistance increases.

  6. Vibration effect on the Soret-induced convection of ternary mixture in a rectangular cavity heated from below

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Zubova, N. A.

    2017-06-01

    This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.

  7. Structure of turbulent flow over regular arrays of cubical roughness

    NASA Astrophysics Data System (ADS)

    Coceal, O.; Dobre, A.; Thomas, T. G.; Belcher, S. E.

    The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.

  8. Design, development, and test of a laser velocimeter for a small 8:1 pressure ratio centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; Runstadler, P. W., Jr.

    1979-01-01

    The instrument was designed as a diagnostic tool for the basic fluid dynamics of the inducer, impeller, and diffuser regions of this type compressor. The LV instrumentation was optimized to measure instantaneous velocities up to approximately 500 m/s, measured in absolute coordinates, within the rotating compressor impeller and in the two dimensional radial plane of the diffuser. Some measurements were made within the diffuser and the impeller inlet flows; however, attempts to make detailed measurements of the velocity field were not successful. Difficulties in maintaining high seed particle rates within the probe volume and the improper operation of the blade gating optics may explain the lack of success. Recommendations are made to further pursue these problems. At 100% speed the stage attained a total static pressure ratio of 7.5:1 at 75% total-static efficiency. Flow range from choke-to-surge was 6.8% of choking mass flow rate. Performance was lower than the design intent of 8:1 pressure ratio at 77% efficiency and 12% flow range. Detailed measurements of the stage components are presented which show the reasons for the stage performance deficiencies.

  9. Detached Eddy Simulation for the F-16XL Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Abdol-Hamid, Khaled; Parlette, Edward B.

    2015-01-01

    Numerical simulations for the flow around the F-16XL configuration as a contribution to the Cranked Arrow Wing Aerodynamic Project International 2 (CAWAPI-2) have been performed. The NASA Langley Tetrahedral Unstructured Software System (TetrUSS) with its USM3D solver was used to perform the unsteady flow field simulations for the subsonic high angle-of-attack case corresponding to flight condition (FC) 25. Two approaches were utilized to capture the unsteady vortex flow over the wing of the F-16XL. The first approach was to use Unsteady Reynolds-Averaged Navier-Stokes (URANS) coupled with standard turbulence closure models. The second approach was to use Detached Eddy Simulation (DES), which creates a hybrid model that attempts to combine the most favorable elements of URANS models and Large Eddy Simulation (LES). Computed surface static pressure profiles are presented and compared with flight data. Time-averaged and instantaneous results obtained on coarse, medium and fine grids are compared with the flight data. The intent of this study is to demonstrate that the DES module within the USM3D solver can be used to provide valuable data in predicting vortex-flow physics on a complex configuration.

  10. LES tests on airfoil trailing edge serration

    NASA Astrophysics Data System (ADS)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-09-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x106. In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device.

  11. Effects of non-adiabatic walls on shock/boundary-layer interaction using direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Volpiani, Pedro S.; Bernardini, Matteo; Larsson, Johan

    2017-11-01

    The influence of wall thermal conditions on the properties of an impinging shock wave interacting with a turbulent supersonic boundary layer is a research topic that still remains underexplored. In the present study, direct numerical simulations (DNS) are employed to investigate the flow properties of a shock wave interacting with a turbulent boundary layer at free-stream Mach number M∞ = 2.28 with distinct wall thermal conditions and shock strengths. Instantaneous and mean flow fields, wall quantities and the low-frequency unsteadiness are analyzed. While heating contributes to increase the extent of the interaction zone, wall cooling turns out to be a good candidate for flow control. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. Numerical results indicate that the changes in the interaction length are mainly linked to the incoming boundary layer as suggested in previous studies (Souverein et al., 2013 and Jaunet et al., 2014). This work was supported by the Air Force Office of Scientific Research, Grant FA95501610385.

  12. Measurement of Turbulent Fluxes of Swirling Flow in a Scaled Up Multi Inlet Vortex Reactor

    NASA Astrophysics Data System (ADS)

    Olsen, Michael; Hitimana, Emmanual; Hill, James; Fox, Rodney

    2017-11-01

    The multi-inlet vortex reactor (MIVR) has been developed for use in the FlashNanoprecipitation (FNP) process. The MIVR has four identical square inlets connected to a central cylindrical mixing chamber with one common outlet creating a highly turbulent swirling flow dominated by a strong vortex in the center. Efficient FNP requires rapid mixing within the MIVR. To investigate the mixing, instantaneous velocity and concentration fields were acquired using simultaneous stereoscopic particle image velocimetry and planar laser-induced fluorescence. The simultaneous velocity and concentration data were used to determine turbulent fluxes and spatial cross-correlations of velocity and concentration fluctuations. The measurements were performed for four inlet flow Reynolds numbers (3250, 4875, 6500, and 8125) and at three measurement planes within the reactor. A correlation between turbulent fluxes and vortex strength was found. For all Reynolds numbers, turbulent fluxes are maximum in the vortex dominated central region of the reactor and decay away from the vortex. Increasing Reynolds number increased turbulent fluxes and subsequently enhanced mixing. The mixing performance was confirmed by determining coefficients of concentration variance within the reactor.

  13. Physical mechanisms in shock-induced turbulent separated flow

    NASA Astrophysics Data System (ADS)

    Dolling, D. S.

    1987-12-01

    It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.

  14. Dynamic change in mitral regurgitant orifice area: comparison of color Doppler echocardiographic and electromagnetic flowmeter-based methods in a chronic animal model.

    PubMed

    Shiota, T; Jones, M; Teien, D E; Yamada, I; Passafini, A; Ge, S; Sahn, D J

    1995-08-01

    The aim of the present study was to investigate dynamic changes in the mitral regurgitant orifice using electromagnetic flow probes and flowmeters and the color Doppler flow convergence method. Methods for determining mitral regurgitant orifice areas have been described using flow convergence imaging with a hemispheric isovelocity surface assumption. However, the shape of flow convergence isovelocity surfaces depends on many factors that change during regurgitation. In seven sheep with surgically created mitral regurgitation, 18 hemodynamic states were studied. The aliasing distances of flow convergence were measured at 10 sequential points using two ranges of aliasing velocities (0.20 to 0.32 and 0.56 to 0.72 m/s), and instantaneous flow rates were calculated using the hemispheric assumption. Instantaneous regurgitant areas were determined from the regurgitant flow rates obtained from both electromagnetic flowmeters and flow convergence divided by the corresponding continuous wave velocities. The regurgitant orifice sizes obtained using the electromagnetic flow method usually increased to maximal size in early to midsystole and then decreased in late systole. Patterns of dynamic changes in orifice area obtained by flow convergence were not the same as those delineated by the electromagnetic flow method. Time-averaged regurgitant orifice areas obtained by flow convergence using lower aliasing velocities overestimated the areas obtained by the electromagnetic flow method ([mean +/- SD] 0.27 +/- 0.14 vs. 0.12 +/- 0.06 cm2, p < 0.001), whereas flow convergence, using higher aliasing velocities, estimated the reference areas more reliably (0.15 +/- 0.06 cm2). The electromagnetic flow method studies uniformly demonstrated dynamic change in mitral regurgitant orifice area and suggested limitations of the flow convergence method.

  15. Experimental and field investigations on uprooting of riparian vegetation

    NASA Astrophysics Data System (ADS)

    Calvani, Giulio; Francalanci, Simona; Solari, Luca; Gumiero, Bruna

    2017-04-01

    The morphology of a river reach is the result of many processes involving the motion of sediment (erosion, transport and deposition), the hydrological regime and the development and growth of vegetation. River evolution in the presence of vegetation depends on establishment of pioneer woody riparian seedlings on bars, and consequently on either their survival or death. Flooding events can cause young vegetation mortality by uprooting (Corenblit et al., 2007). These processes, despite their important implications on river morphodynamics, have been poorly investigated in the past. Most of previous research focused on the mechanism of root breakage and on measuring the vegetation resistance to uprooting in the vertical direction, while few works considered the effect of flow direction on the uprooting process (Bywater-Reyes et al., 2015). In this work, we focused on vegetation uprooting due to flow and to bed erosion. We considered two different types of vegetation: Avena Sativa, grown from seeds in external boxes, was used to investigate instantaneous uprooting, and Salix Purpurea, collected in the field, for delayed uprooting (namely type I and type II mechanisms, according to Edmaier et al., 2011). The experiments were carried out in a 5 m long flume in the Hydraulic Laboratory in Florence. A 2 m long mobile bed was build inside the flume, and vegetation was arranged according to several configurations on it. Both types of vegetation were subject to constant discharges to investigate the effects of a general bed degradation in modifying the occurrence of uprooting. We also performed some experiments with Avena Sativa located in a fixed bed and subjected to an increasing flow discharge in order to simulate instantaneous uprooting due to the action of hydrodynamic forces. We measured flow velocity, flow discharge and water depth and characterized vegetation by stem and root diameter, height and root length. The experimental results have been interpreted in terms of a balance between drag and resisting forces acting on the single plant. In order to compare experimental results with real river conditions, we also performed field measurements of Salix Purpurea resistance to uprooting on a lateral bar in the Ombrone Pistoiese river. Ongoing research is focused on i) the definition of threshold criteria for the prediction of vegetation uprooting, ii) interpretation, by means of numerical modelling, of vegetation removal on a lateral bar in the Ombrone Pistoiese river during a flood that occurred on 19th November 2016. References Bywater-Reyes, Sharon, Andrew C Wilcox, John C Stella, and Anne F Lightbody. 2015. 'Flow and Scour Constraints on Uprooting of Pioneer Woody Seedlings'. Water Resources Research 51 (11): 9190-9206. Corenblit, Dov, Eric Tabacchi, Johannes Steiger, and Angela M Gurnell. 2007. 'Reciprocal Interactions and Adjustments between Fluvial Landforms and Vegetation Dynamics in River Corridors: A Review of Complementary Approaches'. Earth-¬-Science Reviews 84(1): 56-86. Edmaier, K, P Burlando, and P Perona. 2011. 'Mechanisms of Vegetation Uprooting by Flow in Alluvial Non- Cohesive Sediment'. Hydrology and Earth System Sciences 15(5): 1615-1627.

  16. Stochastic Modeling of Direct Radiation Transmission in Particle-Laden Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Villafane, Laura; Kim, Ji Hoon; Esmaily Moghadam, Mahdi; Eaton, John K.

    2017-11-01

    Direct radiation transmission in turbulent flows laden with heavy particles plays a fundamental role in systems such as clouds, spray combustors, and particle-solar-receivers. Owing to their inertia, the particles preferentially concentrate and the resulting voids and clusters lead to deviations in mean transmission from the classical Beer-Lambert law for exponential extinction. Additionally, the transmission fluctuations can exceed those of Poissonian media by an order of magnitude, which implies a gross misprediction in transmission statistics if the correlations in particle positions are neglected. On the other hand, tracking millions of particles in a turbulence simulation can be prohibitively expensive. This work presents stochastic processes as computationally cheap reduced order models for the instantaneous particle number density field and radiation transmission therein. Results from the stochastic processes are compared to Monte Carlo Ray Tracing (MCRT) simulations using the particle positions obtained from the point-particle DNS of isotropic turbulence at a Taylor Reynolds number of 150. Accurate transmission statistics are predicted with respect to MCRT by matching the mean, variance, and correlation length of DNS number density fields. Funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1 and the National Science Foundation under Grant No. DGE-114747.

  17. Experimental Quantification of Pore-Scale Flow Phenomena in 2D Heterogeneous Porous Micromodels: Multiphase Flow Towards Coupled Solid-Liquid Interactions

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.

    2017-12-01

    Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.

  18. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder

    NASA Technical Reports Server (NTRS)

    Cantwell, B.; Coles, D.

    1983-01-01

    Attention is given to an experimental investigation of transport processes in the near wake of a circular cylinder, for a Reynolds number of 140,000, in which an X-array of hot wire probes mounted on a pair of whirling arms was used for flow measurement. Rotation of the arms in a uniform flow applies a wide range of relative flow angles to these X-arrays, making them inherently self-calibrating in pitch. A phase signal synchronized with the vortex-shedding process allowed a sorting of the velocity data into 16 populations, each having essentially constant phase. An ensemble average for each population yielded a sequence of pictures of the instantaneous mean flow field in which the vortices are frozen, as they would be on a photograph. The measurements also yield nonsteady mean data for velocity, intermittency, vorticity, stress, and turbulent energy production, as a function of phase. Emphasis is given in a discussion of study results to the nonsteady mean flow, which emerges as a pattern of centers and saddles in a frame of reference that moves with the eddies. The kinematics of the vortex formation process are described in terms of the formation and evolution of saddle points between vortices in the first few diameters of the near wake.

  19. Numerical Studies of Flow Past Two Side-by-Side Circular Cylinders

    NASA Astrophysics Data System (ADS)

    Shao, J.; Zhang, C.

    Multiple circular cylindrical configurations are widely used in engineering applications. The fluid dynamics of the flow around two identical circular cylinders in side-by-side arrangement has been investigated by both experiments and numerical simulations. The center-to-center transverse pitch ratio T/D plays an important role in determining the flow features. It is observed that for 1 < T/D < 1.1 to 1.2, a single vortex street is formed; for 1.2< T/D < 2 to 2.2, bi-stable narrow and wide wakes are formed; for 2.7< T/D < 4 or 5, anti-phase or in-phase vortex streets are formed. In the current study, the vortex structures of turbulent flows past two slightly heated side-by-side circular cylinders are investigated employing the large eddy simulation (LES). Simulations are performed using a commercial CFD software, FLUENT. The Smagorinsky-Lilly subgrid-scale model is employed for the large eddy simulation. The Reynolds number based on free-stream velocity and cylinder diameter is 5 800, which is in the subcritical regime. The transverse pitch ratio T/D = 3 is investigated. Laminar boundary layer, transition in shear layer, flow separation, large vortex structures and flow interference in the wake are all involved in the flow. Such complex flow features make the current study a challenging task. Both flow field and temperature field are investigated. The calculated results are analyzed and compared with experimental data. The simulation results are qualitatively in accordance with experimental observations. Two anti-phase vortex streets are obtained by the large-eddy simulation, which agrees with the experimental observation. At this transverse pitch ratio, these two cylinders behave as independent, isolated single cylinder in cross flow. The time-averaged streamwise velocity and temperature at x/D=10 are in good agreement with the experimental data. Figure1 displays the instantaneous spanwise vorticity at the center plane.

  20. Coaxial volumetric velocimetry

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  1. Cut-cell method based large-eddy simulation of tip-leakage flow

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang

    2015-07-01

    The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.

  2. Fluid-acoustic interactions in a low area ratio supersonic jet ejector

    NASA Technical Reports Server (NTRS)

    Krothapalli, Anjaneyulu; Ross, Christopher; Yamomoto, K.; Joshi, M. C.

    1994-01-01

    An experimental investigation carried out to determine aerodynamic and acoustic characteristics of a low area ratio rectangular jet ejector is reported. A supersonic primary jet issuing from a rectangular convergent-divergent nozzle of aspect ratio 4, into a rectangular duct of area ratio 3, was used. Improved performance was found when the ejector screech tone is most intense and appears to match the most unstable Strouhal number of the free rectangular jet. When the primary jet was operating at over and ideally expanded conditions, significant noise reduction was obtained with the ejector as compared to a corresponding free jet. Application of particle image velocimetry to high speed ejector flows was demonstrated through the measurement of instantaneous two dimensional velocity fields.

  3. Flow-sediment-oyster interaction around degraded, restored, and reference oyster reefs in Florida's Indian River Lagoon

    NASA Astrophysics Data System (ADS)

    Kitsikoudis, V.; Kibler, K. M.; Spiering, D. W.

    2017-12-01

    This study analyzes flow patterns and sediment distributions around three oyster reefs in a bar-built estuarine lagoon. We studied a degraded reef, a recently restored reef, and a reference condition reef with a healthy live oyster community. The restored reef had been regraded and restored with oyster shell mats to aid in recruitment of oyster spat, with the goal of reestablishing a healthy oyster community. Despite the fact that flow-biota-sediment interaction constitutes a blossoming research field, actual field data are sparse and current knowledge emanates from flume studies and numerical modeling. Moreover, the hydraulic effect of restored oyster reefs has not been thoroughly investigated and it is not clear if the flow field and sediment erosion/deposition are similar or diverge from natural reefs. Instantaneous three-dimensional flow velocities were collected on reefs using a Nortek Vectrino Profiler and an acoustic Doppler current profiler (Nortek Aquadopp). The former measured a 2 - 3 cm velocity profile above the oyster bed, while the latter quantified incoming velocities across the flow profile approximately 10 m from the edge of the reef. Flow measurements were conducted during rising tides and are coupled with simultaneous wind speed and direction data. In addition, 20 cm deep sediment cores were retrieved on and off the investigated reefs. Sediment grain size distributions were determined after individual cores were processed for loss on ignition. Incoming flow velocities were as high as 10 cm/s, relatively higher than those recorded close to reefs. Mean and turbulent flow velocities close to the reefs, varied among the investigated sites, despite the similar wind flow conditions offshore. For instance, the measurements at the degraded reef showed decreased wave attenuation and augmented flow velocities compared to the other sites. Boat wakes exhibited a very distinct signal in the flow velocity time-series and significantly increased the approaching flow velocity at the reefs. The oyster roughness height at the restored reef (68 mm) was higher than the roughness at the reference reef (45 mm); however, the variance was higher at the latter. Sediments from degraded reef and the recently restored reef were coarser and contained less organic matter compared to the reference condition reef.

  4. Unobstructed particle image velocimetry measurements within an axial turbo-pump using liquid and blades with matched refractive indices

    NASA Astrophysics Data System (ADS)

    Uzol, O.; Chow, Y.-C.; Katz, J.; Meneveau, C.

    2002-08-01

    Performing PIV measurements within complex turbomachinery with multiple blade rows is difficult due to the optical obstruction to the illuminating sheet and to the camera caused by the blades. This paper introduces a refractive index matched facility that overcomes this problem. The rotor and stator blades are made of transparent acrylic, and the working fluid has the same optical refractive index as the blades. A 64% by weight solution of sodium iodide in water is used for this purpose. This liquid has a kinematic viscosity of about 1.1×10-6 m2/s, which is almost the same as that of water enabling operation at high Reynolds numbers. Issues related to operating with this fluid such as chemical stability, variations in transmittance and solutions to these problems are discussed. This setup allows full optical access to the entire rotor and stator passages both to the laser sheet and the camera. The experiments are conducted at different streamwise locations covering the entire flow fields around the rotor, the stator, the gap between them, and the wakes behind. Vector maps of the instantaneous and phase-averaged flow fields as well as the distribution of turbulent kinetic energy are obtained. Measurements at different magnifications enable us to obtain an overview of the flow structure, as well as detailed velocity distributions in the boundary layers and in the wakes.

  5. Time-evolving of very large-scale motions in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.

    2014-11-01

    Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  6. Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan

    2004-01-01

    A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.

  7. Turbulent transition behavior in a separated and attached-flow low pressure turbine passage

    NASA Astrophysics Data System (ADS)

    Memory, Curtis L.

    Various time accurate numerical simulations were conducted on the aft-loaded L1A low pressure turbine airfoil operating at Reynolds numbers presenting with fully-stalled, non-reattaching laminar separation. The numerical solver TURBO was modified from its annular gas turbine simulation configuration to conduct simulations based on a linear cascade wind tunnel facility. Simulation results for the fully separated flow fields revealed various turbulent decay mechanisms. Separated shear layer decay, in the form of vortices forming between the shear layer and the blade wall, was shown to agree with experimental particle image velocimetry (PIV) data in terms of decay vortex size and core vorticity levels. These vortical structures eventually mix into a large recirculation zone which dominates the blade wake. Turbulent wake ex- tent and time-averaged velocity distributions agreed with PIV data. Steady-blowing vortex generating jet (VGJ) flow control was then applied to the flow fields. VGJ-induced streamwise vorticity was only present at blowing ratios above 1.5. VGJs actuated at the point of flow separation on the blade wall were more effective than those actuated downstream, within the separation zone. Pulsed-blowing VGJs at the upstream blade wall position were then actuated at various pulsing frequencies, duty cycles, and blowing ratios. These condition variations yielded differing levels of separation zone mitigation. Pulsed VGJs were shown to be more effective than steady blowing VGJs at conditions of high blowing ratio, high frequency, or high duty cycle, where blowing ratio had the highest level of influence on pulsed jet efficacy. The characteristic "calm zone" following the end of a given VGJ pulse was observed in simulations exhibiting high levels of separation zone mitigation. Numerical velocity fields near the blade wall during this calm zone was shown to be similar to velocity fields observed in PIV data. Instantaneous numerical vorticity fields indicated that the elimination of the separation zone directly downstream of the VGJ hole is a pri- mary indicator of pulsed VGJ efficacy. This indicator was confirmed by numerical time-averaged velocity magnitude rms data in the same region.

  8. Fuzzy Logic Particle Tracking

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.

  9. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2014-11-01

    The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely-long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. A detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (Re = 16,000, subcritical flow regime) and Reynolds numbers at which transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (Re = 500,000, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed.

  10. Flow-Field Investigation of Gear-Flap Interaction on a Gulfstream Aircraft Model

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Jenkins, Luther N.; Bartram, Scott M.; Harris, Jerome; Khorrami, Mehdi R.; Mace, W. Derry

    2014-01-01

    Off-surface flow measurements of a high-fidelity 18% scale Gulfstream aircraft model in landing configuration with the main landing gear deployed are presented. Particle Image Velocimetry (PIV) and Laser Velocimetry (LV) were used to measure instantaneous velocities in the immediate vicinity of the main landing gear and its wake and near the inboard tip of the flap. These measurements were made during the third entry of a series of tests conducted in the NASA Langley Research Center (LaRC) 14- by 22-Foot Subsonic Tunnel (14 x 22) to obtain a comprehensive set of aeroacoustic measurements consisting of both aerodynamic and acoustic data. The majority of the off-body measurements were obtained at a freestream Mach number of 0.2, angle of attack of 3 degrees, and flap deflection angle of 39 degrees with the landing gear on. A limited amount of data was acquired with the landing gear off. LV was used to measure the velocity field in two planes upstream of the landing gear and to measure two velocity profiles in the landing gear wake. Stereo and 2-D PIV were used to measure the velocity field over a region extending from upstream of the landing gear to downstream of the flap trailing edge. Using a special traverse system installed under the tunnel floor, the velocity field was measured at 92 locations to obtain a comprehensive picture of the pertinent flow features and characteristics. The results clearly show distinct structures in the wake that can be associated with specific components on the landing gear and give insight into how the wake is entrained by the vortex at the inboard tip of the flap.

  11. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    NASA Astrophysics Data System (ADS)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  12. Aeroacoustic Simulation of a Nose Landing Gear in an Open Jet Facility Using FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.; Carlson, Jan-Renee

    2012-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida s open-jet acoustic facility known as UFAFF. The unstructured-grid flow solver, FUN3D, developed at NASA Langley Research center is used to compute the unsteady flow field for this configuration. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions compare favorably with the measured data. Unsteady flowfield data obtained from the FUN3D code are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the sound pressure levels at microphones placed in the farfield. Significant improvement in predicted noise levels is obtained when the flowfield data from the open jet UFAFF simulations is used as compared to the case using flowfield data from the closed-wall BART configuration.

  13. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    PubMed

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The Effect of Slab Holes on the Surrounding Mantle Flow Field and the Surface from a Multi-Disciplinary Approach

    NASA Astrophysics Data System (ADS)

    Portner, D. E.; Kiraly, A.; Makushkina, A.; Parks, B. H.; Ghosh, T.; Haynie, K. L.; Metcalf, K.; Manga, M.; O'Farrell, K. A.; Moresi, L. N.; Jadamec, M. A.; Stern, R. J.

    2017-12-01

    Large-scale detachment of subducting slabs can have a significant geologic footprint by altering the slab-driven mantle flow field as hot subslab mantle can flow upward through the newly developed opening in the slab. The resulting increase in heat and vertical motion in the mantle wedge may contribute to volcanism and broad surface uplift. Recent geodynamic modeling results show that smaller tears and holes are similarly likely to form in many settings, such as where oceanic ridges or continental fragments subduct. High-resolution seismic tomography models are imaging an increasing number of these gaps and tears ranging in size from tens to hundreds of km in size, many of which occur proximal to alkali volcanism. Here we investigate the role of such gaps on the subduction-induced mantle flow field and related surface response. In particular, we address the relationships between slab hole size, depth, and distance from the slab edge and the magnitude of dynamic response of the mantle using analog experiments and numerical simulations. In the laboratory models, the subduction system is simplified to a two-layered Newtonian viscous sheet model. Our setup consists of a tank filled with glucose syrup and a plate made from silicon putty to model the upper mantle and subducting lithosphere, respectively. In each experiment, we pre-cut a rectangular hole with variable width into the silicon putty plate. Additionally, we perform a series of complementary numerical models using the Underworld geophysical modeling code to calculate the more detailed instantaneous mantle flow perturbation induced by the slab hole. Together, these results imply a strong effect of hole size on mantle flow. Similarly, the depth of the slab hole influences near-surface flow, with significant surface flow alteration when the hole is near the trench and diminishing surface deformation as the hole is dragged deeper into the mantle. The inferred consequence of the dependence of vertical mantle flux on slab hole position and size is that the induced surface response can vary based on slab hole parameters.

  15. Spatio-temporal evolutions of non-orthogonal equatorial wave modes derived from observations

    NASA Astrophysics Data System (ADS)

    Barton, Cory

    Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCFs), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. The non-orthogonality of wave modes has yet posed a problem when attempting to separate data into wave fields where the waves project onto the same structure functions. We propose the development and application of a new methodology for equatorial wave expansion of instantaneous flows using the full equatorial wave spectrum. By creating a mapping from the meridional structure function amplitudes to the equatorial wave class amplitudes, we are able to diagnose instantaneous wave fields and determine their evolution. Because all meridional modes are shared by some subset of the wave classes, we require constraints on the wave class amplitudes to yield a closed system with a unique solution for all waves' spatial structures, including IG waves. A synthetic field is analyzed using this method to determine its accuracy for data of a single vertical mode. The wave class spectra diagnosed using this method successfully match the correct dispersion curves even if the incorrect depth is chosen for the spatial decomposition. In the case of more than one depth scale, waves with varying equivalent depth may be similarly identified using the dispersion curves. The primary vertical mode is the 200 m equivalent depth mode, which is that of the peak projection response. A distinct spectral power peak along the Kelvin wave dispersion curve for this value validates our choice of equivalent depth, although the possibility of depth varying with time and height is explored. The wave class spectra diagnosed assuming this depth scale mostly match their expected dispersion curves, showing that this method successfully partitions the wave spectra by calculating wave amplitudes in physical space. This is particularly striking because the time evolution, and therefore the frequency characteristics, is determined simply by a timeseries of independently-diagnosed instantaneous horizontal fields. We use the wave fields diagnosed by this method to study wave evolution in the context of the stratospheric QBO of zonal wind, confirming the continuous evolution of the selection mechanism for equatorial waves in the middle atmosphere. The amplitude cycle synchronized with the background zonal wind as predicted by QBO theory is present in the wave class fields even though the dynamics are not forced by the method itself. We have additionally identified a time-evolution of the zonal wavenumber spectrum responsible for the amplitude variability in physical space. Similar to the temporal characteristics, the vertical structures are also the result of a simple height cross-section through multiple independently-diagnosed levels.

  16. Adiabatic particle motion in a nearly drift-free magnetic field - Application to the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1978-01-01

    An investigation is made of the adiabatic particle motion occurring in an almost drift-free magnetic field. The dependence of the mean drift velocity on the equatorial pitch angle and the variation of the local drift velocity along the trajectories is studied. The fields considered are two-dimensional and resemble the geomagnetic tail. Derivations are presented for instantaneous and average drift velocities, bounce times, longitudinal invariants, and approximations to the adiabatic Hamiltonian. As expected, the mean drift velocity is significantly smaller than the instantaneous drift velocities found at typical points on the trajectory. The slow drift indicates that particles advance in the dawn-dusk direction rather slowly in the plasma sheet of the magnetospheric tail.

  17. Flow of sand and a variable mass Atwood machine

    NASA Astrophysics Data System (ADS)

    Flores, José; Solovey, Guillermo; Gil, Salvador

    2003-07-01

    We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of granular media, such as sand, in real time. The measurements allow us to elucidate the phenomenological laws that govern the flow of granular media through an aperture. We use this apparatus to construct a variable mass system and study the motion of an Atwood machine with one weight changing in time in a controlled manner. The study illustrates Newton's second law for variable mass systems and lets us investigate the dependence of the flow rate on acceleration.

  18. Investigation of tip clearance flow physics in axial flow turbine rotors

    NASA Astrophysics Data System (ADS)

    Xiao, Xinwen

    In axial turbines, the tip clearance between casing wall and rotating blades results in a tip leakage flow, which significantly affects loss production, heat protection, vibration and noise. It is important to minimize these effects for a better turbine engine performance and higher reliability. Most of previous efforts were concentrated on turbine cascades that however may not completely and correctly simulate the flow physics in practical turbine rotors. An investigation has to be performed in turbine rotors to reveal the real tip leakage flow physics in order to provide a scientific basis for minimizing its effects. This is the objective of this thesis research. The three dimensional flow field near the end wall/tip clearance region in a turbine rotor has been investigated experimentally, complemented by a numerical simulation to study the influences of inlet turbulence intensities on the development of the tip leakage flow. The experimental investigation is carried out in a modern unshrouded high pressure turbine stage. The survey region covers 20% span near the end wall, and extends axially from 10% chord upstream of the leading edge, through the rotor passage, and to 20% chord downstream of the trailing edge. It has been found that the tip leakage effects extend only to the surveyed region. The three dimensional LDV technique is used to measure the velocity and turbulence field upstream of the rotor, inside the rotor passage, and near the trailing edge. The static pressure on blade surfaces is surveyed from the rotating frame. The transient pressure on the casing wall is measured using a dynamic pressure sensor with a shaft encoder. A rotating Five Hole Probe is employed to measure the losses as well as the pressure and the three dimensional velocity field at 20% chord downstream of the rotor. The unsteady flow field is also investigated at this location by using a slanted single-element Hot Wire technique. The physics of the tip leakage flow and vortex in turbine rotors, including its inception location, development, interaction with the main stream and the passage vortex, and decay, are revealed. The rotation effects on the boundary layer flow and the turbulence structure are discussed. The effects of the relative motion between the blade and the casing wall on the flow field near the tip clearance region are also investigated. The structure of the rotor wake, the nozzle wake, and their interaction are interpreted based on the instantaneous Hot Wire data. The numerical simulation on the influence of the inlet turbulence intensity on the development of the tip leakage flow is based on previous efforts. The results indicate that the tip leakage vortex diffuses very quickly under a high inlet turbulence intensity, resulting in a very weak tip leakage vortex and less losses.

