Science.gov

Sample records for instantaneous reactive power

  1. Reactive power and harmonic compensation based on the generalized instantaneous reactive power theory for three-phase power systems

    SciTech Connect

    Peng, Fang Zheng; Lai, Jih-Sheng

    1996-10-01

    A generalized theory of instantaneous reactive power for three-phase power systems is proposed in this paper. This theory gives a generalized definition of instantaneous reactive power, which is valid for sinusoidal or nonsinusoidal, balanced or unbalanced, three- phase power systems with or without zero-sequence currents and/or voltages. The properties and physical meanings of the newly defined instantaneous reactive power are discussed in detail. With this new reactive power theory, it is very easy to calculate and decompose all components, such as fundamental active/reactive power and current, harmonic current, etc. Reactive power and/or harmonic compensation systems for a three-phase distorted power system with and without zero-sequence components in the source voltage and/or load current are then used as examples to demonstrate the measurement, decomposition, and compensation of reactive power and harmonics.

  2. A new definition of instantaneous active-reactive current and power based on instantaneous space vectors on polar coordinates in three-phase circuits

    SciTech Connect

    Nabae, A.; Tanaka, T.

    1996-07-01

    This paper proposes a new definition of the instantaneous active-reactive current and power based directly on instantaneous space vectors on polar coordinates, and presents its application. The definition is applicable in three-phase three-wire systems. The instantaneous active-reactive power and current on {alpha} {minus} {beta} orthogonal coordinates have been defined by the so-called p-q theory. In comparison with the p-q theory, the new definition offers a lucid physical concept for the active-reactive current and power in three-phase circuits. The new method, thus, can decompose current into the instantaneous active and reactive currents without calculating the instantaneous active and reactive powers. An application example is presented to confirm the validity and practicability of the new definition using digital simulation.

  3. New Approach to Optimize the Apfs Placement Based on Instantaneous Reactive Power Theory by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Hashemi-Dezaki, Hamed; Mohammadalizadeh-Shabestary, Masoud; Askarian-Abyaneh, Hossein; Rezaei-Jegarluei, Mohammad

    2014-01-01

    In electrical distribution systems, a great amount of power are wasting across the lines, also nowadays power factors, voltage profiles and total harmonic distortions (THDs) of most loads are not as would be desired. So these important parameters of a system play highly important role in wasting money and energy, and besides both consumers and sources are suffering from a high rate of distortions and even instabilities. Active power filters (APFs) are innovative ideas for solving of this adversity which have recently used instantaneous reactive power theory. In this paper, a novel method is proposed to optimize the allocation of APFs. The introduced method is based on the instantaneous reactive power theory in vectorial representation. By use of this representation, it is possible to asses different compensation strategies. Also, APFs proper placement in the system plays a crucial role in either reducing the losses costs and power quality improvement. To optimize the APFs placement, a new objective function has been defined on the basis of five terms: total losses, power factor, voltage profile, THD and cost. Genetic algorithm has been used to solve the optimization problem. The results of applying this method to a distribution network illustrate the method advantages.

  4. Instantaneous phasor method for obtaining instantaneous balanced fundamental components for power quality control and continuous diagnostics

    SciTech Connect

    Hsu, J.S.

    1997-07-01

    This paper introduces an instantaneous phasor method that considers three phases simultaneously. This method produces the instantaneous fundamental balanced components of the polluted voltages or currents. A figure shows three-phase voltages that contain 5% of fundamental magnitude for each order of the 3rd, 5th, 7th, 9th and the 11th harmonics, respectively. Additionally, the voltages have 5% unbalance for all voltage components. A 10% fundamental-frequency zero-sequence component, as well as a 10% fundamental-frequency negative-sequence component are also added to the phase voltages. Furthermore, certain high-frequency pulses arbitrarily given at 5% of a 35th order to represent a possible carrier frequency of power electronic circuits are also included.

  5. Reactive Power Compensation Method Considering Minimum Effective Reactive Power Reserve

    NASA Astrophysics Data System (ADS)

    Gong, Yiyu; Zhang, Kai; Pu, Zhang; Li, Xuenan; Zuo, Xianghong; Zhen, Jiao; Sudan, Teng

    2017-05-01

    According to the calculation model of minimum generator reactive power reserve of power system voltage stability under the premise of the guarantee, the reactive power management system with reactive power compensation combined generator, the formation of a multi-objective optimization problem, propose a reactive power reserve is considered the minimum generator reactive power compensation optimization method. This method through the improvement of the objective function and constraint conditions, when the system load growth, relying solely on reactive power generation system can not meet the requirement of safe operation, increase the reactive power reserve to solve the problem of minimum generator reactive power compensation in the case of load node.

  6. Reactive Power Compensator.

    DOEpatents

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  7. Reactive power compensator

    DOEpatents

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  8. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    NASA Astrophysics Data System (ADS)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  9. Reactive Power Compensating System.

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  10. Reactive power compensating system

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  11. A Tariff for Reactive Power

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce

  12. DC uninterrupted power supply having instantaneous switching followed by low impedance switching

    NASA Astrophysics Data System (ADS)

    Hammond, Russell E.; Northup, Robert L.; Shimp, Alan G.

    1991-10-01

    An uninterruptible power supply is provided that incorporates switching circuitry permitting a path for instantaneous DC backup power to be supplied to a voltage-declining primary power supply bus. Once the instantaneous transition is made, battery power is switched to a low impedance path to provide long-term battery power delivery to the bus. At a point where the backup batteries no longer supply useful power to a load, disabling circuitry disconnects the batteries from the load so that excessive draining of the batteries does not result in irreversible battery damage. The uninterruptible power supply of the invention further includes an automatic battery charging circuitry that seeks to maintain the power supply batteries at optimal charge level. To enable an operator to adequately assess battery charge condition, the invention provides battery test circuitry that causes a simulated load to appear at the power supply batteries. Visual representations are then made as to battery status.

  13. Instantaneous stator power as a medium for the signature analysis of induction motors

    SciTech Connect

    Legowski, S.F.; Ula, A.H.M.S.; Trzynadlowski, A.M.

    1995-12-31

    Preventive maintenance of electric drive systems with induction motors involves continuous monitoring of operation, to detect electrical and mechanical conditions that may lead to a failure. Intensive research effort has been for some time focused on the motor current signature analysis (MCSA). The MCSA techniques utilize results of spectral analysis of the stator current of an induction motor to diagnose abnormal conditions both in the motor and driven system. Reliable interpretation of the current spectra is difficult, as distortions of the current waveform caused by abnormalities in the drive system are usually minute. In this paper, an alternate medium for the motor signature analysis, namely the instantaneous stator power, is proposed. It is shown, both by computer simulations and laboratory experiments, that the instantaneous power carries more information than the current itself, since not only the current magnitude but also the phase shift between the current and voltage waveforms are affected by the irregularities in the motor or other parts of the drive system. Utilization of the instantaneous stator power as a medium for the signature analysis opens new possibilities in the automated diagnostics of induction motor drives.

  14. Instantaneous microwave frequency measurement using optical carrier suppression based DC power monitoring.

    PubMed

    Fu, Songnian; Tang, Ming; Shum, Perry

    2011-11-21

    A novel photonic-assisted technique for instantaneous microwave frequency measurement is proposed using two cascaded Mach-Zehnder modulators (MZMs) biased at the transmission null point. Then, the microwave frequency can be estimated by monitoring direct current (DC) optical power. Moreover, the measurement range and the measurement resolution can be optimized by setting the time delay between optical and electrical link and optical dispersion, respectively. The approach is theoretically investigated and experimentally verified with a measurement range of 8 GHz and a measurement error of less than ± 0.15 GHz. © 2011 Optical Society of America

  15. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  16. Independent component analysis of instantaneous power-based fMRI.

    PubMed

    Zhong, Yuan; Zheng, Gang; Liu, Yijun; Lu, Guangming

    2014-01-01

    In functional magnetic resonance imaging (fMRI) studies using spatial independent component analysis (sICA) method, a model of "latent variables" is often employed, which is based on the assumption that fMRI data are linear mixtures of statistically independent signals. However, actual fMRI signals are nonlinear and do not automatically meet with the requirement of sICA. To provide a better solution to this problem, we proposed a novel approach termed instantaneous power based fMRI (ip-fMRI) for regularization of fMRI data. Given that the instantaneous power of fMRI signals is a scalar value, it should be a linear mixture that naturally satisfies the "latent variables" model. Based on our simulated data, the curves of accuracy and resulting receiver-operating characteristic curves indicate that the proposed approach is superior to the traditional fMRI in terms of accuracy and specificity by using sICA. Experimental results from human subjects have shown that spatial components of a hand movement task-induced activation reveal a brain network more specific to motor function by ip-fMRI than that by the traditional fMRI. We conclude that ICA decomposition of ip-fMRI may be used to localize energy signal changes in the brain and may have a potential to be applied to detection of brain activity.

  17. Estimating maximum instantaneous distortion from inlet total pressure rms and PSD measurements. [Root Mean Square and Power Spectral Density methods

    NASA Technical Reports Server (NTRS)

    Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.

    1975-01-01

    An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.

  18. Space-Time Power Schedule for Distributed MIMO Links Without Instantaneous Channel State Information at the Transmitting Nodes

    DTIC Science & Technology

    2008-02-01

    multiple distributed multiple - input multiple - output ( MIMO ) links without the knowledge of the instantaneous channel state information (CSI...Swindlehurst, Fellow, IEEE Abstract—A space–time optimal power schedule for multiple distributed multiple - input multiple - output ( MIMO ) links without the...and the optimality of different power scheduling approaches. Index Terms— Multiple - input multiple - output ( MIMO

  19. Power-balancing instantaneous optimization energy management for a novel series-parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Sun, Dongye; Lin, Xinyou; Qin, Datong; Deng, Tao

    2012-11-01

    Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly.

  20. Optimal reactive power control of grid connected photovoltaic resources

    NASA Astrophysics Data System (ADS)

    Trimble, Joshua Ryan

    As more photovoltaic distributed generation resources are installed on distribution power systems, selective control of the inverters connecting the DC power sources presents the opportunity to supply both real and reactive power at the point of common coupling. This thesis presents a simulated distribution system with individually controlled PV resources with the objective of minimizing total system losses while operating at the maximum power point and below the simulated rating of the associated inverters. The control strategy assumes the characteristics of the distribution system are known and solves for the optimal power flow operating point. The ability of each PV source to provide real and reactive power varies instantaneously as irradiance changes, so the operating point for each resource must be constantly recalculated and adjusted. The assumption of known system paramaters can be justified in a SmartGrid context, and a solution based on overall system power flow should be considered as a benchmark for any other state estimation or local control approaches.

  1. Instantaneous Impulses.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    2000-01-01

    Describes an experiment that extends Newton's instantaneous-impulse method of orbital analysis to a graphical method of orbit determination. Discusses the experiment's usefulness for teaching both horizontal projectile motion and instantaneous impulse. (WRM)

  2. Instantaneous Impulses.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    2000-01-01

    Describes an experiment that extends Newton's instantaneous-impulse method of orbital analysis to a graphical method of orbit determination. Discusses the experiment's usefulness for teaching both horizontal projectile motion and instantaneous impulse. (WRM)

  3. A Tariff for Reactive Power - IEEE

    SciTech Connect

    Kueck, John D; Tufon, Christopher; Isemonger, Alan; Kirby, Brendan J

    2008-11-01

    This paper describes a suggested tariff or payment for the local supply of reactive power from distributed energy resources. The authors consider four sample customers, and estimate the cost of supply of reactive power for each customer. The power system savings from the local supply of reactive power are also estimated for a hypothetical circuit. It is found that reactive power for local voltage regulation could be supplied to the distribution system economically by customers when new inverters are installed. The inverter would be supplied with a power factor of 0.8, and would be capable of local voltage regulation to a schedule supplied by the utility. Inverters are now installed with photovoltaic systems, fuel cells and microturbines, and adjustable-speed motor drives.

  4. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  5. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  6. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  7. Reactive power management and voltage control in deregulated power markets

    NASA Astrophysics Data System (ADS)

    Spangler, Robert G.

    The research that is the subject of this dissertation is about the management of reactive power and voltage support in the wholesale open access power markets in the United States (US). The purpose of this research is to place decisions about open access market structures, as they relate to reactive power and voltage control, on a logical and consistent economic basis, given the engineering needs of a commercial electric power system. An examination of the electricity markets operating in the US today reveals that current approaches to reactive power management and voltage support are extensions of those based on historical, regulated monopoly electric service. A case for change is built by first looking at the subject of reactive power from an engineering viewpoint and then from an economic perspective. Ultimately, a set of market rules for managing reactive power and voltage support is proposed. The proposal suggests that cost recovery for static and dynamic VARs is appropriately accomplished through the regulated transmission cost of service. Static VAR cost recovery should follow traditional rate recovery methodologies. In the case of dynamic VARs, this work provides a methodology based on the microeconomic theory of the firm for determining such cost. It further suggests that an operational strategy that reduces and limits the use of dynamic VARs, during normal operations, is appropriate. This latter point leads to an increase in the fixed cost of the transmission network but prevents price spikes and short supply situations from affecting, or being affected by, the reactive capability limitations associated with dynamic VARs supplied from synchronous generators. The rules are consistent with a market structure that includes competitive generation and their application will result in the communication of a clear understanding of the responsibilities, related to voltage control, of each type of market entity. In this sense, their application will contribute to

  8. Instantaneous characteristics simulation and analysis on three-level brushless AC synchronous generators of aeronautic constant speed and frequency AC power system

    NASA Astrophysics Data System (ADS)

    Ma, Xiaohe; Shen, Songhua

    2006-11-01

    This paper mainly introduces theoretical analysis and experimental results of instantaneous characteristics on a certain three level brushless three-phase AC synchronous generators. The analysis, modeling and simulations with Simplorer software of Ansoft Company are carried out. It establishes three level generator models, gives theoretical relation matrix equation, and simulates some instantaneous characteristics. Design of the system requires reliable simulation tools with comprehensive component libraries capable of dealing with complex system behavior. The simulation results verify that the proposed system model can efficiently simulate the instantaneous characteristics of the real AC generator system. It gives better design experiences and digital methods for aeronautic constant speed and frequency AC power system.

  9. New hybrid active power filter for harmonic current suppression and reactive power compensation

    NASA Astrophysics Data System (ADS)

    Biricik, Samet; Cemal Ozerdem, Ozgur; Redif, Soydan; Sezai Dincer, Mustafa

    2016-08-01

    In the case of undistorted and balanced grid voltages, low ratio shunt active power filters (APFs) can give unity power factors and achieve current harmonic cancellation. However, this is not possible when source voltages are distorted and unbalanced. In this study, the cost-effective hybrid active power filter (HAPF) topology for satisfying the requirements of harmonic current suppression and non-active power compensation for industry is presented. An effective strategy is developed to observe the effect of the placement of power capacitors and LC filters with the shunt APF. A new method for alleviating the negative effects of a nonideal grid voltage is proposed that uses a self-tuning filter algorithm with instantaneous reactive power theory. The real-time control of the studied system was achieved with a field-programmable gate array (FPGA) architecture, which was developed using the OPAL-RT system. The performance result of the proposed HAPF system is tested and presented under nonideal supply voltage conditions.

  10. Reactive power optimization using fuzzy load representation

    SciTech Connect

    Abdul-Rahman, K.H.; Shahidehpour, S.M. . Dept. of Electrical and Computer Engineering)

    1994-05-01

    This paper presents a mathematical formulation for the optimal voltage/reactive power control problem taking into account linguistic declaration of system load values. The fuzzy set theory which is based on the feasibility rather than the frequency of occurrence of an outcome is considered, and possibility distributions are assigned to load values and bus voltages. The objective is to minimize power losses considering various load conditions. The problem is decomposed into four subproblems via the Dantzig-Wolfe decomposition for reducing the dimensions of the problem. A second Dantzig-Wolfe decomposition divides each subproblem into several areas leading to a considerable reduction in the dimensions of subproblems. An illustrative example demonstrates the applicability of the approach. The fuzzy approach provides a global solution for the system behavior under various load conditions.

  11. 77 FR 24949 - Reactive Power Resources; Supplemental Notice Requesting Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Energy Regulatory Commission Reactive Power Resources; Supplemental Notice Requesting Comments On April... whether the Commission should reconsider or modify the reactive power provisions of Order No. 661-A and examine what evidence could be developed under Order No. 661 to support a request to apply reactive...

  12. Instantaneous Conventions

    PubMed Central

    Misyak, Jennifer; Noguchi, Takao; Chater, Nick

    2016-01-01

    Humans can communicate even with few existing conventions in common (e.g., when they lack a shared language). We explored what makes this phenomenon possible with a nonlinguistic experimental task requiring participants to coordinate toward a common goal. We observed participants creating new communicative conventions using the most minimal possible signals. These conventions, furthermore, changed on a trial-by-trial basis in response to shared environmental and task constraints. Strikingly, as a result, signals of the same form successfully conveyed contradictory messages from trial to trial. Such behavior is evidence for the involvement of what we term joint inference, in which social interactants spontaneously infer the most sensible communicative convention in light of the common ground between them. Joint inference may help to elucidate how communicative conventions emerge instantaneously and how they are modified and reshaped into the elaborate systems of conventions involved in human communication, including natural languages. PMID:27793986

  13. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  14. Instantaneous Power Spectrum

    DTIC Science & Technology

    1989-03-01

    Armando M. P. Jesus SequeiraI DirccAo do Serviqo de Instruqo e Treino Edificio da Adrniiriistra~ao Central de Marinha Pra~a do Coni~rcio 1100 Lisboa...Portugal 11. Dirccqdo do Servi~o de Instruqo e TreinoI Edificio da Adrninistraqdo Central de Marinha Praqa do Cornercio 1100 Lisboa Portugal 12. Lt...Lisboa Portugal 89 12. Lt. Paulo M. D. NM6nica de Oliveira2 Direc Ao do Servi~o de 1nstruqao e Treino Edificio da Adnistraqo Central de Marinha Praoa do Comercio 1 100 Lisboa Portuoal 89

  15. Instantaneous Power Spectrum

    DTIC Science & Technology

    1990-03-01

    O.0) AMAX=O AMIN=AMAX DO 10 1=1,L DO 20 N=-?1,M IF ( ((14-N) .GE. 1) .AND. ((14-N) .LE. L) )THEN COFF (M+N+1)=DATA(I14N) + , (0. 54+0. 46*COS(2*PI*N...Time Spectral Histories ," Acoust. Soc. Amer. , Vol. 59, No. 2, pp. 381-388, February 1976. Lampard, D.G., "Generalization of the Wiener-Khintchine

  16. Voltage Stability Impact of Grid-Tied Photovoltaic Systems Utilizing Dynamic Reactive Power Control

    NASA Astrophysics Data System (ADS)

    Omole, Adedamola

    Photovoltaic (PV) DGs can be optimized to provide reactive power support to the grid, although this feature is currently rarely utilized as most DG systems are designed to operate with unity power factor and supply real power only to the grid. In this work, the voltage stability of a power system embedded with PV DG is examined in the context of the high reactive power requirement after a voltage sag or fault. A real-time dynamic multi-function power controller that enables renewable source PV DGs to provide the reactive power support necessary to maintain the voltage stability of the microgrid, and consequently, the wider power system is proposed. The loadability limit necessary to maintain the voltage stability of an interconnected microgrid is determined by using bifurcation analysis to test for the singularity of the network Jacobian and load differential equations with and without the contribution of the DG. The maximum and minimum real and reactive power support permissible from the DG is obtained from the loadability limit and used as the limiting factors in controlling the real and reactive power contribution from the PV source. The designed controller regulates the voltage output based on instantaneous power theory at the point-of-common coupling (PCC) while the reactive power supply is controlled by means of the power factor and reactive current droop method. The control method is implemented in a modified IEEE 13-bus test feeder system using PSCADRTM power system analysis software and is applied to the model of a Tampa ElectricRTM PV installation at Lowry Park Zoo in Tampa, FL. This dissertation accomplishes the systematic analysis of the voltage impact of a PV DG-embedded power distribution system. The method employed in this work bases the contribution of the PV resource on the voltage stability margins of the microgrid rather than the commonly used loss-of-load probability (LOLP) and effective load-carrying capability (ELCC) measures. The results of

  17. The reactivity of quaternary ammonium- versus potassium-fluorides supported on metal oxides: paving the way to an instantaneous detoxification of chemical warfare agents.

    PubMed

    Zafrani, Yossi; Yehezkel, Lea; Goldvaser, Michael; Marciano, Daniele; Waysbort, Daniel; Gershonov, Eytan; Columbus, Ishay

    2011-12-21

    The reactions of the chemical warfare agents (CWAs) 2,2'-dichloroethyl sulfide (HD), O-ethyl S-2-(diisopropylamino)-ethyl methylphosphonothioate (VX) and isopropyl methylphosphonofluoridate (GB) with various metal oxide-supported quaternary ammonium fluorides (QAF) and/or potassium fluoride (KF) reagents are described. These active sorbents, which were prepared by a modified procedure, include alumina, silica and titania, enriched with "available" (not bound to the surface) fluoride ions. Alumina-based fluoride reagents were found to be more active than their silica or titania counterparts. QAF/Al(2)O(3) reagents, compared to KF/Al(2)O(3), exhibit an exceptional reactivity toward HD, as demonstrated both in reaction rates and product identity. For example, with TBAF, t(1/2) is 15 min for the formation of the elimination product divinyl sulfide (DVS), while with KF, t(1/2) is 10 h for the formation of the hydrolysis product thiodiglycol (TDG). On the other hand, both sorbents reacted similarly against the nerve agents GB or VX. In order to increase the "available" fluoride content on the solid surface, the mixed active sorbent TBAF/KF/Al(2)O(3) (20/20/60) was developed. On this powder, all three CWAs were degraded instantaneously at the low loading of 1 wt% (t(1/2) < 2 min) and rapidly at the higher loadings of 5-10 wt% (t(1/2) of minutes scale). We assume that the relatively large amount of inorganic fluoride (KF) acts synergistically as a reservoir for the more reactive organic fluorides (TBAF). Moreover, the alumina surface hydroxyl groups may also operate as a water reservoir for the hydrolysis of VX or GB. Therefore, TBAF/KF/Al(2)O(3) might be considered as a promising destructive sorbent for CWAs.

  18. Reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Magnus, F.; Tryggvason, T. K.; Sveinsson, O. B.; Olafsson, S.

    2012-10-01

    Here we discuss reactive high power impulse magnetron sputtering sputtering (HiPIMS) [1] of Ti target in an Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on both the pulse repetition frequency and discharge voltage. The discharge current increases with decreasing frequency or voltage. This we attribute to an increase in the secondary electron emission yield during the self-sputtering phase of the pulse, as nitride [2] or oxide [3] forms on the target. We also discuss the growth of TiN films on SiO2 at temperatures of 22-600 ^oC. The HiPIMS process produces denser films at lower growth temperature and the surface is much smoother and have a significantly lower resistivity than dc magnetron sputtered films on SiO2 at all growth temperatures due to reduced grain boundary scattering [4].[4pt] [1] J. T. Gudmundsson, N. Brenning, D. Lundin and U. Helmersson, J. Vac. Sci. Technol. A, 30 030801 (2012)[0pt] [2] F. Magnus, O. B. Sveinsson, S. Olafsson and J. T. Gudmundsson, J. Appl. Phys., 110 083306 (2011)[0pt] [3] F. Magnus, T. K. Tryggvason, S. Olafsson and J. T. Gudmundsson, J. Vac. Sci. Technol., submitted 2012[0pt] [4] F. Magnus, A. S. Ingason, S. Olafsson and J. T. Gudmundsson, IEEE Elec. Dev. Lett., accepted 2012

  19. Compensation of Reactive Power of Isolated Wind-Diesel Hybrid Power Systems

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Bhatti, T. S.; Ramakrishna, K. S. S.

    2012-03-01

    This paper presents the automatic reactive power control of an isolated wind-diesel hybrid power system with a synchronous generator (SG) for a diesel genset and an induction generator (IG) with wind energy conversion systems (WECS) to generate electricity. To reduce the gap between reactive power generation and demand, a variable source of reactive power is used such as static synchronous compensator (STATCOM). The mathematical model of the system based on reactive power flow equations is developed. Three examples of the wind-diesel hybrid power systems are considered with different wind power generation capacities to study the effect of the wind power generation on the system performance. The study is based on small signal analysis by considering IEEE type-1 excitation system for the SG. The paper also shows the transient performance of the hybrid systems for 1 % step increase in reactive power load and 1 % step increase in reactive power load plus 1 % step increase in input wind power.

  20. A DFIG Islanding Detection Scheme Based on Reactive Power Infusion

    NASA Astrophysics Data System (ADS)

    Wang, M.; Liu, C.; He, G. Q.; Li, G. H.; Feng, K. H.; Sun, W. W.

    2017-07-01

    A lot of research has been done on photovoltaic (the “PV”) power system islanding detection in recent years. As a comparison, much less attention has been paid to islanding in wind turbines. Meanwhile, wind turbines can work in islanding conditions for quite a long period, which can be harmful to equipments and cause safety hazards. This paper presents and examines a double fed introduction generation (the “DFIG”) islanding detection scheme based on feedback of reactive power and frequency and uses a trigger signal of reactive power infusion which can be obtained by dividing the voltage total harmonic distortion (the "THD") by the voltage THD of last cycle to avoid the deterioration of power quality. This DFIG islanding detection scheme uses feedback of reactive power current loop to amplify the frequency differences in islanding and normal conditions. Simulation results show that the DFIG islanding detection scheme is effective.

  1. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect

    Not Available

    1981-04-01

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  2. Reactive power optimization strategy considering analytical impedance ratio

    NASA Astrophysics Data System (ADS)

    Wu, Zhongchao; Shen, Weibing; Liu, Jinming; Guo, Maoran; Zhang, Shoulin; Xu, Keqiang; Wang, Wanjun; Sui, Jinlong

    2017-05-01

    In this paper, considering the traditional reactive power optimization cannot realize the continuous voltage adjustment and voltage stability, a dynamic reactive power optimization strategy is proposed in order to achieve both the minimization of network loss and high voltage stability with wind power. Due to the fact that wind power generation is fluctuant and uncertain, electrical equipments such as transformers and shunt capacitors may be operated frequently in order to achieve minimization of network loss, which affect the lives of these devices. In order to solve this problem, this paper introduces the derivation process of analytical impedance ratio based on Thevenin equivalent. Thus, the multiple objective function is proposed to minimize the network loss and analytical impedance ratio. Finally, taking the improved IEEE 33-bus distribution system as example, the result shows that the movement of voltage control equipment has been reduced and network loss increment is controlled at the same time, which proves the applicable value of this strategy.

  3. Index-based reactive power compensation scheme for voltage regulation

    NASA Astrophysics Data System (ADS)

    Dike, Damian Obioma

    2008-10-01

    Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute

  4. Reactive Power Compensation Using an Energy Management System

    DTIC Science & Technology

    2014-09-01

    power factor PG&E Pacific Gas and Electric PI proportional-integral PLL phase-locked loop PWM pulse width modulation RMS root mean square USMC...the reactive power compensation method presented in this thesis is the use of a phase-locked loop ( PLL ) control scheme to detect and match the source...current and voltage phase angles. While developing a PLL control scheme may be a more complex design effort, it could potentially alleviate the

  5. Instantaneous Frequency Attribute Comparison

    NASA Astrophysics Data System (ADS)

    Yedlin, M. J.; Margrave, G. F.; Ben Horin, Y.

    2013-12-01

    The instantaneous seismic data attribute provides a different means of seismic interpretation, for all types of seismic data. It first came to the fore in exploration seismology in the classic paper of Taner et al (1979), entitled " Complex seismic trace analysis". Subsequently a vast literature has been accumulated on the subject, which has been given an excellent review by Barnes (1992). In this research we will compare two different methods of computation of the instantaneous frequency. The first method is based on the original idea of Taner et al (1979) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method is based on the computation of the power centroid of the time-frequency spectrum, obtained using either the Gabor Transform as computed by Margrave et al (2011) or the Stockwell Transform as described by Stockwell et al (1996). We will apply both methods to exploration seismic data and the DPRK events recorded in 2006 and 2013. In applying the classical analytic signal technique, which is known to be unstable, due to the division of the square of the envelope, we will incorporate the stabilization and smoothing method proposed in the two paper of Fomel (2007). This method employs linear inverse theory regularization coupled with the application of an appropriate data smoother. The centroid method application is straightforward and is based on the very complete theoretical analysis provided in elegant fashion by Cohen (1995). While the results of the two methods are very similar, noticeable differences are seen at the data edges. This is most likely due to the edge effects of the smoothing operator in the Fomel method, which is more computationally intensive, when an optimal search of the regularization parameter is done. An advantage of the centroid method is the intrinsic smoothing of the data, which is inherent in the sliding window application used in all Short-Time Fourier Transform methods. The Fomel technique

  6. Reactive power in the full Gaussian light wave.

    PubMed

    Seshadri, S R

    2009-11-01

    The electric current sources that are required for the excitation of the fundamental Gaussian beam and the corresponding full Gaussian light wave are determined. The current sources are situated on the secondary source plane that forms the boundary between the two half-spaces in which the waves are launched. The electromagnetic fields and the complex power generated by the current sources are evaluated. For the fundamental Gaussian beam, the reactive power vanishes, and the normalization is chosen such that the real power is 2 W. The various full Gaussian waves are identified by the length parameter b(t) that lies in the range 0 < or = b(t) < or = b, where b is the Rayleigh distance. The other parameters are the wavenumber k, the free-space wavelength lambda, and the beam waist w0 at the input plane. The dependence of the real power of the full Gaussian light wave on b(t)/b and w0/lambda is examined. For a specified w0/lambda, the reactive power, which can be positive or negative, increases as b(t)/b is increased from 0 to 1 and becomes infinite for b(t)/b=1. For a specified b(t)/b, the reactive power approaches zero as kw0 is increased and reaches the limiting value of zero of the paraxial beam.

  7. 77 FR 11109 - Reactive Power Resources; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... interconnecting asynchronous generators and raises questions concerning the need and efficacy of continuing the... by which reactive power is currently secured such as through self-supply; and how a technology that... accessibility@ferc.gov or call toll free 1-866-208- 3372 (voice) or 202-208-8659 (TTY); or send a fax to...

  8. Application of Newton's optimal power flow in voltage/reactive power control

    SciTech Connect

    Bjelogrlic, M.; Babic, B.S. ); Calovic, M.S. ); Ristanovic, P. )

    1990-11-01

    This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

  9. Voltage Control in Distribution Systems Considered Reactive Power Output Sharing

    NASA Astrophysics Data System (ADS)

    Oshiro, Masato; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu; Funabashi, Toshihisa

    In recent years, distributed generation (DG) and renewable energy source (RES) are attracting special attention to distribution systems. Renewable energy such as photovoltaic (PV) system and wind turbine generator are used as a source of clean energy. However, the large amount of distributed generation causes voltage deviation beyond a statutory range in distribution systems. This paper proposes a methodology for voltage control by using inverters interfaced with DG and tap changing transformers. In the proposed method a one-day schedule of voltage references for the control devices are determined by an optimization technique based on predicted values of load demand and PV power generation. Furthermore, decided reactive power output according to the locally measurable voltage based on droop characteristic. Slope and base value on droop characteristic are selected by fuzzy control. The proposed method accomplishes improvement against voltage distribution considered the reactive power output sharing and reduction of distribution loss. The effectiveness of the proposed method is verified by using MATLAB®.

  10. Reactive high power impulse magnetron sputtering: combining simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kozak, Tomas; Vlcek, Jaroslav

    2016-09-01

    Reactive high-power impulse magnetron sputtering (HiPIMS) has recently been used for preparation of various oxide films with high application potential, such as TiO2, ZrO2, Ta2O5, HfO2, VO2. Using our patented method of pulsed reactive gas flow control with an optimized reactive gas inlet, we achieved significantly higher deposition rates compared to typical continuous dc magnetron depositions. We have developed a time-dependent model of the reactive HiPIMS. The model includes a depth-resolved description of the sputtered target (featuring sputtering, implantation and knock-on implantation processes) and a parametric description of the discharge plasma (dissociation of reactive gas, ionization and return of sputtered atoms and gas rarefaction). The model uses a combination of experimental and simulation data as input. We have calculated the composition of the target and substrate for several deposition conditions. The simulations predict a reduced compound coverage of the target in HiPIMS compared to the continuous dc sputtering regime which explains the increased deposition rate. The simulations show that an increased dissociation of oxygen in a HiPIMS discharge is beneficial to achieve stoichiometric films on the substrate at high deposition rates.

  11. Instantaneous phase shifting deflectometry.

    PubMed

    Trumper, Isaac; Choi, Heejoo; Kim, Dae Wook

    2016-11-28

    An instantaneous phase shifting deflectometry measurement method is presented and implemented by measuring a time varying deformable mirror with an iPhone ® 6. The instantaneous method is based on multiplexing phase shifted fringe patterns with color, and decomposing them in x and y using Fourier techniques. Along with experimental data showing the capabilities of the instantaneous deflectometry system, a quantitative comparison with the Fourier transform profilometry method, which is a distinct phase measuring method from the phase shifting approach, is presented. Sources of error, nonlinear color-multiplexing induced error correction, and hardware limitations are discussed.

  12. Sensitivity-based reactive power control for voltage profile improvement

    SciTech Connect

    Exposito, A.G.; Ramos, J.L.M. . Dept. of Electrical Engineering); Macias, J.L.R. ); Salinas, Y.C.

    1993-08-01

    This paper presents a procedure for dispatching reactive power when voltage deviations are not acceptable. The proposed method, intended for real-time use, determines which control variables are actually effective for solving voltage violations. Efficiency is measured according to sensitivities, current voltage profile and reserve margin of control variables. The selected control variables are rescheduled in proportion to their efficiency coefficients. State-of-the-art sparsity techniques are used to speed-up computation of sensitivities. An example is included to show effectiveness of the method.

  13. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1985-01-01

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  14. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1985-09-03

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas. 5 figs.

  15. Short-term scheduling of reactive power controllers

    SciTech Connect

    Hong Yingyi; Liao Csongming

    1995-05-01

    A two-level approach is presented to solve the problem of optimal short-term (one day) scheduling of reactive power controllers in this paper. The entire problem is decomposed into two levels: the master and the slave levels. The master level deals with minimization of the depreciation cost of compensators and EHV transformer taps in order to reduce the control action for compensators and EHV transformer taps while satisfying operating constraints. The slave level treats minimization of capitalized MW losses while satisfying system security constraints. The slave level also treats OLTCs and determines scheduling of the generator voltages. These two levels interact through linear constraints in the iteration process. A practical 265-bus system, namely Taiwan Power System, are used to serve as a sample to show the applicability of the presented approach.

  16. A Single-Phase Current Source Solar Inverter with Constant Instantaneous Power, Improved Reliability, and Reduced-Size DC-Link Filter

    NASA Astrophysics Data System (ADS)

    Bush, Craig R.

    This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.

  17. Unified active and reactive power modulation of HVDC transmission systems

    NASA Astrophysics Data System (ADS)

    Grund, C. E.; Pohl, R. V.

    1981-11-01

    The power modulation of a high voltage direct current (HVDC) system for stabilization of an ac/dc network was investigated. It was found that simultaneous modulation of both dc current and voltage was more effective than just current modulation by itself, since the dc voltage modulation could be used to minimize the reactive power changes resulting from a change of the dc current. This helps stabilize the ac busbar voltages at the converters, which reduces undesirable load flow changes to voltage dependent ac loads, thus improving the effectiveness of the dc power modulation. This unified modulation control concept was evaluated by means of digital computer studies as well as a special purpose HVDC simulator. Several combined ac/dc power transmission systems were synthesized for testing of different modulation controller concepts. An optimum controller design incorporating a linear quadratic control algorithm with full state feedback was first studied. This provided a basis for comparison of suboptimal controller designs utilizing reduced state feedback and a Kalman filter state reconstruction technique.

  18. Power and power-to-flow reactivity transfer functions in EBR-II (Experimental Breeder Reactor II) fuel

    SciTech Connect

    Grimm, K.N.; Meneghetti, D. )

    1989-11-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations.

  19. 78 FR 77670 - Zero Rate Reactive Power Rate Schedules; Notice Allowing Post-Workshop Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Comments On December 11, 2013, a Commission staff-led workshop explored the mechanics of filing reactive... written comments focused on the mechanics of filing reactive power rate schedules for which there is no...

  20. Secure provision of reactive power ancillary services in competitive electricity markets

    NASA Astrophysics Data System (ADS)

    El-Samahy, Ismael

    The research work presented in this thesis discusses various complex issues associated with reactive power management and pricing in the context of new operating paradigms in deregulated power systems, proposing appropriate policy solutions. An integrated two-level framework for reactive power management is set forth, which is both suitable for a competitive market and ensures a secure and reliable operation of the associated power system. The framework is generic in nature and can be adopted for any electricity market structure. The proposed hierarchical reactive power market structure comprises two stages: procurement of reactive power resources on a seasonal basis, and real-time reactive power dispatch. The main objective of the proposed framework is to provide appropriate reactive power support from service providers at least cost, while ensuring a secure operation of the power system. The proposed procurement procedure is based on a two-step optimization model. First, the marginal benefits of reactive power supply from each provider, with respect to system security, are obtained by solving a loadability-maximization problem subject to transmission security constraints imposed by voltage and thermal limits. Second, the selected set of generators is determined by solving an optimal power flow (OPF)-based auction. This auction maximizes a societal advantage function comprising generators' offers and their corresponding marginal benefits with respect to system security, and considering all transmission system constraints. The proposed procedure yields the selected set of generators and zonal price components, which would form the basis for seasonal contracts between the system operator and the selected reactive power service providers. The main objective of the proposed reactive power dispatch model is to minimize the total payment burden on the Independent System Operator (ISO), which is associated with reactive power dispatch. The real power generation is

  1. Advanced configuration of hybrid passive filter for reactive power and harmonic compensation.

    PubMed

    Kececioglu, O Fatih; Acikgoz, Hakan; Sekkeli, Mustafa

    2016-01-01

    Harmonics is one of the major power quality problems for power systems. The harmonics can be eliminated by power filters such as passive, active, and hybrid. In this study, a new passive filter configuration has been improved in addition to the existing passive filter configurations. Conventional hybrid passive filters are not successful to compensate rapidly changing reactive power demand. The proposed configure are capable of compensating both harmonics and reactive power at the same time. Simulation results show that performance of reactive power and harmonic compensation with advanced hybrid passive filter is better than conventional hybrid passive filters.

  2. Time resolved ion energy distribution functions of non-reactive and reactive high power impulse magnetron sputtering of titanium

    NASA Astrophysics Data System (ADS)

    Grosse, Katharina; Breilmann, Wolfgang; Maszl, Christian; Benedikt, Jan; von Keudell, Achim

    2016-09-01

    High power impulse magnetron sputtering (HiPIMS) is a technique for thin film deposition and can be operated in reactive and non-reactive mode. The growth rate of HiPIMS in non-reactive mode reduces to 30% compared to direct current magnetron sputtering (dcMS) at same average power. However, the quality of the coatings produced with HiPIMS is excellent which makes these plasmas highly appealing. In reactive mode target poisoning is occurring which changes the plasma dynamics. An advantage of reactive HiPIMS is that it can be operated hysteresis-free which can result in a higher growth rate compared to dcMS. In this work thin films are deposited by a HiPIMS plasma which is generated by short pulses of 100 μs with high power densities in the range of 1 kW/cm2. Ar and Ar/N2 admixtures are used as a working gas to sputter a 2'' titanium target. The particle transport is analysed with time resolved ion energy distribution functions which are measured by a mass spectrometer with a temporal resolution of 2 μs. Phase resolved optical emission spectroscopy is executed to investigate the particle dynamics of different species. The time and energy resolved particle fluxes in non-reactive and reactive mode are compared and implications on the sputter process are discussed.

  3. Local Dynamic Reactive Power for Correction of System Voltage Problems

    SciTech Connect

    Kueck, John D; Rizy, D Tom; Li, Fangxing; Xu, Yan; Li, Huijuan; Adhikari, Sarina; Irminger, Philip

    2008-12-01

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results

  4. An expert system for voltage and reactive power control of a power system

    SciTech Connect

    Cheng, S.J.; Malik, O.P.; Hope, G.S. )

    1988-11-01

    A methodology, called the sensitivity tree, which can be easily used to form an expert system for real-time control is proposed in this paper. Based on this methodology, an expert system for control of voltage and reactive power of a power system is developed. The main objective of this expert system is to help the operator detect buses experiencing abnormal conditions, select the most effective control measures and calculate the control actions required to overcome the voltage violation. The control measures used to alleviate the voltage problem are capacitor compensation, transformer tap and generator terminal voltage changes. By keeping the bus voltage in the entire system within limits, system security is increased. The expert system is written in PROLOG language. Simulations studies with this expert system applied to a 30 bus power system show satisfactory results.

  5. Formation of hydrogenated amorphous carbon films by reactive high power impulse magnetron sputtering containing C2H2 gas

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2015-09-01

    Diamond-like carbon (DLC) films have attracted interest for material industries, because they have unique properties. Hydrogenated amorphous carbon films are prepared by reactive high power impulse magnetron sputtering (HiPIMS) containing C2H2 gas and the properties of the films produced in Ar/C2H2 and Ne/C2H2 HiPIMS are compared. Production of hydrocarbon radicals and their ions strongly depends on both electron temperature and electron density in HiPIMS. Therefore, the influence of the difference in buffer gas (Ar and Ne) on the film properties is also valuable to investigate. The film preparation is performed at an average power of 60 W and a repetition frequency of 110 Hz. Total pressure ranges between 0.3 and 2 Pa. The maximum of instantaneous power is about 20-25 kW, and the magnitude of the current is 35 A. A negative pulse voltage is applied to the substrates for about 15 μs after the target voltage changed from about -500 V to 0 V. Hardness of the films prepared by Ar/C2H2 HiPIMS monotonically decreases with increasing the total pressure, whereas that of the films prepared by Ne/C2H2 HiPIMS does not strongly depend on the total pressure. This work is partially supported by JSPS KAKENHI Grant Number 26420230.

  6. A flexible active and reactive power control strategy for a variable speed constant frequency generating system

    SciTech Connect

    Tang, Y.; Xu, L.

    1995-07-01

    Variable-speed constant-frequency generating systems are used in wind power, hydro power, aerospace, and naval power generations to enhance efficiency and reduce friction. In these applications, an attractive candidate is the slip power recovery system comprising of doubly excited induction machine or doubly excited brushless reluctance machine and PWM converters with a dc link. In this paper, a flexible active and reactive power control strategy is developed, such that the optimal torque-speed profile of the turbine can be followed and overall reactive power can be controlled, while the machine copper losses have been minimized. At the same time, harmonics injected into the power network has also been minimized. In this manner, the system can function as both a high-efficient power generator and a flexible reactive power compensator.

  7. Energy Storage and Reactive Power Compensator in a Large Wind Farm: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Yinger, R.; Romanowitz, H.

    2003-10-01

    The size of wind farm power systems is increasing, and so is the number of wind farms contributing to the power systems network. The size of wind turbines is also increasing--from less than 1 MW a few years ago to the 2- to 3-MW machines being installed today and the 5-MW machines under development. The interaction of the wind farm, energy storage, reactive power compensation, and the power system network is being investigated. Because the loads and the wind farms' output fluctuate during the day, the use of energy storage and reactive power compensation is ideal for the power system network. Energy storage and reactive power compensation can minimize real/reactive power imbalances that can affect the surrounding power system. In this paper, we will show how the contribution of wind farms affects the power distribution network and how the power distribution network, energy storage, and reactive power compensation interact when the wind changes. We will also investigate the size of the components in relation to each other and to the power system.

  8. 78 FR 63177 - Order on Voluntary Remand and Clarifying Policy on Filing of Reactive Power Service Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Energy Regulatory Commission Order on Voluntary Remand and Clarifying Policy on Filing of Reactive Power... Power Generating L.P. \\1\\ (Chehalis) proposed for supplying Reactive Supply and Voltage Control from Generation Sources Service (reactive power) to the Bonneville Power Administration (Bonneville or BPA) is a...

  9. Common station system for voltage and reactive power regulation at the Mosenergo TETs-27 heating and electric power plant

    SciTech Connect

    Krasnova, M. E.

    2009-05-15

    The system for common station regulation of the voltage and reactive power at the Mosenergo TETs-27 heating and electric power plant is described briefly. Features of the algorithms for this system, which uses programs and instrumentation from the automatic control system for the electrical equipment in the 450 MW power generation unit No. 3, are examined.

  10. Reactive compatibilizer-tracer: A powerful tool for designing, scaling up and optimizing reactive blending processes

    NASA Astrophysics Data System (ADS)

    Ji, Wei-Yun; Feng, Lian-Fang; Zhang, Cai-Liang; Hu, Guo-Hua

    2015-05-01

    A concept of reactive compatibilizer-tracer is developed to study reactive polymer blending processes in a twin screw extruder. It is summarized as follows. Fluorescent moieties such as anthracene are attached to a reactive compatibilizer so that the latter can be served both as a compatibilizer and a tracer. When evaluating its compatibilizing efficiency for a polymer blending system, unlike the polymer components of the blend which are continuously fed to the extruder, the reactive compatibilizer-tracer is added as a pulse. The concentration of the reactive compatibilizer-tracer in the polymer blend at the die exit is measured, in-line and in real time, using probes capable of detecting the signal of the emission of fluorescent moieties of the reactive compatibilizer-tracer. In the meantime, the corresponding size of the dispersed phase domains of the blend is determined off-line. These two pieces of information allow assessing the compatibilizing efficiency of a reactive compatibilizer in a much easier manner and using a much smaller amount of compatibilizer. Consequently, the concept of reactive compatibilizer-tracer can help select most appropriate compatibilizers under real industrial polymer blending conditions as well as scaling up and/or optimizing them.

  11. Assessment of the Economic Potential of Microgrids for Reactive Power Supply

    SciTech Connect

    Appen, Jan von; Marnay, Chris; Stadler, Michael; Momber, Ilan; Klapp, David; Scheven, Alexander von

    2011-05-01

    As power generation from variable distributed energy resources (DER) grows, energy flows in the network are changing, increasing the requirements for ancillary services, including voltage support. With the appropriate power converter, DER can provide ancillary services such as frequency control and voltage support. This paper outlines the economic potential of DERs coordinated in a microgrid to provide reactive power and voltage support at its point of common coupling. The DER Customer Adoption Model assesses the costs of providing reactive power, given local utility rules. Depending on the installed DER, the cost minimizing solution for supplying reactive power locally is chosen. Costs include the variable cost of the additional losses and the investment cost of appropriately over-sizing converters or purchasing capacitors. A case study of a large health care building in San Francisco is used to evaluate different revenue possibilities of creating an incentive for microgrids to provide reactive power.

  12. Modeling of the Reactive High Power Impulse Magnetron Sputtering (HiPIMS) process

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Jon Tomas; Lundin, Daniel; Raadu, Michael; Brenning, Nils; Minea, Tiberiu

    2015-09-01

    Reactive high power impulse magnetron sputtering (HiPIMS) provides both a high ionization fraction of the sputtered material and a high dissociation fraction of the molecular gas. We demonstrate this through an ionization region model (IRM) of the reactive Ar/O2 HiPIMS discharge with a titanium target. We explore the influence of oxygen dilution on the discharge properties such as electron density, the ionization fraction of the sputtered vapor and the oxygen dissociation fraction. We discuss the important processes and challenges for more detailed modeling of the reactive HiPIMS discharge. Furthermore, we discuss experimental observations during reactive high power impulse magnetron sputtering sputtering (HiPIMS) of Ti target in Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on the reactive gas flow rate, pulse repetition frequency and discharge voltage. The discharge current increases with decreasing repetition frequency and increasing flowrate of the reactive gas.

  13. Reactive Inkjet Printing: Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets (Small 30/2016).

    PubMed

    Gregory, David A; Zhang, Yu; Smith, Patrick J; Zhao, Xiubo; Ebbens, Stephen J

    2016-08-01

    On page 4048, X. Zhao, S. J. Ebbens, and co-workers demonstrate the ability to fabricate biocompatible silk microrockets via reactive inkjet printing. The microrockets are powered by catalase and undergo bubble propulsion in the presence of hydrogen peroxide. Microrockets are capable of swimming in a large variety of media including biological solutions. Inkjet printing allows digital definition of enzyme distribution within the silk scaffold to control rocket directionality.

  14. Perspective on fossil power plant layup and reactivation

    SciTech Connect

    Tsou, J.L.

    1996-12-31

    In recent years, many utilities have developed excess generation capacity problems during period of low system load growth, particularly with new generation units coming on-line. System load studies may indicate that the situation is temporary and higher generation capacity will be needed in the near future. The objective of layup is to prevent component deterioration during the long shut down periods. This paper discusses equipment preservation practices in use by the electric utility industry and the advantages/disadvantages of various layup methods. Other issues related to plant layup and reactivation are also presented.

  15. On the Sequential Control of ITER Poloidal Field Converters for Reactive Power Reduction

    NASA Astrophysics Data System (ADS)

    Yuan, Hongwen; Fu, Peng; Gao, Ge; Huang, Liansheng; Song, Zhiquan; He, Shiying; Wu, Yanan; Dong, Lin; Wang, Min; Fang, Tongzhen

    2014-12-01

    Sequential control applied to the International Thermonuclear Experimental Reactor (ITER) poloidal field converter system for the purpose of reactive power reduction is the subject of this investigation. Due to the inherent characteristics of thyristor-based phase-controlled converter, the poloidal field converter system consumes a huge amount of reactive power from the grid, which subsequently results in a voltage drop at the 66 kV busbar if no measure is taken. The installation of a static var compensator rated for 750 MVar at the 66 kV busbar is an essential way to compensate reactive power to the grid, which is the most effective measure to solve the problem. However, sequential control of the multi-series converters provides an additional method to improve the natural power factor and thus alleviate the pressure of reactive power demand of the converter system without any additional cost. In the present paper, by comparing with the symmetrical control technique, the advantage of sequential control in reactive power consumption is highlighted. Simulation results based on SIMULINK are found in agreement with the theoretical analysis.

  16. Novel instantaneous laser Doppler velocimeter.

    PubMed

    Avidor, J M

    1974-02-01

    A laser Doppler velocimeter capable of directly measuring instantaneous velocities is described. The new LDV uses a novel detection technique based on the utilization of a static slightly defocused spherical Fabry-Perot interferometer used in conjunction with a special mask for the detection of instantaneous Doppler frequency shifts. The essential characteristics of this LDV are discussed, and such a system recently developed is described. Results of turbulent flow measurements show good agreement with data obtained using hot wire anemometry.

  17. Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm

    DOE PAGES

    Zhang, Baohua; Hu, Weihao; Hou, Peng; ...

    2017-06-27

    This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations onmore » a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.« less

  18. Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems

    NASA Astrophysics Data System (ADS)

    Weber, Luke G.

    There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive

  19. Genetic algorithms for optimal reactive power compensation planning on the national grid system

    NASA Astrophysics Data System (ADS)

    Pilgrim, J. D.

    This work investigates the use of Genetic Algorithms (GAs) for optimal Reactive power Compensation Planning (RCP) of practical power systems. In particular, RCP of the transmission system of England and Wales as owned and operated by National Grid is considered. The GA is used to simultaneously solve both the siting problem---optimisation of the installation of new devices---and the operational problem---optimisation of preventive transformer taps and the controller characteristics of dynamic compensation devices. A computer package called Genetic Compensation Placement (GCP) has been developed which uses an Integer coded GA (IGA) to solve the RCP problem. The RCP problem is implemented as a multi-objective optimisation: in the interests of security, the number of system and operational constraint violations and the deviation of the busbar voltages from the ideal are all minimised for the base (intact) case and the contingent cases. In the interests of cost reduction, the reactive power cost is minimised for the base case. The reactive power cost encompasses the costs incurred from the installation of reactive power sources and the utilisation of new and existing dynamic reactive power compensation devices. GCP is compared to SCORPION (a planning program currently being used by National Grid) which uses a combination of linear programming and heuristic back-tracking. Results are presented for a practical test system developed with the cooperation of National Grid, and it is found that GCP produces solutions that are cheaper than solutions found by SCORPION and perform extremely well: an improvement in voltage profiles, a decrease in complex power mismatches, and a reduction in MVolt Amps-reactive (VAr) utilisation were observed.

  20. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    SciTech Connect

    Kisacikoglu, Mithat C; Ozpineci, Burak; Tolbert, Leon M

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  1. A Wolf Pack Algorithm for Active and Reactive Power Coordinated Optimization in Active Distribution Network

    NASA Astrophysics Data System (ADS)

    Zhuang, H. M.; Jiang, X. J.

    2016-08-01

    This paper presents an active and reactive power dynamic optimization model for active distribution network (ADN), whose control variables include the output of distributed generations (DGs), charge or discharge power of energy storage system (ESS) and reactive power from capacitor banks. To solve the high-dimension nonlinear optimization model, a new heuristic swarm intelligent method, namely wolf pack algorithm (WPA) with better global convergence and computational robustness, is adapted so that the network loss minimization can be achieved. In this paper, the IEEE33-bus system is used to show the effectiveness of WPA technique compared with other techniques. Numerical tests on the modified IEEE 33-bus system show that WPA for active and reactive multi-period optimization of ADN is exact and effective.

