Sample records for instream structures development

  1. 3D Numerical simulation of bed morphological responses to complex in-streamstructures

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liu, X.

    2017-12-01

    In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.

  2. Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats.

    PubMed

    Keeton, William S; Kraft, Clifford E; Warren, Dana R

    2007-04-01

    Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in-stream habitat features that have not been widely recognized in eastern North America, representing a potential benefit from late-successional riparian forest management and conservation. Riparian management practices (including buffer delineation and restorative silvicultural approaches) that emphasize development and maintenance of late-successional characteristics are recommended where the associated in-stream effects are desired.

  3. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Method for Optimal Allocation between Instream and Offstream Uses in the Maipo River in Central Chile

    NASA Astrophysics Data System (ADS)

    Génova, P. P.; Olivares, M. A.

    2016-12-01

    Minimum instream flows (MIF) have been established in Chile with the aim of protecting aquatic ecosystems. In practice, since current water law only allocates water rights to offstream water uses, MIF becomes the only instrument for instream water allocation. However, MIF do not necessarily maintain an adequate flow for instream uses. Moreover, an efficient allocation of water for instream uses requires the quantification of the benefits obtained from those uses, so that tradeoffs between instream and offstream water uses are properly considered. A model of optimal allocation between instream and offstream uses is elaborated. The proposed method combines two pieces of information. On one hand, benefits of instream use are represented by qualitative recreational benefit curves as a function of instream flow. On the other hand, the opportunity cost given by lost benefits of offstream uses is employed to develop a supply curve for instream flows. We applied this method to the case of the Maipo River, where the main water uses are recreation, hydropower production and drinking water. Based on available information we obtained the qualitative benefits of various recreational activities as a function of flow attributes. Then we developed flow attributes curves as a function of instream flow for a representative number of sections in the river. As a result we obtained the qualitative recreational benefit curve for each section. The marginal cost curve for instream flows was developed from the benefit functions of hydropower production interfering with recreation in the Maipo River. The purpose of this supply curve is to find a range of instream flow that will provide a better quality condition for recreation experience at a lower opportunity cost. Results indicate that offstream uses adversely influence recreational activities in the Maipo River in certain months of the year, significantly decreasing the quality of these in instream uses. As expected, the impact depends of the magnitude of diverted flows, and therefore these impacts can be reduced restricting the amount of water extracted from the river. Accordingly, it is possible to define the optimum amount of water to be allocated to each use for each month such that instream flows are appropriate for recreation and the loss of hydropower production benefits is lowest.

  5. Instream-Flow Analysis for the Luquillo Experimental Forest, Puerto Rico: Methods and Analysis

    Treesearch

    F.N. Scatena; S.L. Johnson

    2001-01-01

    This study develops two habitat-based approaches for evaluating instream-flow requirements within the Luquillo Experimental Forest in northeastern Puerto Rico. The analysis is restricted to instream-flow requirements in upland streams dominated by the common communities of freshwater decapods. In headwater streams, pool volume was the most consistent factor...

  6. A method of estimating in-stream residence time of water in rivers

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2014-05-01

    This study develops a method for estimating the average in-stream residence time of water in a river channel and across large catchments, i.e. the time between water entering a river and reaching a downstream monitoring point. The methodology uses river flow gauging data to integrate Manning's equation along a length of channel for different percentile flows. The method was developed and tested for the River Tees in northern England and then applied across the United Kingdom (UK). The study developed methods to predict channel width and main channel length from catchment area. For an 818 km2 catchment with a channel length of 79 km, the in-stream residence time at the 50% exceedence flow was 13.8 h. The method was applied to nine UK river basins and the results showed that in-stream residence time was related to the average slope of a basin and its average annual rainfall. For the UK as a whole, the discharge-weighted in-stream residence time was 26.7 h for the median flow. At median flow, 50% of the discharge-weighted in-stream residence time was due to only 6 out of the 323 catchments considered. Since only a few large rivers dominate the in-stream residence time, these rivers will dominate key biogeochemical processes controlling export at the national scale. The implications of the results for biogeochemistry, especially the turnover of carbon in rivers, are discussed.

  7. Supplement Analysis for the Watershed Management Program EIS, (DOE/EIS-0265/SA-69) - Improvement of Anadromous Fish Habitat and Passage in Omak Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiering, Colleen

    2001-11-15

    BPA proposes to fund a project with the Colville Confederated Tribes that will improve spawning and rearing specifically for summer steelhead in the Omak Creek Watershed. Efforts to achieve this objective include improved livestock and forestry management and barrier removal. These techniques include exclusionary fencing, spring developments, hardened-rock crossings, road decommissioning, culvert removal and placement, riparian vegetation planting and installation of instream structures. The result of implementing these techniques will reduce fine sediment delivered to the stream channel which will result in increased hatching success of summer steelhead. Also, reestablishing riparian vegetation will provide canopy and enclose the stream channelmore » resulting in reduced stream temperatures. Two “on-the-ground” projects are proposed for this year. One project consists of installing three instream structures and planting riparian vegetation to provide bank stability along approximately 200’ of privately owned stream bank of Omak Creek. Also a fence will be constructed to exclude the landowner’s horses. The second project consists of removal of an inadequate sized culvert (5’ diameter) and replacement with a larger bottomless arch (6’ x 12’). This project will also include seven instream structures to stabilize the stream bank both upstream and downstream of the culvert and direct flows through the center of the bottomless arch.« less

  8. Multistressor predictive models of invertebrate condition in the Corn Belt, USA

    USGS Publications Warehouse

    Waite, Ian R.; Van Metre, Peter C.

    2017-01-01

    Understanding the complex relations between multiple environmental stressors and ecological conditions in streams can help guide resource-management decisions. During 14 weeks in spring/summer 2013, personnel from the US Geological Survey and the US Environmental Protection Agency sampled 98 wadeable streams across the Midwest Corn Belt region of the USA for water and sediment quality, physical and habitat characteristics, and ecological communities. We used these data to develop independent predictive disturbance models for 3 macroinvertebrate metrics and a multimetric index. We developed the models based on boosted regression trees (BRT) for 3 stressor categories, land use/land cover (geographic information system [GIS]), all in-stream stressors combined (nutrients, habitat, and contaminants), and for GIS plus in-stream stressors. The GIS plus in-stream stressor models had the best overall performance with an average cross-validation R2 across all models of 0.41. The models were generally consistent in the explanatory variables selected within each stressor group across the 4 invertebrate metrics modeled. Variables related to riparian condition, substrate size or embeddedness, velocity and channel shape, nutrients (primarily NH3), and contaminants (pyrethroid degradates) were important descriptors of the invertebrate metrics. Models based on all measured in-stream stressors performed comparably to models based on GIS landscape variables, suggesting that the in-stream stressor characterization reasonably represents the dominant factors affecting invertebrate communities and that GIS variables are acting as surrogates for in-stream stressors that directly affect in-stream biota.

  9. Designing stream restoration structures using 3D hydro-morphodynamic numerical modeling

    NASA Astrophysics Data System (ADS)

    Khosronejad, A.; Kozarek, J. L.; Hill, C.; Kang, S.; Plott, R.; Diplas, P.; Sotiropoulos, F.

    2012-12-01

    Efforts to stabilize and restore streams and rivers across the nation have grown dramatically in the last fifteen years, with over $1 billion spent every year since 1990. The development of effective and long-lasting strategies, however, is far from trivial and despite large investments it is estimated that at least 50% of stream restoration projects fail. This is because stream restoration is today more of an art than a science. The lack of physics-based engineering standards for stream restoration techniques is best underscored in the design and installation of shallow, in-stream, low-flow structures, which direct flow away from the banks, protect stream banks from erosion and scour, and increase habitat diversity. Present-day design guidelines for such in-stream structures are typically vague and rely heavily on empirical knowledge and intuition rather than physical understanding of the interactions of the structures the flow and sediment transport processes in the waterway. We have developed a novel computer-simulation based paradigm for designing in stream structures that is based on state-of-the-art 3D hydro-morphodynamic modeling validated with laboratory and field-scale experiments. The numerical model is based on the Curvilinear Immersed Boundary (CURVIB) approach of Kang et al. and Khosronejad et al. (Adv. in Water Res. 2010, 2011), which can simulate flow and sediment transport processes in arbitrarily complex waterways with embedded rock structures. URANS or large-eddy simulation (LES) models are used to simulate turbulence. Transport of bed materials is simulated using the non-equilibrium Exner equation for the bed surface elevation coupled with a transport equation for suspended load. Extensive laboratory and field-scale experiments have been carried out and employed to validate extensively the computational model. The numerical model is used to develop a virtual testing environment within which one or multiple in-stream structures can be embedded in representative live-bed meandering waterways and simulated numerically to systematically investigate the sensitivity of various design and installation parameters on structure performance and reliability. Waterway geometries are selected by a statistical classification of rivers and streams to represent typical sand-bed and gravel-bed systems found in nature. Results will be presented for rock vanes, J-hook vanes and bendway weirs. Our findings provide novel physical insights into the effects of various in-stream structures on turbulent flow and sediment transport processes in meandering rivers, underscore these effects for different stream-bed materials, and demonstrate how such physics-based analysis can yield design guidelines that often challenge what is commonly done in practice today. To our knowledge, our work is the first systematic attempt to employ advanced numerical modeling coupled with massively parallel supercomputers to design hydraulic structures for stream restoration. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, National Cooperative Highway Research Program Grant NCHRP-HR 24-33.

  10. Characterizing and contrasting instream and riparian coarse wood in western Montana basins

    Treesearch

    Michael K. Young; Ethan A. Mace; Eric T. Ziegler; Elaine K. Sutherland

    2006-01-01

    The importance of coarse wood to aquatic biota and stream channel structure is widely recognized, yet characterizations of large-scale patterns in coarse wood dimensions and loads are rare. To address these issues, we censused instream coarse wood ( 2 m long and 10 cm minimum diameter) and sampled riparian coarse wood and channel characteristics in and along 13 streams...

  11. 78 FR 20911 - Archon Energy 1, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... a short diversion method. The in-stream option would consist of the following: (1) A gated water intake canal; (2) a 70-foot by 55-foot by 35-foot turbine structure enclosing two in-stream VLH turbine... consist of the following: (1) a gated water intake canal; (2) a concrete trough diversion channel...

  12. Habitat suitability criteria for assessment of instream flow needs of fish

    USGS Publications Warehouse

    Crance, Johnie H.

    1989-01-01

    In the western portion of the United States, competition for stream water gas often been fierce. Water resource management agencies in the southeastern United States, where water has been relatively abundant, are not being faced with similar competing demands for water, and with increasing pressures to develop and defend recommendations for protecting fish and invertebrates in streams. Streamflow depletion at any time can result in severe long-term effects on fish populations(Peters, 1982). The allocation of stream water to any numerous instream or offstream uses is tied to the issues of water quantity, quality, and timing, which center on two critical questions: (1)when and how much water of an acceptable quality should be left in a stream, and (2) what happens if flow regimes are changed? Answers to these questions will probably be complex, but reliable answers are needed to protect instream and offstream values. If instream flow interests expect to compete with offstream uses for limited water supplies, they must be able to determine reliable and defensible methods for determining instream flow needs and demonstrate the environmental consequences of altered flow regimes. My objectives in this paper are: (a) to present an overview of the need, development, and use of stream habitat suitability criteria, and the use of these criteria for the assessment of instream flow needs; (b) to give a status report on the plan of the National Ecology Research Center (NERC) for expansion of instream flow research in the Southeast; and (c) to discuss the relevancy of the research to river corridor management.

  13. Testing the effects of in-stream sediment sources and sinks on simulated watershed sediment yield using the coupled U.S. Army Corps of Engineers GSSHA Model and SEDLIB Sediment Transport Library

    NASA Astrophysics Data System (ADS)

    Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.

    2017-12-01

    The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.

  14. SETTING EXPECTATIONS FOR THE OHIO RIVER FISH INDEX BASED ON IN-STREAM HABITAT

    EPA Science Inventory

    The use of habitat criteria for setting fish community assessment expectations is common for streams, but a standard approach for great rivers remains largely undeveloped. We developed assessment expectations for the Ohio River Fish Index (ORFIN) based on measures of in-stream h...