  19. Wedge and Conical Probes for the Instantaneous Measurement of Free-Stream Flow Quantities at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Maglieri, Domenic J.; Banks, Daniel W.; Fuchs, Aaron W.

    2011-01-01

    Wedge and conical shaped probes for the measurement of free-stream flow quantities at supersonic speeds have been tested in both wind tunnel and flight. These probes have improved capabilities over similar ones used in the past. Through the use of miniature pressure sensors, that are located inside the probes, they are able to provide instantaneous measurements of a time-varying environment. Detailed herein are the results of the tests in NASA Langley Researcher Center s Unitary Plan Wind Tunnel (UPWT) at Mach numbers of 1.6, 1.8 and 2.0, as well as flight tests carried out at the NASA Dryden Flight Research Center (DFRC) on its F-15 aircraft up to Mach numbers of 1.9. In the flight tests the probes were attached to a fixture on the underside of the F-15 fuselage. Problems controlling the velocity of the flow through the conical probe, required for accurate temperature measurements, are noted, as well as some calibration problems of the miniature pressure sensors that impact the accuracy of the measurements.

  20. The Oscillating Component of the Internal Jugular Vein Flow: The Overlooked Element of Cerebral Circulation

    PubMed Central

    Sisini, Francesco; Toro, Eleuterio; Gambaccini, Mauro; Zamboni, Paolo

    2015-01-01

    The jugular venous pulse (JVP) provides valuable information about cardiac haemodynamics and filling pressures and is an indirect estimate of the central venous pressure (CVP). Recently it has been proven that JVP can be obtained by measuring the cross-sectional area (CSA) of the IJV on each sonogram of an ultrasound B-mode sonogram sequence. It has also been proven that during its pulsation the IJV is distended and hence that the pressure gradient drives the IJV haemodynamics. If this is true, then it will imply the following: (i) the blood velocity in the IJV is a periodic function of the time with period equal to the cardiac period and (ii) the instantaneous blood velocity is given by a time function that can be derived from a flow-dynamics theory that uses the instantaneous pressure gradient as a parameter. The aim of the present study is to confirm the hypothesis that JVP regulates the IJV blood flow and that pressure waves are transmitted from the heart toward the brain through the IJV wall. PMID:26783380

  1. User's Manual for Program PeakFQ, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines

    USGS Publications Warehouse

    Flynn, Kathleen M.; Kirby, William H.; Hummel, Paul R.

    2006-01-01

    Estimates of flood flows having given recurrence intervals or probabilities of exceedance are needed for design of hydraulic structures and floodplain management. Program PeakFQ provides estimates of instantaneous annual-maximum peak flows having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (annual-exceedance probabilities of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively). As implemented in program PeakFQ, the Pearson Type III frequency distribution is fit to the logarithms of instantaneous annual peak flows following Bulletin 17B guidelines of the Interagency Advisory Committee on Water Data. The parameters of the Pearson Type III frequency curve are estimated by the logarithmic sample moments (mean, standard deviation, and coefficient of skewness), with adjustments for low outliers, high outliers, historic peaks, and generalized skew. This documentation provides an overview of the computational procedures in program PeakFQ, provides a description of the program menus, and provides an example of the output from the program.

  2. Mapping unstable manifolds using drifters/floats in a Southern Ocean field campaign

    NASA Astrophysics Data System (ADS)

    Shuckburgh, Emily F.

    2012-09-01

    Ideas from dynamical systems theory have been used in an observational field campaign in the Southern Ocean to provide information on the mixing structure of the flow. Instantaneous snapshops of data from satellite altimetry provide information concerning surface currents at a scale of 100 km or so. We show that by using time-series of satellite altimetry we are able to deduce reliable information about the structure of the surface flow at scales as small as 10 km or so. This information was used in near-real time to provide an estimate of the location of stable and unstable manifolds in the vicinity of the Antarctic Circumpolar Current. As part of a large U.K./U.S. observational field campaign (DIMES: Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) a number of drifters and floats were then released (at the surface and at a depth of approximately 1 km) close to the estimated hyperbolic point at the intersection of the two manifolds, in several locations with apparently different dynamical characteristics. The subsequent trajectories of the drifters/floats has allowed the unstable manifolds to be tracked, and the relative separation of pairs of floats has allowed an estimation of Lyapunov exponents. The results of these deployments have given insight into the strengths and limitations of the satellite data which does not resolve small scales in the velocity field, and have elucidated the transport and mixing structure of the Southern Ocean at the surface and at depth.

  3. Effects of Mesoscale Eddies in the Active Mixed Layer: Test of the Parametrisation in Eddy Resolving Simulations

    NASA Technical Reports Server (NTRS)

    Luneva, M. V.; Clayson, C. A.; Dubovikov, Mikhail

    2015-01-01

    In eddy resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200-207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the eddy mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1-2 degrees and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher (0.5-0.74) correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3-4 months, diffusivities diagnosed from the eddy resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed.

  4. Combustion behaviors of GO2/GH2 swirl-coaxial injector using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    GuoBiao, Cai; Jian, Dai; Yang, Zhang; NanJia, Yu

    2016-06-01

    This research evaluates the combustion behaviors of a single-element, swirl-coaxial injector in an atmospheric combustion chamber with gaseous oxygen and gaseous hydrogen (GO2/GH2) as the propellants. A brief simulated flow field schematic comparison between a shear-coaxial injector and the swirl-coaxial injector reveals the distribution characteristics of the temperature field and streamline patterns. Advanced optical diagnostics, i.e., OH planar laser-induced fluorescence and high-speed imaging, are simultaneously employed to determine the OH radical spatial distribution and flame fluctuations, respectively. The present study focuses on the flame structures under varying O/F mixing ratios and center oxygen swirl intensities. The combined use of several image-processing methods aimed at OH instantaneous images, including time-averaged, root-mean-square, and gradient transformation, provides detailed information regarding the distribution of the flow field. The results indicate that the shear layers anchored on the oxygen injector lip are the main zones of chemical heat release and that the O/F mixing ratio significantly affects the flame shape. Furthermore, with high-speed imaging, an intuitionistic ignition process and several consecutive steady-state images reveal that lean conditions make it easy to drive the combustion instabilities and that the center swirl intensity has a moderate influence on the flame oscillation strength. The results of this study provide a visualized analysis for future optimal swirl-coaxial injector designs.

  5. Bed particle entrainment and motion in turbulent open-channel flows: a high-resolution experimental study

    NASA Astrophysics Data System (ADS)

    Nikora, Vladimir; Cameron, Stuart; Amir, Mohammad; Stewart, Mark; Witz, Matthew

    2015-04-01

    In spite of significant efforts of geoscientists and engineers, the exact mechanics of sediment entrainment and transport by turbulent flows remains unclear and continues to be the focus of many research groups worldwide. The talk outlines current developments in this direction at the University of Aberdeen, where an extensive experimental programme has recently been completed. The experiments were conducted in the Aberdeen Open Channel Facility (AOCF, 20 m long, 1.18 m wide) over wide ranges of flow submergence (1.9-8.0), bulk Reynolds number (4400-83000), and channel aspect ratio (9-39). The flume bed was covered by hexagonally-packed glass beads 16 mm in diameter. For entrainment experiments, selected glass particles were replaced with lighter particles (nylon and delrin). Instantaneous velocity fields before, during, and after entrainment were measured with an advanced multi-mode Particle Image Velocimetry (PIV) system developed by S. Cameron. This system was also used for 3D particle tracking in the entrainment experiments. The main types of experiments included: (1) multi-mode turbulence measurements with fixed-bed conditions to assess the background flow structure (10 min to 120 min duration of velocity records); (2) simultaneous measurements of fluctuating differential pressure acting on 23 fixed particles with in-built pressure sensors, synchronously with PIV; (3) measurements of waiting times for particle entrainment, employing a specially designed system (SMC-1) for automatic placement of the particles on the bed and subsequent measurement of the time before entrainment; (4) long-term direct measurements of the instantaneous drag force acting on a single particle (attached to the bed) at different protrusions, synchronously with PIV; and (5) synchronous measurements of the flow field around a particle before, at, and during entrainment, supplemented with 3D particle tracking. The key results include: (1) the refined turbulence structure of a rough-bed open-channel flow assessed with multiple-order bulk velocity statistics, spectra, correlations, and structure functions; (2) identification and quantification of coherent motions, with particular focus on 'superstructures' (or 'very large scale motions' up to 40 flow depths in length); (3) assessment of secondary current effects on the flow structure; (4) statistical characteristics of fluctuating pressure acting on multiple bed particles, including spatial pressure correlations and their relations to the coherent structures; (5) estimates and statistical tests of waiting time distributions; (6) statistics of particle trajectories with particular focus on the initial stages of motion; and (7) identification of typical flow features accompanying particle entrainment. Among other findings, it has been shown, for the first time, that particle entrainment is likely to be associated with interactions between flow superstructures. The 'collisions' of superstructures, 'meandering' across the flow, generate regions of a particular velocity pattern leading to the particle entrainment. This study was supported by an EPSRC (UK) Grant EP/G056404/1, which was directly linked to DFG (Germany) Grants FR 1593/5-1/2, focus of which was on direct numerical simulations of mobile-bed flows. The authors are grateful to M. Uhlmann and C. Chan-Braun (Karlsruhe Institute of Technology) and J. Frohlich and B. Vowinckel (Dresden Technical University) for their useful suggestions and insightful discussions throughout the course of this project.

  6. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  7. Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow

    NASA Astrophysics Data System (ADS)

    Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar

    2014-09-01

    We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.

  8. An experimental study of the stable and unstable operation of an LPP gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Dhanuka, Sulabh Kumar

    A study was performed to better understand the stable operation of an LPP combustor and formulate a mechanism behind the unstable operation. A unique combustor facility was developed at the University of Michigan that incorporates the latest injector developed by GE Aircraft Engines and enables operation at elevated pressures with preheated air at flow-rates reflective of actual conditions. The large optical access has enabled the use of a multitude of state-of-the-art laser diagnostics such as PIV and PLIF, and has shed invaluable light not only into the GE injector specifically but also into gas turbine combustors in general. Results from Particle Imaging Velocimetry (PIV) have illustrated the role of velocity, instantaneous vortices, and key recirculation zones that are all critical to the combustor's operation. It was found that considerable differences exist between the iso-thermal and reacting flows, and between the instantaneous and mean flow fields. To image the flame, Planar Laser Induced Fluorescence (PLIF) of the formaldehyde radical was successfully utilized for the first time in a Jet-A flame. Parameters regarding the flame's location and structure have been obtained that assist in interpreting the velocity results. These results have also shown that some of the fuel injected from the main fuel injectors actually reacts in the diffusion flame of the pilot. The unstable operation of the combustor was studied in depth to obtain the stability limits of the combustor, behavior of the flame dynamics, and frequencies of the oscillations. Results from simultaneous pressure and high speed chemiluminescence images have shown that the low frequency dynamics can be characterized as flashback oscillations. The results have also shown that the stability of the combustor can be explained by simple and well established premixed flame stability mechanisms. This study has allowed the development of a model that describes the instability mechanism and accurately captures the frequencies of the oscillations. By demonstrating how these classical understandings can be applied to the extremely complicated flow within LPP gas turbine combustors, new insight has been provided that will aid in the development of the next generation of cleaner, more stable gas turbine combustors.

  9. Characterization of linear interfacial waves in a turbulent gas-liquid pipe flow

    NASA Astrophysics Data System (ADS)

    Ayati, A. A.; Farias, P. S. C.; Azevedo, L. F. A.; de Paula, I. B.

    2017-06-01

    The evolution of interfacial waves on a stratified flow was investigated experimentally for air-water flow in a horizontal pipe. Waves were introduced in the liquid level of stratified flow near the pipe entrance using an oscillating plate. The mean height of liquid layer and the fluctuations superimposed on this mean level were captured using high speed cameras. Digital image processing techniques were used to detect instantaneous interfaces along the pipe. The driving signal of the oscillating plate was controlled by a D/A board that was synchronized with acquisitions. This enabled to perform phase-locked acquisitions and to use ensemble average procedures. Thereby, it was possible to measure the temporal and spatial evolution of the disturbances introduced in the flow. In addition, phase-locked measurements of the velocity field in the liquid layer were performed using standard planar Particle Image Velocimetry (PIV). The velocity fields were extracted at a fixed streamwise location, whereas the measurements of the liquid level were performed at several locations along the pipe. The assessment of the setup was important for validation of the methodology proposed in this work, since it aimed at providing results for further comparisons with theoretical models and numerical simulations. Therefore, the work focuses on validation and characterization of interfacial waves within the linear regime. Results show that under controlled conditions, the wave development can be well captured and reproduced. In addition, linear waves were observed for liquid level oscillations lower than about 1.5% of the pipe diameter. It was not possible to accurately define an amplitude threshold for the appearance of nonlinear effects because it strongly depended on the wave frequency. According to the experimental findings, longer waves display characteristics similar to linear waves, while short ones exhibit a more complex evolution, even for low amplitudes.

  10. Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.

    2008-06-01

    An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.

  11. How Nonlinear-Type Time-Frequency Analysis Can Help in Sensing Instantaneous Heart Rate and Instantaneous Respiratory Rate from Photoplethysmography in a Reliable Way

    PubMed Central

    Cicone, Antonio; Wu, Hau-Tieng

    2017-01-01

    Despite the population of the noninvasive, economic, comfortable, and easy-to-install photoplethysmography (PPG), it is still lacking a mathematically rigorous and stable algorithm which is able to simultaneously extract from a single-channel PPG signal the instantaneous heart rate (IHR) and the instantaneous respiratory rate (IRR). In this paper, a novel algorithm called deppG is provided to tackle this challenge. deppG is composed of two theoretically solid nonlinear-type time-frequency analyses techniques, the de-shape short time Fourier transform and the synchrosqueezing transform, which allows us to extract the instantaneous physiological information from the PPG signal in a reliable way. To test its performance, in addition to validating the algorithm by a simulated signal and discussing the meaning of “instantaneous,” the algorithm is applied to two publicly available batch databases, the Capnobase and the ICASSP 2015 signal processing cup. The former contains PPG signals relative to spontaneous or controlled breathing in static patients, and the latter is made up of PPG signals collected from subjects doing intense physical activities. The accuracies of the estimated IHR and IRR are compared with the ones obtained by other methods, and represent the state-of-the-art in this field of research. The results suggest the potential of deppG to extract instantaneous physiological information from a signal acquired from widely available wearable devices, even when a subject carries out intense physical activities. PMID:29018352

  12. Effects of gravity on sheared and nonsheared turbulent nonpremixed flames

    NASA Technical Reports Server (NTRS)

    Elghobashi, Said; Lee, Yong-Yao; Zhong, Rongbin

    1995-01-01

    The present numerical study is concerned with the fundamental physics of the multiway interaction between turbulence, chemical reaction, and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous, three-dimensional governing equations. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration. The effects of buoyancy include the generation of local shear, baroclinic production or destruction of vorticity, and countergradient heat and mass transport. Increased vorticity and small-scale turbulence promote further mixing and reaction. However, if the strain-rates become too high, local flame extinction can occur. Our objective is to gain an understanding of the complex interactions between the physical phenomena involved, with particular attention to the effects of buoyancy on the turbulence structure, flame behavior, and factors influencing flame extinction.

  13. Optical measurements in evolving dispersed pipe flows

    NASA Astrophysics Data System (ADS)

    Voulgaropoulos, Victor; Angeli, Panagiota

    2017-12-01

    Optical laser-based techniques and an extensive data analysis methodology have been developed to acquire flow and separation characteristics of concentrated liquid-liquid dispersions. A helical static mixer was used at the inlet of an acrylic 4 m long horizontal pipe to actuate the dispersed flows at low mixture velocities. The organic (913 kg m^{-3}, 0.0046 Pa s) and aqueous phases (1146 kg m^{-3}, 0.0084 Pa s) were chosen to have matched refractive indices. Measurements were conducted at 15 and 135 equivalent pipe diameters downstream the inlet. Planar laser induced fluorescence (PLIF) measurements illustrated the flow structures and provided the local in-situ holdup profiles. It was found that along the pipe the drops segregate and in some cases coalesce either with other drops or with the corresponding continuous phase. A multi-level threshold algorithm was developed to measure the drop sizes from the PLIF images. The velocity profiles in the aqueous phase were measured with particle image velocimetry (PIV), while the settling velocities of the organic dispersed drops were acquired with particle tracking velocimetry (PTV). It was also possible to capture coalescence events of a drop with an interface over time and to acquire the instantaneous velocity and vorticity fields in the coalescing drop.

  14. Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source.

    PubMed

    Xu, Jingjiang; Song, Shaozhen; Wei, Wei; Wang, Ruikang K

    2017-01-01

    Wide-field vascular visualization in bulk tissue that is of uneven surface is challenging due to the relatively short ranging distance and significant sensitivity fall-off for most current optical coherence tomography angiography (OCTA) systems. We report a long ranging and ultra-wide-field OCTA (UW-OCTA) system based on an akinetic swept laser. The narrow instantaneous linewidth of the swept source with its high phase stability, combined with high-speed detection in the system enable us to achieve long ranging (up to 46 mm) and almost negligible system sensitivity fall-off. To illustrate these advantages, we compare the basic system performances between conventional spectral domain OCTA and UW-OCTA systems and their functional imaging of microvascular networks in living tissues. In addition, we show that the UW-OCTA is capable of different depth-ranging of cerebral blood flow within entire brain in mice, and providing unprecedented blood perfusion map of human finger in vivo . We believe that the UW-OCTA system has promises to augment the existing clinical practice and explore new biomedical applications for OCT imaging.

  15. Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source

    PubMed Central

    Xu, Jingjiang; Song, Shaozhen; Wei, Wei; Wang, Ruikang K.

    2016-01-01

    Wide-field vascular visualization in bulk tissue that is of uneven surface is challenging due to the relatively short ranging distance and significant sensitivity fall-off for most current optical coherence tomography angiography (OCTA) systems. We report a long ranging and ultra-wide-field OCTA (UW-OCTA) system based on an akinetic swept laser. The narrow instantaneous linewidth of the swept source with its high phase stability, combined with high-speed detection in the system enable us to achieve long ranging (up to 46 mm) and almost negligible system sensitivity fall-off. To illustrate these advantages, we compare the basic system performances between conventional spectral domain OCTA and UW-OCTA systems and their functional imaging of microvascular networks in living tissues. In addition, we show that the UW-OCTA is capable of different depth-ranging of cerebral blood flow within entire brain in mice, and providing unprecedented blood perfusion map of human finger in vivo. We believe that the UW-OCTA system has promises to augment the existing clinical practice and explore new biomedical applications for OCT imaging. PMID:28101428

  16. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    NASA Astrophysics Data System (ADS)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The renewal-length model for puffing frequency of pool fire plumes was extended to puffing countercurrent flows by estimating inflow dilution. Puffing frequencies at several conditions were reduced to Strouhal number based on dilute plume density. Results for D = 5.08 cm compared favorably to published measurements of puffing pool fires, suggesting that the two different flows obey the same periodic dynamic process.

  17. Flow Visualization in Supersonic Turbulent Boundary Layers.

    NASA Astrophysics Data System (ADS)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high-speed movies were made of the fog under general illumination, thus providing information about the streamwise evolution of the structures seen in the planar stills. Rayleigh scattering from a laser sheet was used to create instantaneous density cross-sections in the M = 2.5 boundary layer. The Rayleigh scattering experiment represents the first measurement of the instantaneous 2-D field of an intrinsic fluid property in any boundary layer. Imaged by an intensified UV camera, scattering from the Argon-Fluoride laser (193 nm) revealed density structures with sharp interfaces between high and low-density fluid. These pictures were also used to generated quantitative turbulence information. Density pdf profiles, intermittency values, density correlations, and structure shape data were derived with standard digital image-processing techniques.

  18. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  19. Physical Modeling of Flow Over Gale Crater, Mars: Laboratory Measurements of Basin Secondary Circulations

    NASA Astrophysics Data System (ADS)

    Bristow, N.; Blois, G.; Kim, T.; Anderson, W.; Day, M. D.; Kocurek, G.; Christensen, K. T.

    2017-12-01

    Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter > 10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.

  20. Single-shot lifetime-based PSP and TSP measurements on turbocharger compressor blades

    NASA Astrophysics Data System (ADS)

    Peng, Di; Jiao, Lingrui; Yu, Yuelong; Liu, Yingzheng; Oshio, Tetsuya; Kawakubo, Tomoki; Yakushiji, Akimitsu

    2017-09-01

    Fast-responding pressure-sensitive paint (Fast PSP) and temperature-sensitive paint (TSP) measurements were conducted on two turbocharger compressors using a single-shot lifetime-based technique. The fast PSP and TSP were applied on separate blades of one compressor, and both paints were excited by a pulsed 532 nm Nd:YAG laser. The luminescent decay signals following the laser pulse were recorded by a CCD camera in a double-exposure mode. Instantaneous pressure and temperature fields on compressor blades were obtained simultaneously, for rotation speeds up to 150,000 rpm. The variations in pressure and temperature fields with rotation speed, flow rate and runtime were clearly visualized, showing the advantage of high spatial resolution. Severe image blurring problems and significant temperature-induced errors in the PSP results were found at high rotation speeds. The first issue was addressed by incorporating a deconvolution-based deblurring algorithm to recover the clear image from the blurred image using the combination of luminescent lifetime and rotation speed. The second issue was resolved by applying a pixel-by-pixel temperature correction based on the TSP results. The current technique has shown great capabilities in flow diagnostics of turbomachinery and can serve as a powerful tool for CFD validations and design optimizations.

  1. Influence of visual path information on human heading perception during rotation.

    PubMed

    Li, Li; Chen, Jing; Peng, Xiaozhe

    2009-03-31

    How does visual path information influence people's perception of their instantaneous direction of self-motion (heading)? We have previously shown that humans can perceive heading without direct access to visual path information. Here we vary two key parameters for estimating heading from optic flow, the field of view (FOV) and the depth range of environmental points, to investigate the conditions under which visual path information influences human heading perception. The display simulated an observer traveling on a circular path. Observers used a joystick to rotate their line of sight until deemed aligned with true heading. Four FOV sizes (110 x 94 degrees, 48 x 41 degrees, 16 x 14 degrees, 8 x 7 degrees) and depth ranges (6-50 m, 6-25 m, 6-12.5 m, 6-9 m) were tested. Consistent with our computational modeling results, heading bias increased with the reduction of FOV or depth range when the display provided a sequence of velocity fields but no direct path information. When the display provided path information, heading bias was not influenced as much by the reduction of FOV or depth range. We conclude that human heading and path perception involve separate visual processes. Path helps heading perception when the display does not contain enough optic-flow information for heading estimation during rotation.

  2. The electrostatics of parachutes

    NASA Astrophysics Data System (ADS)

    Yu, Li; Ming, Xiao

    2007-12-01

    In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loadings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorporating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.

  3. Application of Plenoptic PIV for 3D Velocity Measurements Over Roughness Elements in a Refractive Index Matched Facility

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Johnson, Kyle; Kim, Taehoon; Blois, Gianluca; Best, Jim; Christensen, Ken

    2014-11-01

    The application of Plenoptic PIV in a Refractive Index Matched (RIM) facility housed at Illinois is presented. Plenoptic PIV is an emerging 3D diagnostic that exploits the light-field imaging capabilities of a plenoptic camera. Plenoptic cameras utilize a microlens array to measure the position and angle of light rays captured by the camera. 3D/3C velocity fields are determined through application of the MART algorithm for volume reconstruction and a conventional 3D cross-correlation PIV algorithm. The RIM facility is a recirculating tunnel with a 62.5% aqueous solution of sodium iodide used as the working fluid. Its resulting index of 1.49 is equal to that of acrylic. Plenoptic PIV was used to measure the 3D velocity field of a turbulent boundary layer flow over a smooth wall, a single wall-mounted hemisphere and a full array of hemispheres (i.e. a rough wall) with a k/ δ ~ 4.6. Preliminary time averaged and instantaneous 3D velocity fields will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1235726.

  4. A high-fidelity method to analyze perturbation evolution in turbulent flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unnikrishnan, S., E-mail: sasidharannair.1@osu.edu; Gaitonde, Datta V., E-mail: gaitonde.3@osu.edu

    2016-04-01

    Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier–Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state,more » its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted “baseline” and “twin”) of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier–Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, “native” forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.« less

  5. A high-fidelity method to analyze perturbation evolution in turbulent flows

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, S.; Gaitonde, Datta V.

    2016-04-01

    Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier-Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state, its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted "baseline" and "twin") of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier-Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, "native" forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.

  6. Reconstruction of instantaneous surface normal velocity of a vibrating structure using interpolated time-domain equivalent source method

    NASA Astrophysics Data System (ADS)

    Geng, Lin; Bi, Chuan-Xing; Xie, Feng; Zhang, Xiao-Zheng

    2018-07-01

    Interpolated time-domain equivalent source method is extended to reconstruct the instantaneous surface normal velocity of a vibrating structure by using the time-evolving particle velocity as the input, which provides a non-contact way to overall understand the instantaneous vibration behavior of the structure. In this method, the time-evolving particle velocity in the near field is first modeled by a set of equivalent sources positioned inside the vibrating structure, and then the integrals of equivalent source strengths are solved by an iterative solving process and are further used to calculate the instantaneous surface normal velocity. An experiment of a semi-cylindrical steel plate impacted by a steel ball is investigated to examine the ability of the extended method, where the time-evolving normal particle velocity and pressure on the hologram surface measured by a Microflown pressure-velocity probe are used as the inputs of the extended method and the method based on pressure measurements, respectively, and the instantaneous surface normal velocity of the plate measured by a laser Doppler vibrometry is used as the reference for comparison. The experimental results demonstrate that the extended method is a powerful tool to visualize the instantaneous surface normal velocity of a vibrating structure in both time and space domains and can obtain more accurate results than that of the method based on pressure measurements.

  7. Transient flow conditions in probabilistic wellhead protection: importance and ways to manage spatial and temporal uncertainty in capture zone delineation

    NASA Astrophysics Data System (ADS)

    Enzenhoefer, R.; Rodriguez-Pretelin, A.; Nowak, W.

    2012-12-01

    "From an engineering standpoint, the quantification of uncertainty is extremely important not only because it allows estimating risk but mostly because it allows taking optimal decisions in an uncertain framework" (Renard, 2007). The most common way to account for uncertainty in the field of subsurface hydrology and wellhead protection is to randomize spatial parameters, e.g. the log-hydraulic conductivity or porosity. This enables water managers to take robust decisions in delineating wellhead protection zones with rationally chosen safety margins in the spirit of probabilistic risk management. Probabilistic wellhead protection zones are commonly based on steady-state flow fields. However, several past studies showed that transient flow conditions may substantially influence the shape and extent of catchments. Therefore, we believe they should be accounted for in the probabilistic assessment and in the delineation process. The aim of our work is to show the significance of flow transients and to investigate the interplay between spatial uncertainty and flow transients in wellhead protection zone delineation. To this end, we advance our concept of probabilistic capture zone delineation (Enzenhoefer et al., 2012) that works with capture probabilities and other probabilistic criteria for delineation. The extended framework is able to evaluate the time fraction that any point on a map falls within a capture zone. In short, we separate capture probabilities into spatial/statistical and time-related frequencies. This will provide water managers additional information on how to manage a well catchment in the light of possible hazard conditions close to the capture boundary under uncertain and time-variable flow conditions. In order to save computational costs, we take advantage of super-positioned flow components with time-variable coefficients. We assume an instantaneous development of steady-state flow conditions after each temporal change in driving forces, following an idea by Festger and Walter, 2002. These quasi steady-state flow fields are cast into a geostatistical Monte Carlo framework to admit and evaluate the influence of parameter uncertainty on the delineation process. Furthermore, this framework enables conditioning on observed data with any conditioning scheme, such as rejection sampling, Ensemble Kalman Filters, etc. To further reduce the computational load, we use the reverse formulation of advective-dispersive transport. We simulate the reverse transport by particle tracking random walk in order to avoid numerical dispersion to account for well arrival times.

  8. Coherent radar estimates of high latitude field-aligned currents: the importance of conductance gradients

    NASA Astrophysics Data System (ADS)

    Kosch, M.; Nielsen, E.

    Two bi-static VHF radar systems STARE and SABRE have been employed to estimate ionospheric electric field distributions in the geomagnetic latitude range 61 1 - 69 3 degrees over Scandinavia corresponding to the global Region 2 current system 173 days of data from all four radars have been analysed during the period 1982 to 1986 The average magnetic field-aligned currents have been computed as a function of the Kp and Ae indices using an empirical model of ionospheric Pedersen and Hall conductance taking into account conductance gradients The divergence of horizontal Pedersen currents and Hall conductance gradients have approximately the same importance for generating the Region 2 field-aligned currents Pedersen conductance gradients have a significant modifying effect A case study of field-aligned currents has been performed using the STARE radar system to obtain the instantaneous ionospheric electric field distribution in the vicinity of an auroral arc The instantaneous Hall conductance was estimated from the Scandinavian Magnetometer Array This study clearly shows that even for quiet steady state geomagnetic conditions conductance gradients are important modifiers of magnetic field-aligned currents

  9. Eulerian and Lagrangian methods for vortex tracking in 2D and 3D flows

    NASA Astrophysics Data System (ADS)

    Huang, Yangzi; Green, Melissa

    2014-11-01

    Coherent structures are a key component of unsteady flows in shear layers. Improvement of experimental techniques has led to larger amounts of data and requires of automated procedures for vortex tracking. Many vortex criteria are Eulerian, and identify the structures by an instantaneous local swirling motion in the field, which are indicated by closed or spiral streamlines or pathlines in a reference frame. Alternatively, a Lagrangian Coherent Structures (LCS) analysis is a Lagrangian method based on the quantities calculated along fluid particle trajectories. In the current work, vortex detection is demonstrated on data from the simulation of two cases: a 2D flow with a flat plate undergoing a 45 ° pitch-up maneuver and a 3D wall-bounded turbulence channel flow. Vortices are visualized and tracked by their centers and boundaries using Γ1, the Q criterion, and LCS saddle points. In the cases of 2D flow, saddle points trace showed a rapid acceleration of the structure which indicates the shedding from the plate. For channel flow, saddle points trace shows that average structure convection speed exhibits a similar trend as a function of wall-normal distance as the mean velocity profile, and leads to statistical quantities of vortex dynamics. Dr. Jeff Eldredge and his research group at UCLA are gratefully acknowledged for sharing the database of simulation for the current research. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.