  2. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect

    McDowell, Jason; Walling, Reigh; Peter, William; Von Engeln, Edi; Seymour, Eric; Nelson, Robert; Casey, Leo; Ellis, Abraham; Barker, Chris.

    2012-02-01

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  3. Reactive power planning under high penetration of wind energy using Benders decomposition

    SciTech Connect

    Xu, Yan; Wei, Yanli; Fang, Xin; Li, Fangxing; Azim, Riyasat

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition is modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.

  4. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE PAGES

    Xu, Yan; Wei, Yanli; Fang, Xin; ...

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  5. The instantaneous frequency rate spectrogram

    NASA Astrophysics Data System (ADS)

    Czarnecki, Krzysztof

    2016-01-01

    An accelerogram of the instantaneous phase of signal components referred to as an instantaneous frequency rate spectrogram (IFRS) is presented as a joint time-frequency distribution. The distribution is directly obtained by processing the short-time Fourier transform (STFT) locally. A novel approach to amplitude demodulation based upon the reassignment method is introduced as a useful by-product. Additionally, an estimator of energy density versus the instantaneous frequency rate (IFR) is proposed and referred to as the IFR profile. The energy density is estimated based upon both the classical energy spectrogram and the IFRS smoothened by the median filter. Moreover, the impact of an analyzing window width, additive white Gaussian noise and observation time is tested. Finally, the introduced method is used for the analysis of the acoustic emission of an automotive engine. The recording of the engine of a Lamborghini Gallardo is analyzed as an example.

  6. Examination of a PHEV Bi-Directional Charger System for V2G Reactive Power Compensation

    SciTech Connect

    Kisacikoglu, Mithat C; Ozpineci, Burak; Tolbert, Leon M

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) potentially have the capability to fulfill the energy storage needs of the electric grid by supplying ancillary services such as reactive power compensation. However, in order to allow bidirectional power transfer, the PHEV battery charger should be designed to manage such capability. While many different battery chargers have been available since the inception of the first electric vehicles (EVs), an on-board, conductive charger with bidirectional power transferring capability have recently drawn attention due to their inherent advantages in charging accessibility, ease of use and efficiency. In this study, a reactive power compensation case study using the inverter dc-link capacitor is given when a PHEV battery is under charging operation. Finally, the impact of providing these services on the batteries is also explained.

  7. A new dynamic voltage restorer with separating active and reactive power circuit design

    NASA Astrophysics Data System (ADS)

    Pai, Fu-Sheng

    2015-05-01

    Conventional dynamic voltage restorers (DVRs) install parallel battery and capacitor sets at the DC bus to supply the required power for voltage sag compensation. However, the reactive power output of a DVR may increase the ripple voltage at the inner DC bus, possibly resulting in a higher operating temperature of the battery and thus decreased battery life. This paper proposes a DVR system that uses a cascade power module to effectively compensate voltage sag. By separating the active and reactive compensation powers, the proposed DVR provides a lower ripple DC link for extending battery life and offers a flexible way to design the capacitor bank. To confirm the effectiveness of the proposed design, theoretical analysis and experimental validation were conducted under various scenarios. Test results confirm the feasibility and practicality of the proposed method.

  8. Optimal reactive power planning for distribution systems considering intermittent wind power using Markov model and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Li, Cheng

    Wind farms, photovoltaic arrays, fuel cells, and micro-turbines are all considered to be Distributed Generation (DG). DG is defined as the generation of power which is dispersed throughout a utility's service territory and either connected to the utility's distribution system or isolated in a small grid. This thesis addresses modeling and economic issues pertaining to the optimal reactive power planning for distribution system with wind power generation (WPG) units. Wind farms are inclined to cause reverse power flows and voltage variations due to the random-like outputs of wind turbines. To deal with this kind of problem caused by wide spread usage of wind power generation, this thesis investigates voltage and reactive power controls in such a distribution system. Consequently static capacitors (SC) and transformer taps are introduced into the system and treated as controllers. For the purpose of getting optimum voltage and realizing reactive power control, the research proposes a proper coordination among the controllers like on-load tap changer (OLTC), feeder-switched capacitors. What's more, in order to simulate its uncertainty, the wind power generation is modeled by the Markov model. In that way, calculating the probabilities for all the scenarios is possible. Some outputs with consecutive and discrete values have been used for transition between successive time states and within state wind speeds. The thesis will describe the method to generate the wind speed time series from the transition probability matrix. After that, utilizing genetic algorithm, the optimal locations of SCs, the sizes of SCs and transformer taps are determined so as to minimize the cost or minimize the power loss, and more importantly improve voltage profiles. The applicability of the proposed method is verified through simulation on a 9-bus system and a 30-bus system respectively. At last, the simulation results indicate that as long as the available capacitors are able to sufficiently

  9. 77 FR 21555 - Reactive Power Resources; Supplemental Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Interconnection Studies. This panel will discuss: Methods used to determine the reactive power requirements for a... Robert Jenkins, Director--Utility Interconnection, First Solar Kris Zadlo, Vice President, Invenergy..., Director--Utility Interconnection, First Solar Michael Jacobs, Director Market and Regulatory Policy...

  10. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    NASA Astrophysics Data System (ADS)

    Anders, André

    2017-05-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. By applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films. Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become "poisoned," i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.

  11. Active and Reactive Power Optimal Dispatch Associated with Load and DG Uncertainties in Active Distribution Network

    NASA Astrophysics Data System (ADS)

    Gao, F.; Song, X. H.; Zhang, Y.; Li, J. F.; Zhao, S. S.; Ma, W. Q.; Jia, Z. Y.

    2017-05-01

    In order to reduce the adverse effects of uncertainty on optimal dispatch in active distribution network, an optimal dispatch model based on chance-constrained programming is proposed in this paper. In this model, the active and reactive power of DG can be dispatched at the aim of reducing the operating cost. The effect of operation strategy on the cost can be reflected in the objective which contains the cost of network loss, DG curtailment, DG reactive power ancillary service, and power quality compensation. At the same time, the probabilistic constraints can reflect the operation risk degree. Then the optimal dispatch model is simplified as a series of single stage model which can avoid large variable dimension and improve the convergence speed. And the single stage model is solved using a combination of particle swarm optimization (PSO) and point estimate method (PEM). Finally, the proposed optimal dispatch model and method is verified by the IEEE33 test system.

  12. Movable-molybdenum-reflector reactivity experiments for control studies of compact space power reactor concepts

    NASA Technical Reports Server (NTRS)

    Fox, T. A.

    1973-01-01

    An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.

  13. Modified DSTATCOM Topology with Reduced DC Link Voltage for Reactive and Harmonic Power Compensation of Unbalanced Nonlinear Load in Distribution System

    NASA Astrophysics Data System (ADS)

    Geddada, Nagesh; Karanki, Srinivas B.; Mishra, Mahesh K.

    2014-06-01

    This paper proposes a modified four-leg distribution static compensator (DSTATCOM) topology for compensation of unbalanced and nonlinear loads in three-phase four-wire distribution system. DSTATCOM, connected in parallel to the load, supplies reactive and harmonic powers demanded by unbalanced nonlinear loads. In this proposed topology, the voltage source inverter (VSI) of DSTATCOM is connected to point of common coupling (point of interconnection of source, load, DSTATCOM) through interface inductor and series capacitance, unlike the conventional topology which consists of interface inductor alone. Load compensation with a lower value of input DC link voltage of VSI is possible in this modified topology compared to conventional topology. A comparative study on modified and conventional topologies in terms of voltage rating of inverter power switches, switching losses in VSI and power rating of input DC capacitor of VSI is presented. The detailed design aspects of DC link capacitor and interface series capacitor are also presented. The reference filter currents are generated using instantaneous symmetrical component theory and are tracked using hysteresis current control technique. A detailed simulation study is carried out, to compare the compensation performances of conventional, modified topologies using PSCAD simulator and experimental studies are done to validate the simulation results.

  14. Statistics of Instantaneous Rainfall Rates.

    DTIC Science & Technology

    1983-02-01

    INSTANTANEOUS RAINFALL RATES Douglas M.A. Jones Wayne M. Wendland State Water Surveys Division University of Illinois C)C) Urbana, Illinois 61801 ’.3 4 Final...NAME %D %tnDRESS 10. PROGRAM ELEMENT. PROJECT, TASKState Water Survey AREA & WORK UNIT NUMBERS University of Illinois 62101F Urbana, Illinois 61801...distribution unlimited 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES I. KEY WORDS (Continue

  15. Instantaneous Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Olsson, M. G.; Veseli, Siniša.; Williams, Ken

    1995-11-01

    We present a systematic algebraic and numerical investigation of the instantaneous Beth-Salpeter equation. Emphasis is placed on confining interaction kernels of the Lorentz scalar, time component vector, and full vector-types. We explore the stability of the solutions and Regge behavior for each of these interactions, and conclude that only time component vector confinement leads to normal Regge structure and stable solutions for all quark masses.

  16. Reactive Power Laboratory: Synchronous Condenser Testing&Modeling Results - Interim Report

    SciTech Connect

    Henry, SD

    2005-09-27

    The subject report documents the work carried out by Oak Ridge National Laboratory (ORNL) during months 5-7 (May-July 2005) of a multi-year research project. The project has the overall goal of developing methods of incorporating distributed energy (DE) that can produce reactive power locally and for injecting into the distribution system. The objective for this new type of DE is to be able to provide voltage regulation and dynamic reactive power reserves without the use of extensive communication and control systems. The work performed over this three-month period focused on four aspects of the overall objective: (1) characterization of a 250HP (about 300KVAr) synchronous condenser (SC) via test runs at the ORNL Reactive Power Laboratory; (2) development of a data acquisition scheme for collecting the necessary voltage, current and power readings at the synchronous condenser and on the distribution system; (3) development of algorithms for analyzing raw test data from the various test runs; and (4) validation of a steady-state model for the synchronous condenser via the use of a commercial software package to study its effects on the ORNL 13.8/2.4kV distribution network.

  17. Estimation of the Frequency of Instantaneous Voltage Drops Dependent on Arrangement of Line Surge Arresters

    NASA Astrophysics Data System (ADS)

    Kawamura, Hironao; Kozuka, Masahiro; Itamoto, Naoki; Shinjo, Kazuo; Ishii, Masaru

    Lightning faults on transmission lines often cause instantaneous voltage drops in power systems. Influences of instantaneous voltage drops become increasingly serious in high technology industries etc. As countermeasures of instantaneous voltage drops, uninterruptible power supplies (UPS) are employed. On the other hand, line surge arresters are installed on transmission lines increasingly as one of the effective countermeasures of double-circuit faults caused by lightning strokes. Additionally, the arresters are effective as one of the reduction methods for the frequency of instantaneous voltage drops. In this paper, the frequency of instantaneous voltage drops reduced by installation of line surge arresters on transmission lines is estimated by employing EMTP analysis. Also, the accuracy of the method in estimating the frequency of instantaneous voltage drops in power systems is evaluated through comparison with experience.

  18. Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.; Corbella, C.; Maszl, C.; Breilmann, W.; von Keudell, A.

    2017-05-01

    Spokes, localised ionisation zones, are commonly observed in magnetron sputtering plasmas, appearing either with a triangular shape or with a diffuse shape, exhibiting self-organisation patterns. In this paper, we investigate the spoke properties (shape and emission) in a high power impulse magnetron sputtering (HiPIMS) discharge when reactive gas (N2 or O2) is added to the Ar gas, for three target materials; Al, Cr, and Ti. Peak discharge current and total pressure were kept constant, and the discharge voltage and mass flow ratios of Ar and the reactive gas were adjusted. The variation of the discharge voltage is used as an indication of a change of the secondary electron yield. The optical emission spectroscopy data demonstrate that by addition of reactive gas, the HiPIMS plasma exhibits a transition from a metal dominated plasma to the plasma dominated by Ar ions and, at high reactive gas partial pressures, to the plasma dominated by reactive gas ions. For all investigated materials, the spoke shape changed to the diffuse spoke shape in the poisoned mode. The change from the metal to the reactive gas dominated plasma and increase in the secondary electron production observed as the decrease of the discharge voltage corroborate our model of the spoke, where the diffuse spoke appears when the plasma is dominated by species capable of generating secondary electrons from the target. Behaviour of the discharge voltage and maximum plasma emission is strongly dependant on the target/reactive gas combination and does not fully match the behaviour observed in DC magnetron sputtering.

  19. Instantaneous gelation in Smoluchowski's coagulation equation revisited

    NASA Astrophysics Data System (ADS)

    Ball, Robin C.; Connaughton, Colm; Stein, Thorwald H. M.; Zaboronski, Oleg

    2011-07-01

    We study the solutions of the Smoluchowski coagulation equation with a regularization term which removes clusters from the system when their mass exceeds a specified cutoff size, M. We focus primarily on collision kernels which would exhibit an instantaneous gelation transition in the absence of any regularization. Numerical simulations demonstrate that for such kernels with monodisperse initial data, the regularized gelation time decreases as M increases, consistent with the expectation that the gelation time is zero in the unregularized system. This decrease appears to be a logarithmically slow function of M, indicating that instantaneously gelling kernels may still be justifiable as physical models despite the fact that they are highly singular in the absence of a cutoff. We also study the case when a source of monomers is introduced in the regularized system. In this case a stationary state is reached. We present a complete analytic description of this regularized stationary state for the model kernel, K(m1,m2)=max{m1,m2}ν, which gels instantaneously when M→∞ if ν>1. The stationary cluster size distribution decays as a stretched exponential for small cluster sizes and crosses over to a power law decay with exponent ν for large cluster sizes. The total particle density in the stationary state slowly vanishes as [(ν-1)logM]-1/2 when M→∞. The approach to the stationary state is nontrivial: Oscillations about the stationary state emerge from the interplay between the monomer injection and the cutoff, M, which decay very slowly when M is large. A quantitative analysis of these oscillations is provided for the addition model which describes the situation in which clusters can only grow by absorbing monomers.

  20. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE PAGES

    Ding, Tao; Li, Cheng; Huang, Can; ...

    2017-01-09

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  1. A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply

    SciTech Connect

    Li, Fangxing; Kueck, John D; Rizy, D Tom; King, Thomas F

    2006-04-01

    A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic

  2. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    DOE PAGES

    Anders, André

    2017-03-21

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron

  3. STATCOM-Based Wind-Solar-Hydro Electric Power System with Modified Real and Reactive Power Controls

    NASA Astrophysics Data System (ADS)

    Ram Prabhakar, J.; Ragavan, K.

    2014-01-01

    This paper presents a control of distributed generation (DG) system subjected to sudden rise in demand, faults on the distribution feeder and unbalanced load condition. The effects of line to ground faults on the system are investigated and control measures are taken to stabilize the generator speed and to improve voltage quality at the point of common coupling (PCC). The static shunt compensator (STATCOM) is connected at PCC to provide voltage support during sudden demand rise and fault on feeder. Moreover, the STATCOM control is devised such that even during unbalanced load condition the converter current and hydro-turbine-driven induction generator current is balanced. Owing to this, the double power frequency oscillations in the dc-link voltage and torque pulsations in generator can be averted. The STATCOM also supplies reactive power to the load. In addition to this, generation-demand mismatch is moderated using real and reactive power controllers. To demonstrate the performance of the DG system with the said control approach, model of system is simulated in Matlab-Simulink environment and the results are presented.

  4. Estimating instantaneous respiratory rate from the photoplethysmogram.

    PubMed

    Dehkordi, Parastoo; Garde, Ainara; Molavi, Behnam; Petersen, Christian L; Ansermino, J Mark; Dumont, Guy A

    2015-01-01

    The photoplethysmogram (PPG) obtained from pulse oximetry shows the local changes of blood volume in tissues. Respiration induces variation in the PPG baseline due to the variation in venous blood return during each breathing cycle. We have proposed an algorithm based on the synchrosqueezing transform (SST) to estimate instantaneous respiratory rate (IRR) from the PPG. The SST is a combination of wavelet analysis and a reallocation method which aims to sharpen the time-frequency representation of the signal and can provide an accurate estimation of instantaneous frequency. In this application, the SST was applied to the PPG and IRR was detected as the predominant ridge in the respiratory band (0.1 Hz - 1 Hz) in the SST plane. The algorithm was tested against the Capnobase benchmark dataset that contains PPG, capnography, and expert labelled reference respiratory rate from 42 subjects. The IRR estimation accuracy was assessed using the root mean square (RMS) error and Bland-Altman plot. The median RMS error was 0.39 breaths/min for all subjects which ranged from the lowest error of 0.18 breaths/min to the highest error of 13.86 breaths/min. A Bland-Altman plot showed an agreement between the IRR obtained from PPG and reference respiratory rate with a bias of -0.32 and limits agreement of -7.72 to 7.07. Extracting IRR from PPG expands the functionality of pulse oximeters and provides additional diagnostic power to this non-invasive monitoring tool.

  5. Asymptotic Rayleigh instantaneous unit hydrograph

    USGS Publications Warehouse

    Troutman, B.M.; Karlinger, M.R.

    1988-01-01

    The instantaneous unit hydrograph for a channel network under general linear routing and conditioned on the network magnitude, N, tends asymptotically, as N grows large, to a Rayleigh probability density function. This behavior is identical to that of the width function of the network, and is proven under the assumption that the network link configuration is topologically random and the link hydraulic and geometric properties are independent and identically distributed random variables. The asymptotic distribution depends only on a scale factor, {Mathematical expression}, where ?? is a mean link wave travel time. ?? 1988 Springer-Verlag.

  6. Modeling for V—O2 reactive sputtering process using a pulsed power supply

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Yu, He; Dong, Xiang; Jiang, Ya-Dong; Chen, Chao; Wu, Ro-Land

    2014-08-01

    In this article, we present a time-dependent model that enables us to describe the dynamic behavior of pulsed DC reactive sputtering and predict the film compositions of VOx prepared by this process. In this modeling, the average current J is replaced by a new parameter of Jeff. Meanwhile, the four species states of V, V2O3, VO2, and V2O5 in the vanadium oxide films are taken into consideration. Based on this work, the influences of the oxygen gas supply and the pulsed power parameters including the duty cycle and frequency on film compositions are discussed. The model suggests that the time to reach process equilibrium may vary substantially depending on these parameters. It is also indicated that the compositions of VOx films are quite sensitive to both the reactive gas supply and the duty cycle when the power supply works in pulse mode. The ‘steady-state’ balance values obtained by these simulations show excellent agreement with the experimental data, which indicates that the experimentally obtained dynamic behavior of the film composition can be explained by this time-dependent modeling for pulsed DC reactive sputtering process. Moreover, the computer simulation results indicate that the curves will essentially yield oscillations around the average value of the film compositions with lower pulse frequency.

  7. Proactive and Reactive Transmission Power Control for Energy-Efficient On-Body Communications

    PubMed Central

    Vallejo, Mónica; Recas, Joaquín.; Ayala, José L.

    2015-01-01

    In wireless body sensor network (WBSNs), the human body has an important effect on the performance of the communication due to the temporal variations caused and the attenuation and fluctuation of the path loss. This fact suggests that the transmission power must adapt to the current state of the link in a way that it ensures a balance between energy consumption and packet loss. In this paper, we validate our two transmission power level policies (reactive and predictive approaches) using the Castalia simulator. The integration of our experimental measurements in the simulator allows us to easily evaluate complex scenarios, avoiding the difficulties associated with a practical realization. Our results show that both schemes perform satisfactorily, providing overall energy savings of 24% and 22% for a case of study, as compared to the maximum transmission power mode. PMID:25769049

  8. Proactive and reactive transmission power control for energy-efficient on-body communications.

    PubMed

    Vallejo, Mónica; Recas, Joaquín; Ayala, José L

    2015-03-11

    In wireless body sensor network (WBSNs), the human body has an important effect on the performance of the communication due to the temporal variations caused and the attenuation and fluctuation of the path loss. This fact suggests that the transmission power must adapt to the current state of the link in a way that it ensures a balance between energy consumption and packet loss. In this paper, we validate our two transmission power level policies (reactive and predictive approaches) using the Castalia simulator. The integration of our experimental measurements in the simulator allows us to easily evaluate complex scenarios, avoiding the difficulties associated with a practical realization. Our results show that both schemes perform satisfactorily, providing overall energy savings of 24% and 22% for a case of study, as compared to the maximum transmission power mode.

  9. Journey to Flexible, Reliable, Laboratory Platform for Simultaneous Control of Multiple Reactive Power Producing Devices

    SciTech Connect

    Foster, Jason; Rizy, D Tom; Kueck, John D

    2007-01-01

    Herein is discussed the instrumentation and control requirements for achieving the goal of operating multiple Distributed Energy (DE) devices in parallel to regulate local voltage. The process for establishing the flexible laboratory control and data acquisition system that allows for the integration of multiple Distributed Energy (DE) devices in XXXX Laboratory's Distributed Energy - Communications and Controls Laboratory (DECC) is discussed. The DE devices control local distribution system voltage through dynamic reactive power production. Although original efforts were made to control the reactive power (RP) output using information from commercially available meters specifically designed for monitoring and analyzing electric power values, these "intelligent" meters did not provide the flexibility needed. A very flexible and capable real-time monitoring and control system was selected after the evaluation of various methods of data acquisition (DAQ) and control. The purpose of this paper is to describe the DAQ and controls system development. The chosen controller is a commercially available real-time controller from dSPACE. This controller has many excellent features including a very easy programming platform through Simulink and Matlab's Real Time Workshop. The dSPACE system proved to provide both the flexibility and expandability needed to integrate and control the RP producing devices under consideration. The desire was to develop controls with this flexible laboratory instrumentation and controls setup that could be eventually be included in an embedded controller on a DE device. Some experimental results are included that clearly show that some functional control strategies are currently being tested.

  10. Instantaneous Spatial Light Interference Microscopy.

    PubMed

    Ding, Huafeng; Popescu, Gabriel

    2010-01-18

    We present Instantaneous Spatial Light Interference Microscopy (iSLIM) as a new quantitative phase method that combines the benefits of white light illumination in Zernike's phase contrast microscopy and phase stability associated diffraction phase microscopy. iSLIM is implemented as an add-on module to a commercial phase contrast microscope, and enables new features to quantitative phase imaging: diminished speckle effects due to white light illumination, multimodal investigation potential due to overlaying with other modalities of the microscope (e.g. fluorescence, DIC, phase contrast), and spectroscopic potential due to the broad band light. We show proof of principle results by multicolor phase imaging of microsphere and red blood cells, and dynamic imaging of nanoscale cell membrane fluctuations.

  11. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  12. Duty cycle control in reactive high-power impulse magnetron sputtering of hafnium and niobium

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Treverrow, B.; Murdoch, B.; Xie, D.; Ross, A. E.; Partridge, J. G.; Falconer, I. S.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2016-06-01

    Instabilities in reactive sputtering have technological consequences and have been attributed to the formation of a compound layer on the target surface (‘poisoning’). Here we demonstrate how the duty cycle of high power impulse magnetron sputtering (HiPIMS) can be used to control the surface conditions of Hf and Nb targets. Variations in the time resolved target current characteristics as a function of duty cycle were attributed to gas rarefaction and to the degree of poisoning of the target surface. As the operation transitions from Ar driven sputtering to metal driven sputtering, the secondary electron emission changes and reduces the target current. The target surface transitions smoothly from a poisoned state at low duty cycles to a quasi-metallic state at high duty cycles. Appropriate selection of duty cycle increases the deposition rate, eliminates the need for active regulation of oxygen flow and enables stable reactive deposition of stoichiometric metal oxide films. A model is presented for the reactive HIPIMS process in which the target operates in a partially poisoned mode with different degrees of oxide layer distribution on its surface that depends on the duty cycle. Finally, we show that by tuning the pulse characteristics, the refractive indices of the metal oxides can be controlled without increasing the absorption coefficients, a result important for the fabrication of optical multilayer stacks.

  13. Comparisons of PRD (power-reactivity-decrements) components for various EBR-II configurations

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-09-19

    Comparison of detailed calculations of contributions by region and component of the power-reactivity-decrements (PRD) for four differing loading configurations of the Experimental Breeder Reactor-II (EBR-II) are given. The linear components and Doppler components are calculated. The non-linear (primarily subassembly bowing) components are deduced by differences relative to measured total PRD values. Variations in linear components range from about 10% to as much as about 100% depending upon the component. The deduced non-linear components differ both in magnitude and sign as functions of reactor power. Effects of differing assumptions of the nature of the fuel-to-clad interactions upon the PRD components are also calculated.

  14. Regularization of Instantaneous Frequency Attribute Computations

    NASA Astrophysics Data System (ADS)

    Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.

    2014-12-01

    We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.

  15. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2009-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  16. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  17. Mechanism of instantaneous coal outbursts

    SciTech Connect

    Guan, P.; Wang, H.Y.; Zhang, Y.X.

    2009-10-15

    Thousands of mine workers die every year from mining accidents, and instantaneous coal outbursts in underground coal mines are one of the major killers. Various models for these outbursts have been proposed, but the precise mechanism is still unknown. We hypothesize that the mechanism of coal outbursts is similar to magma fragmentation during explosive volcanic eruptions; i.e., it is caused by high gas pressure inside coal but low ambient pressure on it, breaking coal into pieces and releasing the high-pressure gas in a shock wave. Hence, coal outbursts may be regarded as another type of gas-driven eruption, in addition to explosive volcanic, lake, and possible ocean eruptions. We verify the hypothesis by experiments using a shock-tube apparatus. Knowing the mechanism of coal outbursts is the first step in developing prediction and mitigation measures. The new concept of gas-driven solid eruption is also important to a better understanding of salt-gas outbursts, rock-gas outbursts, and mud volcano eruptions.

  18. Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering: Model

    NASA Astrophysics Data System (ADS)

    Kadlec, Stanislav; Čapek, Jiří

    2017-05-01

    A tendency to disappearing hysteresis in reactive High Power Impulse Magnetron Sputtering (HiPIMS) has been reported previously without full physical explanation. An analytical model of reactive pulsed sputtering including HiPIMS is presented. The model combines a Berg-type model of reactive sputtering with the global HiPIMS model of Christie-Vlček. Both time and area averaging is used to describe the macroscopic steady state, especially the reactive gas balance in the reactor. The most important effect in the presented model is covering of reacted parts of target by the returning ionized metal, effectively lowering the target coverage by reaction product at a given partial pressure. The return probability of ionized sputtered metal has been selected as a parameter to quantify the degree of HiPIMS effects. The model explains the reasons for reduced hysteresis in HiPIMS. The critical pumping speed was up to a factor of 7 lower in reactive HiPIMS compared to the mid-frequency magnetron sputtering. The model predicts reduced hysteresis in HiPIMS due to less negative slope of metal flux to substrates and of reactive gas sorption as functions of reactive gas partial pressure. Higher deposition rate of reactive HiPIMS compared to standard reactive sputtering is predicted for some parameter combinations. Comparison of the model with experiment exhibits good qualitative and quantitative agreement for three material combinations, namely, Ti-O2, Al-O2, and Ti-N2.

  19. Communicating Instantaneous Air Quality Data: Pilot Project

    EPA Pesticide Factsheets

    Communicating Instantaneous Air Quality Data: Pilot ProjectEPA is launching a pilot project to test a new tool for making instantaneous outdoor air quality data useful for the public. The new “sensor scale” is designed to be used with sensors

  20. Application of fuzzy sets to optimal reactive power planning with security constraints

    SciTech Connect

    Abdul-Rahman, K.H.; Shahidehpour, S.M. . Dept. of Electrical and Computer Engineering)

    1994-05-01

    This paper presents a mathematical formulation for the optimal reactive power planning taking into account the static security constraints and the non-probabilistic uncertainty in load values. The planning process is decomposed into investment and operation problems via the generalized Benders decomposition (GBD). Fixed and variable costs are considered in the investment problem. Linguistic declarations of load values in the operation problem are translated into possibility distribution functions. The operation problem is decomposed into 4 subproblems via Dantzig-Wolfe decomposition (DWD), and the modeling of multi-area power systems is considered by applying a second DWD to each subproblem, leading to a significant reduction in its dimensions for personal computer applications. Voltage constraints within each area are modeled as fuzzy sets for the static security analysis by biasing the final solution towards desired values of variables within their given ranges. The overall solution is a compromise between economics (lower investment and operation costs) and security (tighter feasible region). Numerical examples for the applicability of the proposed approach to multi-area power systems are discussed.

  1. Reactive-power compensation of coal mining excavators by using a new-generation STATCOM

    SciTech Connect

    Bilgin, H.F.; Ermis, M.; Kose, K.N.; Cadirci, I.; Acik, A.; Demirci, T.; Terciyanli, A.; Kocak, C.; Yorukoglu, M.

    2007-01-15

    This paper deals with the development and implementation of a current-source-converter-based static synchronous compensator (CSC-STATCOM) applied to the volt-ampere-reactive (VAR) compensation problem of coal mining excavators. It is composed of a +/- 750-kVAR full-bridge CSC with selective harmonic elimination, a low-pass input filter tuned to 200 Hz, and a Delta/Y-connected coupling transformer for connection to medium-voltage load bus. Each power semiconductor switch is composed of an asymmetrical integrated gate commutated thyristor (IGCT) connected in series with a reverse-blocking diode and switched at 500 Hz to eliminate 5th, 7th, 11th, and 13th current harmonics produced by the CSC. Operating principles, power stage, design of dc link, and input filter are also described in this paper. It has been verified by field tests that the developed STATCOM follows rapid fluctuations in nearly symmetrical lagging and leading VAR consumption of electric excavators, resulting in nearly unity power factor on monthly basis, and the harmonic current spectra in the lines of CSC-STATCOM at the point of common coupling comply with the IEEE Standard 519-1992.

  2. Evolution of sputtering target surface composition in reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kubart, T.; Aijaz, A.

    2017-05-01

    The interaction between pulsed plasmas and surfaces undergoing chemical changes complicates physics of reactive High Power Impulse Magnetron Sputtering (HiPIMS). In this study, we determine the dynamics of formation and removal of a compound on a titanium surface from the evolution of discharge characteristics in an argon atmosphere with nitrogen and oxygen. We show that the time response of a reactive process is dominated by surface processes. The thickness of the compound layer is several nm and its removal by sputtering requires ion fluence in the order of 1016 cm-2, much larger than the ion fluence in a single HiPIMS pulse. Formation of the nitride or oxide layer is significantly slower in HiPIMS than in dc sputtering under identical conditions. Further, we explain very high discharge currents in HiPIMS by the formation of a truly stoichiometric compound during the discharge off-time. The compound has a very high secondary electron emission coefficient and leads to a large increase in the discharge current upon target poisoning.

  3. New Enhanced Artificial Bee Colony (JA-ABC5) Algorithm with Application for Reactive Power Optimization

    PubMed Central

    2015-01-01

    The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement. PMID:25879054

  4. PRD (power-reactivity-decrement) components of a homogeneous U10Zr-fueled 900 MWt LMR

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1988-01-01

    The linear and Doppler feedback components of the regional contributions of the power-reactivity-decrement (PRD) for a representative 900 MWt homogeneous U10Zr-fueled sodium-cooled reactor are calculated. The PRD is the reactivity required to bring the reactor from zero-power hot-critical condition to a given power level. These components are further separated into power dependent and power-to-flow dependent parts. The values are compared with corresponding quantities calculated for the Experimental Breeder Reactor II (EBR-II). The implications of these comparisons upon inherent safety characteristics of metal-fueled sodium-cooled reactors are discussed. The effects of fuel axial restraint on feedback, resulting from possible fuel-clad interactions due to burnup are also calculated. The possible enhancement of desirable feedbacks by use of appropriately designed subassembly-duct bowing feedback characteristics is estimated.

  5. Evaluation of the Portable Instantaneous Display Analysis Spectrometer (PIDAS)

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.; Rubin, Tod; Ohashi, Makoto

    1988-01-01

    The Portable Instantaneous Display Analysis System (PIDAS) was evaluated by measuring 125 spectra of mineral specimens and rock samples under the following conditions: in the laboratory under artificial illumination and outdoors, on the building patio, while still using the line voltage electric power supplies. The PIDAS was compared and contrasted with the GEOSCAN PFS, Daedalus-Spectrafax 440, and the Geophysical Environmental Research (GER) IRIS Mark 4.

  6. Investigation of power-plant plume photochemistry using a reactive plume model

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, H. S.; Song, C. H.

    2016-12-01

    Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.

  7. Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering: Experiment

    NASA Astrophysics Data System (ADS)

    Čapek, Jiří; Kadlec, Stanislav

    2017-05-01

    Titanium and aluminum targets have been reactively sputtered in Ar +O2 or Ar +N2 gas mixtures in order to systematically investigate the effect of reduced hysteresis in reactive high power impulse magnetron sputtering (HiPIMS) as compared to other sputtering techniques utilizing low discharge target power density (e.g., direct current or pulsed direct current mid-frequency magnetron sputtering) operated at the same average discharge power. We found that the negative slope of the flow rate of the reactive gas gettered by the sputtered target material as a function of the reactive gas partial pressure is clearly lower in the case of HiPIMS. This results in a lower critical pumping speed, which implies a reduced hysteresis. We argue that the most important effect explaining the observed behavior is covering of the reacted areas of the target by the returning ionized metal, effectively lowering the target coverage at a given partial pressure. This explanation is supported by a calculation using an analytical model of reactive HiPIMS with time and space averaging (developed by us).

  8. Reactive Power and Voltage Optimization Control Strategy in Active Distribution Network Based on the Determination of the Key Nodes

    NASA Astrophysics Data System (ADS)

    Meng, Qingmeng; Che, Renfei; Gao, Shi

    2017-05-01

    The distributed generation which is integrated in the active distribution network changes power flow, bringing new challenges to the voltage control. When voltage limit violation happens, in order to make the voltage return to normal range and improve the voltage quality, a novel voltage control strategy is proposed. Considering the voltage quality and node importance, the electrical closeness centrality and key node contribution degree are defined, and the key nodes are determined by the orders of the key node contribution degree. This paper uses the reactive power compensation devices which are installed at the key nodes coordinated with the reactive power output of the distributed generation to realize the voltage optimization control. The voltage optimization control model is established by taking the minimum power loss as an objective function. Using the particle swarm optimization algorithm solves the model. The simulation results of the improved IEEE-33 bus system verify the effectiveness of the proposed method.

  9. Current-voltage-time characteristics of the reactive Ar/N{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Magnus, F.; Sveinsson, O. B.; Olafsson, S.; Gudmundsson, J. T.

    2011-10-15

    The discharge current and voltage waveforms have been measured in a reactive high power impulse magnetron sputtering (HiPIMS) Ar/N{sub 2} discharge with a Ti target for 400 {mu}s long pulses. We observe that the current waveform in the reactive Ar/N{sub 2} HiPIMS discharge is highly dependent on the pulse repetition frequency, unlike the non-reactive Ar discharge. The current is found to increase significantly as the frequency is lowered. This is attributed to an increase in the secondary electron emission yield during the self-sputtering phase, when the nitride forms on the target at low frequencies. In addition, self-sputtering runaway occurs at lower discharge voltages when nitrogen is added to the discharge. This illustrates the crucial role of self-sputtering in the behavior of the reactive HiPIMS discharge.

  10. Power reactivity decrement components of a homogeneous UPu10Zr-fueled 900-MW(thermal) liquid metal reactor

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1989-01-01

    Linear and Doppler feedback components of the power reactivity decrement (PRD) for a 900-MW(thermal) homogeneous UPu10Zr-fueled sodium-cooled reactor have been calculated. (The PRD is the negative of the reactivity required to bring the reactor from a zero-power hot-critical condition to a given power level.) The components are further separated into power-dependent and power-to-flow-dependent parts. These delineations enhance understanding of the contributions of the components to the feedback process. The delineation also enables the PRDs for other values of coolant flows to be estimated. The linear and Doppler components of the PRD are obtained using the EBRPOCO code, which calculates detailed axially delineated contributions of the components for every subassembly of a loading configuration. Separation of the components into power and power-to-flow parts is made by calculations of the components, assuming infinite thermal conductivities to obtain the power-to-flow values. Subtractions of these from the corresponding PRD quantities give the power-dependent parts. The values of the various feedback components are compared with corresponding quantities reported for an analogous U10Zr-fueled case.

  11. [Instantaneous alteration of the dog heart contractility under instantaneous change in the stimulation rhythm].

    PubMed

    Gur'ianov, M I

    2002-04-01

    Isolated canine heart has an expressed ability for an instantaneous alteration in the sense of re-tuning, of contractility (of the speed of mechanical restitution in diastolic period) under instantaneous change of stimulation rhythm. Postextrasystolic potentiation reflects instantaneous rising of the speed of mechanical restitution under the influence of extrasystole in the condition of instantaneous transition to a higher rhythm. Depression of contractility reflects instantaneous decreasing of the speed of mechanical restitution under the influence of delayed stimulus in the condition of instantaneous transition to a slower rhythm. Alteration (re-tuning) of heart contractility occurred irrespective of the influence of neurohumoral factor and Frank-Starling law on the work of the heart. Alteration (re-tuning) of contractility occurs at an organ (cell) level.

  12. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.

    SciTech Connect

    Reno, Matthew J.; Lave, Matthew Samuel; Broderick, Robert Joseph; Seuss, John; Grijalva, Santiago

    2016-01-01

    The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

  13. CFD-based turbulent reactive flow simulations of power plant plumes

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Zhang, K. Max

    2017-02-01

    trajectory with that estimated using a semi-empirical equation and Cumberland-specific parameters indicated that RANS-VS can reasonably predict plume evolution in the JDR as well. Our study suggested that properly configured CFD simulations (e.g., turbulence model, source representation and mesh sensitivity) were able to capture the evolution of chemical reactive plumes from power plants in high accuracy, however, with high computational cost and thus limited applicable spatial range.

  14. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Villamayor, M.; Lundin, D.; Helmersson, U.

    2016-02-01

    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar-N2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf-N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail.

  15. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    PubMed

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  16. Computing Instantaneous Frequency by normalizing Hilbert Transform

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2005-01-01

    This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.

  17. Computing Instantaneous Frequency by normalizing Hilbert Transform

    DOEpatents

    Huang, Norden E.

    2005-05-31

    This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.

  18. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1990-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of the frequency during the pulse.

  19. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  20. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    SciTech Connect

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  1. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    DOE PAGES

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; ...

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less

  2. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    SciTech Connect

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gain of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.

  3. Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Breilmann, W.; Maszl, C.; Hecimovic, A.; von Keudell, A.

    2017-04-01

    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process.

  4. Observation of a periodic runaway in the reactive Ar/O{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect

    Shayestehaminzadeh, Seyedmohammad E-mail: shayesteh@mch.rwth-aachen.de; Arnalds, Unnar B.; Magnusson, Rögnvaldur L.; Olafsson, Sveinn

    2015-11-15

    This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti) with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide) mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O{sub 2} discharge in order to sustain the plasma in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.

  5. An Aircraft Electric Power Testbed for Validating Automatically Synthesized Reactive Control Protocols

    DTIC Science & Technology

    2013-01-01

    we describe our recently developed simulation models and a hardware testbed for validating reactive controllers synthesized using TuLiP [1], a...temporal logic planning toolbox, in order to investigate the validity of the assumptions made in controller synthesis. TuLiP is a collection of Python... TuLiP can be used to synthesize logic so that the satisfaction of certain safety requirements is guaranteed. The synthesized logic enables the contac

  6. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Jon Tomas; Lundin, Daniel; Brenning, Nils; Raadu, Michel A.; Huo, Chunqing; Minea, Tiberiu

    2016-09-01

    A reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with titanium target. We compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we find that when the discharge is operated in the metal mode Ar+ and Ti+-ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+-ions contribute most significantly to the discharge current while the contribution of O+-ions and secondary electron emission is much smaller. Furthermore, we find that recycling of ionized atoms coming from the target are required for the current generation in both modes of operation. In the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates, and it is concluded that the dominating type of recycling determines the discharge current waveform.

  7. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  8. A global plasma model for reactive deposition of compound films by modulated pulsed power magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.

    2017-05-01

    A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure

  9. Counting defects in an instantaneous quench.

    PubMed

    Ibaceta, D; Calzetta, E

    1999-09-01

    We consider the formation of defects in a nonequilibrium second-order phase transition induced by an instantaneous quench to zero temperature in a type II superconductor. We perform a full nonlinear simulation where we follow the evolution in time of the local order parameter field. We determine how far into the phase transition theoretical estimates of the defect density based on the Gaussian approximation yield a reliable prediction for the actual density. We also characterize quantitatively some aspects of the out of equilibrium phase transition.

  10. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment.

    PubMed

    Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R

    2014-02-18

    We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.

  11. On Learning the Rate of Instantaneous Change=A Propos De L'Apprentissage Du Taux De Variation Instantane.

    ERIC Educational Resources Information Center

    Schneider, Maggy

    1992-01-01

    Divided into two parts, this article analyzes why some pupils feel reserve about instantaneous velocities and instantaneous flows. The second part relates reactions of pupils facing a problem that implicates the instantaneous rate of change. Describes some characteristics of this problem that enables the authors to explain its instructional…

  12. Gesture recognition by instantaneous surface EMG images

    PubMed Central

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-01-01

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. PMID:27845347

  13. Gesture recognition by instantaneous surface EMG images.

    PubMed

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-11-15

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.

  14. Three-dimensional Reluctance Network Analysis of an EIE-Core Variable Inductor and Application to Reactive Power Compensation in a Distribution System

    NASA Astrophysics Data System (ADS)

    Nakamura, Kenji; Ohinata, Takashi; Arimatsu, Kenji; Sakamoto, Kunio; Ichinokura, Osamu

    This paper describes a three-dimensional reluctance network analysis (RNA) of an EIE-core variable inductor, which can be applied as a reactive power compensator in electric power systems. First, a three-dimensional RNA model of an EIE-core considering the magnetic saturation and iron loss is presented. Using the proposed RNA model with external electric circuits, operating characteristics of the variable inductor including the iron loss are calculated accurately. Next, high performance of a 6.6 kV-300 kVA reactive power compensator using the EIE-core variable inductor is demonstrated in a distribution system.

  15. "Body-In-The-Loop": Optimizing Device Parameters Using Measures of Instantaneous Energetic Cost

    PubMed Central

    Felt, Wyatt; Selinger, Jessica C.; Donelan, J. Maxwell; Remy, C. David

    2015-01-01

    This paper demonstrates methods for the online optimization of assistive robotic devices such as powered prostheses, orthoses and exoskeletons. Our algorithms estimate the value of a physiological objective in real-time (with a body “in-the-loop”) and use this information to identify optimal device parameters. To handle sensor data that are noisy and dynamically delayed, we rely on a combination of dynamic estimation and response surface identification. We evaluated three algorithms (Steady-State Cost Mapping, Instantaneous Cost Mapping, and Instantaneous Cost Gradient Search) with eight healthy human subjects. Steady-State Cost Mapping is an established technique that fits a cubic polynomial to averages of steady-state measures at different parameter settings. The optimal parameter value is determined from the polynomial fit. Using a continuous sweep over a range of parameters and taking into account measurement dynamics, Instantaneous Cost Mapping identifies a cubic polynomial more quickly. Instantaneous Cost Gradient Search uses a similar technique to iteratively approach the optimal parameter value using estimates of the local gradient. To evaluate these methods in a simple and repeatable way, we prescribed step frequency via a metronome and optimized this frequency to minimize metabolic energetic cost. This use of step frequency allows a comparison of our results to established techniques and enables others to replicate our methods. Our results show that all three methods achieve similar accuracy in estimating optimal step frequency. For all methods, the average error between the predicted minima and the subjects’ preferred step frequencies was less than 1% with a standard deviation between 4% and 5%. Using Instantaneous Cost Mapping, we were able to reduce subject walking-time from over an hour to less than 10 minutes. While, for a single parameter, the Instantaneous Cost Gradient Search is not much faster than Steady-State Cost Mapping, the

  16. Instantaneous network RTK in Orange County, California

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2003-04-01

    The Orange County Real Time GPS Network (OCRTN) is an upgrade of a sub-network of SCIGN sites in southern California to low latency (1-2 sec), high-rate (1 Hz) data streaming, analysis, and dissemination. The project is a collaborative effort of the California Spatial Reference Center (CSRC) and the Orange County Public Resource and Facilities Division, with partners from the geophysical community, local and state government, and the private sector. Currently, ten sites are streaming 1 Hz raw data (Ashtech binary MBEN format) by means of dedicated, point-to-point radio modems to a network hub that translates the asynchronous serial data to TCP/IP and onto a PC workstation residing on a local area network. Software residing on the PC allows multiple clients to access the raw data simultaneously though TCP/IP. One of the clients is a Geodetics RTD server that receives and archives (1) the raw 1 Hz network data, (2) estimates of instantaneous positions and zenith tropospheric delays for quality control and detection of ground motion, and (3) RINEX data to decimated to 30 seconds. Data recovery is typically 99-100%. The server also produces 1 Hz RTCM data (messages 18, 19, 3 and 22) that are available by means of TCP/IP to RTK clients with wireless Internet modems. Coverage is excellent throughout the county. The server supports standard RTK users and is compatible with existing GPS instrumentation. Typical latency is 1-2 s, with initialization times of several seconds to minutes OCRTN site spacing is 10-15 km. In addition, the server supports “smart clients” who can retrieve data from the closest n sites (typically 3) and obtain an instantaneous network RTK position with 1-2 s latency. This mode currently requires a PDA running the RTD client software, and a wireless card. Since there is no initialization and re-initialization required this approach is well suited to support high-precision (centimeter-level) dynamic applications such as intelligent transportation

  17. Numerical modelling of instantaneous plate tectonics

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.

    1974-01-01

    Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.

  18. Field of attention for instantaneous object recognition.

    PubMed

    Yao, Jian-Gao; Gao, Xin; Yan, Hong-Mei; Li, Chao-Yi

    2011-01-21

    Instantaneous object discrimination and categorization are fundamental cognitive capacities performed with the guidance of visual attention. Visual attention enables selection of a salient object within a limited area of the visual field; we referred to as "field of attention" (FA). Though there is some evidence concerning the spatial extent of object recognition, the following questions still remain unknown: (a) how large is the FA for rapid object categorization, (b) how accuracy of attention is distributed over the FA, and (c) how fast complex objects can be categorized when presented against backgrounds formed by natural scenes. To answer these questions, we used a visual perceptual task in which subjects were asked to focus their attention on a point while being required to categorize briefly flashed (20 ms) photographs of natural scenes by indicating whether or not these contained an animal. By measuring the accuracy of categorization at different eccentricities from the fixation point, we were able to determine the spatial extent and the distribution of accuracy over the FA, as well as the speed of categorizing objects using stimulus onset asynchrony (SOA). Our results revealed that subjects are able to rapidly categorize complex natural images within about 0.1 s without eye movement, and showed that the FA for instantaneous image categorization covers a visual field extending 20° × 24°, and accuracy was highest (>90%) at the center of FA and declined with increasing eccentricity. In conclusion, human beings are able to categorize complex natural images at a glance over a large extent of the visual field without eye movement.

  19. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lundin, D.; Brenning, N.; Raadu, M. A.; Huo, Chunqing; Minea, T. M.

    2016-12-01

    A new reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with a titanium target. It is then applied to study the temporal behavior of the discharge plasma parameters such as electron density, the neutral and ion composition, the ionization fraction of the sputtered vapor, the oxygen dissociation fraction, and the composition of the discharge current. We study and compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we explore the current increase and find that when the discharge is operated in the metal mode Ar+ and Ti+ -ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+ -ions contribute most significantly to the discharge current and the contribution of O+ -ions, Ti+ -ions, and secondary electron emission is much smaller. Furthermore, we find that recycling of atoms coming from the target, that are subsequently ionized, is required for the current generation in both modes of operation. From the R-IRM results it is found that in the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates. We also show that working gas recycling can lead to very high discharge currents but never to a runaway. It is concluded that the dominating type of recycling determines the discharge current waveform.

  20. Development of a Reactive Plume Model for the Consideration of Power-Plant Plume Photochemistry and Its Applications.

    PubMed

    Kim, Yong H; Kim, Hyun S; Song, Chul H

    2017-02-07

    A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.76 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.

  1. Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)?

    NASA Astrophysics Data System (ADS)

    Strijckmans, K.; Moens, F.; Depla, D.

    2017-02-01

    This paper discusses a few mechanisms that can assist to answer the title question. The initial approach is to use an established model for DC magnetron sputter deposition, i.e., RSD2013. Based on this model, the impact on the hysteresis behaviour of some typical HiPIMS conditions is investigated. From this first study, it becomes clear that the probability to observe hysteresis is much lower as compared to DC magnetron sputtering. The high current pulses cannot explain the hysteresis reduction. Total pressure and material choice make the abrupt changes less pronounced, but the implantation of ionized metal atoms that return to the target seems to be the major cause. To further substantiate these results, the analytical reactive sputtering model is coupled with a published global plasma model. The effect of metal ion implantation is confirmed. Another suggested mechanism, i.e., gas rarefaction, can be ruled out to explain the hysteresis reduction. But perhaps the major conclusion is that at present, there are too little experimental data available to make fully sound conclusions.

  2. Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.

    PubMed

    Gregory, David A; Zhang, Yu; Smith, Patrick J; Zhao, Xiubo; Ebbens, Stephen J

    2016-08-01

    Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nonactive-Power-Related Ancillary Services provided by Distribute Energy Resources

    SciTech Connect

    Xu, Yan; Tolbert, Leon M; Rizy, D Tom; Kueck, John D

    2006-01-01

    The nonactive-power-related ancillary services provided by distributed energy (DE) resources are categorized by voltage regulation, reactive power compensation, power factor correction, voltage and/or current unbalance compensation, and harmonics compensation. An instantaneous nonactive power theory is adopted to control the DE system to provide these ancillary services. Three control schemes, including nonactive current compensation, power factor correction, and voltage regulation, are developed which can perform one or more of the ancillary services. The control schemes are implemented in a DE system in simulation and experiments. The simulation and the experimental results show that DE is feasible for providing nonactive-power-related ancillary services.

  4. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE PAGES

    Li, Peng; Ji, Haoran; Wang, Chengshan; ...

    2017-03-22

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  5. Paper diagnostic for instantaneous blood typing.

    PubMed

    Khan, Mohidus Samad; Thouas, George; Shen, Wei; Whyte, Gordon; Garnier, Gil

    2010-05-15

    Agglutinated blood transports differently onto paper than stable blood with well dispersed red cells. This difference was investigated to develop instantaneous blood typing tests using specific antibody-antigen interactions to trigger blood agglutination. Two series of experiments were performed. The first related the level of agglutination and the fluidic properties of blood on its transport in paper. Blood samples were mixed at different ratios with specific and nonspecific antibodies; a droplet of each mixture was deposited onto a filter paper strip, and the kinetics of wicking and red cell separation were measured. Agglutinated blood phase separated, with the red blood cells (RBC) forming a distinct spot upon contact with paper while the plasma wicked; in contrast, stable blood suspensions wicked uniformly. The second study analyzed the wicking and the chromatographic separation of droplets of blood deposited onto paper strips pretreated with specific and nonspecific antibodies. Drastic differences in transport occurred. Blood agglutinated by interaction with one of its specific antibodies phase separated, causing a chromatographic separation. The red cells wicked very little while the plasma wicked at a faster rate than the original blood sample. Blood agglutination and wicking in paper followed the concepts of colloids chemistry. The immunoglobin M antibodies agglutinated the red blood cells by polymer bridging, upon selective adsorption on the specific antigen at their surface. The transport kinetics was viscosity controlled, with the viscosity of red cells drastically increasing upon blood agglutination. Three arm prototypes were investigated for single-step blood typing.

  6. Covert Waking Brain Activity Reveals Instantaneous Sleep Depth

    PubMed Central

    McKinney, Scott M.; Dang-Vu, Thien Thanh; Buxton, Orfeu M.; Solet, Jo M.; Ellenbogen, Jeffrey M.

    2011-01-01

    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep. PMID:21408616

  7. Covert waking brain activity reveals instantaneous sleep depth.

    PubMed

    McKinney, Scott M; Dang-Vu, Thien Thanh; Buxton, Orfeu M; Solet, Jo M; Ellenbogen, Jeffrey M

    2011-03-03

    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8-13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise--a measure of sleep depth--throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep.

  8. SiNx coatings deposited by reactive high power impulse magnetron sputtering: Process parameters influencing the residual coating stress

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Hänninen, T.; Wissting, J.; Hultman, L.; Goebbels, N.; Santana, A.; Tobler, M.; Högberg, H.