  15. Aquatic habitat measurement and valuation: imputing social benefits to instream flow levels

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1991-01-01

    Instream flow conflicts have been analysed from the perspectives offered by policy oriented applied (physical) science, theories of conflict resolution and negotiation strategy, and psychological analyses of the behavior patterns of the bargaining parties. Economics also offers some useful insights in analysing conflict resolution within the context of these water allocation problems. We attempt to analyse the economics of the bargaining process in conjunction with a discussion of the water allocation process. In particular, we examine in detail the relation between certain habitat estimation techniques, and the socially optimal allocation of non-market resources. The results developed here describe the welfare implications implicit in the contemporary general equilibrium analysis of a competitive market economy. We also review certain currently available techniques for assigning dollar values to the social benefits of instream flow. The limitations of non-market valuation techniques with respect to estimating the benefits provided by instream flows and the aquatic habitat contingent on these flows should not deter resource managers from using economic analysis as a basic tool for settling instream flow conflicts.

  16. Use of the instream flow incremental methodology: a tool for negotiation

    USGS Publications Warehouse

    Cavendish, Mary G.; Duncan, Margaret I.

    1986-01-01

    The resolution of conflicts arising from differing values and water uses requires technical information and negotiating skills. This article outlines the Instream Flow Incremental Methodology (IFIM), developed by the US Fish and Wildlife Service, and demonstrates that its use to quantify flows necessary to protect desired instream values aids negotiation by illustrating areas of agreement and possible compromises between conflicting water interests. Pursuant to a Section 404 permit application to the US Army Corps of Engineers made by City Utilities of Springfield, Missouri, in 1978, IFIM provided the means by which City Utilities, concerned with a secure water supply for a growing population, and those advocating instream values were satisfied that their requirements were met. In tracing the 15-month process, the authors conclude that the application of IFIM, as well as the cooperative stance adopted by the parties involved, were the key ingredients of the successful permit application.

  17. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    NASA Astrophysics Data System (ADS)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  18. Prediction of stream fish assemblages from land use characteristics: implications for cost-effective design of monitoring programmes.

    PubMed

    Kristensen, Esben Astrup; Baattrup-Pedersen, Annette; Andersen, Hans Estrup

    2012-03-01

    Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1-81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.

  19. Effects of alternative instream-flow criteria and water-supply demands on ground-water development options in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.

    2005-01-01

    Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant annual instream-flow criterion of 0.5 cubic foot per second per square mile (ft3/s/mi2) at the four streamflow-constraint locations. An average withdrawal rate of 10 Mgal/d can meet estimates of future (2020) water-supply needs of surrounding communities in Rhode Island. This withdrawal rate represents about 13 percent of the average 2002 daily withdrawal from the Scituate Reservoir (76 Mgal/d), the State?s largest water supply. Average annual withdrawal rates of 6 to 7 Mgal/d are possible for more stringent instream-flow criteria that might be used during dry-period hydrologic conditions. Two example scenarios of dry-period instream-flow constraints were evaluated: first, a minimum instream flow of 0.1 cubic foot per second at any of the four constraint locations; and second, a minimum instream flow of 10 percent of the minimum monthly streamflow estimate for each streamflow-constraint location during the period 1961?2000. The State of Rhode Island is currently (2004) considering methods for establishing instream-flow criteria for streams within the State. Twelve alternative annual, seasonal, or monthly instream-flow criteria that have been or are being considered for application in southeastern New England were used as hypothetical constraints on maximum ground-water-withdrawal rates in management-model calculations. Maximum ground-water-withdrawal rates ranged from 5 to 16 Mgal/d under five alternative annual instream-flow criteria. Maximum ground-water-withdrawal rates ranged from 0 to 13.6 Mgal/d under seven alternative seasonal or monthly instream-flow criteria. The effect of ground-water withdrawals on seasonal variations in monthly average streamflows under each criterion also were compared. Evaluation of management-model results indicates that a single annual instream-flowcriterion may be sufficient to preserve seasonal variations in monthly average streamflows and meet water-supply demands in the Big River Area, because withdrawals from wells in the Big

  20. Criteria for evaluating state instream-flow programs: Deciding what works

    USGS Publications Warehouse

    Lamb, Berton Lee

    1995-01-01

    Most states have adopted some form of instream-flow–protection program. These programs are of three types: instream-flow water rights; reservations of water for instream purposes; and conditions on consumptive water rights. No matter which type of protection program is adapted, the same question remains: How can we tell if it works? Several authors have attempted to answer this question. The works of these analysts are reviewed and criteria are suggested to evaluate the success of an instream-flow–protection program. The criteria are public confidence, certainty, proper administration, expense, and outcome in-stream.

  1. Modeling hydrology and in-stream transport on drained forested lands in coastal Carolinas, U.S.A.

    Treesearch

    Devendra Amatya

    2005-01-01

    This study summarizes the successional development and testing of forest hydrologic models based on DRAINMOD that predicts the hydrology of low-gradient poorly drained watersheds as affected by land management and climatic variation. The field scale (DRAINLOB) and watershed-scale in-stream routing (DRAINWAT) models were successfully tested with water table and outflow...

  2. POTENTIAL AQUATIC COMMUNITY IMPROVEMENT THROUGH A MULTIDISCIPLINARY STORMWATER MANAGEMENT EXPERIMENT

    EPA Science Inventory

    Small-scale urban stream restoration efforts (e.g., riparian planting and in-stream habitat structures) often fail to improve ecological structure and function due the continuous hydrologic and chemical disturbances posed by impervious surfaces upstream. Decentralized stormwater...

  3. A computer program for estimating instream travel times and concentrations of a potential contaminant in the Yellowstone River, Montana

    USGS Publications Warehouse

    McCarthy, Peter M.

    2006-01-01

    The Yellowstone River is very important in a variety of ways to the residents of southeastern Montana; however, it is especially vulnerable to spilled contaminants. In 2004, the U.S. Geological Survey, in cooperation with Montana Department of Environmental Quality, initiated a study to develop a computer program to rapidly estimate instream travel times and concentrations of a potential contaminant in the Yellowstone River using regression equations developed in 1999 by the U.S. Geological Survey. The purpose of this report is to describe these equations and their limitations, describe the development of a computer program to apply the equations to the Yellowstone River, and provide detailed instructions on how to use the program. This program is available online at [http://pubs.water.usgs.gov/sir2006-5057/includes/ytot.xls]. The regression equations provide estimates of instream travel times and concentrations in rivers where little or no contaminant-transport data are available. Equations were developed and presented for the most probable flow velocity and the maximum probable flow velocity. These velocity estimates can then be used to calculate instream travel times and concentrations of a potential contaminant. The computer program was developed so estimation equations for instream travel times and concentrations can be solved quickly for sites along the Yellowstone River between Corwin Springs and Sidney, Montana. The basic types of data needed to run the program are spill data, streamflow data, and data for locations of interest along the Yellowstone River. Data output from the program includes spill location, river mileage at specified locations, instantaneous discharge, mean-annual discharge, drainage area, and channel slope. Travel times and concentrations are provided for estimates of the most probable velocity of the peak concentration and the maximum probable velocity of the peak concentration. Verification of estimates of instream travel times and concentrations for the Yellowstone River requires information about the flow velocity throughout the 520 mi of river in the study area. Dye-tracer studies would provide the best data about flow velocities and would provide the best verification of instream travel times and concentrations estimated from this computer program; however, data from such studies does not currently (2006) exist and new studies would be expensive and time-consuming. An alternative approach used in this study for verification of instream travel times is based on the use of flood-wave velocities determined from recorded streamflow hydrographs at selected mainstem streamflow-gaging stations along the Yellowstone River. The ratios of flood-wave velocity to the most probable velocity for the base flow estimated from the computer program are within the accepted range of 2.5 to 4.0 and indicate that flow velocities estimated from the computer program are reasonable for the Yellowstone River. The ratios of flood-wave velocity to the maximum probable velocity are within a range of 1.9 to 2.8 and indicate that the maximum probable flow velocities estimated from the computer program, which corresponds to the shortest travel times and maximum probable concentrations, are conservative and reasonable for the Yellowstone River.

  4. A demonstration of the instream flow incremental methodology, Shenandoah River

    USGS Publications Warehouse

    Zappia, Humbert; Hayes, Donald C.

    1998-01-01

    Current and projected demands on the water resources of the Shenandoah River have increased concerns for the potential effect of these demands on the natural integrity of the Shenandoah River system. The Instream Flow Incremental Method (IFIM) process attempts to integrate concepts of water-supply planning, analytical hydraulic engineering models, and empirically derived habitat versus flow functions to address water-use and instream-flow issues and questions concerning life-stage specific effects on selected species and the general well being of aquatic biological populations.The demonstration project also sets the stage for the identification and compilation of the major instream-flow issues in the Shenandoah River Basin, development of the required multidisciplinary technical team to conduct more detailed studies, and development of basin specific habitat and flow requirements for fish species, species assemblages, and various water uses in the Shenandoah River Basin. This report presents the results of an IFIM demonstration project, conducted on the main stem Shenandoah River in Virginia, during 1996 and 1997, using the Physical Habitat Simulation System (PHABSIM) model.Output from PHABSIM is used to address the general flow requirements for water supply and recreation and habitat for selected life stages of several fish species. The model output is only a small part of the information necessary for effective decision making and management of river resources. The information by itself is usually insufficient for formulation of recommendations regarding instream-flow requirements. Additional information, for example, can be obtained by analysis of habitat time-series data, habitat duration data, and habitat bottlenecks. Alternative-flow analysis and habitat-duration curves are presented.

  5. Western state instream flow programs: a comparative assessment

    USGS Publications Warehouse

    McKinney, Matthew J.; Taylor, Jonathan G.

    1988-01-01

    During their early history, Western States water rights laws were primarily means for facilitating and regulating water diversions for offstream, consumptive use. More recently, a countervailing concern for instream values such as fish and wildlife habitat, recreation, aesthetic values, and water quality has emerged in the legislative and administrative handling of water rights. As of 1988, the Western United States show a variety of approaches to balancing instream and diversion water rights, from zero control through administrative actions to legislatively established rights for guaranteed instream flows. The nine Western States that have adopted statutory instream flow protection programs include Alaska, Colorado, Hawaii, Idaho, Montana, Oregon, Utah, Washington, and Wyoming. Arizona, California, and Nevada have relied, to date, on administrative and judicial decisions, while New Mexico has established no mechanism for protecting instream water uses. In the States with statutory protection, instream water uses are granted the same legal status as any other water uses under the prior appropriation doctrine. The success of instream flow protection has been remarkable, given the controversial nature of the issue, with nearly 2,000 stream reaches protected.

  6. Trends in Streamflow Characteristics in Hawaii, 1913-2002

    USGS Publications Warehouse

    Oki, Delwyn S.

    2004-01-01

    The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. In Hawaii, surface-water resources are developed for both offstream uses (for example, drinking water, agriculture, and industrial uses) and instream uses (for example, maintenance of habitat and ecosystems, recreational activities, aesthetic values, maintenance of water quality, conveyance of irrigation and domestic water supplies, and protection of traditional and customary Hawaiian rights). Possible long-term trends in streamflow characteristics have important implications for water users, water suppliers, resource managers, and citizens in the State. Proper management of Hawaii's streams requires an understanding of long-term trends in streamflow characteristics and their potential implications. Effects of long-term downward trends in low flows in streams include potential loss of habitat for native stream fauna and reduced water availability for offstream and instream water uses. Effects of long-term upward trends in high flows in streams include construction of bridges and water-conveyance structures that are potentially unsafe if they are not designed with proper consideration of trends in high flows.

  7. 43 CFR 10005.15 - Planning and management techniques applicable to the plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... facilities, instream spawning facilities, water control structures, and fencing that aid in the conservation... biological resources. (g) Applied research that targets specific biological information or management needs...

  8. 43 CFR 10005.15 - Planning and management techniques applicable to the plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facilities, instream spawning facilities, water control structures, and fencing that aid in the conservation... biological resources. (g) Applied research that targets specific biological information or management needs...

  9. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    2000-02-28

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  10. Anthropogenic land uses elevate metal levels in stream water in an urbanizing watershed.