  10. Concentration Measurements in Self-Excited, Momentum-Dominated Helium Jets

    NASA Technical Reports Server (NTRS)

    Yildirim, Bekir Sedat

    2004-01-01

    Flow structure of momentum-dominated pure helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry (RSD) technique. Effects of the operating parameters, i.e., Reynolds number (Re) and Richardson number (Ri), on the oscillatory behavior of the flow were examined over a range of experimental conditions. To seek the individual effect of these parameters, one of them was fixed and the other was varied with certain constraints. Measurements revealed highly periodic oscillations in the laminar region as well as high regularity in transition and turbulent regions. Maximum spectral power profiles at different axial locations indicated the oscillation amplitude increasing until the breakdown of the jet in the turbulent regime. The transition from the laminar to turbulent flow was also investigated. Fast Fourier transform analysis performed in the transition regime showed that the flow oscillates at a unique frequency, which was the same in the upstream laminar flow region. Measured deflection angle data were used in Abel inversion algorithm to construct the helium concentration fields. Instantaneous helium concentration contours revealed changes in the flow structure and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial location showed repeatable oscillations at all axial and radial locations up to the turbulent regime. A cross-correlation technique, applied to find the spatial displacements of the vortical structures, provided correlation coefficient peaks between consecutive schlieren images. Results show that the vortical structure convected and accelerated only in the axial direction.

  11. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow fields inside the tip gap agree fairly well. Instantaneous velocity vectors inside the tip gap from both the PIV and LES do show flow separation and reattachment at the entrance of tip gap as some earlier studies suggested. This area at the entrance of tip gap flow (the pressure side of the blade) is confined very close to the rotor tip section. With a small tip gap (0.5mm), the gap flow looks like a simple two-dimensional channel flow with larger velocity near the casing for both flow rates. A small area with a sharp velocity gradient is observed just above the rotor tip. This strong shear layer is turned radially inward when it collides with the incoming flow and forms the core structure of the tip clearance vortex. When tip gap size is increased to 2.4 mm at the design operation, the radial profile of the tip gap flow changes drastically. With the large tip gap, the gap flow looks like a two-dimensional channel flow only near the casing. Near the rotor top section, a bigger region with very large shear and reversed flow is observed.

  12. A computational study on the influence of insect wing geometry on bee flight mechanics

    PubMed Central

    Feaster, Jeffrey; Bayandor, Javid

    2017-01-01

    ABSTRACT Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. PMID:29061734

  13. A computational study on the influence of insect wing geometry on bee flight mechanics.

    PubMed

    Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid

    2017-12-15

    Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee ( Bombus pensylvanicus ) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. © 2017. Published by The Company of Biologists Ltd.

  14. The effect of active control on the performance and wake characteristics of an axial-flow Marine Hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Vanness, Katherine; Stewart, Andy; Polagye, Brian; Aliseda, Alberto

    2016-11-01

    Turbulence-induced unsteady forcing on turbines extracting power from river, tidal, or ocean currents will affect performance, wake characteristics, and structural integrity. A laboratory-scale axial-flow turbine, 0 . 45 m in diameter, incorporating rotor speed sensing and independent blade pitch control has been designed and tested with the goal of increasing efficiency and/or decreasing structural loading. Laboratory experiments were completed in a 1 m wide, 0.75 m deep open-channel flume at moderate Reynolds number (Rec =6104 -2105) and turbulence intensity (T . I . = 2 - 10 %). A load cell connecting the hub to the shaft provided instantaneous forces and moments on the device, quantifying turbine performance under unsteady inflow and for different controls. To mitigate loads, blade pitch angles were controlled via individual stepper motors, while a six-axis load cell mounted at the root of one blade measured instantaneous blade forces and moments, providing insights into variable loading due to turbulent inflow and blade-tower interactions. Wake characteristics with active pitch control were compared to fixed blade pitch and rotor speed operation. Results are discussed in the context of optimization of design for axial-flow Marine Hydrokinetic turbines.

  15. Project Squid. Annual Program Report

    DTIC Science & Technology

    1950-01-01

    cooled, with helical flow around the combustion chamber walls and approximately longitudinal flow over the nozzle walls. All injectors are of the...instantaneous pressures in the channel near tne rotating valve were recorded by means of a condenser -type pressure gauge3 and the mean pressure was...air ’P k = thermal conductivity of air Nusselt and Jurges2 in 1928, derived an equation similar to the above on the basis of a somewhat different

  16. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  17. A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation.

    PubMed

    Panerai, R B; Coughtrey, H; Rennie, J M; Evans, D H

    1993-11-01

    The instantaneous relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), measured with Doppler ultrasound in the anterior cerebral artery, is represented by a vascular waterfall model comprising vascular resistance, compliance, and critical closing pressure. One min recordings obtained from 61 low birth weight newborns were fitted to the model using a least-squares procedures with correction for the time delay between the BP and CBFV signals. A sensitivity analysis was performed to study the effects of low-pass filtering (LPF), cutoff frequency, and noise on the estimated parameters of the model. Results indicate excellent fitting of the model (F-test, p < 0.0001) when the BP and CBFV signals are LPF at 7.5 Hz. Reconstructed CBFV waveforms using the BP signal and the model parameters have a mean correlation coefficient of 0.94 with the measured flow velocity tracing (N = 232 epochs). The model developed can be useful for interpreting clinical findings and as a framework for research into cerebral autoregulation.

  18. Application of RANS Simulations for Contact Time Predictions in Turbulent Reactor Tanks for Water Purification Process

    NASA Astrophysics Data System (ADS)

    Nickles, Cassandra; Goodman, Matthew; Saez, Jose; Issakhanian, Emin

    2016-11-01

    California's current drought has renewed public interest in recycled water from Water Reclamation Plants (WRPs). It is critical that the recycled water meets public health standards. This project consists of simulating the transport of an instantaneous conservative tracer through the WRP chlorine contact tanks. Local recycled water regulations stipulate a minimum 90-minute modal contact time during disinfection at peak dry weather design flow. In-situ testing is extremely difficult given flowrate dependence on real world sewage line supply and recycled water demand. Given as-built drawings and operation parameters, the chlorine contact tanks are modeled to simulate extreme situations, which may not meet regulatory standards. The turbulent flow solutions are used as the basis to model the transport of a turbulently diffusing conservative tracer added instantaneously to the inlet of the reactors. This tracer simulates the transport through advection and dispersion of chlorine in the WRPs. Previous work validated the models against experimental data. The current work shows the predictive value of the simulations.

  19. Traveltime and dispersion in the Shenandoah River and its tributaries, Waynesboro, Virginia, to Harpers Ferry, West Virginia

    USGS Publications Warehouse

    Taylor, K.R.; James, R.W.; Helinsky, B.M.

    1986-01-01

    Two traveltime and dispersion measurements using rhodamin dye were conducted on a 178-mile reach of the Shenandoah River between Waynesboro, Virginia, and Harpers Ferry, West Virginia. The flows during the two measurements were at approximately the 85% and 45% flow durations. The two sets of data were used to develop a generalized procedure for predicting traveltimes and downstream concentrations resulting from spillage of water soluble substances at any point along the river reach studied. The procedure can be used to calculate traveltime and concentration data for almost any spillage that occurs during relatively steady flow between a 40% to 95% flow duration. Based on an analogy between the general shape of a time concentration curve and a scalene triangle, the procedures can be used on long river reaches to approximate the conservative time concentration curve for instantaneous spills of contaminants. The triangular approximation technique can be combined with a superposition technique to predict the approximate, conservative time concentration curve for constant rate and variable rate injections of contaminants. The procedure was applied to a hypothetical situation in which 5,000 pounds of contaminants is spilled instantaneously at Island Ford, Virginia. The times required for the leading edge, the peak concentration, and the trailing edge of the contaminant cloud to reach the water intake at Front Royal, Virginia (85 miles downstream), are 234,280, and 340 hrs, respectively, for a flow at an 80% flow duration. The conservative peak concentration would be approximately 940 micrograms/L at Front Royal. The procedures developed cannot be depended upon when a significant hydraulic wave or other unsteady flow condition exists in the flow system or when the spilled material floats or is immiscible in water. (Author 's abstract)

  20. Counting defects in an instantaneous quench.

    PubMed

    Ibaceta, D; Calzetta, E

    1999-09-01

    We consider the formation of defects in a nonequilibrium second-order phase transition induced by an instantaneous quench to zero temperature in a type II superconductor. We perform a full nonlinear simulation where we follow the evolution in time of the local order parameter field. We determine how far into the phase transition theoretical estimates of the defect density based on the Gaussian approximation yield a reliable prediction for the actual density. We also characterize quantitatively some aspects of the out of equilibrium phase transition.

  1. Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique

    NASA Astrophysics Data System (ADS)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.

  2. Kite Aerial Photography (KAP) as a Tool for Field Teaching

    ERIC Educational Resources Information Center

    Sander, Lasse

    2014-01-01

    Kite aerial photography (KAP) is proposed as a creative tool for geography field teaching and as a medium to approach the complexity of readily available geodata. The method can be integrated as field experiment, surveying technique or group activity. The acquired aerial images can instantaneously be integrated in geographic information systems…

  3. Models of classical and recurrent novae

    NASA Technical Reports Server (NTRS)

    Friedjung, Michael; Duerbeck, Hilmar W.

    1993-01-01

    The behavior of novae may be divided roughly into two separate stages: quiescence and outburst. However, at closer inspection, both stages cannot be separated. It should be attempted to explain features in both stages with a similar model. Various simple models to explain the observed light and spectral observations during post optical maximum activity are conceivable. In instantaneous ejection models, all or nearly all material is ejected in a time that is short compared with the duration of post optical maximum activity. Instantaneous ejection type 1 models are those where the ejected material is in a fairly thin shell, the thickness of which remains small. In the instantaneous ejection type 2 model ('Hubble Flow'), a thick envelope is ejected instantaneously. This envelope remains thick as different parts have different velocities. Continued ejection models emphasize the importance of winds from the nova after optical maximum. Ejection is supposed to occur from one of the components of the central binary, and one can imagine a general swelling of one of the components, so that something resembling a normal, almost stationary, stellar photosphere is observed after optical maximum. The observed characteristics of recurrent novae in general are rather different from those of classical novae, thus, models for these stars need not be the same.

  4. A flying hot wire study of the turbulent near wake of a circular cylinder at Reynolds number of 140,000. Ph.D. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Cantwell, B. J.

    1975-01-01

    The phenomenology was studied of the processes of vortex formation and transport in the near wake, at a Reynolds number sufficiently high to insure a fully turbulent wake, but low enough to insure a laminar separation. The apparatus developed for measuring this flow consisted of X-array hot wire probes mounted on the ends of a pair of whirling arms. A computer controlled data acquisition system was slaved to the position of the rotating arm and managed, monitored, edited, and recorded the vast profusion of data which is continuously poured out by the device. Results are presented which show the instantaneous velocity, intermittency, vorticity, and stress fields as a function of phase for the first six diameters of the near wake. The stresses in the near wake emerge as a concatenation of peaks and valleys, some the result of strong induced motions in the outer flow which cause free stream fluid to move rapidly inward toward the center of the wake, others the result of the random motions of the background turbulence.

  5. Analytical solutions to non-Fickian subsurface dispersion in uniform groundwater flow

    USGS Publications Warehouse

    Zou, S.; Xia, J.; Koussis, Antonis D.

    1996-01-01

    Analytical solutions are obtained by the Fourier transform technique for the one-, two-, and three-dimensional transport of a conservative solute injected instantaneously in a uniform groundwater flow. These solutions account for dispersive non-linearity caused by the heterogeneity of the hydraulic properties of aquifer systems and can be used as building blocks to construct solutions by convolution (principle of superposition) for source conditions other than slug injection. The dispersivity is assumed to vary parabolically with time and is thus constant for the entire system at any given time. Two approaches for estimating time-dependent dispersion parameters are developed for two-dimensional plumes. They both require minimal field tracer test data and, therefore, represent useful tools for assessing real-world aquifer contamination sites. The first approach requires mapped plume-area measurements at two specific times after the tracer injection. The second approach requires concentration-versus-time data from two sampling wells through which the plume passes. Detailed examples and comparisons with other procedures show that the methods presented herein are sufficiently accurate and easier to use than other available methods.

  6. Turbulence effects on a full-scale 2.5 MW horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chamorro, Leonardo; Lee, Seung-Jae; Olsen, David; Milliren, Chris; Marr, Jeff; Arndt, Roger; Sotiropoulos, Fotis

    2012-11-01

    Power fluctuations and fatigue loads are among the most significant problems that wind turbines face throughout their lifetime. Turbulence is the common driving mechanism that triggers instabilities on these quantities. We investigate the complex response of a full-scale 2.5 MW wind turbine under nearly neutral thermal stratification. The study is performed in the EOLOS Wind Energy Research Field Station of the University of Minnesota. An instrumented 130 meter meteorological tower located upstream of a Clipper Liberty C96 wind turbine is used to characterize the turbulent flow and atmospheric conditions right upstream of the wind turbine. High resolution and synchronous measurements of the wind velocity, turbine power and strain at the tower foundation are used to determine the scale-to-scale interaction between flow and the wind turbine. The structure of the fluctuating turbine power and instantaneous stresses are studied in detail. Important insights about the role of turbulent and coherent motions as well as strong intermittent gusts will be discussed. Funding was provided by Department of Energy DOE (DE-EE0002980) and Xcel Energy through the Renewable Development Fund (grant RD3-42).

  7. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    USGS Publications Warehouse

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.

  8. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part II. Jerky Flow and Instantaneous Strain Rate

    NASA Astrophysics Data System (ADS)

    Saeed-Akbari, A.; Mishra, A. K.; Mayer, J.; Bleck, W.

    2012-05-01

    The jerky and smooth flow curves in high-manganese twinning induced plasticity (TWIP) steels were investigated by comparing Fe-Mn-C and Fe-Mn-Al-C systems. The pronounced serrations on the flow curves of Fe-Mn-C TWIP steel, produced during tensile testing at 300 K (27 °C) and 373 K (100 °C), were shown to be the result of localized high-temperature Portevin Le-Chatelier (PLC) bands moving across the gage length throughout the deformation. The speed of the PLC bands and their temperature effects were found to be strongly dependent on the applied strain rate, which was controlled by adjusting the cross-head speed of the tensile testing machine. The localized temperature-dependent stacking fault energy (SFE) variations resulting from the PLC effect and adiabatic heating were analyzed and compared for both slow and fast deformation rates. The instabilities in the measured logarithmic strain values caused by jerky flow could cause the local strain rate to deviate systematically from the targeted (applied) strain rate. These instabilities are better observed by calculating the instantaneous strain rate (ISR) values for each instant of deformation along the entire gage length. Finally, a new type of diagram was developed by plotting the true stress against the ISR values. From the diagram, the onset of different mechanisms, such as deformation twinning, nonpronounced, and pronounced serrations, could be marked precisely.

  9. Fast PSP measurements of wall-pressure fluctuation in low-speed flows: improvements using proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Peng, Di; Wang, Shaofei; Liu, Yingzheng

    2016-04-01

    Fast pressure-sensitive paint (PSP) is very useful in flow diagnostics due to its fast response and high spatial resolution, but its applications in low-speed flows are usually challenging due to limitations of paint's pressure sensitivity and the capability of high-speed imagers. The poor signal-to-noise ratio in low-speed cases makes it very difficult to extract useful information from the PSP data. In this study, unsteady PSP measurements were made on a flat plate behind a cylinder in a low-speed wind tunnel (flow speed from 10 to 17 m/s). Pressure fluctuations (Δ P) on the plate caused by vortex-plate interaction were recorded continuously by fast PSP (using a high-speed camera) and a microphone array. Power spectrum of pressure fluctuations and phase-averaged Δ P obtained from PSP and microphone were compared, showing good agreement in general. Proper orthogonal decomposition (POD) was used to reduce noise in PSP data and extract the dominant pressure features. The PSP results reconstructed from selected POD modes were then compared to the pressure data obtained simultaneously with microphone sensors. Based on the comparison of both instantaneous Δ P and root-mean-square of Δ P, it was confirmed that POD analysis could effectively remove noise while preserving the instantaneous pressure information with good fidelity, especially for flows with strong periodicity. This technique extends the application range of fast PSP and can be a powerful tool for fundamental fluid mechanics research at low speed.

  10. Flow Structure and Surface Topology on a UCAV Planform

    NASA Astrophysics Data System (ADS)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald

    2003-11-01

    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  11. Flow separation in a straight draft tube, particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Maciel, Y.; Ciocan, G. D.; Deschênes, C.

    2014-03-01

    As part of the BulbT project, led by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University), the efficiency and power break off in a bulb turbine has been investigated. Previous investigations correlated the break off to draft tube losses. Tuft visualizations confirmed the emergence of a flow separation zone at the wall of the diffuser. Opening the guide vanes tends to extend the recirculation zone. The flow separations were investigated with two-dimensional and two-component particle image velocimetry (PIV) measurements designed based on the information collected from tuft visualizations. Investigations were done for a high opening blade angle with a N11 of 170 rpm, at best efficiency point and at two points with a higher Q11. The second operating point is inside the efficiency curve break off and the last operating point corresponds to a lower efficiency and a larger recirculation region in the draft tube. The PIV measurements were made near the wall with two cameras in order to capture two measurement planes simultaneously. The instantaneous velocity fields were acquired at eight different planes. Two planes located near the bottom wall were parallel to the generatrix of the conical part of the diffuser, while two other bottom planes diverged more from the draft tube axis than the cone generatrix. The last four planes were located on the draft tube side and diverged more from the draft tube axis than the cone generatrix. By combining the results from the various planes, the separation zone is characterized using pseudo-streamlines of the mean velocity fields, maps of the Reynolds stresses and maps of the reverse-flow parameter. The analysis provides an estimation of the separation zone size, shape and unsteady character, and their evolution with the guide vanes opening.

  12. Conceptualizing the seasonal and hydrological dynamics of riparian zone control on DOC in boreal headwater streams

    NASA Astrophysics Data System (ADS)

    Winterdahl, M.; Laudon, H.; Köhler, S.; Seibert, J.; Bishop, K.

    2009-04-01

    Dissolved organic material (DOM) plays a key role in many natural surface waters. Despite the importance of DOC for the hydrochemistry in boreal headwaters there are few models that conceptualize the controls on short-term variability in stream DOC. A relatively simple model has been proposed where the vertical profile of DOC in the riparian soil solution, serves as an instantaneous "chemostat" setting the DOC of laterally flowing groundwater just before it enters the stream. This paper considers whether the addition of seasonality (in the form of soil temperature) and antecedent flows can improve the predictions of daily DOC concentrations. The model was developed and tested using field data from the Krycklan catchment on the Svartberget Research Station in northern Sweden where a transect of soil solution sampling sites equipped with suction lysimeters and wells for monitoring groundwater level have been installed and monitored for over a decade. The field data showed an exponential correlation between depth and DOC concentration in the soil solution. There was also an exponential correlation between stream discharge and groundwater table position. The expressions for these two correlations (exponential functions) have been combined into a simple riparian DOC model. To simulate effects of seasonality and/or antecedent flow, modules for soil temperature evolution and/or groundwater flow were added and tested. The model was calibrated and tested against 8 years of data from the Västrabäcken headwater catchment in the Krycklan area. To estimate the uncertainty in the model and the observed data a Hornberger-Spear-Young sensitivity analysis together with a GLUE uncertainty analysis was performed.

  13. Base-flow measurements at partial-record sites on small streams in South Carolina

    USGS Publications Warehouse

    Barker, Carroll

    1986-01-01

    This report contains site descriptions and base-flow data collected at 362 partial-record sites in South Carolina. These data include site name, site description, latitude, longitude, drainage area, instantaneous streamflow, and date of the streamflow measurement. The base-flow data can be used as an aid to estimate low flow characteristics at ungaged locations on streams in South Carolina. Partial record data collection sites were established in all physiographic provinces except the lower Coastal Plain. Data collection sites were not established in the lower Coastal Plain because of the widespread occurrence of zero during drought periods in all but the larger streams. (USGS)

  14. Topology and convection of a northward interplanetary magnetic field reconnection event

    NASA Astrophysics Data System (ADS)

    Wendel, Deirdre E.

    >From observations and global MHD simulations, we deduce the local and global magnetic topology and current structure of a northward IMF reconnection event in the dayside magnetopause. The ESA four-satellite Cluster suite crossed the magnetopause at a location mapping along field lines to an ionospheric H-alpha emission observed by the IMAGE spacecraft. Therefore, we seek reconnection signatures in the Cluster data. From the four-point Cluster observations, we develop a superposed epoch method to find the instantaneous x-line, its associated current sheet, and the nature of the reconnecting particle flows. This method is unique in that it removes the motion of the hyperbolic structure and the magnetopause relative to the spacecraft. We detect singular field line reconnection--planar hyperbolic reconnecting fields superposed on an out-of- plane field. We also detect the non-ideal electric field that is required to certify reconnection at locations where the magnetic field does not vanish, and estimate a reconnection electric field of - 4 mV/m. The current sheet appears bifurcated, embedding a 30 km current sheet of opposite polarity within a broader current sheet about 130 km thick. Using a resistive MHD simulation and ionospheric satellite data, we examine the same event at global length scales. This gives a 3D picture of where reconnection occurs on the magnetopause for northward IMF with B x and B y components and a tilted dipole field. It also demonstrates that northward IMF 3D reconnection couples the reconnection electric field and field-aligned currents to the ionosphere, driving sunward convection in a manner that agrees with satellite measurements of sunward flows. We find singular field line reconnection of the IMF with both open and closed field lines near nulls in both hemispheres. The reconnection in turn produces both open and closed field lines. We discuss for the first time how line-tying in the ionosphere and draping of open and IMF field lines produce a torsion of the reconnecting singular magnetic field lines within the magnetopause. The simulation and data show that magnetopause reconnection topology is three-dimensional in a way that challenges accepted models of neutral lines and x-lines with guide fields.

  15. Infrared-temperature variability in a large agricultural field. [Dunnigan, California

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Goettelman, R. C.; Leroy, M. L. (Principal Investigator)

    1980-01-01

    The combined effect of water carved gullies, varying soil color, moisture state of the soil and crop, nonuniform phenology, and bare spots was measured for commercially grown barley planted on varying terrain. For all but the most rugged terrain, over 80% of the area within 4, 16, 65, and 259 ha cells was at temperatures within 3 C of the mean cell temperature. The result of using relatively small, 4 ha instantaneous field of views for remote sensing applications is that either the worst or the best of conditions is often observed. There appears to be no great advantage in utilizing a small instantaneous field of view instead of a large one for remote sensing of crop canopy temperatures. The two alternatives for design purposes are then either a very high spatial resolution, of the order of a meter or so, where the field is very accurately temperature mapped, or a low resolution, where the actual size seems to make little difference.

  16. Investigating large-scale secondary circulations within impact crater topographies in a refractive index-matched facility

    NASA Astrophysics Data System (ADS)

    Blois, Gianluca; Kim, Taehoon; Bristow, Nathan; Day, Mackenzie; Kocurek, Gary; Anderson, William; Christensen, Kenneth

    2017-11-01

    Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter >10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.

  17. Electrokinetic instability micromixing.

    PubMed

    Oddy, M H; Santiago, J G; Mikkelsen, J C

    2001-12-15

    We have developed an electrokinetic process to rapidly stir micro- and nanoliter volume solutions for microfluidic bioanalytical applications. We rapidly stir microflow streams by initiating a flow instability, which we have observed in sinusoidally oscillating, electroosmotic channel flows. As the effect occurs within an oscillating electroosmotic flow, we refer to it here as an electrokinetic instability (EKI). The rapid stretching and folding of material lines associated with this instability can be used to stir fluid streams with Reynolds numbers of order unity, based on channel depth and rms electroosmotic velocity. This paper presents a preliminary description of the EKI and the design and fabrication of two micromixing devices capable of rapidly stirring two fluid streams using this flow phenomenon. A high-resolution CCD camera is used to record the stirring and diffusion of fluorescein from an initially unmixed configuration. Integration of fluorescence intensity over measurement volumes (voxels) provides a measure of the degree to which two streams are mixed to within the length scales of the voxels. Ensemble-averaged probability density functions and power spectra of the instantaneous spatial intensity profiles are used to quantify the mixing processes. Two-dimensional spectral bandwidths of the mixing images are initially anisotropic for the unmixed configuration, broaden as the stirring associated with the EKI rapidly stretches and folds material lines (adding high spatial frequencies to the concentration field), and then narrow to a relatively isotropic spectrum at the well-mixed conditions.

  18. Cost-effectiveness of the U.S. Geological Survey stream-gaging program in Indiana

    USGS Publications Warehouse

    Stewart, J.A.; Miller, R.L.; Butch, G.K.

    1986-01-01

    Analysis of the stream gaging program in Indiana was divided into three phases. The first phase involved collecting information concerning the data need and the funding source for each of the 173 surface water stations in Indiana. The second phase used alternate methods to produce streamflow records at selected sites. Statistical models were used to generate stream flow data for three gaging stations. In addition, flow routing models were used at two of the sites. Daily discharges produced from models did not meet the established accuracy criteria and, therefore, these methods should not replace stream gaging procedures at those gaging stations. The third phase of the study determined the uncertainty of the rating and the error at individual gaging stations, and optimized travel routes and frequency of visits to gaging stations. The annual budget, in 1983 dollars, for operating the stream gaging program in Indiana is $823,000. The average standard error of instantaneous discharge for all continuous record gaging stations is 25.3%. A budget of $800,000 could maintain this level of accuracy if stream gaging stations were visited according to phase III results. A minimum budget of $790,000 is required to operate the gaging network. At this budget, the average standard error of instantaneous discharge would be 27.7%. A maximum budget of $1 ,000,000 was simulated in the analysis and the average standard error of instantaneous discharge was reduced to 16.8%. (Author 's abstract)

  19. Experimental modeling of gravity underflow in submarine channels

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Ashraful

    Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. Unlike natural rivers, few attempts have been made to explore the process of channel meandering in the submarine environment. This research focuses on resolving the flow field of submarine channels by conducting experiments in a large laboratory basin. Saline and particulate density flows were studied in a straight channel, a single bend sinuous channel with vertical sidewalls and a multiple-bend sinuous channel with sloping sidewalls. Instantaneous velocities in steady developed currents were measured using 3-component acoustic Doppler velocity probes. Excess fractional density was measured at selected locations by collecting water sample using a siphon rake. Turbulent kinetic energy and Reynolds stress components are derived from the instantaneous velocity data of the straight channel experiments. Structure functions for mean velocity, Reynolds stress and turbulent kinetic energy profiles are derived by fitting normalized data. The normalized Reynolds-averaged velocity shows excellent similarity collapse while the Reynolds-stress and the turbulent kinetic energy profiles display reasonable similarity. Vertical profiles of the turbulent kinetic energy display two peaks separated by a zone of low turbulence; the ratio of the maximum to the depth-averaged turbulent kinetic energy is approximately 1.5. Theoretical profile of turbulent kinetic energy is derived. Comparisons of experimentally and theoretically derived turbulent kinetic energy profiles show reasonable agreement except at the position of velocity maximum where the theoretical profile displays a very small value. Velocity profiles derived from the measurements with confined flow in the single bend channel reveal that channel curvature drives two helical flow cells, one stacked upon the other. The lower cell forms near the channel bed surface and has a circulation pattern similar to fluvial channels where a near-bed flow is directed inward. The other circulation cell forms in the upper part of the gravity flow and has a streamwise vorticity opposite to the lower cell. The lower circulation cell can be reasonably approximated by open channel flow theory. The curvature induced mixing is found to shift the position of the maximum streamwise velocity in the upward direction. Experiments conducted in the multiple-bend channel reveals that the channel side slope does not alter the structure of the secondary flow as long as the flow remains confined within the channel. However, if flow spilling occurs at the channel bend, the lateral convection suppresses the upper circulation cell. The lateral slope promotes high superelevation of the dense-light fluid interface at a channel bend and the current almost entirely separates from the inner bank. Compared with the saline flow, the silt-laden flow has larger thickness and thus easily experiences spilling at the bend apex. The overbank flow approximately follows the pre-bend direction of the in-channel flow. Unlike the flow in the channel with vertical sidewalls, the maximum velocity position does not experience an upward shift. This may be attributed to the highly superelevated current interface. The saline flow experiences little reduction in flow velocity while the velocity of the particulate flow drops significantly in the downstream direction primarily due to in-channel sediment deposit.

  20. Electric Current Solves Mazes

    ERIC Educational Resources Information Center

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  1. Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.

    ERIC Educational Resources Information Center

    Perez, J. M.; Quereda, R.

    1983-01-01

    Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)

  2. Dynamics of liquid slug using particle image velocimetry technique

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. I.; Aziz, A. Rashid A.; Heikal, M. R.

    2016-11-01

    Two phase liquid-gas slug flow is a source of vibration and fatigue on pipe walls and downstream equipment. This paper examines the effect of inlet conditions on the stream-wise velocity profiles and on the shear stresses induced by the liquid phase on the pipe wall during the slug flow. Instantaneous velocity vector fields of the liquid-gas (water-air) slug flow regime were obtained using particle image velocimetry (PIV) technique at various inlet conditions. A 6-m long Plexiglas pipe having an internal diameter 74-mm with a slight inclination of about 1.16° was considered for the visualization of the flow pattern. Test section was employed at a point 3.5m from the inlet, mounted with optical correction box filled with water to minimize the curvature effect of pipe on the PIV snapshots. Stream-wise velocity profiles are obtained at the wake of the liquid slug and the effect of inlet conditions were analyzed. A direct relationship was observed in between superficial gas velocity and the liquid stream-wise velocity at wake section of the slug flow. Further, the lower wall shear stresses were obtained using PIV velocity profiles at liquid film and the slug wake sections in a unit slug. The wall shear stress remained higher in the liquid slugy body as compared to the liquid film. Moreover, an increase in the wall shear stress was observed by increasing the gas superficial velocities.