    2017-05-01

    The residual coating stress and its control is of key importance for the performance and reliability of silicon nitride (SiNx) coatings for biomedical applications. This study explores the most important deposition process parameters to tailor the residual coating stress and hence improve the adhesion of SiNx coatings deposited by reactive high power impulse magnetron sputtering (rHiPIMS). Reactive sputter deposition and plasma characterization were conducted in an industrial deposition chamber equipped with pure Si targets in N2/Ar ambient. Reactive HiPIMS processes using N2-to-Ar flow ratios of 0 and 0.28-0.3 were studied with time averaged positive ion mass spectrometry. The coatings were deposited to thicknesses of 2 μm on Si(001) and to 5 μm on polished CoCrMo disks. The residual stress of the X-ray amorphous coatings was determined from the curvature of the Si substrates as obtained by X-ray diffraction. The coatings were further characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and nanoindentation in order to study their elemental composition, morphology, and hardness, respectively. The adhesion of the 5 μm thick coatings deposited on CoCrMo disks was assessed using the Rockwell C test. The deposition of SiNx coatings by rHiPIMS using N2-to-Ar flow ratios of 0.28 yield dense and hard SiNx coatings with Si/N ratios <1. The compressive residual stress of up to 2.1 GPa can be reduced to 0.2 GPa using a comparatively high deposition pressure of 600 mPa, substrate temperatures below 200 °C, low pulse energies of <2.5 Ws, and moderate negative bias voltages of up to 100 V. These process parameters resulted in excellent coating adhesion (ISO 0, HF1) and a low surface roughness of 14 nm for coatings deposited on CoCrMo.

  9. Engineering model of the electric drives of separation device for simulation of automatic control systems of reactive power compensation by means of serially connected capacitors

    NASA Astrophysics Data System (ADS)

    Juromskiy, V. M.

    2016-09-01

    It is developed a mathematical model for an electric drive of high-speed separation device in terms of the modeling dynamic systems Simulink, MATLAB. The model is focused on the study of the automatic control systems of the power factor (Cosφ) of an actuator by compensating the reactive component of the total power by switching a capacitor bank in series with the actuator. The model is based on the methodology of the structural modeling of dynamic processes.

  10. Observing and recording instantaneous images on ATM television monitors

    NASA Technical Reports Server (NTRS)

    Patterson, N. P.; Delamere, W. A.; Tousey, R.

    1977-01-01

    A persistent image-converter device was utilized to make visible to the astronaut solar images that were isolated, instantaneous flashes on the ATM TV monitors. In addition, these instantaneous images, as well as normal TV images, were recorded with a Polaroid SX-70 camera for study by the astronauts.

  11. Instantaneous frequency based newborn EEG seizure characterisation

    NASA Astrophysics Data System (ADS)

    Mesbah, Mostefa; O'Toole, John M.; Colditz, Paul B.; Boashash, Boualem

    2012-12-01

    The electroencephalogram (EEG), used to noninvasively monitor brain activity, remains the most reliable tool in the diagnosis of neonatal seizures. Due to their nonstationary and multi-component nature, newborn EEG seizures are better represented in the joint time-frequency domain than in either the time domain or the frequency domain. Characterising newborn EEG seizure nonstationarities helps to better understand their time-varying nature and, therefore, allow developing efficient signal processing methods for both modelling and seizure detection and classification. In this article, we used the instantaneous frequency (IF) extracted from a time-frequency distribution to characterise newborn EEG seizures. We fitted four frequency modulated (FM) models to the extracted IFs, namely a linear FM, a piecewise-linear FM, a sinusoidal FM, and a hyperbolic FM. Using a database of 30-s EEG seizure epochs acquired from 35 newborns, we were able to show that, depending on EEG channel, the sinusoidal and piecewise-linear FM models best fitted 80-98% of seizure epochs. To further characterise the EEG seizures, we calculated the mean frequency and frequency span of the extracted IFs. We showed that in the majority of the cases (>95%), the mean frequency resides in the 0.6-3 Hz band with a frequency span of 0.2-1 Hz. In terms of the frequency of occurrence of the four seizure models, the statistical analysis showed that there is no significant difference( p = 0.332) between the two hemispheres. The results also indicate that there is no significant differences between the two hemispheres in terms of the mean frequency ( p = 0.186) and the frequency span ( p = 0.302).

  12. In Brief: Online database for instantaneous streamflow data

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-11-01

    Access to U.S. Geological Survey (USGS) historical instantaneous streamflow discharge data, dating from around 1990, is now available online through the Instantaneous Data Archive (IDA), the USGS announced on 14 November. In this new system, users can find streamflow information reported at the time intervals at which it is collected, typically 15-minute to hourly intervals. Although instantaneous data have been available for many years, they were not accessible through the Internet. Robert Hirsch, USGS Associate Director of Water, said, ``A user-friendly archive of historical instantaneous streamflow data is important to many different users for such things as floodplain mapping, flood modeling, and estimating pollutant transport.''The site currently has about 1.5 billion instantaneous data values from 5500 stream gages in 26 states. The number of states and stream gages with data will continue to increase, according to the USGS. For more information, visit the Web site: http://ida.water.usgs.gov/ida/.

  13. Effects of Instantaneous Multiband Dynamic Compression on Speech Intelligibility

    NASA Astrophysics Data System (ADS)

    Herzke, Tobias; Hohmann, Volker

    2005-12-01

    The recruitment phenomenon, that is, the reduced dynamic range between threshold and uncomfortable level, is attributed to the loss of instantaneous dynamic compression on the basilar membrane. Despite this, hearing aids commonly use slow-acting dynamic compression for its compensation, because this was found to be the most successful strategy in terms of speech quality and intelligibility rehabilitation. Former attempts to use fast-acting compression gave ambiguous results, raising the question as to whether auditory-based recruitment compensation by instantaneous compression is in principle applicable in hearing aids. This study thus investigates instantaneous multiband dynamic compression based on an auditory filterbank. Instantaneous envelope compression is performed in each frequency band of a gammatone filterbank, which provides a combination of time and frequency resolution comparable to the normal healthy cochlea. The gain characteristics used for dynamic compression are deduced from categorical loudness scaling. In speech intelligibility tests, the instantaneous dynamic compression scheme was compared against a linear amplification scheme, which used the same filterbank for frequency analysis, but employed constant gain factors that restored the sound level for medium perceived loudness in each frequency band. In subjective comparisons, five of nine subjects preferred the linear amplification scheme and would not accept the instantaneous dynamic compression in hearing aids. Four of nine subjects did not perceive any quality differences. A sentence intelligibility test in noise (Oldenburg sentence test) showed little to no negative effects of the instantaneous dynamic compression, compared to linear amplification. A word intelligibility test in quiet (one-syllable rhyme test) showed that the subjects benefit from the larger amplification at low levels provided by instantaneous dynamic compression. Further analysis showed that the increase in intelligibility

  14. Instantaneous Spread of Plumes in the Surface Layer.

    NASA Astrophysics Data System (ADS)

    Peterson, Holly; Mazzolini, Dione; O'Neill, Susan; Lamb, Brian

    1999-03-01

    Data are presented from two recent tracer campaigns regarding relative diffusion of surface-level plumes. One study consists of tests performed amid flat, rural terrain near Galen, Montana, while other experiments were conducted above a poplar forest with uniform canopy density and height near Boardman, Oregon. In both cases, sulfur hexafluoride was released near the surface at a constant rate, and fast-response analyzers were used to measure plume concentrations along crosswind traverses and at fixed locations within 1 km of the source. This paper characterizes horizontal plume spread on near-instantaneous time frames during 29 tests, and the field data are used to test seven empirical and theoretical approaches for estimating relative diffusion coefficients using on-site wind data. Five of the equations utilize simple turbulence statistics to predict plume spread as a function of downwind distance; one method utilizes stability-based power-law formulas; and the last technique invokes second-order closure. Overall, the seven approaches predict values similar to observed diffusion coefficients within a factor of 2 or better for most of the tests.

  15. Photonic instantaneous frequency measurement of wideband microwave signals.

    PubMed

    Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin; Ning, Tigang

    2017-01-01

    We propose a photonic system for instantaneous frequency measurement (IFM) of wideband microwave signals with a tunable measurement range and resolution based on a polarization-maintaining fiber Bragg grating (PM-FBG). Firstly, in order to be insensitive to laser power fluctuation, we aim at generating two different frequency to amplitude characteristics so that we can normalize them to obtain an amplitude comparison function (ACF). Then we encode these two different wavelengths in two perpendicular polarizations by using the PM-FBG which shows different transmission profiles at two polarizations. The ACF is capable of being adjusted by tuning polarization angle, therefore the measurement range and resolution are tunable. By theoretical analyses and simulated verification, a frequency measurement range of 0~17.2 GHz with average resolution of ±0.12 GHz can be achieved, which signifies a wide measurement range with relatively high resolution. Our system does not require large optical bandwidth for the components because the wavelength spacing can be small, making the system affordable, stable, and reliable with more consistent characteristics due to the narrowband nature of the optical parts. PM-FBG with high integration can be potentially used for more polarization manipulating systems and the use of a single-polarization dual-wavelength laser can simplify the architecture and enhance the stability.

  16. Process- and optoelectronic-control of NiOx thin films deposited by reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Keraudy, Julien; Delfour-Peyrethon, Brice; Ferrec, Axel; Garcia Molleja, Javier; Richard-Plouet, Mireille; Payen, Christophe; Hamon, Jonathan; Corraze, Benoît; Goullet, Antoine; Jouan, Pierre-Yves

    2017-05-01

    In this contribution, based on the analyses of the discharge behavior as well as final properties of the deposited Ni-O films during reactive high power impulse magnetron sputtering discharge, we have demonstrated that monitoring the oxygen flow rate leads to 4 different regimes of discharge. Tuning the oxygen partial pressure allows deposition of a large range of chemical compositions from pure nickel to nickel-deficient NiOx (x > 1) in the poisoned mode. Investigation of the plasma dynamics by time-resolved optical emission spectroscopy suggests that the discharge behavior in the poisoned mode principally comes from the higher contribution of both oxygen and argon ions in the total ionic current, leading to a change in the ion induced secondary electron emission coefficient. Additionally, material characterizations have revealed that optoelectronic properties of NiOx films can be easily tuned by adjusting the O/Ni ratio, which is influenced by the change of the oxygen flow rate. Stoichiometric NiO films (O/Ni ratio ˜ 1) are transparent in the visible range with a transmittance ˜80% and insulating as expected with an electrical resistivity ˜106 Ω cm. On the other hand, increasing the O/Ni > 1 leads to the deposition of more conductive coating (ρ ˜ 10 Ω cm) films with a lower transmittance ˜ 50%. These optoelectronic evolutions are accompanied by a band-gap narrowing 3.65 to 3.37 eV originating from the introduction of acceptor states between the Fermi level and the valence band maximum. In addition, our analysis has demonstrated that nickel vacancies are homogeneously distributed over the film thickness, explaining the p-type of the films.

  17. Measurement of ultrashort pulses with a non-instantaneous nonlinearity

    SciTech Connect

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-02-01

    We show how non-instantaneous nonlinearities can be used to characterize an ultrashort pulse in an extension of the Frequency-Resolved Optical Gating technique. We demonstrate this principle using the Raman effect in fused silica.

  18. Computerized intraoperative calculation of instantaneous prosthetic aortic valve area.

    PubMed

    DiSesa, V J; Lachman, P; Collins, J J; Cohn, L H

    1988-01-01

    Improved assessment of valve area is essential to understanding the performance of prosthetic valves. The authors studied six patients undergoing aortic valve replacement using mechanical (ME) or porcine (PO) prostheses. Instantaneous cardiac output (CO) (L/min) was measured in the aorta using an ultrasonic flow probe. Left ventricular and aortic pressures (mmHg) were measured using Millar catheters. Data were analyzed using an IBM PC-AT. Valve area (cm2) was determined using Gorlin's formula (AG) and a new formula for instantaneous area derived mathematically and using a theoretic constant. AG, mean (AI) and peak (Apk) instantaneous areas were compared to geometric measures of area (Aactual) in vitro. Peak instantaneous area correlates best with measured area. Intraoperative assessment using the ultrasonic flow probe and computer analysis is helpful in understanding the dynamic properties of prosthetic valves in vivo.

  19. Instantaneous mental workload - Concept and potential methods for measurement

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.

    1981-01-01

    This paper provides an initial conceptual framework for instantaneous workload and describes potential methods for short-term measurement. Many existing estimation techniques can be modified for use as short-term assessment techniques. Techniques in the (1) opinion, (2) spare mental capacity, (3) primary task, and (4) physiological categories are discussed. The limitations involved in instantaneous workload, which are real and fundamental, are also described.

  20. Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations

    SciTech Connect

    Wu, Chijui; Lee, Yuangshung )

    1993-03-01

    An active and reactive power (P-Q) simultaneous control scheme which is based on a superconducting magnetic energy storage (SMES) unit is designed to damp out the subsynchronous resonant (SSR) oscillations of a turbine-generator unit. In order to suppress unstable torsional mode oscillations, a proportional-integral-derivative (PID) controller is employed to modulate the active and reactive power input/output of the SMES unit according to speed deviation of the generator shaft. The gains of the proposed PID controller are determined by pole assignment approach based on modal control theory. Eigenvalue analysis of the studied system shows that the PID controller is quite effective over a wide range of operating conditions. Dynamic simulations using the nonlinear system model are also performed to demonstrate the damping effect of the proposed control scheme under disturbance conditions.

  1. Wireless Power Control for Tactical MANET: Power Rate Bounds

    DTIC Science & Technology

    2016-09-01

    Best performance is the power-rate performance delivered by the perfect and centralized WPC con- troller. Our findings are that the distributed WPC...following capabilities: • Instantaneous and perfect measurements of the noise and interference at each receiver • Instantaneous and perfect control of...genie” having access to perfect measurements and instantaneously selects best possible power-rate trade-offs. Local control typically as- signs

  2. Determination of the relative power density distribution in a heterogeneous reactor from the results of measurements of the reactivity effects and the neutron importance function

    SciTech Connect

    Bobrov, A. A.; Glushkov, E. S.; Zimin, A. A.; Kapitonova, A. V.; Kompaniets, G. V.; Nosov, V. I. Petrushenko, R. P.; Smirnov, O. N.

    2012-12-15

    A method for experimental determination of the relative power density distribution in a heterogeneous reactor based on measurements of fuel reactivity effects and importance of neutrons from a californium source is proposed. The method was perfected on two critical assembly configurations at the NARCISS facility of the Kurchatov Institute, which simulated a small-size heterogeneous nuclear reactor. The neutron importance measurements were performed on subcritical and critical assemblies. It is shown that, along with traditionally used activation methods, the developed method can be applied to experimental studies of special features of the power density distribution in critical assemblies and reactors.

  3. Determination of the relative power density distribution in a heterogeneous reactor from the results of measurements of the reactivity effects and the neutron importance function

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Glushkov, E. S.; Zimin, A. A.; Kapitonova, A. V.; Kompaniets, G. V.; Nosov, V. I.; Petrushenko, R. P.; Smirnov, O. N.

    2012-12-01

    A method for experimental determination of the relative power density distribution in a heterogeneous reactor based on measurements of fuel reactivity effects and importance of neutrons from a californium source is proposed. The method was perfected on two critical assembly configurations at the NARCISS facility of the Kurchatov Institute, which simulated a small-size heterogeneous nuclear reactor. The neutron importance measurements were performed on subcritical and critical assemblies. It is shown that, along with traditionally used activation methods, the developed method can be applied to experimental studies of special features of the power density distribution in critical assemblies and reactors.

  4. Development of geomorphologic instantaneous unit hydrograph for a large watershed.

    PubMed

    Ghumman, Abdul Razzaq; Ahmad, Muhammad Masood; Hashmi, Hashim Nisar; Kamal, Mumtaz Ahmad

    2012-05-01

    Hill torrents cause a lot of environmental and property damage in Pakistan every year. Proper assessment of direct runoff in the form of hill torrents is essential for protection of environment, property, and human life. In this paper, direct surface runoff hydrograph (DSRH) was derived for a large catchment using the geomorphologic instantaneous unit hydrograph concept. The catchment with hill torrent flows in semi-arid region of Pakistan was selected for this study. It was divided into series of linear cascades and hydrologic parameters required for Nash's conceptual model, and were estimated using geomorphology of the basin. Geomorphologic parameters were derived from satellite images of the basin and ERDAS and ArcGIS were used for data processing. Computer program was developed to systematically estimate the dynamic velocity, its related parameters by optimization and thereby to simulate the DSRH. The data regarding rainfall-runoff and satellite images were collected from Punjab Irrigation and Power Department, Pakistan. Model calibration and validation was made for 15 rainfall-runoff events. Ten events were used for calibration and five for validation. Model efficiency was found to be more than 90% and root mean square error to be about 5%. Impact of variation in model parameters (shape parameter and storage coefficient) on DSRH was investigated. For shape parameter, the number of linear cascades varied from 1 to 3 and it was found that the shaper parameter value of 3 produced the best DSRH. Various values of storage coefficient were used and it was observed that the value determined from geomorphology and the dynamic velocity produced the best results.

  5. Calculation and comparison of xenon and samarium reactivities of the HEU, LEU core in the low power research reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2015-07-01

    Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown.

  6. Instantaneous Normal Modes and the Protein Glass Transition

    SciTech Connect

    Schultz, Roland; Krishnan, Marimuthu; Daidone, Isabella; Smith, Jeremy C

    2009-01-01

    In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at 220 K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.

  7. An arbitrarily short reply to Sheldon Smith on instantaneous velocities

    NASA Astrophysics Data System (ADS)

    Arntzenius, Frank

    The main issue is the question whether the standard calculus definition of velocities allows velocities to be part of the instantaneous states of objects. According to David Albert and I this is implausible, for if they were, then the instantaneous state of an object at a time t would in virtue of logic and definition alone impose a severe constraint on the history of instantaneous states of that object at other times. One can picture the constraint as follows: represent the position at time t by a dot on a piece of paper; represent the velocity at time t by an arrow that points away from that dot. The positions around time t can then be represented as a (parameterized) curve. The constraint now is that the curve must have the arrow as its tangent: as one gets close to t the curve must become parallel to the arrow (and must be parameterized at a rate that corresponds to the length of the arrow). This rules out many possible histories at times other than t. But surely an instantaneous state at time t ought not by logic and definition alone to constrain histories of instantaneous states at other times. Laws of nature and contingent relations can imply such constraints, but logic and definition should not. Compare: the intrinsic state at some spatial location x ought not by logic and definition alone to constrain the intrinsic states at other spatial locations. (For Lewis (1986) this is virtually a definition of "intrinsic".)

  8. Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation

    NASA Astrophysics Data System (ADS)

    Broadbent, Anne

    2016-08-01

    In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.

  9. Tracking instantaneous entropy in heartbeat dynamics through inhomogeneous point-process nonlinear models.

    PubMed

    Valenza, Gaetano; Citi, Luca; Scilingo, Enzo Pasquale; Barbieri, Riccardo

    2014-01-01

    Measures of entropy have been proved as powerful quantifiers of complex nonlinear systems, particularly when applied to stochastic series of heartbeat dynamics. Despite the remarkable achievements obtained through standard definitions of approximate and sample entropy, a time-varying definition of entropy characterizing the physiological dynamics at each moment in time is still missing. To this extent, we propose two novel measures of entropy based on the inho-mogeneous point-process theory. The RR interval series is modeled through probability density functions (pdfs) which characterize and predict the time until the next event occurs as a function of the past history. Laguerre expansions of the Wiener-Volterra autoregressive terms account for the long-term nonlinear information. As the proposed measures of entropy are instantaneously defined through such probability functions, the proposed indices are able to provide instantaneous tracking of autonomic nervous system complexity. Of note, the distance between the time-varying phase-space vectors is calculated through the Kolmogorov-Smirnov distance of two pdfs. Experimental results, obtained from the analysis of RR interval series extracted from ten healthy subjects during stand-up tasks, suggest that the proposed entropy indices provide instantaneous tracking of the heartbeat complexity, also allowing for the definition of complexity variability indices.

  10. Instantaneous normal mode analysis of melting of finite dust clusters.

    PubMed

    Melzer, André; Schella, André; Schablinski, Jan; Block, Dietmar; Piel, Alexander

    2012-06-01

    The experimental melting transition of finite two-dimensional dust clusters in a dusty plasma is analyzed using the method of instantaneous normal modes. In the experiment, dust clusters are heated in a thermodynamic equilibrium from a solid to a liquid state using a four-axis laser manipulation system. The fluid properties of the dust cluster, such as the diffusion constant, are measured from the instantaneous normal mode analysis. Thereby, the phase transition of these finite clusters is approached from the liquid phase. From the diffusion constants, unique melting temperatures have been assigned to dust clusters of various sizes that very well reflect their dynamical stability properties.

  11. Instantaneous Observability of Tightly Coupled SINS/GPS during Maneuvers.

    PubMed

    Jiang, Junxiang; Yu, Fei; Lan, Haiyu; Dong, Qianhui

    2016-05-27

    The tightly coupled strapdown inertial navigation system (SINS)/global position system (GPS) has been widely used. The system observability determines whether the system state can be estimated by a filter efficiently or not. In this paper, the observability analysis of a two-channel and a three-channel tightly coupled SINS/GPS are performed, respectively, during arbitrary translational maneuvers and angle maneuvers, where the translational maneuver and angle maneuver are modeled. A novel instantaneous observability matrix (IOM) based on a reconstructed psi-angle model is proposed to make the theoretical analysis simpler, which starts from the observability definition directly. Based on the IOM, a series of theoretical analysis are performed. Analysis results show that almost all kinds of translational maneuver and angle maneuver can make a three-channel system instantaneously observable, but there is no one translational maneuver or angle maneuver can make a two-channel system instantaneously observable. The system's performance is investigated when the system is not instantaneously observable. A series of simulation studies based on EKF are performed to confirm the analytic conclusions.

  12. Instantaneous Observability of Tightly Coupled SINS/GPS during Maneuvers

    PubMed Central

    Jiang, Junxiang; Yu, Fei; Lan, Haiyu; Dong, Qianhui

    2016-01-01

    The tightly coupled strapdown inertial navigation system (SINS)/global position system (GPS) has been widely used. The system observability determines whether the system state can be estimated by a filter efficiently or not. In this paper, the observability analysis of a two-channel and a three-channel tightly coupled SINS/GPS are performed, respectively, during arbitrary translational maneuvers and angle maneuvers, where the translational maneuver and angle maneuver are modeled. A novel instantaneous observability matrix (IOM) based on a reconstructed psi-angle model is proposed to make the theoretical analysis simpler, which starts from the observability definition directly. Based on the IOM, a series of theoretical analysis are performed. Analysis results show that almost all kinds of translational maneuver and angle maneuver can make a three-channel system instantaneously observable, but there is no one translational maneuver or angle maneuver can make a two-channel system instantaneously observable. The system’s performance is investigated when the system is not instantaneously observable. A series of simulation studies based on EKF are performed to confirm the analytic conclusions. PMID:27240369

  13. Communicating Instantaneous Air Quality Data: Pilot Project Feed Back

    EPA Pesticide Factsheets

    EPA is launching a pilot project to test a new tool for making instantaneous outdoor air quality data useful for the public. The new “sensor scale” is designed to be used with air quality sensors that provide data in short time increments – often as little

  14. A Method for Compensating Customer Voltage Drops due to Nighttime Simultaneous Charging of EVs Utilizing Reactive Power Injection from Battery Chargers

    NASA Astrophysics Data System (ADS)

    Noda, Taku; Kabasawa, Yuichiro; Fukushima, Kentaro; Nemoto, Koshichi; Uemura, Satoshi

    When we consider the global warming, the reduction of CO2 emission is one of the most important problems which require urgent solutions. One option is to integrate low-CO2-emission generators to the grid as much as possible. Another option is to replace inefficient vehicles based on internal-combustion engines with electric ones (EVs). Due to the latter, we can easily estimate that most consumers will charge EVs' batteries at nighttime. Thus, excessive voltage drops due to the nighttime simultaneous charging are supposed to be a possible future problem. This paper proposes a method for compensating the voltage drops by injecting reactive power from EV battery chargers.

  15. Hysteresis effects in instantaneous frequency scaling of attenuation on 20 and 30 GHz satellite links

    NASA Technical Reports Server (NTRS)

    Sweeney, D. G.; Pratt, T.; Bostian, C. W.

    1992-01-01

    It has been observed with 20/30 GHz satellite beacon measurements that the ratio of 30 GHz to 20 GHz attenuation changes during some fade events. This ratio displays a hysteresis effect. This effect can be explained by a change in the drop size distribution (DSD) during the event. However, it appears only above approximately 6-8 dB of attenuation at 20 GHz. Instantaneous frequency scaling of attenuation is being proposed as part of an algorithm for uplink power control (ULPC) and the dynamic range of such an algorithm must be appropriately limited to avoid the hysteresis.

  16. Planar measurements of instantaneous species and temperature distributions in reacting flows - A novel approach to ground testing instrumentation

    NASA Astrophysics Data System (ADS)

    Allen, Mark G.; Davis, Steven J.; Donohue, Karen

    1990-07-01

    This paper describes the technique and instrumentation for the simultaneous acquisition of the instantaneous distribution of temperature and the OH radical in high temperature reacting flowfields. The technique is based on Planar Laser-Induced Fluorescence (PLIF). Tunable, pulsed radiation derived from two Nd:YAG-pumped dye laser systems is focused by a common cylindrical telescope across a plane in the flow. The cylindrical telescope transforms the beams into twin sheets which are adjusted to overlap in space but are separated in time by approximately 1 microsecond. The laser wavelengths are tuned to two isolated absorption lines of OH and the resulting fluorescence is imaged onto two intensified CCD-array camera systems. The ratio of the two images is used to infer gas-phase temperature while one of the images is used for OH number density. The resulting images constitute instantaneous, two-dimensional measurements of the distribution of temperature and an important reactive intermediate in the flowfield plane.

  17. Sampling strategies and materials for investigating large reactive particle complaints from Valley Village homeowners near a coal-fired power plant

    SciTech Connect

    Chang, A.; Davis, H.; Frazar, B.; Haines, B.

    1997-12-31

    This paper will present Phase 3`s sampling strategies, techniques, methods and substrates for assisting the District to resolve the complaints involving yellowish-brown staining and spotting of homes, cars, etc. These spots could not be easily washed off and some were permanent. The sampling strategies for the three phases were based on Phase 1 -- the identification of the reactive particles conducted in October, 1989 by APCD and IITRI, Phase 2 -- a study of the size distribution and concentration as a function of distance and direction of reactive particle deposition conducted by Radian and LG and E, and Phase 3 -- the determination of the frequency of soiling events over a full year`s duration conducted in 1995 by APCD and IITRI. The sampling methods included two primary substrates -- ACE sheets and painted steel, and four secondary substrates -- mailbox, aluminum siding, painted wood panels and roof tiles. The secondary substrates were the main objects from the Valley Village complaints. The sampling technique included five Valley Village (VV) soiling/staining assessment sites and one southwest of the power plant as background/upwind site. The five VV sites northeast of the power plant covered 50 degrees span sector and 3/4 miles distance from the stacks. Hourly meteorological data for wind speeds and wind directions were collected. Based on this sampling technique, there were fifteen staining episodes detected. Nine of them were in summer, 1995.

  18. A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes.

    PubMed

    Nino-Vasquez, J Javier; Allicotti, Gina; Borras, Eva; Wilson, Darcy B; Valmori, Danila; Simon, Richard; Martin, Roland; Pinilla, Clemencia

    2004-02-01

    Studies on the elucidation of the specificity of the T cell receptor (TCR) at the antigen and peptide level have contributed to the current understanding of T cell cross-reactivity. Historically, most studies of T cell specificity and degeneracy have relied on the determination of the effects on T cell recognition of amino acid changes at individual positions or MHC binding residues, and thus they have been limited to a small set of possible ligands. Synthetic combinatorial libraries (SCLs), and in particular positional scanning synthetic combinatorial libraries (PS-SCLs) represent collections of millions to trillions of peptides which allow the unbiased elucidation of T cell ligands that stimulate clones of both known and unknown specificity. PS-SCLs have been used successfully to study T cell recognition and to identify and optimize T cell clone (TCC) epitopes in infectious diseases, autoimmune disorders and tumor antigens. PS-SCL-based biometrical analysis represents a further refinement in the analysis of the data derived from the screening of a library with a TCC. It combines this data with information derived from protein sequence databases to identify natural peptide ligands. PS-SCL-based biometrical analysis provides a method for the determination of new microbial antigen and autoantigen sequences based solely on functional data rather than sequence homology or motifs, making the method ideally suited for the prediction and identification of both native and cross-reactive epitopes by virtue of its ability to integrate the examination of trillions of peptides in a systematic manner with all of the protein sequences in a given database. We review here the application of PS-SCLs and biometrical analysis to identify cross-reactive T cell epitopes, as well as the current efforts to refine this strategy.

  19. An analysis of thermionic space nuclear reactor power system: I. Effect of disassembling radial reflector, following a reactivity initiated accident

    SciTech Connect

    El-Genk, M.S.; Paramonov, D. )

    1993-01-10

    An analysis is performed to determine the effect of disassembling the radial reflector of the TOPAZ-II reactor, following a hypothetical severe Reactivity Initiated Accident (RIA). Such an RIA is assumed to occur during the system start-up in orbit due to a malfunction of the drive mechanism of the control drums, causing the drums to rotate the full 180[degree] outward at their maximum speed of 1.4[degree]/s. Results indicate that disassembling only three of twelve radial reflector panels would successfully shutdown the reactor, with little overheating of the fuel and the moderator.

  20. The dynamic response of instruments measuring instantaneous solar radiation

    SciTech Connect

    Suehrcke, H.; Ling, C.P.; McCormick, P.G. )

    1990-01-01

    Conventional thermal pyranometers and pyheliometers used to measure solar radiation are unable to follow rapid changes of radiation associated with clear/cloudy transitions during partly cloudy conditions. As a consequence, significant errors can occur in the measurement of individual instantaneous radiation values. A simple model for the dynamic response of thermal radiation instruments is developed. The model suggests that the readings of a thermal radiometer can be corrected using the rate of change of the indicated reading and the instrument time constant. It is shown experimentally that the error correction applied to the signal of a thermal pyranometer yields almost identical results as a photovoltaic pyranometer. The error correction allows conventional thermal radiation instruments to be used for instantaneous radiation measurements.

  1. Instantaneous Wavelet Energetic Transfers between Atmospheric Blocking and Local Eddies.

    NASA Astrophysics Data System (ADS)

    Fournier, Aimé

    2005-07-01

    A new wavelet energetics technique, based on best-shift orthonormal wavelet analysis (OWA) of an instantaneous synoptic map, is constructed for diagnosing nonlinear kinetic energy (KE) transfers in five observed blocking cases. At least 90% of the longitudinal variance of time and latitude band mean 50-kPa geopotential is reconstructed by only two wavelets using best shift. This superior efficiency to the standard OWAs persists for time-evolving structures. The cases comprise two categories, respectively dominated by zonal-wavenumber sets {1} and {1, 2}. Further OWA of instantaneous residual nonblocking structures, combined with new “nearness” criteria, yields three more orthogonal components, representing smaller-scale eddies near the block (upstream and downstream) and distant structures. This decomposition fulfills a vision expressed to the author by Saltzman. Such a decomposition is not obtainable by simple Fourier analysis.Eddy patterns apparent in the components' contours suggest inferring geostrophic energetic interactions, but the component Rossby numbers may be too large to support the inference. However, a new result enabled by this method is the instantaneous attribution of blocking strain-field effects to particular energetically interactive eddies, consistent with Shutts' hypothesis. Such attribution was only possible before in simplified models or in a time-average sense. In four of five blocks, the upstream eddies feed KE to the block, which in turn, in three of four cases, transmits KE to the downstream eddies. The small case size precludes statistically significant conclusions. The appendixes link low-order blocking structure and dynamics to some wavelet design principles and propose a new interaction diagnosis, similar to E-vector analysis, but instantaneous.

  2. Smooth and fast versus instantaneous quenches in quantum field theory

    NASA Astrophysics Data System (ADS)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-08-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δ t, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies [1, 2] highlighted that the two protocols remain distinct in the limit δ t → 0 because of the relation of the quench rate to the UV cut-off, i.e., 1 /δ t ≪ Λ always holds in the fast smooth quenches while 1 /δ t ˜ Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δ t, the correlator scales universally with δ t, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δ t drops out. The excess energy density is finite (for finite mδ t) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδ t → 0 for d ≥ 4, just as in an instantaneous quench, where it is UV divergent for d ≥ 4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ > d/2.

  3. Probability density functions of instantaneous Stokes parameters on weak scattering

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Korotkova, Olga

    2017-10-01

    The single-point probability density functions (PDF) of the instantaneous Stokes parameters of a polarized plane-wave light field scattered from a three-dimensional, statistically stationary, weak medium with Gaussian statistics and Gaussian correlation function have been studied for the first time. Apart from the scattering geometry the PDF distributions of the scattered light have been related to the illumination's polarization state and the correlation properties of the medium.

  4. An "instantaneous" display linear accelerator field flatness monitor.

    PubMed

    Haskard, D L

    1975-01-01

    A beam flatness monitor is described which consists of 16 iron chambers and amplifiers, the outputs of which are sequentially sampled and displayed as a series of dots or lines on a conventional CRO, giving an instantaneous display of beam flatness variations. The device is used routinely for checking the beam flatness of our Linacs. The device involves no new principles, but represents a radical change in approach to the checking of Linac beam uniformity.

  5. Instantaneous GNSS attitude determination: A Monte Carlo sampling approach

    NASA Astrophysics Data System (ADS)

    Sun, Xiucong; Han, Chao; Chen, Pei

    2017-04-01

    A novel instantaneous GNSS ambiguity resolution approach which makes use of only single-frequency carrier phase measurements for ultra-short baseline attitude determination is proposed. The Monte Carlo sampling method is employed to obtain the probability density function of ambiguities from a quaternion-based GNSS-attitude model and the LAMBDA method strengthened with a screening mechanism is then utilized to fix the integer values. Experimental results show that 100% success rate could be achieved for ultra-short baselines.

  6. Importance of instantaneous radiative forcing for rapid tropospheric adjustment

    NASA Astrophysics Data System (ADS)

    Ogura, Tomoo; Webb, Mark J.; Watanabe, Masahiro; Lambert, F. Hugo; Tsushima, Yoko; Sekiguchi, Miho

    2014-09-01

    To better understand CFMIP/CMIP inter-model differences in rapid low cloud responses to CO2 increases and their associated effective radiative forcings, we examined the tropospheric adjustment of the lower tropospheric stability (LTS) in three general circulation models (GCMs): HadGEM2-A, MIROC3.2 medres, and MIROC5. MIROC3.2 medres showed a reduction in LTS over the sub-tropical ocean, in contrast to the other two models. This reduction was consistent with a temperature decrease in the mid-troposphere. The temperature decrease was mainly driven by instantaneous radiative forcing (RF) caused by an increase in CO2. Reductions in radiative and latent heating, due to clouds, and in adiabatic and advective heating, also contribute to the temperature decrease. The instantaneous RF in the mid-troposphere in MIROC3.2 medres is inconsistent with the results of line-by-line (LBL) calculations, and thus it is considered questionable. These results illustrate the importance of evaluating the vertical profile of instantaneous RF with LBL calculations; improved future model performance in this regard should help to increase our confidence in the tropospheric adjustment in GCMs.

  7. Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone.

    PubMed

    Nagatani, Yoshiki; Tachibana, Ryosuke O

    2014-03-01

    An ultrasonic pulse propagating in cancellous bone can be separated into two waves depending on the condition of the specimen. These two waves, which are called the fast wave and the slow wave, provide important information for the diagnosis of osteoporosis. The present study proposes to utilize a signal processing method that extracts the instantaneous frequency (IF) of waveforms from multiple spectral channels. The instantaneous frequency was expected to be able to show detailed time-frequency properties of ultrasonic waves being transmitted through cancellous bone. The employed method, termed the multichannel instantaneous frequency (MCIF) method, showed robustness against background noise as compared to the IF that was directly derived from the original waveform. The extracted IF revealed that the frequency of the fast wave was affected by both the propagation distance within the specimen and the bone density, independently. On the other hand, the alternation of the center frequency of the originally transmitted wave did not produce proportional changes in the extracted IF values of the fast waves, suggesting that the fast wave IF mainly reflected the thickness of the specimens. These findings may provide the possibility of obtaining a more precise diagnosis of osteoporosis.

  8. Clock-distribution with instantaneous synchronization for 160 Gbit/s optical time-domain multiplexed systems packet transmission.

    PubMed

    Gomez-Agis, Fausto; Calabretta, Nicola; Albores-Mejia, Aaron; Dorren, Harm J S

    2010-10-01

    We demonstrate for the first time, to our knowledge, a clock-distribution method for ultra-high-speed optical time-domain multiplexed systems data packets that provides instantaneous synchronization, fast locking/unlocking times, and a highly stable bursty clock, enabling error-free operation of 160 to 10 Gbit/s time demultiplexing with a power penalty of 1.5 dB after 51 km transmission in standard single-mode fiber (ITU G.652).

  9. How representative are instantaneous evaporative fraction measurements for daytime fluxes?

    NASA Astrophysics Data System (ADS)

    peng, jian; borsche, michael; loew, alexander

    2013-04-01

    Sun synchronous optical remote sensing is a promising technique to provide instantaneous ET (Evapotranspiration) estimates during satellite overpass. The common approach to extrapolate the instantaneous estimates to values for daily or longer periods relies on the assumption that the EF (Evaporative Fraction, defined as the ratio of latent heat flux to surface available energy) remains nearly constant during daytime. However, there is still no consensus on the validity of the self preservation of EF. To address this question, long term time series of data from a global network of EC (Eddy Covariance) stations (FLUXNET) were analyzed across a wide range of ecosystems and climates. It is found that the EF in different time periods of daytime under clear skies are in good agreement with daytime EF except the period of 8:00-9:00h and 16:00-17:00h. In 11:00-14:00h, the minimum R2 value is higher than 0.75, and the maximum RMSD is less than 0.087. These statistics indicate that EF during these time periods is closer to daytime EF. The best correlation between instantaneous EF and daytime EF appears at midday (12:00-13:00h). The possible reason for such result is that energy fluxes change at a slower rate compared to early morning and late afternoon. However, the EF exhibited more unstable under partly cloudy situations compared with clear skies. The variability of EF increased with the increase in cloudiness. For total cloud cover the R2 values between instantaneous EF in different time periods and daytime EF obviously went down as compared to clear skies. Poorer RMSD were also obtained at the same time. This is because cloudiness could induce a decrease in the available energy and the latent heat flux, which further causes the increase in both instantaneous EF and daytime EF. But these increases are probably in different degrees. Thus the EF constant hypothesis might only be true for clear skies. Nonetheless, the above results provide a basis for remote sensing

  10. A New Instantaneous Frequency Measure Based on The Stockwell Transform

    NASA Astrophysics Data System (ADS)

    yedlin, M. J.; Ben-Horrin, Y.; Fraser, J. D.

    2011-12-01

    We propose the use of a new transform, the Stockwell transform[1], as a means of creating time-frequency maps and applying them to distinguish blasts from earthquakes. This new transform, the Stockwell transform can be considered as a variant of the continuous wavelet transform, that preserves the absolute phase.The Stockwell transform employs a complex Morlet mother wavelet. The novelty of this transform lies in its resolution properties. High frequencies in the candidate signal are well-resolved in time but poorly resolved in frequency, while the converse is true for low frequency signal components. The goal of this research is to obtain the instantaneous frequency as a function of time for both the earthquakes and the blasts. Two methods will be compared. In the first method, we will compute the analytic signal, the envelope and the instantaneous phase as a function of time[2]. The instantaneous phase derivative will yield the instantaneous angular frequency. The second method will be based on time-frequency analysis using the Stockwell transform. The Stockwell transform will be computed in non-redundant fashion using a dyadic representation[3]. For each time-point, the frequency centroid will be computed -- a representation for the most likely frequency at that time. A detailed comparison will be presented for both approaches to the computation of the instantaneous frequency. An advantage of the Stockwell approach is that no differentiation is applied. The Hilbert transform method can be less sensitive to edge effects. The goal of this research is to see if the new Stockwell-based method could be used as a discriminant between earthquakes and blasts. References [1] Stockwell, R.G., Mansinha, L. and Lowe, R.P. "Localization of the complex spectrum: the S transform", IEEE Trans. Signal Processing, vol.44, no.4, pp.998-1001, (1996). [2]Taner, M.T., Koehler, F. "Complex seismic trace analysis", Geophysics, vol. 44, Issue 6, pp. 1041-1063 (1979). [3] Brown, R

  11. Dynamics of processes during the deposition of ZrO2 films by controlled reactive high-power impulse magnetron sputtering: A modelling study

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš; Vlček, Jaroslav

    2017-07-01

    A time-dependent parametric model was applied to controlled reactive high-power impulse magnetron sputtering (HiPIMS) depositions of stoichiometric ZrO2 films, carried out in our laboratories, (i) to clarify the complicated dynamics of the processes on the target and substrate surfaces during voltage pulses, and (ii) to corroborate the importance of the O2 inlet configuration (position and direction) which strongly affects the O2 dissociation in the discharge and the chemisorption flux of oxygen atoms and molecules onto the substrate. The repetition frequency was 500 Hz at the deposition-averaged target power densities of 25 Wcm-2, being close to a target power density applicable in industrial HiPIMS systems, and 50 Wcm-2 with a pulse-averaged target power density up to 2 kWcm-2. The pulse duration was 50 μs. For the experimental conditions with the to-substrate O2 inlets, the deposition-averaged target power density of 50 Wcm-2, and the oxygen partial pressure of 0.05 Pa (being close to the mean value during controlled depositions), our model predicts a low compound fraction, changing between 8% and 12%, in the target surface layer at an almost constant high compound fraction, changing between 92% and 93%, in the substrate surface layer during the pulse period (2000 μs). The calculated deposition rate of 89 nm/min for these films is in good agreement with the measured value of 80 nm/min achieved for optically transparent stoichiometric ZrO2 films prepared under these conditions.

  12. Model for the determination of instantaneous values of the velocity, instantaneous, and average acceleration for 100-m sprinters.

    PubMed

    JanjiĆ, NataŠa J; Kapor, Darko V; Doder, Dragan V; Doder, Radoslava Z; SaviĆ, Biljana V

    2014-12-01

    Temporal patterns of running velocity is of profound interest for coaches and researchers involved in sprint racing. In this study, we applied a nonhomogeneous differential equation for the motion with resistance force proportional to the velocity for the determination of the instantaneous velocity and instantaneous and average acceleration in the sprinter discipline at 100 m. Results obtained for the instantaneous velocity in this study using the presented model indicate good agreement with values measured directly, which is a good verification of the proposed procedure. To perform a comprehensive analysis of the applicability of the results obtained, the harmonic canon of running for the 100-m sprint discipline was formed. Using the data obtained by the measurement of split times for segments of 100-m run of the sprinters K. Lewis (1988), M. Green (2001), and U. Bolt (2009), the method described yielded results that enable comparative analysis of the kinematical parameters for each sprinter. Further treatment allowed the derivation of the ideal harmonic velocity canon of running, which can be helpful to any coach in evaluating the results achieved at particular distances in this and other disciplines. The method described can be applied for the analysis of any race.

  13. A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model

    NASA Astrophysics Data System (ADS)

    Lundin, D.; Gudmundsson, J. T.; Brenning, N.; Raadu, M. A.; Minea, T. M.

    2017-05-01

    The oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge has been studied using a new reactive ionization region model. The aim has been to identify the dominating physical and chemical reactions in the plasma and on the surfaces of the reactor affecting the oxygen plasma chemistry. We explore the temporal evolution of the density of the ground state oxygen molecule O 2 ( X 1 Σg - ) , the singlet metastable oxygen molecules O 2 ( a 1 Δ g ) and O 2 ( b 1 Σ g ) , the oxygen atom in the ground state O(3P), the metastable oxygen atom O(1D), the positive ions O2 + and O+, and the negative ion O-. We furthermore investigate the reaction rates for the gain and loss of these species. The density of atomic oxygen increases significantly as we move from the metal mode to the transition mode, and finally into the compound (poisoned) mode. The main gain rate responsible for the increase is sputtering of atomic oxygen from the oxidized target. Both in the poisoned mode and in the transition mode, sputtering makes up more than 80% of the total gain rate for atomic oxygen. We also investigate the possibility of depositing stoichiometric TiO2 in the transition mode.

  14. NDE evaluation of the intergranular corrosion susceptibility of a 2205 duplex stainless steel using thermoelectric power and double loop electrochemical potentiokinetic reactivation methods

    NASA Astrophysics Data System (ADS)

    Ortiz, N.; Carreón, H.; Ruiz, A.

    2013-01-01

    There is a need for a nondestructive technique to assess rapidly and with confidence the degree of sensitization (DOS) in duplex stainless steel (DSS). In this investigation, we present the use of thermoelectric power (TEP) measurements as nondestructive method for the determination of DOS in isothermally aged 2205 DSS at 700°C for different aging times. The DOS of the aged samples was first established by performing the double loop electrochemical potentiokinetic reactivation (DL-EPR) test. The microstructural evolution was evaluated by scanning electron microscopy (SEM). Experimental results indicate that TEP coefficient is sensitive to gradual microstructural changes produced by thermal aging and can be used to monitor IGC sensitization of 2205 duplex stainless steel.

  15. Analysis of the nonlinear optical switching in a Sagnac interferometer with non-instantaneous Kerr effect

    NASA Astrophysics Data System (ADS)

    Ferreira, A. C.; Costa, M. B. C.; Coêlho, A. G.; Sobrinho, C. S.; Lima, J. L. S.; Menezes, J. W. M.; Lyra, M. L.; Sombra, A. S. B.

    2012-03-01

    In this work we present a study of the performance of nonlinear switching in a Sagnac interferometer under the action of a relaxed Kerr nonlinearity, using ultrashort optical pulses. Soliton and quasi-soliton pulses have been used as initial conditions. We include the effect of GVD (Group Velocity Dispersion) and consider that losses are negligible. The transmission, compression factor (C) and extinction ratio [XRatio (tr)] curves versus input energy were analyzed for two lengths of the loop (1Z 0 and 2Z 0) of the Sagnac interferometer, where Z 0 is one soliton period. It was verified that an increase of the response time (τ) of the relaxed Kerr nonlinearity leads to a degradation of the nonlinear switching, transmission, compression factor and extinction ratio curves. For instance, in the quasi-soliton propagation regime with loop of length 1Z 0 and input energy 1.83 pJ, the extinction ratio (XRatio (tr)) decreases from + 8.13 dB, at the instantaneous nonlinear medium, to - 0.83 dB, - 2.50 dB, - 5.95 dB, - 8.63 dB, - 10.11 dB and - 12.10 dB, at the relaxed medium with τ = 1 ps, τ = 2 ps, τ = 5 ps, for τ = 10 ps, τ = 15 ps and τ = 30 ps, respectively. In the soliton propagation regime with loop of length 2Z 0 and time duration of 10 ps, for the input pulse (pump power of 0.34 W), one can observe that for the non-instantaneous nonlinear medium, as τ increases, the transmitted output pulses are delayed to longer times (21.49 ps, 23.9 ps and 25 ps) and the pulse envelope starts presenting broadening effects (14.7 ps and 29 ps) for τ = 2 ps and 5 ps, respectively. In our analysis, for the Sagnac interferometer with ring of length 2 Zo = 5.06 km, the chirp distribution has revealed that the spectral profile of the output pulses are smoother for the non-instantaneous medium with τ = 2 ps and 5 ps. In this sense, these two last situations are more suitable for switching applications in WDM systems. These studies are crucial for the analysis of the behavior of

  16. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  17. Pre-shot EEG alpha-power reactivity during expert air-pistol shooting: a comparison of best and worst shots.

    PubMed

    Loze, G M; Collins, D; Holmes, P S

    2001-09-01

    The aim of this study was to examine the proposal that pre-shot occipital electroencephalogram (EEG) alpha-power reactivity would not only associate with, but also have a causal role in, the relative success of performance outcome in expert air-pistol shooting. Six expert air-pistol shooters performed a sixty-shot match, individually, while electroencephalograms were captured from occipital and anterior-temporal electrode sites during the aiming period (3 x 2 s epochs) before shot release. The five best shots and five worst shots were selected for each shooter on the basis of four shot quality indicators, and pre-shot EEG alpha power for best shots was compared with that of worst shots. Occipital EEG alpha power was found to increase during epochs 1-3 before best shots, but to decrease before worst shots; it was significantly greater during the final pre-shot epoch of best shots. This finding suggests that visual attention to the pistol and target was gradually suppressed during the pre-shot period of best shots, whereas it gradually increased before worst shots. In addition, significantly greater EEG alpha power was found at the left than at the right anterior-temporal site, lending support to the robust findings of previous target-sport studies. We conclude that the participants were able to shoot at the target with greatest success when not having maximal visual attention on where the pistol was aimed and that suppression of visual attention during the final seconds of the pre-shot period is a necessary prerequisite for automatic shot execution, as controlled by mechanisms of intention.

  18. Differential Entropy and the Statistics of Instantaneous Failure.

    DTIC Science & Technology

    2014-09-26

    1 A)AISB 047 DIFFERENIIAL ENTROPY AND THE STATISTICS OF i/IA E INSIANTANEOUS FAILURE(UI NAVAL RESEARCH LAB WASHINGTON N F D C A K RAJAOOPAL ET AL. 23...AUG 85 NRL -5627 FNCLASSIFIED /O 12/ NL""lIll"""l 1 0_ 12- 25 1111MI1I" 1111I NRL Memorandum Report 5627 Differential Entropy and the Statistics of...ACCESSiON NO 61153N 02-42 DN180-023 11 TITLE (Include Security Classification) Differential Entropy and the Statistics of Instantaneous Failure Ŗ PERSONAL

  19. Instantaneous planar visualization of reacting supersonic flows using silane seeding

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Northam, G. B.

    1991-01-01

    A new visualization technique for reacting flows has been developed. This technique, which is suitable for supersonic combustion flows, has been demonstrated on a scramjet combustor model. In this application, gaseous silane (SiH4) was added to the primary hydrogen fuel. When the fuel reacted, so did the (SiH4), producing silica (SiO2) particles in situ. The particles were illuminated with a laser sheet formed from a frequency-doubled Nd:YAG laser (532 nm) beam and the Mie scattering signal was imaged. These planar images of the silica Mie scattering provided instantaneous 'maps' of combustion progress within the turbulent reacting flowfield.

  20. Evanescent Modes and Tunnelling Instantaneously Act at a Distance

    SciTech Connect

    Nimtz, Guenter; Stahlhofen, Alfons A.

    2008-03-06

    Photonic tunnelling experiments have shown that i) the Einstein energy relation is violated, ii) the tunnelling process is non-local, iii) the signal velocity is faster than light, i.e. superluminal, iv) the tunnelling signal is not observable, since photonic tunnelling is described by virtual photons, and v) according to the experimental results the signal velocity is infinite inside the barriers, implying that tunnelling instantaneously acts at a distance. We think these properties are not compatible with the claims of many text books on Special Relativity.

  1. Small-Scale Hydroelectric Power Demonstration Project: reactivation of the Elk Rapids Hydroelectric Facility. Final technical and construction cost report

    SciTech Connect

    Not Available

    1985-05-01

    The Elk Rapids powerhouse dam is located on the Elk River channel in the Village of Elk Rapids, Michigan. Together with a small spillway structure located approximately 500 ft south of the dam, it constitutes the outlet to Lake Michigan for Elk Lake, Skegemog Lake, Torch Lake, Lake Bellaire, Clam Lake, and several smaller lakes. Power has been generated at the Elk Rapids site since the late nineteenth century, but the history of the present facility goes back to 1916 with the construction of the existing powerhouse dam by the Elk Rapids Iron Works Company. The facility was designed to contain four vertical-shaft generating units; however, only a single 270 hp Leffel type K unit was installed in 1916. In 1929, two additional Leffel units, rated 525 hp, were installed, and in 1930 a third 525 hp Leffel unit was added completely utilizing the capacity of the powerhouse and bringing the combined turbine capacity to 1845 hp.

  2. Instantaneous Wavenumber Estimation for Damage Quantification in Layered Plate Structures

    NASA Technical Reports Server (NTRS)

    Mesnil, Olivier; Leckey, Cara A. C.; Ruzzene, Massimo

    2014-01-01

    This paper illustrates the application of instantaneous and local wavenumber damage quantification techniques for high frequency guided wave interrogation. The proposed methodologies can be considered as first steps towards a hybrid structural health monitoring/ nondestructive evaluation (SHM/NDE) approach for damage assessment in composites. The challenges and opportunities related to the considered type of interrogation and signal processing are explored through the analysis of numerical data obtained via EFIT simulations of damage in CRFP plates. Realistic damage configurations are modeled from x-ray CT scan data of plates subjected to actual impacts, in order to accurately predict wave-damage interactions in terms of scattering and mode conversions. Simulation data is utilized to enhance the information provided by instantaneous and local wavenumbers and mitigate the complexity related to the multi-modal content of the plate response. Signal processing strategies considered for this purpose include modal decoupling through filtering in the frequency/wavenumber domain, the combination of displacement components, and the exploitation of polarization information for the various modes as evaluated through the dispersion analysis of the considered laminate lay-up sequence. The results presented assess the effectiveness of the proposed wavefield processing techniques as a hybrid SHM/NDE technique for damage detection and quantification in composite, plate-like structures.