    PubMed

    Yu, Shen; Wu, Qian; Li, Qingliang; Gao, Jinbo; Lin, Qiaoying; Ma, Jun; Xu, Qiufang; Wu, Shengchun

    2014-08-01

    Land use/cover change is a dominant factor affecting surface water quality in rapidly developing areas of Asia. In this study we examined relationships between land use and instream metal loadings in a rapidly developing mixed land use watershed in southeastern China. Five developing subwatersheds and one forested reference site (head water) were instrumented with timing- and rainfall-triggered autosampler and instream loadings of anthropogenic metals (Cu, Zn, Pb, Cr, Cd, and Mn) were monitored from March 2012 to December 2013. Farm land and urban land were positively, and forest and green land were negatively associated with metal loadings (except Cr) in stream water. All developing sites had higher loadings than the reference head water site. Assessed by Chinese surface water quality standard (GB3830-2002), instream loadings of Cu and Zn occasionally exceeded the Class I thresholds at monitoring points within farmland dominated subwatersheds while Mn loadings were greater than the limit for drinking water sources at all monitoring points. Farm land use highly and positively contributed to statistical models of instream loadings of Cu, Zn, Cd, and Mn while urban land use was the dominant contributor to models of Pb and Cd loadings. Rainfall played a crucial role in metal loadings in stream water as a direct source (there were significant levels of Cu and Zn in rain water) and as a driver of watershed processes (loadings were higher in wet years and seasons). Urbanization effects on metal loadings in this watershed are likely to change rapidly with development in future years. Further monitoring to characterize these changes is clearly warranted and should help to develop plans to avoid conflicts between economic development and water quality degradation in this watershed and in watersheds throughout rapidly developing areas of Asia. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Differences in instream wood characteristics between channelized and unchannelized agricultural headwater streams in central Ohio

    USDA-ARS?s Scientific Manuscript database

    Instream wood is an important resource for stream biota because it provides cover for fishes, substrate for macroinvertebrates, and increases habitat diversity. However, current management of instream wood within channelized agricultural headwater streams (drainage ditches) involves removing instrea...

  12. Effects of in-stream concrete structures on the pH level of water.

    DOT National Transportation Integrated Search

    1976-01-01

    The pH values above and below concrete structures in streams on nine active construction projects throughout the state were determined. It was concluded that for streams with flow rates of 0.3 to 111.25 cfs (0.01 to 3.2 cubic meter/see) the variation...

  13. REGIONAL, WATERSHED, AND SITE-SPECIFIC ENVIRONMENTAL INFLUENCES ON FISH ASSEMBLAGE STRUCTURE AND FUNCTION IN WESTERN LAKE SUPERIOR TRIBUTARIES

    EPA Science Inventory

    The relative importance of regional, watershed, and in-stream environmental factors on stream fish assemblage structure and function was investigated as part of a comparative watershed project in the western Lake Superior basin. We selected 48 second and third order watersheds fr...

  14. Instream large wood: Denitrification hotspots with low N2O production

    EPA Science Inventory

    We examined the effect of instream large wood on denitrification capacity in two contrasting, lower order streams — one that drains an agricultural watershed with no riparian forest and minimal stores of instream large wood and another that drains a forested watershed with an ext...

  15. Hydrodynamic effects of kinetic power extraction by in-stream tidal turbines

    NASA Astrophysics Data System (ADS)

    Polagye, Brian L.

    The hydrodynamic effects of extracting kinetic power from tidal streams presents unique challenges to the development of in-stream tidal power. In-stream tidal turbines superficially resemble wind turbines and extract kinetic power from the ebb and flood of strong tidal currents. Extraction increases the resistance to flow, leading to changes in tidal range, transport, mixing, and the kinetic resource itself. These far-field changes have environmental, social, and economic implications that must be understood to develop the in-stream resource. This dissertation describes the development of a one-dimensional numerical channel model and its application to the study of these effects. The model is applied to determine the roles played by site geometry, network topology, tidal regime, and device dynamics. A comparison is also made between theoretical and modeled predictions for the maximum amount of power which could be extracted from a tidal energy site. The model is extended to a simulation of kinetic power extraction from Puget Sound, Washington. In general, extracting tidal energy will have a number of far-field effects, in proportion to the level of power extraction. At the theoretical limit, these effects can be very significant (e.g., 50% reduction in transport), but are predicted to be immeasurably small for pilot-scale projects. Depending on the specifics of the site, far-field effects may either augment or reduce the existing tidal regime. Changes to the tide, in particular, have significant spatial variability. Since tidal streams are generally subcritical, effects are felt throughout the estuary, not just at the site of extraction. The one dimensional numerical modeling is supported by a robust theory for predicting the performance characteristics of in-stream devices. The far-field effects of tidal power depend on the total power dissipated by turbines, rather than the power extracted. When the low-speed wake downstream of a turbine mixes with the free-stream, power is lost, such that the total power dissipated by the turbine is significantly greater than the power extracted. This dissertation concludes with a framework for three-dimensional numerical modeling of near-field extraction effects.

  16. Economic impacts of federal policy responses to drought in the Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Ward, Frank A.; Hurd, Brian H.; Rahmani, Tarik; Gollehon, Noel

    2006-03-01

    Significant growth in the Rio Grande Basin's demand for water has stressed the region's scarce water supply. This paper presents an analysis of the impacts of severe and sustained drought and of minimum in-stream flow requirements to support endangered species in the Rio Grande watershed. These impacts are investigated by modeling the physical and institutional constraints within the Rio Grande Basin and by identifying the hydrologic and economic responses of all major water users. Water supplies, which include all major tributaries, interbasin transfers, and hydrologically connected groundwater, are represented in a yearly time step. A nonlinear programming model is developed to maximize economic benefits subject to hydrologic and institutional constraints. Results indicate that drought produces considerable impacts on both agriculture and municipal and industrial (MI) uses in the Rio Grande watershed. In-stream flow requirements to support endangered species' habitat produce the largest impacts on agricultural water users in New Mexico and Texas. Hydrologic and economic impacts are more pronounced when in-stream flow requirements dictate larger quantities of water for endangered species' habitat. Higher in-stream flow requirements for endangered species in central New Mexico cause considerable losses to New Mexico agriculture above Elephant Butte Reservoir and to MI users in Albuquerque, New Mexico. Those same in-stream flow requirements reduce drought damages to New Mexico agriculture below Elephant Butte Reservoir and reduce the severity of drought damages to MI users in El Paso, Texas. Results provide a framework for formulating federal policy responses to drought in the Rio Grande Basin.

  17. Juvenile salmon and steelhead occupancy of stream pools treated and not treated with restoration structures, Entiat River, Washington

    Treesearch

    Karl M. Polivka; E. Ashley Steel; Jenni L. Novak; Bror Jonsson

    2015-01-01

    We observed habitat occupancy by juvenile Chinook salmon (Oncorhynchus tschawytscha) and steelhead trout (Oncorhynchus mykiss) at in-stream habitat restoration structures constructed in the Entiat River, Washington, USA. In 2009–2013, fish abundance measurements during rearing (July–October) showed high temporal variability in...

  18. EPA ’s ECOLOGICAL MODELS FOR INTEGRATED WATERSHED MANAGEMENT

    EPA Science Inventory

    Aquatic ecological populations and communities are affected by the nature and quality of the water in which they live. Specific factors that affect instream biota include chemical variables, biotic interactions, energy source, flow regime, and habitat structure. As watershed mana...

  19. Instream sand and gravel mining: Environmental issues and regulatory process in the United States

    USGS Publications Warehouse

    Meador, M.R.; Layher, A.O.

    1998-01-01

    Sand and gravel are widely used throughout the U.S. construction industry, but their extraction can significantly affect the physical, chemical, and biological characteristics of mined streams. Fisheries biologists often find themselves involved in the complex environmental and regulatory issues related to instream sand and gravel mining. This paper provides an overview of information presented in a symposium held at the 1997 midyear meeting of the Southern Division of the American Fisheries Society in San Antonio, Texas, to discuss environmental issues and regulatory procedures related to instream mining. Conclusions from the symposium suggest that complex physicochemical and biotic responses to disturbance such as channel incision and alteration of riparian vegetation ultimately determine the effects of instream mining. An understanding of geomorphic processes can provide insight into the effects of mining operations on stream function, and multidisciplinary empirical studies are needed to determine the relative effects of mining versus other natural and human-induced stream alterations. Mining regulations often result in a confusing regulatory process complicated, for example, by the role of the U.S. Army Corps of Engineers, which has undergone numerous changes and remains unclear. Dialogue among scientists, miners, and regulators can provide an important first step toward developing a plan that integrates biology and politics to protect aquatic resources.

  20. Instream water use in the United States: water laws and methods for determining flow requirements

    USGS Publications Warehouse

    Lamb, Berton L.; Doerksen, Harvey R.

    1987-01-01

    Water use generally is divided into two primary classes - offstream use and instream use. In offstream use, sometimes called out-of-stream or diversionary use, water is withdrawn (diverted) from a stream or aquifer and transported to the place of use. Examples are irrigated agriculture, municipal water supply, and industrial use. Each of these offstream uses, which decreases the volume of water available downstream from the point of diversion, is discussed in previous articles in this volume. Instream use, which generally does not diminish the flow downstream from its point of use, and its importance are described in this article. One of the earliest instream uses of water in the United States was to turn the water wheels that powered much of the Nation's industry in the 18th and 19th centuries. Although a small volume of water might have been diverted to a mill near streamside, that water usually was returned to the stream near the point of diversion and, thus, the flow was not diminished downstream from the mill. Over time, the generation of hydroelectric power replaced mill wheels as a means of converting water flow into energy. Since the 1920's, the generation of hydroelectric power increasingly has become a major instream use of water. By 1985, more than 3 billion acre-feet of water (3,050,000 million gallons per day) was used annually for hydropower generation (Solley and others, 1988, p. 45)-enough water to cover the State of Colorado to a depth of 51 feet. Navigation is another instream use with a long history. The Lewis and Clark expedition journals and many of Mark Twain's novels illustrate the extent to which the Nation originally depended on adequate streamfiows for basic transportation. Navigation in the 1980's is still considered to be an instream use; however, it often is based upon a stream system that has been modified greatly through channelization, diking, and construction of dams and locks. The present (1987) inland water navigation system in the conterminous United States consists of about 12,000 miles of maintained waterways, over which about 500 million tons of cargo is carried each year (U.S. Army Corps of Engineers, 1988, p. 16). Although not so widely practiced in recent years, streams have been used to dispose of raw waste products from homes, communities, and factories. This use has been discouraged by law and public policy because of public health concerns and the damage it causes to the environment. Beginning in the mid-1960's, other instream uses gained new prominence in the water-resources arena-the assertion of a legal right to a free-flowing stream for biological, recreational, and esthetic purposes. These uses themselves, however, are not new. Riverine habitat always has produced fish, and the beauty of flowing water always has evoked a strong sense of esthetic appreciation. What is new is the emerging legitimacy and awareness of these noneconomic uses under State and Federal laws and regulations. In the past, environmental uses of flowing water were ignored, for the most part, under a long-standing legal tradition that favored offstream uses and certain instream uses that had a strong economic basis. The history of instream-flow policy debate really concerns those recently recognized types of interim uses. Although the more transitional water uses have been protected by law, the recognition of other in stream uses has resulted in substantial changes in State water laws. Although methods for determining the volume of water needed for most traditional water uses are relatively straight-forward and well-established, methods for determining water requirements for the in stream uses have been developed only recently and are continuing to evolve. Water laws that have favored the more traditional water uses, the inherent nature of conflict between instream and offstream water uses, and the special kinds of technological and philosophical problems posed by the "newer" types of instream uses are described below. Water laws that have been passed to accommodate the more recently recognized instream uses are summarized.

  1. InSTREAM: the individual-based stream trout research and environmental assessment model

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  2. QUANTIFICATION OF INSTREAM FLOW NEEDS OF A WILD AND SCENIC RIVER FOR WATER RIGHTS LITIGATION.

    USGS Publications Warehouse

    Garn, Herbert S.

    1986-01-01

    The lower 4 miles of the Red River, a tributary of the Rio Grande in northern New Mexico, was designated as one of the 'instant' components of the National Wild and Scenic River System in 1968. Instream flow requirements were determined by several methods to quantify the claims made by the United States for a federal reserved water right under the Wild and Scenic Rivers Act. The scenic (aesthetic), recreational, and fish and wildlife values are the purposes for which instream flow requirements were claimed. Since water quality is related to these values, instream flows for waste transport and protection of water quality were also included in the claim. The U. S. Fish and Wildlife Service's Instream Flow Incremental Methodology was used to quantify the relationship between various flow regimes and fish habitat. Study results are discussed.

  3. Relations among storage, yield, and instream flow

    NASA Astrophysics Data System (ADS)

    Vogel, Richard M.; Sieber, Jack; Archfield, Stacey A.; Smith, Mark P.; Apse, Colin D.; Huber-Lee, Annette

    2007-05-01

    An extensive literature documents relations between reservoir storage capacity and water supply yield and the properties of instream flow needed to support downstream aquatic ecosystems. However, the literature that evaluates the impact of reservoir operating rules on instream flow properties is limited to a few site-specific studies, and as a result, few general conclusions can be drawn to date. This study adapts the existing generalized water evaluation and planning model (WEAP) to enable general explorations of relations between reservoir storage, instream flow, and water supply yield for a wide class of reservoirs and operating rules. Generalized relationships among these variables document the types of instream flow policies that when combined with drought management strategies, are likely to provide compromise solutions to the ecological and human negotiations for water for different sized reservoir systems. The concept of a seasonal ecodeficit/ecosurplus is introduced for evaluating the impact of reservoir regulation on ecological flow regimes.