  3. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei; You, Jiang; Gu, Xiaochun; Du, Congwu; Pan, Yingtian

    2016-12-01

    Noninvasive microvascular imaging using optical coherence Doppler tomography (ODT) has shown great promise in brain studies; however, high-speed microcirculatory imaging in deep brain remains an open quest. A high-speed 1.3 μm swept-source ODT (SS-ODT) system is reported which was based on a 200 kHz vertical-cavity-surface-emitting laser. Phase errors induced by sweep-trigger desynchronization were effectively reduced by spectral phase encoding and instantaneous correlation among the A-scans. Phantom studies have revealed a significant reduction in phase noise, thus an enhancement of minimally detectable flow down to 268.2 μm/s. Further in vivo validation was performed, in which 3D cerebral-blood-flow (CBF) networks in mouse brain over a large field-of-view (FOV: 8.5 × 5 × 3.2 mm3) was scanned through thinned skull. Results showed that fast flows up to 3 cm/s in pial vessels and minute flows down to 0.3 mm/s in arterioles or venules were readily detectable at depths down to 3.2 mm. Moreover, the dynamic changes of the CBF networks elicited by acute cocaine such as heterogeneous responses in various vessel compartments and at different cortical layers as well as transient ischemic events were tracked, suggesting the potential of SS-ODT for brain functional imaging that requires high flow sensitivity and dynamic range, fast frame rate and a large FOV to cover different brain regions.

  4. Sediment and Phosphorus losses by Surface Runoff from a Catchment in the Humid Pampa Landscape, Argentina Republic

    NASA Astrophysics Data System (ADS)

    Méndez M., A.; Díaz E., L.; Lenzi M., L.; Lado, M.; Vidal-Vázquez, E.

    2015-04-01

    The estimation of sediment and phosphorus transfers from soil into watersheds as a result of agricultural activity is a key aspect for characterizing the sustainability of current land use systems. The objective of the present study was to quantify the temporal evolution of suspended sediment and dissolved phosphorus losses from the upper basin of the Gualeguaychú River. The studied catchment has an area of 483 Km2 and is located in the Entre Ríos province, Argentina Republic. The climate is subtropical humid with average annual rainfall of 1200 mm. Soils are characterized by very low infiltration rates. Land use was assessed by remote sensing and GIS tools, and consists of: 31% abandoned rice fields, 20% naturalized fields, 20% soybean (second cycle), 10% soybean (first cycle), 7% rice, 4% Pasture, and the remaining 7% is devoted to civil and road works, native forests and other crops. Low soil infiltration capacity, together with landscape geomorphological traits of the studied landscape and zonal rainfall regime, typically originates periods with high surface runoff volumes, mainly in autumn, spring and summer months. The study was conducted during a period of eight years. Instantaneous water flow measurements (discharge) were estimated in a control section of Gualeguaychú River from hydrometer reading and the rating curve of height-flow. In addition, 134 water samples of 2000 cm3 were collected during the study period to analyze the concentration of suspended sediments and dissolved phosphorus. The instantaneous flow was estimated with the hydrometer reading and the application of curve of height - flow. The discharge range was from 0.14 to 128 m3/sec, indicating a high variability in the response of the catchment to seasonal rainfall. On average suspended sediment and dissolved phosphorus losses of the experimental catchment were 1.42 Mg and 0.335 Kg per hectare/year, respectively. It was also shown that few events of high rainfall that generate excess runoff were responsible for the most of recorded losses of sediment and phosphorus. Moreover, the highest exportation of sediments and phosphorus from soil to streamflow occurred in the spring and summer period. The daily losses of phosphorus or sediments were mainly explained by the amount of precipitation accumulated during the five days prior to sampling, as shown by regression analysis, and a higher coefficient of determination was obtained for samples extracted during the summer season. This response mainly has been demonstrated to be produced in periods with higher amounts of precipitation equal or greater than 35 mm arising in this season, which are characteristic for summer storms with high rain intensities, and therefore greater erosive power.

  5. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations of actuator geometry in the supersonic base flow determined that inclined cavity and normal cavity actuators positioned on the base near the base edge could produce significant disturbances in the shear layer. The disturbances were able to be tracked in time with phase-locked schlieren imaging and particle image velocimetry (PIV). The final set of flow control experiments were therefore performed with an eight-actuator base using the inclined cavity actuator geometry. The actuators were able to cause moderate influences on the axisymmetric shear layer velocity profile and base pressure. The most substantial changes to the shear layer and base pressure were noted for the highest current and duty cycle tests. At 1 A and 20% duty cycle, the base pressure was reduced by 3.5%. Similar changes were noted for all modes and a range of frequencies from about 10-30 kHz. Increases in duty cycle between 4% and 20% caused a nearly linear decrease in base pressure. Analysis of the shear layer velocity profiles acquired through PIV show a local thickening of the shear layer in the region of the disturbances caused by the actuator. A slight increase in thickness was also observed away from the disturbance. Disturbances were able to be tracked at all frequencies and translated along the shear layer at a convective velocity of 430 +/- 20 m/s. A fairly clear trend of increasing velocity disturbance amplitude correlating to increasing base pressure changes was noted. Moreover, the ability of the disturbances to stay well organized further down the shear layer also appears to be a significant factor in the actuators' effect on base pressure. Consistent with these observations, it appears that increased duty cycle causes increased shear layer disturbance amplitudes. The use of PIV has enabled substantial insight to be gained into the effects of the actuators on the ensemble-averaged flow field and on the variability of the instantaneous flow field with and without control. A sensitive bimodal recirculation region behavior was found in the no-control flow field that the plasma actuators could force. The flow field and turbulence statistics in each mode were substantially different. Through analysis of past no-control base pressure measurements, it is believed that the bimodal behavior fluctuates at a characteristic frequency between 0.4 and 0.5 Hz [StD = [special character omitted](5x10-5)]. The flat time-averaged base pressure distribution is due to the superposition of a normally non-flat instantaneous base pressure distribution. Also, the standard deviation of the base pressure measurements is reduced when in one recirculation region mode as compared to when it is fluctuating between recirculation region modes.

  6. Quantum field between moving mirrors: A three dimensional example

    NASA Technical Reports Server (NTRS)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  7. Extension of suboptimal control theory for flow around a square cylinder

    NASA Astrophysics Data System (ADS)

    Fujita, Yosuke; Fukagata, Koji

    2017-11-01

    We extend the suboptimal control theory to control of flow around a square cylinder, which has no point symmetry on the impulse response from the wall in contrast to circular cylinders and spheres previously studied. The cost functions examined are the pressure drag (J1), the friction drag (J2), the squared difference between target pressure and wall pressure (J3) and the time-averaged dissipation (J4). The control input is assumed to be continuous blowing and suction on the cylinder wall and the feedback sensors are assumued on the entire wall surface. The control law is derived so as to minimize the cost function under the constraint of linearized Navier-Stokes equation, and the impulse response field to be convolved with the instantaneous flow quanties are numerically obtained. The amplitide of control input is fixed so that the maximum blowing/suction velocity is 40% of the freestream velocity. When J2 is used as the cost function, the friction drag is reduced as expected but the mean drag is found to increase. In constast, when J1, J3, and J4 were used, the mean drag was found to decrease by 21%, 12%, and 22%, respectively; in addition, vortex shedding is suppressed, which leads to reduction of lift fluctuations.

  8. Modal content of noise generated by a coaxial jet in a pipe

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Johnston, J. P.

    1978-01-01

    Noise generated by air flow through a coaxial obstruction in a long, straight pipe was investigated with concentration on the modal characteristics of the noise field inside the pipe and downstream of the restriction. Two measurement techniques were developed for separation of the noise into the acoustic duct modes. The instantaneous mode separation technique uses four microphones, equally spaced in the circumferential direction, at the same axial location. The time-averaged mode separation technique uses three microphones mounted at the same axial location. A matrix operation on time-averaged data produces the modal pressure levels. This technique requires the restrictive assumption that the acoustic modes are uncorrelated with each other. The measured modal pressure spectra were converted to modal power spectra and integrated over the frequency range 200-6000 Hz. The acoustic efficiency levels (acoustic power normalized by jet kinetic energy flow), when plotted vs. jet Mach number, showed a strong dependence on the ratio of restriction diameter to pipe diameter. The acoustic energy flow analyses based on the thermodynamic energy equation and on the results of Mohring both resulted in orthogonality properties for the eigenfunctions of the radial mode shape equation. These orthogonality relationships involve the eigenvalues and derivatives of the radial mode shape functions.

  9. Shear sensitive monomer-polymer laminate structure and method of using same

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); Parmar, Devendra S. (Inventor)

    1993-01-01

    Monomer cholesteric liquid crystals have helical structures which result in a phenomenon known as selective reflection, wherein incident white light is reflected in such a way that its wavelength is governed by the instantaneous pitch of the helix structure. The pitch is dependent on temperature and external stress fields. It is possible to use such monomers in flow visualization and temperature measurement. However, the required thin layers of these monomers are quickly washed away by a flow, making their application time dependent for a given flow rate. The laminate structure according to the present invention comprises a liquid crystal polymer substrate attached to a test surface of an article. A light absorbing coating is applied to the substrate and is thin enough to permit bonding steric interaction between the liquid crystal polymer substrate and an overlying liquid crystal monomer thin film. Light is directed through and reflected by the liquid crystal monomer thin film and unreflected light is absorbed by the underlying coating. The wavelength of the reflected light is indicative of the shear stress experienced by the test surface. Novel aspects of the invention include its firm bonding of a liquid crystal monomer to a model and its use of a coating to reduce interference from light unreflected by the monomer helical structure.

  10. Development of high-resolution n(2) coherent anti-stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows.

    PubMed

    Woodmansee, M A; Lucht, R P; Dutton, J C

    2000-11-20

    Mean and instantaneous measurements of pressure, temperature, and density have been acquired in an optically accessible gas cell and in the flow field of an underexpanded sonic jet by use of the high-resolution N(2) coherent anti-Stokes Raman scattering (CARS) technique. This nonintrusive method resolves the pressure- and temperature-sensitive rotational transitions of the nu = 0 ? 1 N(2) Q-branch to within Domega = 0.10 cm(-1). To extract thermodynamic information from the experimental spectra, theoretical spectra, generated by a N(2) spectral modeling program, are fit to the experimental spectra in a least-squares manner. In the gas cell, the CARS-measured pressures compare favorably with transducer-measured pressures. The precision and accuracy of the single-shot CARS pressure measurements increase at subatmospheric conditions. Along the centerline of the underexpanded jet, the agreement between the mean CARS P/T/rho measurements and similar quantities extracted from a Reynolds-averaged Navier-Stokes computational fluid dynamic simulation is generally excellent. This CARS technique is able to capture the low-pressure and low-temperature conditions of the M = 3.4 flow entering the Mach disk, as well as the subsonic conditions immediately downstream of this normal shock.

  11. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate

    NASA Astrophysics Data System (ADS)

    Long, J.; New, T. H.

    2016-07-01

    Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.

  12. Current Trends in Modeling Research for Turbulent Aerodynamic Flows

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Rumsey, Christopher L.; Manceau, Remi

    2007-01-01

    The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier-Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows as well as the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide-variety of statistically steady, equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, that is, separation control. This review gives some current priorities in traditional Reynolds-averaged modeling research as well as some methodologies being applied to a new class of turbulent flow control problems.

  13. Temporal evolution of age data under transient pumping conditions

    NASA Astrophysics Data System (ADS)

    Leray, S.; de Dreuzy, J.-R.; Aquilina, L.; Vergnaud-Ayraud, V.; Labasque, T.; Bour, O.; Le Borgne, T.

    2014-04-01

    While most age data derived from tracers have been analyzed in steady-state flow conditions, we determine their temporal evolution when starting a pumping. Our study is based on a model made up of a shallowly dipping aquifer overlain by a less permeable aquitard characteristic of the crystalline aquifer of Plœmeur (Brittany, France). Under a pseudo transient flow assumption (instantaneous shift between two steady-state flow fields), we solve the transport equation with a backward particle-tracking method and determine the temporal evolution of the concentrations at the pumping well of CFC-11, CFC-12, CFC-113 and SF6. Apparent ages evolve because of the modifications of the flow pattern and because of the non-linear evolution of the tracer atmospheric concentrations. To identify the respective role of these two causes, we propose two successive analyses. We first convolute residence time distributions initially arising at different times at the same sampling time. We secondly convolute one residence time distribution at various sampling times. We show that flow pattern modifications control the apparent ages evolution in the first pumping year when the residence time distribution is modified from a piston-like distribution to a much broader distribution. In the first pumping year, the apparent age evolution contains transient information that can be used to better constrain hydrogeological systems and slightly compensate for the small number of tracers. Later, the residence time distribution hardly evolves and apparent ages only evolve because of the tracer atmospheric concentrations. In this phase, apparent age time-series do not reflect any evolution in the flow pattern.

  14. Streamflow characteristics and trends in New Jersey, water years 1897-2003

    USGS Publications Warehouse

    Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.

    2005-01-01

    Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.

  15. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations establhing buoyancy as the primary instability mechanism in self-excited low-density jets.

  16. Exergy Analyses of Fabricated Compound Parabolic Solar Collector with Evacuated Tubes at Different Operating Conditions: Indore (India)

    NASA Astrophysics Data System (ADS)

    Geete, Ankur; Dubey, Akash; Sharma, Ankush; Dubey, Anshul

    2018-05-01

    In this research work, compound parabolic solar collector (CPC) with evacuated tubes is fabricated. Main benefit of CPC is that there is no requirement of solar tracking system. With fabricated CPC; outlet temperatures of flowing fluid, instantaneous efficiencies, useful heat gain rates and inlet exergies (with and without considering Sun's cone angle) are experimentally found. Observations are taken at different time intervals (1200, 1230, 1300, 1330 and 1400 h), mass flow rates (1.15, 0.78, 0.76, 0.86 and 0.89 g/s), ambient temperatures and with various dimensions of solar collector. This research work is concluded as; maximum instantaneous efficiency is 69.87% which was obtained with 0.76 g/s flow rate of water at 1300 h and 42°C is the maximum temperature difference which was also found at same time. Maximum inlet exergies are 139.733 and 139.532 kW with and without considering Sun's cone angle at 1300 h, respectively. Best thermal performance from the fabricated CPC with evacuated tubes is found at 1300 h. Maximum inlet exergy is 141.365 kW which was found at 1300 h with 0.31 m aperture width and 1.72 m absorber pipe length.

  17. A rotating hot-wire technique for spatial sampling of disturbed and manipulated duct flows

    NASA Technical Reports Server (NTRS)

    Wark, C. E.; Nagib, H. M.; Jennings, M. J.

    1990-01-01

    A duct flow spatial sampling technique, in which an X-wire probe is rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section in order to furnish nearly instantaneous multipoint measurements of the streamwise and azimuthal components, is presently evaluated in view of the control of flow disturbances downstream of various open inlet contractions. The effectiveness of a particular contraction in controlling ingested flow disturbances was ascertained by artificially introducing disturbances upstream of the contractions; control effectiveness if found to be strongly dependent on inlet contraction, with consequences for the reduction of passing-blade frequency noise during gas turbine engine ground testing.

  18. Effects of ischemic stroke on dynamics of cerebral autoregulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ivanov, Plamen Ch; Hu, Kun; Stanley, Eugene; Novak, Vera

    2004-03-01

    Cerebral vasoregulation involves several complex mechanisms adapting blood flow to fluctuations of systemic blood pressure (BP). Autonomic BP and metabolic vasoregulation are impaired after stroke and cerebral blood flow depends on systemic BP. To probe the mechanisms of cerebral autoregulation we study levels of nonlinear synchronization between cerebral blood flow velocity (BFV) and peripheral BP. We quantify the instantaneous phase of each signal employing analytic signal approach and Hilbert transform. As a marker of synchronization, we introduce a measure of cross-correlation between the instantaneous phase increments of the BFV and BP signals at different time lags. We have studied 12 subjects with minor chronic ischemic stroke and 11 matched normotensive controls (age<65years). BFV and BP of these subjects are continuously recorded during supine baseline, head-up tilt, hyperventilation and CO2 rebreathing. For control subjects we find significant synchronization between cerebral BFV and peripheral BP only for short time lags of up to 5-6 seconds, suggesting a rapid return to a steady cerebral blood flow after initial blood pressure perturbations. In contrast, for stroke subjects BFV/BP we find enhanced synchronization over longer time lags of up to 20 seconds, suggesting entrainment of cerebral blood flow velocity by slow vasomotor rhythms. These findings suggest that cerebral vasoregulation is impaired and cerebral blood flow follows the fluctuations of systemic BP in a synchronous manner. Our analysis shows that cerebral autoregulation is impaired in 10 out of the 12 stroke subjects, which is typically difficult to diagnose with conventional methods. Thus, our novel synchronization approach offers a new tool sensitive for evaluation of changes in the dynamics of cerebral autoregulation under stroke.

  19. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension.

    PubMed

    Novak, Vera; Yang, Albert C C; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang

    2004-10-25

    This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 +/- 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure.

  20. Influence of isoflurane on the diastolic pressure-flow relationship and critical occlusion pressure during arterial CABG surgery: a randomized controlled trial.

    PubMed

    Hinz, José; Mansur, Ashham; Hanekop, Gerd G; Weyland, Andreas; Popov, Aron F; Schmitto, Jan D; Grüne, Frank F G; Bauer, Martin; Kazmaier, Stephan

    2016-01-01

    The effects of isoflurane on the determinants of blood flow during Coronary Artery Bypass Graft (CABG) surgery are not completely understood. This study characterized the influence of isoflurane on the diastolic Pressure-Flow (P-F) relationship and Critical Occlusion Pressure (COP) during CABG surgery. Twenty patients undergoing CABG surgery were studied. Patients were assigned to an isoflurane or control group. Hemodynamic and flow measurements during CABG surgery were performed twice (15 minutes after the discontinuation of extracorporeal circulation (T15) and again 15 minutes later (T30)). The zero flow pressure intercept (a measure of COP) was extrapolated from a linear regression analysis of the instantaneous diastolic P-F relationship. In the isoflurane group, the application of isoflurane significantly increased the slope of the diastolic P-F relationship by 215% indicating a mean reduction of Coronary Vascular Resistance (CVR) by 46%. Simultaneously, the Mean Diastolic Aortic Pressure (MDAP) decreased by 19% mainly due to a decrease in the systemic vascular resistance index by 21%. The COP, cardiac index, heart rate, Left Ventricular End-Diastolic Pressure (LVEDP) and Coronary Sinus Pressure (CSP) did not change significantly. In the control group, the parameters remained unchanged. In both groups, COP significantly exceeded the CSP and LVEDP at both time points. We conclude that short-term application of isoflurane at a sedative concentration markedly increases the slope of the instantaneous diastolic P-F relationship during CABG surgery implying a distinct decrease with CVR in patients undergoing CABG surgery.

  1. Infrared Imaging for Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Xie, Charles; Hazzard, Edmund

    2011-01-01

    Based on detecting long-wavelength infrared (IR) radiation emitted by the subject, IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words, an IR camera has great potential in teaching heat transfer, which is otherwise invisible. The idea of using IR imaging in teaching was first…

  2. Particle sedimentation and impaction in the respiratory airways

    NASA Astrophysics Data System (ADS)

    Nicolaou, Laura; Zaki, Tamer

    2017-11-01

    Impaction is the dominant deposition mechanism for micron-sized particles in the upper airways. However, sedimentation becomes significant as the flowrate decreases and particle size increases. In order to assess the relative importance of impaction and sedimentation, we examine particle transport and deposition under different inhalation conditions, and for different particle sizes. Two important dimensionless parameters are (i) the Stokes number, Stk , and (ii) the ratio of the gravitational settling velocity to the fluid velocity, Vg. Their ratio is the Froude number, which measures the relative importance of inertial to gravitational forces. Instantaneous definitions of the Stokes and Froude numbers are derived, based on the local flow properties, in order to obtain a more accurate representation of the particle trajectories. The instantaneous Froude number can be 3-4 orders of magnitude smaller than the reference value in regions of the flow. Therefore, gravitational effects should not be neglected. In addition, deposition is shown to correlate with high values of StkVg . Particles with high Vg deposit primarily in the mouth, via sedimentation, while particles with high Stk deposit mainly in the larynx and trachea, via impaction.

  3. Transmission of the convection electric field to the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.

    2003-12-01

    Low latitude magnetometer observations revealed that the partial ring current started to develop within several minutes after the onset of growth of the polar cap potential (PCP), and decayed simultaneously with the decrease in the PCP (Hashimoto, Kikuchi and Ebihara., JGR 2002). The magnetometer observations also indicated that the DP2 ionospheric currents were driven by the convection electric field at mid latitudes as well as at high latitudes. These observational facts suggest that the ionospheric electric field plays a crucial role in driving the convection in the inner magnetosphere. A probable model for the electric field transmission should explain both the convection in the inner magnetosphere and the ionospheric currents at mid latitudes. The instantaneous transmission of the ionospheric electric field and currents from the polar ionosphere to the equator was explained by Kikuchi and Araki (JATP 1979) based on the TM0 mode in the Earth-ionosphere waveguide. In this paper, we attempt to explain the transmission of the convection electric field to the inner magnetosphere by applying the Earth-ionosphere waveguide. However, two issues remained unresolved in the paper by Kikuchi and Araki (1979). One is the excitation of the TM0 mode in the Earth-ionosphere waveguide, and the other is the attenuation under the nighttime ionospheric condition. To examine the excitation of the TM0 mode, we couple the Earth-ionosphere waveguide (transmission line) with a magnetospheric transmission line composed of a pair of field-aligned currents (e.g., R1 FACs). A fraction of the electromagnetic energy carried from the magnetosphere is transmitted into the Earth-ionosphere waveguide, although substantial energy is dissipated in the polar ionosphere intervening between the two transmission lines. The transmitted electromagnetic energy excites the TM0 mode in the Earth-ionosphere waveguide. We then evaluate the attenuation of the TM0 mode by calculating upward flow of energy from the waveguide into the conducting ionosphere and the magnetosphere. It is shown that the attenuation of the TM0 mode is not significant even for the nighttime condition, when compared to the geometrical attenuation due to the finite size of the polar electric field. Furthermore, it is shown that the ionospheric electric field carried by the TM0 mode is transmitted by Alfven waves upward into the inner magnetosphere along the magnetic field lines, supplying energy for the convection in the inner magnetosphere. It should be stressed that the ionosphere never creates electromagnetic energy but acts as a transmission line for the convection electric field. We conclude that the Earth-ionosphere waveguide connected with the magnetospheric transmission line explains both the instantaneous propagation of the electric field and currents in the ionosphere and of the convection electric field into the inner magnetosphere.

  4. Impact damage imaging in a curved composite panel with wavenumber index via Riesz transform

    NASA Astrophysics Data System (ADS)

    Chang, Huan-Yu; Yuan, Fuh-Gwo

    2018-03-01

    The barely visible impact damages reduce the strength of composite structures significantly; however, they are difficult to be detected during regular visual inspection. A guided wave based damage imaging condition method is developed and applied on a curved composite panel, which is a part of an aileron from a retired Boeing C-17 Globemaster III. Ultrasonic guided waves are excited by a piezoelectric transducer (PZT) and then captured by a laser Doppler vibrometer (LDV). The wavefield images are constructed by measuring the out-of-plane velocity point by point within interrogation region, and the anomalies at the damage area can be observed with naked eye. The discontinuities of material properties leads to the change of wavenumber while the wave propagating through the damaged area. These differences in wavenumber can be observed by deriving instantaneous wave vector via Riesz transform (RT), and then be shown and highlighted with the proposed imaging condition named wavenumber index (WI). RT can be introduced as a two-dimensional (2-D) generalization of Hilbert transform (HT) to derive instantaneous phases, amplitudes, orientations of a guided-wave field. WI employs the instantaneous wave vector and weighted instantaneous wave energy computed from the instantaneous amplitudes, yielding high sensitivity and sharp damage image with computational efficiency. The BVID of the composite structure becomes therefore "visible" with the developed technique.

  5. The Physics of Turbulence in the Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kline, Stephen; Cantwell, Brian

    1995-01-01

    The geometry of the velocity field in a numerically simulated incompressible turbulent boundary layer over a flat plate at Re theta=670 has been studied using the invariants of the velocity gradient tensor. These invariants are computed at every grid point in the flow and used to form the discriminant. Of primary interest are those regions in the flow where the discriminant is positive; regions where, according to the characteristic equation, the eigenvalues of the velocity gradient tensor are complex. An observer moving with a frame of reference which is attached to a fluid particle lying within such a region would see a local flow pattern of the type stable-focus-stretching or unstable-focus-compressing. When the flow is visualized this way, continuous, connected, large-scale structures are revealed that extend from the point just below the buffer layer out to the beginning of the wake region. These structures are aligned with the mean shear close to the wall and arch in the cross-stream direction away from the wall. In some cases the structures observed are very similar to to the hairpin eddy vision of boundary layer structure proposed by Theodorsen. That the structure of the flow is revealed more effectively by the discriminant rather than by the vorticity is important and adds support to recent observations of the discriminant in a channel flow simulation. Of particular importance is the fact that the procedure does not require the use of an arbitrary threshold in the discriminant. Further analysis using computer flow visualization shows a high degree of spatial correlation between regions of positive discriminant, extreme negative pressure fluctuations and large instantaneous values of Reynolds shear stress.

  6. Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex

    NASA Astrophysics Data System (ADS)

    Schulze, Jan; Shibl, Mohamed F.; Al-Marri, Mohammed J.; Kühn, Oliver

    2016-05-01

    The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motion and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation.

  7. Estimating the Soil Temperature Profile from a Single Depth Observation: A Simple Empirical Heatflow Solution

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas; Owe, Manfred; deJeu, Richard

    2007-01-01

    Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.

  8. Characterization of flame stabilization technologies

    NASA Astrophysics Data System (ADS)

    Bush, Scott Matthew

    To experimentally explore and characterize a V-gutter stabilized flame, this research study developed a Combustion Wind Tunnel Test Facility capable of effectively simulating the freestream Mach #'s and temperatures achieved within the back end of a gas turbine jet engine. After validating this facility, it was then used to gain a better understanding of the flow dynamics and combustion dynamics associated with the V-gutter configuration. The motivation for studying the V-gutter stabilized flame is due to the concern in industry today with combustion instabilities that are encountered in military aircraft. To gain a better understanding of the complex flow field associated with the V-gutter stabilized flame, this research study utilized Particle Image Velocimetry to capture both non-reacting and reacting instantaneous and mean flow structures formed in the wake region of the three dimensional V-gutter bluff body. The results of this study showed significant differences between the non-reacting and reacting flow fields. The non-reacting case resulted in asymmetric shedding of large scale vortices from the V-gutter edges while the reacting case resulted in a combination of both symmetric and asymmetric shedding of smaller scale vortical structures. A comparison of the mean velocity components shows that the reacting case results in a larger region of reversed flow, experiences an acceleration of the freestream flow due to combustion, and results in a slower dissipation of the wake region. Simultaneous dynamic pressure and CH* chemiluminescence measurements were also recorded to determine the coupling between the flow dynamics and combustion dynamics. The results of this study showed that only low frequency combustion instabilities were encountered at various conditions within the envelope of stable operation because of the interaction between longitudinal acoustic waves and unsteady heat release. When approaching rich blow out, rms pressure amplitudes were as high as 2 psi, and approaching lean blow out lead to rms pressure amplitudes around 0.2 psi. These studies also showed the instability frequency increasing with increases in either inlet temperature or inlet Mach #. Additionally, increasing the inlet velocity or the DeZubay parameter reduced the stability limits of operation for the V-gutter stabilized flame.

  9. Kinetics of the water/air phase transition of radon and its implication on detection of radon-in-water concentrations: practical assessment of different on-site radon extraction methods.

    PubMed

    Schubert, Michael; Paschke, Albrecht; Bednorz, Denise; Bürkin, Walter; Stieglitz, Thomas

    2012-08-21

    The on-site measurement of radon-in-water concentrations relies on extraction of radon from the water followed by its detection by means of a mobile radon-in-air monitor. Many applications of radon as a naturally occurring aquatic tracer require the collection of continuous radon concentration time series, thus necessitating the continuous extraction of radon either from a permanent water stream supplied by a water pump or directly from a water body or a groundwater monitoring well. Essentially, three different types of extraction units are available for this purpose: (i) a flow-through spray chamber, (ii) a flow-through membrane extraction module, and (iii) a submersible (usually coiled) membrane tube. In this paper we discuss the advantages and disadvantages of these three methodical approaches with particular focus on their individual response to instantaneously changing radon-in-water concentrations. After a concise introduction into theoretical aspects of water/air phase transition kinetics of radon, experimental results for the three types of extraction units are presented. Quantitative suggestions for optimizing the detection setup by increasing the water/air interface and by reducing the air volume circulating through the degassing unit and radon detector are made. It was shown that the flow-through spray chamber and flow-through membrane perform nearly similarly, whereas the submersible membrane tubing has a significantly larger delay in response to concentration changes. The flow-through spray chamber is most suitable in turbid waters and to applications where high flow rates of the water pump stream can be achieved (e.g., where the power supply is not constrained by field conditions). The flow-through membrane is most suited to radon extraction from clear water and in field conditions where the power supply to a water pump is limited, e.g., from batteries. Finally, the submersible membrane tube is most suitable if radon is to be extracted in situ without any water pumping, e.g., in groundwater wells with a low yield, or in long-term time series, in which short-term variations in the radon concentration are of no relevance.

  10. Study of compressible turbulent flows in supersonic environment by large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Genin, Franklin

    The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is considered. It is shown that the levels of turbulence are increased through the interaction, and that the mixing is significantly improved in this flow configuration. However, the region of increased mixing is found to be localized to a region close to the impact of the shocks, and that the statistical levels of turbulence relax to their undisturbed levels some short distance downstream of the interaction. The present developments are finally applied to a practical configuration relevant to scramjet injection. The normal injection of a sonic jet into a supersonic crossflow is considered numerically, and compared to the results of an experimental study. A fair agreement in the statistics of mean and fluctuating velocity fields is obtained. Furthermore, some of the instantaneous flow structures observed in experimental visualizations are identified in the present simulation. The dynamics of the interaction for the reference case, based on the experimental study, as well as for a case of higher freestream Mach number and a case of higher momentum ratio, are examined. The classical instantaneous vortical structures are identified, and their generation mechanisms, specific to supersonic flow, are highlighted. Furthermore, two vortical structures, recently revealed in low-speed jets in crossflow but never documented for high-speed flows, are identified during the flow evolution.

  11. Meteor trail footprint statistics

    NASA Astrophysics Data System (ADS)

    Mui, S. Y.; Ellicott, R. C.