  3. Instantaneous brain dynamics mapped to a continuous state space.

    PubMed

    Billings, Jacob; Medda, Alessio; Shakil, Sadia; Shen, Xiaohong; Kashyap, Amrit; Chen, Shiyang; Abbas, Anzar; Zhang, Xiaodi; Nezafati, Maysam; Pan, Wen-Ju; Berman, Gordon; Keilholz, Shella

    2017-08-17

    Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a representative set of spatially independent components. The correlation distance over the instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to a large sample of resting and task data (acquired through the Human Connectome Project), we segment the empirical state space into a continuum of stimulus-dependent brain states. We also demonstrate that resting brain activity includes brain states that are very similar to those adopted during some tasks, as well as brain states that are distinct from experimentally-defined tasks. Back-projection of segmented brain states onto the brain's surface reveals the patterns of brain activity that support each experimental state. Copyright © 2017. Published by Elsevier Inc.

  4. Instantaneous Frequency and Damping from Transient Ring-Down Data

    SciTech Connect

    Kuether, Robert J.; Brake, Matthew Robert

    2015-10-01

    Broadband impact excitation in structural dynamics is a common technique used to detect and characterize nonlinearities in mechanical systems since it excites many frequencies of a structure at once and can be applied with a variety of boundary conditions. Non-stationary time signals from transient ring-down measurements require time-frequency analysis tools to observe variations in frequency and energy dissipation as the response evolves. This work uses the short-time Fourier transform to estimate the instantaneous frequency and damping ratio from either measured or simulated transient ring-down data. By combining the discrete Fourier transform with an expanding or contracting window function that moves along the time axis, the resulting spectrum is used to estimate the instantaneous frequencies, damping and complex Fourier coefficients. This method is demonstrated on a multi-degree-of-freedom beam with a cubic spring attachment, and investigates the amplitudefrequency dependence in connection to the undamped nonlinear normal modes. A second example shows the results from experiment ring-down response on a beam with a lap joint, and reveals how the system behaves as energy dissipates.

  5. Estimating instantaneous peak flow from mean daily flow

    NASA Astrophysics Data System (ADS)

    Chen, B.; Krajewski, W. F.

    2015-12-01

    While instantaneous peak flow (IPF) records have historically been necessary for practical applications in flood risk management and hydraulic structure design, mean daily flow (MDF) values are often all that are available. To address this problem, we propose a simple method, which requires only MDF records as its input and uses the rising and falling slopes of daily hydrographs, to estimate IPFs. We applied this method to 144 catchments in Iowa, USA, with drainage areas ranging from about 7 to 220,000 km2. This application involves about 3800 peak flow events originating from different flood generation mechanisms over the period from 1997 to 2014. About 55% of the catchments have prediction errors within ±10%, and 85% of the catchments have predictions errors within ±20%. The method works well for catchments larger than 500 km2, poorly for catchments smaller than 100 km2, and fairly well for catchments in between these sizes. The reduction in the method's effectiveness with decreasing catchment size is due to the fact that the smaller the catchment, the more information is lost when using MDF to characterize the instantaneous flow processes. Our proposed method is simple and promising in terms of estimating IPFs from MDFs for areas where IPF records are unavailable or are insufficient.

  6. Instantaneous velocity profile measurements in a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, S. K.

    1986-01-01

    Instantaneous wall shear stress and streamwise velocities have been measured simultaneously in a flat-plate, turbulent boundary layer at moderate Reynolds number in an effort to provide experimental support for large eddy simulations. Data were obtained using a buried-wire, wall shear gage and a hot-wire rake positioned in the log region of the flow. Fluctuations of the instantaneous U(+) versus Y(+) profiles about a mean law of the wall are shown to be significant and complex. Peak cross-correlation values between wall shear stress and the velocities are high, and reflect the passage of a large structure inclined at a small angle to the wall. Estimates of this angle are consistent with those made by other investigators. Conditional sampling techniques were used to detect the passage of various sizes and types of flow disturbances (events), and to estimate their mean frequency of occurrence. Events characterized by large aand sudden streamwise accelerations were found to be highly coherent throughout the log region and were strongly correlated with large fluctuations in wall shear stress. Phase randomness between the near-wall quantities and the outer velocities was small. The results suggest that the flow events detected by conditional sampling applied to velocities in the log region may be related to the bursting process.

  7. A parametric estimation approach to instantaneous spectral imaging.

    PubMed

    Oktem, Figen S; Kamalabadi, Farzad; Davila, Joseph M

    2014-12-01

    Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is a fundamental diagnostic technique in the physical sciences with widespread application. Due to the intrinsic limitation of two-dimensional (2D) detectors in capturing inherently three-dimensional (3D) data, spectral imaging techniques conventionally rely on a spatial or spectral scanning process, which renders them unsuitable for dynamic scenes. In this paper, we present a nonscanning (instantaneous) spectral imaging technique that estimates the physical parameters of interest by combining measurements with a parametric model and solving the resultant inverse problem computationally. The associated inverse problem, which can be viewed as a multiframe semiblind deblurring problem (with shift-variant blur), is formulated as a maximum a posteriori (MAP) estimation problem since in many such experiments prior statistical knowledge of the physical parameters can be well estimated. Subsequently, an efficient dynamic programming algorithm is developed to find the global optimum of the nonconvex MAP problem. Finally, the algorithm and the effectiveness of the spectral imaging technique are illustrated for an application in solar spectral imaging. Numerical simulation results indicate that the physical parameters can be estimated with the same order of accuracy as state-of-the-art slit spectroscopy but with the added benefit of an instantaneous, 2D field-of-view. This technique will be particularly useful for studying the spectra of dynamic scenes encountered in space remote sensing.

  8. Measurement and modeling of plasma parameters in reactive high-power impulse magnetron sputtering of Ti in Ar/O2 mixtures

    NASA Astrophysics Data System (ADS)

    Čada, M.; Lundin, D.; Hubička, Z.

    2017-05-01

    A reactive high-power impulse magnetron sputtering (HiPIMS) process using a titanium target in a mixture of Ar/O2 has been investigated for different modes of operation including pure argon, metallic, transition, and compound mode. The trends and changes in the plasma density ne and the effective electron temperature Teff, have been measured by the time-resolved Langmuir probe technique. The same experimental process conditions have also been studied using a recently developed reactive ionization region model (R-IRM), making it possible to compare the acquired experimental results with the model results. It was found that trends in the plasma density and mean electron energy as measured by the Langmuir probe are in good agreement with the results obtained from the R-IRM model for different pulse discharge current densities. The effective electron temperature generally increases with an increasing oxygen flow rate. It is likely due to a reduction of sputtered Ti, due to compound formation on the target, which forces the discharge to increase the electron energy to increase the ionization rate of the process gas (Ar/O2) to maintain a high HiPIMS discharge current. Small variations in the plasma density were detected between the middle part of the plasma pulse as compared to the end of the plasma pulse, when transitioning from the metal mode to the poisoned mode. It is found that the time-evolution of the electron density is rather well correlated with the discharge current waveform. On the other hand, the mean electron energy did not change significantly between the middle and the end of the plasma pulse. For the lower pulse discharge current, both the model and experimental data have shown a slight increase in the plasma density with increasing O2 mass flow rate.

  9. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOEpatents

    Levy, Donald J.; Berman, Samuel M.

    1988-01-01

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  10. Mammalian energetics. Instantaneous energetics of puma kills reveal advantage of felid sneak attacks.

    PubMed

    Williams, Terrie M; Wolfe, Lisa; Davis, Tracy; Kendall, Traci; Richter, Beau; Wang, Yiwei; Bryce, Caleb; Elkaim, Gabriel Hugh; Wilmers, Christopher C

    2014-10-03

    Pumas (Puma concolor) live in diverse, often rugged, complex habitats. The energy they expend for hunting must account for this complexity but is difficult to measure for this and other large, cryptic carnivores. We developed and deployed a physiological SMART (species movement, acceleration, and radio tracking) collar that used accelerometry to continuously monitor energetics, movements, and behavior of free-ranging pumas. This felid species displayed marked individuality in predatory activities, ranging from low-cost sit-and-wait behaviors to constant movements with energetic costs averaging 2.3 times those predicted for running mammals. Pumas reduce these costs by remaining cryptic and precisely matching maximum pouncing force (overall dynamic body acceleration = 5.3 to 16.1g) to prey size. Such instantaneous energetics help to explain why most felids stalk and pounce, and their analysis represents a powerful approach for accurately forecasting resource demands required for survival by large, mobile predators.

  11. Instantaneous Heart Rate detection using short-time autocorrelation for wearable healthcare systems.

    PubMed

    Nakano, Masanao; Konishi, Toshihiro; Izumi, Shintaro; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2012-01-01

    This report describes a robust method of Instantaneous Heart Rate (IHR) detection from noisy electrocardiogram (ECG) signals. Generally, the IHR is calculated from the interval of R-waves. Then, the R-waves are extracted from the ECG using a threshold. However, in wearable biosignal monitoring systems, various noises (e.g. muscle artifacts from myoelectric signals, electrode motion artifacts) increase incidences of misdetection and false detection because the power consumption and electrode distance of the wearable sensor are limited to reduce its size and weight. To prevent incorrect detection, we use a short-time autocorrelation technique. The proposed method uses similarity of the waveform of the QRS complex. Therefore, it has no threshold calculation Process and it is robust for noisy environment. Simulation results show that the proposed method improves the success rate of IHR detection by up to 37%.

  12. Analytical Solution for Reactive Solute Transport Considering Incomplete Mixing

    NASA Astrophysics Data System (ADS)

    Bellin, A.; Chiogna, G.

    2013-12-01

    The laboratory experiments of Gramling et al. (2002) showed that incomplete mixing at the pore scale exerts a significant impact on transport of reactive solutes and that assuming complete mixing leads to overestimation of product concentration in bimolecular reactions. We consider here the family of equilibrium reactions for which the concentration of the reactants and the product can be expressed as a function of the mixing ratio, the concentration of a fictitious non reactive solute. For this type of reactions we propose, in agreement with previous studies, to model the effect of incomplete mixing at scales smaller than the Darcy scale assuming that the mixing ratio is distributed within an REV according to a Beta distribution. We compute the parameters of the Beta model by imposing that the mean concentration is equal to the value that the concentration assumes at the continuum Darcy scale, while the variance decays with time as a power law. We show that our model reproduces the concentration profiles of the reaction product measured in the Gramling et al. (2002) experiments using the transport parameters obtained from conservative experiments and an instantaneous reaction kinetic. The results are obtained applying analytical solutions both for conservative and for reactive solute transport, thereby providing a method to handle the effect of incomplete mixing on multispecies reactive solute transport, which is simpler than other previously developed methods. Gramling, C. M., C. F. Harvey, and L. C. Meigs (2002), Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci. Technol., 36(11), 2508-2514.

  13. Instantaneous signal attenuation method for analysis of PFG fractional diffusions

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing

    2016-08-01

    An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t‧), t‧ + dt‧)/A(K(t‧), t‧), where A(K(t‧), t‧ + dt‧) and A(K(t‧), t‧) are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained

  14. Instantaneous signal attenuation method for analysis of PFG fractional diffusions.

    PubMed

    Lin, Guoxing

    2016-08-01

    An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t'),t'+dt')/A(K(t'),t'), where A(K(t'),t'+dt') and A(K(t'),t') are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained here such as [Formula: see

  15. Instantaneous Leakage Evaluation of Metal Cask at Drop Impact

    SciTech Connect

    Hirofumi Takeda; Norihiro Kageyama; Masumi Wataru; Ryoji Sonobe; Koji Shirai; Toshiari Saegusa

    2006-07-01

    There have been a lot of tests and analyses reported for evaluation of drop tests of metal casks. However, no quantitative measurement has ever been made for any instantaneous leakage through metal gaskets during the drop tests due to loosening of the bolts in the containments and lateral sliding of the lids. In order to determine a source term for radiation exposure dose assessment, it is necessary to obtain fundamental data of instantaneous leakage. In this study, leak tests were performed by using scale models of the lid structure and a full scale cask without impact limiters simulating drop accidents in a storage facility, with aim of measuring and evaluating any instantaneous leakage at drop impact. Prior to drop tests of a full scale metal cask, a series of leakage tests using scale models were carried out to establish the measurement method and to examine a relationship between the amount of the lateral sliding of the lid and the leak rate. It was determined that the leak rate did not depend on the lateral sliding speeds. Drop tests of a full scale metal cask without impact limiters were carried out by simulating drop accidents during handling in a storage facility. The target was designed to simulate a reinforced concrete floor in the facility. The first test was a horizontal drop from a height of 1 m. The second test simulated a rotational impact around an axis of a lower trunnion of the cask from the horizontal status at a height of 1 m. In the horizontal drop test, the amount of helium gas leakage was calculated by integrating the leak rate with time. The total amount of helium gas leakage from the primary and secondary lids was 1.99 x 10{sup -6} Pa.m{sup 3}. This value is 9.61 x 10{sup -9}% of the initially installed helium gas. The amount of leakage was insignificant. In the rotational drop test, the total amount of leakage from the primary and secondary lids was 1.74 x 10{sup -5} Pa.m{sup 3}. This value is 8.45 x 10{sup -8}% of the initially installed

  16. Instantaneous physico-chemical analysis of suspension-based nanomaterials

    PubMed Central

    Meng, Fanxu; Ugaz, Victor M.

    2015-01-01

    High-throughput manufacturing of nanomaterial-based products demands robust online characterization and quality control tools capable of continuously probing the in-suspension state. But existing analytical techniques are challenging to deploy in production settings because they are primarily geared toward small-batch ex-situ operation in research laboratory environments. Here we introduce an approach that overcomes these limitations by exploiting surface complexation interactions that emerge when a micron-scale chemical discontinuity is established between suspended nanoparticles and a molecular tracer. The resulting fluorescence signature is easily detectable and embeds surprisingly rich information about composition, quantity, size, and morphology of nanoparticles in suspension independent of their agglomeration state. We show how this method can be straightforwardly applied to enable continuous sizing of commercial ZnO nanoparticles, and to instantaneously quantify the anatase and rutile composition of multicomponent TiO2 nanoparticle mixtures pertinent to photocatalysis and solar energy conversion. PMID:25923196

  17. [Detonation temperature measurement of epoxypropane using instantaneous spectrum method].

    PubMed

    Li, Ying; Li, Ping; Xiao, Hai-Bo; Hu, Dong; Yuan, Chang-Ying

    2008-03-01

    After solving the problems of synchronization of the measuring system and the avoidance of false trigger signal, the instantaneous emission spectrum of epoxypropane with an exposure time of 2 micros and a resolution of 0.2 nm was acquired from a side window of a shock tube at the very moment when the epoxypropane transformed from deflagration to detonation. The measuring system consists of an advanced intensified charge-coupled-device spectroscopic detector, a digital delay generator DG535, an explosion shock tube and optical fibers. The DDT process was monitored by pressure transducers. After correcting the intensity of the spectrum obtained, the background curve of the heat radiation intensity of the detonation was given immediately. The detonation temperature of 2 416 K for epoxypropane was derived from fitting the curve with Planck blackbody formula by least squares principle. The detonation temperature of epoxypropane can provide an experimental datum for analyzing the microscopic mechanism of DDT process.

  18. Video measurements of instantaneous forces of flapping wing vehicles

    NASA Astrophysics Data System (ADS)

    Jennings, Alan; Mayhew, Michael; Black, Jonathan

    2015-12-01

    Flapping wings for small aerial vehicles have revolutionary potential for maneuverability and endurance. Ornithopters fail to achieve the performance of their biological equivalents, despite extensive research on how animals fly. Flapping wings produce peak forces due to the stroke reversal of the wing. This research demonstrates in-flight measurements of an ornithopter through the use of image processing, specifically measuring instantaneous forces. Results show that the oscillation about the flight path is significant, being about 20% of the mean velocity and up to 10 g's. Results match forces with deformations of the wing to contrast the timing and wing shape of the upstroke and the downstroke. Holding the vehicle fixed (e.g. wind tunnel testing or simulations) structural resonance is affected along with peak forces, also affecting lift. Non-contact, in-flight measurements are proposed as the best method for matching the flight conditions of flapping wing vehicles.

  19. Continuous-Variable Instantaneous Quantum Computing is Hard to Sample

    NASA Astrophysics Data System (ADS)

    Douce, T.; Markham, D.; Kashefi, E.; Diamanti, E.; Coudreau, T.; Milman, P.; van Loock, P.; Ferrini, G.

    2017-02-01

    Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.

  20. Shaft instantaneous angular speed for blade vibration in rotating machine

    NASA Astrophysics Data System (ADS)

    Gubran, Ahmed A.; Sinha, Jyoti K.

    2014-02-01

    Reliable blade health monitoring (BHM) in rotating machines like steam turbines and gas turbines, is a topic of research since decades to reduce machine down time, maintenance costs and to maintain the overall safety. Transverse blade vibration is often transmitted to the shaft as torsional vibration. The shaft instantaneous angular speed (IAS) is nothing but the representing the shaft torsional vibration. Hence the shaft IAS has been extracted from the measured encoder data during machine run-up to understand the blade vibration and to explore the possibility of reliable assessment of blade health. A number of experiments on an experimental rig with a bladed disk were conducted with healthy but mistuned blades and with different faults simulation in the blades. The measured shaft torsional vibration shows a distinct difference between the healthy and the faulty blade conditions. Hence, the observations are useful for the BHM in future. The paper presents the experimental setup, simulation of blade faults, experiments conducted, observations and results.

  1. Full field imaging based instantaneous hyperspectral absolute refractive index measurement

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2012-01-01

    Multispectral refractometers typically measure refractive index (RI) at discrete monochromatic wavelengths via a serial process. We report on the demonstration of a white light full field imaging based refractometer capable of instantaneous multispectral measurement of absolute RI of clear liquid/gel samples across the entire visible light spectrum. The broad optical bandwidth refractometer is capable of hyperspectral measurement of RI in the range 1.30 1.70 between 400nm 700nm with a maximum error of 0.0036 units (0.24% of actual) at 414nm for a = 1.50 sample. We present system design and calibration method details as well as results from a system validation sample.

  2. Continuous-Variable Instantaneous Quantum Computing is Hard to Sample.

    PubMed

    Douce, T; Markham, D; Kashefi, E; Diamanti, E; Coudreau, T; Milman, P; van Loock, P; Ferrini, G

    2017-02-17

    Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.

  3. Fractional flow reserve and instantaneous wave free ratio in 2015.

    PubMed

    Kondareddy, S R; Singh, M; Stapleton, D; Rudzinski, W; Kaluski, E

    2015-06-01

    In the recent years it has become apparent that angiography-based assessment of coronary artery stenosis suffers from considerable inaccuracy and pitfalls. Besides interobserver variability in assessing stenosis severity, the correlation between angiographic severity and ischemia is suboptimal. Percutaneous coronary intervention (PCI) guided by the physiologic lesion assessment employing fractional flow reserve (FFR) is rendered superior to angiographic lesion assessment and proven to improve cardiovascular outcomes and reduce cost. In this manuscript we discuss the accepted and emerging clinical indications for FFR use. The correlation between FFR and symptoms, stress imaging and intravascular ultrasound are reviewed along with the inherent limitations and pitfalls of these diagnostic technologies. The data regarding the correlation between Instantaneous (vasodilator free) wave-free ratio (iFR) and conventional FFR is summarized.

  4. Instantaneous engine frictional torque, its components and piston assembly friction

    SciTech Connect

    Nichols, F.A. ); Henein, N.A. . Center for Automotive Research)

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-[omega]) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, [omega], have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-[omega]) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  5. RelA-Mediated BECN1 Expression Is Required for Reactive Oxygen Species-Induced Autophagy in Oral Cancer Cells Exposed to Low-Power Laser Irradiation

    PubMed Central

    Wu, Chieh-Shan; Chen, Chien-Hsun; Wu, Sam; Chang, Hsueh-Wei; Kuo, Soong-Yu; Fu, Earl; Liu, Pei-Feng; Hsieh, Yao-Dung

    2016-01-01

    Low-power laser irradiation (LPLI) is a non-invasive and safe method for cancer treatment that alters a variety of physiological processes in the cells. Autophagy can play either a cytoprotective role or a detrimental role in cancer cells exposed to stress. The detailed mechanisms of autophagy and its role on cytotoxicity in oral cancer cells exposed to LPLI remain unclear. In this study, we showed that LPLI at 810 nm with energy density 60 J/cm2 increased the number of microtubule associated protein 1 light chain 3 (MAP1LC3) puncta and increased autophagic flux in oral cancer cells. Moreover, reactive oxygen species (ROS) production was induced, which increased RelA transcriptional activity and beclin 1 (BECN1) expression in oral cancer cells irradiated with LPLI. Furthermore, ROS scavenger or knockdown of RelA diminished LPLI-induced BECN1 expression and MAP1LC3-II conversion. In addition, pharmacological and genetic ablation of autophagy significantly enhanced the effects of LPLI-induced apoptosis in oral cancer cells. These results suggest that autophagy may be a resistant mechanism for LPLI-induced apoptosis in oral cancer cells. PMID:27632526

  6. Sodium Nitrate Induces Reactive Oxygen Species That Lower the Antioxidant Power, Damage the Membrane, and Alter Pathways of Glucose Metabolism in Human Erythrocytes.

    PubMed

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2015-12-09

    Nitrate salts are widely used as food additives and nitrogenous fertilizers and are present as contaminants in drinking water supplies. The effect of different concentrations (1-15 mM) of sodium nitrate (NaNO3) on human erythrocytes was studied under in vitro conditions. Treatment of erythrocytes with NaNO3 resulted in increases in methemoglobin levels, lipid peroxidation, and protein oxidation and a decrease in glutathione content. There were changes in the activities of all major antioxidant defense enzymes, and the pathways of glucose metabolism were also affected. Increased generation of reactive oxygen species (ROS) took place while the antioxidant power was impaired. The osmotic fragility of cells was increased, and membrane-bound enzymes were greatly inhibited. All changes were statistically significant at a probability level of P < 0.05 at all concentrations of NaNO3 except the lowest (1 mM). Thus, NaNO3 generates ROS that cause significant damage to human erythrocytes and interfere in normal cellular pathways.

  7. The effect of inductively-coupled-plasma reactive ion etching power on the etching rate and the surface roughness of a sapphire substrate.

    PubMed

    Chang, Chun-Ming; Shiao, Ming-Hua; Yang, Chin-Tien; Cheng, Chung-Ta; Hsueh, Wen-Jeng

    2014-10-01

    In this study, patterned sapphire substrates are fabricated using nanosphere lithography (NSL) and inductively-coupled-plasma reactive ion etching (ICP-RIE). Polystyrene nanospheres of approximately 600 nm diameter are self-assembled on c-plane sapphire substrates by spin-coating. The diameter of the polystyrene nanospheres is modified to adjust the etching mask pitch cycle using oxygen plasma in the ICP-RIE system. A nickel thin film mask of 100 nm thickness is deposited by electron-beam evaporation on a substrate covered with treated nanospheres. The sapphire substrate is then etched in an inductively coupled plasma system using BCl3/Ar gas, to fabricate a structure with a periodic sub-micron hole array with different sidewall intervals. The DC bias voltage, the sapphire etching rate, the surface roughness, are studied as a function of the ICP and the RF power. Different sub-micron hole arrays with spacing cycles of 89 nm, 139 nm and 167 nm are successfully fabricated on the sapphire substrate, using suitable etching parameters.

  8. Effect of multiple slip on a chemically reactive MHD non-Newtonian nanofluid power law fluid flow over a stretching sheet with microorganism

    NASA Astrophysics Data System (ADS)

    Basir, Mohammad Faisal Mohd; Ismail, Fazreen Amira; Amirsom, Nur Ardiana; Latiff, Nur Amalina Abdul; Ismail, Ahmad Izani Md.

    2017-04-01

    The effect of multiple slip on a chemically reactive magnetohydrodynamic (MHD) non-Newtonian power law fluid flow over a stretching sheet with microorganism was numerically investigated. The governing partial differential equations were transformed into nonlinear ordinary differential equations using the similarity transformations developed by Lie group analysis. The reduced governing nonlinear ordinary differential equations were then numerically solved using the Runge-Kutta-Fehlberg fourth-fifth order method. Good agreement was found between the present numerical solutions with the existing published results to support the validity and the accuracy of the numerical computations. The influences of the velocity, thermal, mass and microorganism slips, the magnetic field parameter and the chemical reaction parameter on the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism concentration, the distribution of the density of motile microorganisms have been illustrated graphically. The effects of the governing parameters on the physical quantities, namely, the local heat transfer rate, the local mass transfer rate and the local microorganism transfer rate were analyzed and discussed.

  9. RelA-Mediated BECN1 Expression Is Required for Reactive Oxygen Species-Induced Autophagy in Oral Cancer Cells Exposed to Low-Power Laser Irradiation.

    PubMed

    Shu, Chih-Wen; Chang, Hong-Tai; Wu, Chieh-Shan; Chen, Chien-Hsun; Wu, Sam; Chang, Hsueh-Wei; Kuo, Soong-Yu; Fu, Earl; Liu, Pei-Feng; Hsieh, Yao-Dung

    2016-01-01

    Low-power laser irradiation (LPLI) is a non-invasive and safe method for cancer treatment that alters a variety of physiological processes in the cells. Autophagy can play either a cytoprotective role or a detrimental role in cancer cells exposed to stress. The detailed mechanisms of autophagy and its role on cytotoxicity in oral cancer cells exposed to LPLI remain unclear. In this study, we showed that LPLI at 810 nm with energy density 60 J/cm2 increased the number of microtubule associated protein 1 light chain 3 (MAP1LC3) puncta and increased autophagic flux in oral cancer cells. Moreover, reactive oxygen species (ROS) production was induced, which increased RelA transcriptional activity and beclin 1 (BECN1) expression in oral cancer cells irradiated with LPLI. Furthermore, ROS scavenger or knockdown of RelA diminished LPLI-induced BECN1 expression and MAP1LC3-II conversion. In addition, pharmacological and genetic ablation of autophagy significantly enhanced the effects of LPLI-induced apoptosis in oral cancer cells. These results suggest that autophagy may be a resistant mechanism for LPLI-induced apoptosis in oral cancer cells.

  10. Toward reconciling instantaneous roadside measurements of light duty vehicle exhaust emissions with type approval driving cycles.

    PubMed

    Rhys-Tyler, Glyn A; Bell, Margaret C

    2012-10-02

    A method is proposed to relate essentially instantaneous roadside measurements of vehicle exhaust emissions, with emission results generated over a type approval driving cycle. An urban remote sensing data set collected in 2008 is used to define the dynamic relationship between vehicle specific power and exhaust emissions, across a range of vehicle ages, engine capacities, and fuel types. The New European Driving Cycle is synthesized from the remote sensing data using vehicle specific power to characterize engine load, and the results compared with official published emissions data from vehicle type approval tests over the same driving cycle. Mean carbon monoxide emissions from gasoline-powered cars ≤ 3 years old measured using remote sensing are found to be 1.3 times higher than published original type approval test values; this factor increases to 2.2 for cars 4-8 years old, and 6.4 for cars 9-12 years old. The corresponding factors for diesel cars are 1.1, 1.4, and 1.2, respectively. Results for nitric oxide, hydrocarbons, and particulate matter are also reported. The findings have potential implications for the design of traffic management interventions aimed at reducing emissions, fleet inspection and maintenance programs, and the specification of vehicle emission models.

  11. Thermonuclear runaways in nova outbursts. 2: Effect of strong, instantaneous, local fluctuations

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David

    1994-01-01

    In an attempt to understand the manner in which nova outbursts are initiated on the surface of a white dwarf, we investigate the effects fluctuations have on the evolution of a thermonuclear runaway. Fluctuations in temperature density, or the composition of material in the burning shell may arise due to the chaotic flow field generated by convection when it occurs, or by the accretion process itself. With the aid of two-dimensional reactive flow calculations, we consider cases where a strong fluctutation in temperature arises during the early, quiescent accretion phase or during the later, more dynamic, explosion phase. In all cases we find that an instantaneous, local temperature fluctuation causes the affected material to become Rayleigh-Taylor unstable. The rapid rise and subsequent expansion of matter immediately cools the hot blob, which prevents the lateral propagation of burning. This suggests that local temperature fluctuations do not play a significant role in directly initiating the runaway, especially during the early stages. However, they may provide an efficient mechanism of mixing core material into the envelope (thereby pre-enriching the fuel for subsequent episodes of explosive hydrogen burning) and of mixing substantial amounts of the radioactive nucleus N-13 into the surface layers, making novae potential gamma-ray sources. This suggests that it is the global not the local, evolution of the core-envelope interface to high temperatures which dominates the development of the runaway. We also present a possible new scenario for the initiation of nova outbursts based on our results.

  12. Heart Instantaneous Frequency Based Estimation of HRV from Blood Pressure Waveforms

    NASA Astrophysics Data System (ADS)

    Lucena, Fausto; Barros, Allan Kardec; Takeuchi, Yoshinori; Ohnishi, Noboru

    The heart rate variability (HRV) is a measure based on the time position of the electrocardiogram (ECG) R-waves. There is a discussion whether or not we can obtain the HRV pattern from blood pressure (BP). In this paper, we propose a method for estimating HRV from a BP signal based on a HIF algorithm and carrying out experiments to compare BP as an alternative measurement of ECG to calculate HRV. Based on the hypotheses that ECG and BP have the same harmonic behavior, we model an alternative HRV signal using a nonlinear algorithm, called heart instantaneous frequency (HIF). It tracks the instantaneous frequency through a rough fundamental frequency using power spectral density (PSD). A novelty in this work is to use fundamental frequency instead of wave-peaks as a parameter to estimate and quantify beat-to-beat heart rate variability from BP waveforms. To verify how the estimate HRV signals derived from BP using HIF correlates to the standard gold measures, i.e. HRV derived from ECG, we use a traditional algorithm based on QRS detectors followed by thresholding to localize the R-wave time peak. The results show the following: 1) The spectral error caused by misestimation of time by R-peak detectors is demonstrated by an increase in high-frequency bands followed by the loss of time domain pattern. 2) The HIF was shown to be robust against noise and nuisances. 3) By using statistical methods and nonlinear analysis no difference between HIF derived from BP and HRV derived from ECG was observed.

  13. Reactive programming of simulations in physics

    NASA Astrophysics Data System (ADS)

    Boussinot, Frédéric; Monasse, Bernard; Susini, Jean-Ferdy

    2015-04-01

    We consider the Reactive Programming (RP) approach to simulate physical systems. The choice of RP is motivated by the fact that RP genuinely offers logical parallelism, instantaneously broadcast events, and dynamic creation/destruction of parallel components and events. To illustrate our approach, we consider the implementation of a system of Molecular Dynamics, in the context of Java with the Java3D library for 3D visualization.

  14. Emergency cricothyrotomy for trismus caused by instantaneous rigor in cardiac arrest patients.

    PubMed

    Lee, Jae Hee; Jung, Koo Young

    2012-07-01

    Instantaneous rigor as muscle stiffening occurring in the moment of death (or cardiac arrest) can be confused with rigor mortis. If trismus is caused by instantaneous rigor, orotracheal intubation is impossible and a surgical airway should be secured. Here, we report 2 patients who had emergency cricothyrotomy for trismus caused by instantaneous rigor. This case report aims to help physicians understand instantaneous rigor and to emphasize the importance of securing a surgical airway quickly on the occurrence of trismus. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    NASA Astrophysics Data System (ADS)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  16. Dynamical mass generation in QED 3 beyond the instantaneous approximation

    NASA Astrophysics Data System (ADS)

    Xiao, Hai-Xiao; Li, Jian-Feng; Wei, Wei; Yin, Pei-Lin; Zong, Hong-Shi

    2017-07-01

    In this paper, we investigate dynamical mass generation in (2+1)-dimensional quantum electrodynamics at finite temperature. Many studies are carried out within the instantaneous-exchange approximation, which ignores all but the zero-frequency component of the boson propagator and fermion self-energy function. We extend these studies by taking the retardation effects into consideration. In this paper, we get the explicit frequency n and momentum p dependence of the fermion self-energy function and identify the critical temperature for different fermion flavors in the chiral limit. Also, the phase diagram for spontaneous symmetry breaking in the theory is presented in T c-N f space. The results show that the chiral condensate is just one-tenth of the scale of previous results, and the chiral symmetry is restored at a smaller critical temperature. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030), Natural Science Foundation of Jiangsu Province (BK20130387) and Jiangsu Planned Projects for Postdoctoral Research Funds (1501035B)

  17. Constraining the instantaneous aerosol influence on cloud albedo.

    PubMed

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-05-09

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol-cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration (Nd ), previous studies have used the sensitivity of the Nd to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the Nd to anthropogenic aerosol perturbations. Using an ensemble of global aerosol-climate models, this study demonstrates how joint histograms between Nd and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol-cloud interactions in satellite data.

  18. Instantaneous fault frequencies estimation in roller bearings via wavelet structures

    NASA Astrophysics Data System (ADS)

    Rodopoulos, Konstantinos I.; Antoniadis, Ioannis A.

    2016-11-01

    The main target of the current paper is the effective application of the method proposed in "Antoniadis et al. (2014) [17], in roller bearings under variable speed. For this reason, roller bearing model with slip and real data coming from a test rig has been used. The method extracts useful information from a complicated signal where the overlap among the harmonics can raise up to 30%. According to the proposed method, a set of wavelet transforms of the signal is first obtained, using a structure of Complex Shifted Morlet Wavelets. The center frequencies and the bandwidths of the individual wavelets, as well as the number of wavelets used, are associated with the characteristic fault frequency and its harmonic components. In this way, a set of complex signals result in the time domain, equal to the number of the wavelets used. Then, the instantaneous frequencies of the signals are estimated by applying an appropriate subspace algorithm (as for e.g. ESPRIT), to the entire set of the resulting complex wavelet transforms, exploiting the corresponding subspace rotational invariance property of this set of complex signals. The iterative procedure brings up accurate results from complicated signals, separating the fault associated signal components. Also, the spectrograms of the processed signals confirm the ability to match excited areas with specific faults.

  19. User-interactive electronic skin for instantaneous pressure visualization.

    PubMed

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components--thin-film transistor, pressure sensor and OLED arrays--are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  20. Instantaneous stiffness and hysteresis of dynamic elastic response prosthetic feet.

    PubMed

    Webber, Christina M; Kaufman, Kenton

    2017-10-01

    Dynamic elastic response prosthetic feet are designed to mimic the functional characteristics of the native foot/ankle joint. Numerous designs of dynamic elastic response feet exist which make the prescription process difficult, especially because of the lack of empirical evidence describing the objective performance characteristics of the feet. To quantify the mechanical properties of available dynamic elastic response prosthetic feet, specifically the stiffness and hysteresis. Mechanical testing of dynamic elastic response prosthetic feet. Static Proof Testing in accordance with ISO 10328 was conducted on seven dynamic elastic response prosthetic feet. Load-displacement data were used to calculate the instantaneous stiffness in both the heel and forefoot regions, as well as hysteresis associated with each foot. Heel stiffness was greater than forefoot stiffness for all feet. The heel of the glass composite prosthetic foot was stiffer than the carbon fiber feet and it exhibited less hysteresis. Two different carbon fiber feet had the stiffest forefoot regions. Mechanical testing is a reproducible method that can be used to provide objective evidence about dynamic elastic response prosthetic foot performance and aid in the prescription process. Clinical relevance The quantitative stiffness and hysteresis data from this study can be used by prosthetists to aid the prescription process and make it more objective.

  1. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition.

    PubMed

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-07-07

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  2. User-interactive electronic skin for instantaneous pressure visualization

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components—thin-film transistor, pressure sensor and OLED arrays—are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  3. Instantaneous BeiDou-GPS attitude determination: A performance analysis

    NASA Astrophysics Data System (ADS)

    Nadarajah, Nandakumaran; Teunissen, Peter J. G.; Raziq, Noor

    2014-09-01

    The advent of modernized and new global navigation satellite systems (GNSS) has enhanced the availability of satellite based positioning, navigation, and timing (PNT) solutions. Specifically, it increases redundancy and yields operational back-up or independence in case of failure or unavailability of one system. Among existing GNSS, the Chinese BeiDou system (BDS) is being developed and will consist of geostationary (GEO) satellites, inclined geosynchronous orbit (IGSO) satellites, and medium-Earth-orbit (MEO) satellites. In this contribution, a BeiDou-GPS robustness analysis is carried out for instantaneous, unaided attitude determination. Precise attitude determination using multiple GNSS antennas mounted on a platform relies on the successful resolution of the integer carrier phase ambiguities. The constrained Least-squares AMBiguity Decorrelation Adjustment (C-LAMBDA) method has been developed for the quadratically constrained GNSS compass model that incorporates the known baseline length. In this contribution the method is used to analyse the attitude determination performance when using the GPS and BeiDou systems. The attitude determination performance is evaluated using GPS/BeiDou data sets from a real data campaign in Australia spanning several days. The study includes the performance analyses of both stand-alone and mixed constellation (GPS/BeiDou) attitude estimation under various satellite deprived environments. We demonstrate and quantify the improved availability and accuracy of attitude determination using the combined constellation.

  4. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition

    PubMed Central

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-01-01

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method. PMID:26198231

  5. Controls on landfill gas collection efficiency: instantaneous and lifetime performance.

    PubMed

    Barlaz, Morton A; Chanton, Jeff P; Green, Roger B

    2009-12-01

    Estimates of landfill gas (LFG) collection efficiency are required to estimate methane emissions and the environmental performance of a solid waste landfill. The gas collection efficiency varies with time on the basis of the manner in which landfills are designed, operated, and regulated. The literature supports instantaneous collection efficiencies varying between 50% and near 100%, dependent on the cover type and the coverage of the LFG collection system. The authors suggest that the temporally weighted gas collection efficiency, which considers total gas production and collection over the landfill life, is the appropriate way to report collection efficiency. This value was calculated for a range of decay rates representative of refuse buried in arid and wet areas (i.e., >63.5 cm precipitation) and for bioreactor landfills. Temporally weighted collection efficiencies ranging from 67 to 91%, 62 to 86%, and 55 to 78% were calculated at decay rates of 0.02, 0.04, and 0.07 yr(-1), respectively. With aggressive gas collection, as would be implemented for a bioreactor landfill, estimated gas collection efficiency ranged from 84 to 67% at decay rates of 0.04 to 0.15 yr(-1), respectively.

  6. Constraining the instantaneous aerosol influence on cloud albedo

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-05-01

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol-cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration (Nd), previous studies have used the sensitivity of the Nd to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the Nd to anthropogenic aerosol perturbations. Using an ensemble of global aerosol-climate models, this study demonstrates how joint histograms between Nd and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol-cloud interactions in satellite data.

  7. An Instantaneous Low-Cost Point-of-Care Anemia Detection Device

    PubMed Central

    Punter-Villagrasa, Jaime; Cid, Joan; Páez-Avilés, Cristina; Rodríguez-Villarreal, Ivón; Juanola-Feliu, Esteve; Colomer-Farrarons, Jordi; Miribel-Català, Pere Ll.

    2015-01-01

    We present a small, compact and portable device for point-of-care instantaneous early detection of anemia. The method used is based on direct hematocrit measurement from whole blood samples by means of impedance analysis. This device consists of a custom electronic instrumentation and a plug-and-play disposable sensor. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low consumption device making it completely mobile with a long battery life. Another approach could be powering the system based on other solutions like indoor solar cells, or applying energy-harvesting solutions in order to remove the batteries. The sensing system is based on a disposable low-cost label-free three gold electrode commercial sensor for 50 μL blood samples. The device capability for anemia detection has been validated through 24 blood samples, obtained from four hospitalized patients at Hospital Clínic. As a result, the response, effectiveness and robustness of the portable point-of-care device to detect anemia has been proved with an accuracy error of 2.83% and a mean coefficient of variation of 2.57% without any particular case above 5%. PMID:25690552

  8. An instantaneous low-cost point-of-care anemia detection device.

    PubMed

    Punter-Villagrasa, Jaime; Cid, Joan; Páez-Avilés, Cristina; Rodríguez-Villarreal, Ivón; Juanola-Feliu, Esteve; Colomer-Farrarons, Jordi; Miribel-Català, Pere Ll

    2015-02-16

    We present a small, compact and portable device for point-of-care instantaneous early detection of anemia. The method used is based on direct hematocrit measurement from whole blood samples by means of impedance analysis. This device consists of a custom electronic instrumentation and a plug-and-play disposable sensor. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low consumption device making it completely mobile with a long battery life. Another approach could be powering the system based on other solutions like indoor solar cells, or applying energy-harvesting solutions in order to remove the batteries. The sensing system is based on a disposable low-cost label-free three gold electrode commercial sensor for 50 µL blood samples. The device capability for anemia detection has been validated through 24 blood samples, obtained from four hospitalized patients at Hospital Clínic. As a result, the response, effectiveness and robustness of the portable point-of-care device to detect anemia has been proved with an accuracy error of 2.83% and a mean coefficient of variation of 2.57% without any particular case above 5%.

  9. Estimation of parasympathetic nerve function during sleep in patients with obstructive sleep apnea by instantaneous time-frequency analysis.

    PubMed

    Yamaguchi, Kazuhiro; Ohki, Noboru; Kobayashi, Maiko; Satoya, Natsumi; Inoue, Yuji; Onizawa, Shigemitsu; Maeda, Yoshiko; Sekiguchi, Haruki; Suzuki, Mayumi; Tsuji, Takao; Aoshiba, Kazutetsu; Nagai, Atsushi

    2014-01-01

    The pathophysiologic aspects of parasympathetic nerve (PN) function during sleep in patients with obstructive sleep apnea (OSA) studied by classical power spectrum analysis on heart rate variability (HRV) are highly controversial. The controversy is attributed to methodologic concerns, such as poor time resolution involved in power spectrum analysis. We aimed to establish the appropriate method for the investigation of PN function in OSA patients with apneas and hypopneas using instantaneous time-frequency analysis with complex demodulation (CD) and sufficient time resolution. A total of 30 patients with PSG-confirmed mild to severe OSA were recruited for the analysis of frequency spectra contained in R-R intervals (RRI) of overnight electrocardiograph (ECG) tracings. High-frequency (HF) domains ranging between 0.15 and 0.40 Hz were selected for analysis. Among these domains, the HF domain with the maximum instantaneous amplitude was defined as the main HF peak and was used as the surrogate marker of PN discharge. Based on density spectrum array (DSA) map for main HF peak constructed with a time scale of 1s and a frequency resolution of 0.002 Hz (HF-DSA map), the shift in central frequency (CF) of main HF peak over time was continuously monitored. When the main HF peak with the same CF lasted for more than 20 s or 5 min on HF-DSA map, the PN function was considered to be stable or very stable. The measurements were then repeated after continuous positive airway pressure (CPAP) treatment. The extent of PN-evoked modulation of RRI was enhanced in nonrapid eye movement (NREM) sleep, though the stability was reduced in both NREM and rapid eye movement (REM) sleep. These peculiar behaviors of PN function were reversed by CPAP treatment. We found that instantaneous time-frequency analysis allowed estimation of transitional changes in PN function during sleep in OSA patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Development of 1-DOF manipulator with variable rheological joint for instantaneous force

    NASA Astrophysics Data System (ADS)

    Majima, T.; Nagai, S.; Tomori, H.; Nakamura, T.

    2013-02-01

    Highly rigid actuators such as a geared motor or hydraulic actuator are widely used in industrial robots. To obtain high-speed motion, actuators need to increase the actuator output. However, to increase high-rigidity actuators output, it is necessary to make actuators larger. In contrast, humans perform motions with instantaneous force such as jumping or throwing by using muscles. These instantaneous forces are realized by accumulating potential energy to the muscles and the muscles releasing the energy in a short time. Therefore, in this study a 1-DOF manipulator with variable rheological joint for instantaneous force using an artificial muscle and a magnetorheological (MR) brake was developed. In this paper, the method of generating instantaneous force for this manipulator was proposed. Further, the experiment of the proposed method was also conducted. As a result, generating instantaneous force by proposed method was realized.

  11. Instantaneous detection of spatial gradient errors in differential GNSS

    NASA Astrophysics Data System (ADS)

    Jing, Jing

    Global Navigation Satellite Systems (GNSS) have become a critical element of modern engineering and scientific applications. GPS is currently being used in the design of navigation systems for both civil and military aviation applications. Differential GPS carrier phase measurements between antennas provide a very precise measurement that is useful for these applications. In fact, ground infrastructure has already been implemented in the Ground Based Augmentation System (GBAS) to take advantage of these precise measurements for use in civil aviation. Furthermore, these antennas can also be used to detect and isolate certain signal-in-space (SIS) failures and anomalies that are hazardous to aviation applications, for example the ionospheric anomalies and ephemeris failures. This realization, in turn, has led to the development of numerous carrier-phase based monitors. One drawback of the majority of these monitors is that their performance within a given configuration is dependent on how antennas are paired to form double differences. In contrast, the null space monitor approach is developed to provide consistent detection performance regardless of how the antennas are paired which combines measurements from multiple, spatially separated ground antennas through a null space transformation. The instantaneous carrier phase monitor cannot detect all gradients due to the presence of integer ambiguities. These ambiguities cannot be resolved because the gradient magnitude is unknown a priori. Furthermore, it has been shown that the performance of such monitors is highly dependent on the reference antenna topology. The range of detectable gradients for all carrier phase monitors depends on two factors: the number of antennas and their configuration. Antenna configuration is often overlooked as a means to improve performance. and heuristic arguments typically prevail in the associated siting decisions. However. such heuristics do not provide the maximum detectable range of

  12. Instantaneous attribute profiling of GPR data using the HHT technique

    NASA Astrophysics Data System (ADS)

    Jeng*, Y.; Yu**, H.-M.; Chen, C.-S.

    2012-04-01

    * Corresponding author ** Presenting author The analysis of instantaneous attributes (IAs) is a useful tool for interpreting ground penetrating radar (GPR) data. However, the conventional Hilbert transform used for deriving the IAs is controversial because it cannot provide the full IAs of the data. The conventional method only leads to an apparent spectrogram. A newer analysis method, the Hilbert-Huang transform (HHT), consisting of empirical mode decomposition (EMD) and the Hilbert transform is applied in this study for seeking a better resolution of IAs. In this study, we decomposed the original GPR data into a series of intrinsic mode functions (IMFs) with ensemble empirical mode decomposition (EEMD), and then applied the Hilbert transform to generate the imaginary part of each IMF component. As a consequence, the IMF can be expressed in complex form after the Hilbert transform, and the IAs of each IMF component is obtained by simple trigonometry calculation and differentiation accordingly. With the aid of the EEMD technique, the Hilbert transform is well-behaved; therefore, it renders full IAs of each decomposed component as functions of time. We display the IAs of the GPR section in separate profiles to demonstrate the interpretation of their physical significance. A controlled experimental study was performed on a site of known buried targets to acquire sample data for testing this new method and establishing the basic data processing sequence. We also conducted a pseudo-3D GPR survey with 50 MHz antennas along the channel bed of the Chingshui River in Ilan County, northeastern Taiwan to collect real data for further evaluation. To compare the HHT with the conventional Hilbert transform, we applied both techniques to the GPR stacked section. The IAs are displayed in amplitude, phase, and frequency profiles. The residue resulting from the EEMD is normally excluded to remove the bias. The signal can further be enhanced by removing noisy components before

  13. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for intraoperative neurochemical monitoring.

    PubMed

    Kimble, Christopher J; Johnson, David M; Winter, Bruce A; Whitlock, Sidney V; Kressin, Kenneth R; Horne, April E; Robinson, Justin C; Bledsoe, Jonathan M; Tye, Susannah J; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E; Garris, Paul A; Lee, Kendall H

    2009-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom software application (WINCSware) running on a nearby personal computer. The patient module impresses upon the electrochemical sensor either a constant potential (for FPA) or a time-varying waveform (for FSCV). A transimpedance amplifier converts the resulting current to a signal that is digitized and transmitted to the base station via a Bluetooth radio link. WINCSware controls the operational parameters for FPA or FSCV, and records the transmitted data stream. Filtered data is displayed in various formats, including a background-subtracted plot of sequential FSCV scans - a representation that enables users to distinguish the signatures of various analytes with considerable specificity. Dopamine, glutamate, adenosine and serotonin were selected as analytes for test trials. Proof-of-principle tests included in vitro flow-injection measurements and in vivo measurements in rat and pig. Further testing demonstrated basic functionality in a 3-Tesla MRI unit. WINCS was designed in compliance with consensus standards for medical electrical device safety, and it is anticipated that its capability for real-time intraoperative monitoring of neurotransmitter release at an implanted sensor will prove useful for advancing functional neurosurgery.

  14. Simplified Solution of the Inverse Problem for Instantaneous Cometary Dust Size Distribution

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Klačka, J.; Kundracek, F.; Videen, G.

    Available optical measurements indicate that the modal radius rm of a cometary dust population is in the submicron range and that the dust refractive index m changes slightly in the visible region of the spectrum. A realistic instantaneous particle size distribution f(r) may be determined by processing the measured intensity of continuum at several wavelengths. The solution of the inverse problem for particle size distribution is based on rigorous Mie theory. Additionally, an application of the Rayleigh-Gans approximation enables to construct an accelerated solution scheme since the total intensity of the scattered radiation can then be expressed in an analytical form. However, the range of validity of the approximation is strongly limited to very small submicron-sized particles. The numerical simulations of light scattering by Mie cometary dust particles are performed for two model size distributions - power function f(r) µ r-n and modified gamma function f(r) µ ra e-br, which are commonly used to represent real dust populations. It is shown that the cometary dust size distribution may easily be reproduced analysing the spectral behaviour of measured intensity of the scattered radiation IJ(l). The more rapid increasing of continuum with the wavelength of incident radiation the larger particles are contained in cometary dusty environment.

  15. Application of instantaneous angular acceleration to diesel engine fault diagnosis

    NASA Astrophysics Data System (ADS)

    Ren, Yunpeng; Hu, Tianyou; Liu, Xin

    2005-12-01

    Diesel engine is a kind of important power generating machine, of which the running state monitoring and fault diagnosis attracts increasing attention. The theory and the method of diesel engine fault diagnosis based on angular acceleration measurement were studied, since angular acceleration contains a lot of information for diesel engine fault diagnosing and its power balance evaluating. USB data acquisition system was designed for the angular acceleration measurement, and it was composed with AVRAT09S8515 micro-processor and PDIUSBD12 USB interface IC. At the same time, the high speed micro-processor AVRAT09S8515 with unique function of automatically capturing the rising or falling edge of square wave was studied, and it was utilized in the diesel engine's crankshaft angular acceleration measuring system. The software and hardware of the whole system was designed, which supplied a whole solution to diesel engine fault diagnosis and power balance evaluation between each cylinder.

  16. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    NASA Astrophysics Data System (ADS)

    Wang, Avery Li-Chun

    This thesis summarizes several contributions to the areas of signal processing and auditory source separation. The philosophy of Frequency-Warped Signal Processing is introduced as a means for separating the AM and FM contributions to the bandwidth of a complex-valued, frequency-varying sinusoid p (n), transforming it into a signal with slowly-varying parameters. This transformation facilitates the removal of p (n) from an additive mixture while minimizing the amount of damage done to other signal components. The average winding rate of a complex-valued phasor is explored as an estimate of the instantaneous frequency. Theorems are provided showing the robustness of this measure. To implement frequency tracking, a Frequency-Locked Loop algorithm is introduced which uses the complex winding error to update its frequency estimate. The input signal is dynamically demodulated and filtered to extract the envelope. This envelope may then be remodulated to reconstruct the target partial, which may be subtracted from the original signal mixture to yield a new, quickly-adapting form of notch filtering. Enhancements to the basic tracker are made which, under certain conditions, attain the Cramer -Rao bound for the instantaneous frequency estimate. To improve tracking, the novel idea of Harmonic -Locked Loop tracking, using N harmonically constrained trackers, is introduced for tracking signals, such as voices and certain musical instruments. The estimated fundamental frequency is computed from a maximum-likelihood weighting of the N tracking estimates, making it highly robust. The result is that harmonic signals, such as voices, can be isolated from complex mixtures in the presence of other spectrally overlapping signals. Additionally, since phase information is preserved, the resynthesized harmonic signals may be removed from the original mixtures with relatively little damage to the residual signal. Finally, a new methodology is given for designing linear-phase FIR filters

  17. An Instantaneous Sub-Rayleigh-to-Supershear Transition Mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Lapusta, N.

    2006-12-01

    interesting features in our simulations, which we will present along with our preliminary analysis: (1) Crack fronts can abruptly jump from the Rayleigh-wave speed to a supershear speed. We call this direct supershear transition. For example, consider a secondary crack nucleated by one of the ways described above under the advancing stress field of the main rupture. The secondary crack is sub-Rayleigh and it accelerates towards the Rayleigh wave speed. Once the Rayleigh wave speed is reached, the secondary crack jumps to a supershear speed instantaneously, without initiating any separate daughter crack as in the Burridge-Andrews mechanism. (2) The supershear transition mechanisms we have described work not only in two-dimensional (2D) in-plane models, but also in three-dimensional (3D) models under certain conditions. (3) Once the transition takes place in our models, the supershear rupture propagation can be maintained under prestress levels that are much lower than the ones predicted by the Burridge-Andrews mechanism. This shows that the level of prestress implied by the Burridge-Andrews mechanism is only needed to nucleate a crack at the site of the shear-wave peak, and not to drive the rupture to supershear speeds or to maintain that supershear propagation.