  4. Uncertainty and instream flow standards

    USGS Publications Warehouse

    Castleberry, D.; Cech, J.; Erman, D.; Hankin, D.; Healey, M.; Kondolf, M.; Mengel, M.; Mohr, M.; Moyle, P.; Nielsen, Jennifer L.; Speed, T.; Williams, J.

    1996-01-01

    Several years ago, Science published an important essay (Ludwig et al. 1993) on the need to confront the scientific uncertainty associated with managing natural resources. The essay did not discuss instream flow standards explicitly, but its arguments apply. At an April 1995 workshop in Davis, California, all 12 participants agreed that currently no scientifically defensible method exists for defining the instream flows needed to protect particular species of fish or aquatic ecosystems (Williams, in press). We also agreed that acknowledging this fact is an essential step in dealing rationally and effectively with the problem.Practical necessity and the protection of fishery resources require that new instream flow standards be established and that existing standards be revised. However, if standards cannot be defined scientifically, how can this be done? We join others in recommending the approach of adaptive management. Applied to instream flow standards, this approach involves at least three elements.

  5. Physical-scale models of engineered log jams in rivers

    USDA-ARS?s Scientific Manuscript database

    Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...

  6. Modeling Applications to Inform Hydromodification Management Design Decisions

    NASA Astrophysics Data System (ADS)

    Goodman, J.

    2013-12-01

    Hydromodification is defined as changes in runoff characteristics and in-stream processes caused by altered land use. The impact of hydromodification can manifest itself through adjustment of stream morphology via channel incision, widening, planform alteration, or coarsening of the bed material. The state of the practice for hydromodification management in California and Western Washington for new and re-development has been to mimic pre-development site hydrology. The theory is that if the pre-development distribution of in-stream flows is maintained, then the baseline capacity to transport sediment, a proxy for the geomorphic condition, will be maintained as well. A popular method of mimicking the pre-development flow regime is by maintaining the pre-development frequency distribution of runoff, known as flow duration control. This can be done by routing post-development runoff through structural stormwater facilities (BMPs) such that runoff is stored and slowly released to match pre-development flow duration characteristics. As it turns out, storage requirements for hydromodification control tend to be much larger than that for surface water treatment requirements (see nomograph). As regulatory requirements for hydromodification evolve and begin to spread to other parts of the country, it is necessary that scientists, water resources professionals, and policy makers understand the practical challenges of implementing hydromodification controls, including the sizing and cost constraints, and know about innovations which could make hydromodification controls more feasible to implement. In an effort to provide the audience with this better understanding, this presentation will share a step-by-step approach for predicting long-term hydromodification impacts; demonstrate options for mitigating these impacts within the context of the modeling approach; and discuss sizing sensitivities of LID-type hydromodification control structural BMPs as a function of performance standard (Flow Duration Control vs. Erosion Potential), receiving stream susceptibility (critical low flow discharges for incipient motion of 5%Q2, 10%Q2, vs. 20%Q2), and outlet design (passive vs. active smart controls). nomograph

  7. Instream flow and water regime of selected riparian habitats in west-central Montana

    Treesearch

    Stephanie K. Mulica; Donald F. Potts; Robert D. Pfister

    2002-01-01

    Groundwater and surface water extraction and diversion for agricultural and human use has become common practice in the arid and semi-arid western United States. Surface water and groundwater are often not effectively managed during these processes, and few laws exist to protect riparian vegetation in the case of depletion of in-stream flows. "Instream flow"...

  8. Economic value of instream flow in Montana's Big Hole and Bitterroot Rivers

    Treesearch

    John W. Duffield; Thomas C Brown; Stewart D. Allen

    1994-01-01

    Instream flow is valuable to recreationists who rely on flows for fishing, boating, and other forms of river recreation. Instream flow is also valuable to many members of society, whether they visit the rivers or not, because flows maintain ecosystem stability and associated fish and wildlife habitat. This study estimates the economic value of these recreation...

  9. Nature of flow and turbulence structure around an in-stream vertical plate in a shallow channel and the implications for sediment erosion

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2009-06-01

    Detailed knowledge of the dynamics of large-scale turbulence structures is needed to understand the geomorphodynamic processes around in-stream obstacles present in rivers. Detached Eddy Simulation is used to study the flow past a high-aspect-ratio rectangular cylinder (plate) mounted on a flat-bed relatively shallow channel at a channel Reynolds number of 2.4 × 105. Similar to other flows past surface-mounted bluff bodies, the large amplification of the turbulence inside the horseshoe vortex system is because the core of the main necklace vortex is subject to large-scale bimodal oscillations. The presence of a sharp edge at the flanks of the obstruction fixes the position of the flow separation at all depths and induces the formation and shedding of very strong wake rollers over the whole channel depth. Compared with the case of a circular cylinder where the intensity of the rollers decays significantly in the near-bed region because the incoming flow velocity is not sufficient to force the wake to transition from subcritical to supercritical regime, in the case of a high-aspect-ratio rectangular cylinder the passage of the rollers was found to induce high bed-shear stresses at large distances (6-8 D) behind the obstruction. Also, the nondimensional values of the pressure root-mean-square fluctuations at the bed were found to be about 1 order of magnitude higher than the ones predicted for circular cylinders. Overall, this shows that the shape of the in-stream obstruction can greatly modify the dynamics of the large-scale coherent structures, the nature of their interactions, and ultimately, their capability to entrain and transport sediment particles and the speed at which the scour process evolves during its initial stages.

  10. Restoration of Soldier Spring: an isolated habitat for native Apache trout

    Treesearch

    Jonathan W. Long; B. Mae Burnette; Alvin L. Medina; Joshua L. Parker

    2004-01-01

    Degradation of streams is a threat to the recovery of the Apache trout, an endemic fish of the White Mountains of Arizona. Historic efforts to improve trout habitat in the Southwest relied heavily on placement of in-stream log structures. However, the effects of structural interventions on trout habitat and populations have not been adequately evaluated. We treated an...

  11. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    NASA Astrophysics Data System (ADS)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  12. Opportunities to protect instream flows in Colorado and Wyoming

    USGS Publications Warehouse

    Trembly, Terrence L.

    1987-01-01

    This document combines the efforts of several individuals, agencies, and organizations toward a common objective: the identification, description, and preliminary evaluation of promising opportunities for protecting instream uses of water under existing laws in Colorado and Wyoming. This report is intended for the use of State and Federal planning and management personnel who need an overview of potential opportunities for preserving instream flows. It is not intended to replace or challenge the advice of agency counsel, nor it is written to provide legal advice. Instead, it is designed as a guide for the person trying to find his or her way among sometimes bewildering State statues and administrative practices. This report is not, and should not be taken as, official policy or prediction of future actions by any agency. It is simply a summary of some potential opportunities for protecting instream uses. Toward these objectives, the U.S. Fish and Wildlife Service, through its Water Resources Analysis Project, contracted in 1977 with Richard Dewsnup and Dallin Jensen to identify available strategies under State and Federal laws, interstate compacts, and water quality laws. A second firm, Enviro Control, Inc., was contracted to evaluate the most promising strategies. Two of the resulting documents were Instream Flow Strategies for Colorado and Instream Flow Strategies for Wyoming, which have been revised, updated, and combined in this report. Discussion of instream flow programs ad opportunities for each State--Colorado and Wyoming-- are written so that each report can be read independently, with minimal cross referencing from one State report to another.

  13. Temporal dynamics of instream wood in headwater streams draining mixed Carpathian forests

    NASA Astrophysics Data System (ADS)

    Galia, Tomáš; Šilhán, Karel; Ruiz-Villanueva, Virginia; Tichavský, Radek; Stoffel, Markus

    2017-09-01

    Instream wood can reside in fluvial systems over varying periods depending on its geographical context, instream position, tree species, piece size, and fluvial environment. In this paper, we investigate the residence time of two typical species representing a majority of instream wood in steep headwaters of the Carpathians and located under mixed forest canopy. Residence times of individual logs were then confronted with other wood parameters (i.e., wood dimensions, mean annual increment rate, tree age, class of wood stabilisation and decay, geomorphic function of wood pieces, and the proportion of the log length within the active channel). Norway spruce (Picea abies (L.) Karst.) samples indicated more than two times longer mean and maximal residence times as compared to European beech (Fagus sylvatica L.) based on the successful cross-dating of 127 logs. Maximum residence time in the headwaters was 128 years for P. abies and 59 years for F. sylvatica. We demonstrate that log age and log diameter played an important role in the preservation of wood in the fluvial system, especially in the case of F. sylvatica instream wood. By contrast, we did not observe any significant trends between wood residence time and total wood length. Instream wood with geomorphic functions (i.e., formation of steps and jams) did not show any differences in residence time as compared to nonfunctional wood. Nevertheless, we found shorter residence times for hillslope-stabilised pieces when compared to pieces located entirely in the channel (either unattached or stabilised by other wood or bed sediments). We also observed changes of instream wood orientation with respect to wood residence time. This suggests some movement of instream wood (i.e., its turning or short-distance transport), including pieces longer than channel width in the steep headwaters studied here (1.5 ≤ W ≤ 3.5 m), over the past few decades.

  14. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle infestation, although this may reflect the relatively recent nature (< 10 years) of the infestation.

  15. Comparison of Instream and Laboratory Methods of Measuring Sediment Oxygen Demand

    USGS Publications Warehouse

    Hall, Dennis C.; Berkas, Wayne R.

    1988-01-01

    Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12 degree Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.

  16. Physical modeling of river spanning rock structures: Evaluating interstitial flow, local hydraulics, downstream scour development, and structure stability

    USGS Publications Warehouse

    Collins, K.L.; Thornton, C.I.; Mefford, B.; Holmquist-Johnson, C. L.

    2009-01-01

    Rock weir and ramp structures uniquely serve a necessary role in river management: to meet water deliveries in an ecologically sound manner. Uses include functioning as low head diversion dams, permitting fish passage, creating habitat diversity, and stabilizing stream banks and profiles. Existing information on design and performance of in-stream rock structures does not provide the guidance necessary to implement repeatable and sustainable construction and retrofit techniques. As widespread use of rock structures increases, the need for reliable design methods with a broad range of applicability at individual sites grows as well. Rigorous laboratory testing programs were implemented at the U.S. Bureau of Reclamation (Reclamation) and at Colorado State University (CSU) as part of a multifaceted research project focused on expanding the current knowledge base and developing design methods to improve the success rate of river spanning rock structures in meeting project goals. Physical modeling at Reclamation is being used to measure, predict, and reduce interstitial flow through rock ramps. CSU is using physical testing to quantify and predict scour development downstream of rock weirs and its impact on the stability of rock structures. ?? 2009 ASCE.

  17. UTILIZATION OF IN-STREAM STRUCTURES FOR WET MEADOW STABILIZATION IN THE CENTRAL GREAT BASIN: A PROCESS-ORIENTED APPROACH

    EPA Science Inventory

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows all serve as important habitats in the Great Basin of central Nevada. Geomorphic and biotic characterization of the wet meadow complexes demonstrates that most terminate downvalle...

  18. USUING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  19. GEOMORPHOLOGICAL STUDIES IN THE LITTLE MIAMI RIVER (INITIALLY, OTHER STREAM SYSTEMS TO BE ADDED LATER)

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g., Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  20. USING STREAM MORPHOLOGY CLASSIFICATION TO MANAGE ECOLOGICAL RISKS FROM LAND USE CHANGES IN THE LMR WATERSHED

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g. Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  1. A neighborhood statistics model for predicting stream pathogen indicator levels.

    PubMed

    Pandey, Pramod K; Pasternack, Gregory B; Majumder, Mahbubul; Soupir, Michelle L; Kaiser, Mark S

    2015-03-01

    Because elevated levels of water-borne Escherichia coli in streams are a leading cause of water quality impairments in the U.S., water-quality managers need tools for predicting aqueous E. coli levels. Presently, E. coli levels may be predicted using complex mechanistic models that have a high degree of unchecked uncertainty or simpler statistical models. To assess spatio-temporal patterns of instream E. coli levels, herein we measured E. coli, a pathogen indicator, at 16 sites (at four different times) within the Squaw Creek watershed, Iowa, and subsequently, the Markov Random Field model was exploited to develop a neighborhood statistics model for predicting instream E. coli levels. Two observed covariates, local water temperature (degrees Celsius) and mean cross-sectional depth (meters), were used as inputs to the model. Predictions of E. coli levels in the water column were compared with independent observational data collected from 16 in-stream locations. The results revealed that spatio-temporal averages of predicted and observed E. coli levels were extremely close. Approximately 66 % of individual predicted E. coli concentrations were within a factor of 2 of the observed values. In only one event, the difference between prediction and observation was beyond one order of magnitude. The mean of all predicted values at 16 locations was approximately 1 % higher than the mean of the observed values. The approach presented here will be useful while assessing instream contaminations such as pathogen/pathogen indicator levels at the watershed scale.