    Footprint statistics derived from field-test data are presented. The statistics are the probability that two receivers will lie in the same footprint. The dependence of the footprint statistics on the transmitter range, link orientation, and antenna polarization are examined. Empirical expressions for the footprint statistics are presented. The need to distinguish the instantaneous footprint, which is the area illuminated at a particular instant, from the composite footprint, which is the total area illuminated during the lifetime of the meteor trail, is explained. The statistics for the instantaneous and composite footprints have been found to be similar. The only significant difference lies in the parameter that represents the probability of two colocated receivers being in the same footprint. The composite footprint statistics can be used to calculate the space diversity gain of a multiple-receiver system. The instantaneous footprint statistics are useful in the evaluation of the interference probability in a network of meteor burst communication nodes.

  12. Flow-induced voltage generation in non-ionic liquids over monolayer graphene

    NASA Astrophysics Data System (ADS)

    Ho Lee, Seung; Jung, Yousung; Kim, Soohyun; Han, Chang-Soo

    2013-02-01

    To clarify the origin of the flow-induced voltage generation in graphene, we prepared a new experimental device whose electrodes were aligned perpendicular to the flow with a non-ionic liquid. We found that significant voltage in our device was generated with increasing flow velocity, thereby confirming that voltage was due to an intrinsic interaction between graphene and the flowing liquid. To understand the mechanism of the observed flow-induced voltage generation, we systematically varied several important experimental parameters: flow velocity, electrode alignment, liquid polarity, and liquid viscosity. Based on these measurements, we suggest that polarity of the fluid is a significant factor in determining the extent of the voltage generated, and the major mechanism can be attributed to instantaneous potential differences induced in the graphene due to an interaction with polar liquids and to the momentum transferred from the flowing liquid to the graphene.

  13. Validity of the Catapult ClearSky T6 Local Positioning System for Team Sports Specific Drills, in Indoor Conditions

    PubMed Central

    Luteberget, Live S.; Spencer, Matt; Gilgien, Matthias

    2018-01-01

    Aim: The aim of the present study was to determine the validity of position, distance traveled and instantaneous speed of team sport players as measured by a commercially available local positioning system (LPS) during indoor use. In addition, the study investigated how the placement of the field of play relative to the anchor nodes and walls of the building affected the validity of the system. Method: The LPS (Catapult ClearSky T6, Catapult Sports, Australia) and the reference system [Qualisys Oqus, Qualisys AB, Sweden, (infra-red camera system)] were installed around the field of play to capture the athletes' motion. Athletes completed five tasks, all designed to imitate team-sports movements. The same protocol was completed in two sessions, one with an assumed optimal geometrical setup of the LPS (optimal condition), and once with a sub-optimal geometrical setup of the LPS (sub-optimal condition). Raw two-dimensional position data were extracted from both the LPS and the reference system for accuracy assessment. Position, distance and speed were compared. Results: The mean difference between the LPS and reference system for all position estimations was 0.21 ± 0.13 m (n = 30,166) in the optimal setup, and 1.79 ± 7.61 m (n = 22,799) in the sub-optimal setup. The average difference in distance was below 2% for all tasks in the optimal condition, while it was below 30% in the sub-optimal condition. Instantaneous speed showed the largest differences between the LPS and reference system of all variables, both in the optimal (≥35%) and sub-optimal condition (≥74%). The differences between the LPS and reference system in instantaneous speed were speed dependent, showing increased differences with increasing speed. Discussion: Measures of position, distance, and average speed from the LPS show low errors, and can be used confidently in time-motion analyses for indoor team sports. The calculation of instantaneous speed from LPS raw data is not valid. To enhance instantaneous speed calculation the application of appropriate filtering techniques to enhance the validity of such data should be investigated. For all measures, the placement of anchor nodes and the field of play relative to the walls of the building influence LPS output to a large degree. PMID:29670530

  14. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.; Suzuki, M.; Hawkins, R. B.

    2015-05-01

    Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if the interruption time extends to 30 min or longer. These effects should be considered in carbon-ion radiotherapy treatment planning if a longer dose-delivery procedure time is anticipated.

  15. A Generalized 2D-Dynamical Mean-Field Ising Model with a Rich Set of Bifurcations (Inspired and Applied to Financial Crises)

    NASA Astrophysics Data System (ADS)

    Smug, Damian; Sornette, Didier; Ashwin, Peter

    We analyze an extended version of the dynamical mean-field Ising model. Instead of classical physical representation of spins and external magnetic field, the model describes traders' opinion dynamics. The external field is endogenized to represent a smoothed moving average of the past state variable. This model captures in a simple set-up the interplay between instantaneous social imitation and past trends in social coordinations. We show the existence of a rich set of bifurcations as a function of the two parameters quantifying the relative importance of instantaneous versus past social opinions on the formation of the next value of the state variable. Moreover, we present a thorough analysis of chaotic behavior, which is exhibited in certain parameter regimes. Finally, we examine several transitions through bifurcation curves and study how they could be understood as specific market scenarios. We find that the amplitude of the corrections needed to recover from a crisis and to push the system back to “normal” is often significantly larger than the strength of the causes that led to the crisis itself.

  16. Measurement Capabilities of Single-Pulse Planar Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.; Kutler, Paul F. (Technical Monitor)

    1994-01-01

    Preliminary investigations are described of a method that is capable of measuring instantaneous, 3-D, velocity vectors everywhere in a light sheet generated by a pulsed laser. The technique, here called Planar Doppler Velocimetry (PDV), is a variation of a new concept for velocity measurements that was called Doppler Global Velocimetry (DGV) in its original disclosure. The concept relies on the use of a narrowband laser and measurements of the Doppler shift of scattered light from particles moving with a flow. The Doppler shift is recorded as a variation in transmission through a sharp-edged spectral filter provided by iodine vapor in a cell. Entire fields of velocity can be determined by using a solid-state camera to record the intensity variations throughout the field of view. However, the implementation of DGV has been centered principally on the use of high power, continuous-wave, ion lasers and measurement times that are determined by the 30-ms framing times of standard video cameras. Hence, they provide velocity fields that are averaged in time at least over that period. On the other hand, the PDV concept described in this presentation incorporates a high energy, repetitively pulsed, Nd-YAG laser that is injection-seeded to make it narrowband and then frequency-doubled to provide light at frequencies absorbed by the iodine vapor. The duration of each pulse is less than 10 nanoseconds. When used in combination with nonstandard, scientific quality, solid state cameras, a sequence of images can be obtained that provides instantaneous velocity vectors everywhere in the field of view. The investigations described in this paper include an accurate characterization of the iodine cell spectral behavior and its influence on the PDV measurements, a derivation of the PDV signal analysis requirements, and the unique aspects of the pulsed laser behavior related to this application. In addition, PDV measurements are to be demonstrated using data from a rotating wheel target and from the flow of a subsonic jet. Initially, single optical fiber light collection and photomultiplier detectors will be substituted for solid state cameras. Those results will allow the determination of the fundamental limitations of the PDV technique without the complications of image acquisition and processing. They will then be used to provide an analysis of the measurement capabilities of PDV both in small aerodynamic research wind tunnels and in large wind tunnels designed for production airframe and propulsion testing. Future plans include the implementation of solid state cameras and the development of the required image acquisition and processing software. Eventually, the PDV technique will be applied to an aerodynamic research program related to transonic wing flutter.

  17. The Analysis of Turbulent Flow by Hot Wire Signals. Ph.D. Thesis - Physikalische Ingenieurvissenschaft der Technischen Univ., 1981

    NASA Technical Reports Server (NTRS)

    Bartenwerfer, M.

    1982-01-01

    When measuring velocities in turbulent gas flow, approximation signal analysis with hot wire anemometers having one and two wire probes are used. A numeric test of standard analyses shows the resulting systemmatic error increases quickly with increasing turbulent intensity. Since it also depends on the turbulence structure, it cannot be corrected. The use of such probes is thus restricted to low turbulence. By means of three wire probes (in two dimensional flows with X wire probes) in principle, instantaneous values of velocity can be determined, and an asymmetric arrangement of wires has a theoretical advantage.

  18. General mechanism for the meandering instability of rivulets of Newtonian fluids.

    PubMed

    Daerr, A; Eggers, J; Limat, L; Valade, N

    2011-05-06

    A rivulet flowing down an inclined plane often does not follow a straight path, but starts to meander spontaneously. Here we show that this instability is the result of two key ingredients: fluid inertia and anisotropy of the friction between rivulet and substrate. Meandering only occurs if the motion normal to the instantaneous flow direction is more difficult than parallel to it. We give a quantitative criterion for the onset of meandering and confirm it by comparing to the flow of a rivulet between two glass plates which are wetted completely. Above the threshold, the rivulet follows an irregular pattern with a typical wavelength of a few cm.

  19. Improved optical flow motion estimation for digital image stabilization

    NASA Astrophysics Data System (ADS)

    Lai, Lijun; Xu, Zhiyong; Zhang, Xuyao

    2015-11-01

    Optical flow is the instantaneous motion vector at each pixel in the image frame at a time instant. The gradient-based approach for optical flow computation can't work well when the video motion is too large. To alleviate such problem, we incorporate this algorithm into a pyramid multi-resolution coarse-to-fine search strategy. Using pyramid strategy to obtain multi-resolution images; Using iterative relationship from the highest level to the lowest level to obtain inter-frames' affine parameters; Subsequence frames compensate back to the first frame to obtain stabilized sequence. The experiment results demonstrate that the promoted method has good performance in global motion estimation.

  20. Attosecond electronic recollision as field detector

    NASA Astrophysics Data System (ADS)

    Carpeggiani, P. A.; Reduzzi, M.; Comby, A.; Ahmadi, H.; Kühn, S.; Frassetto, F.; Poletto, L.; Hoff, D.; Ullrich, J.; Schröter, C. D.; Moshammer, R.; Paulus, G. G.; Sansone, G.

    2018-05-01

    We demonstrate the complete reconstruction of the electric field of visible–infrared pulses with energy as low as a few tens of nanojoules. The technique allows for the reconstruction of the instantaneous electric field vector direction and magnitude, thus giving access to the characterization of pulses with an arbitrary time-dependent polarization state. The technique combines extreme ultraviolet interferometry with the generation of isolated attosecond pulses.

  1. Magnetosphere-Ionosphere Coupling and Associated Ring Current Energization Processes

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    2004-01-01

    Adiabatic processes in the ring current are examined. In particular, an analysis of the factors that parameterize the net adiabatic energy gain in the inner magnetosphere during magnetic storms is presented. A single storm was considered, that of April 17, 2002. Three simulations were conducted with similar boundary conditions but with different electric field descriptions. It is concluded that the best parameter for quantifying the net adiabatic energy gain in the inner magnetosphere during storms is the instantaneous value of the product of the maximum westward electric field at the outer simulation boundary with the nightside plasma sheet density. However, all of the instantaneous magnetospheric quantities considered in this study produced large correlation coefficients. Therefore, they all could be considered useful predictors of the net adiabatic energy gain of the ring current. Long integration times over the parameters lessen the significance of the correlation. Finally, some significant differences exist in the correlation coefficients depending on the electric field description.

  2. Tunneling exit characteristics from classical backpropagation of an ionized electron wave packet

    NASA Astrophysics Data System (ADS)

    Ni, Hongcheng; Saalmann, Ulf; Rost, Jan-Michael

    2018-01-01

    We investigate tunneling ionization of a single active electron with a strong and short laser pulse, circularly polarized. With the recently proposed backpropagation method, we can compare different criteria for the tunnel exit as well as popular approximations in strong-field physics on the same footing. Thereby, we trace back discrepancies in the literature regarding the tunneling time to inconsistent tunneling exit criteria. The main source of error is the use of a static ionization potential, which is, however, time dependent for a short laser pulse. A vanishing velocity in the instantaneous field direction as tunneling exit criterion offers a consistent alternative, since it does not require the knowledge of the instantaneous binding energy. Finally, we propose a mapping technique that links observables from attoclock experiments to the intrinsic tunneling exit time.

  3. The IRAS radiation environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    Orbital flux integration for three selected mission altitudes and geographic instantaneous flux-mapping for nominal flight-path altitude were used to determine the external charged particle radiation predicted for the Infrared Astronomy Satellite. A current field model was used for magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions. Innovative analysis features introduced include (1) positional fluxes as a function of time and energy for the most severe pass through the South Atlantic Anomaly; (2) total positional doses as a function of time and shield thickness; (3) comparison mapping fluxes for ratios of positional intensities to orbit integrated averages; and (4) statistical exposure-time history of a trajectory as a function of energy indicating, in percent of total mission duration, the time intervals over which the instantaneous fluxes would exceed the orbit integrated averages. Results are presented in tables and graphs.

  4. Proposed imaging of the ultrafast electronic motion in samples using x-ray phase contrast.

    PubMed

    Dixit, Gopal; Slowik, Jan Malte; Santra, Robin

    2013-03-29

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.

  5. Proposed Imaging of the Ultrafast Electronic Motion in Samples using X-Ray Phase Contrast

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Slowik, Jan Malte; Santra, Robin

    2013-03-01

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11 636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the Laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.

  6. Temporal dynamics of catchment transit times from stable isotope data

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Chun, Kwok P.; McGuire, Kevin J.; McDonnell, Jeffrey J.

    2015-06-01

    Time variant catchment transit time distributions are fundamental descriptors of catchment function but yet not fully understood, characterized, and modeled. Here we present a new approach for use with standard runoff and tracer data sets that is based on tracking of tracer and age information and time variant catchment mixing. Our new approach is able to deal with nonstationarity of flow paths and catchment mixing, and an irregular shape of the transit time distribution. The approach extracts information on catchment mixing from the stable isotope time series instead of prior assumptions of mixing or the shape of transit time distribution. We first demonstrate proof of concept of the approach with artificial data; the Nash-Sutcliffe efficiencies in tracer and instantaneous transit times were >0.9. The model provides very accurate estimates of time variant transit times when the boundary conditions and fluxes are fully known. We then tested the model with real rainfall-runoff flow and isotope tracer time series from the H.J. Andrews Watershed 10 (WS10) in Oregon. Model efficiencies were 0.37 for the 18O modeling for a 2 year time series; the efficiencies increased to 0.86 for the second year underlying the need of long time tracer time series with a long overlap of tracer input and output. The approach was able to determine time variant transit time of WS10 with field data and showed how it follows the storage dynamics and related changes in flow paths where wet periods with high flows resulted in clearly shorter transit times compared to dry low flow periods.

  7. Instantaneous phase-shifting Fizeau interferometry with high-speed pixelated phase-mask camera

    NASA Astrophysics Data System (ADS)

    Yatagai, Toyohiko; Jackin, Boaz Jessie; Ono, Akira; Kiyohara, Kosuke; Noguchi, Masato; Yoshii, Minoru; Kiyohara, Motosuke; Niwa, Hayato; Ikuo, Kazuyuki; Onuma, Takashi

    2015-08-01

    A Fizeou interferometer with instantaneous phase-shifting ability using a Wollaston prism is designed. to measure dynamic phase change of objects, a high-speed video camera of 10-5s of shutter speed is used with a pixelated phase-mask of 1024 × 1024 elements. The light source used is a laser of wavelength 532 nm which is split into orthogonal polarization states by passing through a Wollaston prism. By adjusting the tilt of the reference surface it is possible to make the reference and object beam with orthogonal polarizations states to coincide and interfere. Then the pixelated phase-mask camera calculate the phase changes and hence the optical path length difference. Vibration of speakers and turbulence of air flow were successfully measured in 7,000 frames/sec.

  8. Instantaneous, phase-averaged, and time-averaged pressure from particle image velocimetry

    NASA Astrophysics Data System (ADS)

    de Kat, Roeland

    2015-11-01

    Recent work on pressure determination using velocity data from particle image velocimetry (PIV) resulted in approaches that allow for instantaneous and volumetric pressure determination. However, applying these approaches is not always feasible (e.g. due to resolution, access, or other constraints) or desired. In those cases pressure determination approaches using phase-averaged or time-averaged velocity provide an alternative. To assess the performance of these different pressure determination approaches against one another, they are applied to a single data set and their results are compared with each other and with surface pressure measurements. For this assessment, the data set of a flow around a square cylinder (de Kat & van Oudheusden, 2012, Exp. Fluids 52:1089-1106) is used. RdK is supported by a Leverhulme Trust Early Career Fellowship.

  9. New insights into the crowd characteristics in Mina

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Weng, W. G.; Zhang, X. L.

    2014-11-01

    The significance of the study of the characteristics of crowd behavior is indubitable for safely organizing mass activities. There is insufficient material to conduct such research. In this paper, the Mina crowd disaster is quantitatively re-investigated. Its instantaneous velocity field is extracted from video material based on the cross-correlation algorithm. The properties of the stop-and-go waves, including fluctuation frequencies, wave propagation speeds, characteristic speeds, and time and space averaged velocity variances, are analyzed in detail. Thus, the database of the stop-and-go wave features is enriched, which is very important to crowd studies. The ‘turbulent’ flows are investigated with the proper orthogonal decomposition (POD) method which is widely used in fluid mechanics. And time series and spatial analysis are conducted to investigate the characteristics of the ‘turbulent’ flows. In this paper, the coherent structures and movement process are described by the POD method. The relationship between the jamming point and crowd path is analyzed. And the pressure buffer recognized in this paper is consistent with Helbing's high-pressure region. The results revealed here may be helpful for facilities design, modeling crowded scenarios and the organization of large-scale mass activities.

  10. On the structure of pressure fluctuations in simulated turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Kim, John

    1989-01-01

    Pressure fluctuations in a turbulent channel flow are investigated by analyzing a database obtained from a direct numerical simulation. Detailed statistics associated with the pressure fluctuations are presented. Characteristics associated with the rapid (linear) and slow (nonlinear) pressure are discussed. It is found that the slow pressure fluctuations are larger than the rapid pressure fluctuations throughout the channel except very near the wall, where they are about the same magnitude. This is contrary to the common belief that the nonlinear source terms are negligible compared to the linear source terms. Probability density distributions, power spectra, and two-point correlations are examined to reveal the characteristics of the pressure fluctuations. The global dependence of the pressure fluctuations and pressure-strain correlations are also examined by evaluating the integral associated with Green's function representations of them. In the wall region where the pressure-strain terms are large, most contributions to the pressure-strain terms are from the wall region (i.e., local), whereas away from the wall where the pressure-strain terms are small, contributions are global. Structures of instantaneous pressure and pressure gradients at the wall and the corresponding vorticity field are examined.

  11. The Influence of Turbulent Coherent Structure on Suspended Sediment Transport

    NASA Astrophysics Data System (ADS)

    Huang, S. H.; Tsai, C.

    2017-12-01

    The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.

  12. Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.

    2015-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.

  13. Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer

    USGS Publications Warehouse

    Moench, Allen F.

    1997-01-01

    A Laplace transform solution is presented for the problem of flow to a partially penetrating well of finite diameter in a slightly compressible water table aquifer. The solution, which allows for evaluation of both pumped well and observation piezometer data, accounts for effects of well bore storage and skin and allows for the noninstantaneous release of water from the unsaturated zone. For instantaneous release of water from the unsaturated zone the solution approaches the line source solution derived by Neuman as the diameter of the pumped well approaches zero. Delayed piezometer response, which is significant during times of rapidly changing hydraulic head, is included in the theoretical treatment and shown to be an important factor in accurate evaluation of specific storage. By means of a hypothetical field example it is demonstrated that evaluations of specific storage (Ss) using classical line source solutions may yield values of Ss that are overestimated by a factor of 100 or more, depending upon the location of the observation piezometers and whether effects of delayed piezometer response are included in the analysis. Theoretical responses obtained with the proposed model are used to suggest methods for evaluating specific storage.

  14. Numerical investigation of power consumption and mixing time in a stirred vessel with regular and multiscale impellers

    NASA Astrophysics Data System (ADS)

    Basbug, Salur; Papadakis, George; Vassilicos, Christos

    2015-11-01

    The flow field inside a stirred tank is obtained by means of direct numerical simulation based on finite volume method at Re =500. Two different types of four-bladed radial impellers are considered: the first one is a regular type with rectangular blades and the second one is a modified version of the former with irregular blade edges, having the same thickness and the surface area. The shaft power is averaged over more than sixty revolutions and the comparison between the two cases shows that the impeller with irregular blades has lower energy consumption. Moreover, a passive scalar is injected into the vessel for a quarter period of revolution and the scalar transport equation is solved to investigate the mixing times. The coefficient of variation of the passive scalar is averaged over the whole volume in order to obtain a quantitative indicator of the mixing progress. The homogenization curves depend on the instantaneous flow conditions due to the transient nature of the mixing process, therefore multiple curves are averaged to obtain a representative result. There are indications that irregular blades can decrease mixing time with respect to regular ones.

  15. An analysis of neural receptive field plasticity by point process adaptive filtering

    PubMed Central

    Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor

    2001-01-01

    Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043

  16. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight.

    PubMed

    Martin, Graham R

    2017-01-01

    Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as "a bill guided by an eye" and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control.

  17. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight

    PubMed Central

    Martin, Graham R.

    2017-01-01

    Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as “a bill guided by an eye” and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control. PMID:29163020

  18. Correlated motion in the bulk of dense granular flows.

    PubMed

    Staron, Lydie

    2008-05-01

    Numerical simulations of two-dimensional stationary dense granular flows are performed. We check that the system obeys the h_{stop} phenomenology. Focusing on the spatial correlations of the instantaneous velocity fluctuations of the grains, we give evidence of the existence of correlated motion over several grain diameters in the bulk of the flow. Investigating the role of contact friction and restitution, we show that the associated typical length scale lambda is essentially independent of the grain properties. Moreover, we show that lambda is not controlled by the packing compacity. However, in agreement with previous experimental work, we observe that the correlation length decreases with the shear rate. Computing the flows inertia number I , we show a first-order dependence of lambda on I .

  19. Scaling from instantaneous remote-sensing-based latent heat flux to daytime integrated value with the help of SiB2

    NASA Astrophysics Data System (ADS)

    Song, Yi; Ma, Mingguo; Li, Xin; Wang, Xufeng

    2011-11-01

    This research dealt with a daytime integration method with the help of Simple Biosphere Model, Version 2 (SiB2). The field observations employed in this study were obtained at the Yingke (YK) oasis super-station, which includes an Automatic Meteorological Station (AMS), an eddy covariance (EC) system and a Soil Moisture and Temperature Measuring System (SMTMS). This station is located in the Heihe River Basin, the second largest inland river basin in China. The remotely sensed data and field observations employed in this study were derived from Watershed Allied Telemetry Experimental Research (WATER). Daily variations of EF in temporal and spatial scale would be detected by using SiB2. An instantaneous midday EF was calculated based on a remote-sensing-based estimation of surface energy budget. The invariance of daytime EF was examined using the instantaneous midday EF calculated from a remote-sensing-based estimation. The integration was carried out using the constant EF method in the intervals with a steady EF. Intervals with an inconsistent EF were picked up and ET in these intervals was integrated separately. The truth validation of land Surface ET at satellite pixel scale was carried out using the measurement of eddy covariance (EC) system.

  20. Definition of the unsteady vortex flow over a wing/body configuration

    NASA Technical Reports Server (NTRS)

    Liou, S. G.; Debry, B.; Lenakos, J.; Caplin, J.; Komerath, N. M.

    1991-01-01

    A problem of current interest in computational aerodynamics is the prediction of unsteady vortex flows over aircraft at high angles of attack. A six-month experimental effort was conducted at the John H. Harper Wind Tunnel to acquire qualitative and quantitative information on the unsteady vortex flow over a generic wing-body configuration at high angles of attack. A double-delta flat-plate wing with beveled edges was combined with a slender sharp-nosed body-of-revolution fuselage to form the generic configuration. This configuration produces a strong attached leading edge vortex on the wing, as well as sharply-peaked flow velocity spectra above the wing. While it thus produces flows with several well-defined features of current interest, the model was designed for efficiency of representation in computational codes. A moderate number of surface pressure ports and two unsteady pressure sensors were used to study the pressure distribution over the wing and body surface at high angles of attack; the unsteady pressure sensing did not succeed because of inadequate signal-to-noise ratio. A pulsed copper vapor laser sheet was used to visualize the vortex flow over the model, and vortex trajectories, burst locations, mutual induction of vortex systems from the forebody, strake, and wing, were quantified. Laser Doppler velocimetry was used to quantify all 3 components of the time-average velocity in 3 data planes perpendicular to the freestream direction. Statistics of the instantaneous velocity were used to study intermittency and fluctuation intensity. Hot-film anemometry was used to study the fluctuation energy content in the velocity field, and the spectra of these fluctuations. In addition, a successful attempt was made to measure velocity spectra, component by component, using laser velocimetry, and these were compared with spectra measured by hot-film anemometry at several locations.

  1. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    NASA Astrophysics Data System (ADS)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf

    2012-09-01

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.

  2. Incipient motion in gravel bed rivers due to energetic turbulent flow events

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos

    2013-04-01

    This contribution reviews recent developments and contributions in the field of incipient motion and entrainment of coarse sediment grains due to the action of near bed turbulent flows. Specifically, traditional shear based spatio-temporally averaged concepts and instantaneous stress tensor criteria are contrasted to the newly proposed flow event based impulse and energy criteria. The energy criterion, suggests that only sufficiently energetic turbulent events can remove a particle from its resting position on the bed surface and result on its entrainment downstream. While the impulse and energy criteria are interconnected through the energy-impulse equation, the later appears to be more versatile and appropriate for generalising to sediment transport. These flow event based criteria have a sound physical basis for describing the intermittent character of particle entrainment as inherited by near boundary turbulence at near threshold conditions. These criteria can be derived from fundamental laws of physics such as Newtonian classical mechanics and the Lagrange equations respectively. The energetic events that are capable of performing geomorphic work at the scale of individual particles are shown to follow a power law, meaning that more energetic events (capable of removing larger stones) are expected to occur less frequently. In addition, this paper discusses the role of the coefficient of energy transfer efficiency introduced in the energy equation for particle entrainment. A preliminary investigation from analysis of a series of mobile grain flume experiments illustrates that different signatures of turbulence or sequence of flow structures may have different effectiveness towards particle transport. Characteristic cases of specific energetic flow events and the associated particle response are shown and classified with regard to the time required for complete entrainment. Finally these findings are commented with respect to the implications for sediment transport.

  3. Prediction of peak response values of structures with and without TMD subjected to random pedestrian flows

    NASA Astrophysics Data System (ADS)

    Lievens, Klaus; Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter

    2016-09-01

    In civil engineering and architecture, the availability of high strength materials and advanced calculation techniques enables the construction of slender footbridges, generally highly sensitive to human-induced excitation. Due to the inherent random character of the human-induced walking load, variability on the pedestrian characteristics must be considered in the response simulation. To assess the vibration serviceability of the footbridge, the statistics of the stochastic dynamic response are evaluated by considering the instantaneous peak responses in a time range. Therefore, a large number of time windows are needed to calculate the mean value and standard deviation of the instantaneous peak values. An alternative method to evaluate the statistics is based on the standard deviation of the response and a characteristic frequency as proposed in wind engineering applications. In this paper, the accuracy of this method is evaluated for human-induced vibrations. The methods are first compared for a group of pedestrians crossing a lightly damped footbridge. Small differences of the instantaneous peak value were found by the method using second order statistics. Afterwards, a TMD tuned to reduce the peak acceleration to a comfort value, was added to the structure. The comparison between both methods in made and the accuracy is verified. It is found that the TMD parameters are tuned sufficiently and good agreements between the two methods are found for the estimation of the instantaneous peak response for a strongly damped structure.

  4. The Epstein–Glaser causal approach to the light-front QED{sub 4}. II: Vacuum polarization tensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufalo, R., E-mail: rodrigo.bufalo@helsinki.fi; Instituto de Física Teórica; Pimentel, B.M., E-mail: pimentel@ift.unesp.br

    2014-12-15

    In this work we show how to construct the one-loop vacuum polarization for light-front QED{sub 4} in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with thismore » propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part.« less

  5. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension

    PubMed Central

    Novak, Vera; Yang, Albert CC; Lepicovsky, Lukas; Goldberger, Ary L; Lipsitz, Lewis A; Peng, Chung-Kang

    2004-01-01

    Background This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals. Methods We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 ± 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound. Results A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts. Conclusion In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure. PMID:15504235

  6. Particle clustering within a two-phase turbulent pipe jet

    NASA Astrophysics Data System (ADS)

    Lau, Timothy; Nathan, Graham

    2016-11-01

    A comprehensive study of the influence of Stokes number on the instantaneous distributions of particles within a well-characterised, two-phase, turbulent pipe jet in a weak co-flow was performed. The experiments utilised particles with a narrow size distribution, resulting in a truly mono-disperse particle-laden jet. The jet Reynolds number, based on the pipe diameter, was in the range 10000 <= ReD <= 40000 , while the exit Stokes number was in the range 0 . 3 <= SkD <= 22 . 4 . The particle mass loading was fixed at ϕ = 0 . 4 , resulting in a flow that was in the two-way coupling regime. Instantaneous particle distributions within a two-dimensional sheet was measured using planar nephelometry while particle clusters were identified and subsequently characterised using an in-house developed technique. The results show that particle clustering is significantly influenced by the exit Stokes number. Particle clustering was found to be significant for 0 . 3 <= SkD <= 5 . 6 , with the degree of clustering increasing as SkD is decreased. The clusters, which typically appeared as filament-like structures with high aspect ratio oriented at oblique angles to the flow, were measured right from the exit plane, suggesting that they were generated inside the pipe. The authors acknowledge the financial contributions by the Australian Research Council (Grant No. DP120102961) and the Australian Renewable Energy Agency (Grant No. USO034).

  7. Linearisation of λDNA molecules by instantaneous variation of the trapping electrode voltage inside a micro-channel

    NASA Astrophysics Data System (ADS)

    Hanasaki, Itsuo; Yukimoto, Naoya; Uehara, Satoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2015-04-01

    Because long DNA molecules usually exist in random coil states due to the entropic effect, linearisation is required for devices equipped with nanopores where electrical sequencing is necessary during single-file translocation. We present a novel technique for linearising DNA molecules in a micro-channel. In our device, electrodes are embedded in the bottom surface of the channel. The application of a voltage induces the trapping of λDNA molecules on the positive electrode. An instantaneous voltage drop is used to put the λDNA molecules in a partly released state and the hydrodynamic force of the solution induces linearisation. Phenomena were directly observed using an optical microscopy system equipped with a high-speed camera and the linearisation principle was explored in detail. Furthermore, we estimate the tensile characteristics produced by the flow of the solution through a numerical model of a tethered polymer subject to a Poiseuille flow. The mean tensile force is in the range of 0.1-1 pN. This is sufficiently smaller than the structural transition point of λDNA but counterbalances the entropic elasticity that causes the random coil shape of λDNA molecules in solution. We show the important role of thermal fluctuation in the manipulation of molecules in solution and clarify the tensile conditions required for DNA linearisation using a combination of solution flow and voltage variation in a microchannel.