  18. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    SciTech Connect

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N. Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2010-12-15

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.

  19. Instantaneous centre of rotation in human motion: measurement and computational issues

    NASA Astrophysics Data System (ADS)

    Crenna, Francesco; Battista Rossi, Giovanni; Palazzo, Alice

    2016-11-01

    The instantaneous centre of rotation plays an important role in biomechanical modelling and physical-medical interpretation of human gestures. Therefore, we consider its measurement, based on video-image acquisition and processing of human motion records. Measurement and computational aspects are discussed, including the evaluation of measurement uncertainty and the estimation of the effect of some influence quantities on the determination of the position of the instantaneous centre of rotation.

  20. Time-Frequency Based Instantaneous Frequency Estimation of Sparse Signals from an Incomplete Set of Samples

    DTIC Science & Technology

    2014-06-17

    t which has a small random set of non-zero values . B. OMP based ideal time-frequency representation The OMP algorithm has been known as the...distributions. Index Terms – instantaneous frequency, time-frequency distributions, signal sparsity, autocorrelation function, reconstruction...it suffices to calculate the bilinear data products, as in the case of Wigner distribution (WD), whereas Time-Frequency Based Instantaneous

  1. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  2. Combining the Power of Irmpd with Ion-Molecule Reactions: the Structure and Reactivity of Radical Ions of Cysteine and its Derivatives

    NASA Astrophysics Data System (ADS)

    Lesslie, Michael; Osburn, Sandra; Berden, Giel; Oomens, J.; Ryzhov, Victor

    2015-06-01

    Most of the work on peptide radical cations has involved protons as the source of charge. Nonetheless, using metal ions as charge sources often offers advantages like stabilization of the structure via multidentate coordination and the elimination of the "mobile proton". Moreover, characterization of metal-bound amino acids is of general interest as the interaction of peptide side chains with metal ions in biological systems is known to occur extensively. In the current study, we generate thiyl radicals of cysteine and homocysteine in the gas phase complexed to alkali metal ions. Subsequently, we utilize infrared multiple-photon dissociation (IRMPD) and ion-molecule reactions (IMR) to characterize the structure and reactivity of these radical ions. Our group has worked extensively with the cysteine-based radical cations and anions, characterizing the gas-phase reactivity and rearrangement of the amino acid and several of its derivatives. In a continuation of this work, we are perusing the effects of metal ions as the charge bearing species on the reactivity of the sulfur radical. Our S-nitroso chemistry can easily be used in conjunction with metal ion coordination to produce initial S-based radicals in peptide radical-metal ion complexes. In all cases we have been able to achieve radical formation with significant yield to study reactivity. Ion-molecule reactions of metallated radicals with allyl iodide, dimethyl disulfide, and allyl bromide have all shown decreasing reactivity going down group 1A. Recently, we determined the experimental IR spectra for the homocysteine radical cation with Li+, Na+, and K+ as the charge bearing species at the FELIX facility. For comparison, the protonated IR spectrum of homocysteine has previously been obtained by our group. A preliminary match of the IR spectra has been confirmed. Finally, calculations are underway to determine the bond distances of all the metal adduct structures.

  3. Misconceptions about instantaneous frequency, and complex signal representations through pole-zero manipulations

    NASA Astrophysics Data System (ADS)

    Loughlin, Patrick J.

    2015-05-01

    Instantaneous frequency is an important characteristic of time-varying or nonstationary signals. The definition and interpretation of instantaneous frequency have been the subject of discussion and debate for decades. The most common approach is due to Gabor, whereby a specific complex signal, called the analytic signal, is associated with a given real signal by inverting the spectrum of the real signal over only the positive frequency axis; the instantaneous frequency is then taken to be the derivative of the phase. Other approaches for associating a particular complex signal to a given real signal, and hence obtaining different instantaneous frequencies, have also been proposed. One way to define the associated complex signal / instantaneous frequency is by imposing physical constraints, which we discuss. We also discuss the common interpretation of instantaneous frequency as the average frequency at each time, and point out when this interpretation holds, which is not usually the case. This leads to the question of what is the "average frequency at each time?" The answer, coupled with physical constraints on the complex signal representation, leads to a quadrature-AM / FM signal model. Finally, we consider methods that manipulate the poles and zeros of the signal to obtain a complex representation.

  4. Skylab reactivation mission report

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.

    1980-01-01

    On July 11, 1979, Skylab impacted the Earth's surface. The debris dispersion area stretched from the South Eastern Indian Ocean across a sparsely populated section of Western Australia. The events leading to the reentry of Skylab are discussed and a final assessment of the Skylab debris impact footprint is presented. Also included are detailed evaluations of the various Skylab systems that were reactivated when control of Skylab was regained in mid-1978 after having been powered down since February 4, 1974.

  5. Dynamic power flow controllers

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish

    2017-03-07

    Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.

  6. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: in vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy.

    PubMed

    Thiele, Jan R; Habersberger, Jonathon; Braig, David; Schmidt, Yvonne; Goerendt, Kurt; Maurer, Valentin; Bannasch, Holger; Scheichl, Amelie; Woollard, Kevin J; von Dobschütz, Ernst; Kolodgie, Frank; Virmani, Renu; Stark, G Bjoern; Peter, Karlheinz; Eisenhardt, Steffen U

    2014-07-01

    The relevance of the dissociation of circulating pentameric C-reactive protein (pCRP) to its monomeric subunits (mCRP) is poorly understood. We investigated the role of conformational C-reactive protein changes in vivo. We identified mCRP in inflamed human striated muscle, human atherosclerotic plaque, and infarcted myocardium (rat and human) and its colocalization with inflammatory cells, which suggests a general causal role of mCRP in inflammation. This was confirmed in rat intravital microscopy of lipopolysaccharide-induced cremasteric muscle inflammation. Intravenous pCRP administration significantly enhanced leukocyte rolling, adhesion, and transmigration via localized dissociation to mCRP in inflamed but not noninflamed cremaster muscle. This was confirmed in a rat model of myocardial infarction. Mechanistically, this process was dependent on exposure of lysophosphatidylcholine on activated cell membranes, which is generated after phospholipase A2 activation. These membrane changes could be visualized intravitally on endothelial cells, as could the colocalized mCRP generation. Blocking of phospholipase A2 abrogated C-reactive protein dissociation and thereby blunted the proinflammatory effects of C-reactive protein. Identifying the dissociation process as a therapeutic target, we stabilized pCRP using 1,6-bis(phosphocholine)-hexane, which prevented dissociation in vitro and in vivo and consequently inhibited the generation and proinflammatory activity of mCRP; notably, it also inhibited mCRP deposition and inflammation in rat myocardial infarction. These results provide in vivo evidence for a novel mechanism that localizes and aggravates inflammation via phospholipase A2-dependent dissociation of circulating pCRP to mCRP. mCRP is proposed as a pathogenic factor in atherosclerosis and myocardial infarction. Most importantly, the inhibition of pCRP dissociation represents a promising, novel anti-inflammatory therapeutic strategy. © 2014 American Heart

  7. Reactive sintering and reactive hot

    NASA Astrophysics Data System (ADS)

    Murray, J. C.; German, R. M.

    1992-09-01

    NbAl3 has been synthesized from elemental powders by reactive sintering (RS) and reactive hot isostatic pressing (RHIP). Both processes involve a self-propagating exothermic reaction between the constituent powders to form an intermetallic compound. The RHIP approach uses simultaneous external pressurization to make a higher density product. This study focused on developing a method to use reactive synthesis to form high-density NbAl3 compacts. High RS and RHIP densities were possible with the appropriate raw materials and processing parameters. These include powder purity, particle sizes, degassing, heating rate, furnace temperature, and compaction pressures. Near full density was attained with RHIP, and up to 95 pct density was attained with RS.

  8. Gas-laser power monitor

    NASA Technical Reports Server (NTRS)

    Russ, C. E., Jr.

    1981-01-01

    Device attaches simply to front of laser housing for continuous monitoring of power output. Monitor is calibrated to read either total output or power generated in test volume. It is fabricated from four black-anodized aluminum parts; crown glass positioned at Brewster angle reflects 0.33 percent of beam onto photodiode calibrated for electrical output proportional to laser power. Unlike conventional calorimeter, monitor does not interrupt laser beams, and fast-response diode allows instantaneous tracking of power fluctuations.

  9. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: Applications to cerebral autoregulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Hu, Kun; Stanley, H. Eugene; Novak, Vera; Ivanov, Plamen Ch.

    2006-03-01

    We investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during the quasisteady state after perturbation for four different physiologic conditions: supine rest, head-up tilt, hyperventilation, and CO2 rebreathing in upright position. To evaluate whether instantaneous BP changes in the steady state are coupled with instantaneous changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well-pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced, and more variable. We propose an approach based on the cross-correlation of the instantaneous phase increments to quantify the coupling between BP and BFV signals. We find that the maximum correlation strength is different for the two groups and for the different conditions. For healthy subjects the amplitude of the cross-correlation between the instantaneous phase increments of BP and BFV is small and attenuates within 3-5 heartbeats. In contrast, for post-stroke subjects, this amplitude is significantly larger and cross-correlations persist up to 20 heartbeats. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. We compare the results of our approach with three complementary methods: direct BP-BFV cross-correlation, transfer function analysis, and phase synchronization analysis. Our findings provide insight into the mechanism of cerebral vascular control in healthy subjects, suggesting that this control mechanism may involve rapid adjustments (within a heartbeat) of the cerebral vessels, so that BFV remains steady in

  10. Niobium sputtered Havar foils for the high-power production of reactive [18F]fluoride by proton irradiation of [18O]H2O targets.

    PubMed

    Wilson, J S; Avila-Rodriguez, M A; Johnson, R R; Zyuzin, A; McQuarrie, S A

    2008-05-01

    Niobium sputtered Havar entrance foils were used for the production of reactive [(18)F]fluoride by proton irradiation of [(18)O]H(2)O targets under pressurized conditions. The synthesis yield in the routine production of 2-[(18)F]fluoro-2-deoxy-glucose (FDG) was used as an indicative parameter of the reactivity of (18)F. The yield of FDG obtained with (18)F produced in a target with Havar foil was used as a baseline. No statistically significant difference was found in the saturated yields of (18)F when using Havar or Havar-Nb sputtered entrance foils. However, the amount of long-lived radionuclidic impurities decreased more than 10-fold using the Havar-Nb entrance foil. The average decay corrected synthesis yield of FDG, evaluated over a period of more than 2 years, was found to be approximately 5% higher when using a Havar-Nb entrance foil and a marked improvement on the FDG yield consistency was noted. In addition, the frequency of target rebuilding was greatly diminished when using the Nb sputtered entrance foil.

  11. Complex Noise-Bits and Large-Scale Instantaneous Parallel Operations with Low Complexity

    NASA Astrophysics Data System (ADS)

    Wen, He; Kish, Laszlo B.; Klappenecker, Andreas

    We introduce the complex noise-bit as information carrier, which requires noise signals in two parallel wires instead of the single-wire representations of noise-based logic discussed so far. The immediate advantage of this new scheme is that, when we use random telegraph waves as noise carrier, the superposition of the first 2N integer numbers (obtained by the Achilles heel operation) yields nonzero values. We introduce basic instantaneous operations, with O(20) time and hardware complexity, including bit-value measurements in product states, single-bit and two-bit noise-gates (universality exists) that can instantaneously operate over large superpositions with full parallelism. We envision the possibility of implementing instantaneously running quantum algorithms on classical computers while using similar number of classical bits as the number of quantum bits emulated without the necessity of error corrections. Mathematical analysis and proofs are given.

  12. Comparative study of instantaneous frequency based methods for leak detection in pipeline networks

    NASA Astrophysics Data System (ADS)

    Ghazali, M. F.; Beck, S. B. M.; Shucksmith, J. D.; Boxall, J. B.; Staszewski, W. J.

    2012-05-01

    Methods of pressure transient analysis can be seen as a promising, accurate and low-cost tool for leak and feature detection in pipelines. Various systems have been developed by several groups of researchers in recent years. Such techniques have been successfully demonstrated under laboratory conditions but are not yet established for use with real field test data. The current paper presents a comparative study of instantaneous frequency analysis techniques based on pressure transients recorded within a live distribution network. The instantaneous frequency of the signals are analysed using the Hilbert transform (HT), the Normalised Hilbert transform (NHT), Direct Quadrature (DQ), Teager Energy Operator (TEO) and Cepstrum. This work demonstrates the effectiveness of the instantaneous frequency analysis in detecting a leaks and other features within the network. NHT and DQ allowed for the identification of the approximate location of leaks. The performance TEO is moderate, with Cepstrum being the worst performing method.

  13. Instantaneous Click Chemistry by a Copper-Containing Polymeric-Membrane-Installed Microflow Catalytic Reactor.

    PubMed

    Yamada, Yoichi M A; Ohno, Aya; Sato, Takuma; Uozumi, Yasuhiro

    2015-11-23

    The copper(I)-catalyzed Huisgen cycloaddition (azide-alkyne cycloaddition) is an important reaction in click chemistry that ideally proceeds instantaneously. An instantaneous Huisgen cycloaddition has been developed that uses a novel catalytic dinuclear copper complex-containing polymeric membrane-installed microflow device. A polymeric membranous copper catalyst was prepared from poly(4-vinylpyridine), copper(II) sulfate, sodium chloride, and sodium ascorbate at the interface of two laminar flows inside microchannels. Elucidation of the structure by XANES, EXAFS, and elemental analysis, as well as second-order Møller-Plesset perturbation theory (MP2) calculations and density functional theory (DFT) calculations assigned the local structure near Cu as a μ-chloro dinuclear Cu(I) complex. The microflow device promotes the instantaneous click reaction of a variety of alkynes and organic azides to afford the corresponding triazoles in quantitative yield.

  14. Summary of U.S. Geological Survey on-line instantaneous fluvial sediment and ancillary data

    USGS Publications Warehouse

    Turcios, Lisa M.; Gray, John R.; Ledford, Annette L.

    2000-01-01

    Instantaneous fluvial sediment data, in addition to other instantaneous water-quality and ancillary data collected by the U.S. Geological Survey (USGS), are available on-line through the National Water Information System World Wide Web (NWISWeb) water-quality data base at http://waterdata.usgs.gov/nwis/qwdata. The NWISWeb water-quality data base was populated and is periodically refreshed from electronic files maintained by individual USGS District offices across the United States and Puerto Rico. It represents the single largest repository of USGS electronic instantaneous-value suspended-sediment, bedload, and bed-material data. These Web pages provide a summary of fluvial-sediment data by State, and by USGS station number retrieved from the then-under-construction NWISWeb data base on January 13, 2000. The meta data can be accessed by following the links at the bottom of this Web page.

  15. Thermodynamics of iodide adsorption at the instantaneous air-water interface

    NASA Astrophysics Data System (ADS)

    Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.

    2013-03-01

    We performed molecular dynamics simulations using both polarizable and non-polarizable force fields to study the adsorption of iodide to the air-water interface. A novel aspect of our analysis is that the progress of ion adsorption is measured as the distance from the instantaneous interface, which is defined by a coarse-graining scheme proposed recently by Willard and Chandler ["Instantaneous liquid interfaces," J. Phys. Chem. B 114, 1954-1958 (2010), 10.1021/jp909219k]. Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are obscured by thermal fluctuations when the same quantities are referred to an average measure of the position of the interface, such as the Gibbs dividing surface. Our results suggest that an ion adsorbed at the interface resides primarily in the topmost water layer, and the interfacial location of the ion is favored by enthalpy and opposed by entropy.

  16. The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.

    2007-01-01

    Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.

  17. Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions.

    PubMed

    Ward-Paige, Christine; Mills Flemming, Joanna; Lotze, Heike K

    2010-07-22

    Increasingly, underwater visual censuses (UVC) are used to assess fish populations. Several studies have demonstrated the effectiveness of protected areas for increasing fish abundance or provided insight into the natural abundance and structure of reef fish communities in remote areas. Recently, high apex predator densities (>100,000 individuals x km(-2)) and biomasses (>4 tonnes x ha(-1)) have been reported for some remote islands suggesting the occurrence of inverted trophic biomass pyramids. However, few studies have critically evaluated the methods used for sampling conspicuous and highly mobile fish such as sharks. Ideally, UVC are done instantaneously, however, researchers often count animals that enter the survey area after the survey has started, thus performing non-instantaneous UVC. We developed a simulation model to evaluate counts obtained by divers deploying non-instantaneous belt-transect and stationary-point-count techniques. We assessed how fish speed and survey procedure (visibility, diver speed, survey time and dimensions) affect observed fish counts. Results indicate that the bias caused by fish speed alone is huge, while survey procedures had varying effects. Because the fastest fishes tend to be the largest, the bias would have significant implications on their biomass contribution. Therefore, caution is needed when describing abundance, biomass, and community structure based on non-instantaneous UVC, especially for highly mobile species such as sharks. Based on our results, we urge that published literature state explicitly whether instantaneous counts were made and that survey procedures be accounted for when non-instantaneous counts are used. Using published density and biomass values of communities that include sharks we explore the effect of this bias and suggest that further investigation may be needed to determine pristine shark abundances and the existence of inverted biomass pyramids. Because such studies are used to make important

  18. Assessing dynamic spectral causality by lagged adaptive directed transfer function and instantaneous effect factor.

    PubMed

    Xu, Haojie; Lu, Yunfeng; Zhu, Shanan; He, Bin

    2014-07-01

    It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The nonzero covariance of the model's residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the "causal ordering" is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In this study, we first investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in time

  19. Assessing Dynamic Spectral Causality by Lagged Adaptive Directed Transfer Function and Instantaneous Effect Factor

    PubMed Central

    Xu, Haojie; Lu, Yunfeng; Zhu, Shanan

    2014-01-01

    It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in

  20. Instantaneous scale of fluctuation using Kalman-TFD and applications in machine tool monitoring

    NASA Astrophysics Data System (ADS)

    Madhavan, P. G.

    1997-10-01

    A new theory of random fields based on the concept of local averaging was developed in the 80s where the second-order properties of the random fields are characterized by the variance function. Certain asymptotic properties of the variance function lead to the definition of a scalar called the 'scale of fluctuation,' which has many interesting properties. A non- parametric method of estimating instantaneous scale of fluctuation is developed using the time-varying model-based time-frequency distribution. A wide range of random processes can be modeled by appropriate state-space models with white process noise. For properly defined state transition matrices and observation vectors, the states estimated using Kalman filtering or smoothing algorithms provide the estimated time-frequency distribution (Kalman-TFD). Using Kalman-TFD, the instantaneous scale of fluctuation is estimated. Performance of this estimator is compared to other instantaneous and block methods using the coefficient of variation of the estimators. The Kalman-TFD-based scale of fluctuation estimator has a coefficient of variation of 6% where as other methods yield coefficients of variation greater than 35%. The instantaneous scale of fluctuation quantifies the temporal variability of the underlying system and possible resultant limit- cycle oscillations. Tests with real vibration data from machine tools before and during chatter show that the estimated instantaneous scale of fluctuation may permit on-line prediction of chatter development many hundreds of milliseconds in advance. To explain the behavior of the estimated instantaneous scale of fluctuation during pre-chatter period, detailed simulations were undertaken which revealed that the random process during pre- chatter condition goes through an increase in 'degrees-of-freedom' or its unit standard deviation contour volume.

  1. Precise measurement of instantaneous volume of eccrine sweat gland in mental sweating by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato

    2015-03-01

    We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). We propose a method for extraction of the target eccrine sweat gland by use of the connected component extraction process and the adaptive threshold method, where the en-face OCT images are constructed by the SS-OCT. Furthermore, we demonstrate precise measurement of instantaneous volume of the sweat gland in response to the external stimulus. The dynamic change of instantaneous volume of eccrine sweat gland in mental sweating is performed by this method during the period of 300 sec with the frame intervals of 3.23 sec.

  2. Reactivity change in a fast-spectrum space power reactor due to a 328-meter-per-second (1075-ft/sec) impact

    NASA Technical Reports Server (NTRS)

    Peoples, J. A., Jr.; Puthoff, R. L.

    1973-01-01

    Application of nuclear reactors in space will present operational problems. One such problem is the possibility of an earth impact at velocities in excess of 305 m/sec (1000 ft/sec). This report shows the results of an impact against concrete at 328 m/sec (1075 ft/sec) and examines the deformed core to estimate the range of activity inserted as a result of the impact. The results of this examination are that the deformation of the reactor core within the containment vessel left only an estimated 2.7 percent void in the core and that the reactivity inserted due to this impact deformation could be from 4.0 to 10.25 dollars.

  3. Use of inverse time, adjustable instantaneous pickup circuit breakers for short circuit and ground fault protection of energy efficient motors

    SciTech Connect

    Heath, D.W.; Bradfield, H.L.

    1995-12-31

    Many energy efficient low voltage motors exhibit first half cycle instantaneous inrush current values greater than the National Electrical Code`s 13 times motor full load amperes maximum permissible setting for instantaneous trip circuit breakers. The alternate use of an inverse time circuit breaker could lead to inadequate protection if the breaker does not have adjustable instantaneous settings. Recent innovations in digital solid state trip unit technology have made available an inverse time, adjustable instantaneous trip circuit breaker in 15A to 150A ratings. This allows the instantaneous pickup to be adjusted to a value slightly above motor inrush so that low level faults will be cleared instantaneously while avoiding nuisance tripping at startup. Applications, settings and comparisons are discussed.

  4. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  5. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  6. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  7. What Is Reactive Arthritis?

    MedlinePlus

    ... Arthritis PDF Version Size: 69 KB November 2014 What is Reactive Arthritis? Fast Facts: An Easy-to- ... Information About Reactive Arthritis and Other Related Conditions What Causes Reactive Arthritis? Sometimes, reactive arthritis is set ...

  8. Chlorella triggers stomatal closure mediated by NADPH oxidase and improves instantaneous water use efficiency in Vicia faba

    PubMed Central

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs) has been associated with early defense responses of plants. Chlorella is a unicellular autotrophic microorganism that can synthesize many bioactive substances with positive effects on humans, animals and plants. However, its effects on stomatal movement and instantaneous intrinsic water use efficiency (WUEi) in plants have been not explored yet. Our present work showed that application of Chlorella to isolated epidermal peels of Vicia faba induced stomatal closure in a dose-and time-dependent manner. Pharmacological study revealed that the Chlorella-triggered stomatal closure was mainly mediated by reactive oxygen species (ROS) production via NADPH oxidase. Additionally, exogenous application of optimal concentrations of Chlorella suspension caused an obvious reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn), favoring the improvement of WUEi in Vicia faba. The chlorophyll fluorescence and content analysis further indicated that Chlorella had no effects on plant photosynthetic reactions center after short-term foliar application. PMID:24801212

  9. Instantaneous and time-averaged dispersion and measurement models for estimation theory applications with elevated point source plumes

    NASA Technical Reports Server (NTRS)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1977-01-01

    Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.

  10. Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values

    USDA-ARS?s Scientific Manuscript database

    In this study, six extrapolation methods have been compared for their ability to estimate daily crop evapotranspiration (ETd) from instantaneous latent heat flux estimates derived from digital airborne multispectral remote sensing imagery. Data used in this study were collected during an experiment...

  11. The Quest for Instantaneous Perfection and the Demand for "Push-Button" Administration

    ERIC Educational Resources Information Center

    Batagiannis, Stella C.

    2009-01-01

    Educational leaders in the United States are faced with a society seeking instantaneous perfection, immediate and perfect solutions. In education, this leads to a demand for push-button administration and an abandonment of trust in educators' judgment. As exemplified by the No Child Left Behind Act (2002), the search for quick fixes results in…

  12. A method to account for variation of average compressor inlet pressure during instantaneous distortion analyses

    NASA Technical Reports Server (NTRS)

    Burstadt, P. L.; Wenzel, L. M.

    1976-01-01

    A method is presented to calculate the available surge margin as a function of time and incorporate it into an instantaneous distortion analysis. Results show that inlet pressure variations which cause only a small change at the compressor exit can cause a significant variation in the available surge margin.

  13. Proposing a new index to quantify instantaneous symmetry during manual wheelchair propulsion.

    PubMed

    Chénier, Félix; Malbequi, Julien; Gagnon, Dany H

    2017-01-25

    Propelling a manual wheelchair (MWC) is a strenuous task that causes upper limb musculoskeletal disorders (MSD) in a large proportion of MWC users. Although most studies on MWC propulsion biomechanics assume that MWC propulsion is a relatively symmetric task, recent literature suggests that this is the case only when the assessed outcome measures are averaged over long periods of time, and not over short periods (i.e., instantaneously). No method is currently available to assess instantaneous symmetry. In this work, we present the Instantaneous Symmetry Index (ISI), a new method that quantifies how a variable has been instantaneously asymmetric during a selected time period. Thirteen experienced MWC users propelled on different cross slopes of 0%, 2%, 4%, 6% and 8%. As the cross slope is increased, the upper hand produced less propulsive moments and the lower hand produced more propulsive movements. This has been reflected in the ISI, which increased from 0.20 (0% slope) to 0.84 (8% slope) with a Spearman׳s coefficient of 0.90. The ISI has great potential to evaluate the ability of a user to propel symmetrically and synchronously, and will be a relevant measure to include in future studies on the impact of MWC propulsion asymmetry on MSD risk.

  14. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-06-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension.

  15. Estimation of the instantaneous rotation speed using complex shifted Morlet wavelets

    NASA Astrophysics Data System (ADS)

    Gryllias, Konstantinos C.; Antoniadis, Ioannis A.

    2013-07-01

    The ability of the complex continuous wavelet transform (CCWT) to provide also an estimation of the instantaneous frequency of a signal, parallel to the estimation of the instantaneous amplitude of the signal, is proposed as an approach for the estimation of the instantaneous rotation speed of machinery. Complex shifted Morlet wavelets (CSMW) present a number of advantages. The concept of shifting the Morlet wavelet in the frequency domain allows the simultaneous optimal selection of both the wavelet center frequency and the wavelet bandwidth. In this paper it is shown that the recovery of the signal frequency can be performed accurately, without the requirement that the wavelet center frequency coincides to the signal frequency. Contrarily, the accurate recovery of the signal amplitude requires additionally this last condition. The algorithm is tested on two synthetic signals and four non-stationary experimental vibration signals, in an experimental fault test rig and in a motorcycle engine. The proposed instantaneous frequency estimation approach presents very good results and in comparison to the Hilbert Transform achieves a significantly lower RMSE.

  16. On the determination of local instantaneous averages in particulate flow measurements

    NASA Technical Reports Server (NTRS)

    Vandewall, R. E.; Soo, S. L.

    1993-01-01

    Determination of instantaneous local average particle density of a gas-particle suspension requires satisfying both the time scale relation and the volume scale relation or its continuum counter part of time averaging. This procedure was validated by comparing simultaneous velocity and mass flux measurements and the laser phase Doppler measurements.

  17. Closed-loop control of flow separation using instantaneous trajectory patterns

    NASA Astrophysics Data System (ADS)

    Spohn, Andreas; Parezanović, Vladimir; Kaiser, Eurika; Cordier, Laurent; Noack, Bernd

    2014-11-01

    A new sensor technique based on visualized instantaneous trajectory patterns is tested to control flow separation. A smooth ramp mounted inside the test section of a water tunnel produces canonical separation conditions. Pulsed hydrogen bubbles furnish instantaneous trajectory patterns of the underlying dynamical system. The evolution of these patterns feeds machine learning algorithms to determine actions that reduce the separated flow region. Compared to periodic forcing the results show even with less actuator action, a major impact on the separated flow. The controlled flow states contain strongly reduced recirculation zones which remain robust even under adverse conditions. Additionally, the visualization of instantaneous trajectory patterns is shown to have some promising options: The Lagrangian coherent structures (LCS) of the controlled dynamical system can be deduced in-time without determination and integration of the instantaneous velocity fields. Additionally, classical procedures to reduce the data dimensionality, as for example the principal component analysis (PCA) and its variants, can be applied directly to the visualizations in order to feed the controller. Funding of the ANR program SepaCoDe and the ANR Chair of Excellence TUCOROM is gratefully acknowledged.

  18. Estimation of the thermal diffusivity of solids based on `instantaneous velocimetry' using an interferometer

    NASA Astrophysics Data System (ADS)

    Balachandar, Settu; Shivaprakash, N. C.; Rao, L. Kameswara

    2017-03-01

    A conceptually new approach is proposed to estimate the thermal diffusivity of optically transparent solids at ambient temperature based on the `position-dependent instantaneous velocity' of isothermal surfaces using a self-reference interferometer. A new analytical model is proposed using the exact solution to relate the instantaneous velocity of isothermal surfaces with the thermal diffusivity of solids. The experiment involves setting up a one-dimensional non-stationary heat flow inside the solid via step-temperature excitation to launch a spectrum of dissimilar `moving isothermal surfaces' at the origin. Moving isothermal surfaces exhibit macroscale `rectilinear translatory motion'; the instantaneous velocity of any isothermal surface at any location in the heat-affected region is unique and governed by the thermal diffusivity of the solids. The intensity pattern produced by the self-reference interferometer encodes the moving isothermal surfaces into the corresponding moving intensity points. The instantaneous velocities of the intensity points are measured. For a given thermo-optic coefficient, the corresponding values of the isothermal surfaces are predicted to estimate the thermal diffusivity of the solids using BK7 glass as an example. Another improved method is proposed in which thermal diffusivity is estimated without measuring thermo-optic coefficient and quartz glass is utilized as a specimen. The results obtained using the proposed approaches closely match with the literature value.

  19. Vibrotactile Discrimination in the Rat Whisker System is Based on Neuronal Coding of Instantaneous Kinematic Cues

    PubMed Central

    Waiblinger, Christian; Brugger, Dominik; Schwarz, Cornelius

    2015-01-01

    Which physical parameter of vibrissa deflections is extracted by the rodent tactile system for discrimination? Particularly, it remains unclear whether perception has access to instantaneous kinematic parameters (i.e., the details of the trajectory) or relies on temporally integration of the movement trajectory such as frequency (e.g., spectral information) and intensity (e.g., mean speed). Here, we use a novel detection of change paradigm in head-fixed rats, which presents pulsatile vibrissa stimuli in seamless sequence for discrimination. This procedure ensures that processes of decision making can directly tap into sensory signals (no memory functions involved). We find that discrimination performance based on instantaneous kinematic cues far exceeds the ones provided by frequency and intensity. Neuronal modeling based on barrel cortex single units shows that small populations of sensitive neurons provide a transient signal that optimally fits the characteristic of the subject's perception. The present study is the first to show that perceptual read-out is superior in situations allowing the subject to base perception on detailed trajectory cues, that is, instantaneous kinematic variables. A possible impact of this finding on tactile systems of other species is suggested by evidence for instantaneous coding also in primates. PMID:24169940

  20. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix D4 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE...

  1. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES...) Pt. 305, App. D4 Appendix D4 to Part 305—Water Heaters—Instantaneous—Gas Range Information...

  2. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    PubMed Central

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-01-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension. PMID:27357966

  3. The Quest for Instantaneous Perfection and the Demand for "Push-Button" Administration

    ERIC Educational Resources Information Center

    Batagiannis, Stella C.

    2009-01-01

    Educational leaders in the United States are faced with a society seeking instantaneous perfection, immediate and perfect solutions. In education, this leads to a demand for push-button administration and an abandonment of trust in educators' judgment. As exemplified by the No Child Left Behind Act (2002), the search for quick fixes results in…

  4. The antioxidative power AP—A new quantitative time dependent (2D) parameter for the determination of the antioxidant capacity and reactivity of different plants

    NASA Astrophysics Data System (ADS)

    Jung, Katinka; Richter, J.; Kabrodt, K.; Lücke, I. M.; Schellenberg, I.; Herrling, Th.

    2006-03-01

    In the last decade, naturally occurring antioxidants continue to play an important role in the food-supplement industry. The content of antioxidants in a plant depends on the species, temperature, humidity, period of growth, harvest month, part of the plant used and many other variables. Herein, we present a new method able to determine the all over antioxidative power (AP) of plant extracts or lyophilised plant parts based on the reducing activity against a stable test radical. The method is performed by ESR spectroscopy and is based on the well-known 1,1-diphenyl-2-picryl-hydrazil (DPPH) method with the major difference that both the antioxidative capacity and the antioxidative activity are used to characterise an antioxidant. The resulting antioxidative power is expressed in antioxidative units (AU), where 1 AU corresponds to the activity of a 1 ppm solution of Vitamin C as a benchmark. This method allows a rapid, unexpensive and general applicable technique for the measurement of the antioxidative power of very different kinds of substances. The inclusion of the kinetic behaviour of the reducing process of the antioxidant for the determination of the AP allows the identification of the main antioxidant present in a sample. Herein, we present the application example of seeds, sprouts and adult parts of dandelion, amaranth, quinoa, fenugreek, broccoli, red clover and mugwort, where the AP method permits to characterise the plants with the highest antioxidant capacity and reaction velocity. The method permits to select active plant extracts for the food and nutrition industry.

  5. Comparative study of reference currents and DC bus voltage control for Three-Phase Four-Wire Four-Leg SAPF to compensate harmonics and reactive power with 3D SVM.

    PubMed

    Chebabhi, A; Fellah, M K; Kessal, A; Benkhoris, M F

    2015-07-01

    In this paper the performances of three reference currents and DC bus voltage control techniques for Three-Phase Four-Wire Four-Leg SAPF are compared for balanced and unbalanced load conditions. The main goals are to minimize the harmonics, reduce the magnitude of neutral current, eliminate the zero-sequence current components caused by single-phase nonlinear loads and compensate the reactive power, and on the other hand improve performances such as robustness, stabilization, trajectory pursuit, and reduce time response. The three techniques are analyzed mathematically and simulation results are compared. The techniques considered for comparative study are the PI Control, Sliding Mode Control and the Backstepping Control. Synchronous reference frame theory (SRF) in the dqo-axes is used to generate the reference currents, of the inverter.

  6. Wideband wattmeter for instant measurement of real power

    NASA Technical Reports Server (NTRS)

    Landes, L. G.; Liu, Y. Y.

    1972-01-01

    Portable, solid state wattmeter with wideband (dc to 1 MHz) linear multiplier which provides true four quadrant operation permitting instantaneous indication of real power as oscilloscope display is described.

  7. Simultaneous learning of instantaneous and time-delayed genetic interactions using novel information theoretic scoring technique

    PubMed Central

    2012-01-01

    Background Understanding gene interactions is a fundamental question in systems biology. Currently, modeling of gene regulations using the Bayesian Network (BN) formalism assumes that genes interact either instantaneously or with a certain amount of time delay. However in reality, biological regulations, both instantaneous and time-delayed, occur simultaneously. A framework that can detect and model both these two types of interactions simultaneously would represent gene regulatory networks more accurately. Results In this paper, we introduce a framework based on the Bayesian Network (BN) formalism that can represent both instantaneous and time-delayed interactions between genes simultaneously. A novel scoring metric having firm mathematical underpinnings is also proposed that, unlike other recent methods, can score both interactions concurrently and takes into account the reality that multiple regulators can regulate a gene jointly, rather than in an isolated pair-wise manner. Further, a gene regulatory network (GRN) inference method employing an evolutionary search that makes use of the framework and the scoring metric is also presented. Conclusion By taking into consideration the biological fact that both instantaneous and time-delayed regulations can occur among genes, our approach models gene interactions with greater accuracy. The proposed framework is efficient and can be used to infer gene networks having multiple orders of instantaneous and time-delayed regulations simultaneously. Experiments are carried out using three different synthetic networks (with three different mechanisms for generating synthetic data) as well as real life networks of Saccharomyces cerevisiae, E. coli and cyanobacteria gene expression data. The results show the effectiveness of our approach. PMID:22691450

  8. Multifunctional reactive nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Stamatis, Demitrios

    Many multifunctional nanocomposite materials have been developed for use in propellants, explosives, pyrotechnics, and reactive structures. These materials exhibit high reaction rates due to their developed reaction interfacial area. Two applications addressed in this work include nanocomposite powders prepared by arrested reactive milling (ARM) for burn rate modifiers and reactive structures. In burn rate modifiers, addition of reactive nanocomposite powders to aluminized propellants increases the burn rate of aluminum and thus the overall reaction rate of an energetic formulation. Replacing only a small fraction of aluminum by 8Al·MoO3 and 2B·Ti nanocomposite powders enhances the reaction rate with little change to the thermodynamic performance of the formulation; both the rate of pressure rise and maximum pressure measured in the constant volume explosion test increase. For reactive structures, nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by ARM and consolidated using a uniaxial die. Consolidated samples had densities greater than 90% of theoretical maximum density while maintaining their high reactivity. Pellets prepared using 8Al·MoO3 powders were ignited by a CO2 laser. Ignition delays increased at lower laser powers and greater pellet densities. A simplified numerical model describing heating and thermal initiation of the reactive pellets predicted adequately the observed effects of both laser power and pellet density on the measured ignition delays. To investigate the reaction mechanisms in nanocomposite thermites, two types of nanocomposite reactive materials with the same bulk compositions 8Al·MoO3 were prepared by different methods. One of the materials was manufactured by ARM and the other, so called metastable interstitial composite (MIC), by mixing of nano-scaled individual powders. Clear differences in the low-temperature redox reactions, welldetectable by differential scanning calorimetry

  9. The 'reactive

    NASA Astrophysics Data System (ADS)

    Battista Piccardo, Giovanni; Guarnieri, Luisa

    2010-05-01

    The Ligurian ophiolitic peridotites [South Lanzo, Erro-Tobbio, Internal Ligurides and Corsica] are characterized by the abundance of spinel(Sp) peridotites showing depleted compositions and ranging from Cpx-poor Sp lherzolites to Sp harzburgites. They were recognized in the last decades as refractory residua by MORB-forming partial melting of the asthenosphere, and were similar to abyssal peridotites. Recent structural and compositional studies promoted a better understanding of their structural and compositional features and their genetic processes. In the field these depleted peridotites replace with primary contacts pyroxenite-bearing fertile Sp lherzolites that have been recognized as sub-continental lithospheric mantle. Field relationships evidence that decametric-hectometric bodies of pristine pyroxenite-veined lithospheric Sp lherzolites are preserved as structural remnants within the km-scale masses of depleted peridotites. The depleted peridotites show coarse-grained recrystallized textures and reaction micro-structures indicating pyroxene dissolution and olivine precipitation that have been considered as records of melt/peridotite interaction during reactive diffuse porous flow of undersaturated melts. They show, moreover, contrasting bulk and mineral chemistries that cannot be produced by simple partial melting and melt extraction. In particular, their bulk compositions are depleted in SiO2 and enriched in FeO with respect to refractory residua after any kind of partial melting, as calculated by Niu (1997), indicating that they cannot be formed by simple partial melting and melt extraction processes. Moreover, TiO2 content in Sp is usually significantly higher (up to 0.8-1.0 wt%) than typical TiO2 contents of spinels (usually < 0.1-0.2 wt %) in fertile mantle peridotites and melting refractory residua, indicating that spinel attained element equilibration with a Ti-bearing basaltic melt. The depleted peridotites usually show strongly variable Cpx modal

  10. Educational Electrical Appliance Power Meter and Logger

    ERIC Educational Resources Information Center

    Nunn, John

    2013-01-01

    The principles behind two different designs of inductive power meter are presented. They both make use of the microphone input of a computer which, together with a custom-written program, can record the instantaneous power of a domestic electrical appliance. The device can be built quickly and can be calibrated with reference to a known power…

  11. Educational Electrical Appliance Power Meter and Logger

    ERIC Educational Resources Information Center

    Nunn, John

    2013-01-01

    The principles behind two different designs of inductive power meter are presented. They both make use of the microphone input of a computer which, together with a custom-written program, can record the instantaneous power of a domestic electrical appliance. The device can be built quickly and can be calibrated with reference to a known power…

  12. Effect of input power and gas pressure on the roughening and selective etching of SiO{sub 2}/Si surfaces in reactive plasmas

    SciTech Connect

    Zhong, X. X.; Huang, X. Z.; Tam, E.; Ostrikov, K.; Colpo, P.; Rossi, F.

    2010-09-15

    We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as 'laboratory on a chip' and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO{sub 2} can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO{sub 2}/Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

  13. Comparative study of cluster Ag17Cu2 by instantaneous normal mode analysis and by isothermal Brownian-type molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Tang, Ping-Han; Wu, Ten-Ming; Yen, Tsung-Wen; Lai, S. K.; Hsu, P. J.

    2011-09-01

    We perform isothermal Brownian-type molecular dynamics simulations to obtain the velocity autocorrelation function and its time Fourier-transformed power spectral density for the metallic cluster Ag17Cu2. The temperature dependences of these dynamical quantities from T = 0 to 1500 K were examined and across this temperature range the cluster melting temperature Tm, which we define to be the principal maximum position of the specific heat is determined. The instantaneous normal mode analysis is then used to dissect the cluster dynamics by calculating the vibrational instantaneous normal mode density of states and hence its frequency integrated value Ij which is an ensemble average of all vibrational projection operators for the jth atom in the cluster. In addition to comparing the results with simulation data, we look more closely at the entities Ij of all atoms using the point group symmetry and diagnose their temperature variations. We find that Ij exhibit features that may be used to deduce Tm, which turns out to agree very well with those inferred from the power spectral density and specific heat.

  14. Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps

    NASA Technical Reports Server (NTRS)

    Stroeer, A.; Blackburn, L.; Camp, J.

    2011-01-01

    Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a X(sup 2) goodness-offit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.

  15. Third post-Newtonian gravitational waveforms for compact binary systems in general orbits: Instantaneous terms

    NASA Astrophysics Data System (ADS)

    Mishra, Chandra Kant; Arun, K. G.; Iyer, Bala R.

    2015-04-01

    We compute the instantaneous contributions to the spherical harmonic modes of gravitational waveforms from compact binary systems in general orbits up to the third post-Newtonian (PN) order. We further extend these results for compact binaries in quasielliptical orbits using the 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric orbits. Using the multipolar post-Minkowskian formalism, starting from the different mass and current-type multipole moments, we compute the spin-weighted spherical harmonic decomposition of the instantaneous part of the gravitational waveform. These are terms which are functions of the retarded time and do not depend on the history of the binary evolution. Together with the hereditary part, which depends on the binary's dynamical history, these waveforms form the basis for construction of accurate templates for the detection of gravitational wave signals from binaries moving in quasielliptical orbits.

  16. Measuring the instantaneous arrival times of a long series of consecutive photoevents

    NASA Astrophysics Data System (ADS)

    Stoyanov, Dimitar V.

    1998-02-01

    A novel technique for measuring the instantaneous arrival times of a long series of consecutive photoevents effective at shorter intrapulse intervals up to 10 ns with an accuracy of better than 1 ns has been developed and tested experimentally and by simulations. It is based on linear processing without dead time effects of detector pulses by excitation of a resonant system, analog/digital sampling, deconvolution, and calculation of single pulse centers and electric charges. The maximum number of processed photoevents exceeds 103 at 108 pulse rate. In an accumulation regime the method can be used for temporal profiling of the number of photocounts with very high resolutions up to 0.1 ns. This method covers the intermediate range of photon rates, where the well known techniques are ineffective. It can be applied for high order photon statistics, in lidar sensing, time-resolved spectroscopy, as well as in typical electronic measurements of instantaneous frequencies, periods etc.

  17. Thermodynamics of Iodide Adsorption at the Instantaneous Air-Water Interface.

    SciTech Connect

    Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.

    2013-03-21

    We perform simulations using both polarizable and non-polarizable force fields to study the adsorption of iodide to the air-water interface. A novel aspect of our analysis is that the progress of the adsorption is measured as the distance from the instantaneous interface, which is defined by a coarse-graining scheme proposed recently by Willard and Chandler.\\cite{chandler1} Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are obscured by thermal fluctuations when the same quantities are referred to an average measure of the position of the interface, such as the Gibbs dividing surface. Our results suggest that an ion adsorbed at the interface resides primarily in the topmost layer water.

  18. Ionizer induced (220)Rn decay product removal in confined environment: Continuous vs. instantaneous source.

    PubMed

    Khandare, Pallavi; Joshi, Manish; Khan, Arshad; Sapra, B K; Mayya, Y S

    2016-11-01

    This paper presents an experimental approach to evaluate the effectiveness of unipolar ionizers in indoor environment for the removal of thoron ((220)Rn) daughter products. Both continuous and instantaneous source conditions were simulated during these experiments. Activity and aerosol related parameters were measured for these experiments and results were interpreted. Activity concentration was found to be reduced by a factor 6.6 and 34 for continuous and instantaneous source conditions, respectively. The particle size dependency of mitigation of particles using ionizer is also discussed. The effect of ionizer on activity size distribution has been directly measured for the first time. The ionizer induced changes in particle size distributions were coupled to Dose Reduction Factor (DRF) model and significant DRF values were obtained for both source conditions. This study discusses open issues which are important for establishing ionizer induced radioactivity mitigation as a technology application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Design and Development of ZigBee Based Instantaneous Flat-plate Collector Efficiency Measurement System

    NASA Astrophysics Data System (ADS)

    Vairamani, K.; Venkatesh, K. Arun; Mathivanan, N.

    2011-01-01

    Computing the efficiency of flat-plate collector is vital in solar thermal system testing. This paper presents the design of ZigBee enabled data acquisition system for instantaneous flat-plate collector efficiency calculation. It involves measurement of parameters like inlet and outlet fluid temperatures, ambient temperature and solar radiation intensity. The designed system has a base station and a sensor node. ZigBee wireless communication protocol is used for communication between the base station and the sensor node for wireless data acquisition. The wireless sensor node which is mounted over the collector plate includes the necessary sensors and associated signal-conditioners. An application program has been developed on LabVIEW platform for data acquisition, processing and analysis and is executed in base station PC. Instantaneous flat-plate collector efficiency is computed and reported.

  20. Instantaneous pair theory for high-frequency vibrational energy relaxation in fluids

    NASA Astrophysics Data System (ADS)

    Larsen, Ross E.; Stratt, Richard M.

    1999-01-01

    Notwithstanding the long and distinguished history of studies of vibrational energy relaxation, exactly how it is that high frequency vibrations manage to relax in a liquid remains somewhat of a mystery. Both experimental and theoretical approaches seem to say that there is a natural frequency range associated with intermolecular motion in liquids, typically spanning no more than a few hundred cm-1. Landau-Teller-type theories explain rather easily how a solvent can absorb any vibrational energy within this "band," but how is it that molecules can rid themselves of superfluous vibrational energies significantly in excess of these values? In this paper we develop a theory for such processes based on the idea that the crucial liquid motions are those that most rapidly modulate the force on the vibrating coordinate — and that by far the most important of these motions are those involving what we have called the mutual nearest neighbors of the vibrating solute. Specifically, we suggest that whenever there is a single solvent molecule sufficiently close to the solute that the solvent and solute are each other's nearest neighbors, then the instantaneous scattering dynamics of the solute-solvent pair alone suffices to explain the high-frequency relaxation. This highly reduced version of the dynamics has implications for some of the previous theoretical formulations of this problem. Previous instantaneous-normal-mode theories allowed us to understand the origin of a band of liquid frequencies, and even had some success in predicting relaxation within this band, but lacking a sensible picture of the effects of liquid anharmonicity on dynamics, were completely unable to treat higher frequency relaxation. When instantaneous-normal-mode dynamics is used to evaluate the instantaneous pair theory, though, we end up with a multiphonon picture of the relaxation which is in excellent agreement with the exact high-frequency dynamics — suggesting that the critical anharmonicity

  1. Sand moisture assessment using instantaneous phase information in ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Burns, Dylan; Huston, Dryver; Xia, Tian

    2015-04-01

    In this paper, a method using the instantaneous phase information of the reflection ground penetrating radar (GPR) signal to detect the variation of sand moisture is developed. The moisture changes the permittivity of the medium, which results in different speed when the GPR electromagnetic (EM) wave propagates in the medium. In accordance to this principle, we develop an analytical method to extract GPR reflection signal's instantaneous phase parameters utilizing Hilbert Transform for sand moisture characterization. For test evaluation, Finite Difference Time Domain (FDTD) numerical simulations using a 3rd party open source program GprMax V2.0, and laboratory experiments on sand samples are conducted using a commercial GPR (2.3 GHz Mala CX) as the data acquisition system.

  2. Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps

    NASA Technical Reports Server (NTRS)

    Stroeer, A.; Blackburn, L.; Camp, J.

    2011-01-01

    Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a X(sup 2) goodness-offit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.

  3. Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications.

    PubMed

    Fulop, Sean A; Fitz, Kelly

    2006-01-01

    A modification of the spectrogram (log magnitude of the short-time Fourier transform) to more accurately show the instantaneous frequencies of signal components was first proposed in 1976 [Kodera et al., Phys. Earth Planet. Inter. 12, 142-150 (1976)], and has been considered or reinvented a few times since but never widely adopted. This paper presents a unified theoretical picture of this time-frequency analysis method, the time-corrected instantaneous frequency spectrogram, together with detailed implementable algorithms comparing three published techniques for its computation. The new representation is evaluated against the conventional spectrogram for its superior ability to track signal components. The lack of a uniform framework for either mathematics or implementation details which has characterized the disparate literature on the schemes has been remedied here. Fruitful application of the method is shown in the realms of speech phonation analysis, whale song pitch tracking, and additive sound modeling.

  4. Experimental evaluation of instantaneous phase based index for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jha, Ratneshwar; Cross, Kevin; Janoyan, Kerop D.; Sazonov, Edward S.; Fuchs, Michael; Krishnamurthy, Vidya

    2006-03-01

    The sensitivity and consistency of a damage index based on instantaneous phase values obtained through vibration measurements of a structure is investigated experimentally. An 'empirical mode decomposition' is performed to decompose structural vibrations into a small number of 'intrinsic mode functions' following the methodology generally known as the Hilbert-Huang Transform. Instantaneous phase information is derived through the Hilbert transform of intrinsic mode functions. The damage index is based on the idea that the difference in phase functions between any two points on a structure is altered if the structure is damaged. Experimental investigations are performed on a beam structure with varying excitations (white noise signals), damage levels, and damage locations. The damage index shows generally consistent results, but its sensitivity to damages needs improvements for practical applications.

  5. Dynamic hydrologic modeling using the zero-parameter Budyko model with instantaneous dryness index

    NASA Astrophysics Data System (ADS)

    Biswal, Basudev

    2016-09-01

    Long-term partitioning of hydrologic quantities is achieved by using the zero-parameter Budyko model which defines a dryness index. However, this approach is not suitable for dynamic partitioning particularly at diminishing timescales, and therefore, a universally applicable zero-parameter model remains elusive. Here an instantaneous dryness index is proposed which enables dynamic hydrologic modeling using the Budyko model. By introducing a "decay function" that characterizes the effects of antecedent rainfall and solar energy on the dryness state of a basin at a time, I propose the concept of instantaneous dryness index and use the Budyko function to perform continuous hydrologic partitioning. Using the same decay function, I then obtain discharge time series from the effective rainfall time series. The model is evaluated by considering data form 63 U.S. Geological Survey basins. Results indicate the possibility of using the proposed framework as an alternative platform for prediction in ungagued basins.

  6. Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yiwen; Principe, Jose C.

    2010-10-01

    Recently, the authors published a sequential decoding algorithm for motor brain-machine interfaces (BMIs) that infers movement directly from spike trains and produces a new kinematic output every time an observation of neural activity is present at its input. Such a methodology also needs a special instantaneous neuronal encoding model to relate instantaneous kinematics to every neural spike activity. This requirement is unlike the tuning methods commonly used in computational neuroscience, which are based on time windows of neural and kinematic data. This paper develops a novel, online, encoding model that uses the instantaneous kinematic variables (position, velocity and acceleration in 2D or 3D space) to estimate the mean value of an inhomogeneous Poisson model. During BMI decoding the mapping from neural spikes to kinematics is one to one and easy to implement by simply reading the spike times directly. Due to the high temporal resolution of the encoding, the delay between motor cortex neurons and kinematics needs to be estimated in the encoding stage. Mutual information is employed to select the optimal time index defined as the lag for which the spike event is maximally informative with respect to the kinematics. We extensively compare the windowed tuning models with the proposed method. The big difference between them resides in the high firing rate portion of the tuning curve, which is rather important for BMI-decoding performance. This paper shows that implementing such an instantaneous tuning model in sequential Monte Carlo point process estimation based on spike timing provides statistically better kinematic reconstructions than the linear and exponential spike-tuning models.

  7. An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely sensed instantaneous observations

    NASA Astrophysics Data System (ADS)

    Tang, Ronglin; Li, Zhao-Liang

    2017-03-01

    Evapotranspiration (ET) is a primary mechanism for water and heat transfer between land and the atmosphere. One approach to estimate ET is from instantaneous remotely sensed data. The constant evaporative fraction (EF) method is then usually used to estimate integrated daily fluxes, which are typically underestimated values. Here we present a theoretical improvement to the conventional EF. The improved EF is shown to be robust and superior to the conventional approach, and it significantly reduces the underestimation bias.

  8. [Instantaneous emission simulation for light-duty diesel vehicle with different driving cycles by CMEM model].