  2. Geochemical responses of forested catchments to bark beetle infestation: Evidence from high frequency in-stream electrical conductivity monitoring

    NASA Astrophysics Data System (ADS)

    Su, Ye; Langhammer, Jakub; Jarsjö, Jerker

    2017-07-01

    Under the present conditions of climate warming, there has been an increased frequency of bark beetle-induced tree mortality in Asia, Europe, and North America. This study analyzed seven years of high frequency monitoring of in-stream electrical conductivity (EC), hydro-climatic conditions, and vegetation dynamics in four experimental catchments located in headwaters of the Sumava Mountains, Central Europe. The aim was to determine the effects of insect-induced forest disturbance on in-stream EC at multiple timescales, including annual and seasonal average conditions, daily variability, and responses to individual rainfall events. Results showed increased annual average in-stream EC values in the bark beetle-infected catchments, with particularly elevated EC values during baseflow conditions. This is likely caused by the cumulative loading of soil water and groundwater that discharge excess amounts of substances such as nitrogen and carbon, which are released via the decomposition of the needles, branches, and trunks of dead trees, into streams. Furthermore, we concluded that infestation-induced changes in event-scale dynamics may be largely responsible for the observed shifts in annual average conditions. For example, systematic EC differences between baseflow conditions and event flow conditions in relatively undisturbed catchments were essentially eliminated in catchments that were highly disturbed by bark beetles. These changes developed relatively rapidly after infestation and have long-lasting (decadal-scale) effects, implying that cumulative impacts of increasingly frequent bark beetle outbreaks may contribute to alterations of the hydrogeochemical conditions in more vulnerable mountain regions.

  3. Survey of beaver-related restoration practices in rangeland streams of the western USA

    Treesearch

    David S. Pilliod; Ashley T. Rohde; Susan Charnley; Rachael R. Davee; Jason B. Dunham; Hannah Gosnell; Gordon E. Grant; Mark B. Hausner; Justin L. Huntington; Caroline Nash

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the...

  4. The behaviour of 39 pesticides in surface waters as a function of scale

    USGS Publications Warehouse

    Capel, P.D.; Larson, S.J.; Winterstein, T.A.

    2001-01-01

    A portion of applied pesticides runs off agricultural fields and is transported through surface waters. In this study, the behaviour of 39 pesticides is examined as a function of scale across 14 orders of magnitude from the field to the ocean. Data on pesticide loads in streams from two US Geological Survey programs were combined with literature data from field and watershed studies. The annual load as percent of use (LAPU) was quantified for each of the fields and watersheds and was used as the normalization factor across watersheds and compounds. The in-stream losses of each pesticide were estimated for a model stream with a 15 day travel time (similar in characteristics to the upper Mississippi River). These estimated in-stream losses agreed well with the observed changes in apparent LAPU values as a function of watershed area. In general, herbicides applied to the soil surface had the greatest LAPU values and minimal in-stream losses. Soil-incorporated herbicides had smaller LAPU values and substantial in-stream losses. Insecticides generally had LAPU values similar to the incorporated herbicides, but had more variation in their in-stream losses. On the basis of the LAPU values of the 39 pesticides as a function of watershed area, a generalized conceptual model of the movement of pesticides from the field to the ocean is suggested. The importance of considering both field runoff and in-stream losses is discussed in relation to interpreting monitoring data and making regulatory decisions.

  5. Understanding the Role of the Co-Play between Land Use and Climate on Sediment Flux Laws in Intensively Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Abban, B. K.; Papanicolaou, T.; Wilson, C. G.; Giannopoulos, C.; Sivapalan, M.

    2017-12-01

    In intensively managed landscapes (IMLs), changes in the land cover from what were previously grasslands, and their associated management practices, have led to a high degree of spatial heterogeneity and temporal variability in landscape processes that were absent pre-settlement. This has fundamentally altered terrestrial and instream sediment flux characteristics in regards to net amounts and proportions of source contributions, at shorter time scales. Sediment flux laws are now highly impacted by event-based dynamics. Whereas some events result in highly intermittent fluxes, others result in fluxes that largely propagate in the form of waves. This behavior is governed by the extent of land cover at the given time of the season, as well as the magnitude of the storm event. In addition, flux behavior changes as one moves from the plot scale to the watershed scale, and also with crop rotation. Thus, fluxes are now non-stationary due to continued human activity and its co-play with climate. The goal of this study is to develop a better understanding of the non-stationarity in sediment flux laws that arise from the co-play between land use and climate. Our approach involves the development of a modeling framework that considers all the exchanges between terrestrial and instream sources and addresses the issue of equifinality regarding terrestrial and instream source contributions on net sediment fluxes. The modeling framework couples an established terrestrial erosion model with an established in-stream sediment transport model. As a first step, our study focuses on the Clear Creek Watershed, IA, which is part of the Critical Zone Observatory for Intensively Managed Landscapes. We complement our modeling efforts with extensive terrestrial and instream field observations gathered at different times of the growing season, and in different years. We also used Bayesian sediment sourcing techniques to determine the provenance of transported material as well as the uncertainty related to the travel times and delivery of material across the different spatial scales. Findings from this study will shed light on the dominant factors governing fluxes laws and how they change over the course of a season, as well as the factors that control the changes in the flux laws across space.

  6. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.

    PubMed

    Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi

    2015-01-15

    A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Valuing instream-related services of wastewater

    EPA Science Inventory

    In the southwestern US water resources are increasingly scarce, leaving perennial habitats and associated environmental amenities vulnerable to off-channel water demands. To provide management insight, the value of two instream flow related ecosystem services are estimated for tw...

  8. Simulation of groundwater flow and streamflow depletion in the Branch Brook, Merriland River, and parts of the Mousam River watersheds in southern Maine

    USGS Publications Warehouse

    Nielsen, Martha G.; Locke, Daniel B.

    2015-01-01

    The study evaluated two different methods of calculating in-stream flow requirements for Branch Brook and the Merriland River—a set of statewide equations used to calculate monthly median flows and the MOVE.1 record-extension technique used on site-specific streamflow measurements. The August median in-stream flow requirement in the Merriland River was calculated as 7.18 ft3/s using the statewide equations but was 3.07 ft3/s using the MOVE.1 analysis. In Branch Brook, the August median in-stream flow requirements were calculated as 20.3 ft3/s using the statewide equations and 11.8 ft3/s using the MOVE.1 analysis. In each case, using site-specific data yields an estimate of in-stream flow that is much lower than an estimate the statewide equations provide.

  9. A Conceptual Model For Effluent-Dependent Riverine Environments

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.

    2001-12-01

    The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We structured the conceptual model around accepted riverine ecological models but with important departures signaling the unique characteristics of EDW communities. In many cases, in-stream habitat values were naturally limited by substrate, flow regimes, or other pre-discharge conditions. Our model is designed to give terrestrial habitat equal footing with in-stream resources in ecological assessment techniques. In the arid West, where in-stream water resources are becoming increasingly limited, EDWs offer important refugia and corridors for neotropical migratory birds and other habitat-limited wildlife species. These beneficial uses require different hydrological tools than in-stream systems for assessing habitat health.

  10. Model based hydropower gate operation for mitigation of CSO impacts by means of river base flow increase.

    PubMed

    Achleitner, S; De Toffol, S; Engelhard, C; Rauch, W

    2005-01-01

    In river stretches being subjected to flow regulation, usually for the purpose of energy production (e.g. Hydropower) or flood protection (river barrage), a special measure can be taken against the effect of combined sewer overflows (CSOs). The basic idea is the temporal increase of the river base flow (during storm weather) as an in-stream measure for mitigation of CSO spilling. The focus is the mitigation of the negative effect of acute pollution of substances. The measure developed can be seen as an application of the classic real time control (RTC) concept onto the river system. Upstream gate operation is to be based on real time monitoring and forecasting of precipitation. The main objective is the development of a model based predictive control system for the gate operation, by modelling of the overall wastewater system (incl. the receiving water). The main emphasis is put on the operational strategy and the appropriate short-term forecast of spilling events. The potential of the measure is tested for the application of the operational strategy and its ecological and economic feasibility. The implementation of such an in-stream measure into the hydropower's operational scheme is unique. Advantages are (a) the additional in-stream dilution of acute pollutants entering the receiving water and (b) the resulting minimization of the required CSO storage volume.

  11. Field testing and adaptation of a methodology to measure "in-stream" values in the Tongue River, northern Great Plains (NGP) region

    USGS Publications Warehouse

    Bovee, Ken D.; Gore, James A.; Silverman, Arnold J.

    1978-01-01

    A comprehensive, multi-component in-stream flow methodology was developed and field tested in the Tongue River in southeastern Montana. The methodology incorporates a sensitivity for the flow requirements of a wide variety of in-stream uses, and the flexibility to adjust flows to accommodate seasonal and sub-seasonal changes in the flow requirements for different areas. In addition, the methodology provides the means to accurately determine the magnitude of the water requirement for each in-stream use. The methodology can be a powerful water management tool in that it provides the flexibility and accuracy necessary in water use negotiations and evaluation of trade-offs. In contrast to most traditional methodologies, in-stream flow requirements were determined by additive independent methodologies developed for: 1) fisheries, including spawning, rearing, and food production; 2) sediment transport; 3) the mitigation of adverse impacts of ice; and 4) evapotranspiration losses. Since each flow requirement varied in important throughout the year, the consideration of a single in-stream use as a basis for a flow recommendation is inadequate. The study shows that the base flow requirement for spawning shovelnose sturgeon was 13.0 m3/sec. During the same period of the year, the flow required to initiate the scour of sediment from pools is 18.0 m3/sec, with increased scour efficiency occurring at flows between 20.0 and 25.0 m3/sec. An over-winter flow of 2.83 m3/sec. would result in the loss of approximately 80% of the riffle areas to encroachment by surface ice. At the base flow for insect production, approximately 60% of the riffle area is lost to ice. Serious damage to the channel could be incurred from ice jams during the spring break-up period. A flow of 12.0 m3/sec. is recommended to alleviate this problem. Extensive ice jams would be expected at the base rearing and food production levels. The base rearing flow may be profoundly influenced by the loss of streamflow to transpiration. Transpiration losses to riparian vegetation ranged from 0.78 m3/sec. in April, to 1.54 m3/sec. in July, under drought conditions. Requirement for irrigation were estimated to range from 5.56 m3/sec. in May to 7.97 m3/sec. in July, under drought conditions. It was concluded that flow requirements to satisfy monthly water losses to transpiration must be added to the base fishery flows to provide adequate protection to the resources in the lower reaches of the river. Integration of the in-stream requirements for various use components shows that a base flow of at least 23.6 m3/sec. must be reserved during the month of June to initiate scour of sediment from pools, provide spawning habitat to shovelnose sturgeon, and to accommodate water losses from the system. In comparison, a base flow of 3.85 m3/sec. would be required during early February to provide fish rearing habitat and insect productivity, and to prevent excessive loss of food production areas to surface ice formation. During mid to late February, a flow of 12 m3/sec. would be needed to facilitate ice break-up and prevent ice jams from forming. Following break-up, the base flow would again be 3.85 m3/sec. until the start of spawning season.

  12. 75 FR 30388 - Natural Currents Energy Services, LLC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... operate in-stream tidal turbines to power the office building and marina on site. Natural Currents Red... of the tides. The initial installations would consist of ten in-stream 20-kilowatt (kW) turbines with...

  13. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    NASA Astrophysics Data System (ADS)

    Ford, William I.; King, Kevin; Williams, Mark R.

    2018-01-01

    In landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can contribute to deleterious environmental conditions downstream. This study assessed upland and in-stream controls on baseflow nutrient concentrations in a low-gradient, tile-drained agroecosystem watershed. We conducted time-series analysis using Empirical mode decomposition of seven decade-long nutrient concentration time-series in the agricultural Upper Big Walnut Creek watershed (Ohio, USA). Four tributaries of varying drainage areas and three main-stem sites were monitored, and nutrient grab samples were collected weekly from 2006 to 2016 and analyzed for dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP). Statistically significant seasonal fluctuations were compared with seasonality of baseflow, watershed characteristics (e.g., tile-drain density), and in-stream water quality parameters (pH, DO, temperature). Findings point to statistically significant seasonality of all parameters with peak P concentrations in summer and peak N in late winter-early spring. Results suggest that upland processes exert strong control on DRP concentrations in the winter and spring months, while coupled upland and in-stream conditions control watershed baseflow DRP concentrations during summer and early fall. Conversely, upland flow sources driving streamflow exert strong control on baseflow NO3-N, and in-stream attenuation through transient and permanent pathways impacts the magnitude of removal. Regarding TN and TP, we found that TN was governed by NO3-N, while TP was governed by DRP in summer and fluvial erosion of P-rich benthic sediments during higher baseflow conditions. Findings of the study highlight the importance of coupled in-stream and upland management for mitigating eutrophic conditions during environmentally sensitive timeframes.