  8. Relationship between instantaneous wave-free ratio and fractional flow reserve in patients receiving hemodialysis.

    PubMed

    Morioka, Yuta; Arashi, Hiroyuki; Otsuki, Hisao; Yamaguchi, Junichi; Hagiwara, Nobuhisa

    2017-06-22

    Instantaneous wave-free ratio (iFR) is a vasodilator-free index and is reported to have a good correlation with fractional flow reserve (FFR). Hemodialysis patients exhibit left ventricular hypertrophy, reduced arterial compliance, and impaired microcirculation. Such a coronary flow condition in these patients may influence the relationship between iFR and FFR. This study assessed the impact of hemodialysis on the relationship between iFR and FFR. The study enrolled 196 patients with 265 stenoses who underwent assessment via iFR, FFR assessment, and right heart catheterization. A good correlation between iFR and FFR was observed in hemodialysis patients. iFR in the hemodialysis group was significantly lower than in the non-hemodialysis group (0.81 ± 0.13 vs. 0.86 ± 0.13, p = 0.005), although no significant difference was found in FFR and percentage diameter stenosis. An iFR value of 0.84 was found to be equivalent to an FFR value of 0.8 in hemodialysis patients, which was lower than the standard predictive iFR range for ischemia. Vasodilator-free assessment by iFR could be beneficial in evaluating intermediate coronary stenosis in patients receiving hemodialysis. However, the threshold for iFR abnormality needs adjustment in hemodialysis patients, and larger clinical trials are required to confirm the results in this specific subset.

  9. The instantaneous apparent resistivity tensor: a visualization scheme for LOTEM electric field measurements

    NASA Astrophysics Data System (ADS)

    Caldwell, T. Grant; Bibby, Hugh M.

    1998-12-01

    Long-offset transient electromagnetic (LOTEM) data have traditionally been represented as early- and late-time apparent resistivities. Time-varying electric field data recorded in a LOTEM survey made with multiple sources can be represented by an `instantaneous apparent resistivity tensor'. Three independent, coordinate-invariant, time-varying apparent resistivities can be derived from this tensor. For dipolar sources, the invariants are also independent of source orientation. In a uniform-resistivity half-space, the invariant given by the square root of the tensor determinant remains almost constant with time, deviating from the half-space resistivity by a maximum of 6 per cent. For a layered half-space, a distance-time pseudo-section of the determinant apparent resistivity produces an image of the layering beneath the measurement profile. As time increases, the instantaneous apparent resistivity tensor approaches the direct current apparent resistivity tensor. An approximate time-to-depth conversion can be achieved by integrating the diffusion depth formula with time, using the determinant apparent resistivity at each instant to represent the resistivity of the conductive medium. Localized near-surface inhomogeneities produce shifts in the time-domain apparent resistivity sounding curves that preserve the gradient, analogous to static shifts seen in magnetotelluric soundings. Instantaneous apparent resistivity tensors calculated for 3-D resistivity models suggest that profiles of LOTEM measurements across a simple 3-D structure can be used to create an image that reproduces the main features of the subsurface resistivity. Where measurements are distributed over an area, maps of the tensor invariants can be made into a sequence of images, which provides a way of `time slicing' down through the target structure.

  10. Non-iterative double-frame 2D/3D particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Fuchs, Thomas; Hain, Rainer; Kähler, Christian J.

    2017-09-01

    In recent years, the detection of individual particle images and their tracking over time to determine the local flow velocity has become quite popular for planar and volumetric measurements. Particle tracking velocimetry has strong advantages compared to the statistical analysis of an ensemble of particle images by means of cross-correlation approaches, such as particle image velocimetry. Tracking individual particles does not suffer from spatial averaging and therefore bias errors can be avoided. Furthermore, the spatial resolution can be increased up to the sub-pixel level for mean fields. A maximization of the spatial resolution for instantaneous measurements requires high seeding concentrations. However, it is still challenging to track particles at high seeding concentrations, if no time series is available. Tracking methods used under these conditions are typically very complex iterative algorithms, which require expert knowledge due to the large number of adjustable parameters. To overcome these drawbacks, a new non-iterative tracking approach is introduced in this letter, which automatically analyzes the motion of the neighboring particles without requiring to specify any parameters, except for the displacement limits. This makes the algorithm very user friendly and also offers unexperienced users to use and implement particle tracking. In addition, the algorithm enables measurements of high speed flows using standard double-pulse equipment and estimates the flow velocity reliably even at large particle image densities.

  11. Experimental tsunami deposits: Linking hydrodynamics to sediment entrainment, advection lengths and downstream fining

    NASA Astrophysics Data System (ADS)

    Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David

    2016-01-01

    A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.

  12. An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design

    NASA Technical Reports Server (NTRS)

    Tucker, Paul K.; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor

    2007-01-01

    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed.

  13. High-resolution flying-PIV with optical fiber laser delivery

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Noah A.; André, Matthieu A.; Rahimi-Abkenar, Morteza; Manzari, Majid T.; Bardet, Philippe M.

    2016-05-01

    Implementation of non-intrusive optical measurement techniques, such as particle image velocimetry (PIV), in harsh environments requires specialized techniques for introducing controlled laser sheets to the region of interest. Large earthquake shake tables are a particularly challenging environment. Lasers must be mounted away from the table, and the laser sheet has to be delivered precisely and stably to the measurement station. Here, high-power multi-mode step-index fiber optics enable introduction of light from an Nd:YLF pulsed laser to a remote test section. Such lasers are suitable for coupling to optical fibers, which presents a portable, flexible, and safe manner to deliver a PIV light sheet. Best practices for their implementation are reviewed. Particular attention is focused on obtaining a collimated beam of acceptable quality at the output of the fiber. To achieve high spatial resolution, the PIV camera is directly mounted on the moving shake table with care to minimize its vibrations. A special arrangement of PIV planes is deployed for precise in-situ PIV alignment and to monitor and account for residual structure vibrations and beam wandering. The design of the instruments is detailed. Here, an experimental facility for the study of nuclear fuel bundle response to seismic forcing near prototypical conditions is instrumented. Only through integration of a high-resolution flying-PIV system can velocity fields be acquired. Data indicate that in the presence of a mean axial flow, a secondary oscillatory flow develops as the bundle oscillates. Instantaneous, phase-averaged, and fluctuating velocity fields illustrate this phenomenon.

  14. Non-contact flow gauging for the extension and development of rating curves

    NASA Astrophysics Data System (ADS)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves. The approach is suited to water management authorities throughout Europe who seek ever-increasingly cost-effective and non-invasive techniques for maximising the monitoring capabilities of their operational network.

  15. Amplitude and Phase Characteristics of Signals at the Output of Spatially Separated Antennas for Paths with Scattering

    NASA Astrophysics Data System (ADS)

    Anikin, A. S.

    2018-06-01

    Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.

  16. Unconfined aquifer response to infiltration basins and shallow pump tests

    NASA Astrophysics Data System (ADS)

    Ostendorf, David W.; DeGroot, Don J.; Hinlein, Erich S.

    2007-05-01

    SummaryWe measure and model the unsteady, axisymmetric response of an unconfined aquifer to delayed, arbitrary recharge. Water table drainage follows the initial elastic aquifer response, as modeled for uniform, instantaneous recharge by Zlotnik and Ledder [Zlotnik, V., Ledder, G., 1992. Groundwater flow in a compressible unconfined aquifer with uniform circular recharge. Water Resources Research 28(6), 1619-1630] and delayed drainage by Moench [Moench, A.F., 1995. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3), 378-384]. We extend their analyses with a convolution integral that models the delayed response of an aquifer to infiltration from a circular infiltration basin. The basin routes the hydrograph to the water table with a decay constant dependent on a Brooks and Corey [Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division ASCE 92(2), 61-88] unsaturated permeability exponent. The resulting closed form model approaches Neuman's [Neuman, S.P., 1972. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research 8(4), 1031-1045] partially penetrating pump test equation for a small source radius, instantaneous, uniform drainage and a shallow screen section. Irrigation pump data at a well characterized part of the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate the small source model, while infiltration data from the closed drainage system of State Route 25 calibrate the infiltration basin model. The calibrated permeability, elasticity, specific yield, and permeability exponent are plausible and consistent for the pump and infiltration data sets.

  17. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  18. Surge Flow in a Centrifugal Compressor Measured by Digital Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    A planar optical velocity measurement technique known as Particle Image Velocimetry (PIV) is being used to study transient events in compressors. In PIV, a pulsed laser light sheet is used to record the positions of particles entrained in a fluid at two instances in time across a planar region of the flow. Determining the recorded particle displacement between exposures yields an instantaneous velocity vector map across the illuminated plane. Detailed flow mappings obtained using PIV in high-speed rotating turbomachinery components are used to improve the accuracy of computational fluid dynamics (CFD) simulations, which in turn, are used to guide advances in state-of-the-art aircraft engine hardware designs.

  19. Evaluation of the influence of bottom roughness on parameters of wave flows in channels

    NASA Astrophysics Data System (ADS)

    Valov, A. O.; Degtyarev, V. V.; Fedorova, N. N.

    2018-03-01

    In this paper, a comparative analysis of the results of numerical and experimental studies of the parameters of displacement waves in trays of a rectangular cross-sectional shape with different bottom roughness is performed with the "instantaneous" elimination of the obstacle creating the initial level difference. The program ANSYS complex is used in work.

  20. Performance characteristics of a slagging gasifier for MHD combustor systems

    NASA Technical Reports Server (NTRS)

    Smith, K. O.

    1979-01-01

    The performance of a two stage, coal combustor concept for magnetohydrodynamic (MHD) systems was investigated analytically. The two stage MHD combustor is comprised of an entrained flow, slagging gasifier as the first stage, and a gas phase reactor as the second stage. The first stage was modeled by assuming instantaneous coal devolatilization, and volatiles combustion and char gasification by CO2 and H2O in plug flow. The second stage combustor was modeled assuming adiabatic instantaneous gas phase reactions. Of primary interest was the dependence of char gasification efficiency on first stage particle residence time. The influence of first stage stoichiometry, heat loss, coal moisture, coal size distribution, and degree of coal devolatilization on gasifier performance and second stage exhaust temperature was determined. Performance predictions indicate that particle residence times on the order of 500 msec would be required to achieve gasification efficiencies in the range of 90 to 95 percent. The use of a finer coal size distribution significantly reduces the required gasifier residence time for acceptable levels of fuel use efficiency. Residence time requirements are also decreased by increased levels of coal devolatilization. Combustor design efforts should maximize devolatilization by minimizing mixing times associated with coal injection.

  1. A Unified Model of Heading and Path Perception in Primate MSTd

    PubMed Central

    Layton, Oliver W.; Browning, N. Andrew

    2014-01-01

    Self-motion, steering, and obstacle avoidance during navigation in the real world require humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature, which humans accurately perceive and is critical to everyday locomotion. In primates, including humans, dorsal medial superior temporal area (MSTd) has been implicated in heading perception. However, the majority of MSTd neurons respond optimally to spiral patterns, rather than to the radial expansion patterns associated with heading. No existing theory of curved path perception explains the neural mechanisms by which humans accurately assess path and no functional role for spiral-tuned cells has yet been proposed. Here we present a computational model that demonstrates how the continuum of observed cells (radial to circular) in MSTd can simultaneously code curvature and heading across the neural population. Curvature is encoded through the spirality of the most active cell, and heading is encoded through the visuotopic location of the center of the most active cell's receptive field. Model curvature and heading errors fit those made by humans. Our model challenges the view that the function of MSTd is heading estimation, based on our analysis we claim that it is primarily concerned with trajectory estimation and the simultaneous representation of both curvature and heading. In our model, temporal dynamics afford time-history in the neural representation of optic flow, which may modulate its structure. This has far-reaching implications for the interpretation of studies that assume that optic flow is, and should be, represented as an instantaneous vector field. Our results suggest that spiral motion patterns that emerge in spatio-temporal optic flow are essential for guiding self-motion along complex trajectories, and that cells in MSTd are specifically tuned to extract complex trajectory estimation from flow. PMID:24586130

  2. Large-eddy simulation of a bluff-body stabilised turbulent premixed flame using the transported flame surface density approach

    NASA Astrophysics Data System (ADS)

    Lee, Chin Yik; Cant, Stewart

    2017-07-01

    A premixed propane-air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and destruction in the model afterburner.

  3. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2015-07-01

    The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on the results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. This is because even at very high cylinder Reynolds numbers, ReD, the flow regime remains subcritical in the vicinity of the bed surface due to the reduction of the incoming flow velocity within the bottom boundary layer. The paper provides a detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (ReD = 16 000, subcritical flow regime) and Reynolds numbers at which the transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (ReD = 5 ∗ 105, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed. Being able to quantitatively and qualitatively describe these changes is critical to understand Reynolds-number-induced scale effects on sediment erosion mechanisms around cylinders mounted on a loose bed, which is a problem of great practical relevance (e.g., for pier scour studies).

  4. Staged venting of fuel cell system during rapid shutdown

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  5. Staged venting of fuel cell system during rapid shutdown

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-09-14

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  6. Past, Present and Future of Coronary Physiology.

    PubMed

    Warisawa, Takayuki; Cook, Christopher M; Akashi, Yoshihiro J; Davies, Justin E

    2018-03-15

    It is well known that the apparent significant coronary stenosis on angiography sometimes does not cause significant ischemia, and vice versa. For this reason, decision-making based on coronary physiology is becoming more and more important. Fractional flow reserve (FFR), which has emerged as a useful tool to determine which lesions need revascularization in the catheterization laboratory, now has a class IA indication in the European Society of Cardiology guidelines. More recently, the instantaneous wave-free ratio, which is considered easier to use than FFR, has been graded as equivalent to FFR. This review discusses the concepts of FFR and instantaneous wave-free ratio, current evidence supporting their use, and future directions in coronary physiology. Copyright © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  7. Role of vortices in cavitation formation in the flow across a mechanical heart valve.

    PubMed

    Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H

    2008-07-01

    Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous dissipation, with a less significant contribution from the occluder rebound effect. The maximum pressure drop was on the order of magnitude of 40 mmHg. Detailed PIV measurements and quantitative analysis of the BSM mechanical heart valve revealed large-scale vortex formation immediately after valve closure. Of note, the vortices were typical of a Rankine vortex and the maximum pressure change at the vortex center was only 40 mmHg. These data support the conclusion that vortex formation alone cannot generate the magnitude of pressure drop required for cavitation bubble formation.

  8. A technique for measurement of instantaneous heat transfer in steady-flow ambient-temperature facilities

    NASA Technical Reports Server (NTRS)

    O'Brien, James E.

    1990-01-01

    An experimental technique is described for obtaining time-resolved heat flux measurements with high-frequency response (up to 100 kHz) in a steady-flow ambient-temperature facility. The heat transfer test object is preheated and suddenly injected into an established steady flow. Thin-film gages deposited on the test surface detect the unsteady substrate surface temperature. Analog circuitry designed for use in short-duration facilities and based on one-dimensional semiinfinite heat conduction is used to perform the temperature/heat flux transformation. A detailed description of substrate properties, instrumentation, experimental procedure, and data reduction is given, along with representative results obtained in the stagnation region of a circular cylinder subjected to a wake-dominated unsteady flow. An in-depth discussion of related work is also provided.

  9. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry

    NASA Astrophysics Data System (ADS)

    Brites, Carlos D. S.; Xie, Xiaoji; Debasu, Mengistie L.; Qin, Xian; Chen, Runfeng; Huang, Wei; Rocha, João; Liu, Xiaogang; Carlos, Luís D.

    2016-10-01

    Brownian motion is one of the most fascinating phenomena in nature. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems, gene therapy in biomedical research, artificial motors and galaxy formation to the behaviour of stock prices. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF4:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K-1 at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er3+ emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.

  10. METHOD AND APPARATUS FOR DETERMINING CHARGED PARTICLE MOTION

    DOEpatents

    Kerns, Q.A.

    1959-08-01

    An analog system for determining the motion of charged particles in three dimensional electrical fields is described. A model electrode structure is formed and potentials are applied to the electrodes to provide an analog of the field which is to be studied. To simulate charged particles within the model, conducting spheres are placed at points from which particle motion is to be traced. To free the spheres from gravitational attraction in order that they will be electrostatically accelerated through the model, the apparatus is suspended and dropped. During the pericd that the model is dropping the spheres move through the electrcde structure with a motion corresponding to that of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data of particles in the real system. The model is photographed in the course of falling so that the instantaneous position of the spheres within the simulated field at selected times may be observed and measured. The device thus gives data which frequently can otherwise be obtained only with a digital computer.

  11. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array

    PubMed Central

    Alibakhshi, Mohammad A.; Kracht, Jonathan M.; Cleveland, Robin O.; Filoux, Erwan; Ketterling, Jeffrey A.

    2013-01-01

    Piezopolymer-based hydrophone arrays consisting of 20 elements were fabricated and tested for use in measuring the acoustic field from a shock-wave lithotripter. The arrays were fabricated from piezopolymer films and were mounted in a housing to allow submersion into water. The motivation was to use the array to determine how the shot-to-shot variability of the spark discharge in an electrohydraulic lithotripter affects the resulting focused acoustic field. It was found that the dominant effect of shot-to-shot variability was to laterally shift the location of the focus by up to 5 mm from the nominal acoustic axis of the lithotripter. The effect was more pronounced when the spark discharge was initiated with higher voltages. The lateral beamwidth of individual, instantaneous shock waves were observed to range from 1.5 mm to 24 mm. Due to the spatial variation of the acoustic field, the average of instantaneous beamwidths were observed to be 1 to 2 mm narrower than beamwidths determined from traditional single-point measurements that average the pressure measured at each location before computing beamwidth. PMID:23654419

  12. Photodetachment dynamics in a time-dependent oscillating electric field

    NASA Astrophysics Data System (ADS)

    Wang, De-hua; Xu, Qin-feng; Du, Jie

    2017-03-01

    Using the time-dependent form of closed orbit theory, as developed by Haggerty and Delos [M.R. Haggerty, J.B. Delos, Phys. Rev. A 61, 053406 (2000)], and by Yang and Robicheaux [B.C. Yang, F. Robicheaux, Phys. Rev. A 93, 053413 (2016)], we study the photodetachment dynamics of a hydrogen negative ion in a time-dependent oscillating electric field. Compared to the photodetachment in a static electric field, the photodetachment dynamics of a negative ion in the time-dependent oscillating electric field become much more complicated but more interesting. Since the applied electric field is oscillating with time, the photodetachment cross section of the negative ion in the oscillating electric field is time-dependent. In a time-dependent framework, we put forward an analytical formula for calculating the instantaneous photodetachment cross section of this system. Our study suggests that the instantaneous photodetachment cross section exhibits oscillatory structure, which depends sensitively on the frequency of the oscillating electric field. With increasing frequency of the oscillating electric field, the number of closed orbits increases and the oscillatory structure in the photodetachment cross section becomes much more complicated. The connection between the detached electron's closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the photodetachment processes of a negative ion in the presence of an oscillating electric field. We hope that our work will be useful in guiding future experimental research.

  13. New insights on the interaction between atmospheric flow and a full-scale 2.5 MW wind turbine

    NASA Astrophysics Data System (ADS)

    Chamorro, L. P.; Lee, S.; Olsen, D.; Milliren, C.; Marr, J.; Arndt, R.; Sotiropoulos, F.

    2012-12-01

    Power fluctuations and fatigue loads are among the most significant problems that wind turbines face throughout their lifetime. Atmospheric turbulence is the common driving mechanism that triggers instabilities on these quantities. Reducing the effects of the fluctuating flow on wind turbines is quite challenging due to the wide variety of length scales present in the boundary layer flow. Each group of these scales, which range from the order of a millimeter to kilometer and larger, plays a characteristic and distinctive role on the performance and structural reliability of wind turbines. This study seeks to contribute toward the understanding on the complex scale-to-scale interaction between wind turbine and flow turbulence. Novel insights into the physical mechanisms that govern the flow/turbine interaction will be discussed. To tackle the problem, we investigate the unsteady behavior of a full-scale 2.5 MW wind turbine under nearly neutral thermal stratification. The study is performed in the Eolos Wind Energy Research Field Station of the University of Minnesota. An instrumented 130 meter meteorological tower located upstream of a Clipper Liberty C96 wind turbine is used to characterize the turbulent flow and atmospheric conditions right upstream of the wind turbine. High resolution and synchronous measurements of the approach wind velocity at several heights, turbine power and strain at the tower foundation are used to determine the scale-to-scale interaction between flow and the wind turbine performance and its physical structure. The spectral distribution of the fluctuating turbine power and instantaneous stresses will be discussed in detail. Characteristic length scales playing a key role on the dynamics of the wind turbine as well as the distinctive effects of flow coherent motions and strong intermittent gusts will also be addressed. Funding was provided by the U.S. Department of Energy (DE-EE0002980) and Xcel Energy through the Renewable Development Fund (grant RD3-42).

  14. An Integrated Approach to Estimate Instantaneous Near-Surface Air Temperature and Sensible Heat Flux Fields during the SEMAPHORE Experiment.

    NASA Astrophysics Data System (ADS)

    Bourras, Denis; Eymard, Laurence; Liu, W. Timothy; Dupuis, Hélène

    2002-03-01

    A new technique was developed to retrieve near-surface instantaneous air temperatures and turbulent sensible heat fluxes using satellite data during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, which was conducted in 1993 under mainly anticyclonic conditions. The method is based on a regional, horizontal atmospheric temperature advection model whose inputs are wind vectors, sea surface temperature fields, air temperatures around the region under study, and several constants derived from in situ measurements. The intrinsic rms error of the method is 0.7°C in terms of air temperature and 9 W m2 for the fluxes, both at 0.16° × 0.16° and 1.125° × 1.125° resolution. The retrieved air temperature and flux horizontal structures are in good agreement with fields from two operational general circulation models. The application to SEMAPHORE data involves the First European Remote Sensing Satellite (ERS-1) wind fields, Advanced Very High Resolution Radiometer (AVHRR) SST fields, and European Centre for Medium-Range Weather Forecasts (ECMWF) air temperature boundary conditions. The rms errors obtained by comparing the estimations with research vessel measurements are 0.3°C and 5 W m2.

  15. Internal wave energy flux from density perturbations in nonlinear stratifications

    NASA Astrophysics Data System (ADS)

    Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.

    2017-11-01

    Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.

  16. Quantitative determination of engine water ingestion

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Hernan, M.; Sarohia, V.

    1986-01-01

    A nonintrusive optical technique is described for determination of liquid mass flux in a droplet laden airstream. The techniques were developed for quantitative determination of engine water ingestion resulting from heavy rain or wheel spray. Independent measurements of the liquid water content (LWC) of the droplet laden airstream and of the droplet velocities were made at the stimulated nacelle inlet plane for the liquid mass flux determination. The LWC was measured by illuminating and photographing the droplets contained within a thin slice of the flow field by means of a sheet of light from a pulsed laser. A fluorescent dye introduced in the water enchanced the droplet image definition. The droplet velocities were determined from double exposed photographs of the moving droplet field. The technique was initially applied to a steady spray generated in a wind tunnel. It was found that although the spray was initially steady, the aerodynamic breakup process was inherently unsteady. This resulted in a wide variation of the instantaneous LWC of the droplet laden airstream. The standard deviation of ten separate LWC measurements was 31% of the average. However, the liquid mass flux calculated from the average LWC and droplet velocities came within 10% of the known water ingestion rate.

  17. A Virtual Study of Grid Resolution on Experiments of a Highly-Resolved Turbulent Plume

    NASA Astrophysics Data System (ADS)

    Maisto, Pietro M. F.; Marshall, Andre W.; Gollner, Michael J.; Fire Protection Engineering Department Collaboration

    2017-11-01

    An accurate representation of sub-grid scale turbulent mixing is critical for modeling fire plumes and smoke transport. In this study, PLIF and PIV diagnostics are used with the saltwater modeling technique to provide highly-resolved instantaneous field measurements in unconfined turbulent plumes useful for statistical analysis, physical insight, and model validation. The effect of resolution was investigated employing a virtual interrogation window (of varying size) applied to the high-resolution field measurements. Motivated by LES low-pass filtering concepts, the high-resolution experimental data in this study can be analyzed within the interrogation windows (i.e. statistics at the sub-grid scale) and on interrogation windows (i.e. statistics at the resolved scale). A dimensionless resolution threshold (L/D*) criterion was determined to achieve converged statistics on the filtered measurements. Such a criterion was then used to establish the relative importance between large and small-scale turbulence phenomena while investigating specific scales for the turbulent flow. First order data sets start to collapse at a resolution of 0.3D*, while for second and higher order statistical moments the interrogation window size drops down to 0.2D*.

  18. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-01

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  19. Spectral Doppler interrogation of the patent foramen ovale-a window to left heart hemodynamics.

    PubMed

    Fadel, Bahaa M; Husain, Aysha; Bakarman, Hatem; Dahdouh, Ziad; Salvo, Giovanni Di; Mohty, Dania

    2015-02-01

    Spectral Doppler interrogation of flow across a patent foramen ovale (PFO) allows recording of the instantaneous pressure gradient between left and right atrium (RA). The assessment of RA pressure using the size and collapsibility of the inferior vena cava would thus allow estimation of left atrial (LA) pressure. In this article, we illustrate the value of spectral Doppler interrogation of flow across the PFO by transthoracic echocardiography as a novel and simple tool for the assessment of LA pressure and left cardiac hemodynamics in addition to the conventional noninvasive parameters. © 2014, Wiley Periodicals, Inc.

  20. Surging glaciers in Iceland - research status and future challenges

    NASA Astrophysics Data System (ADS)

    Ingolfsson, Olafur

    2013-04-01

    Twenty six Icelandic outlet glaciers, ranging from 0.5-1.500 km2, are known to surge, with terminal advances ranging from of few tens of meters to about 10 km. The geomorphic signatures of surges vary, from large-scale folded and thrusted end moraine systems, extensive dead-ice fields and drumlinized forefields to drift sheets where fast ice-flow indicators are largely missing. Case studies from the forefields of Brúarjökull, Eyjabakkajökull and Múlajökull surging glaciers will be presented. At Brúarjökull, extremely rapid ice flow during surge was sustained by overpressurized water causing decoupling beneath a thick sediment sequence that was coupled to the glacier. The ice-marginal position of the 1890 surge is marked by a sedimentary wedge formed within five days and a large moraine ridge that formed in about one day ("instantaneous end-moraine"). Three different qualitative and conceptual models are required to explain the genesis of the Eyjabakkajökull moraines: a narrow, single-crested moraine ridge at the distal end of a marginal sediment wedge formed in response to decoupling of the subglacial sediment from the bedrock and associated downglacier sediment transport; large lobate end moraine ridges with multiple, closely spaced, asymmetric crests formed by proglacial piggy-back thrusting; moraine ridges with different morphologies may reflect different members of an end moraine continuum. A parallel study highlighting the surge history of Eyjabakkajökull over the last 4400 years suggests climate control on surge frequencies. The Múlajökull studies concern an active drumlin field (>100 drumlins) that is being exposed as the glacier retreats. The drumlins form through repeated surges, where each surge causes deposition of till bed onto the drumlin while similtaneously eroding the sides. Finally, a new landsystem model for surging North Iceland cirque glaciers will be introduced. References Benediktsson,I. Ö., Schomacker, A., Lokrantz, H. & Ingólfsson, Ó. 2010: The 1890 surge end moraine at Eyjabakkajökull, Iceland: a re-assessment of a classic glaciotectonic locality. Quaternary Science Reviews 29, 484-506. Benediktsson, I.Ö., Ingólfsson, Ó., Schomacker, A. & Kjær, K.H. 2009: Formation of sub-marginal and proglacial end moraines: implications of ice-flow mechanism during the 1963-64 surge of Brúarjökull, Iceland. Boreas 38. 440-457. Benediktsson, Í.Ö., Möller, P., Ingólfsson, Ó., van der Meer, J.J.M., Kjær, K. & Krüger, J. 2008: Instantaneous end moraine and sediment wedge formation during the 1890 glacier surge of Brúarjökull, Iceland. Quaternary Science Reviews 27, 209-234. Brynjólfsson, S., Ingólfsson, Ó. & Schomacker, A. 2012. Surge fingerprinting of cirque glaciers at the Tröllaskagi peninsula, Iceland. Jökull 62, 153-168. Johnson, M.D., Schomacker, A.,Benediktsson, I.O., Geiger, A.D., Ferguson, A. & Ingólfsson, Ó. 2010. Active drumlin field revealed at the margin of Múlajökull, Iceland: A surge-type glacier. Geology 38, 943-946. Kjær, K.H., Larsen, E., van der Meer, J., Ingólfsson, Ó., Krüger, J., Benediktsson, I.Ö., Knudsen, C. & Schumacher, A. 2006: Subglacial decoupling at the sediment/bedrock interface: a new mechanism for rapid flowing ice. Quaternary Science Reviews, 25: 2704-2712. Striberger, J., Björck, S., Benediktsson, I.Ö., Snowball. I., Uvo, C., Ingólfsson, Ó. & Kjær, K. 2011. Climatic control of the surge periodicity of an Icelandic outlet glacier. Journal of Quaternary Science 26, 561-565.

  1. Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium

    NASA Astrophysics Data System (ADS)

    Zhang, Mingkan; Zhang, Ye

    2015-03-01

    A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems. This article was corrected on 7 MAY 2015. See the end of the full text for details.

  2. The dynamics and control of fluctuating pressure loads in the reattachment region of a supersonic free shear layer

    NASA Technical Reports Server (NTRS)

    Smits, A. J.

    1990-01-01

    The primary aim is to investigate the mechanisms which cause the unsteady wall-pressure fluctuations in shock wave turbulent shear layer interactions. The secondary aim is to find means to reduce the magnitude of the fluctuating pressure loads by controlling the unsteady shock motion. The particular flow proposed for study is the unsteady shock wave interaction formed in the reattachment zone of a separated supersonic flow. Similar flows are encountered in many practical situations, and they are associated with high levels of fluctuating wall pressure. Wall pressure fluctuations were measured in the reattachment region of the supersonic free shear layer. The free shear layer was formed by the separation of a Mach 2.9 turbulent boundary layer from a backward facing step. Reattachment occurred on a 20 deg ramp. By adjusting the position of the ramp, the base pressure was set equal to the freestream pressure, and the free shear layer formed in the absence of a separation shock. An array of flush-mounted, miniature, high-frequency pressure transducers was used to make multichannel measurements of the fluctuating wall pressure in the vicinity of the reattachment region. Contrary to previous observations of this flow, the reattachment region was found to be highly unsteady, and the pressure fluctuations were found to be significant. The overall behavior of the wall pressure loading is similar in scale and magnitude to the unsteadiness of the wall pressure field in compression ramp flows at the same Mach number. Rayleigh scattering was used to visualize the instantaneous shock structure in the streamwise and spanwise direction. Spanwise wrinkles on the order of half the boundary layer thickness were observed.