    PubMed

    Dai, Pu; Chen, Chang-Hong; Huang, Cheng; Li, Li; Jia, Ji-Hong; Dong, Yan-Qiang

    2009-05-15

    CMEM model for calculating time based instantaneous emission from light duty diesel vehicle and its input parameters were introduced. On-board test data were used to validate the simulation results. The relative error of THC, CO, and NOx are 14.2%, 3.7% and 32.7%, respectively, while the correlation coefficients reach 0.73, 0.72 and 0.87. The instantaneous emissions of the light duty diesel vehicle simulated by CMEM model are strongly coherent with the transient driving cycle in Shanghai. The simulation of instantaneous emissions and fuel economy under the ECE-15 cycle, FTP cycle, Japan 10-15 cycle and the cycle of shanghai arterial road show that the instantaneous emissions decline with the increase of the vehicle speed, especially from 0-10 km x h(-1) to 10-20 km x h(-1). The acceleration process dominated the whole emissions, which contributes over 30% of the total emission, and sometimes it even reaches over 70%. The contributions of shanghai arterial road for idle condition are 40% and 30%, emission factors of CO are 1.3, 1.5 and 1.4 times of ECE-15 cycle, FTP cycle, Japan 10-15 cycle respectively; THC are respectively 1.5, 2.1 and 1.9 times of above cycles; and emission factors of NOx are respectively 1.2, 1.3 and 1.3 times of ECE-15 cycle, FTP cycle and Japan 10-15 cycle. The fuel economy of the light-duty diesel car on shanghai arterial road is the worst, which is 9.56 km x L(-1). The driving cycles used on abroad can not reflect the actual driving conditions in China.

  9. Instantaneous and continuous cardiac output in humans obtained with a Doppler pulmonary artery catheter.

    PubMed

    Segal, J; Nassi, M; Ford, A J; Schuenemeyer, T D

    1990-11-01

    A new Doppler pulmonary artery catheter was used to measure instantaneous and continuous cardiac output in both an in vitro model and in 44 patients undergoing cardiac catheterization. Cardiac output was calculated with use of the Doppler catheter-determined instantaneous space-average velocity and the ultrasonically determined instantaneous vessel area. Doppler flow and thermodilution were compared with electromagnetic flow in the in vitro model and with Fick cardiac output in patients. Doppler catheter-determined flow was highly predictive of electro-magnetic flow in the pulsatile flow model (r = 0.99, slope [m] = 1.01 and SEE = 0.05) and appeared comparable to thermodilution measurements (r = 1.00, m = 1.03 and SEE = 0.02). In patients undergoing cardiac catheterization, Doppler catheter-determined cardiac output appeared to modestly underestimate Fick cardiac output (r = 0.82, m = 0.80 and SEE = 0.09; mean error +/- SEM = -0.26 +/- 0.14 liters/min). However, predictive accuracy was comparable to simultaneously obtained thermodilution measurements (r = 0.85, m = 1.07 and SEE = 0.10; mean error +/- SEM = 0.61 +/- 0.16 liters/min). This new Doppler catheter system utilizes multiple ultrasound transducers to provide angle-independent measurements of vessel diameter and instantaneous velocity within the main pulmonary artery, resulting in a more accurate assessment of Doppler-derived cardiac output. In addition, useful information concerning hemodynamic variables such as peak flow, acceleration, deceleration, stroke work and pulmonary impedance may be derived.

  10. Predicting physical stability in pressurized metered dose inhalers via dwell and instantaneous force colloidal probe microscopy.

    PubMed

    D'Sa, Dexter; Chan, Hak-Kim; Chrzanowski, Wojciech

    2014-09-01

    Colloidal probe microscopy (CPM) is a quantitative predictive tool, which can offer insight into particle behavior in suspension pressurized metered dose inhalers (pMDIs). Although CPM instantaneous force measurements, which involve immediate retraction of the probe upon sample contact, can provide information on inter-particle attractive forces, they lack the ability to appropriately imitate all critical particle pMDI interactions (e.g., particle re-dispersion after prolonged pMDI storage). In this paper, two novel dwell force techniques - indentation and deflection dwell - were employed to mimic long-term particle interactions present in pMDIs, using particles of various internal structures and a model liquid propellant (2H,3H perfluoropentane) as a model system. Dwell measurements involve particle contact for an extended period of time. In deflection dwell mode the probe is held at a specific position, while in indentation dwell mode the probe is forced into the sample with a constant force for the entirety of the contact time. To evaluate the applicability of CPM to predict actual pMDI physical stability, inter-particle force measurements were compared with qualitative and quantitative bulk pMDI measurement techniques (visual quality and light scattering). Measured instantaneous attractive (snap-in) and adhesive (max-pull) forces decreased as a function of increasing surface area, while adhesive forces measured by indentation dwell decreased as a function of dwell contact time for particles containing voids. Instantaneous force measurements provided information on the likelihood of floccule formation, which was predictive of partitioning rates, while indentation dwell force measurements were predictive of formulation re-dispersibility after prolonged storage. Dwell force measurements provide additional information on particle behavior within a pMDI not obtainable via instantaneous measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... annual energy costs(dollars/year) Natural Gas ($/year) Low High Propane ($/year) Low High Under 1.00 * * * * 1.00 to 2.00 * * * * 2.01 to 3.00 $192 $237 $465 $574 Over 3.00 170 204 408 494 * No data submitted. ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix...

  12. On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence

    NASA Astrophysics Data System (ADS)

    Zentgraf, Florian; Baum, Elias; Böhm, Benjamin; Dreizler, Andreas; Peterson, Brian

    2016-04-01

    Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.

  13. On the turbulent flow in piston engines: Coupling of statistical theory quantities and instantaneous turbulence

    SciTech Connect

    Zentgraf, Florian; Baum, Elias; Dreizler, Andreas; Böhm, Benjamin; Peterson, Brian

    2016-04-15

    Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.

  14. A Robust Method to Estimate Instantaneous Heart Rate from Noisy Electrocardiogram Waveforms

    DTIC Science & Technology

    2011-02-01

    1Bioinformatics Cell, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, ATTN: MCMR-TT, 504 Scott...to estimate instantaneous Address correspondence to Jaques Reifman, Bioinformatics Cell, Telemedicine and Advanced Technology Research Center, U.S...Command, Telemedicine and Advanced Technology Research Center,504 Scott St,Fort Detrick,MD,21702 8. PERFORMING ORGANIZATION REPORT NUMBER 9

  15. Instantaneous velocity field measurement of objects in coaxial rotation using digital image velocimetry

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.; Park, H.

    1990-01-01

    The instantaneous velocity fields of time-dependent flows, or of a collection of objects moving with spatially varying velocities, can be measured by means of digital image velocimetry (DIV). DIV overcomes several shortcomings of such existing techniques as laser-speckle or particle-image velocimetry. Attention is presently given to numerically generated images representing objects in uniform motion which are then used for the experimental validation of DIV.

  16. Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal.

    PubMed

    Čić, Maja; Šoda, Joško; Bonković, Mirjana

    2013-12-01

    This study presents a novel approach for the electroencephalogram (EEG) signal quantification in which the empirical mode decomposition method, a time-frequency method designated for nonlinear and non-stationary signals, decomposes the EEG signal into intrinsic mode functions (IMF) with corresponding frequency ranges that characterize the appropriate oscillatory modes embedded in the brain neural activity acquired using EEG. To calculate the instantaneous frequency of IMFs, an algorithm was developed using the Generalized Zero Crossing method. From the resulting frequencies, two different novel features were generated: the median instantaneous frequencies and the number of instantaneous frequency changes during a 30s segment for seven IMFs. The sleep stage classification for the daytime sleep of 20 healthy babies was determined using the Support Vector Machine classification algorithm. The results were evaluated using the cross-validation method to achieve an approximately 90% accuracy and with new examinee data to achieve 80% average accuracy of classification. The obtained results were higher than the human experts' agreement and were statistically significant, which positioned the method, based on the proposed features, as an efficient procedure for automatic sleep stage classification. The uniqueness of this study arises from newly proposed features of the time-frequency domain, which bind characteristics of the sleep signals to the oscillation modes of brain activity, reflecting the physical characteristics of sleep, and thus have the potential to highlight the congruency of twin pairs with potential implications for the genetic determination of sleep.

  17. The relationship between the instantaneous velocity field and the rate of moment release in the lithosphere

    USGS Publications Warehouse

    Pollitz, F.F.

    2003-01-01

    Instantaneous velocity gradients within the continental lithosphere are often related to the tectonic driving forces. This relationship is direct if the forces are secular, as for the case of loading of a locked section of a subduction interface by the downgoing plate. If the forces are static, as for the case of lateral variations in gravitational potential energy, then velocity gradients can be produced only if the lithosphere has, on average, zero strength. The static force model may be related to the long-term velocity field but not the instantaneous velocity field (typically measured geodetically over a period of several years) because over short time intervals the upper lithosphere behaves elastically. In order to describe both the short- and long-term behaviour of an (elastic) lithosphere-(viscoelastic) asthenosphere system in a self-consistent manner, I construct a deformation model termed the expected interseismic velocity (EIV) model. Assuming that the lithosphere is populated with faults that rupture continually, each with a definite mean recurrence time, and that the Earth is well approximated as a linear elastic-viscoelastic coupled system, I derive a simple relationship between the instantaneous velocity field and the average rate of moment release in the lithosphere. Examples with synthetic fault networks demonstrate that velocity gradients in actively deforming regions may to a large extent be the product of compounded viscoelastic relaxation from past earthquakes on hundreds of faults distributed over large ( ≥106 km2) areas.

  18. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry

    NASA Astrophysics Data System (ADS)

    Brites, Carlos D. S.; Xie, Xiaoji; Debasu, Mengistie L.; Qin, Xian; Chen, Runfeng; Huang, Wei; Rocha, João; Liu, Xiaogang; Carlos, Luís D.

    2016-10-01

    Brownian motion is one of the most fascinating phenomena in nature. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems, gene therapy in biomedical research, artificial motors and galaxy formation to the behaviour of stock prices. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF4:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K-1 at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er3+ emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.

  19. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses

    NASA Astrophysics Data System (ADS)

    Lerner, Edan; Bouchbinder, Eran

    2017-08-01

    Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .

  20. Backstroke swimming: exploring gender differences in passive drag and instantaneous net drag force.

    PubMed

    Formosa, Danielle P; Sayers, Mark Gregory Leigh; Burkett, Brendan

    2013-12-01

    This study explored and quantified gender differences in passive drag and instantaneous net drag force profile for elite backstroke swimmers (FINA points 938 ± 71). Nine female and ten male backstroke swimmers completed eight maximum speed trials. During the passive drag condition participants were towed at the speed achieved within the maximum effort backstroke swimming trials, while holding a supine stationary streamline position. The remaining trials, swimmers performed their natural swimming stroke, while attached to an assisted towing device. Male participant's passive (P < .001) and mean net drag force (P < .001) were significantly higher compared with female participants. In addition, there were no significant differences by gender between either the minimum or maximum net drag forces produced during the left and right arm strokes. Instantaneous net drag force profiles demonstrated differences within and between individuals and genders. The swimmers who recorded the fastest speed also recorded the smallest difference in net drag force fluctuations. The instantaneous net drag force profile within elite backstroke swimming provides further insight into stroke technique of this sport.

  1. Estimation of instantaneous complex dynamics through Lyapunov exponents: a study on heartbeat dynamics.

    PubMed

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2014-01-01

    Measures of nonlinearity and complexity, and in particular the study of Lyapunov exponents, have been increasingly used to characterize dynamical properties of a wide range of biological nonlinear systems, including cardiovascular control. In this work, we present a novel methodology able to effectively estimate the Lyapunov spectrum of a series of stochastic events in an instantaneous fashion. The paradigm relies on a novel point-process high-order nonlinear model of the event series dynamics. The long-term information is taken into account by expanding the linear, quadratic, and cubic Wiener-Volterra kernels with the orthonormal Laguerre basis functions. Applications to synthetic data such as the Hénon map and Rössler attractor, as well as two experimental heartbeat interval datasets (i.e., healthy subjects undergoing postural changes and patients with severe cardiac heart failure), focus on estimation and tracking of the Instantaneous Dominant Lyapunov Exponent (IDLE). The novel cardiovascular assessment demonstrates that our method is able to effectively and instantaneously track the nonlinear autonomic control dynamics, allowing for complexity variability estimations.

  2. Inhomogeneous point-process entropy: An instantaneous measure of complexity in discrete systems

    NASA Astrophysics Data System (ADS)

    Valenza, Gaetano; Citi, Luca; Scilingo, Enzo Pasquale; Barbieri, Riccardo

    2014-05-01

    Measures of entropy have been widely used to characterize complexity, particularly in physiological dynamical systems modeled in discrete time. Current approaches associate these measures to finite single values within an observation window, thus not being able to characterize the system evolution at each moment in time. Here, we propose a new definition of approximate and sample entropy based on the inhomogeneous point-process theory. The discrete time series is modeled through probability density functions, which characterize and predict the time until the next event occurs as a function of the past history. Laguerre expansions of the Wiener-Volterra autoregressive terms account for the long-term nonlinear information. As the proposed measures of entropy are instantaneously defined through probability functions, the novel indices are able to provide instantaneous tracking of the system complexity. The new measures are tested on synthetic data, as well as on real data gathered from heartbeat dynamics of healthy subjects and patients with cardiac heart failure and gait recordings from short walks of young and elderly subjects. Results show that instantaneous complexity is able to effectively track the system dynamics and is not affected by statistical noise properties.

  3. Representation of Instantaneous and Short-Term Loudness in the Human Cortex

    PubMed Central

    Thwaites, Andrew; Glasberg, Brian R.; Nimmo-Smith, Ian; Marslen-Wilson, William D.; Moore, Brian C. J.

    2016-01-01

    Acoustic signals pass through numerous transforms in the auditory system before perceptual attributes such as loudness and pitch are derived. However, relatively little is known as to exactly when these transformations happen, and where, cortically or sub-cortically, they occur. In an effort to examine this, we investigated the latencies and locations of cortical entrainment to two transforms predicted by a model of loudness perception for time-varying sounds: the transforms were instantaneous loudness and short-term loudness, where the latter is hypothesized to be derived from the former and therefore should occur later in time. Entrainment of cortical activity was estimated from electro- and magneto-encephalographic (EMEG) activity, recorded while healthy subjects listened to continuous speech. There was entrainment to instantaneous loudness bilaterally at 45, 100, and 165 ms, in Heschl's gyrus, dorsal lateral sulcus, and Heschl's gyrus, respectively. Entrainment to short-term loudness was found in both the dorsal lateral sulcus and superior temporal sulcus at 275 ms. These results suggest that short-term loudness is derived from instantaneous loudness, and that this derivation occurs after processing in sub-cortical structures. PMID:27199645

  4. Equatorial wave expansion of instantaneous flows for diagnosis of equatorial waves from data: Formulation and illustration

    NASA Astrophysics Data System (ADS)

    Barton, Cory; Cai, Ming

    2017-10-01

    This paper presents a method for expanding horizontal flow variables in data using the free solutions to the shallow-water system as a basis set. This method for equatorial wave expansion of instantaneous flows (EWEIF) uses dynamic constraints in conjunction with projections of data onto parabolic cylinder functions to determine the amplitude of all equatorial waves. EWEIF allows us to decompose an instantaneous wave flow into individual equatorial waves with a presumed equivalent depth without using temporal or spatial filtering a priori. Three sets of EWEIF analyses are presented. The first set is to confirm that EWEIF is capable of recovering the individual waves constructed from theoretical equatorial wave solutions under various scenarios. The other two sets demonstrate the ability of the EWEIF method to derive time series of individual equatorial waves from instantaneous wave fields without knowing a priori exactly which waves exist in the data as well as their spatial and temporal scales using outputs of an equatorial β-channel shallow-water model and ERA-Interim data. The third set of demonstrations shows, for the first time, the continuous evolutions of individual equatorial waves in the stratosphere whose amplitude is synchronized with the background zonal wind as predicted by quasi-biennial oscillation theory.

  5. An image-processing based technique to obtain instantaneous horizontal walking and running speed.

    PubMed

    Nagano, Akinori; Fujimoto, Masahiro; Kudo, Shoma; Akaguma, Ryosuke

    2017-01-01

    Walking and running speed is a fundamental parameter studied in a wide range of areas such as sport biomechanics, rehabilitation, health promotion of the elderly, etc. Given that walking or running speed is not constant even within a stride, instantaneous changes in the body motion need to be evaluated to better understand one's performance. In this study, a new cost- and time- efficient methodology to determine instantaneous horizontal walking and running speed was developed. The newly developed method processes the movies taken with a (high-speed) camera. It consists of five sub-steps, which are performed in a serial order: (1) Subtraction of the background image, (2) filtering, (3) binarization and centroid determination, (4) transformation to the laboratory coordinate system and (5) differentiation. To test the accuracy of the newly developed method, the output (position and speed) was compared with the data obtained using motion capture. The average root mean squared (RMS) error (difference between the outputs of the newly developed method and motion capture) of position-time curves was 0.011m-0.033m. The average RMS error of speed-time curves was 0.054m/s-0.076m/s. It was shown that this new method produces accurate outputs of instantaneous walking and running speed.

  6. Instantaneous Directional Growth of Block Copolymer Nanowires During Heterogeneous Radical Polymerization (HRP).

    PubMed

    Lu, Chunliang; Urban, Marek W

    2016-04-13

    Polymeric nanowires that consist of ultrahigh molecular weight block copolymers were instantaneously prepared via one-step surfactant-free heterogeneous radical polymerization (HRP). Under heterogeneous reaction and initiator-starvation conditions, the sequential copolymerization of hydrophilic and hydrophobic monomers facilitates the formation of amphiphilic ultrahigh molecular weight block copolymers, which instantaneously assemble to polymeric nanowires. As polymerization progresses, initially formed nanoparticles exhibit the directional growth due to localized repulsive forces of hydrophilic blocks and confinement of the hydrophobic blocks that adopt favorable high aspect ratio nanowire morphologies. Using one-step synthetic approach that requires only four ingredients (water as a solvent, two polymerizable monomers (one hydrophilic and one hydrophobic), and water-soluble initiator), block copolymer nanowires ∼70 nm in diameter and hundreds of microns in length are instantaneously grown. For example, when 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) and styrene (St) were copolymerized, high aspect ratio nanowires consist of ultrahigh (>10(6) g/mol) molecular weight pDMAEMA-b-St block copolymers and the presence of temperature responsive pDMAEMA blocks facilitates nanowire diameter changes as a function of temperature. These morphologies may serve as structural components of the higher order biological constructs at micro and larger length scales, ranging from single strand nanowires to engineered biomolecular networks capable of responding to diverse and transient environmental signals, and capable of dimensional changes triggered by external stimuli.

  7. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry.

    PubMed

    Brites, Carlos D S; Xie, Xiaoji; Debasu, Mengistie L; Qin, Xian; Chen, Runfeng; Huang, Wei; Rocha, João; Liu, Xiaogang; Carlos, Luís D

    2016-10-01

    Brownian motion is one of the most fascinating phenomena in nature. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems, gene therapy in biomedical research, artificial motors and galaxy formation to the behaviour of stock prices. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF4:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K(-1) at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er(3+) emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.

  8. Uncertainties in Instantaneous Rainfall Rate Estimates: Satellite vs. Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Amitai, E.; Huffman, G. J.; Goodrich, D. C.

    2012-12-01

    High-resolution precipitation intensities are significant in many fields. For example, hydrological applications such as flood forecasting, runoff accommodation, erosion prediction, and urban hydrological studies depend on an accurate representation of the rainfall that does not infiltrate the soil, which is controlled by the rain intensities. Changes in the rain rate pdf over long periods are important for climate studies. Are our estimates accurate enough to detect such changes? While most evaluation studies are focusing on the accuracy of rainfall accumulation estimates, evaluation of instantaneous rainfall intensity estimates is relatively rare. Can a speceborne radar help in assessing ground-based radar estimates of precipitation intensities or is it the other way around? In this presentation we will provide some insight on the relative accuracy of instantaneous precipitation intensity fields from satellite and ground-based observations. We will examine satellite products such as those from the TRMM Precipitation Radar and those from several passive microwave imagers and sounders by comparing them with advanced high-resolution ground-based products taken at overpass time (snapshot comparisons). The ground based instantaneous rain rate fields are based on in situ measurements (i.e., the USDA/ARS Walnut Gulch dense rain gauge network), remote sensing observations (i.e., the NOAA/NSSL NMQ/Q2 radar-only national mosaic), and multi-sensor products (i.e., high-resolution gauge adjusted radar national mosaics, which we have developed by applying a gauge correction on the Q2 products).

  9. Estimation of Instantaneous Complex Dynamics through Lyapunov Exponents: A Study on Heartbeat Dynamics

    PubMed Central

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2014-01-01

    Measures of nonlinearity and complexity, and in particular the study of Lyapunov exponents, have been increasingly used to characterize dynamical properties of a wide range of biological nonlinear systems, including cardiovascular control. In this work, we present a novel methodology able to effectively estimate the Lyapunov spectrum of a series of stochastic events in an instantaneous fashion. The paradigm relies on a novel point-process high-order nonlinear model of the event series dynamics. The long-term information is taken into account by expanding the linear, quadratic, and cubic Wiener-Volterra kernels with the orthonormal Laguerre basis functions. Applications to synthetic data such as the Hénon map and Rössler attractor, as well as two experimental heartbeat interval datasets (i.e., healthy subjects undergoing postural changes and patients with severe cardiac heart failure), focus on estimation and tracking of the Instantaneous Dominant Lyapunov Exponent (IDLE). The novel cardiovascular assessment demonstrates that our method is able to effectively and instantaneously track the nonlinear autonomic control dynamics, allowing for complexity variability estimations. PMID:25170911

  10. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼ 55%.

    PubMed

    Lin, Long; Xie, Yannan; Niu, Simiao; Wang, Sihong; Yang, Po-Kang; Wang, Zhong Lin

    2015-01-27

    In comparison to in-pane sliding friction, rolling friction not only is likely to consume less mechanical energy but also presents high robustness with minimized wearing of materials. In this work, we introduce a highly efficient approach for harvesting mechanical energy based on rolling electrification and electrostatic induction, aiming at improving the energy conversion efficiency and device durability. The rolling triboelectric nanogenerator is composed of multiple steel rods sandwiched by two fluorinated ethylene propylene (FEP) thin films. The rolling motion of the steel rods between the FEP thin films introduces triboelectric charges on both surfaces and leads to the change of potential difference between each pair of electrodes on back of the FEP layer, which drives the electrons to flow in the external load. As power generators, each pair of output terminals works independently and delivers an open-circuit voltage of 425 V, and a short-circuit current density of 5 mA/m(2). The two output terminals can also be integrated to achieve an overall power density of up to 1.6 W/m(2). The impacts of variable structural factors were investigated for optimization of the output performance, and other prototypes based on rolling balls were developed to accommodate different types of mechanical energy sources. Owing to the low frictional coefficient of the rolling motion, an instantaneous energy conversion efficiency of up to 55% was demonstrated and the high durability of the device was confirmed. This work presents a substantial advancement of the triboelectric nanogenerators toward large-scope energy harvesting and self-powered systems.

  11. Trends in floods in small Norwegian catchments - instantaneous vs. daily peaks

    NASA Astrophysics Data System (ADS)

    Wilson, Donna; Hisdal, Hege

    2013-04-01

    Climate change is expected to cause increases in precipitation in Northern Europe with increasing flood magnitudes as a result. Although an increase in both the frequency and intensity precipitation events has been observed across most of Norway (Dyrrdal, 2012), no systematic spatial trends in flood magnitude have been identified (Wilson et al., 2010). Traditionally mean daily annual maximum values are often used for flood studies in the absence of sufficient periods of good quality instantaneous peak flow data, which for many stations only span the last 10-20 years. If the increase in precipitation is most pronounced for local short term extreme events, a larger increase in instantaneous flood peaks in small catchments as compared to daily average floods could be expected. In this paper data from 32 small Norwegian catchments (<60km2) for the period 1980-2011 were analysed to investigate spatial and temporal changes in daily and instantaneous annual maxima flood peaks, given these are two of the most crucial parameters for the reliability of design flood estimates. This research has been carried out as part of a project jointly funded by three government agencies in Norway who manage water resources, the roads and railways. This analysis contributes to one of the project objectives, to investigate climate change effects in small catchments in Norway and obtain improved flood estimates for climate change adaptation. The level of autocorrelation in all flood series, was assessed prior to analyses, but was found to be insignificant at all stations. The Mann-Kendall test was applied to investigate trends in: (a) the magnitude daily annual maxima peaks, (b) the magnitude of instantaneous annual maxima peaks, and (c) the ratio between daily and instantaneous annual maxima values. Results show the trend in flood magnitude is generally the same for daily and instantaneous flood peaks. Overall there are a greater number of positive trends (22%) in flood magnitude

  12. A validated model for the prediction of rotor bar failure in squirrel-cage motors using instantaneous angular speed

    NASA Astrophysics Data System (ADS)

    Sasi, Ahmed Y. Ben; Gu, Fengshou; Li, Yuhua; Ball, Andrew D.

    2006-10-01

    Instantaneous angular speed (IAS)-based condition monitoring is an area in which significant progress has been achieved over the recent years. This condition monitoring technique is less known compared to the existing conventional methods. This paper presents model-predicted simulation and experimental results of broken rotor bar faults in a three-phase induction motor using IAS variations. The simulation was performed under normal, and a broken rotor bar fault. The present paper evaluates through simulating and measuring the IAS of an induction motor at broken rotor bar faults in both time and frequency domains. Experimental results show a good agreement with the model-predicted simulation results. Three vital key features were extracted from the angular speed variations. One feature is the modulating contour of pole pass frequency periods in time domain. The other two features are in frequency domain. The primary feature is the presence of the pole pass frequency component at the low-frequency region of the IAS spectrum. The secondary feature which are the multiple of pole pass frequency sideband components around the rotor speed frequency component. Experimental results confirm the validity of the simulation results for the proposed method. The IAS has demonstrated more sensitivity than current signature analysis in detecting the fault. This research also shows the power of angular speed features as a useful tool to detect broken rotor bar deteriorations using any economical transducer such as low-resolution rotary shaft encoders; which may well be already installed for process control purposes.

  13. Instantaneous velocity measurement of AC electroosmotic flows by laser induced fluorescence photobleaching anemometer with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Qiao, Rui; Wang, Guiren; Rui Qiao Collaboration

    2015-11-01

    Understanding the instantaneous response of flows to applied AC electric fields may help understand some unsolved issues in induced-charge electrokinetics and enhance performance of microfluidic devices. Since currently available velocimeters have difficulty in measuring velocity fluctuations with frequency higher than 1 kHz, most experimental studies so far focus only on the average velocity measurement in AC electrokinetic flows. Here, we present measurements of AC electroosmotic flow (AC-EOF) response time in microchannels by a novel velocimeter with submicrometer spatial resolution and microsecond temporal resolution, i.e. laser-induced fluorescence photobleaching anemometer (LIFPA). Several parameters affecting the AC-EOF response time to the applied electric signal were investigated, i.e. channel length, transverse position and solution conductivity. The experimental results show that the EOF response time under a pulsed electric field decreases with the reduction of the microchannel length, distance between the detection position to the wall and the conductivity of the solution. This work could provide a new powerful tool to measure AC electrokinetics and enhance our understanding of AC electrokinetic flows.

  14. Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition.

    PubMed

    Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E

    2016-07-15

    Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    SciTech Connect

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  16. HIGH EFFICIENCY, QUASI-INSTANTANEOUS STEAM EXPANSION DEVICE UTILIZING FOSSIL OR NUCLEAR FUEL AS THE HEAT SOURCE

    SciTech Connect

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  17. Impulsive model for reactive collisions

    NASA Technical Reports Server (NTRS)

    Marron, M. T.; Bernstein, R. B.

    1972-01-01

    A simple classical mechanical model of the reactive scattering of a structureless atom A and a quasi-diatomic BC is developed which takes full advantage of energy, linear and angular momentum conservation relations but introduces a minimum of further assumptions. These are as follows: (1) the vibrational degree of freedom of the reactant (BC) and product (AB) molecules is suppressed, so the change in vibrational energy is simply a parameter; (2) straight-line trajectories are assumed outside of a reaction shell; (3) within this zone, momentum transfer occurs impulsively (essentially instantaneously) following mass transfer; (4) the impulse, which may be either positive or negative, is directed along the BC axis, which may, however, assume all orientations with respect to the incident relative velocity. The model yields differential and total cross sections and product rotational energy distributions for a given collision exoergicity Q, or for any known distribution over Q. Numerical results are presented for several prototype reactions whose dynamics have been well-studied.

  18. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    NASA Astrophysics Data System (ADS)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  19. Numerical modeling of forceful pluton emplacement and associated deformation at different crustal levels - instantaneous, continuous or episodic intrusion?

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Nabelek, P. I.

    2015-12-01

    The Papoose Flat pluton in the White-Inyo Range, California, is one of the best examples of forceful magma emplacement at mid-crustal levels that is revealed by a highly strained aureole. A thermo-rheological 2-D model of the pluton and its aureole is proposed. We explored how the frequency of magma input, from instantaneous to continuous to the bottom of the laccolith, affects the ductile width of the aureole and the crystallinity of the pluton, which has implications for eruption of magma. We modeled these aspects at mid- and upper-crustal levels. The pluton was assumed to be 5 km thick in the middle and 13 km wide. Except for instantaneous growth, pluton was assumed to grow over 5 m.y. The aureole was assumed to have power-law rheology of quartz with dependence on H2O fugacity, which was calculated using the CORK equation (Holland & Powell, 1991) Our result shows that the bottom of the Papoose Flat pluton was emplaced at the brittle-ductile transition zone of the crust. The crustal rheology profile assisted the softening of rocks around the pluton. The simulated temperature and strength profiles confirm that ductile deformation was related to thermal weakening (Saint-Blanquat et al., 2001). Results of incremental growth calculations show that the pluton remains hot and only partially crystalline for millions of years when it grows by frequent input of small batches of liquid. At the mid-crustal level, the ductile region around the pluton is much wider and exists longer than at the shallow crustal level. Brittle rheology is dominant during the late stage growth at the shallow depth. When the pluton grows instantly or by only few episodes of large batches of input, the mobile part of the pluton is thin and the ductile aureole is narrower. High-frequency incremental growth by smaller magma batches produces a large volume of mobile magma that has the potential to induce internal magmatic layering that may be reflected in aligned acquired magnetic susceptibility (AMS

  20. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  1. An instantaneous colorimetric protein assay based on spontaneous formation of a protein corona on gold nanoparticles.

    PubMed

    Ho, Yan Teck; Poinard, Barbara; Yeo, Eugenia Li Ling; Kah, James Chen Yong

    2015-02-21

    Commercial protein assays used ubiquitously in laboratories typically require long incubation times due to the inherently slow protein-reagent reactions. In this study, we report a novel facile technique for the instantaneous measurement of total protein concentration by exploiting the rapid aggregation dynamics of gold nanoparticles (NPs). By adsorbing different amounts of proteins on their surface to form a protein corona, these NPs can be sterically stabilized to different degrees by aggregation, thus exhibiting a spectrum of color change which can be quantitatively characterized by UV-Vis absorption spectroscopy. We evaluated this technique on four model proteins with different structures: bovine serum albumin (BSA), normal mouse immunoglobulin G (IgG), fibrinogen (FBG) and apolipoprotein A-I (Apo-A1) using two approaches, sequential and simultaneous. We obtained an approach-dependent linear concentration range up to 80 μg mL(-1) and 400 μg mL(-1) for sequential and simultaneous approaches, respectively. This linear working range was wider than that of the commercial Bradford assay and comparable to the Micro BCA assay. The simultaneous approach was also able to produce a linear working range of 200 to 1000 μg mL(-1) (R(2) = 0.995) in human urine, while the sequential approach was non-functional in urine. Similar to Micro BCA, the NP-based protein assay was able to elicit a linear response (R(2) > 0.87) for all four proteins with different structures. However, unlike Micro BCA which requires up to 120 min of incubation, we were able to obtain the read-out almost instantaneously without the need for incubation. The NP-based technique using the simultaneous approach can thus be exploited as a novel assay for instantaneous protein quantification to increase the productivity of laboratory processes.

  2. Modelling biodegradation of hydrocarbons in aquifers: when is the use of the instantaneous reaction approximation justified?

    NASA Astrophysics Data System (ADS)

    Koussis, Antonis D.; Pesmajoglou, Stelios; Syriopoulou, Dimitra

    2003-02-01

    In-situ bio-remediation is a viable cleanup alternative for aquifers contaminated by hydrocarbons such as BTEX. Transport models of varying complexity and capabilities are used to quantify their degradation. A model that has gained wide acceptance in applications is BIOPLUME II, which assumes that oxygen-limited biodegradation takes place as an instantaneous reaction. In this work we have employed theoretical analysis, using non-dimensional variables, and numerical modelling to establish a quantitative criterion demarcating the range of validity of the instantaneous reaction approximation against biodegradation kinetics. Oxygen was the limiting species and sorption was ignored. This criterion relates < Da>∣ o, the Dahmköhler number at oxygen depletion, to Oo*, the ratio of initial to input oxygen concentration, < Da>∣ o≥0.7( Oo*) 2+0.1 Oo*+1.8. The derived < Da>∣ o reflects the intrinsic characteristics of the physical transport and of the biochemical reaction, including the effect of biomass density. Relative availability of oxygen and hydrocarbons exerts a small influence on results. Theory, verified and refined via numerical simulations, showed that significant deviations of instantaneous reactions from kinetics are to be expected in the space-time region s< Ld, t< Td ('near source' and 'initial period'). Under the assumptions considered, numerical simulations also verified the wide applicability of the computationally efficient, stoichiometry-based (algebraic) BIOPLUME concept. Kinetic modelling is required only in active (engineered) bio-remediation cases, with high velocities (e.g., near pumped wells), and for short distances from the source.

  3. Comparisons of Instantaneous TRMM Ground Validation and Satellite Rain Rate Estimates at Different Spatial Scales

    NASA Technical Reports Server (NTRS)

    Wolff, David B.; Fisher, Brad L.

    2007-01-01

    This study provides a comprehensive inter-comparison of instantaneous rain rates observed by the two rain sensors aboard the TRMM satellite with ground data from two regional sites established for long-term ground validation: Kwajalein Atoll and Melbourne, Florida. The satellite rain algorithms utilize remote observations of precipitation collected by the TRMM microwave imager (TMI) and the Precipitation Radar (PR) aboard the TRMM satellite. Three standard Level I1 rain products are generated from operational applications of the TMI, PR and Combined (COM) rain algorithms using rain information collected from the TMI and the PR along the orbital track of the TRMM satellite. In the first part of the study, 0.25 x 0.25 instantaneous rain rates obtained from the TRMM 3668 product were analyzed and compared to instantaneous GV rain rates gridded at a scale of 0.5deg x 0.5. In the second part of the study, TMI, PR, COM and GV rain rates were spatio-temporally matched and averaged at the scale of TMI footprint (- 150 sq km). This study covered a six-year period 1999-2004 and consisted of over 50,000 footprints for each GV site. In the first analysis our results showed that all of the respective rain rate estimates agree well, with some exceptions. The more salient differences were associated with heavy rain events in which one or more of the algorithms failed to properly retrieve these extreme events. Also, it appears that there is a preferred mode of precipitation for TMI rain rates at or near 2 mm/hr over the ocean. This mode was noted over ocean areas of Kwajalein and Melbourne and has been observed in TRMM tropical-global ocean areas as well.

  4. Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches.

    PubMed

    Revzen, Shai; Burden, Samuel A; Moore, Talia Y; Mongeau, Jean-Michel; Full, Robert J

    2013-04-01

    Instantaneous kinematic phase calculation allows the development of reduced-order oscillator models useful in generating hypotheses of neuromechanical control. When perturbed, changes in instantaneous kinematic phase and frequency of rhythmic movements can provide details of movement and evidence for neural feedback to a system-level neural oscillator with a time resolution not possible with traditional approaches. We elicited an escape response in cockroaches (Blaberus discoidalis) that ran onto a movable cart accelerated laterally with respect to the animals' motion causing a perturbation. The specific impulse imposed on animals (0.50 [Formula: see text] 0.04 m s[Formula: see text]; mean, SD) was nearly twice their forward speed (0.25 [Formula: see text] 0.06 m s[Formula: see text]. Instantaneous residual phase computed from kinematic phase remained constant for 110 ms after the onset of perturbation, but then decreased representing a decrease in stride frequency. Results from direct muscle action potential recordings supported kinematic phase results in showing that recovery begins with self-stabilizing mechanical feedback followed by neural feedback to an abstracted neural oscillator or central pattern generator. Trials fell into two classes of forward velocity changes, while exhibiting statistically indistinguishable frequency changes. Animals pulled away from the side with front and hind legs of the tripod in stance recovered heading within 300 ms, whereas animals that only had a middle leg of the tripod resisting the pull did not recover within this period. Animals with eight or more legs might be more robust to lateral perturbations than hexapods.

  5. Hyporheic Temperature Dynamics: Predicting Hyporheic Temperatures Based on Travel Time Assuming Instantaneous Water-Sediment Conduction

    NASA Astrophysics Data System (ADS)

    Kraseski, K. A.

    2015-12-01

    Recently developed conceptual frameworks and new observations have improved our understanding of hyporheic temperature dynamics and their effects on channel temperatures. However, hyporheic temperature models that are both simple and useful remain elusive. As water moves through hyporheic pathways, it exchanges heat with hyporheic sediment through conduction, and this process dampens the diurnal temperature wave of the water entering from the channel. This study examined the mechanisms underlying this behavior, and utilized those findings to create two simple models that predict temperatures of water reentering the channel after traveling through hyporheic pathways for different lengths of time. First, we developed a laboratory experiment to represent this process and determine conduction rates for various sediment size classes (sand, fine gravel, coarse gravel, and a proportional mix of the three) by observing the time series of temperature changes between sediment and water of different initial temperatures. Results indicated that conductions rates were near-instantaneous, with heat transfer being completed on the scale of seconds to a few minutes of the initial interaction. Heat conduction rates between the sediment and water were therefore much faster than hyporheic flux rates, rendering reasonable an assumption of instantaneous conduction. Then, we developed two simple models to predict time series of hyporheic water based on the initial diurnal temperature wave and hyporheic travel distance. The first model estimates a damping coefficient based on the total water-sediment heat exchange through each diurnal cycle. The second model solves the heat transfer equation assuming instantaneous conduction using a simple finite difference algorithm. Both models demonstrated nearly complete damping of the sine wave over the distance traveled in four days. If hyporheic exchange is substantial and travel times are long, then hyporheic damping may have large effects on

  6. a New Model for Describing Evolution and Control of Disaster System Including Instantaneous and Continuous Actions

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Kun; Li, Zhi; Sun, Yun-Feng

    A new model for describing the disaster system including instantaneous and continuous action synchronously has been developed. The model is composed of three primary parts, that is, the impact from its causative disaster events, stochastic noise of disaster node and self-healing function, and every part is modeled concretely in terms of their characteristics in practice. Some key parameters, namely link appearance probability, retardation coefficient, ultimate repair capacity of government, dynamical modes considering different disaster evolving chains, and the positions of link with the specific performance in disaster network system are involved. Combined with a case study, the proposed model is applied to a certain disaster evolution system, and the influence law of different parameters on disaster evolution process, in disaster networks with instantaneous-action and/or continuous-action, is presented and compared. The results indicate that the destructive impact in the networks by link in continuous action is far greater an order of magnitude than that in instantaneous action. If a link in continuous action emerges in the disaster network system, properties of the causative event for the link, link appearance probability and its position in the network all have a notable influence to the severity of the disaster network. In addition, some peculiar phenomena are also commendably observed in the disaster evolution process based on the model, such as the multipeaks emerging in the destroyed rate number curve for some crisis nodes caused by their various inducing paths together with the relevant retardation coefficients, the existence of the critical value for ultimate repair capacity to recover the disaster node, and so on.

  7. Early evaluation of carotid elasticity by an instantaneous wave intensity technique in patients with systemic lupus erythematosus.

    PubMed

    Liu, Chun-li; Wang, Cheng-zeng; Wang, Yan; Zhang, Lian-zhong; Liu, Lin; Bian, Xiao-lin

    2014-12-01

    To explore the application of instantaneous wave intensity for early diagnosis of systemic lupus erythematosus (SLE)-induced atherosclerosis, we observed carotid elasticity by instantaneous wave intensity in premenopausal women with SLE. The study included 3 groups (each group with 30 participants): SLE1 (course of disease <5 years), SLE2 (course of disease ≥5 years) and healthy control. Carotid parameters, including instantaneous acceleration wave intensity, instantaneous deceleration wave intensity, negative area, stiffness constant, wave intensity pulse wave velocity, stiffness constant pulse wave velocity, pressure strain elastic modulus, arterial compliance, augmentation index, and intima-media thickness, were measured. Compared with the control group, the instantaneous deceleration wave intensity, stiffness constant, pressure strain elastic modulus, wave intensity pulse wave velocity, and stiffness constant pulse wave velocity were significantly increased but the arterial compliance was significantly decreased in the SLE1 and SLE2 groups (all P ≤ .01). The instantaneous acceleration wave intensity, augmentation index, and negative area tended to increase in all 3 groups, but there were no statistical differences among the groups. The instantaneous deceleration wave intensity, stiffness constant, pressure strain elastic modulus, wave intensity pulse wave velocity, and stiffness constant pulse wave velocity were significantly higher in the SLE2 group than the SLE1 group, but the arterial compliance was significantly lower in the SLE2 group than the SLE1 group (all P ≤ .01). Instantaneous wave intensity can be used to evaluate carotid elasticity in the patients with SLE, which is important for early prevention and treatment of cardiovascular disease. © 2013 by the American Institute of Ultrasound in Medicine.

  8. Total-body irradiation and cataract incidence: A randomized comparison of two instantaneous dose rates

    SciTech Connect

    Ozsahin, M.; Belkacemi, Y.; Pene, F.; Dominique, C.; Schwartz, L.H.; Uzal, C.; Lefkopoulos, D.; Gindrey-Vie, B.; Vitu-Loas, L.; Touboul, E. )

    1994-01-15

    To assess the influence of instantaneous total-body irradiation dose rate in hematological malignancies, the authors randomized 157 patients according to different instantaneous dose rates. Patients have undergone a total-body irradiation before bone-marrow transplantation according to two different techniques: Either in one fraction (1000 cGy given to the midplane at the level of L4, and 800 cGy to the lungs) or in six fractions (1200 cGy over 3 consecutive days to the midplane at the level of L4, and 900 cGy to the lungs). Patients were randomized according to two instantaneous dose rates, called LOW and HIGH, in single-dose (6 vs. 15 cGy/min) and fractionated (3 vs. 6 cGy/min) TBI groups; there were 77 cases for the LOW and 80 for the HIGH groups, with 57 patients receiving single-dose (28 LOW, 29 HIGH) and 100 patients receiving fractionated total-body irradiation (49 LOW, 51 HIGH). As of July 1992, 16 of 157 patients developed cataracts after 17 to 46 months, with an estimated incidence of 23% at 5 years. Four of 77 patients in the LOW group, 12 of 80 patients in the HIGH group developed cataracts, with 5-year estimated incidences of 12% and 34%, respectively. Ten of 57 patients in the single-dose group, and 6 of 100 patients in the fractionated group developed cataracts, with 5-year estimated incidences of 39% and 13%, respectively. When the subgroups were considered, in the single-dose group, 3 of 28 LOW patients, and 7 of 29 HIGH patients developed cataracts, with 5-year estimated incidences of 24% and 53%, respectively; in the fractionated group, 1 of 49 LOW patients, and 5 of 51 HIGH patients developed cataracts, with 5-year estimated incidences of 4% and 22%, respectively. There was no statistically significant difference in terms of 5-year estimated cataract incidence between the patients receiving steroids and those not. The instantaneous dose rate was the only independent factor influencing the cataractogenesis. 18 refs., 5 figs., 1 tab.

  9. Finding the location of the instantaneous center of rotation using a particle image velocimetry algorithm

    NASA Astrophysics Data System (ADS)

    Claessens, Tom

    2017-03-01

    This work is about planar rigid-body kinematics and, in particular, the principle of the instantaneous center of rotation (IC). Using a computer simulated approach, a workflow is presented that results in a visual representation of the locus of the IC, based on particle image velocimetry (PIV). Here, a small number of digital animations of textured objects are created with multibody dynamics software, and later imported in PIV software to extract the velocity field (magnitude and direction) of objects moving within a plane. We believe the workflow presented may help learners improve their understanding of the concept of the IC, thus enhancing their knowledge of rigid body kinematics.

  10. Electrical battery model for LEO application based on absolute instantaneous state of charge

    NASA Astrophysics Data System (ADS)

    Lehman, A.

    1989-08-01

    A working Ni-Cd electrical battery model derived from ground experimentation for low earth orbit (LEO) applications is described. The validity of the model is demonstrated over a wide range of depth of discharge and temperatures. The model, developed from observation of the electrical behavior of cells as a function of their absolute instantaneous state of charge, is fine tuned and validated with a high degree of accuracy. The simulation model may be applied to the analysis of other types of cells, either of different capacities or manufacture.

  11. Robust nonstationary jammer mitigation for GPS receivers with instantaneous frequency error tolerance

    NASA Astrophysics Data System (ADS)

    Wang, Ben; Zhang, Yimin D.; Qin, Si; Amin, Moeness G.

    2016-05-01

    In this paper, we propose a nonstationary jammer suppression method for GPS receivers when the signals are sparsely sampled. Missing data samples induce noise-like artifacts in the time-frequency (TF) distribution and ambiguity function of the received signals, which lead to reduced capability and degraded performance in jammer signature estimation and excision. In the proposed method, a data-dependent TF kernel is utilized to mitigate the artifacts and sparse reconstruction methods are then applied to obtain instantaneous frequency (IF) estimation of the jammers. In addition, an error tolerance of the IF estimate is applied is applied to achieve robust jammer suppression performance in the presence of IF estimation inaccuracy.

  12. From the time-reversal mirror to the instantaneous time mirror

    NASA Astrophysics Data System (ADS)

    Fink, Mathias; Fort, Emmanuel

    2017-05-01

    Because time and space play a similar role in wave propagation, wave control can be obtained by manipulating spatial boundaries or by manipulating time boundaries. These two dual approaches will be discussed in this paper in the context of the generation of time-reversed waves. The first approach uses the "time-reversal mirror" approach with wave manipulation along a spatial boundary sampled by a finite number of antennas. In the second approach, waves are manipulated from a time boundary and we show that "instantaneous time mirrors", simultaneously acting in the entire space can also radiate time-reversed waves.

  13. Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping.

    PubMed

    Wegkamp, Daniel; Herzog, Marc; Xian, Lede; Gatti, Matteo; Cudazzo, Pierluigi; McGahan, Christina L; Marvel, Robert E; Haglund, Richard F; Rubio, Angel; Wolf, Martin; Stähler, Julia

    2014-11-21

    Using femtosecond time-resolved photoelectron spectroscopy we demonstrate that photoexcitation transforms monoclinic VO2 quasi-instantaneously into a metal. Thereby, we exclude an 80 fs structural bottleneck for the photoinduced electronic phase transition of VO2. First-principles many-body perturbation theory calculations reveal a high sensitivity of the VO2 band gap to variations of the dynamically screened Coulomb interaction, supporting a fully electronically driven isostructural insulator-to-metal transition. We thus conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.

  14. Instantaneous relationship between solar inertial and local vertical local horizontal attitudes

    NASA Technical Reports Server (NTRS)

    Vickery, S. A.

    1977-01-01

    The instantaneous relationship between the Solar Inertial (SI) and Local Vertical Local Horizontal (LVLH) coordinate systems is derived. A method is presented for computation of the LVLH to SI rotational transformation matrix as a function of an input LVLH attitude and the corresponding look angles to the sun. Logic is provided for conversion between LVLH and SI attitudes expressed in terms of a pitch, yaw, roll Euler sequence. Documentation is included for a program which implements the logic on the Hewlett-Packard 97 programmable calculator.

  15. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    SciTech Connect

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  16. Instantaneous Doppler Global Velocimetry Measurements of a Rotor Wake: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Meyers, James; Fleming, Gary A.; Gorton, Susan Althoff; Berry, John D.

    1998-01-01

    A combined Doppler Global Velocimetry (DGV) and Projection Moir Interferometry (PMI) investigation of a helicopter rotor wake flow field and rotor blade deformation is presented. The three-component DGV system uses a single-frequency, frequency-doubled Nd:YAG laser to obtain instantaneous velocity measurements in the flow. The PMI system uses a pulsed laser-diode bar to obtain blade bending and twist measurements at the same instant that DGV measured the flow. The application of pulse lasers to DGV and PMI in large-scale wind tunnel applications represents a major step forward in the development of these technologies. As such, a great deal was learned about the difficulties of using these instruments to obtain instantaneous measurements in large facilities. Laser speckle and other image noise in the DGV data images were found to be traceable to the Nd:YAG laser. Although image processing techniques were used to virtually eliminate laser speckle noise, the source of low-frequency image noise is still under investigation. The PMI results agreed well with theoretical predictions of blade bending and twist.

  17. The effects of injection modes on instantaneous particle deposition in a realistic human nasal cavity.

    PubMed

    Wen, Jian; Gu, Xin; Wang, Mengmeng; Jian, Guanping; Wang, Simin; Zheng, Guoxi

    2017-03-01

    To understand the instantaneous particle deposition in nasal cavity, effects of two injection models on particle deposition characteristic were discussed in this paper. Based on a realistic human nasal cavity geometry obtained from CT scans, a comparison of deposition pattern in the nasal cavity between single injection and continuous injection was investigated through the Lagrangian approach. The instantaneous airflow field was simulated with the tidal volume of 159 and 318 mL by two sine wave curves at inlet. For the case of single injection, particles have finished deposition in the first half of inhalation, and a negative correlation between the tidal volumes and deposition can be observed when the particle diameter was larger than 10 µm. Moreover, particles were mainly deposited in the turbinate area that was beneficial for aerosol therapy. The inertial parameter was not suitable to predict the particle deposition in the case of single injection. With respect to continuous injection, a reduction in total deposition caused by the deceleration process of inhalation can be observed after 1.5 s. The deposition was closely associated with the time-varying flow field, and particles were mainly deposited in the anterior region and turbinate area. Besides, the particle deposition increased with the inertial parameter for continuous injection. The results indicated that the injection modes had an influence on both the total deposition and local deposition pattern in the nasal cavity. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Properties of the instantaneous ergo surface of a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Pelavas, Nicos; Neary, Nicholas; Lake, Kayll

    2001-04-01

    {This paper explores properties of the instantaneous ergo surface of a Kerr black hole. The surface area is evaluated in closed form. In terms of the mass (m) and angular velocity (a), to second order in a, the area of the ergo surface is given by 16πm2 + 4πa2 (compared to the familiar 16πm2-4πa2 for the event horizon). Whereas the total curvature of the instantaneous event horizon is 4π, on the ergo surface it ranges from 4π (for a = 0) to 0 (for a = m) due to conical singularities on the axis (θ = 0,π) of deficit angle 2π(1-(1-(a/m)2)1/2). A careful application of the Gauss-Bonnet theorem shows that the ergo surface remains topologically spherical. Isometric embeddings of the ergo surface in Euclidean 3-space are defined for 0≤a/m≤1 (compared to 0≤a/m≤(3)1/2/2 for the horizon).

  19. Online tracking of instantaneous frequency and amplitude of dynamical system response

    NASA Astrophysics Data System (ADS)

    Frank Pai, P.

    2010-05-01

    This paper presents a sliding-window tracking (SWT) method for accurate tracking of the instantaneous frequency and amplitude of arbitrary dynamic response by processing only three (or more) most recent data points. Teager-Kaiser algorithm (TKA) is a well-known four-point method for online tracking of frequency and amplitude. Because finite difference is used in TKA, its accuracy is easily destroyed by measurement and/or signal-processing noise. Moreover, because TKA assumes the processed signal to be a pure harmonic, any moving average in the signal can destroy the accuracy of TKA. On the other hand, because SWT uses a constant and a pair of windowed regular harmonics to fit the data and estimate the instantaneous frequency and amplitude, the influence of any moving average is eliminated. Moreover, noise filtering is an implicit capability of SWT when more than three data points are used, and this capability increases with the number of processed data points. To compare the accuracy of SWT and TKA, Hilbert-Huang transform is used to extract accurate time-varying frequencies and amplitudes by processing the whole data set without assuming the signal to be harmonic. Frequency and amplitude trackings of different amplitude- and frequency-modulated signals, vibrato in music, and nonlinear stationary and non-stationary dynamic signals are studied. Results show that SWT is more accurate, robust, and versatile than TKA for online tracking of frequency and amplitude.

  20. Instantaneous transmitral flow using Doppler and M-mode echocardiography: comparison with radionuclide ventriculography.