  14. In-stream wetlands and their significance for channel filling and the catchment sediment budget, Jugiong Creek, New South Wales

    NASA Astrophysics Data System (ADS)

    Zierholz, C.; Prosser, I. P.; Fogarty, P. J.; Rustomji, P.

    2001-06-01

    Evidence is presented here of recent and extensive infilling of the incised channel network of the Jugiong Creek catchment, SE Australia. The present channel network resulted from widespread stream and gully incision in the period between 1880 and 1920. Our survey shows that gully floors have been colonised extensively by emergent macrophyte vegetation since before 1944, forming continuous, dense, in-stream wetlands, which now cover 25% of the channel network in the 2175 km 2 catchment and have so far trapped almost 2,000,000 t of nutrient-enriched, fine sediments. This mass of sediments represents the equivalent of 4.7 years of annual sediment production across the catchment and in some tributaries, more than 20 years of annual yield is stored within in-stream wetlands. Previous work on the late Quaternary stratigraphy of the region has shown that there were repeated phases of channel incision in the past following which the channels quickly stabilised by natural means and then filled with fine-grained sediment to the point of channel extinction, creating unchannelled swampy valley floors. The current formation and spread of in-stream wetlands is interpreted to be the onset of the next infill phase but it is not known whether present conditions will allow complete channel filling and reformation of the pre-existing swampy valley floors. Nevertheless, further spread of in-stream wetlands is likely to increase the sediment trapping capacity and further reduce the discharge of sediments and nutrients into the Murrumbidgee River. The in-stream wetlands may provide a significant capacity to buffer erosion from gullied catchments of considerable size (up to 300 km 2) as an adjunct to current riparian management options. They may also assist the recovery of sediment-impacted channels downstream.

  15. Integrated modeling approach using SELECT and SWAT models to simulate source loading and in-stream conditions of fecal indicator bacteria.

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.

    2016-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is generally a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria (E.coli) source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads were input to the SWAT model in order to simulate the transport through the land and in-stream conditions. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on H-GAC's regional land use, population and household projections (up to 2040). Based on the in-stream reductions required to meet the water quality standards, the corresponding required source load reductions were estimated.

  16. Opportunities to protect instream flows and wetland uses of water in Florida

    USGS Publications Warehouse

    Burkardt, Nina

    1990-01-01

    This document combines the efforts of several individuals, agencies, and organizations toward a common objective: the identification, description, and preliminary evaluation of promising opportunities for protecting instream uses of water under existing laws in Florida. this report is intended for the use of State and Federal planning and management personnel who need an overview of potential opportunities for preserving instream flows. It is not intended to replace or challenge the advice of agency counsel, nor is it written to provide legal advice. Instead, it is designed as a guide for the person trying to find his way among sometimes bewildering State statutes and administrative practices. This report is not, and should not be taken as, official policy or prediction of future actions by any agency. It is simply a summary of some potential opportunities for protecting instream uses. Toward these objectives, the U.S. Fish and Wildlife Service, through its Water Resource Analysis Project, contracted in 1977 with R. Dewsnup and D. Jensen to identify available strategies under State and Federal laws, interstate compacts, and water quality laws. A second firm, Enviro Control, Inc., was contracted to evaluate the most promising strategies. The resulting documents reported instream flow strategies for 11 States. These reports have been revised, updated, and combined in a number of new monographs, and the Service has added more States to this service over the years. The discussion of instream flow programs and opportunities for each State is written so that each report can be read independently, with minimal cross-referencing from one State report to another. The opportunities for Florida are summarized in the table.

  17. Stream Community Structure: An Analysis of Riparian Forest Buffer Restoration in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Orzetti, L. L.; Jones, R. C.

    2005-05-01

    Forested riparian buffer zones have been proposed as an important aid in curtailing upland sources of pollution before they reach stream surface waters, and enhancing habitat for stream organisms. Our objective was to test the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining the stream macrobenthic community structure. To test our hypothesis, we collected riffle benthic and water samples, and performed habitat evaluations at 30 stream sites in the mid-Atlantic Piedmont, ranging in buffer age from 0 to greater than 50 years of age. Results showed that habitat, water quality, and benthic macroinvertebrate metrics improved with age of restored buffer. Habitat scores were driven mostly by instream substrate availability and width and age of riparian buffer zones. Water quality parameters varied within buffer age groups depending age of surrounding forest vegetation. Benthic invertebrate taxa richness, % EPT, % Plecoptera, % Ephemeroptera, and the FBI all improved with age of buffer zone. Instream habitat quality was the greatest driver of benthic macroinvertebrate community diversity and health, and appeared to plateau within 10-15 years of restoration with noticeable improvements occurring within 5-10 years post restoration.

  18. PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES

    EPA Science Inventory

    The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...

  19. EVALUATION OF STREAMBANK RESTORATION ON IN-STREAM WATER QUALITY IN AN URBAN WATERSHED

    EPA Science Inventory

    The objectives of this on-going project are to: investigate the effectiveness of streambank restoration techniques on increasing available biological habitat and improving in-stream water quality in an impaired stream; and, demonstrate the utility of continuous water-quality moni...

  20. Use of Instream Flow Incremental Methodology: introduction to the special issue

    USGS Publications Warehouse

    Lamb, Berton Lee; Sabaton, C.; Souchon, Y.

    2004-01-01

    In 1991, Harvey Doerksen was able to write a memoir discussing 20 years of instream flow work (Doerksen 1991). He recalled coming into the field in about 1973, but points out that there were many dedicated professionals working on the front line of what has become known as the environmental flow issue since at least the 1940’s. One of the earliest controversies in this new field was about what to call it. Some of the can- didate titles included “Stream Re- source Maintenance Flow,” “Base Flow,” and “Minimum Flow.” Although some of these terms were already in wide use by the early 1970’s, the term “instream flow” was not even listed in the 1973, 1974, or 1975 editions of the Water Resources Research Catalog of keywords (Doerksen 1991: 100). When most of the authors represented in this special issue began their professional careers, the field of instream flow was still seeking a core identity and a set of organizing principles.

  1. Using a Content Management System for Integrated Water Quantity, Quality and Instream Flows Modeling

    NASA Astrophysics Data System (ADS)

    Burgholzer, R.; Brogan, C. O.; Scott, D.; Keys, T.

    2017-12-01

    With increased population and water demand, in-stream flows can become depleted by consumptive uses and dilution of permitted discharges may be compromised. Reduced flows downstream of water withdrawals may increase the violation rate of bacterial concentrations from direct deposition by livestock and wildlife. Water storage reservoirs are constructed and operated to insure more stable supplies for consumptive demands and dilution flows, however their use comes at the cost of increased evaporative losses, potential for thermal pollution, interrupted fish migration, and reduced flooding events that are critical to maintain habitat and water quality. Due to this complex interrelationship between water quantity, quality and instream habitat comprehensive multi-disciplinary models must be developed to insure long-term sustainability of water resources and to avoid conflicts between drinking water, food and energy production, and aquatic biota. The Commonwealth of Virginia funded the expansion of the Chesapeake Bay Program Phase 5 model to cover the entire state, and has been using this model to evaluate water supply permit and planning since 2009. This integrated modeling system combines a content management system (Drupal and PHP) for model input data and leverages the modularity of HSPF with the custom segmentation and parameterization routines programmed by modelers working with the Chesapeake Bay Program. The model has been applied to over 30 Virginia Water Permits, instream flows and aquatic habitat models and a Virginias 30 year water supply demand projections. Future versions will leverage the Bay Model auto-calibration routines for adding small-scale water supply and TMDL models, utilize climate change scenarios, and integrate Virginia's reservoir management modules into the Chesapeake Bay watershed model, feeding projected demand and operational changes back up to EPA models to improve the realism of future Bay-wide simulations.

  2. Coordinating Mitigation Strategies for Meeting In-Stream Flow Requirements in the Skagit River Basin, WA

    NASA Astrophysics Data System (ADS)

    Padowski, J.; Yang, Q.; Brady, M.; Jessup, E.; Yoder, J.

    2016-12-01

    In 2013, the Washington State Supreme Court ruled against a 2001 amendment that set aside groundwater reservations for development within the Skagit River Basin (Swinomish Indian Tribal Community v. Washington State Department of Ecology). As a consequence, hundreds of properties no longer have a secure, uninterruptible water right and must be fully mitigated to offset their impacts on minimum in-stream flows. To date, no solutions have been amenable to the private, tribal and government parties involved. The objective of this study is to identify implementable, alternative water mitigation strategies for meeting minimum in-stream flow requirements while providing non-interruptible water to 455 property owners without legal water rights in the Skagit Basin. Three strategies of interest to all parties involved were considered: 1) streamflow augmentation from small-gauge municipal pipes, or trucked water deliveries for either 2) direct household use or 3) streamflow augmentation. Each mitigation strategy was assessed under two different demand scenarios and five augmentation points along 19 sub-watershed (HUC12) stream reaches. Results indicate that water piped for streamflow augmentation could provide mitigation at a cost of <10,000 per household for 20 - 60% of the properties in question, but a similar approach could be up to twenty times more expensive for those remaining properties in basins furthest from existing municipal systems. Trucked water costs also increase for upper basin properties, but over a 20-year period are still less expensive for basins where piped water costs would be high (e.g., 100,000 for trucking vs. $200,000 for piped water). This work suggests that coordination with municipal water systems to offset in-stream flow reductions, in combination with strategic mobile water delivery, could provide mitigation solutions within the Skagit Basin that may satisfy concerned parties.

  3. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui

    2018-01-01

    The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.

  4. Instream Large Wood: Dentrification Hotspots With Low N2O Production

    EPA Science Inventory

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and nitrous oxide (N2O) production. We examined the effects of woody an...

  5. EFFECTS OF STREAM RESTORATION ON IN-STREAM WATER QUALITY IN AN URBAN WATERSHED

    EPA Science Inventory

    The purpose of this on-going project is to provide information to Municipal Separate Storm Sewer System (MS4s) operators and states on the performance of selected best management practices (BMPs), specifically, stream restoration techniques, on improving biological and in-stream ...

  6. Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition

    EPA Science Inventory

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...

  7. WATERSHED AND INSTREAM MODELING OF SEDIMENT FATE AND TRANSPORT

    EPA Science Inventory

    To effectively manage watersheds, the assessment of watershed ecological response to physicochemical stressors such as sediments over broad spatial and temporal scales is needed. Assessments at this level of complexity requires the development of sediment transport and fate model...

  8. Influence of instream habitat and water quality on aggressive behavior in crayfish of channelized headwater streams

    USDA-ARS?s Scientific Manuscript database

    Many agricultural drainage ditches that border farm fields of the Midwestern United States are degraded headwater streams that possess communities of crayfish. We hypothesized that crayfish communities at sites with low instream habitat diversity and poor water quality would show greater evidence of...

  9. Umatilla River Subbasin Fish Habitat Improvement Program, 1996-2003 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Hilaire, Danny R.; Montgomery, Michael; Bailey, Timothy D.

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The last Annual Program Report was submitted in 1997, and described projects undertaken in 1995. This report describes Program activities carried out in 2003, along with a summary of projects undertaken during the years 1996 through 2002. The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestockmore » exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary table of past projects (1996-2002), along with a text description of more extensive habitat improvement projects, including: (1) Implementation of a four-phased project on the Lobato property (Birch Creek) beginning in 1996 and involving a demonstration bioengineering site and riparian improvements (fencing, planting), (2) Implementation of stable channel design/instream structure placement on the Houser property, East Birch Creek, beginning in 1998, an (3) Implementation of a joint, US Army Corps of Engineers/ODFW (cost share) project beginning in 2001 on the Brogoitti property, East Birch Creek, which involved implementation of stable channel design/construction and riparian improvement treatments.« less

  10. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biologicalmore » processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.« less

  11. Instream flow assessment and economic valuation: a survey of nonmarket benefits research

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1993-01-01

    Instream flow benefits for United States streams and rivers have recently been investigated by a number of resource economists. These valuation efforts differ in scope, method, and quantitative results. An assessment and review of these valuation efforts is presented. The various sources of differences in non‐market values produced by these studies are explored in some detail. The considerable difficulty of producing estimates of instream flow benefits values that consider all of the pertinent policy and technical issues is delineated in various policy contexts. Evidence is presented that indicates that the considerable policy impact of recent research on this topic is justified despite considerable variation in the magnitude of the estimates.