  3. Real-time use of instantaneous wave-free ratio: results of the ADVISE in-practice: an international, multicenter evaluation of instantaneous wave-free ratio in clinical practice.

    PubMed

    Petraco, Ricardo; Al-Lamee, Rasha; Gotberg, Matthias; Sharp, Andrew; Hellig, Farrel; Nijjer, Sukhjinder S; Echavarria-Pinto, Mauro; van de Hoef, Tim P; Sen, Sayan; Tanaka, Nobuhiro; Van Belle, Eric; Bojara, Waldemar; Sakoda, Kunihiro; Mates, Martin; Indolfi, Ciro; De Rosa, Salvatore; Vrints, Christian J; Haine, Steven; Yokoi, Hiroyoshi; Ribichini, Flavio L; Meuwissen, Martjin; Matsuo, Hitoshi; Janssens, Luc; Katsumi, Ueno; Di Mario, Carlo; Escaned, Javier; Piek, Jan; Davies, Justin E

    2014-11-01

    To evaluate the first experience of real-time instantaneous wave-free ratio (iFR) measurement by clinicians. The iFR is a new vasodilator-free index of coronary stenosis severity, calculated as a trans-lesion pressure ratio during a specific period of baseline diastole, when distal resistance is lowest and stable. Because all previous studies have calculated iFR offline, the feasibility of real-time iFR measurement has never been assessed. Three hundred ninety-two stenoses with angiographically intermediate stenoses were included in this multicenter international analysis. Instantaneous wave-free ratio and fractional flow reserve (FFR) were performed in real time on commercially available consoles. The classification agreement of coronary stenoses between iFR and FFR was calculated. Instantaneous wave-free ratio and FFR maintain a close level of diagnostic agreement when both are measured by clinicians in real time (for a clinical 0.80 FFR cutoff: area under the receiver operating characteristic curve [ROC(AUC)] 0.87, classification match 80%, and optimal iFR cutoff 0.90; for a ischemic 0.75 FFR cutoff: iFR ROC(AUC) 0.90, classification match 88%, and optimal iFR cutoff 0.85; if the FFR 0.75-0.80 gray zone is accounted for: ROC(AUC) 0.93, classification match 92%). When iFR and FFR are evaluated together in a hybrid decision-making strategy, 61% of the population is spared from vasodilator while maintaining a 94% overall agreement with FFR lesion classification. When measured in real time, iFR maintains the close relationship to FFR reported in offline studies. These findings confirm the feasibility and reliability of real-time iFR calculation by clinicians. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  4. Optimization of the freeze-drying cycle: adaptation of the pressure rise analysis model to non-instantaneous isolation valves.

    PubMed

    Chouvenc, P; Vessot, S; Andrieu, J; Vacus, P

    2005-01-01

    The principal aim of this study is to extend to a pilot freeze-dryer equipped with a non-instantaneous isolation valve the previously presented pressure rise analysis (PRA) model for monitoring the product temperature and the resistance to mass transfer of the dried layer during primary drying. This method, derived from the original MTM method previously published, consists of interrupting rapidly (a few seconds) the water vapour flow from the sublimation chamber to the condenser and analysing the resulting dynamics of the total chamber pressure increase. The valve effect on the pressure rise profile observed during the isolation valve closing period was corrected by introducing in the initial PRA model a valve characteristic function factor which turned out to be independent of the operating conditions. This new extended PRA model was validated by implementing successively the two types of valves and by analysing the pressure rise kinetics data with the corresponding PRA models in the same operating conditions. The coherence and consistency shown on the identified parameter values (sublimation front temperature, dried layer mass transfer resistance) allowed validation of this extended PRA model with a non-instantaneous isolation valve. These results confirm that the PRA method, with or without an instantaneous isolation valve, is appropriate for on-line monitoring of product characteristics during freeze-drying. The advantages of PRA are that the method is rapid, non-invasive, and global. Consequently, PRA might become a powerful and promising tool not only for the control of pilot freeze-dryers but also for industrial freeze-dryers equipped with external condensers.

  5. The flow structure of jets from transient sources and implications for modeling short-duration explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Chojnicki, K. N.; Clarke, A. B.; Adrian, R. J.; Phillips, J. C.

    2014-12-01

    We used laboratory experiments to examine the rise process in neutrally buoyant jets that resulted from an unsteady supply of momentum, a condition that defines plumes from discrete Vulcanian and Strombolian-style eruptions. We simultaneously measured the analog-jet discharge rate (the supply rate of momentum) and the analog-jet internal velocity distribution (a consequence of momentum transport and dilution). Then, we examined the changes in the analog-jet velocity distribution over time to assess the impact of the supply-rate variations on the momentum-driven rise dynamics. We found that the analog-jet velocity distribution changes significantly and quickly as the supply rate varied, such that the whole-field distribution at any instant differed considerably from the time average. We also found that entrainment varied in space and over time with instantaneous entrainment coefficient values ranging from 0 to 0.93 in an individual unsteady jet. Consequently, we conclude that supply-rate variations exert first-order control over jet dynamics, and therefore cannot be neglected in models without compromising their capability to predict large-scale eruption behavior. These findings emphasize the fundamental differences between unsteady and steady jet dynamics, and show clearly that: (i) variations in source momentum flux directly control the dynamics of the resulting flow; (ii) impulsive flows driven by sources of varying flux cannot reasonably be approximated by quasi-steady flow models. New modeling approaches capable of describing the time-dependent properties of transient volcanic eruption plumes are needed before their trajectory, dilution, and stability can be reliably computed for hazards management.

  6. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  7. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2018-06-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  8. Applications of Laser Scattering Probes to Turbulent Diffusion Flames

    DTIC Science & Technology

    1983-11-01

    APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame

  9. Renewable Energy System Feasibility Study

    DTIC Science & Technology

    1982-08-01

    SOLAR KINETICS, INC. TECHNICAL DATA 1.. SHORT FOCAL LENGTH The true test of parabolic trough collector efficiency is not the instantaneous efficiency...capabilities of concentrating solar collectors . Also, use of a solar thermal energy system to regenerate the desiccant beds of the IAD would satisfy...air flow rate is approximately 2?0 scfm or 16.2 lbm/min through the desiccant bed undergoing regeneration. Solar thermal energy collectors are

  10. Instantaneous wave-free ratio as an alternative to fractional flow reserve in assessment of moderate coronary stenoses: A meta-analysis of diagnostic accuracy studies.

    PubMed

    Maini, Rohit; Moscona, John; Katigbak, Paul; Fernandez, Camilo; Sidhu, Gursukhmandeep; Saleh, Qusai; Irimpen, Anand; Samson, Rohan; LeJemtel, Thierry

    2017-12-27

    Fractional flow reserve (FFR) remains underutilized due to practical concerns related to the need for hyperemic agents. These concerns have prompted the study of instantaneous wave-free ratio (iFR), a vasodilator-free index of coronary stenosis. Non-inferior cardiovascular outcomes have been demonstrated in two recent randomized clinic trials. We performed this meta-analysis to provide a necessary update of the diagnostic accuracy of iFR referenced to FFR based on the addition of eight more recent studies and 3727 more lesions. We searched the PubMed, EMBASE, Central, ProQuest, and Web of Science databases for full text articles published through May 31, 2017 to identify studies addressing the diagnostic accuracy of iFR referenced to FFR≤0.80. The following keywords were used: "instantaneous wave-free ratio" OR "iFR" AND "fractional flow reserve" OR "FFR." In total, 16 studies comprising 5756 lesions were identified. Pooled diagnostic accuracy estimates of iFR versus FFR≤0.80 were: sensitivity, 0.78 (95% CI, 0.76-0.79); specificity, 0.83 (0.81-0.84); positive likelihood ratio, 4.54 (3.85-5.35); negative likelihood ratio, 0.28 (0.24-0.32); diagnostic odds ratio, 17.38 (14.16-21.34); area under the summary receiver-operating characteristic curve, 0.87; and an overall diagnostic accuracy of 0.81 (0.78-0.84). In conclusion, iFR showed excellent agreement with FFR as a resting index of coronary stenosis severity without the undesired effects and cost of hyperemic agents. When considering along with its clinical outcome data and ease of application, the diagnostic accuracy of iFR supports its use as a suitable alternative to FFR for physiology-guided revascularization of moderate coronary stenoses. We performed a meta-analysis of the diagnostic accuracy of iFR referenced to FFR. iFR showed excellent agreement with FFR as a resting index of coronary stenosis severity without the undesired effects and cost of hyperemic agents. This supports its use as a suitable alternative to FFR for physiology-guided revascularization of moderate coronary stenoses. Copyright © 2017. Published by Elsevier Inc.

  11. Statistical summaries of streamflow in Oklahoma through 1999

    USGS Publications Warehouse

    Tortorelli, R.L.

    2002-01-01

    Statistical summaries of streamflow records through 1999 for gaging stations in Oklahoma and parts of adjacent states are presented for 188 stations with at least 10 years of streamflow record. Streamflow at 113 of the stations is regulated for specific periods. Data for these periods were analyzed separately to account for changes in streamflow due to regulation by dams or other human modification of streamflow. A brief description of the location, drainage area, and period of record is given for each gaging station. A brief regulation history also is given for stations with a regulated streamflow record. This descriptive information is followed by tables of mean annual discharges, magnitude and probability of exceedance of annual high flows, magnitude and probability of exceedance of annual instantaneous peak flows, durations of daily mean flow, magnitude and probability of non-exceedance of annual low flows, and magnitude and probability of non-exceedance of seasonal low flows.

  12. Tests of peak flow scaling in simulated self-similar river networks

    USGS Publications Warehouse

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  13. Extension of the momentum transfer model to time-dependent pipe turbulence.

    PubMed

    Calzetta, Esteban

    2012-02-01

    We analyze a possible extension of Gioia and Chakraborty's momentum transfer model of friction in steady turbulent pipe flows [Phys. Rev. Lett. 96, 044502 (2006)] to the case of time- and/or space-dependent turbulent flows. The end result is an expression for the stress at the wall as the sum of a steady and a dynamic component. The steady part is obtained by using the instantaneous velocity in the expression for the stress at the wall of a stationary flow. The unsteady part is a weighted average over the history of the flow acceleration, with a weighting function similar to that proposed by Vardy and Brown [J. Sound Vibr. 259, 1011 (2003); J. Sound Vibr. 270, 233 (2004)], but naturally including the effect of spatial derivatives of the mean flow, as in the Brunone model [Brunone et al., J. Water Res. Plan. Manage. 126, 236 (2000)].

  14. Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept

    NASA Astrophysics Data System (ADS)

    Fulton, John; Ostrowski, Joseph

    2008-07-01

    SummaryForecasting streamflow during extreme hydrologic events such as floods can be problematic. This is particularly true when flow is unsteady, and river forecasts rely on models that require uniform-flow rating curves to route water from one forecast point to another. As a result, alternative methods for measuring streamflow are needed to properly route flood waves and account for inertial and pressure forces in natural channels dominated by nonuniform-flow conditions such as mild water surface slopes, backwater, tributary inflows, and reservoir operations. The objective of the demonstration was to use emerging technologies to measure instantaneous streamflow in open channels at two existing US Geological Survey streamflow-gaging stations in Pennsylvania. Surface-water and instream-point velocities were measured using hand-held radar and hydroacoustics. Streamflow was computed using the probability concept, which requires velocity data from a single vertical containing the maximum instream velocity. The percent difference in streamflow at the Susquehanna River at Bloomsburg, PA ranged from 0% to 8% with an average difference of 4% and standard deviation of 8.81 m 3/s. The percent difference in streamflow at Chartiers Creek at Carnegie, PA ranged from 0% to 11% with an average difference of 5% and standard deviation of 0.28 m 3/s. New generation equipment is being tested and developed to advance the use of radar-derived surface-water velocity and instantaneous streamflow to facilitate the collection and transmission of real-time streamflow that can be used to parameterize hydraulic routing models.

  15. Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept

    USGS Publications Warehouse

    Fulton, J.; Ostrowski, J.

    2008-01-01

    Forecasting streamflow during extreme hydrologic events such as floods can be problematic. This is particularly true when flow is unsteady, and river forecasts rely on models that require uniform-flow rating curves to route water from one forecast point to another. As a result, alternative methods for measuring streamflow are needed to properly route flood waves and account for inertial and pressure forces in natural channels dominated by nonuniform-flow conditions such as mild water surface slopes, backwater, tributary inflows, and reservoir operations. The objective of the demonstration was to use emerging technologies to measure instantaneous streamflow in open channels at two existing US Geological Survey streamflow-gaging stations in Pennsylvania. Surface-water and instream-point velocities were measured using hand-held radar and hydroacoustics. Streamflow was computed using the probability concept, which requires velocity data from a single vertical containing the maximum instream velocity. The percent difference in streamflow at the Susquehanna River at Bloomsburg, PA ranged from 0% to 8% with an average difference of 4% and standard deviation of 8.81 m3/s. The percent difference in streamflow at Chartiers Creek at Carnegie, PA ranged from 0% to 11% with an average difference of 5% and standard deviation of 0.28 m3/s. New generation equipment is being tested and developed to advance the use of radar-derived surface-water velocity and instantaneous streamflow to facilitate the collection and transmission of real-time streamflow that can be used to parameterize hydraulic routing models.

  16. A Concurrent Flow Model for Extraction during Transcapillary Passage

    PubMed Central

    Bassingthwaighte, James B.

    2010-01-01

    A model for capillary-tissue exchange in a uniformly perfused organ with uniform capillary transit times and no diffusional capillary interactions was designed to permit the exploration of the influences of various parameters on the interpretation of indicator-dilution curves obtained at the venous outflow following the simultaneous injection of tracers into the arterial inflow. These parameters include tissue geometric factors, longitudinal diffusion and volumes of distribution of tracers in blood and tissue, hematocrit, volumes of nonexchanging vessels and the sampling system, capillary permeability, P. capillary surface area, S, and flow of blood- or solute-containing fluid, Fs′. An assumption of instantaneous radial diffusion in the extravascular region is appropriate when intercapillary distances are small, as they are in the heart, or permeabilities are low, as they are for lipophobic solutes. Numerical solutions were obtained for dispersed input functions similar to normal intravascular dye-dilution curves. Axial extravascular diffusion showed a negligible influence at low permeabilities. The “instantaneous extraction” of a permeating solute can provide an estimate of PS/Fs′, the ratio of the capillary permeability–surface area product to the flow, when PS/Fs′ lies between approximately 0.05 and 3.0; the limits of the range depend on the extravascular volume of distribution and the influences of intravascular dispersion. The most accurate estimates were obtained when experiments were designed so that PS/Fs′ was between 0.2 and 1.0 or peak extractions were between 0.1 and 0.6. PMID:4608628

  17. The tectonic and geomagnetic significance of paleomagnetic observations from volcanic rocks from central Afar, Africa

    NASA Astrophysics Data System (ADS)

    Acton, Gary D.; Tessema, Abera; Jackson, Michael; Bilham, Roger

    2000-08-01

    Deformation throughout Afar over the past 2 myr has been characterized by widespread and intense crustal fragmentation that results from inhomogeneous extension across the region. In eastern Afar, this situation has evolved to localized extension associated with the westward propagation of the Gulf of Aden/Gulf of Tadjurah seafloor spreading system into the Asal-Ghoubbet Rift. During the gradual process of rift propagation and localization, crustal blocks in eastern Afar sustained clockwise rotations of ˜11°. To better understand the processes of rift propagation and localization and how they affect the rest of Afar, we have collected and analyzed over 400 oriented paleomagnetic samples from 67 lava flows from central and southern Afar. Unlike eastern Afar, the mean paleomagnetic direction from central Afar indicates that vertical-axis rotations are statistically insignificant (3.6°±4.4°), though small clockwise rotations (<8°) are permitted. Thus, propagation and localization in central Afar have not had the same influence in causing crustal block rotations or, perhaps more likely, have not reached the same stage of evolution as seen in eastern Afar. In addition, several of the lava flows record intriguing geomagnetic field behavior associated with polarity transitions, excursions, or large secular variation events. Interestingly, the transitional or anomalous virtual geomagnetic poles (VGPs) tend to cluster in two nearly antipodal regions, one in the northern Pacific Ocean and the other in the southwest Indian Ocean. One lava flow has recorded both of the antipodal transitional components, with the two components residing in magnetic minerals with unblocking temperatures above and below ˜500°C, respectively. Reheating and partial remagnetization by the overlying flow cannot explain either of the transitional directions because both differ significantly from that of the reversely magnetized overlying flow. The high-temperature component gives a VGP in the northern Pacific, whereas the lower-temperature component gives a nearly antipodal VGP south of Cape Town, South Africa. Hence, the configuration of the geomagnetic field appears to have jumped nearly instantaneously from a northern-hemisphere transitional state to a southern-hemisphere one during this normal-to-reverse polarity transition.

  18. PIV Measurements of Atmospheric Turbulence and Pollen Dispersal Above a Corn Canopy

    NASA Astrophysics Data System (ADS)

    Zhu, W.; van Hout, R.; Luznik, L.; Katz, J.

    2003-12-01

    Dispersal of pollen grains by wind and gravity (Anemophilous) is one of the oldest means of plant fertilization available in nature. Recently, the growth of genetically modified foods has raised questions on the range of pollen dispersal in order to limit cross-fertilization between organically grown and transgenic crops. The distance that a pollen grain can travel once released from the anther is determined, among others, by the aerodynamic parameters of the pollen and the characteristics of turbulence in the atmosphere in which it is released. Turbulence characteristics of the flow above a pollinating corn field were measured using Particle Image Velocimetry (PIV). The measurements were performed on the eastern shore of the Chesapeake Bay, in Maryland, during July 2003. Two PIV systems were used simultaneously, each with an overall sample area of 18x18 cm. The spacing between samples was about equal to the field of view. The PIV instrumentation, including CCD cameras, power supply and laser sheets forming optics were mounted on a measurement platform, consisting of a hydraulic telescopic arm that could be extended up to 10m. The whole system could be rotated in order to align it with the flow. The flow was seeded with smoke generated about 30m upstream of the sample areas. Measurements were carried out at several elevations, from just below canopy height up to 1m above canopy. The local meteorological conditions around the test site were monitored by other sensors including sonic anemometers, Rotorod pollen counters and temperature sensors. Each processed PIV image provides an instantaneous velocity distribution containing 64x64 vectors with a vector spacing of ~3mm. The pollen grains (~100mm) can be clearly distinguished from the smoke particles (~1mm) based on their size difference. The acquired PIV data enables calculation of the mean flow and turbulence characteristics including Reynolds stresses, spectra, turbulent kinetic energy and dissipation rate. Data analysis is currently in progress and results, focusing on the flow very near to the canopy will be presented. This research is funded by the National Science Foundation (NSF).

  19. Instantaneous and daily values of the surface energy balance over agricultural fields using remote sensing and a reference field in an arid environment

    USGS Publications Warehouse

    Kustas, William P.; Moran, M.S.; Jackson, R. D.; Gay, L.W.; Duell, L.F.W.; Kunkel, K.E.; Matthias, A.D.

    1990-01-01

    Remotely sensed surface temperature and reflectance in the visible and near infrared wavebands along with ancilliary meteorological data provide the capability of computing three of the four surface energy balance components (i.e., net radiation, soil heat flux, and sensible heat flux) at different spatial and temporal scales. As a result, under nonadvective conditions, this enables the estimation of the remaining term (i.e., the latent heat flux). One of the practical applications with this approach is to produce evapotranspiration (ET) maps for agricultural regions which consist of an array of fields containing different crops at varying stages of growth and soil moisture conditions. Such a situation exists in the semiarid southwest at the University of Arizona Maricopa Agricultural Center, south of Phoenix. For one day (14 June 1987), surface temperature and reflectance measurements from an aircraft 150 m above ground level (agl) were acquired over fields from zero to nearly full cover at four times between 1000 MST and 1130 MST. The diurnal pattern of the surface energy balance was measured over four fields, which included alfalfa at 60% cover, furrowed cotton at 20% and 30% cover, and partially plowed what stubble. Instantaneous and daily values of ET were estimated for a representative area around each flux site with an energy balance model that relies on a reference ET. This reference value was determined with remotely sensed data and several meteorological inputs. The reference ET was adjusted to account for the different surface conditions in the other fields using only remotely sensed variables. A comparison with the flux measurements suggests the model has difficulties with partial canopy conditions, especially related to the estimation of the sensible heat flux. The resulting errors for instantaneous ET were on the order of 100 W m-2 and for daily values of order 2 mm day-1. These findings suggest future research should involve development of methods to account for the variability of meteorological parameters brought about by changes in surface conditions and improvements in the modeling of sensible heat transfer across the surface-atmosphere interface for partial canopy conditions using remote sensing information. ?? 1990.

  20. Synchronization patterns in cerebral blood flow and peripheral blood pressure under minor stroke

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ivanov, Plamen C.; Hu, Kun; Stanley, H. Eugene; Novak, Vera

    2003-05-01

    Stroke is a leading cause of death and disability in the United States. The autoregulation of cerebral blood flow that adapts to changes in systemic blood pressure is impaired after stroke. We investigate blood flow velocities (BFV) from right and left middle cerebral arteries (MCA) and beat-to-beat blood pressure (BP) simultaneously measured from the finger, in 13 stroke and 11 healthy subjects using the mean value statistics and phase synchronization method. We find an increase in the vascular resistance and a much stronger cross-correlation with a time lag up to 20 seconds with the instantaneous phase increment of the BFV and BP signals for the subjects with stroke compared to healthy subjects.

  1. Comparison of simulation and experimental results for a gas puff nozzle on Ambiorix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnier, J-N.; Chevalier, J-M.; Dubroca, B.

    One of source term of Z-Pinch experiments is the gas puff density profile. In order to characterize the gas jet, an experiment based on interferometry has been performed. The first study was a point measurement (a section density profile) which led us to develop a global and instantaneous interferometry imaging method. In order to optimise the nozzle, we simulated the experiment with a flow calculation code (ARES). In this paper, the experimental results are compared with simulations. The different gas properties (He, Ne, Ar) and the flow duration lead us to take care, on the one hand, of the gasmore » viscosity, and on the other, of modifying the code for an instationary flow.« less

  2. Cooling the vertical surface by conditionally single pulses

    NASA Astrophysics Data System (ADS)

    Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor

    2017-10-01

    You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.

  3. Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Jan; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de; Shibl, Mohamed F., E-mail: mfshibl@qu.edu.qa

    2016-05-14

    The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motionmore » and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation.« less

  4. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  5. Four dimensional studies in earth space

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1972-01-01

    A system of reference which is directly related to observations, is proposed for four-dimensional studies in earth space. Global control network and polar wandering are defined. The determination of variations in the earth's gravitational field with time also forms part of such a system. Techniques are outlined for the unique definition of the motion of the geocenter, and the changes in the location of the axis of rotation of an instantaneous earth model, in relation to values at some epoch of reference. The instantaneous system referred to is directly related to a fundamental equation in geodynamics. The reference system defined would provide an unambiguous frame for long period studies in earth space, provided the scale of the space were specified.

  6. Nonlocality in Bohmian mechanics

    NASA Astrophysics Data System (ADS)

    Ghafar, Zati Amalina binti Mohd Abdul; Radiman, Shahidan bin; Siong, Ch'ng Han

    2018-04-01

    The Einstein-Podolsky-Rosen (EPR) paradox demonstrates that entangled particles can interact in such a way that it is possible to measure both their position and momentum instantaneously. The position or momentum of one particle can be determined by measuring another identical particle that exists in another space. This instantaneous action is actually called nonlocality. The nonlocality has been proved by Bell's theorem that states that all quantum theories must be nonlocal. The Bell's theorem gives a strong support to the hidden variable theory, i.e. Bohmian mechanics. Using nonlocality, we present that the velocity field of one particle can be obtained by measuring the velocity of other particles. The trajectory of these particles is perhaps surrealistic trajectory due to the nonlocality.

  7. Microwave moisture meter for in-shell peanut kernels

    USDA-ARS?s Scientific Manuscript database

    . A microwave moisture meter built with off-the-shelf components was developed, calibrated and tested in the laboratory and in the field for nondestructive and instantaneous in-shell peanut kernel moisture content determination from dielectric measurements on unshelled peanut pod samples. The meter ...

  8. Use of passive scalar tagging for the study of coherent structures in the plane mixing layer

    NASA Technical Reports Server (NTRS)

    Ramaprian, B. R.; Sandham, N. D.; Mungal, M. G.; Reynolds, W. C.

    1988-01-01

    Data obtained from the numerical simulation of a 2-D mixing layer were used to study the feasibility of using the instantaneous concentration of a passive scalar for detecting the typical coherent structures in the flow. The study showed that this technique works quite satisfactorily and yields results similar to those that can be obtained by using the instantaneous vorticity for structure detection. Using the coherent events educed by the scalar conditioning technique, the contribution of the coherent events to the total turbulent momentum and scalar transport was estimated. It is found that the contribution from the typical coherent events is of the same order as that of the time-mean value. However, the individual contributions become very large during the pairing of these structures. The increase is particularly spectacular in the case of the Reynolds shear stress.

  9. Instantaneous stroke volume in man during lower body negative pressure /LBNP/

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Richards, K. L.; Greene, E. R.; Eldridge, M. W.; Hoekenga, D. E.; Venters, M. D.; Luft, U. C.

    1982-01-01

    Results of an examination of the instantaneous time course of the stroke volume (SV) and cardiac output (Q) in response to the onset and release of -50 torr lower body negative pressure (LBNP) are reported. Six male subjects were sealed into a LBNP box up to the iliac crest while being monitored by echocardiograph for centerlamina blood velocity, fluid displacement, stroke volume, heart rate, and leg volume. Particular use was made of pulsed ultrasonic Doppler velocity meters for measuring the blood velocities and flow dynamics. Measurements were made of the subjects continuously beginning from 20 sec prior to and one min after LBNP onset and release. A linear fall in the SV was observed with LBNP at 49% of the baseline value after 33 sec. A 62% drop, the lowest, was detected after 8 min of LBNP. The leg volume was inversely related to Q for the duration of the experiment.

  10. A Simplified Model for Detonation Based Pressure-Gain Combustors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2010-01-01

    A time-dependent model is presented which simulates the essential physics of a detonative or otherwise constant volume, pressure-gain combustor for gas turbine applications. The model utilizes simple, global thermodynamic relations to determine an assumed instantaneous and uniform post-combustion state in one of many envisioned tubes comprising the device. A simple, second order, non-upwinding computational fluid dynamic algorithm is then used to compute the (continuous) flowfield properties during the blowdown and refill stages of the periodic cycle which each tube undergoes. The exhausted flow is averaged to provide mixed total pressure and enthalpy which may be used as a cycle performance metric for benefits analysis. The simplicity of the model allows for nearly instantaneous results when implemented on a personal computer. The results compare favorably with higher resolution numerical codes which are more difficult to configure, and more time consuming to operate.

  11. Microstructure of Turbulence in the Stably Stratified Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sorbjan, Zbigniew; Balsley, Ben B.

    2008-11-01

    The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.

  12. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, Kevin M.

    1994-01-01

    An apparatus for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device.

  13. Time scale defined by the fractal structure of the price fluctuations in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Kumagai, Yoshiaki

    2010-04-01

    In this contribution, a new time scale named C-fluctuation time is defined by price fluctuations observed at a given resolution. The intraday fractal structures and the relations of the three time scales: real time (physical time), tick time and C-fluctuation time, in foreign exchange markets are analyzed. The data set used is trading prices of foreign exchange rates; US dollar (USD)/Japanese yen (JPY), USD/Euro (EUR), and EUR/JPY. The accuracy of the data is one minute and data within a minute are recorded in order of transaction. The series of instantaneous velocity of C-fluctuation time flowing are exponentially distributed for small C when they are measured by real time and for tiny C when they are measured by tick time. When the market is volatile, for larger C, the series of instantaneous velocity are exponentially distributed.

  14. Use of continuous and grab sample data for calculating total maximum daily load (TMDL) in agricultural watersheds.

    PubMed

    Gulati, Shelly; Stubblefield, Ashley A; Hanlon, Jeremy S; Spier, Chelsea L; Stringfellow, William T

    2014-03-01

    Measuring the discharge of diffuse pollution from agricultural watersheds presents unique challenges. Flows in agricultural watersheds, particularly in Mediterranean climates, can be predominately irrigation runoff and exhibit large diurnal fluctuation in both volume and concentration. Flow and pollutant concentrations in these smaller watersheds dominated by human activity do not conform to a normal distribution and it is not clear if parametric methods are appropriate or accurate for load calculations. The objective of this study was to compare the accuracy of five load estimation methods to calculate pollutant loads from agricultural watersheds. Calculation of loads using results from discrete (grab) samples was compared with the true-load computed using in situ continuous monitoring measurements. A new method is introduced that uses a non-parametric measure of central tendency (the median) to calculate loads (median-load). The median-load method was compared to more commonly used parametric estimation methods which rely on using the mean as a measure of central tendency (mean-load and daily-load), a method that utilizes the total flow volume (volume-load), and a method that uses measure of flow at the time of sampling (instantaneous-load). Using measurements from ten watersheds in the San Joaquin Valley of California, the average percent error compared to the true-load for total dissolved solids (TDS) was 7.3% for the median-load, 6.9% for the mean-load, 6.9% for the volume-load, 16.9% for the instantaneous-load, and 18.7% for the daily-load methods of calculation. The results of this study show that parametric methods are surprisingly accurate, even for data that have starkly non-normal distributions and are highly skewed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Imaging of molecular hydrogen and oxygen by single and two-photon fluorescence using laser and flashlamp sources

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; Lempert, Walter R.; Miles, Richard B.; Kumar, Vinod; Glesk, Ivan

    1991-01-01

    Two flow visualization techniques, i.e., simultaneous two-dimensional fluorescence imaging of H2 and O2 in a diffusion flame, and quasi-linear fluorescence imaging of O2, are presented. The first uses an injection-locked argon-fluoride excimer laser and a partial overlap of a two-photon ground state absorption in H2 with a single photon absorption from a vibrational level in O2. The second uses a simple, high-intensity ultraviolet flashlamp which provides a flux of photons in the 180-195 nm range, sufficient to produce a quasi-one-dimensional fluorescence image of hot/room temperature oxygen. Both techniques do not require that a seed material be introduced into the flow, they can image major flow constituents, and provide an instantaneous snapshot of the flow.