    PubMed

    Hoit, B D; Rashwan, M; Verba, J; Pretorius, T; Sahn, D J; Bhargava, V

    1989-08-01

    To improve the accuracy of Doppler echocardiographic indices of left ventricular filling, we derived two indices of instantaneous transmitral flow with the use of Doppler velocities and M-mode echocardiography. These indices were calculated from the product of pulsed Doppler mitral velocities and either the excursion of the anterior mitral leaflet or the separation of both mitral leaflets as measures of the changing mitral orifice area. The derived flow indices and the mitral velocities alone were compared to left ventricular filling as determined by radionuclide ventriculography in 24 patients. When compared as areas under the matched decile divisions of the derived filling sequences by linear regression analysis, the relationship for combined Doppler and M-mode versus radionuclide left ventricular filling was closer to the line of identity (slope = 0.98 and 0.94 using the anterior mitral leaflet and both mitral leaflets, respectively, both p = NS versus the line of identity) than was the relationship for mitral velocities alone versus radionuclide left ventricular filling (slope = 0.74, p less than 0.05 versus the line of identity). The instantaneous mitral volume flow indices more closely resemble the time course and shape of radionuclide left ventricular filling curves than do mitral velocities alone, and the application of these indices should assist the quantitative description by Doppler echocardiography of left ventricular filling.

  1. Time frequency chirp-Wigner transform for signals with any nonlinear polynomial time varying instantaneous frequency

    NASA Astrophysics Data System (ADS)

    Gelman, L.; Gould, J. D.

    2007-11-01

    The new technique, the time-frequency chirp-Wigner transform has been proposed recently. This technique is further investigated for the general case of higher order chirps, i.e. non-stationary signals with any nonlinear polynomial variation of the instantaneous frequency in time. Analytical and numerical comparison of the chirp-Wigner transform and the classical Wigner distribution was performed for processing of single-component and multi-component higher order chirps. It is shown for the general case of single component higher order chirps that the chirp-Wigner transform has an essential advantage in comparison with the traditional Wigner distribution: the chirp-Wigner transform ideally follows the nonlinear polynomial frequency variation without amplitude errors. It is shown for multi-component signal where each component is a higher order chirp, that the chirp-Wigner transform adjusted to a single component will follow the instantaneous frequency of the component without amplitude errors. It is also shown that the classical Wigner distribution is unable to estimate component amplitudes of single component and multi-component higher order chirps.

  2. A quasi-local method for instantaneous frequency estimation with application to structural magnetic resonance images.

    PubMed

    Ulloa, Alvaro; Rodriguez, Paul; Liu, Jingyu; Calhoun, Vince; Pattichis, Marios

    2014-01-01

    Spatially-varying signal content can be effectively modeled using amplitude modulation-frequency modulation (AM-FM) representations. The AM-FM representation allow us to extract instantaneous amplitude (IA) and instantaneous frequency (IF) components that can be used to measure non-stationary content in biomedical images and videos. This paper introduces a new method for estimating the IA and the IF based on a quasi-local method (QLM). We provide an extensive comparison of AM-FM demodulation approaches based on QLM and a quasi-eigenfunction approximation method using three different filter-banks: (i) a separable, equiripple design, (ii) a Gabor filter bank, and (iii) a directional filter bank approach based on the Contourlet transform. The results document that the use of the new QLM method with an equiripple filter bank design gave the best IF magnitude estimates for a synthetic image. The new QLM method is then applied to a multi-site schizophrenia dataset (N=307). The dataset included structure magnetic resonance images from healthy controls and patients diagnosed with schizophrenia. The IF magnitude is shown to be less sensitive to variations across sites as opposed to the standard use of SMRI images that suffered from significant dependency on the scanner configurations on different collection sites. Furthermore, the regions of interest identified through the use of the IF magnitude are in agreement with previous studies.

  3. The excess proton at the air-water interface: The role of instantaneous liquid interfaces.

    PubMed

    Giberti, Federico; Hassanali, Ali A

    2017-06-28

    The magnitude of the pH of the surface of water continues to be a contentious topic in the physical chemistry of aqueous interfaces. Recent theoretical studies have shown little or no preference for the proton to be at the surface compared to the bulk. Using ab initio molecular dynamics simulations, we revisit the propensity of the excess proton for the air-water interface with a particular focus on the role of instantaneous liquid interfaces. We find a more pronounced presence for the proton to be at the air-water interface. The enhanced water structuring around the proton results in the presence of proton wires that run parallel to the surface as well as a hydrophobic environment made up of under-coordinated topological defect water molecules, both of which create favorable conditions for proton confinement at the surface. The Grotthuss mechanism within the structured water layer involves a mixture of both concerted and closely spaced stepwise proton hops. The proton makes excursions within the first solvation layer either in proximity to or along the instantaneous interface.

  4. A wrist sensor and algorithm to determine instantaneous walking cadence and speed in daily life walking.

    PubMed

    Fasel, Benedikt; Duc, Cyntia; Dadashi, Farzin; Bardyn, Flavien; Savary, Martin; Farine, Pierre-André; Aminian, Kamiar

    2017-02-14

    In daily life, a person's gait-an important marker for his/her health status-is usually assessed using inertial sensors fixed to lower limbs or trunk. Such sensor locations are not well suited for continuous and long duration measurements. A better location would be the wrist but with the drawback of the presence of perturbative movements independent of walking. The aim of this study was to devise and validate an algorithm able to accurately estimate walking cadence and speed for daily life walking in various environments based on acceleration measured at the wrist. To this end, a cadence likelihood measure was designed, automatically filtering out perturbative movements and amplifying the periodic wrist movement characteristic of walking. Speed was estimated using a piecewise linear model. The algorithm was validated for outdoor walking in various and challenging environments (e.g., trail, uphill, downhill). Cadence and speed were successfully estimated for all conditions. Overall median (interquartile range) relative errors were -0.13% (-1.72 2.04%) for instantaneous cadence and -0.67% (-6.52 6.23%) for instantaneous speed. The performance was comparable to existing algorithms for trunk- or lower limb-fixed sensors. The algorithm's low complexity would also allow a real-time implementation in a watch.

  5. The excess proton at the air-water interface: The role of instantaneous liquid interfaces

    NASA Astrophysics Data System (ADS)

    Giberti, Federico; Hassanali, Ali A.

    2017-06-01

    The magnitude of the pH of the surface of water continues to be a contentious topic in the physical chemistry of aqueous interfaces. Recent theoretical studies have shown little or no preference for the proton to be at the surface compared to the bulk. Using ab initio molecular dynamics simulations, we revisit the propensity of the excess proton for the air-water interface with a particular focus on the role of instantaneous liquid interfaces. We find a more pronounced presence for the proton to be at the air-water interface. The enhanced water structuring around the proton results in the presence of proton wires that run parallel to the surface as well as a hydrophobic environment made up of under-coordinated topological defect water molecules, both of which create favorable conditions for proton confinement at the surface. The Grotthuss mechanism within the structured water layer involves a mixture of both concerted and closely spaced stepwise proton hops. The proton makes excursions within the first solvation layer either in proximity to or along the instantaneous interface.

  6. Assessing instantaneous energy in the EEG: a non-negative, frequency-weighted energy operator.

    PubMed

    O'Toole, John M; Temko, Andriy; Stevenson, Nathan

    2014-01-01

    Signal processing measures of instantaneous energy typically include only amplitude information. But measures that include both amplitude and frequency do better at assessing the energy required by the system to generate the signal, making them more sensitive measures to include in electroencephalogram (EEG) analysis. The Teager-Kaiser operator is a frequency-weighted measure that is frequently used in EEG analysis, although the operator is poorly defined in terms of common signal processing concepts. We propose an alternative frequency-weighted energy measure that uses the envelope of the derivative of the signal. This simple envelope- derivative operator has the advantage of being nonnegative, which when applied to a detection application in newborn EEG improves performance over the Teager-Kaiser operator: without post-processing filters, area-under the receiver-operating characteristic curve (AUC) is 0.57 for the Teager-Kaiser operator and 0.80 for the envelope-derivative operator. The envelope-derivative operator also satisfies important properties, similar to the Teager-Kaiser operator, such as tracking instantaneous amplitude and frequency.

  7. Description and clinical studies of a device for the instantaneous detection of office-place stress.

    PubMed

    Levine, James A; Pavlidis, Ioannis T; MacBride, Leslie; Zhu, Zhen; Tsiamyrtzis, Panagiotis

    2009-01-01

    Occupational stress is universally experienced and is emerging as a major risk factor for physical and mental illness and a key factor in poor work performance and low job satisfaction. However, the technology does not currently exist to unobtrusively measure occupational stress in real-time. Here, we describe the design and clinical validation of an automated high-definition thermal imaging system that can be used to quantify human stress, remotely and instantaneously. Healthy human subjects underwent a computer-based version of the Stroop-color conflict test, which is a validated stress provocation test, in an experimental office facility. In separate experiments, the same subjects completed a mental arithmetic challenge. The thermal signal associated with stress provocation is near-instantaneous corrugator warming. The stress response was detected in all subjects for all stress-events compared to the respective baselines. Furthermore, there was remarkable inter-individual preservation of the corrugator signal with stress R(2) = 0.96, P< 0.001). High-definition thermal imaging can be used for real-time detection of stress provocation. This technology may prove to be of help in ameliorating office-place stress.

  8. The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

    NASA Astrophysics Data System (ADS)

    Aghedo, A. M.; Bowman, K. W.; Worden, H. M.; Kulawik, S. S.; Shindell, D. T.; Lamarque, J. F.; Faluvegi, G.; Parrington, M.; Jones, D. B. A.; Rast, S.

    2011-01-01

    We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m2 over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to +50 mW/m2 for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m2 within the entire troposphere.

  9. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    SciTech Connect

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-10-15

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10{sup 14} to 1.8 × 10{sup 15} W/cm{sup 2}. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.

  10. Estimation of instantaneous peak flow from simulated maximum daily flow using the HBV model

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Haberlandt, Uwe

    2014-05-01

    Instantaneous peak flow (IPF) data are the foundation of the design of hydraulic structures and flood frequency analysis. However, the long discharge records published by hydrological agencies contain usually only average daily flows which are of little value for design in small catchments. In former research, statistical analysis using observed peak and daily flow data was carried out to explore the link between instantaneous peak flow (IPF) and maximum daily flow (MDF) where the multiple regression model is proved to have the best performance. The objective of this study is to further investigate the acceptability of the multiple regression model for post-processing simulated daily flows from hydrological modeling. The model based flood frequency analysis allows to consider change in the condition of the catchments and in climate for design. Here, the HBV model is calibrated on peak flow distributions and flow duration curves using two approaches. In a two -step approach the simulated MDF are corrected with a priory established regressions. In a one-step procedure the regression coefficients are calibrated together with the parameters of the model. For the analysis data from 18 mesoscale catchments in the Aller-Leine river basin in Northern Germany are used. The results show that: (1) the multiple regression model is capable to predict the peak flows with the simulated MDF data; (2) the calibrated hydrological model reproduces well the magnitude and frequency distribution of peak flows; (3) the one-step procedure outperforms the two-step procedure regarding the estimation of peak flows.

  11. Instantaneous phase shift of annual subsurface temperature cycles derived by the Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Sun, Yang-Yi; Chen, Chieh-Hung; Liu, Jann-Yenq; Wang, Chung-Ho; Chen, Deng-Lung

    2015-03-01

    This study uses the Hilbert-Huang transform to compute the instantaneous (daily) phase shift between temperature signals at the ground surface and at a depth of 5 m. This approach is not restricted to the stationary harmonic surface temperature assumptions invoked by analytical solutions. The annual cycles are extracted from the ground surface temperatures and the shallow subsurface temperatures at 5 m depth recorded at the Hualien (23.98°N, 121.61°E) and Ilan (24.77°N, 121.75°E) meteorology stations of Central Weather Bureau in Taiwan from 1952 to 2008. Significant reductions in the phase shift and increases in the estimated thermal diffusivity from 1980s to 1990s are found and suggest that the recent warming of the Pacific Decadal Oscillation may affect heat transport in the subsurface environment. The marginal spectra of the instantaneous phase shifts and the precipitation intensity records at Hualien and Ilan reveal that precipitation may play a role in the evolution of seasonal variation in shallow subsurface heat transport.

  12. Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in payments

    NASA Astrophysics Data System (ADS)

    Tsao, Yu-Chung

    2016-02-01

    This study models a joint location, inventory and preservation decision-making problem for non-instantaneous deteriorating items under delay in payments. An outside supplier provides a credit period to the wholesaler which has a distribution system with distribution centres (DCs). The non-instantaneous deteriorating means no deterioration occurs in the earlier stage, which is very useful for items such as fresh food and fruits. This paper also considers that the deteriorating rate will decrease and the reservation cost will increase as the preservation effort increases. Therefore, how much preservation effort should be made is a crucial decision. The objective of this paper is to determine the optimal locations and number of DCs, the optimal replenishment cycle time at DCs, and the optimal preservation effort simultaneously such that the total network profit is maximised. The problem is formulated as piecewise nonlinear functions and has three different cases. Algorithms based on piecewise nonlinear optimisation are provided to solve the joint location and inventory problem for all cases. Computational analysis illustrates the solution procedures and the impacts of the related parameters on decisions and profits. The results of this study can serve as references for business managers or administrators.

  13. Instantaneous stimulus paradigm: cortical network and dynamics of figure-ground organization

    NASA Astrophysics Data System (ADS)

    Likova, Lora T.; Tyler, Christopher W.

    2007-02-01

    To reveal the cortical network underlying figure/ground perception and to understand its neural dynamics, we developed a novel paradigm that creates distinct and prolonged percepts of spatial structures by instantaneous refreshes in random dot fields. Three different forms of spatial configuration were generated by: (i) updating the whole stimulus field, (ii) updating the ground region only (negative-figure), and (iii) updating the figure and ground regions in brief temporal asynchrony. FMRI responses were measured throughout the brain. As expected, activation by the homogenous whole-field update was focused onto the posterior part of the brain, but distinct networks extending beyond the occipital lobe into the parietal and frontal cortex were activated by the figure/ground and by the negativefigure configurations. The instantaneous stimulus paradigm generated a wide variety of BOLD waveforms and corresponding neural response estimates throughout the network. Such expressly different responses evoked by differential stimulation of the identical cortical regions assure that the differences could be securely attributed to the neural dynamics, not to spatial variations in the HRF. The activation pattern for figure/ground implies a widely distributed neural architecture, distinct from the control conditions. Even where activations are partially overlapping, an integrated analysis of the BOLD response properties will enable the functional specificity of the cortical areas to be distinguished.

  14. A new strategy of instantaneous angular speed extraction and its application to multistage gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Xining

    2017-05-01

    Owing to its unique benefits, Instantaneous Angular Speed (IAS) has become the focus of a great deal of research for monitoring mechanical parts of rotating machines in the past few years. However, the efficacy of IAS-based signal processing techniques essentially depends on the estimation method of IAS and the complexity of the mechanical system. When it is applied to complex systems like turbines, gearboxes, conventional IAS itself still has some flaws and insufficiencies such as longer data stream, quantization noise and structural noise. In order to address these issues, this paper proposes an alternative IAS estimation approach named Instantaneous Angular Phase Demodulation (IAPD) IAS together with an improved procedure involving signal reconstruction, empirical mode decomposition (EMD) and envelope analysis. Thereafter, two kinds of multistage gearboxes under different working conditions are developed to experimentally demonstrate the accuracy and effectiveness of the new IAS measurement. Analysis results suggest that the quantization noise can be significantly reduced or even avoided in the IAPD-IAS signal compared with the conventional IAS signal. Moreover, by means of the new procedure, the computational efficiency can be greatly improved and fault characteristics are dramatically enhanced in the envelope spectrum where deterministic frequency component and its harmonics corresponding to fault characteristics are displayed clearly.

  15. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    PubMed

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  16. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2017-02-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  17. Technical note: Comparison of instantaneous sampling and continuous observation of dairy cattle behavior in freestall housing.

    PubMed

    Chen, Jennifer M; Schütz, Karin E; Tucker, Cassandra B

    2016-10-01

    Recording behavior at fixed intervals (instantaneous sampling) can reduce labor relative to observing continuously. However, instantaneous sampling may inaccurately estimate potentially important responses, such as how frequently cows perform a behavior (i.e., the number of bouts). Our objective was to validate the use of instantaneous sampling for capturing how long and how frequently cows in freestall housing lie down or visit the feed bunk and water trough. We predicted that more frequent sampling would be needed to accurately reflect the behaviors that cows spent less time performing. In addition, we predicted that instantaneous sampling would underestimate how often cows engaged in behaviors that they frequently performed in short bouts or with short intervals between bouts, as some of these events may occur between sample intervals. Continuous video observations of 18 lactating Holstein-Friesian dairy cows were conducted for 48-h periods. Instantaneous samples (1 and 30 s, and 1, 3, 5, 10, 15, and 30 min) were generated from continuous data, with the samples recorded at 1-s intervals representing true values. Estimates from each sample interval ≥30 s were compared pairwise to true values with regression analysis. Sample intervals were considered accurate if they met 3 criteria: coefficient of determination ≥0.9 (i.e., strongly related to true values), slope=1, and intercept=0 (i.e., did not over- or underestimate true values). The amount of time cows spent lying (12.1±1.8h/24h, mean ± standard deviation) or visiting the water trough (1.1±0.8h/24h) and feed bunk (5.6±0.8h/24h) were accurately captured using sample intervals ≤30, 10, and 5 min, respectively. In addition, sample intervals ≤3 min accurately estimated the number of lying bouts (10.3±2.4 per 24h), likely because cows were recumbent for long periods (74.0±17.4 min, on average, with <6% of bouts lasting <5 min) and rarely resumed lying soon after standing up (0.4% of intervals between

  18. Industrial Power Factor Analysis Guidebook.

    SciTech Connect

    Electrotek Concepts.

    1995-03-01

    Power factor is a way of measuring the percentage of reactive power in an electrical system. Reactive power represents wasted energy--electricity that does no useful work because the electrical current is out of phase with the voltage. Reactive power is used by inductive loads (such as, motors, transformers, fluorescent lights, arc welders and induction furnaces) to sustain their magnetic fields. Electric systems with many motors exhibit low power factors, increased conductor and transformer losses, and lower voltages. Utilities must supply both active and reactive power and compensate for these losses. Power factor can be improved by the addition of shunt capacitors. Capacitors act in opposition to inductive loads, thereby minimizing the reactive power required to serve them. In raising the power factor, shunt capacitors release energy to the system, reduce system losses, and ultimately decrease power costs. Improving system power factor can reduce reactive and active power losses for both industry and utilities through the addition of shunt capacitors. This Guide Book gives electric utility technical staff, industrial end-users, consultants and BPA employees a step-by-step method for evaluating the cost effectiveness of installing power factor correction capacitors in an industrial plant.

  19. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, Gary L.

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  20. System for reactivating catalysts

    SciTech Connect

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  1. Reactive capability limitation of synchronous machines

    SciTech Connect

    Adibi, M.M. ); Milanicz, D.P. )

    1994-02-01

    Achievable generator reactive capability (GRC) is generally much less than indicated by manufacturers' reactive capability curves, due to constraints imposed by plant auxiliaries and the power system itself. The nature of these constraints is explained and a method for calculating them is provided and verified by field tests on a unit at high and low system voltage levels. Several recommendations are made to enhance the GRC of the tested unit.

  2. Comparisons of Instantaneous TRMM Ground Validation and Satellite Rain Rate Estimates at Different Spatial Scales

    NASA Technical Reports Server (NTRS)

    Wolff, David B.; Fisher, Brad L.

    2007-01-01

    This study provides a comprehensive inter-comparison of instantaneous rain estimates from the two rain sensors aboard the TRMM satellite with ground data from thee designated Ground Validation Sites: Kwajalein Atoll, Melbourne, Florida and Houston, Texas. The satellite rain retrievals utilize rain observations collected by the TRMM microwave imager (TMI) and the Precipitation Radar (PR) aboard the TRMM satellite. Three standard instantaneous rain products are the generated from the rain information retrieved from the satellite using the TMI, PR and Combined (COM) rain algorithms. The validation data set used in this study was obtained from instantaneous rain rates inferred from ground radars at each GV site. The first comparison used 0.5(sup 0) x 0.5(sup 0) gridded data obtained from the TRMM 3668 product, and similarly gridded GV data obtained from ground-based radars. The comparisons were made at the same spatial and temporal scales in order to eliminate sampling biases in our comparisons. An additional comparison was made by averaging rain rates for the PR, COM and GV estimates within each TMI footprint (approx. 150 square kilometers). For this analysis, unconditional mean rain rates from PR, COM and GV estimates were calculated within each TMI footprint that was observed within 100 km from the respective GV site (and also observed by the PR). This analysis used all the available matching data from the period 1999-2004, representing a sample size of over 50,000 footprints for each site. In the first analysis our results showed that all of the respective rain rate estimates agree well, with some exceptions. The more salient differences were associated with heavy rain events in which one or more of the algorithms failed to properly retrieve these extreme events. Also, it appears that there is a preferred mode of precipitation for TMI rain rates at or near 2 mm per hour over the ocean. This mode was noted over ocean areas of Melbourne, Florida and Kwajalein

  3. Evaluating the design of an Earth Radiation Budget Instrument with systen simulations. Part 1: Instantaneous estimates

    NASA Technical Reports Server (NTRS)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1993-01-01

    A set of system simulations has been performed to evaluate candidate scanner designs for an Earth Radiation Budget Instrument (ERBI) for the Earth Observing System (EOS) of the late 1990s. Five different instruments are considered: (1) the Active Cavity Array (ACA), (2) the Clouds and Earth's Radiant Energy System-Instrument (CERES-I), (3) the Conically Scanning Radiometer (CSR), (4) the Earth Radiation Budget Experiment Cross-Track Scanner (ERBE), and (5) the Nimbus-7 Biaxial Scanner (N7). Errors in instantaneous, top-of-the-atmosphere (TOA) satellite flux estimates are assumed to arise from two measurement problems: the sampling of space over a given geographic domain, and sampling in angle about a given spatial location. When angular sampling errors vanish due to the application of correct angular dependence models (ADMs) during inversion, the accuracy of each scanner design is determined by the instrument's ability to map the TOA radiance field in a uniform manner. In this regard, the instruments containing a cross-track scanning component (CERES-I and ERBE) do best. As errors in ADMs are encountered, cross-track instruments incur angular sampling errors more rapidly than biaxial instruments (N7, ACA, and CSR) and eventually overtake the biaxial designs in their total error amounts. A latitude bias (north-south error gradient) in the ADM error of cross-track instruments also exists. This would be objectionable when ADM errors are systematic over large areas of the globe. For instantaneous errors, however, cross-track scanners outperform biaxial or conical scanners for 2.5 deg latitude x 2.5 deg longitude target areas, providing that the ADM error is less than or equal to 30%. A key issue is the amount of systematic ADM error (departures from the mean models) that is present at the 2.5 deg resolution of the ERBE target areas. If this error is less than 30%, then the CERES-I, ERBE, and CSR, in order of increasing error, provide the most accurate instantaneous

  4. Improved tilt sensing in an LGS-based tomographic AO system based on instantaneous PSF estimation

    NASA Astrophysics Data System (ADS)

    Veran, Jean-Pierre

    2013-12-01

    Laser guide star (LGS)-based tomographic AO systems, such as Multi-Conjugate AO (MCAO), Multi-Object AO (MOAO) and Laser Tomography AO (LTAO), require natural guide stars (NGSs) to sense tip-tilt (TT) and possibly other low order modes, to get rid of the LGS-tilt indetermination problem. For example, NFIRAOS, the first-light facility MCAO system for the Thirty Meter Telescope requires three NGSs, in addition to six LGSs: two to measure TT and one to measure TT and defocus. In order to improve sky coverage, these NGSs are selected in a so-called technical field (2 arcmin in diameter for NFIRAOS), which is much larger than the on-axis science field (17x17 arcsec for NFIRAOS), on which the AO correction is optimized. Most times, the NGSs are far off-axis and thus poorly corrected by the high-order AO loop, resulting in spots with low contrast and high speckle noise. Accurately finding the position of such spots is difficult, even with advanced methods such as matched-filtering or correlation, because these methods rely on the knowledge of an average spot image, which is quite different from the instantaneous spot image, especially in case of poor correction. This results in poor tilt estimation, which, ultimately, impacts sky coverage. We propose to improve the estimation of the position of the NGS spots by using, for each frame, a current estimate of the instantaneous spot profile instead of an average profile. This estimate can be readily obtained by tracing wavefront errors in the direction of the NGS through the turbulence volume. The latter is already computed by the tomographic process from the LGS measurements as part of the high order AO loop. Computing such a wavefront estimate has actually already been proposed for the purpose of driving a deformable mirror (DM) in each NGS WFS, to optically correct the NGS spot, which does lead to improved centroiding accuracy. Our approach, however, is much simpler, because it does not require the complication of extra DMs

  5. Evaluating the design of an Earth Radiation Budget Instrument with systen simulations. Part 1: Instantaneous estimates

    NASA Technical Reports Server (NTRS)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1993-01-01

    A set of system simulations has been performed to evaluate candidate scanner designs for an Earth Radiation Budget Instrument (ERBI) for the Earth Observing System (EOS) of the late 1990s. Five different instruments are considered: (1) the Active Cavity Array (ACA), (2) the Clouds and Earth's Radiant Energy System-Instrument (CERES-I), (3) the Conically Scanning Radiometer (CSR), (4) the Earth Radiation Budget Experiment Cross-Track Scanner (ERBE), and (5) the Nimbus-7 Biaxial Scanner (N7). Errors in instantaneous, top-of-the-atmosphere (TOA) satellite flux estimates are assumed to arise from two measurement problems: the sampling of space over a given geographic domain, and sampling in angle about a given spatial location. When angular sampling errors vanish due to the application of correct angular dependence models (ADMs) during inversion, the accuracy of each scanner design is determined by the instrument's ability to map the TOA radiance field in a uniform manner. In this regard, the instruments containing a cross-track scanning component (CERES-I and ERBE) do best. As errors in ADMs are encountered, cross-track instruments incur angular sampling errors more rapidly than biaxial instruments (N7, ACA, and CSR) and eventually overtake the biaxial designs in their total error amounts. A latitude bias (north-south error gradient) in the ADM error of cross-track instruments also exists. This would be objectionable when ADM errors are systematic over large areas of the globe. For instantaneous errors, however, cross-track scanners outperform biaxial or conical scanners for 2.5 deg latitude x 2.5 deg longitude target areas, providing that the ADM error is less than or equal to 30%. A key issue is the amount of systematic ADM error (departures from the mean models) that is present at the 2.5 deg resolution of the ERBE target areas. If this error is less than 30%, then the CERES-I, ERBE, and CSR, in order of increasing error, provide the most accurate instantaneous

  6. Instantaneous polarization analysis of ambient noise recordings in site response investigations

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Vincenzo

    2017-07-01

    A new procedure is proposed for analyses of ambient noise aimed at investigating complex cases of site response to seismic shaking. Information on site response characterized by several resonance frequencies and by amplifications varying with direction can be obtained by analysing instantaneous polarization properties of ambient noise recordings. Through this kind of analysis, it is possible to identify Rayleigh wave packets emerging from incoherent background noise for very short intervals. Analysing noise recordings passed through narrow-band filters with different central frequencies, variations of Rayleigh wave properties depending on frequencies can be estimated. In particular, one can calculate: (i) the instantaneous ratios H/V between the amplitudes of horizontal and vertical components of the elliptical particle motion and (ii) the azimuthal direction of the vertical plane containing such a motion. These can be determined on a large number of recording samples, providing the basis for statistical estimates. A preferential concentration of H/V peak values at site-specific frequencies and directions can reveal directional resonance phenomena. Furthermore, peak amplitudes can be related to site amplification factors and provide constraints for subsurface velocity modelling. Some tests, carried out on data acquired at sites with known response properties, gave indications on how to select the parameters of the analysis that optimize its implementation. In particular, preliminary trials, conducted on a limited number of frequencies, allow the selection of the parameters that, while providing a large number of instantaneous H/V estimates for Rayleigh waves, minimize their scattering. The analysis can then be refined and an H/V curve as function of frequency can be obtained with a higher spectral resolution. First tests showed that cases of directional resonance can be more effectively recognized with this technique and more details can be revealed on its

  7. Quantifying Uncertainty in Instantaneous Orbital Data Products of TRMM over Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Jayaluxmi, I.; Nagesh, D.

    2013-12-01

    In the last 20 years, microwave radiometers have taken satellite images of earth's weather proving to be a valuable tool for quantitative estimation of precipitation from space. However, along with the widespread acceptance of microwave based precipitation products, it has also been recognized that they contain large uncertainties. While most of the uncertainty evaluation studies focus on the accuracy of rainfall accumulated over time (e.g., season/year), evaluation of instantaneous rainfall intensities from satellite orbital data products are relatively rare. These instantaneous products are known to potentially cause large uncertainties during real time flood forecasting studies at the watershed scale. Especially over land regions, where the highly varying land surface emissivity offer a myriad of complications hindering accurate rainfall estimation. The error components of orbital data products also tend to interact nonlinearly with hydrologic modeling uncertainty. Keeping these in mind, the present study fosters the development of uncertainty analysis using instantaneous satellite orbital data products (version 7 of 1B11, 2A25, 2A23) derived from the passive and active sensors onboard Tropical Rainfall Measuring Mission (TRMM) satellite, namely TRMM microwave imager (TMI) and Precipitation Radar (PR). The study utilizes 11 years of orbital data from 2002 to 2012 over the Indian subcontinent and examines the influence of various error sources on the convective and stratiform precipitation types. Analysis conducted over the land regions of India investigates three sources of uncertainty in detail. These include 1) Errors due to improper delineation of rainfall signature within microwave footprint (rain/no rain classification), 2) Uncertainty offered by the transfer function linking rainfall with TMI low frequency channels and 3) Sampling errors owing to the narrow swath and infrequent visits of TRMM sensors. Case study results obtained during the Indian summer

  8. Arcjet power supply and start circuit

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P. (Inventor)

    1988-01-01

    A dc power supply for spacecraft arcjet thrusters has an integral automatic starting circuit and an output averaging inductor. The output averaging inductor, in series with the load, provides instantaneous current control, and ignition pulse and an isolated signal proportional to the arc voltage. A pulse width modulated converter, close loop configured, is also incorporated to give fast response output current control.

  9. Optimal reactive planning with security constraints

    SciTech Connect

    Thomas, W.R.; Cheng, D.T.Y.; Dixon, A.M.; Thorp, J.D.; Dunnett, R.M.; Schaff, G.

    1995-12-31

    The National Grid Company (NGC) of England and Wales has developed a computer program, SCORPION, to help system planners optimize the location and size of new reactive compensation plant on the transmission system. The reactive power requirements of the NGC system have risen as a result of increased power flows and the shorter timescale on which power stations are commissioned and withdrawn from service. In view of the high costs involved, it is important that reactive compensation be installed as economically as possible, without compromising security. Traditional methods based on iterative use of a load flow program are labor intensive and subjective. SCORPION determines a near-optimal pattern of new reactive sources which are required to satisfy voltage constraints for normal and contingent states of operation of the transmission system. The algorithm processes the system states sequentially, instead of optimizing all of them simultaneously. This allows a large number of system states to be considered with an acceptable run time and computer memory requirement. Installed reactive sources are treated as continuous, rather than discrete, variables. However, the program has a restart facility which enables the user to add realistically sized reactive sources explicitly and thereby work towards a realizable solution to the planning problem.

  10. Instantaneous Non-Linear Processing by Pulse-Coupled Threshold Units

    PubMed Central

    Rotter, Stefan; Diesmann, Markus

    2010-01-01

    Contemporary theory of spiking neuronal networks is based on the linear response of the integrate-and-fire neuron model derived in the diffusion limit. We find that for non-zero synaptic weights, the response to transient inputs differs qualitatively from this approximation. The response is instantaneous rather than exhibiting low-pass characteristics, non-linearly dependent on the input amplitude, asymmetric for excitation and inhibition, and is promoted by a characteristic level of synaptic background noise. We show that at threshold the probability density of the potential drops to zero within the range of one synaptic weight and explain how this shapes the response. The novel mechanism is exhibited on the network level and is a generic property of pulse-coupled networks of threshold units. PMID:20856583

  11. A parametric approach for the estimation of the instantaneous speed of rotating machinery

    NASA Astrophysics Data System (ADS)

    Rodopoulos, Konstantinos; Yiakopoulos, Christos; Antoniadis, Ioannis

    2014-02-01

    A parametric method is proposed for the estimation of the instantaneous speed of rotating machines. The method belongs typically to the class of eigenvalue based parametric signal processing methods. The major advantage of parametric methods over frequency domain or time-frequency domain based methods, is their increased resolution and their reduced computational cost. Moreover, advantages of eigenvalue based methods over other parametric methods include their robustness to noise. Sensitivity analysis for the key parameters of the proposed method is performed, including the sampling frequency, the signal length and the robustness to noise. The effectiveness of the method is demonstrated in vibration measurements from a test rig during start-up and run-down, as well as during variations of the speed of a motorcycle engine. Compared to the Hilbert Transform and to the Discrete Energy Separation Algorithm (DESA), the proposed approach exhibits a better behavior, while it simultaneously presents computational simplicity, being able to be implemented analytically, even online.

  12. Optimum instantaneous impulsive orbital injection to attain a specified asymptotic velocity vector.

    NASA Technical Reports Server (NTRS)

    Bean, W. C.

    1971-01-01

    A nalysis of the necessary conditions of Battin for instantaneous orbital injection, with consideration of the uniqueness of his solution, and of the further problem which arises in the degenerate case when radius vector and asymptotic vector are separated by 180 deg. It is shown that when the angular separation between radius vector and asymptotic velocity vector satisfies theta not equal to 180 deg, there are precisely two insertion-velocity vectors which permit attainment of the target asymptotic velocity vector, one yielding posigrade, the other retrograde motion. When theta equals to 180 deg, there is a family of insertion-velocity vectors which permit attainment of a specified asymptotic velocity vector with a unique insertion-velocity vector for every arbitrary orientation of a target unit angular momentum vector.

  13. Instantaneous high-resolution focus tracking and a vibrometery system using parallel phase shift interferometry

    NASA Astrophysics Data System (ADS)

    Ney, Michael; Safrani, Avner; Abdulhlaim, Ibrahim

    2016-09-01

    High resolution fast focus tracking and vibrometery system based on parallel phase shift polarization interferometry using three detectors is presented. The basic design and algorithm are described, followed by an experimental demonstration showing sub nm resolution of different controlled motion profiles instantaneously monitored at a feedback rate of 100 kHz. The fact that the method does not rely on active optical components, potentially allows extremely high vibration rates to be measured; limited only by the detector bandwidth and sampling rate. In addition, the relatively simple design relies only on standard optical equipment, combined with the simple algorithm, makes the task of setting up a high performance vibrometry system cheap and readily available.

  14. Design of a laser system for instantaneous location of a longwall shearer

    NASA Technical Reports Server (NTRS)

    Stein, R.

    1981-01-01

    Calculations and measurements for the design of a laser system for instantaneous location of a longwall shearer were made. The designs determine shearer location to approximately one foot. The roll, pitch, and yaw angles of the shearer track are determined to approximately two degrees. The first technique uses the water target system. A single silicon sensor system and three gallium arsenide laser beams are used in this technique. The second technique is based on an arrangement similar to that employed in aircraft omnidirectional position finding. The angle between two points is determined by combining information in an onmidirectional flash with a scanned, narrow beam beacon. It is concluded that this approach maximizes the signal levels.

  15. Optimal pricing and replenishment policies for instantaneous deteriorating items with backlogging and trade credit under inflation

    NASA Astrophysics Data System (ADS)

    Sundara Rajan, R.; Uthayakumar, R.

    2017-04-01

    In this paper we develop an economic order quantity model to investigate the optimal replenishment policies for instantaneous deteriorating items under inflation and trade credit. Demand rate is a linear function of selling price and decreases negative exponentially with time over a finite planning horizon. Shortages are allowed and partially backlogged. Under these conditions, we model the retailer's inventory system as a profit maximization problem to determine the optimal selling price, optimal order quantity and optimal replenishment time. An easy-to-use algorithm is developed to determine the optimal replenishment policies for the retailer. We also provide optimal present value of profit when shortages are completely backlogged as a special case. Numerical examples are presented to illustrate the algorithm provided to obtain optimal profit. And we also obtain managerial implications from numerical examples to substantiate our model. The results show that there is an improvement in total profit from complete backlogging rather than the items being partially backlogged.

  16. Important temperatures associated with flames, their prediction and significance. (1) The ``instantaneous, spontaneous, ignition temperature''

    SciTech Connect

    Kretschmer, D.; Odgers, J.

    1998-07-01

    Two methods of calculating the instantaneous, spontaneous ignition temperature are suggested. Method 1 is based upon the prediction of the weak limits of any gaseous mixture and then calculating the corresponding temperature. Method 2 is a new equation related directly to experimental values of Ti. To obtain these techniques 409 data points have been examined representing the following--hydrogen, carbon monoxide, a range of alkanes, several other hydrocarbon fuels, a number of CHO fuels and a number of commercial fuel gases. Dilution effects due to added nitrogen, water, carbon dioxide, helium and argon have been included as well as changes of inlet temperatures from 298 to 600 K. These notes indicate that a satisfactory prediction of Ti offers the possibility of relating a number of flame parameters. These include the prediction of laminar flame temperature distribution and flame velocity, the prediction of spontaneous ignition delays, and the extension of knowledge of, as well as the prediction of, Well Stirred Reactor performance.

  17. Instantaneous flow measurements in a supersonic wind tunnel using spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E.; Reeder, Mark F.

    1995-01-01

    Results of a feasibility study to apply laser Rayleigh scattering to non-intrusively measure flow properties in a small supersonic wind tunnel are presented. The technique uses an injection seeded, frequency doubled Nd:YAG laser tuned to an absorption band of iodine. The molecular Rayleigh scattered light is filtered with an iodine cell to block light at the laser frequency. The Doppler-shifted Rayleigh scattered light that passes through the iodine cell is analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode. An intensified CCD camera is used to record the images. The images are analyzed at several subregions, where the flow velocity is determined. Each image is obtained with a single laser pulse, giving instantaneous measurements.

  18. Stratified shear flow in an inclined duct: near-instantaneous 3D velocity and density measurements

    NASA Astrophysics Data System (ADS)

    Partridge, Jamie; Lefauve, Adrien; Dalziel, Stuart; Linden, Paul

    2016-11-01

    We present results from a new experimental setup to study the exchange flow in an inclined square duct between two reservoirs containing fluids of different densities. This system can exhibit stratified shear wave motions, and has a distinct parameter threshold above which turbulence is triggered and progressively fills a larger fraction of the duct. To probe these intrinsically 3D flows, we introduce a new setup in which a traversing laser sheet allows us to obtain near-instantaneous 3D velocity and density fields. Three components of velocity are measured on successive 2D planes using stereo particle image velocimetry (PIV) with density information obtained simultaneously using laser induced fluorescence (LIF). Supported by EPSRC Programme Grant EP/K034529/1 entitled "Mathematical Underpinnings of Stratified Turbulence".

  19. Design of sensor networks for instantaneous inversion of modally reduced order models in structural dynamics

    NASA Astrophysics Data System (ADS)

    Maes, K.; Lourens, E.; Van Nimmen, K.; Reynders, E.; De Roeck, G.; Lombaert, G.

    2015-02-01

    In structural dynamics, the forces acting on a structure are often not well known. System inversion techniques may be used to estimate these forces from the measured response of the structure. This paper first derives conditions for the invertibility of linear system models that apply to any instantaneous input estimation or joint input-state estimation algorithm. The conditions ensure the identifiability of the dynamic forces and system states, their stability and uniqueness. The present paper considers the specific case of modally reduced order models, which are generally obtained from a physical, finite element model, or from experimental data. It is shown how in this case the conditions can be directly expressed in terms of the modal properties of the structure. A distinction is made between input estimation and joint input-state estimation. Each of the conditions is illustrated by a conceptual example. The practical implementation is discussed for a case study where a sensor network for a footbridge is designed.

  20. Effect of instantaneous stirring process on mixing between initially distant scalars in turbulent obstacle wakes

    NASA Astrophysics Data System (ADS)

    Shoaei, F.; Crimaldi, J. P.

    2017-04-01

    A two-channel planar laser-induced fluorescence technique is used to study mixing and reactions between two initially distant scalars in the turbulent wake of a cylindrical obstacle. The scalars are released continuously and isokinetically upstream of the cylinder, with a lateral separation that initially impedes mixing between them. The effect of the turbulent wake on mixing and reaction enhancement is determined by measuring the segregation parameter for cases with and without the cylinder obstruction. Results indicate that scalar mixing and reaction rates (in the low-Damkohler limit) increase significantly in the presence of the cylinder wake. The study also shows that the dominant contribution of total reaction derives from the scalar covariance associated with instantaneous flow processes, and depends strongly on streamwise location within the wake. The results have broad implications for mixing processes in engineering and ecology.

  1. Instantaneous, phase-averaged, and time-averaged pressure from particle image velocimetry

    NASA Astrophysics Data System (ADS)

    de Kat, Roeland

    2015-11-01

    Recent work on pressure determination using velocity data from particle image velocimetry (PIV) resulted in approaches that allow for instantaneous and volumetric pressure determination. However, applying these approaches is not always feasible (e.g. due to resolution, access, or other constraints) or desired. In those cases pressure determination approaches using phase-averaged or time-averaged velocity provide an alternative. To assess the performance of these different pressure determination approaches against one another, they are applied to a single data set and their results are compared with each other and with surface pressure measurements. For this assessment, the data set of a flow around a square cylinder (de Kat & van Oudheusden, 2012, Exp. Fluids 52:1089-1106) is used. RdK is supported by a Leverhulme Trust Early Career Fellowship.

  2. Instantaneous stroke volume in man during lower body negative pressure /LBNP/

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Richards, K. L.; Greene, E. R.; Eldridge, M. W.; Hoekenga, D. E.; Venters, M. D.; Luft, U. C.

    1982-01-01

    Results of an examination of the instantaneous time course of the stroke volume (SV) and cardiac output (Q) in response to the onset and release of -50 torr lower body negative pressure (LBNP) are reported. Six male subjects were sealed into a LBNP box up to the iliac crest while being monitored by echocardiograph for centerlamina blood velocity, fluid displacement, stroke volume, heart rate, and leg volume. Particular use was made of pulsed ultrasonic Doppler velocity meters for measuring the blood velocities and flow dynamics. Measurements were made of the subjects continuously beginning from 20 sec prior to and one min after LBNP onset and release. A linear fall in the SV was observed with LBNP at 49% of the baseline value after 33 sec. A 62% drop, the lowest, was detected after 8 min of LBNP. The leg volume was inversely related to Q for the duration of the experiment.

  3. Instantaneous Starburst of the Massive Clusters Westerlund 1 and NGC 3603 YC

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, Natalia; Brandner, Wolfgang; Gennaro, Mario; Rochau, Boyke; Stolte, Andrea; Andersen, Morten; Da Rio, Nicola; Henning, Thomas; Tognelli, Emanuele; Hogg, David; Clark, Simon; Waters, Rens

    2012-05-01

    We present a new method to determine the age spread of resolved stellar populations in a starburst cluster. The method relies on a two-step process. In the first step, kinematic members of the cluster are identified based on multi-epoch astrometric monitoring. In the second step, a Bayesian analysis is carried out, comparing the observed photometric sequence of cluster members with sets of theoretical isochrones. When applying this methodology to optical and near-infrared high angular resolution Hubble Space Telescope (HST) and adaptive optics observations of the ~5 Myr old starburst cluster Westerlund 1 and ~2 Myr old starburst cluster NGC 3603 YC, we derive upper limits for the age spreads of 0.4 and 0.1 Myr, respectively. The results strongly suggest that star formation in these starburst clusters happened almost instantaneously.

  4. INSTANTANEOUS STARBURST OF THE MASSIVE CLUSTERS WESTERLUND 1 AND NGC 3603 YC

    SciTech Connect

    Kudryavtseva, Natalia; Brandner, Wolfgang; Gennaro, Mario; Rochau, Boyke; Henning, Thomas; Stolte, Andrea; Andersen, Morten; Da Rio, Nicola; Tognelli, Emanuele; Hogg, David; Clark, Simon; Waters, Rens

    2012-05-10

    We present a new method to determine the age spread of resolved stellar populations in a starburst cluster. The method relies on a two-step process. In the first step, kinematic members of the cluster are identified based on multi-epoch astrometric monitoring. In the second step, a Bayesian analysis is carried out, comparing the observed photometric sequence of cluster members with sets of theoretical isochrones. When applying this methodology to optical and near-infrared high angular resolution Hubble Space Telescope (HST) and adaptive optics observations of the {approx}5 Myr old starburst cluster Westerlund 1 and {approx}2 Myr old starburst cluster NGC 3603 YC, we derive upper limits for the age spreads of 0.4 and 0.1 Myr, respectively. The results strongly suggest that star formation in these starburst clusters happened almost instantaneously.

  5. Fast on-line identification of instantaneous mechanical losses in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cruz-Peragón, F.; Palomar, J. M.; Díaz, F. A.; Jiménez-Espadafor, F. J.

    2010-01-01

    A fast and easy procedure to evaluate instantaneous mechanical losses in internal combustion engines (appropriate to any multi-cylinder engine) has been developed. First, a performance measurement procedure to obtain losses in one cycle is conducted. Subsequently, they must be proportionally divided into all cylinders, even considering those with no combustion. Finally, a non-linear identification procedure is applied to determine the coefficients of the P- ω method for each cylinder. The methodology has been applied to a single-cylinder compression ignition engine, and to a three-cylinder spark ignition engine. The first engine allows the procedure to be validated by comparing results with those obtained using other established methodology. The second engine makes it possible to analyze the robustness of the method when it is applied to a multi-cylinder engine.

  6. Instantaneous pictures of the high-latitude electrodynamics using Viking and DMSP/F7 observations

    SciTech Connect

    Marklund, G.T.; Blomberg, L.G.; Hardy, D.A.; Rich, F.J.

    1987-08-01

    Simultaneous observations by the Viking and the DMSP/F7 satellites were applied to a new technique to obtain realistic pictures of the auroral electrodynamics. In particular, an instantaneous global equipotential pattern is calculated using field-aligned current and conductivity distributions that are qualitatively consistent with the Viking auroral imager data and quantitatively consistent with magnetic-field and particle data from the two satellites. This convection pattern agrees with the E x B-drift vectors estimated from Viking electric-field data. Discrepancies consistent with upward parallel electric fields occur in regions of upward currents. The pattern is of the normal two-cell type, with a small dusk cell and a large, elongated crescent-shaped dawn cell. The excellent agreement between the satellite and model data demonstrates the reliability of the results.

  7. Unusually stable ~100-fold reversible and instantaneous swelling of inorganic layered materials

    PubMed Central

    Geng, Fengxia; Ma, Renzhi; Nakamura, Akira; Akatsuka, Kosho; Ebina, Yasuo; Yamauchi, Yusuke; Miyamoto, Nobuyoshi; Tateyama, Yoshitaka; Sasaki, Takayoshi

    2013-01-01

    Cells can swell or shrink in certain solutions; however, no equivalent activity has been observed in inorganic materials. Although lamellar materials exhibit increased volume with increase in the lamellar period, the interlamellar expansion is usually limited to a few nanometres, with a simultaneous partial or complete exfoliation into individual atomic layers. Here we demonstrate a large monolithic crystalline swelling of layered materials. The gallery spacing can be instantly increased ~100-fold in one direction to ~90 nm, with the neighbouring layers separated primarily by H2O. The layers remain strongly held without peeling or translational shifts, maintaining a nearly perfect three-dimensional lattice structure of >3,000 layers. First-principle calculations yield a long-range directional structuring of the H2O molecules that may help to stabilize the highly swollen structure. The crystals can also instantaneously shrink back to their original sizes. These findings provide a benchmark for understanding the exfoliating layered materials. PMID:23535653

  8. Measuring Instantaneous Frequency of Local Field Potential Oscillations using the Kalman Smoother

    PubMed Central

    Nguyen, David P.; Wilson, Matthew A.; Brown, Emery N.; Barbieri, Riccardo

    2009-01-01

    Rhythmic local field potentials (LFP) arise from coordinated neural activity. Inference of neural function based on the properties of brain rhythms remains a challenging data analysis problem. Algorithms that characterize non-stationary rhythms with high temporal and spectral resolution may be useful for interpreting LFP activity on the timescales in which they are generated. We propose a Kalman smoother based dynamic autoregressive model for tracking the instantaneous frequency (iFreq) and frequency modulation (FM) of noisy and non-stationary sinusoids such as those found in LFP data. We verify the performance of our algorithm using simulated data with broad spectral content, and demonstrate its application using real data recorded from behavioral learning experiments. In analyses of ripple oscillations (100-250 Hz) recorded from the rodent hippocampus, our algorithm identified novel repetitive, short timescale frequency dynamics. Our results suggest that iFreq and FM may be useful measures for the quantification of small timescale LFP dynamics. PMID:19699763

  9. Retrograde diurnal motion of the instantaneous rotation axis observed by a large ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Tian, W.

    2017-01-01

    Ring laser gyroscope technique directly senses the Earth's instantaneous rotation pole (IRP), whose polar motion contains strong retrograde diurnal components induced by external torques due to the gravitational attraction of the Moon and Sun. The first direct measurement of this retrograde diurnal motion with three large ring lasers was reported by Schreiber et al. (J Geophys Res 109(B18):B06405, significant increase in precision and stability of ring laser gyroscopes; however, precise determination of amplitude and phase at main partial waves has not been given in the literature. In this paper, I will report on determination of the retrograde diurnal motion of the IRP at main partial waves (Oo_1, J_1, K_1, M_1, O_1, Q_1) by the ring laser "G", located in Wettzell, Germany, which is the most stable one amongst the currently running large ring laser gyroscopes.

  10. Instantaneous stroke volume in man during lower body negative pressure /LBNP/

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Richards, K. L.; Greene, E. R.; Eldridge, M. W.; Hoekenga, D. E.; Venters, M. D.; Luft, U. C.

    1982-01-01

    Results of an examination of the instantaneous time course of the stroke volume (SV) and cardiac output (Q) in response to the onset and release of -50 torr lower body negative pressure (LBNP) are reported. Six male subjects were sealed into a LBNP box up to the iliac crest while being monitored by echocardiograph for centerlamina blood velocity, fluid displacement, stroke volume, heart rate, and leg volume. Particular use was made of pulsed ultrasonic Doppler velocity meters for measuring the blood velocities and flow dynamics. Measurements were made of the subjects continuously beginning from 20 sec prior to and one min after LBNP onset and release. A linear fall in the SV was observed with LBNP at 49% of the baseline value after 33 sec. A 62% drop, the lowest, was detected after 8 min of LBNP. The leg volume was inversely related to Q for the duration of the experiment.

  11. Instantaneous maps of the European middle and high-latitude ionosphere for HF propagation assessments

    NASA Astrophysics Data System (ADS)

    Bradley, P. A.; Juchnikowski, G.; Rothkaehl, H.; Stanisławska, I.

    Instantaneous mapping techniques applied to geographically irregularly spaced foF2 measurements can lead sometimes to non-physical gradients. A procedure is presented to avoid such problems by the use of screen points within the area of interest having values derived from single station models (SSM's). Spatial smoothing uses the kriging method in terms of the deviations between the measurements and corresponding figures given by the adopted long-term mapping method of COST 238 (PRIME). A new first-order trough model is introduced as a correction to the mapped values on the equatorial side of the auroral oval by night. Sample maps of the European ionosphere generated by this technique are compared with internationally recommended monthly median prediction maps to demonstrate the lack of spatial structure these latter give, with consequential errors when applied to propagation assessments. The use of the new maps, particularly for the higher latitudes, is advocated.

  12. Equivalence between free quantum particles and those in harmonic potentials and its application to instantaneous changes

    NASA Astrophysics Data System (ADS)

    Steuernagel, Ole

    2014-06-01

    In quantum physics the free particle and the harmonically trapped particle are arguably the most important systems a physicist needs to know about. It is little known that, mathematically, they are one and the same. This knowledge helps us to understand either from the viewpoint of the other. Here we show that all general time-dependent solutions of the free-particle Schrödinger equation can be mapped to solutions of the Schrödinger equation for harmonic potentials, both the trapping oscillator and the inverted "oscillator". This map is fully invertible and therefore induces an isomorphism between both types of system, they are equivalent. A composition of the map and its inverse allows us to map from one harmonic oscillator to another with a different spring constant and different center position. The map is independent of the state of the system, consisting only of a coordinate transformation and multiplication by a form factor, and can be chosen such that the state is identical in both systems at one point in time. This transition point in time can be chosen freely, the wave function of the particle evolving in time in one system before the transition point can therefore be linked up smoothly with the wave function for the other system and its future evolution after the transition point. Such a cut-and-paste procedure allows us to describe the instantaneous changes of the environment a particle finds itself in. Transitions from free to trapped systems, between harmonic traps of different spring constants or center positions, or, from harmonic binding to repulsive harmonic potentials are straightforwardly modelled. This includes some time-dependent harmonic potentials. The mappings introduced here are computationally more efficient than either state-projection or harmonic oscillator propagator techniques conventionally employed when describing instantaneous (non-adiabatic) changes of a quantum particle's environment.