  12. Temporal and spatial variability in North Carolina piedmont stream temperature

    Treesearch

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer

    2009-01-01

    Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...

  13. Large in-stream wood studies: A call for common metrics

    Treesearch

    Ellen Wohl; Daniel A. Cenderelli; Kathleen A. Dwire; Sandra E. Ryan-Burkett; Michael K. Young; Kurt D. Fausch

    2010-01-01

    During the past decade, research on large in-stream wood has expanded beyond North America's Pacific Northwest to diverse environments and has shifted toward increasingly holistic perspectives that incorporate processes of wood recruitment, retention, and loss at scales from channel segments to entire watersheds. Syntheses of this rapidly expanding literature can...

  14. Stream temperature response to three riparian vegetation scenarios by use of a distributed temperature validated model.

    PubMed

    Roth, T R; Westhoff, M C; Huwald, H; Huff, J A; Rubin, J F; Barrenetxea, G; Vetterli, M; Parriaux, A; Selkeer, J S; Parlange, M B

    2010-03-15

    Elevated in-stream temperature has led to a surge in the occurrence of parasitic intrusion proliferative kidney disease and has resulted in fish kills throughout Switzerland's waterways. Data from distributed temperature sensing (DTS) in-stream measurements for three cloud-free days in August 2007 over a 1260 m stretch of the Boiron de Merges River in southwest Switzerland were used to calibrate and validate a physically based one-dimensional stream temperature model. Stream temperature response to three distinct riparian conditions were then modeled: open, in-stream reeds, and forest cover. Simulation predicted a mean peak stream temperature increase of 0.7 °C if current vegetation was removed, an increase of 0.1 °C if dense reeds covered the entire stream reach, and a decrease of 1.2 °C if a mature riparian forest covered the entire reach. Understanding that full vegetation canopy cover is the optimal riparian management option for limiting stream temperature, in-stream reeds, which require no riparian set-aside and grow very quickly, appear to provide substantial thermal control, potentially useful for land-use management.

  15. The influence of distinct types of aquatic vegetation on the flow field

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Barcroft, Stephen; Yagci, Oral

    2014-05-01

    The Sustainable management of fluvial systems dealing with flood prevention, erosion protection and restoration of rivers and estuaries requires implementation of soft/green-engineering methods. In-stream aquatic vegetation can be regarded as one of these as it plays an important role for both river ecology (function) and geomorphology (form). The goal of this research is to offer insight gained from pilot experimental studies on the effects of a number of different elements modeling instream, aquatic vegetation on the local flow field. It is hypothesized that elements of the same effective "blockage" area but of distinct characteristics (structure, porosity and flexibility), will affect both the mean and fluctuating levels of the turbulent flow to a different degree. The above hypothesis is investigated through a set of rigorous set of experimental runs which are appropriately designed to assess the variability between the interaction of aquatic elements and flow, both quantitatively and qualitatively. In this investigation three elements are employed to model aquatic vegetation, namely a rigid cylinder, a porous but rigid structure and a flexible live plant (Cupressus Macrocarpa). Firstly, the flow field downstream each of the mentioned elements was measured under steady uniform flow conditions employing acoustic Doppler velocimetry. Three-dimensional flow velocities downstream the vegetation element are acquired along a measurement grid extending about five-fold the element's diameter. These measurements are analyzed to develop mean velocity and turbulent intensity profiles for all velocity components. A detailed comparison between the obtained results is demonstrative of the validity of the above hypothesis as each of the employed elements affects in a different manner and degree the flow field. Then a flow visualization technique, during which fluorescent dye is injected upstream of the element and images are captured for further analysis and comparison, was employed to visualize the flow structures shed downstream the aquatic elements. This method allows to further observe qualitatively and visually identify the different characteristics of the eddies advected downstream, conclusively confirming the results of the aforementioned experimental campaign.

  16. Identification of hotspots and trends of fecal surface water pollution in developing countries

    NASA Astrophysics Data System (ADS)

    Reder, Klara; Flörke, Martina; Alcamo, Joseph

    2015-04-01

    Water is the essential resource ensuring human life on earth, which can only prosper when water is available and accessible. But of importance is not only the quantity of accessible water but also its quality, which in case of pollution may pose a risk to human health. The pollutants which pose a risk to human health are manifold, covering several groups such as pathogens, nutrients, human pharmaceuticals, heavy metals, and others. With regards to human health, pathogen contamination is of major interest as 4% of all death and 5.7% of disability or ill health in the world can be attributed to poor water supply, sanitation and personal and domestic hygiene. In developing countries, 2.6 billion people lacked access to improved sanitation in 2011. The lack of sanitation poses a risk to surface water pollution which is a threat to human health. A typical indicator for pathogen pollution is fecal coliform bacteria. The objective our study is to assess fecal pollution in the developing regions Africa, Asia and Latin America using the large-scale water quality model WorldQual. Model runs were carried-out to calculate in-stream concentrations and the respective loadings reaching rivers for the time period 1990 to 2010. We identified hotspots of fecal coliform loadings and in-stream concentrations which were further analyzed and ranked in terms of fecal surface water pollution. Main findings are that loadings mainly originate from the domestic sector, thus loadings are high in highly populated areas. In general, domestic loadings can be attributed to the two subsectors domestic sewered and domestic non sewered. The spatial distribution of both sectors varies across catchments. Hotspot pattern of in-stream concentrations are similar to the loadings pattern although they are different in seasonality. As the dilution varies with climate its dilution capacity is high during seasons with high precipitation, which in turn decreases the in-stream concentrations. The fecal pollution is increasing from 1990 to 2010 with increased loadings and larger number of river kilometers with high fecal pollution. Fecal pollution is mainly caused by the domestic sector, and hence, the sanitation type, collection and treatment (level) of collected wastewater are highly important to ensure good quality of water bodies.

  17. The effect of in-stream activities on the Njoro River, Kenya. Part II: Microbial water quality

    NASA Astrophysics Data System (ADS)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    The influence of periodic in-stream activities of people and livestock on the microbial water quality of the Njoro River in Kenya was monitored at two disturbed pools (Turkana Flats and Njoro Bridge) at the middle reaches. A total of 96 sets of samples were obtained from the two pools in six weeks during dry weather (January-April) in 2006. On each sampling day, two trips were made before and during in-stream activities and on each trip, two sets of samples were collected upstream and downstream of activities. This schedule was repeated four times each for Wednesday, Saturday and Sunday. Samples were processed for heterotrophic plate count bacteria (HPC), total coliform (TC), presumptive Escherichia coli and presumptive Enterococci. Additional samples were analysed for total suspended solids (TSS), turbidity, BOD 5 and ammonium-N. The microbial water quality deteriorated significant ( p < 0.05) downstream during activities at both pools. A similar trend was observed with the chemical indicators (TSS, turbidity, BOD 5 and ammonium-N). The two groups of indicators demonstrated high capacity for site segregation based on pollution levels. Pollution levels for specific days were not significantly different ( p > 0.05). This was incompatible with the variability of in-stream activities with specific days. The pooled data was explained largely by three significant principal components - recent pollution (PC1), metabolic activity (PC2) and residual pollution (PC3). It was concluded that the empirical site parity/disparity in the levels of microbial and non-microbial indicators reflected the diurnal periodicity of in-stream activities and the concomitant pollution they caused. However, microbial source tracking studies are required to distinguish faecal sources. In the meantime, measures should be undertaken to regulate in-stream activities along the stream and minimize the movement of livestock in the catchment.

  18. IN-STREAM CONTINUOUS SOURCE WATER QUALITY MONITORING SYSTEM

    EPA Science Inventory

    Abstract:

    The U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) provided the Ohio River Valley Water Sanitation Commission (ORSANCO) with a grant as part of the Advanced Measurement Initiative (AMI). The objective of AMI is to provide an ...

  19. Spatial Dynamic Optimization of Groundwater Use with Ecological Standards for Instream Flow

    NASA Astrophysics Data System (ADS)

    Brozovic, N.; Han, J.; Speir, C.

    2011-12-01

    Instream flow requirements for protected species in arid and semi-arid regions have created the need to reduce groundwater use adjacent to streams. We present an integrated hydrologic-economic model that optimizes agricultural groundwater use next to streams with flow standards. Policies to meet instream flow standards should aim to minimize the welfare losses to irrigated agriculture due to reduced pumping. Previous economic studies have proposed spatially targeted water allocations between groundwater irrigators and instream demands. However, these studies focused on meeting aggregate instream flow goals on a seasonal or yearly basis rather than meeting them on a continuous basis. Temporally aggregated goals ignore important intra-seasonal hydrologic effects and may not provide sufficient habitat quality for species of concern. We present an optimization model that solves for groundwater pumping allocations across space in a stream-aquifer system with instream flow goals that must be met on a daily basis. We combine an analytical model of stream depletion with a farm profit maximization model that includes cumulative crop yield damages from water stress. The objective is the minimization of agricultural losses from reduced groundwater use while minimum instream flow requirements for ecological needs are met on a daily basis. As a case study, we apply our model to the Scott River Basin in northern California. This is a region where stream depletion resulting from extensive irrigation has degraded habitat for Coho salmon, a species protected under the U.S. Endangered Species Act. Our results indicate the importance of considering the lag between the time at which pumping occurs and the time at which stream depletion related to that pumping occurs. In general, we find that wells located farther from the stream should be allocated more water in most hydrologic scenarios. However, we also find that the spatial and temporal distribution of optimal groundwater pumping can differ dramatically depending on the level of streamflow and instream flow targets. In particular, we find that in drought years wells located closer to the stream might be allocated more water than wells farther from the stream. This counterintuitive result is driven by spatial variability in the time lag associated with the stream depletion externality following pumping. Any period of time during the year with extreme water scarcity requires a cessation of pumping in advance of that period so that stream depletion impacts can adequately dissipate before the start of the period. Wells that are farther away from the stream cause higher stream depletion impacts following the cessation of pumping, so they may need to cease pumping earlier in advance of the period of extreme water scarcity. The analysis also suggests that in our case study area, the Scott River Basin, policies that are spatially and temporally targeted may lead to welfare costs that are 30 percent less than welfare losses under uniform pumping restrictions. The relative welfare gains of the targeted policy over the uniform reduction policy increase as the scarcity of the instream water supply increases.

  20. Current landscapes and legacies of land-use past: understanding the distribution of juvenile coho salmon (Oncorhynchus kisutch) and their habitats along the Oregon Coast, USA

    Treesearch

    E. Ashley Steel; Ariel Muldoon; Rebecca L. Flitcroft; Julie C. Firman; Kara J. Anlauf-Dunn; Kelly M. Burnett; Robert J. Danehy

    2017-01-01

    The Oregon Coast landscape displays strong spatial patterns in air temperature, precipitation, and geology, which can confound our ability to detect relationships among land management, instream conditions, and fish at broad spatial scales. Despite this structure, we found that a suite of immutable or intrinsic attributes (e.g., reach gradient, drainage area, elevation...

  1. Optimizing Barrier Removal to Restore Connectivity in Utah's Weber Basin

    NASA Astrophysics Data System (ADS)

    Kraft, M.; Null, S. E.

    2016-12-01

    Instream barriers, such as dams, culverts and diversions are economically important for water supply, but negatively affect river ecosystems and disrupt hydrologic processes. Removal of uneconomical and aging in-stream barriers to improve habitat connectivity is increasingly used to restore river connectivity. Most past barrier removal projects focused on individual barriers using a score-and-rank technique, ignoring cumulative change from multiple, spatially-connected barrier removals. Similarly, most water supply models optimize either human water use or aquatic connectivity, failing to holistically represent human and environmental benefits. In this study, a dual objective optimization model identified in-stream barriers that impede aquatic habitat connectivity for trout, using streamflow, temperature, and channel gradient as indicators of aquatic habitat suitability. Water scarcity costs are minimized using agricultural and urban economic penalty functions to incorporate water supply benefits and a budget monetizes costs of removing small barriers like culverts and road crossings. The optimization model developed is applied to a case study in Utah's Weber basin to prioritize removal of the most environmentally harmful barriers, while maintaining human water uses. The dual objective solution basis was developed to quantify and graphically visualize tradeoffs between connected quality-weighted habitat for Bonneville cutthroat trout and economic water uses. Modeled results include a spectrum of barrier removal alternatives based on budget and quality-weighted reconnected habitat that can be communicated with local stakeholders. This research will help prioritize barrier removals and future restoration decisions. The modeling approach expands current barrier removal optimization methods by explicitly including economic and environmental water uses.