  16. Three-dimensional structure of dominant instabilities in turbulent flow over smooth and rough boundaries

    NASA Astrophysics Data System (ADS)

    Grass, A. J.; Stuart, R. J.; Mansour-Tehrani, M.

    1991-01-01

    The current status of knowledge regarding coherent vortical structures in turbulent boundary layers and their role in turbulence generation are reviewed. The investigations reported in the study concentrate attention on rough-wall flows prevailing in the geophysical environment and include an experiment determining the three-dimensional form of the turbulence structures linked to the ejection and inrush events observed over rough walls and an experiment concerned with measuring the actual spanwise scale of the near-wall structures for boundary conditions ranging from hydrodynamically smooth to fully rough. It is demonstrated that horseshoe vortical structures are present and play an important role in rough-wall flows and they increase in scale with increasing wall distance, while a dominant spanwise wavelength occurs in the instantaneous cross-flow distribution of streamwise velocity close to the rough wall.

  17. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    NASA Astrophysics Data System (ADS)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  18. Turbulence Enhancement by Fractal Square Grids: Effects of the Number of Fractal Scales

    NASA Astrophysics Data System (ADS)

    Omilion, Alexis; Ibrahim, Mounir; Zhang, Wei

    2017-11-01

    Fractal square grids offer a unique solution for passive flow control as they can produce wakes with a distinct turbulence intensity peak and a prolonged turbulence decay region at the expense of only minimal pressure drop. While previous studies have solidified this characteristic of fractal square grids, how the number of scales (or fractal iterations N) affect turbulence production and decay of the induced wake is still not well understood. The focus of this research is to determine the relationship between the fractal iteration N and the turbulence produced in the wake flow using well-controlled water-tunnel experiments. Particle Image Velocimetry (PIV) is used to measure the instantaneous velocity fields downstream of four different fractal grids with increasing number of scales (N = 1, 2, 3, and 4) and a conventional single-scale grid. By comparing the turbulent scales and statistics of the wake, we are able to determine how each iteration affects the peak turbulence intensity and the production/decay of turbulence from the grid. In light of the ability of these fractal grids to increase turbulence intensity with low pressure drop, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.

  19. Aeroacoustic Simulations of a Nose Landing Gear with FUN3D: A Grid Refinement Study

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Lockard, David P.

    2017-01-01

    A systematic grid refinement study is presented for numerical simulations of a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise (Registered Trademark) grid generation software are used for numerical simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A set of grids was generated in this manner to create a family of uniformly refined grids. The finest grid was then modified to coarsen the wall-normal spacing to create a grid suitable for the wall-function implementation in FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence modeling approach is used for these simulations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. These CFD solutions are used as input to a FfowcsWilliams-Hawkings (FW-H) noise propagation code to compute the farfield noise levels. The agreement of the computed results with the experimental data improves as the grid is refined.

  20. Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockard, David P.

    2013-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.

  1. Continuous visual field motion impacts the postural responses of older and younger women during and after support surface tilt

    PubMed Central

    Lauer, Richard T.; Keshner, Emily A.

    2011-01-01

    The effect of continuous visual flow on the ability to regain and maintain postural orientation was examined. Fourteen young (20–39 years old) and 14 older women (60–79 years old) stood quietly during 3° (30°/s) dorsiflexion tilt of the support surface combined with 30° and 45°/s upward or downward pitch rotations of the visual field. The support surface was held tilted for 30 s and then returned to neutral over a 30-s period while the visual field continued to rotate. Segmental displacement and bilateral tibialis anterior and gastrocnemius muscle EMG responses were recorded. Continuous wavelet transforms were calculated for each muscle EMG response. An instantaneous mean frequency curve (IMNF) of muscle activity, center of mass (COM), center of pressure (COP), and angular excursion at the hip and ankle were used in a functional principal component analysis (fPCA). Functional component weights were calculated and compared with mixed model repeated measures ANOVAs. The fPCA revealed greatest mathematical differences in COM and COP responses between groups or conditions during the period that the platform transitioned from the sustained tilt to a return to neutral position. Muscle EMG responses differed most in the period following support surface tilt indicating that muscle activity increased to support stabilization against the visual flow. Older women exhibited significantly larger COM and COP responses in the direction of visual field motion and less muscle modulation when the platform returned to neutral than younger women. Results on a Rod and Frame test indicated that older women were significantly more visually dependent than the younger women. We concluded that a stiffer body combined with heightened visual sensitivity in older women critically interferes with their ability to counteract posturally destabilizing environments. PMID:21479659

  2. Hydrodynamics and morphodynamics of a mobile bed confluence under equilibrium conditions for different values of the flow discharge ratio

    NASA Astrophysics Data System (ADS)

    Birjukova Canelas, Olga; Lage Ferreira, Rui Miguel; Heleno Cardoso, António

    2017-04-01

    Under steady water and sediment feeding in laboratory conditions, sediment fluxes tend to reach a steady state and bed morphology tends to equilibrium. This laboratory study states two objectives: i) to provide a detailed three-dimensional characterization of the flow field at a movable bed confluence and ii) to contribute to the characterization of the effect of the flow discharge ratio (Qr = Qt/Qm, Qt - tributary flow discharge and Qm - main channel flow discharge) on the flow field. While the junction angle between the main channel and the tributary as well as the sediment discharge ratio were kept constant, two scenarios corresponding to two different flow discharge ratios with dominant main channel flow discharge (Qm > Qt) were analyzed. Prior to the flow velocity measurements, both channels were fed with water and sand mixtures and tests were run until the equilibrium condition was reached, i.e. until the moment where the difference between the total supplied sand discharge and the total outgoing sand discharge was smaller than ± 5%. During the experiments, bed topography was systematically recorded. Then, the flow was stopped, the water was slowly drained and the bed was carefully fixed with a cement and vernix coat and allowed to dry to guarantee that it remained stable from there on, while the clear water (free of sand) discharges were fed again to the fixed bed converging channels. A 3D side looking Acoustic Doppler Velocimeter (ADV), installed on a remotely controlled and precisely positioned (± 0.1 mm) robotic arm, was used to measure the instantaneous velocities at a very dense mesh. Once the velocities measured and recorded, the water surface levels were surveyed. For the case with more dominant tributary flow (Qr = 0.17), as expected, the scour hole formed at the tributary mouth is much deeper and larger and extends towards the outer bank of the post-confluence channel, as well as upstream the junction corner. The avalanche slopes are, consequently, steeper. On the other hand, for the case with a weaker tributary flow (Qr = 0.08), no erosion is observed immediately upstream the junction. Moreover, the bank-attached sediment bar downstream the junction is considerably more developed in longitudinal and vertical directions. In both scenarios, a strong horizontal vortical structure was observed immediately downstream the junction. More detailed analysis of the origin and the characteristics of these and other flow patterns is still under investigation. Acknowledgements This research as partially supported by Portuguese and European funds, within programs COMPETE2020 and PORL-FEDER, through project PTDC/ECM-HID/6387/2014 granted by the National Foundation for Science and Technology (FCT).

  3. Effect of Field Spread on Resting-State Magneto Encephalography Functional Network Analysis: A Computational Modeling Study.

    PubMed

    Silva Pereira, Silvana; Hindriks, Rikkert; Mühlberg, Stefanie; Maris, Eric; van Ede, Freek; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo

    2017-11-01

    A popular way to analyze resting-state electroencephalography (EEG) and magneto encephalography (MEG) data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel time series and the network connections. Although conceptually appealing, the network-theoretical approach to sensor-level EEG and MEG data is challenged by the fact that EEG and MEG time series are mixtures of source activity. It is, therefore, of interest to assess the relationship between functional networks of source activity and the ensuing sensor-level networks. Since these topological features are of high interest in experimental studies, we address the question of to what extent the network topology can be reconstructed from sensor-level functional connectivity (FC) measures in case of MEG data. Simple simulations that consider only a small number of regions do not allow to assess network properties; therefore, we use a diffusion magnetic resonance imaging-constrained whole-brain computational model of resting-state activity. Our motivation lies behind the fact that still many contributions found in the literature perform network analysis at sensor level, and we aim at showing the discrepancies between source- and sensor-level network topologies by using realistic simulations of resting-state cortical activity. Our main findings are that the effect of field spread on network topology depends on the type of interaction (instantaneous or lagged) and leads to an underestimation of lagged FC at sensor level due to instantaneous mixing of cortical signals, instantaneous interaction is more sensitive to field spread than lagged interaction, and discrepancies are reduced when using planar gradiometers rather than axial gradiometers. We, therefore, recommend using lagged interaction measures on planar gradiometer data when investigating network properties of resting-state sensor-level MEG data.

  4. Statistics of particle time-temperature histories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewson, John C.; Lignell, David O.; Sun, Guangyuan

    2014-10-01

    Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (themore » 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties alter s particle dispersion. The joint particle - temperature dispersion leads to a distribution of temperature histories predicted by the ODT . Predictions are shown for the lower moments an d the full distributions of the particle positions, particle - observed gas temperatures and particle temperatures. An analysis of the time scales affecting particle - temperature interactions covers Lagrangian integral time scales based on temperature autoco rrelations, rates of temperature change associated with particle motion relative to the temperature field and rates of diffusional change of temperatures. These latter two time scales have not been investigated previously; they are shown to be strongly in termittent having peaked distributions with long tails. The logarithm of the absolute value of these time scales exhibits a distribution closer to normal. A cknowledgements This work is supported by the Defense Threat Reduction Agency (DTRA) under their Counter - Weapons of Mass Destruction Basic Research Program in the area of Chemical and Biological Agent Defeat under award number HDTRA1 - 11 - 4503I to Sandia National Laboratories. The authors would like to express their appreciation for the guidance provi ded by Dr. Suhithi Peiris to this project and to the Science to Defeat Weapons of Mass Destruction program.« less

  5. The study of PDF turbulence models in combustion

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    In combustion computations, it is known that the predictions of chemical reaction rates are poor if conventional turbulence models are used. The probability density function (pdf) method seems to be the only alternative that uses local instantaneous values of the temperature, density, etc., in predicting chemical reaction rates, and thus is the only viable approach for more accurate turbulent combustion calculations. The fact that the pdf equation has a very large dimensionality renders finite difference schemes extremely demanding on computer memories and thus impractical. A logical alternative is the Monte Carlo scheme. Since CFD has a certain maturity as well as acceptance, it seems that the use of a combined CFD and Monte Carlo scheme is more beneficial. Therefore, a scheme is chosen that uses a conventional CFD flow solver in calculating the flow field properties such as velocity, pressure, etc., while the chemical reaction part is solved using a Monte Carlo scheme. The discharge of a heated turbulent plane jet into quiescent air was studied. Experimental data for this problem shows that when the temperature difference between the jet and the surrounding air is small, buoyancy effect can be neglected and the temperature can be treated as a passive scalar. The fact that jet flows have a self-similar solution lends convenience in the modeling study. Futhermore, the existence of experimental data for turbulent shear stress and temperature variance make the case ideal for the testing of pdf models wherein these values can be directly evaluated.

  6. Scan converting video tape recorder

    NASA Technical Reports Server (NTRS)

    Holt, N. I. (Inventor)

    1971-01-01

    A video tape recorder is disclosed of sufficient bandwidth to record monochrome television signals or standard NTSC field sequential color at current European and American standards. The system includes scan conversion means for instantaneous playback at scanning standards different from those at which the recording is being made.

  7. One-dimensional numerical study of charged particle trajectories in turbulent electrostatic wave fields

    NASA Technical Reports Server (NTRS)

    Graham, K. N.; Fejer, J. A.

    1976-01-01

    The paper describes a numerical simulation of electron trajectories in weak random electric fields under conditions that are approximately true for Langmuir waves whose wavelength is much longer than the Debye length. Two types of trajectory calculations were made: (1) the initial particle velocity was made equal to the mean phase velocity of the waves, or (2) it was equal to 0.7419 times the mean velocity of the waves, so that the initial velocity differed substantially from all phase velocities of the wave spectrum. When the autocorrelation time is much greater than the trapping time, the particle motion can change virtually instantaneously from one of three states - high-velocity, low-velocity, or trapped state - to another. The probability of instantaneous transition from a high- or low-velocity state becomes small when the difference between the particle velocity and the mean phase velocity of the waves becomes high in comparison to the trapping velocity. Diffusive motion becomes negligible under these conditions also.

  8. An analysis of the characteristics of rough bed turbulent shear stresses in an open channel

    NASA Astrophysics Data System (ADS)

    Keshavarzy, A.; Ball, J. E.

    1997-06-01

    Entrainment of sediment particles from channel beds into the channel flow is influenced by the characteristics of the flow turbulence which produces stochastic shear stress fluctuations at the bed. Recent studies of the structure of turbulent flow has recognized the importance of bursting processes as important mechanisms for the transfer of momentum into the laminar boundary layer. Of these processes, the sweep event has been recognized as the most important bursting event for entrainment of sediment particles as it imposes forces in the direction of the flow resulting in movement of particles by rolling, sliding and occasionally saltating. Similarly, the ejection event has been recognized as important for sediment transport since these events maintain the sediment particles in suspension. In this study, the characteristics of bursting processes and, in particular, the sweep event were investigated in a flume with a rough bed. The instantaneous velocity fluctuations of the flow were measured in two-dimensions using a small electromagnetic velocity meter and the turbulent shear stresses were determined from these velocity fluctuations. It was found that the shear stress applied to the sediment particles on the bed resulting from sweep events depends on the magnitude of the turbulent shear stress and its probability distribution. A statistical analysis of the experimental data was undertaken and it was found necessary to apply a Box-Cox transformation to transform the data into a normally distributed sample. This enabled determination of the mean shear stress, angle of action and standard error of estimate for sweep and ejection events. These instantaneous shear stresses were found to be greater than the mean flow shear stress and for the sweep event to be approximately 40 percent greater near the channel bed. Results from this analysis suggest that the critical shear stress determined from Shield's diagram is not sufficient to predict the initiation of motion due to its use of the temporal mean shear stress. It is suggested that initiation of particle motion, but not continuous motion, can occur earlier than suggested by Shield's diagram due to the higher shear stresses imposed on the particles by the stochastic shear stresses resulting from turbulence within the flow.

  9. Gravity-Driven Flow of non-Newtonian Fluids in Heterogeneous Porous Media: a Theoretical and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.

    2015-12-01

    A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel plates set at an angle. The HS analogy is extended to power-law fluid flow in porous media with variable properties parallel or transverse to the flow direction. Comparison with experimental results show that the proposed models capture the propagation of the current front and the current profile at intermediate and late time.

  10. Role of hydrodynamic interactions in dynamics of semi-flexible polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Kekre, Rahul

    Experiments have shown that DNA molecules in capillary electrophoresis migrate across field lines if a pressure gradient is applied simultaneously. We suggest that this migration results from an electrically driven flow field around the polyelectrolyte, which generates additional contributions to the center-of-mass velocity if the overall polymer conformation is asymmetric. Numerical simulations and experiments have demonstrated that confined polymers migrate towards the center of the channel in response to both external forces and uniaxial flows. Yet, migration towards the walls has been observed with combinations of external force and flow. In this work, the kinetic theory for an elastic dumbbell developed by Ma and Graham [Phys. Fluids 17, 083103 (2005)] has been extended to account for the effects of an external body force. Further modifications account for counterion screening within a Debye-Huckel approximation for the specific case of applied electric field. The theory qualitatively reproduces results of both experiments for the migration of neutral polymers and polyelectrolytes. The favorable comparison supports the contention [Long et al., Phys. Rev. Lett. 76, 3858 (1996)] that the hydrodynamic interactions in polyelectrolytes decay algebraically, as 1/r 3, rather than exponentially. A coarse-grained polymer model, without explicit charges, is developed and integrated using Brownian-dynamics simulations in analogy with the kinetic theory. The novel feature of the simulations is the inclusion of hydrodynamic interactions induced by the electric field. This model quantitatively captures experimental observations [Zheng and Yeung, Anal. Chem. 75, 3675 (2003)] of DNA migration under combined electric and pressure-driven flow fields in absence of any adjusted parameters. In addition the model predicts dependence of electrophoretic velocity on the instantaneous length of the polyelectrolyte which has been verified by experiments of Lee et. al. [Electrophoresis 31, 2813 (2010)]. The model also predicts phenomenons that are yet to be verified experimentally. These include decrease in diffusivity and increase in radius of gyration of the polyelectrolyte in high electric fields due to internal dispersion. The resulting change in orientation distribution at high electric fields decreases the extent of migration. Preliminary results from microfluidic experiments are presented in this dissertation demonstrating the saturation of migration. This dissertation also includes comparison of results from lattice-Boltzmann and Brownian dynamics simulations of a linear bead-spring model of DNA for two cases; infinite dilution and confinement. We have systematically varied the parameters that may affect the accuracy of the lattice-Boltzmann simulations, including grid resolution, temperature, polymer mass, periodic boundary size and fluid viscosity. For the case of a single chain Lattice-Boltzmann results for the diffusion coefficient and Rouse mode relaxation times were within 1--2% from those obtained from Brownian-dynamics. Results from both methods are also compared for polymer migration in confined flows driven by a uniform shear or pressure gradient. Center-of-mass distribution obtained from Lattice-Boltzmann simulations agrees quantitatively with Brownian-dynamics results, contradicting previously published results. The mobility matrix for a confined polymer was derived by applying Faxen's correction to the flow-field generated by a point force bounded by two parallel plates. This formulation of the mobility matrix is symmetric and positive-definite for all physically accessible configurations of the polymer.

  11. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    NASA Astrophysics Data System (ADS)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  12. Design, implementation, and dosimetry analysis of an S-band waveguide in vitro system for the exposure of cell culture samples to pulsed fields.

    PubMed

    Varela, José E; Page, Juan E; Esteban, Jaime

    2010-09-01

    The interaction between electromagnetic fields and biological media, particularly regarding very high power, short pulses as in radar signals, is not a fully understood phenomenon. In the past few years, many in vitro, cellular communications-oriented exposure studies have been carried out. This article presents a high-power waveguide exposure system capable of dealing with monochromatic, multicarrier or pulsed signals between 1.8 and 3.2 GHz (L- and S-band) with a pulse duration as low as 90 ns, minimum pulse repetition of 100 Hz, and maximum instantaneous power of 100 W. The setup is currently being used with a 2.2 GHz carrier modulated by 5 micros pulses with a 100 Hz repetition period and approximately 30 W of instantaneous power. After a worst-case temperature analysis, which does not account for conduction and convection thermal effects, the experiment's exposure is considered sub-thermal. Evaluation of the results through the specific absorption rate distribution is not considered sufficient enough in these cases. An electromagnetic field distribution analysis is needed. For monochromatic signals, the representation of the modulus of the electric and magnetic field components is proposed as a suitable method of assessment. 2010 Wiley-Liss, Inc.

  13. An experimental investigation of flame behavior during cylindrical vessel explosions

    NASA Astrophysics Data System (ADS)

    Starke, R.; Roth, P.

    1986-12-01

    The propagation of premixed flames centrally ignited at one of the end flanges of a closed cylindrical vessel and the flame-induced flow have been investigated. Photographic records show that under specific geometrical conditions the flame exhibits a cone form with a backward directed top, called tulip-shaped. This appears after the flame has lost a main part of its area by side wall quenching. The instantaneous flow velocity during the short explosion process was measured, together with pressure records, with an LDV. An analogy to the experiments of Markstein (1964), is shown, and the explanations of several authors for the 'tulip' formation are given.

  14. Two ways to feel the pressure: an endothelial Ca(2+) entry channel with dual mechanosensitivity.

    PubMed

    Groschner, Klaus

    2002-01-01

    One impressive function of the vascular endothelium is its ability to adjust the release of vasoactive mediators such as NO and PGI(2) almost instantaneously to changes in blood flow or blood pressure. Besides this fast feedback response to hemodynamic alterations, the endothelium is subject to long-term adaptations that are crucial for prevention of pathological processes such as atherogenesis. Among the various signals that are sensed by endothelial cells, mechanical forces which arise from pulsatile blood flow are probably most important for fast as well as long-term control of blood vessel function by the endothelium.

  15. Temperature and number density measurements using Raman scattering in turbulent-supersonic-combusting flows

    NASA Astrophysics Data System (ADS)

    Jeyashekar, Nigil Satish

    Scramjet engines propelled at hypersonic velocities have the potential to replace existing rocket launchers. Commercializing the vehicle is an arduous task, owing to issues relating to low combustion efficiency. The performance, thrust, and speed of the engine can be improved by optimizing: turbulence-chemistry interaction to provide mixing conditions favorable for the chemistry, pressure buildup, and re-circulation of hydrogen throughout the engine. The performance of the engine can be measured, flow and chemical dynamics can be evaluated when all three variables in the transport equations are known. The variables are instantaneous flow velocity, static temperature (refers to the macroscopic temperature and not the molecular species temperature), and total number density at a point in the flow. The motive is to build a non-intrusive tool to measure thermodynamic quantities (static temperature and total number density). This can be integrated with a velocity measurement tool, in the future, to obtain all three variables simultaneously and instantaneously. The dissertation describes in detail the motivation for the proposed work, with introduction to the formalism involved, with a concise literature review, followed by mathematical perspective to obtain the working equations for temperature and number density. The design of the adiabatic burner and the experimental setup used for calibration is discussed with the uncertainty involved in measurements. The measurements are made for a certain set of flow conditions in the laminar burner by Raman scattering and is validated by comparing it to the theoretical/adiabatic flame temperature and mole fraction plots, in lean and rich regime. This technique is applied to turbulent, supersonic, hydrogen-air flame of an afterburning rocket nozzle. The statistics of temperature and total number density versus the corresponding values at adiabatic conditions gives the departure from thermal and chemical equilibrium. The extent of mixing and combustion can be concluded from such statistics. The future work will involve experimental modifications to make line and planar measurements in combusting jets.

  16. Occurrence, Distribution, Instantaneous Loads, and Yields of Dissolved Pesticides in the San Joaquin River Basin, California, During Summer Conditions, 1994 and 2001

    USGS Publications Warehouse

    Brown, Larry R.; Panshin, Sandra Y.; Kratzer, Charles R.; Zamora, Celia; Gronberg, JoAnn M.

    2004-01-01

    Water samples were collected from 22 drainage basins for analysis of 48 dissolved pesticides during summer flow conditions in 1994 and 2001. Of the 48 pesticides, 31 were reported applied in the basin in the 28 days preceding the June 1994 sampling, 25 in the 28 days preceding the June 2001 sampling, and 24 in the 28 days preceding the August 2001 sampling. The number of dissolved pesticides detected was similar among sampling periods: 26 were detected in June 1994, 28 in June 2001, and 27 in August 2001. Concentrations of chlorpyrifos exceeded the California criterion for the protection of aquatic life from acute exposure at six sites in June 1994 and at five sites in June 2001. There was a single exceedance of the criterion for diazinon in June 1994. The number of pesticides applied in tributary basins was highly correlated with basin area during each sampling period (Spearman's r = 0.85, 0.70, and 0.84 in June 1994, June 2001, and August 2001, respectively, and p < 0.01 in all cases). Larger areas likely include a wider variety of crops, resulting in more varied pesticide use. Jaccard's similarities, cluster analysis, principal components analysis, and instantaneous load calculations generally indicate that west-side tributary basins were different from east-side tributary basins. In general, west-side basins had higher concentrations, instantaneous loads, and instantaneous yields of dissolved pesticides than east-side basins, although there were a number of exceptions. These differences may be related to a number of factors, including differences in basin size, soil texture, land use, irrigation practices, and stream discharge.

  17. On the connection between Maximum Drag Reduction and Newtonian fluid flow

    NASA Astrophysics Data System (ADS)

    Whalley, Richard; Park, Jae-Sung; Kushwaha, Anubhav; Dennis, David; Graham, Michael; Poole, Robert

    2014-11-01

    To date, the most successful turbulence control technique is the dissolution of certain rheology-modifying additives in liquid flows, which results in a universal maximum drag reduction (MDR) asymptote. The MDR asymptote is a well-known phenomenon in the turbulent flow of complex fluids; yet recent direct numerical simulations of Newtonian fluid flow have identified time intervals showing key features of MDR. These intervals have been termed ``hibernating turbulence'' and are a weak turbulence state which is characterised by low wall-shear stress and weak vortical flow structures. Here, in this experimental investigation, we monitor the instantaneous wall-shear stress in a fully-developed turbulent channel flow of a Newtonian fluid with a hot-film probe whilst simultaneously measuring the streamwise velocity at various distances above the wall with laser Doppler velocimetry. We show, by conditionally sampling the streamwise velocity during low wall-shear stress events, that the MDR velocity profile is approached in an additive-free, Newtonian fluid flow. This result corroborates recent numerical investigations, which suggest that the MDR asymptote in polymer solutions is closely connected to weak, transient Newtonian flow structures.

  18. Nitrous oxide fluxes from upland soils in central Hokkaido, Japan.

    PubMed

    Mu, Zhijian; Kimura, Sonoko D; Toma, Yo; Hatano, Ryusuke

    2008-01-01

    Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November), for three years, in a total of 11 upland crop fields in central Hokkaido, Japan. The annual mean N2O fluxes ranged from 2.95 to 164.17 microgN/(m2 x h), with the lowest observed in a grassland and the highest in an onion field. The instantaneous N2O fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall events around harvesting in autumn. No clear common factor regulating instantaneous N2O fluxes was found at any of the study sites. Instead, instantaneous N2O fluxes at different sites were affected by different soil variables. The cumulative N2O emissions during the study period within each year varied from 0.15 to 7.05 kgN/hm2 for different sites, which accounted for 0.33% to 5.09% of the applied fertilizer N. No obvious relationship was observed between cumulative N2O emission and applied fertilizer N rate (P > 0.4). However, the cumulative N2O emission was significantly correlated with gross mineralized N as estimated by CO2 emissions from bare soils divided by C/N ratios of each soil, and with soil mineral N pool (i.e., the sum of gross mineralized N and fertilizer N) (P < 0.001).

  19. μPIV measurements of two-phase flows of an operated direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Burgmann, Sebastian; Blank, Mirja; Panchenko, Olha; Wartmann, Jens

    2013-05-01

    In direct methanol fuel cells (DMFCs), two-phase flows appear in the channels of the anode side (CO2 bubbles in a liquid water-methanol environment) as well as of the cathode side (water droplets or films in an ambient air flow). CO2 bubbles or water droplets may almost completely fill the cross-section of a channel. The instantaneous effect of the formation of two-phase flows on the cell performance has not been investigated in detail, yet. In the current project, the micro particle image velocimetry (μPIV) technique is used to elucidate the corresponding flow phenomena on the anode as well as on the cathode side of a DMFC and to correlate those phenomena with the performance of the cell. A single-channel DMFC with optical access at the anode and the cathode side is constructed and assembled that allows for μPIV measurements at both sides as well as a detailed time-resolved cell voltage recording. The appearance and evolution of CO2 bubbles on the anode side is qualitatively and quantitatively investigated. The results clearly indicate that the cell power increases when the free cross-section area of the channel is decreased by huge bubbles. Methanol is forced into the porous gas diffusion layer (GDL) between the channels and the membrane is oxidized to CO2, and hence, the fuel consumption is increased and the cell performance rises. Eventually, a bubble forms a moving slug that effectively cleans the channel from CO2 bubbles on its way downstream. The blockage effect is eliminated; the methanol flow is not forced into the GDL anymore. The remaining amount of methanol in the GDL is oxidized. The cell power decreases until enough CO2 is produced to eventually form bubbles again and the process starts again. On the other hand under the investigated conditions, water on the cathode side only forms liquid films on the channels walls rather than channel-filling droplets. Instantaneous changes of the cell power due to liquid water formation could not be observed. The timescales of the two-phase flow on the cathode side are significantly larger than on the anode side. However, the μPIV measurements at the cathode side demonstrate the ability of feeding gas flows in microchannels with liquid tracer particles and the ability to measure in two-phase flows in such a configuration.

  20. Hydro-dynamic and geotechnical effects in bridge scour processes

    NASA Astrophysics Data System (ADS)

    Radice, Alessio; Ballio, Francesco; Tran, Chau

    2010-05-01

    Local pier and abutment scour is a crucial topic in hydraulic engineering, due to the significant social and economical impact of bridge failure. Therefore, reliable tools for scour prediction are necessary for both design and vulnerability evaluation of the structures. In recent years, phenomenological studies of the local scour dynamics have been undertaken, to yield insight over the small scale mechanisms of the process. Experimental measurement and numerical modelling of the scouring flow field have shown the horseshoe vortex and the principal vortex as the most evident features of the flow pattern at piers and abutments, respectively. The vortex structure near the obstacles typically presents a high turbulence level compared to that of the incoming flow, and the temporal fluctuations in water velocity make the coherent vortical structures unstable in time. Furthermore, the statistical distributions of velocity values in junction flows often present a bimodal shape. The kinematics of the bottom grains reflects the unsteadiness of the flow pattern. Indeed, recent detailed measurements of particle motion in an abutment scour hole proved that a succession of opposite motion events takes place at several locations within the hole. Events of sediment motion directed away from the obstacles can be attributed to sediment pickup and transport by the turbulent flow field, whilst those with motion towards the abutment can be associated to sediment sliding along the slopes of the hole due to geotechnical instability. On a qualitative basis the presence of geotechnical effects is indeed relatively acknowledged. Despite the general agreement on the qualitative features of the scour process, a quantitative definition of the relevance of sliding for the sediment kinematics in a local scour process is still lacking. Therefore, the purpose of the present work has been to make a specific analysis of the different types of sediment motion events, aimed to a quantification of the relevance of sediment sliding for a proper process modelling. Two experimental configurations have been considered, namely a vertical-wall abutment and a circular pier. Attention has been focused on the well developed stages of the erosion process, where the grain instantaneous movements have been divided into two populations, namely the "turbulence-dominated" events (those in which the particle motion is triggered by the turbulent flow field) and the "gravity-dominated" events (those in which the particles slide along the slopes of the scour hole due to geotechnical instability). A relevant difference has been found between the dynamics of gravity-dominated and turbulence-dominated events. In addition, it has been found that the presence of geotechnical effects in the erosion hole may significantly alter the scour rate. Potential implications of the present results for the modelling of local scour processes have been discussed.

Top