  13. Instantaneous Flow Structures and Opportunities for Larval Settlement: Barnacle Larvae Swim to Settle.

    PubMed

    Larsson, Ann I; Granhag, Lena M; Jonsson, Per R

    2016-01-01

    Water flow affects settlement of marine larvae on several scales. At the smallest scale local flow regime may control the probability of adhesion to the substrate. Our aim was to mechanistically understand the transition from suspended to attached larvae in turbulent flow. Recently it was proposed that opportunities for larval settlement in turbulent boundary layers depend on time windows with suitable instantaneous flow properties. In flume flow we characterized the proportion of suitable time windows in a series of flow velocities with focus on the near-bed flow. The change in the proportion of potential settling windows with increasing free-stream velocities was compared to the proportion of temporary attachment of barnacle cypris larvae at different flow velocities. We found large instantaneous flow variations in the near-bed flow where cyprid attachment took place. The probability of temporary attachment in cyprids declined with local flow speed and this response was compatible with a settling window lasting at least 0.1 s with a maximum local flow speed of 1.9-2.4 cm s-1. Cyprids swam against the near-bed flow (negative rheotaxis) and the swimming speed (1.8 cm s-1) was close to the critical speed that permitted temporary attachment. We conclude that temporary attachment in barnacle cyprids requires upstream swimming to maintain a fixed position relative to the substrate for at least 0.1 s. This behaviour may explain the ability of barnacles to recruit to high-flow environments and give cyprids flexibility in the pre-settlement choice of substrates based on flow regime.

  14. Depth-averaged instantaneous currents in a tidally dominated shelf sea from glider observations

    NASA Astrophysics Data System (ADS)

    Merckelbach, Lucas

    2016-12-01

    Ocean gliders have become ubiquitous observation platforms in the ocean in recent years. They are also increasingly used in coastal environments. The coastal observatory system COSYNA has pioneered the use of gliders in the North Sea, a shallow tidally energetic shelf sea. For operational reasons, the gliders operated in the North Sea are programmed to resurface every 3-5 h. The glider's dead-reckoning algorithm yields depth-averaged currents, averaged in time over each subsurface interval. Under operational conditions these averaged currents are a poor approximation of the instantaneous tidal current. In this work an algorithm is developed that estimates the instantaneous current (tidal and residual) from glider observations only. The algorithm uses a first-order Butterworth low pass filter to estimate the residual current component, and a Kalman filter based on the linear shallow water equations for the tidal component. A comparison of data from a glider experiment with current data from an acoustic Doppler current profilers deployed nearby shows that the standard deviations for the east and north current components are better than 7 cm s-1 in near-real-time mode and improve to better than 6 cm s-1 in delayed mode, where the filters can be run forward and backward. In the near-real-time mode the algorithm provides estimates of the currents that the glider is expected to encounter during its next few dives. Combined with a behavioural and dynamic model of the glider, this yields predicted trajectories, the information of which is incorporated in warning messages issued to ships by the (German) authorities. In delayed mode the algorithm produces useful estimates of the depth-averaged currents, which can be used in (process-based) analyses in case no other source of measured current information is available.

  15. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  16. The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis.

    PubMed

    Schmidt, Hendrik; Heuer, Frank; Claes, Lutz; Wilke, Hans-Joachim

    2008-03-01

    The instantaneous center of rotation in a functional spinal unit is an indicator for mechanical disorders and is relevant for the development of motion preserving techniques. In addition to the intervertebral disc, the facet joints also play a major role for load transmission through the spine, providing stability to it. The relationship between the rotation center and facet joint forces is not fully understood, since previous studies have separated both; spinal motion and facet forces. A finite element model of a L4-5 lumbar spinal segment was exposed to an axial compression preload of 500 N. Pure unconstrained moments of 7.5 Nm were additionally applied in the three anatomical main planes. The instantaneous center of rotation and the facet joint forces were investigated. For small moments, the center of rotation was found to be almost in the center of the disc, no matter what motion direction. With an increasing flexion moment, the center of rotation moved anteriorly. The facet joints remained unloaded in flexion. With proceeding extension movement, the center of rotation moved posteriorly. The facet forces increased up to 50 N. In lateral bending, with increasing moment the center of rotation migrated posteriorly in the ipsilateral side of the disc. The forces in the facet joints rose to 36 N. In axial rotation, the center of rotation migrated towards the compressed facet joint with increasing moment. Axial rotation yielded the maximum facet forces with 105 N. The determination of the rotation center is highly sensible against measurement resolution obtained during in vivo and in vitro studies. This finite element method can be used to complement the knowledge of the rotation center location from former experimental findings.

  17. Evaluating the design of an Earth Radiation Budget Instrument with systen simulations. Part 1: Instantaneous estimates

    SciTech Connect

    Stowe, L.; Ardanuy, P.; Hucek, R.; Abel, P.; Jacobowitz, H. ||

    1993-12-01

    A set of system simulations has been performed to evaluate candidate scanner designs for an Earth Radiation Budget Instrument (ERBI) for the Earth Observing System (EOS) of the late 1990s. Five different instruments are considered: (1) the Active Cavity Array (ACA), (2) the Clouds and Earth`s Radiant Energy System-Instrument (CERES-I), (3) the Conically Scanning Radiometer (CSR), (4) the Earth Radiation Budget Experiment Cross-Track Scanner (ERBE), and (5) the Nimbus-7 Biaxial Scanner (N7). Errors in instantaneous, top-of-the-atmosphere (TOA) satellite flux estimates are assumed to arise from two measurement problems: the sampling of space over a given geographic domain, and sampling in angle about a given spatial location. When angular sampling errors vanish due to the application of correct angular dependence models (ADMs) during inversion, the accuracy of each scanner design is determined by the instrument`s ability to map the TOA radiance field in a uniform manner. In this regard, the instruments containing a cross-track scanning component (CERES-I and ERBE) do best. As errors in ADMs are encountered, cross-track instruments incur angular sampling errors more rapidly than biaxial instruments (N7, ACA, and CSR) and eventually overtake the biaxial designs in their total error amounts. A latitude bias (north-south error gradient) in the ADM error of cross-track instruments also exists. This would be objectionable when ADM errors are systematic over large areas of the globe. For instantaneous errors, however, cross-track scanners outperform biaxial or conical scanners for 2.5 deg latitude x 2.5 deg longitude target areas, providing that the ADM error is less than or equal to 30%.

  18. Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics.

    PubMed

    Woltring, H J; Long, K; Osterbauer, P J; Fuhr, A W

    1994-12-01

    To date, the diagnosis of whiplash injuries has been very difficult and largely based on subjective, clinical assessment. The work by Winters and Peles Multiple Muscle Systems--Biomechanics and Movement Organization. Springer, New York (1990) suggests that the use of finite helical axes (FHAs) in the neck may provide an objective assessment tool for neck mobility. Thus, the position of the FHA describing head-trunk motion may allow discrimination between normal and pathological cases such as decreased mobility in particular cervical joints. For noisy, unsmoothed data, the FHAs must be taken over rather large angular intervals if the FHAs are to be reconstructed with sufficient accuracy; in the Winters and Peles study, these intervals were approximately 10 degrees. in order to study the movements' microstructure, the present investigation uses instantaneous helical axes (IHAs) estimated from low-pass smoothed video data. Here, the small-step noise sensitivity of the FHA no longer applies, and proper low-pass filtering allows estimation of the IHA even for small rotation velocity omega of the moving neck. For marker clusters mounted on the head and trunk, technical system validation showed that the IHAs direction dispersions were on the order of one degree, while their position dispersions were on the order of 1 mm, for low-pass cut-off frequencies of a few Hz (the dispersions were calculated from omega-weighted errors, in order to account for the adverse effects of vanishing omega). Various simple, planar models relating the instantaneous, 2-D centre of rotation with the geometry and kinematics of a multi-joint neck model are derived, in order to gauge the utility of the FHA and IHA approaches. Some preliminary results on asymptomatic and pathological subjects are provided, in terms of the 'ruled surface' formed by sampled IHAs and of their piercing points through the mid-sagittal plane during a prescribed flexion-extension movement of the neck.

  19. Ambulatory Assessment of Instantaneous Velocity during Walking Using Inertial Sensor Measurements

    PubMed Central

    Sabatini, Angelo Maria; Mannini, Andrea

    2016-01-01

    A novel approach for estimating the instantaneous velocity of the pelvis during walking was developed based on Inertial Measurement Units (IMUs). The instantaneous velocity was modeled by the sum of a cyclical component, decomposed in the Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP) directions, and the Average Progression Velocity (APV) over each gait cycle. The proposed method required the availability of two IMUs, attached to the pelvis and one shank. Gait cycles were identified from the shank angular velocity; for each cycle, the Fourier series coefficients of the pelvis and shank acceleration signals were computed. The cyclical component was estimated by Fourier-based time-integration of the pelvis acceleration. A Bayesian Linear Regression (BLR) with Automatic Relevance Determination (ARD) predicted the APV from the stride time, the stance duration, and the Fourier series coefficients of the shank acceleration. Healthy subjects performed tasks of Treadmill Walking (TW) and Overground Walking (OW), and an optical motion capture system (OMCS) was used as reference for algorithm performance assessment. The widths of the limits of agreements (±1.96 standard deviation) were computed between the proposed method and the reference OMCS, yielding, for the cyclical component in the different directions: ML: ±0.07 m/s (±0.10 m/s); VT: ±0.03 m/s (±0.05 m/s); AP: ±0.06 m/s (±0.10 m/s), in TW (OW) conditions. The ARD-BLR achieved an APV root mean square error of 0.06 m/s (0.07 m/s) in the same conditions. PMID:28009854

  20. Ambulatory Assessment of Instantaneous Velocity during Walking Using Inertial Sensor Measurements.

    PubMed

    Sabatini, Angelo Maria; Mannini, Andrea

    2016-12-21

    A novel approach for estimating the instantaneous velocity of the pelvis during walking was developed based on Inertial Measurement Units (IMUs). The instantaneous velocity was modeled by the sum of a cyclical component, decomposed in the Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP) directions, and the Average Progression Velocity (APV) over each gait cycle. The proposed method required the availability of two IMUs, attached to the pelvis and one shank. Gait cycles were identified from the shank angular velocity; for each cycle, the Fourier series coefficients of the pelvis and shank acceleration signals were computed. The cyclical component was estimated by Fourier-based time-integration of the pelvis acceleration. A Bayesian Linear Regression (BLR) with Automatic Relevance Determination (ARD) predicted the APV from the stride time, the stance duration, and the Fourier series coefficients of the shank acceleration. Healthy subjects performed tasks of Treadmill Walking (TW) and Overground Walking (OW), and an optical motion capture system (OMCS) was used as reference for algorithm performance assessment. The widths of the limits of agreements (±1.96 standard deviation) were computed between the proposed method and the reference OMCS, yielding, for the cyclical component in the different directions: ML: ±0.07 m/s (±0.10 m/s); VT: ±0.03 m/s (±0.05 m/s); AP: ±0.06 m/s (±0.10 m/s), in TW (OW) conditions. The ARD-BLR achieved an APV root mean square error of 0.06 m/s (0.07 m/s) in the same conditions.

  1. Instantaneous Flow Structures and Opportunities for Larval Settlement: Barnacle Larvae Swim to Settle

    PubMed Central

    Granhag, Lena M.; Jonsson, Per R.

    2016-01-01

    Water flow affects settlement of marine larvae on several scales. At the smallest scale local flow regime may control the probability of adhesion to the substrate. Our aim was to mechanistically understand the transition from suspended to attached larvae in turbulent flow. Recently it was proposed that opportunities for larval settlement in turbulent boundary layers depend on time windows with suitable instantaneous flow properties. In flume flow we characterized the proportion of suitable time windows in a series of flow velocities with focus on the near-bed flow. The change in the proportion of potential settling windows with increasing free-stream velocities was compared to the proportion of temporary attachment of barnacle cypris larvae at different flow velocities. We found large instantaneous flow variations in the near-bed flow where cyprid attachment took place. The probability of temporary attachment in cyprids declined with local flow speed and this response was compatible with a settling window lasting at least 0.1 s with a maximum local flow speed of 1.9–2.4 cm s-1. Cyprids swam against the near-bed flow (negative rheotaxis) and the swimming speed (1.8 cm s-1) was close to the critical speed that permitted temporary attachment. We conclude that temporary attachment in barnacle cyprids requires upstream swimming to maintain a fixed position relative to the substrate for at least 0.1 s. This behaviour may explain the ability of barnacles to recruit to high-flow environments and give cyprids flexibility in the pre-settlement choice of substrates based on flow regime. PMID:27463968

  2. Statistical Analysis of Instantaneous Frequency Scaling Factor as Derived from Optical Disdrometer Measurements at VW Bands

    NASA Technical Reports Server (NTRS)

    Zemba, Michael; Nessel, James; Tarasenko, Nicholas; Lane, Steven

    2017-01-01

    Since October 2015, NASA Glenn Research Center (GRC) and the Air Force Research Laboratory (AFRL) have collaboratively operated an RF terrestrial link in Albuquerque, New Mexico to characterize atmospheric propagation phenomena at 72 and 84 GHz. The WV-band Terrestrial Link Experiment (WTLE) consists of coherent transmitters at each frequency on the crest of the Sandia Mountains and a corresponding pair of receivers in south Albuquerque. The beacon receivers provide a direct measurement of the link attenuation, while concurrent weather instrumentation provides a measurement of the atmospheric conditions.Among the available weather instruments is an optical disdrometer which yields an optical measurement of rain rate, as well as droplet size and velocity distributions (DSD, DVD). In particular, the DSD can be used to derive an instantaneous scaling factor (ISF) by which the measured data at one frequency can be scaled to another for example, scaling the 72 GHz to an expected 84 GHz timeseries. Given the availability of both the DSD prediction and the directly observed 84 GHz attenuation, WTLE is thus uniquely able assess DSD-derived instantaneous frequency scaling at the VW-bands. Previous work along these lines has investigated the DSD-derived ISF at Ka and Q-band (20 GHz to 40 GHz) using a satellite beacon receiver experiment in Milan, Italy [1-3]. This work will expand the investigation to terrestrial links in the VW-bands, where the frequency scaling factor is lower and where the link is also much more sensitive to attenuation by rain, clouds, and other atmospheric effects.

  3. Instantaneous engine frictional torque, its components and piston assembly friction. Final report

    SciTech Connect

    Nichols, F.A.; Henein, N.A.

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-{omega}) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, {omega}, have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-{omega}) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  4. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    PubMed Central

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal

  5. Transient transport of reactive and non-reactive solutes in groundwater

    NASA Astrophysics Data System (ADS)

    Fares, Y. R.; Giacobbe, D.

    2004-06-01

    A numerical model capable of predicting the transient changes in concentration levels of a solute along a homogeneous aquifer system is presented. The advection-dispersion equation (ADE) is utilised in predicting the concentration levels for cases of continuous and instantaneous release modes. The Crank-Nicholson equation is employed in the presented finite difference model. The numerical calculations are carried out using the implicit Gauss-Seidel method with over- and under-relaxation coefficients depending on the state of convergence. The correction terms resulting from the removal of zero- and first-order truncation errors in the ADE with a reaction term have significantly improved the performance of the numerical scheme. Comparisons between the numerically predicted concentrations with analytical and measured values were carried out for cases of non-reactive (tracer) and reactive (organic) solutes with continuous injection in homogeneous isotropic soils. The overshooting problems experienced in the numerical calculations are minimised by refining the finite grid size. The analysis of results has shown that the model can produce reliable simulations for cases of non-reactive solutes. While for the case of solutes undergoing adsorption, accurate concentrations can be predicted by adjusting the influent pore water velocity through the use of a retardation factor, which is suitable for aquifers with low organic carbon content and undergoing hydrophobic partitioning.

  6. Developing economic order quantity model for non-instantaneous deteriorating items in vendor-managed inventory (VMI) system

    NASA Astrophysics Data System (ADS)

    Tat, Roya; Allah Taleizadeh, Ata; Esmaeili, Maryam

    2015-05-01

    This paper develops an economic order quantity model for non-instantaneous deteriorating items with and without shortages to investigate the performance of the vendor-managed inventory (VMI) system. This model is developed for a two-level supply chain consisting of a single supplier and single retailer with a single non-instantaneous deteriorating item. A numerical example and sensitivity analysis are provided to illustrate how increasing or reducing the related parameters change the optimal values of the decision variables of the two proposed models. The results show that VMI works better and charges lower cost in all conditions.

  7. Transverse (lateral) instantaneous force of an acoustical first-order Bessel vortex beam centered on a rigid sphere.

    PubMed

    Mitri, F G; Fellah, Z E A

    2012-01-01

    In a recent report [F.G. Mitri, Z.E.A. Fellah, Ultrasonics 51 (2011) 719-724], it has been found that the instantaneous axial force (i.e. acting along the axis of wave propagation) of a Bessel acoustic beam centered on a sphere is only determined for the fundamental order (i.e. m=0) but vanishes when the beam is of vortex type (i.e. m>0, where m is the order (or helicity) of the beam). It has also been recognized that for circularly symmetric beams (such as Bessel beams of integer order), the transverse (lateral) instantaneous force should vanish as required by symmetry. Nevertheless, in this commentary, the present analysis unexpectedly reveals the existence of a transverse instantaneous force on a rigid sphere centered on the axis of a Bessel vortex beam of unit magnitude order (i.e. |m|=1) not reported in [F.G. Mitri, Z.E.A. Fellah, Ultrasonics 51 (2011) 719-724]. The presence of the transverse instantaneous force components of a first-order Bessel vortex beam results from mathematical anti-symmetry in the surface integrals, but vanishes for the fundamental (m=0) and higher-order Bessel (vortex) beams (i.e. |m|>1). Here, closed-form solutions for the instantaneous force components are obtained and examples for the transverse components for progressive waves are computed for a fixed and a movable rigid sphere. The results show that only the dipole (n=1) mode in the scattering contributes to the instantaneous force components, as well as how the transverse instantaneous force per unit cross-sectional surface varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), and the half-cone angle β of the beam. Moreover, the velocity of the movable sphere is evaluated based on the concept of mechanical impedance. The proposed analysis may be of interest in the analysis of transverse instantaneous forces on spherical particles for particle manipulation and rotation in drug delivery and other biomedical or

  8. Fuel-cell powered uninterruptible power supply systems: Design considerations

    NASA Astrophysics Data System (ADS)

    Choi, Woojin; Howze, Jo. W.; Enjeti, Prasad

    A 1-kVA fuel cell powered, line-interactive uninterruptible power supply (UPS) system that employs modular (fuel cell and power converter) blocks is introduced. Two commercially available proton-exchange membrane fuel cell (25-39 V, 500 W) modules together with suitable dc-dc and dc-ac power electronic converter modules are employed. A supercapacitor module is also used to compensate for the instantaneous power fluctuations and to overcome the slow dynamics of the fuel processor (reformers). Further energy stored in the supercapacitor is also utilized to handle a momentary overload such as 200% for a short duration. Due to the absence of batteries, the system satisfies the demand for an environmentally clean source of energy. A complete design that defines the amount of hydrogen storage required for a power outage of 1 h, and the sizing of the supercapacitors for transient load demand is presented for a 1-kVA UPS.

  9. Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.

    PubMed

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

  10. Chlorella Induces Stomatal Closure via NADPH Oxidase-Dependent ROS Production and Its Effects on Instantaneous Water Use Efficiency in Vicia faba

    PubMed Central

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels. PMID:24687099

  11. Instantaneous spectral span of 2.85 - 8.40 μm achieved in a Cr:ZnS laser pumped subharmonic OPO

    NASA Astrophysics Data System (ADS)

    Ru, Qitian; Zhong, Kai; Lee, Nathaniel P.; Loparo, Zachary E.; Schunemann, Peter G.; Vasilyev, Sergey; Mirov, Sergey B.; Vodopyanov, Konstantin L.

    2017-02-01

    Degenerate (subharmonic) optical parametric oscillators (OPO) show great promise for the generation of broadband mid-infrared (MIR) frequency combs. Their main features are low pump threshold, dramatic extension of the spectrum of the pump laser, and phase locking to the pump frequency comb. Here we report on obtaining instantaneous spectrum ranging from 2.85 to 8.40 μm at -40 dB level from a subharmonic OPO pumped by an ultrafast Cr2+:ZnS laser. Our experimental setup includes a free running Kerr lens mode locked 2.35 μm Cr2+:ZnS laser, with 62-fs time-bandwidth limited pulse duration, 630-mW average power, and 79 MHz repetition rate that synchronously pumps a ring-cavity orientation-patterned (OP-GaAs) based OPO. A 0.5-mm-long OP-GaAs crystal has a quasi-phase-matching (QPM) period of 88 μm and is designed to provide a broadband parametric gain at OPO degeneracy. A 0.3-mm-thick ZnSe wedge inside the cavity was used to minimize group velocity dispersion. Spectral span of 1.56 octaves in the MIR that we achieved can be further improved by fabricating an in-coupling dielectric mirror with (i) broader reflectivity range and (ii) with compensation of the residual group velocity dispersion. The broad spectrum achieved, 2.85 - 8.40 μm (2320 cm-1 wide instantaneous span), overlaps with a plethora of fundamental molecular IR resonances and can be used for frequency comb spectroscopic detection applied to such fields as remote sensing, study of fast combustion dynamics and medical diagnostics, to name a few.

  12. Phenylethynyl reactive diluents

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having a specified general structure is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having a specified general structure is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react with to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  13. Measurement of Instantaneous Sea Level by L-band Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Kim, S.; Won, J.

    2002-12-01

    The radar interferometric measurement on sea surface has not be considered feasible, but Alsdorf et al. (2000) recently demonstrated that interferometric phases of L-HH SAR were correlated with centimeter-scale changes in the height of water surfaces within flooded vegetation. We present the characteristics of the JERS-1 SAR interferometric phase on seawater around Kaduckdo, Korea, and propose a possible application of SAR to measuring instantaneous relative sea level. Coherent signals, caused by manmade oyster farm structures and comparable to those from land in terms of coherence, were observed. Using 21 interferograms produced from 11 JERS-1 SAR single look complex data sets, the instantaneous sea level changes were estimated for the first time. The absolute sea level changes could not properly be restored by interferometric phases alone because of the discontinuity of phase and the large sea level changes in the area of interest. The wrapped phases are limited to an estimation of -7.6~7.6 cm changes due to uncertainty of sign (up or down). The comparison of the radar measurements with the tide gauge data (OTT-R20) yielded a relatively low correlation coefficient, 0.57. The possible error sources included the tide gauge measurements, which was not on-site measurements but 5 km away from the test site, and phase noise error (1.8 cm). We have overcome the ambiguity problem to some extent by exploiting radar back-scattering intensity. The radar intensity from sea farms was normalized using the statistics of the intensities at seawater and urban land area. The normalized intensity was inversely proportional to the sea level with a correlation coefficient of -0.83. We could thus constrain the number of wrapping counts to one (13 pairs) or two (9 pairs) within 68% confidence interval. When the wrapping count was chosen through the proposed method, the correlation coefficient was improved to be 0.96 with an r.m.s. error of 6.0 cm. The results show a feasibility of

  14. Determination of instantaneous and daily net radiation from TM - Landsat 5 data in a subtropical watershed

    NASA Astrophysics Data System (ADS)

    da Silva, Bernardo Barbosa; Montenegro, Susana Maria Gico Lima; da Silva, Vicente de Paulo Rodrigues; da Rocha, Humberto Ribeiro; Galvíncio, Josicleda Domiciano; de Oliveira, Leidjane Maria Maciel

    2015-12-01

    Remote sensing makes it possible to identify the changes that occur on the surface of the Earth as a result of natural and/or man-made phenomena. Such changes impact on the net radiation at surface which in turn controls the Earth's climate. The present study aims to determine the impact of land use changes on net radiation at surface in a tropical watershed in Brazil, based on satellite images. The instantaneous net radiation (Rn,ins) (at the time of the satellite overpass) and the daily net radiation (Rn,24 h) were both estimated by TM - Landsat 5 images and complementary weather data. The net radiation (Rn) estimated from remote sensing data was compared to the measurements taken from two micrometeorological towers located in the study area. Most Rn,ins values were found to be between 457.4 W m-2 and 760.0 W m-2 during the months with more intense solar radiation (February, March, and November), especially in the areas with more vegetation cover (sugarcane and eucalyptus plantations and areas with woody savanna vegetation, locally called Cerradão). The months with the highest thermal and radiative contrast (June and November) were selected to show the spatial distribution of the daily (Instantaneous) Rn, which ranged from 28.0 (420) W m-2 to 98.0 (520) W m-2 in June and from 83.0 (450) W m-2 to 264.0 (800) W m-2 in November 9. The model used to calculate Rn,24 h provided values close to those taken at surface, even on days with higher cloud cover after the satellite overpass. The Mean Absolute Error (MAE), Mean Relative Error (MRE), and Root Mean Square Error (RMSE) associated with the Rn,24 h computations in the sugar cane plantation were 8.3 W m-2, 8.4%, and 10.4 W m-2, respectively, confirming the applicability and accuracy of the results. The Rn patterns registered on the woody savanna throughout the year differ very much from those found in cropped areas, particularly in sugar cane plots. This may cause an impact on the watershed climate.

  15. Introducing the Statistical Redundancy of Instantaneous Phases of the Seismic Signal to Isolate Persistent Sources

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Gaudot, I.; Mocquet, A.; Schimmel, M.; Le Feuvre, M.

    2016-12-01

    We introduce a new method based on pairwise comparisons among a set of synchronous time-series to detect signal redundancies in the seismic ambient wavefield. This approach is based on instantaneous phase coherence statistics, assuming the ergodicity property of a random signal. The first and second moments of the distribution of all possible pairwise phase coherences are used to define the phase randomness. Both theory and synthetic experiments show that, for perfect phase randomness, the theoretical values of the mean and variance are equal to 0 and 1 - 2/π, respectively. Any departure from these values signs the presence of a redundant phase in the raw continuous signal. To detect a repetitive signal propagating between two receivers, the raw time series are split into short-time windows before a cross-correlation operation. For each time sample of the cross-correlation collection, the distribution of all possible pairwise instantaneous phases reflects the redundant behaviour of any persistent localized source. The previously detected 26 s period microseismic source is used to illustrate one of the possible ways of handling phase coherence statistics. The dataset is composed by continuous vertical component during the month of August 2004, recorded at four stations. Classical signal processing steps (including removing the mean, trend and the instrumental response) are applied before bandpass filter the data between 23 and 32 s. Each 31 day length seismogram is split into 372 × 2 h time windows to be cross-correlated among all possible station pairs. We observe that, for all station pairs, the mean overall coherence value is close to zero for most time lags, except for specific time windows for which there is a noticeable departure from the null value. The conversion of the mean overall coherences values into geographical locations using a standard 3.5 km/s group velocity value leads to a source located in the Gulf of Guinea, in a very good agreement with

  16. Three-dimensional instantaneous dynamics modeling of present-day Aegean subduction

    NASA Astrophysics Data System (ADS)

    Glerum, Anne; Thieulot, Cedric; Pranger, Casper; van Hinsbergen, Douwe; Fraters, Menno; Spakman, Wim

    2015-04-01

    The Aegean region (Eastern Mediterranean) is exemplary of the interaction between crustal tectonics, plate motion, subduction and mantle flow: African subduction underneath the region has been continuous for at least the last 100 My, leading to about 2100-2500 km of subducted lithosphere residing in the mantle (van Hinsbergen et al., 2005). During this subduction, decoupled upper continental and oceanic crust accreted into a wedge of stacked nappes. In turn, these nappes have been significantly extended, predominantly during the last 25 My, due to the retreat of the African slab relative to Eurasia (van Hinsbergen and Schmid, 2012). As a first step to better understanding the coupling of the tectonic evolution of the crust and the underlying mantle dynamics, we are developing 3-D numerical models of the instantaneous dynamics of the present-day Aegean subduction system using the finite element code ASPECT (Kronbichler et al., 2012). The instantaneous models are set up with initial slab geometries derived from tomography and realistic plate boundary configurations and incorporate the major crustal weak zones of the overriding plate. Our modeling results in predictions of flow fields and stress, strain rate and rotation rate fields for the present-day tectonic setting of the Aegean region. By comparing our various model predictions to the widely available observations, such as focal mechanisms, GPS velocities and seismic anisotropy, we aim at an improved understanding of how mantle flow, subduction morphology and possibly slab segmentation, as well as the rheological behavior of the overriding plate, control present-day tectonic deformation. We expect to show preliminary results of this comparison. Kronbichler, M., Heister, T. and Bangerth, W. (2012), High Accuracy Mantle Convection Simulation through Modern Numerical Methods, Geophysical Journal International, 191, 12-29. Van Hinsbergen, D. J. J., Hafkenscheid, E., Spakman, W., Meulenkamp, J. E. and Wortel, R. (2005

  17. Influence of instantaneous wave effects on contaminant transport in beach aquifers

    NASA Astrophysics Data System (ADS)

    Robinson, C. E.; Malott, S. S.; O'Carroll, D. M.

    2016-12-01

    Waves cause large quantities of water to recirculate across the sediment-water interface and set up complex groundwater flows and geochemical conditions in beach aquifers. The interacting water exchange, flow and geochemical processes control the fate of various contaminants in nearshore environments including nutrients, organic contaminants (e.g., non-aqueous phase liquids [NAPLs]) and fecal bacteria. This study explores the effect of waves on the transport of dissolved, particulate and non-aqueous phase liquid (NAPL) contaminants in beach aquifers. In particular, it evaluates the influence of high frequency pressure gradients induced by individual waves compared with lower frequency pressure gradients set up by the phase-averaged effect of waves (i.e. wave set up). While the effect of waves and other forcing on the fate of dissolved constituents in beach aquifers is well explored, there is limited understanding of the transport of colloidal (i.e. bacteria) and NAPL contaminants. Field data of instantaneous phase-resolved and phase-averaged pressure gradients over a period of intensified wave conditions at a freshwater beach were collected. Although the pressure gradients induced by individual waves cause large quantities of coastal water to infiltrate across the sediment-water interface, the residence time for coastal-derived dissolved constituents (i.e., dissolved organic matter) in shallow sediments is likely not sufficient for reaction to take place. As a result the longer recirculation flow paths and residence times caused by wave set up are expected to be more important for the transformation of dissolved constituents in beach aquifers. The high frequency water exchange however may be important for the fate of particulates (e.g., particulate organic matter) or fecal bacteria as they can be retained in sediment by attachment or straining. Finally, multiphase flow numerical simulations reveal the differential transport of NAPL contaminants in beach aquifers

  18. Instantaneous and controllable integer ambiguity resolution: review and an alternative approach

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong

    2015-11-01

    In the high-precision application of Global Navigation Satellite System (GNSS), integer ambiguity resolution is the key step to realize precise positioning and attitude determination. As the necessary part of quality control, integer aperture (IA) ambiguity resolution provides the theoretical and practical foundation for ambiguity validation. It is mainly realized by acceptance testing. Due to the constraint of correlation between ambiguities, it is impossible to realize the controlling of failure rate according to analytical formula. Hence, the fixed failure rate approach is implemented by Monte Carlo sampling. However, due to the characteristics of Monte Carlo sampling and look-up table, we have to face the problem of a large amount of time consumption if sufficient GNSS scenarios are included in the creation of look-up table. This restricts the fixed failure rate approach to be a post process approach if a look-up table is not available. Furthermore, if not enough GNSS scenarios are considered, the table may only be valid for a specific scenario or application. Besides this, the method of creating look-up table or look-up function still needs to be designed for each specific acceptance test. To overcome these problems in determination of critical values, this contribution will propose an instantaneous and CONtrollable (iCON) IA ambiguity resolution approach for the first time. The iCON approach has the following advantages: (a) critical value of acceptance test is independently determined based on the required failure rate and GNSS model without resorting to external information such as look-up table; (b) it can be realized instantaneously for most of IA estimators which have analytical probability formulas. The stronger GNSS model, the less time consumption; (c) it provides a new viewpoint to improve the research about IA estimation. To verify these conclusions, multi-frequency and multi-GNSS simulation experiments are implemented. Those results show that IA

  19. SIMULATE-4 pin power calculations

    SciTech Connect

    Bahadir, T.; Lindahl, S. Oe

    2006-07-01

    A new pin power reconstruction module has been implemented in Studsvik Scandpower's next generation nodal code, SIMULATE-4. Heterogeneous pin powers are calculated by modulating multi-group pin powers from the sub-mesh solver of SIMULATE-4 with pin form factors from single-assembly CASMO-5 lattice calculations. The multi-group pin power model captures instantaneous spectral effects, and actinide tracking on the assembly sub-mesh describes exposure-induced pin power variations. Model details and verification tests against high order multi-assembly transport methods are presented. The accuracy of the new methods is also demonstrated by comparing SIMULATE-4 calculations with measured critical experiment pin powers. (authors)

  20. [The structural-dynamic characteristics of the reactive psychoses in persons subjected to ionizing radiation exposure as a result of the accident at the Chernobyl Atomic Electric Power Station].

    PubMed

    Revenok, A A

    1991-08-01

    Thirty case histories were examined of patients who participated in liquidation of sequels of the Chernobyl disaster or inhabiting contaminated territory during the first months after the catastrophe. Of them eleven showed reactive states accompanied by psychopathological disorders. The psychotic disorders in these subjects were simple and concrete by their clinical course, developed mainly during the first 2-4 months after the disaster when the stressogeneity was maximal. This conclusion is confirmed by the fact that of 148 persons subjected to radiation effects and treated at a Kiev Mental hospital from 1986 through 1990 reactive psychoses were observed only in 11 cases.

  1. Statistical redundancy of instantaneous phases: theory and application to the seismic ambient wavefield

    NASA Astrophysics Data System (ADS)

    Gaudot, I.; Beucler, É.; Mocquet, A.; Schimmel, M.; Le Feuvre, M.

    2016-02-01

    In order to detect possible signal redundancies in the ambient seismic wavefield, we develop a new method based on pairwise comparisons among a set of synchronous time-series. This approach is based on instantaneous phase coherence statistics. The first and second moments of the pairwise phase coherence distribution are used to characterize the phase randomness. For perfect phase randomness, the theoretical values of the mean and variance are equal to 0 and √{1-2/π }, respectively. As a consequence, any deviation from these values indicates the presence of a redundant phase in the raw continuous signal. A previously detected microseismic source in the Gulf of Guinea is used to illustrate one of the possible ways of handling phase coherence statistics. The proposed approach allows us to properly localize this persistent source, and to quantify its contribution to the overall seismic ambient wavefield. The strength of the phase coherence statistics relies in its ability to quantify the redundancy of a given phase among a set of time-series with various useful applications in seismic noise-based studies (tomography and/or source characterization).

  2. Assessment of the instantaneous unit hydrograph derived from the theory of topologically random networks

    USGS Publications Warehouse

    Karlinger, M.R.; Troutman, B.M.

    1985-01-01

    An instantaneous unit hydrograph (iuh) based on the theory of topologically random networks (topological iuh) is evaluated in terms of sets of basin characteristics and hydraulic parameters. Hydrographs were computed using two linear routing methods for each of two drainage basins in the southeastern United States and are the basis of comparison for the topological iuh's. Elements in the sets of basin characteristics for the topological iuh's are the number of first-order streams only, (N), or the nuber of sources together with the number of channel links in the topological diameter (N, D); the hydraulic parameters are values of the celerity and diffusivity constant. Sensitivity analyses indicate that the mean celerity of the internal links in the network is the critical hydraulic parameter for determining the shape of the topological iuh, while the diffusivity constant has minimal effect on the topological iuh. Asymptotic results (source-only) indicate the number of sources need not be large to approximate the topological iuh with the Weibull probability density function.

  3. Investigation of some selected strategies for multi-GNSS instantaneous RTK positioning

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Wielgosz, Pawel

    2017-01-01

    It is clear that we can benefit from multi-constellation GNSS in precise relative positioning. On the other hand, it is still an open problem how to combine multi-GNSS signals in a single functional model. This study presents methodology and quality assessment of selected methods allowing for multi-GNSS observations combining in relative kinematic positioning using baselines up to tens of kilometers. In specific, this paper characterizes loose and tight integration strategies applied to the ionosphere and troposphere weighted model. Performance assessment of the established strategies was based on the analyses of the integer ambiguity resolution and rover coordinates' repeatability obtained in the medium range instantaneous RTK positioning with the use of full constellation dual frequency GPS and Galileo signals. Since full constellation of Galileo satellites is not yet available, the observational data were obtained from a hardware GNSS signal simulator using regular geodetic GNSS receivers. The results indicate on similar and high performance of the loose, and tight integration with calibrated receiver ISBs strategies. These approaches have undeniable advantage over single system positioning in terms of reliability of the integer ambiguity resolution as well as rover coordinate repeatability.

  4. [Using instantaneous spectra to determine dominant species in the DDT process of epoxypropane].

    PubMed

    Li, Ping; Hu, Dong; Yuan, Chang-Ying; Dai, Song-Hui; Xiao, Hai-Bo

    2006-09-01

    After solving problems of weak light detection, the calibration of the spectral sensitivity of the measuring system, and the synchronization of the measuring system, instantaneous emission spectra of epoxypropane in the process of deflagration to detonation transition (DDT) with the exposure time of 2-8 micros and the resolution of 0. 2 nm were acquired from six different side windows of an explosion shock tube. Using the corrected spectral data, curves of the optical radiant intensity of main reaction products versus the DDT distance from the ignition point were obtained. These curves provided information about the evolution of the reaction and the products during the DDT process. Results indicate that the chemical reaction rate of the gaseous fuel and the corresponding concentrations of intermediate products increased gradually at the deflagration stage, but at the moment of deflagration to detonation transition, the reaction rate increased rapidly and the concentrations! of products increased sharply. Among these main products, concentration increments of molecule CO, and radicals CHO and OH were greater than other products, which means that CO, CHO and OH are the dominant species that affect the DDT process greatly.

  5. [Instantaneous emission spectra of epoxypropane in the process of deflagration to detonation transition].

    PubMed

    Li, Ping; Yuan, Chang-ying; Hu, Dong; Liu, Jun-chao; Zhu-mei, Sun; Dong, Shi; Xiao, Hai-bo

    2004-07-01

    Using an intensified CCD spectroscopic detector (Princeton Instruments, ICCD PI-Max 1024 RB) which can be gated in as little as 5 ns, the synchronization of the measuring system was controlled by a digital delay generator (Stanford Research Systems, DG535), the DG535 was triggered externally by a lab-made electrical pulse generator which transformed the optical trigger signal to an electrical signal, and the light signal from the end window of an explosion shock tube was delivered by an 1 mm in diameter plastic optical fiber to the entrance slit of the spectrometer (grating of 150 g x mm(-1) , central wavelength of 550 nm). The spectrum measurement of the epoxypropane in the process of deflagration to detonation transition (DDT) was then made. The instantaneous emission spectra of epoxypropane at different time of the DDT process with an exposure time of several microseconds were acquired. Results show that at the beginning of the DDT process, the emitted light was very weak and the line spectra of atoms were observed mainly; in the middle process of the DDT, the emitted light became strong and the spectra observed consisted of line spectra of atoms, band spectra of molecules plus continuous spectrum of the thermal radiation; when the detonation was formed, the emitted light got very strong, and the spectra acquired consisted of both line spectra of atoms and band spectra of molecules superimposed on the strong continuum of the thermal radiation.

  6. Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    PubMed Central

    Groß, Andrea; Beulertz, Gregor; Marr, Isabella; Kubinski, David J.; Visser, Jaco H.; Moos, Ralf

    2012-01-01

    The accumulating-type (or integrating-type) NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s), the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements) is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed. PMID:22736980

  7. Instantaneous, parameter-free methods to define a solute’s hydration shell

    SciTech Connect

    Chatterjee, Anupam; Higham, Jonathan; Henchman, Richard H.

    2015-12-21

    A range of methods are presented to calculate a solute’s hydration shell from computer simulations of dilute solutions of monatomic ions and noble gas atoms. The methods are designed to be parameter-free and instantaneous so as to make them more general, accurate, and consequently applicable to disordered systems. One method is a modified nearest-neighbor method, another considers solute-water Lennard-Jones overlap followed by hydrogen-bond rearrangement, while three methods compare various combinations of water-solute and water-water forces. The methods are tested on a series of monatomic ions and solutes and compared with the values from cutoffs in the radial distribution function, the nearest-neighbor distribution functions, and the strongest-acceptor hydrogen bond definition for anions. The Lennard-Jones overlap method and one of the force-comparison methods are found to give a hydration shell for cations which is in reasonable agreement with that using a cutoff in the radial distribution function. Further modifications would be required, though, to make them capture the neighboring water molecules of noble-gas solutes if these weakly interacting molecules are considered to constitute the hydration shell.

  8. Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions

    NASA Astrophysics Data System (ADS)

    Klinner, Joachim; Willert, Christian

    2012-08-01

    Tomographic shadowgraphy is an image-based optical technique capable of reconstructing the three dimensional instantaneous spray distributions within a given volume. The method is based on a multiple view imaging setup with inline illumination provided by current-pulsed LEDs, which results in droplet shadows being projected onto multiple sensor planes. Each camera records image pairs with short inter-framing times that allow the trajectories of the individual droplets to be estimated using conventional three-dimensional particle tracking approaches. The observed volume is calibrated with a traversed micro-target. A comparison is made between several photogrammetric and polynomial least-square camera calibration techniques regarding their accuracy in deep volume calibration at magnifications close to unity. A calibration method based on volume calibration from multiple planar homographies at equally spaced z-planes was found to produce the most reliable calibration. The combination of back-projected images at each voxel plane efficiently reproduces the droplet positions in three-dimensional space by line-of-sight (LOS) intensity reconstruction. Further improvement of the reconstruction can be achieved by iterative tomographic reconstruction, namely simultaneous multiplicative algebraic reconstruction technique (SMART). The quality of spray reconstruction is investigated using experimental data from multiple view shadowgraphs of hollow cone and flat fan water sprays. The investigations are further substantiated with simulations using synthetic data.

  9. Inverse method for the instantaneous measure of wall shear rate magnitude and direction using electrodiffusion probes

    NASA Astrophysics Data System (ADS)

    Lamarche-Gagnon, Marc-Etienne; Vetel, Jerome

    2016-11-01

    Several methods can be used when one needs to measure wall shear stress in a fluid flow. Yet, it is known that a precise shear measurement is seldom met, mostly when both time and space resolutions are required. The electrodiffusion method lies on the mass transfer between a redox couple contained in an electrolyte and an electrode flush mounted to a wall. Similarly to the heat transfer measured by a hot wire anemometer, the mass transfer can be related to the fluid's wall shear rate. When coupled with a numerical post-treatment by the so-called inverse method, precise instantaneous wall shear rate measurements can be obtained. With further improvements, it has the potential to be effective in highly fluctuating three-dimensional flows. We present developments of the inverse method to two-component shear rate measurements, that is shear magnitude and direction. This is achieved with the use of a three-segment electrodiffusion probe. Validation tests of the inverse method are performed in an oscillating plane Poiseuille flow at moderate pulse frequencies, which also includes reverse flow phases, and in the vicinity of a separation point where the wall shear stress experiences local inversion in a controlled separated flow.

  10. Rotating parallel ray omni-directional integration for instantaneous pressure reconstruction from measured pressure gradient

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Siddle-Mitchell, Seth

    2015-11-01

    This paper presents a novel pressure reconstruction method featuring rotating parallel ray omni-directional integration, as an improvement over the circular virtual boundary integration method introduced by Liu and Katz (2003, 2006, 2008 and 2013) for non-intrusive instantaneous pressure measurement in incompressible flow field. Unlike the virtual boundary omni-directional integration, where the integration path is originated from a virtual circular boundary at a finite distance from the real boundary of the integration domain, the new method utilizes parallel rays, which can be viewed as being originated from a distance of infinity, as guidance for integration paths. By rotating the parallel rays, omni-directional paths with equal weights coming from all directions toward the point of interest at any location within the computation domain will be generated. In this way, the location dependence of the integration weight inherent in the old algorithm will be eliminated. By implementing this new algorithm, the accuracy of the reconstructed pressure for a synthetic rotational flow in terms of r.m.s. error from theoretical values is reduced from 1.03% to 0.30%. Improvement is further demonstrated from the comparison of the reconstructed pressure with that from the Johns Hopkins University isotropic turbulence database (JHTDB). This project is funded by the San Diego State University.

  11. Study of quadrature FIR filters for extraction of low-frequency instantaneous information in biophysical signals

    NASA Astrophysics Data System (ADS)

    Arce-Guevara, Valdemar E.; Alba-Cadena, Alfonso; Mendez, Martín O.

    Quadrature bandpass filters take a real-valued signal and output an analytic signal from which the instantaneous amplitude and phase can be computed. For this reason, they represent a useful tool to extract time-varying, narrow-band information from electrophysiological signals such as electroencephalogram (EEG) or electrocardiogram. One of the defining characteristics of quadrature filters is its null response to negative frequencies. However, when the frequency band of interest is close to 0 Hz, a careless filter design could let through negative frequencies, producing distortions in the amplitude and phase of the output. In this work, three types of quadrature filters (Ideal, Gabor and Sinusoidal) have been evaluated using both artificial and real EEG signals. For the artificial signals, the performance of each filter was measured in terms of the distortion in amplitude and phase, and sensitivity to noise and bandwidth selection. For the real EEG signals, a qualitative evaluation of the dynamics of the synchronization between two EEG channels was performed. The results suggest that, while all filters under study behave similarly under noise, they differ in terms of their sensitivity to bandwidth choice. In this study, the Sinusoidal filter showed clear advantages for the estimation of low-frequency EEG synchronization.

  12. Front-crawl instantaneous velocity estimation using a wearable inertial measurement unit.

    PubMed

    Dadashi, Farzin; Crettenand, Florent; Millet, Grégoire P; Aminian, Kamiar

    2012-09-25

    Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU) to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm · s(-1) on mean cycle velocity and an RMS difference of 11.3 cm · s(-1) in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer's natural technique.

  13. Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit

    PubMed Central

    Dadashi, Farzin; Crettenand, Florent; Millet, Grégoire P.; Aminian, Kamiar

    2012-01-01

    Monitoring the performance is a crucial task for elite sports during both training and competition. Velocity is the key parameter of performance in swimming, but swimming performance evaluation remains immature due to the complexities of measurements in water. The purpose of this study is to use a single inertial measurement unit (IMU) to estimate front crawl velocity. Thirty swimmers, equipped with an IMU on the sacrum, each performed four different velocity trials of 25 m in ascending order. A tethered speedometer was used as the velocity measurement reference. Deployment of biomechanical constraints of front crawl locomotion and change detection framework on acceleration signal paved the way for a drift-free integration of forward acceleration using IMU to estimate the swimmers velocity. A difference of 0.6 ± 5.4 cm·s−1 on mean cycle velocity and an RMS difference of 11.3 cm·s−1 in instantaneous velocity estimation were observed between IMU and the reference. The most important contribution of the study is a new practical tool for objective evaluation of swimming performance. A single body-worn IMU provides timely feedback for coaches and sport scientists without any complicated setup or restraining the swimmer's natural technique. PMID:23201978

  14. Instantaneous insulation in a micro-slab: A mechanism for flow generation in a rarefied gas

    NASA Astrophysics Data System (ADS)

    Manela, A.; Pogorelyuk, L.

    2016-12-01

    We analyze the response of a gas in a micro-slab, set at an initial pure-conduction state, to instantaneous thermal insulation of its boundaries. In line with ongoing efforts in generating gas flows at the microscale, thermal insulation is suggested as a means for flow excitation with no moving parts. The problem is analyzed in the entire range of gas rarefaction rates and for arbitrary initial temperature differences between the walls. Analytical solutions are obtained in the linearized limit of small temperature differences for large (collisionless) and small (continuum) Knudsen numbers. These solutions are supported by direct simulation Monte Carlo calculations, which are then used to investigate the nonlinear problem with large initial temperature differences. Followed by the system's initial state, boundary insulation results in a series of time-decaying waves, propagating across the slab, and transferring the system between its conductive and adiabatic equilibrium states. While larger initial temperature differences result in higher flow rates, it is found that nonlinear effects reduce the efficiency of flow excitation through boundaries insulation. At high Knudsen numbers, this is rationalized through the system's initial state, in which the gas uniform temperature is lower than the arithmetic mean of walls temperatures. At low Knudsen numbers, the dominant effect of molecular collisions causes thermal dissipation, which in turn results in kinetic energy losses. The analysis may be readily applied to calculate the gas response to arbitrary time variations of the boundary-imposed heat flux.

  15. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ''endpoints''

    SciTech Connect

    James, Clancy W.; Falcke, Heino; Huege, Tim; Ludwig, Marianne

    2011-11-15

    We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

  16. Vorticity generation by the instantaneous release of energy near a reflective boundary.

    PubMed

    Moresco, P; Harris, T E; Jodoin, V

    2014-08-01

    The instantaneous release of energy in a localized area of a gas results in the formation of a low-density region and a series of shock and expansion waves. If this process occurs near a boundary, the shock reflections can interact with the density inhomogeneity, leading to the baroclinic generation of vorticity and the subsequent organization of the flow into several structures, including a vortex ring. By means of numerical simulations we illustrate the qualitative changes that occur in the pressure wave patterns and vorticity distribution as the distance from the area of energy release to the boundary is varied. Those changes are shown to be related to the combined effect of the shock waves that, respectively, initially move away and towards the center of the low-density region. In particular, we describe how for small enough offset distances the shocks internal to the inhomogeneity can make a substantial contribution to the vorticity field, influencing the circulation and characteristics of the resulting flow structures.

  17. Instantaneous enteric nano-encapsulation of omeprazole: pharmaceutical and pharmacological evaluation.

    PubMed

    Bendas, Ehab R; Abdelbary, Aly A

    2014-07-01

    Recently, great attention has been paid to nanocapsules. The interest of these structures is due to their promising applications as drug delivery systems. The objective of this study was to develop novel enteric coating technique based on instantaneous encapsulation of the acid-labile drug, omeprazole in innovative enteric nanocapsules. Omeprazole enteric nanocapsules were formulated by varying the type and amount of the enteric polymer. The particle size (PS), polydispersity index (PDI), zeta potential (ZP) and encapsulation efficiency (EE) values of the prepared enteric nanocapsules were determined. A full 2(1)×3(1) factorial design was used for planning and analysis of the experimental trials to select the optimized formulation. The highest desirability value was 0.7463 for formula E3 (containing 200mg hydroxypropyl methylcellulose phthalate (HPMCP)). The stability of omeprazole was reflected by the absence of the exothermal peak when the drug was encapsulated as detected by differential scanning calorimetry (DSC) thermograms. In vitro drug release study confirmed the USP specifications required to meet the key formulation characteristics of gastro-resistance. In vivo pharmacological assessment showed that the optimized nanocapsules were able to protect rat stomach against ulcer formation compared to the aqueous suspension of the drug which showed less significant protection. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Instantaneous frequency-based ultrasonic temperature estimation during focused ultrasound thermal therapy.

    PubMed

    Liu, Hao-Li; Li, Meng-Lin; Shih, Tzu-Ching; Huang, Sheng-Min; Lu, I-Yeh; Lin, Deng-Yn; Lin, Shi-Ming; Ju, Kuen-Cheng

    2009-10-01

    Focused ultrasound thermal therapy relies on temperature monitoring for treatment guidance and assurance of targeting and dose control. One potential approach is to monitor temperature change through ultrasonic-backscattered signal processing. The current approach involves the detection of echo time-shifts based on cross-correlation processing from segmented radiofrequency (RF) data. In this study, we propose a novel ultrasonic temperature-measurement approach that detects changes in instantaneous frequency along the imaging beam direction. Focused ultrasound was used as the heating source, and the 1-D beamformed RF signals provided from an ultrasound imager were used to verify the proposed algorithm for temperature change estimation. For comparison, a conventional cross-correlation technique was also evaluated. Heating experiments testing tissue-mimicking phantoms and ex vivo porcine muscles were conducted. The results showed that temperature can be well estimated by the proposed algorithm in the temperature range, where the relationship of sound speed versus temperature is linear. Compared with the cross-correlation-based algorithm, the proposed new algorithm yields a six-fold increase in computational efficiency, along with comparable contrast-detection ability and precision. This new algorithm may serve as an alternative method for implementing temperature estimation into a clinical ultrasound imager for thermal therapy guidance.

  19. Ancilla-driven instantaneous quantum polynomial time circuit for quantum supremacy

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yuki; Takahashi, Yasuhiro

    2016-12-01

    Instantaneous quantum polynomial time (IQP) is a model of (probably) nonuniversal quantum computation. Since it has been proven that IQP circuits are unlikely to be simulated classically up to a multiplicative error and an error in the l1 norm, IQP is considered as one of the promising classes that demonstrates quantum supremacy. Although IQP circuits can be realized more easily than a universal quantum computer, demonstrating quantum supremacy is still difficult. It is therefore desired to find subclasses of IQP that are easy to implement. In this paper, by imposing some restrictions on IQP, we propose ancilla-driven IQP (ADIQP) as the subclass of commuting quantum computation suitable for many experimental settings. We show that even though ADIQP circuits are strictly weaker than IQP circuits in a sense, they are also hard to simulate classically up to a multiplicative error and an error in the l1 norm. Moreover, the properties of ADIQP make it easy to investigate the verifiability of ADIQP circuits and the difficulties in realizing ADIQP circuits.

  20. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    PubMed

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.