  2. Explaining spatial variability in stream habitats using both natural and management-influenced landscape predictors

    Treesearch

    K.J. Anlauf; D.W. Jensen; K.M. Burnett; E.A. Steel; K. Christiansen; J.C. Firman; B.E. Feist; D.P. Larsen

    2011-01-01

    1. The distribution and composition of in-stream habitats are reflections of landscape scale geomorphic and climatic controls. Correspondingly, Pacific salmon (Oncorhynchus spp.) are largely adapted to and constrained by the quality and complexity of those in-stream habitat conditions. The degree to which lands have been fragmented and managed can...

  3. Quantifying Channel Maintenance Instream Flows: An Approach for Gravel-Bed Streams in the Western United States

    Treesearch

    Larry J. Schmidt; John P. Potyondy

    2004-01-01

    This paper discusses one approach for quantifying channel maintenance instream flow necessary to achieve the Forest Service Organic Act purpose of securing favorable conditions of water flows. The approach is appropriate for quantifying channel maintenance flows on perennial, unregulated, snowmelt-dominated, gravel-bed streams with alluvial reaches. The approach...

  4. Estimated water withdrawals and use in Pennsylvania, 1995

    USGS Publications Warehouse

    Ludlow, Russell A.; Gast, William A.

    2000-01-01

    In practical terms, water use is divided into two basic types: instream use and offstream use. Instream use is water used in its natural channel, basin, or behind a dam and includes activities such as fishing, boating, and other recreational activities. Instream use also includes hydroelectric power generation. Off-stream use is water pumped or diverted from its natural channel, basin, or aquifer. Off-stream uses are divided into the following categories: public supply, domestic, commercial, industrial, thermoelectric power, mining, livestock, and irrigation. This fact sheet provides an overview of offstream and hydroelectric power water use in Pennsylvania. It describes water withdrawals by source, water withdrawals and deliveries by category, changes in water use over time, and water-management responsibilities in the State.

  5. Instream movements by boreal toads (Bufo boreas boreas)

    Treesearch

    Susan B. Adams; David A. Schmetterling; Michael K. Young

    2005-01-01

    Determining the nature and extent of bufonid movements is critical to understanding the autecology of each species, as well as to developing effective conservation strategies. Within many toad (Bufo spp.) populations, individuals must migrate considerable distances to reach habitats essential for fulfilling requirements that change seasonally and...

  6. HYDROLOGICALLY-BASED CLASSIFICATION AS A TOOL TO REDUCE BACKGROUND VARIATION IN LAND USE - OR NUTRIENT - RESPONSE RELATIONSHIPS IN LAKE MICHIGAN COASTAL RIVERINE WETLANDS

    EPA Science Inventory

    Flow-based watershed classes provide useful strata for sampling and assessment schemes both for instream condition and condition of downstream receiving waters, and may provide useful strata for development of nutrient criteria.

  7. Estimated water use in Puerto Rico, 2010

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.

    2014-01-01

    Water-use data were aggregated for the 78 municipios of the Commonwealth of Puerto Rico for 2010. Five major offstream categories were considered: public-supply water withdrawals and deliveries, domestic and industrial self-supplied water use, crop-irrigation water use, and thermoelectric-power freshwater use. One instream water-use category also was compiled: power-generation instream water use (thermoelectric saline withdrawals and hydroelectric power). Freshwater withdrawals for offstream use from surface-water [606 million gallons per day (Mgal/d)] and groundwater (118 Mgal/d) sources in Puerto Rico were estimated at 724 million gallons per day. The largest amount of freshwater withdrawn was by public-supply water facilities estimated at 677 Mgal/d. Public-supply domestic water use was estimated at 206 Mgal/d. Fresh groundwater withdrawals by domestic self-supplied users were estimated at 2.41 Mgal/d. Industrial self-supplied withdrawals were estimated at 4.30 Mgal/d. Withdrawals for crop irrigation purposes were estimated at 38.2 Mgal/d, or approximately 5 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were estimated at 556 Mgal/d and saline instream surface-water withdrawals for cooling purposes by thermoelectric-power facilities was estimated at 2,262 Mgal/d.

  8. In-stream hydrokinetic power: Review and appraisal

    DOE PAGES

    Van Zwieten, J.; McAnally, William; Ahmad, Jameel; ...

    2015-09-01

    The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year ofmore » extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.« less

  9. Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT

    NASA Astrophysics Data System (ADS)

    Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier

    2017-04-01

    Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.

  10. MaSTiS, microorganism and solute transport in streams, model documentation and user manual

    USDA-ARS?s Scientific Manuscript database

    In-stream fate and transport of solutes and microorganisms need to be understood to evaluate suitability of waters for agricultural, recreational, and household uses and eventually minimize surface water contamination. Concerns over safety of this water resulted in development of predictive models f...

  11. AN APPROACH TO ASSESSING THE CONDITION OF RIPARIAN PLANT COMMUNITIES IN THE JOHN DAY AND DESCHUTES RIVER BASINS OF EASTERN OREGON

    EPA Science Inventory

    Riparian vegetation represents unique plant communities and provides a variety of ecosystem services that influence in-stream condition. This research develops methods and indicators for evaluating vegetation condition. A key indicator of riparian vegetation condition is the deg...

  12. ECOREGIONAL INFLUENCES ON WATERSHED LAND COVER, WATER QUALITY, AND IN-STREAM BIOLOGY

    EPA Science Inventory

    Omernik's ecoregions were developed to serve as a spatial framework for environmental monitoring and research. We examined the biology and chemistry in 35 headwater streams in the Little Miami River (LMR) of Ohio to determine whethEr there were real differences among three ecore...

  13. TESTING LINKAGES BETWEEN GROUNDWATER, WATERSHED, AND IN-STREAM MODELS IN THE CONTENTNEA CREEK BASIN, NORTH CAROLINA, USA

    EPA Science Inventory

    Computer modeling provides support for the development of TMDLs (total maximum daily loads) of impaired water bodies. Evaluations of TMDLs for nutrients, especially for nitrogen, benefits from a multi-media assessment (i.e., atmosphere, landscape, subsurface, surface water). In t...

  14. Proceedings of a workshop on the development and evaluation of habitat suitability criteria: A compilation of papers and discussions presented at Colorado State University, Fort Collins, Colorado, December 8-12, 1986

    USGS Publications Warehouse

    Bovee, Ken; Zuboy, J.R.

    1988-01-01

    The development of reliable habitat suitability criteria is critical to the successful implementation of the Instream Flow Incremental Methodology (IFIM), or any other habitat based evaluation technology. It is also a fascinating topic of research, for several reasons. First, the “science” of habitat quantification is relatively young. Descriptions of habitat use and partitioning can be traced back to Darwin, if not further. Attempts to actually quantify habitat use can be found predominantly during the last two decades, with most of the activity occurring in about the last five years. Second, this work is challenging because we are usually working with fish or some other organism that lives out of sight in an environment that is foreign to humans. Most of the data collection techniques that have been developed for standard fisheries work are unsuited, without modification, for criteria development. These factors make anyone involved in this type of research a pioneer, of sorts. Pioneers often make new and wonderful discoveries, but they also sometimes get lost. In our opinion, however, there is an even more rewarding aspect to criteria development research. It seems that the field of biology has tended to become increasingly clinical over the years. Criteria development demands the unobtrusive observation of organisms in their natural environment, a fact that allows the biological to be a naturalist and still get paid for it. The relative youth and importance of habitat quantification have resulted in rapid advancements in the state of the art. The expansion of methods is vividly demonstrated simply by comparing the two Instream Flow Information Papers written on the subject in 1978 and in 1986. One of the missions of the Aquatic Systems Branch (formerly the Instream Flow Group) is to serve as a clearinghouse for new techniques and methods. In keeping with this role, a workshop was conducted during December 1986 to discuss current and newly evolving methods for developing and evaluating habitat suitability criteria. Participation in this workshop was largely by invitation only. The objective was to obtain insights into problems and possible solutions to criteria development, from the perspective of professionals closely involved with the subject. These proceedings of that workshop are intended to supplement the information contained in Instream Flow Information Paper 21, "Development and Evaluation of Habitat Suitability Criteria for Use in the Instream Flow Incremental Methodology." The workshop was closely arranged in five sessions, roughly following the outline of Information Paper 21. The first session dealt with various aspects of study design and how they can influence the outcome of a study. Session two investigated techniques for developing criteria from professional judgment, and some of the problems encountered when personal or agency prejudice enters the picture. Session three concentrated on field data collection procedures, whereas session four examined methods of converting field data into curves. Field verification studies were discussed in session five. Each presentation in the workshop was followed by a question and answer period of 15 to 30 minutes. These discussions were recorded, transcribed, and appended to the end of each paper in these proceedings. We have attempted to capture the essence of these discussions as accurately as possible, but hope that the reader can appreciate the difficulty in translating a free-ranging discussion (from a barely audible tape) to something that makes sense in print. These question and answer sessions constitute the peer review for each of the papers. This provides the reader with the unique opportunity to review the interactions between authors and reviewers.

  15. Characterization of instream hydraulic and riparian habitat conditions and stream temperatures of the Upper White River Basin, Washington, using multispectral imaging systems

    USGS Publications Warehouse

    Black, Robert W.; Haggland, Alan; Crosby, Greg

    2003-01-01

    Instream hydraulic and riparian habitat conditions and stream temperatures were characterized for selected stream segments in the Upper White River Basin, Washington. An aerial multispectral imaging system used digital cameras to photograph the stream segments across multiple wavelengths to characterize fish habitat and temperature conditions. All imageries were georeferenced. Fish habitat features were photographed at a resolution of 0.5 meter and temperature imageries were photographed at a 1.0-meter resolution. The digital multispectral imageries were classified using commercially available software. Aerial photographs were taken on September 21, 1999. Field habitat data were collected from August 23 to October 12, 1999, to evaluate the measurement accuracy and effectiveness of the multispectral imaging in determining the extent of the instream habitat variables. Fish habitat types assessed by this method were the abundance of instream hydraulic features such as pool and riffle habitats, turbulent and non-turbulent habitats, riparian composition, the abundance of large woody debris in the stream and riparian zone, and stream temperatures. Factors such as the abundance of instream woody debris, the location and frequency of pools, and stream temperatures generally are known to have a significant impact on salmon. Instream woody debris creates the habitat complexity necessary to maintain a diverse and healthy salmon population. The abundance of pools is indicative of a stream's ability to support fish and other aquatic organisms. Changes in water temperature can affect aquatic organisms by altering metabolic rates and oxygen requirements, altering their sensitivity to toxic materials and affecting their ability to avoid predators. The specific objectives of this project were to evaluate the use of an aerial multispectral imaging system to accurately identify instream hydraulic features and surface-water temperatures in the Upper White River Basin, to use the multispectral system to help establish baseline instream/riparian habitat conditions in the study area, and to qualitatively assess the imaging system for possible use in other Puget Sound rivers. For the most part, all multispectral imagery-based estimates of total instream riffle and pool area were less than field measurements. The imagery-based estimates for riffle habitat area ranged from 35.5 to 83.3 percent less than field measurements. Pool habitat estimates ranged from 139.3 percent greater than field measurements to 94.0 percent less than field measurements. Multispectral imagery-based estimates of turbulent habitat conditions ranged from 9.3 percent greater than field measurements to 81.6 percent less than field measurements. Multispectral imagery-based estimates of non-turbulent habitat conditions ranged from 27.7 to 74.1 percent less than field measurements. The absolute average percentage of difference between field and imagery-based habitat type areas was less for the turbulent and non-turbulent habitat type categories than for pools and riffles. The estimate of woody debris by multispectral imaging was substantially different than field measurements; percentage of differences ranged from +373.1 to -100 percent. Although the total area of riffles, pools, and turbulent and non-turbulent habitat types measured in the field were all substantially higher than those estimated from the multispectral imagery, the percentage of composition of each habitat type was not substantially different between the imagery-based estimates and field measurements.

  16. Effects of watershed and in-stream liming on macroinvertebrate communities in acidified tributaries to an Adirondack lake

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.; Lawrence, Gregory B.; Fuller, Randall L.

    2018-01-01

    Liming techniques are being explored as a means to accelerate the recovery of aquatic biota from decades of acid deposition in many regions. The preservation or restoration of native sportfish populations has typically been the impetus for liming programs, and as such, less attention has been given to its effects on other biological assemblages such as macroinvertebrates. Furthermore, the differing effects of various lime application strategies such as in-stream and watershed applications are not well understood. In 2012, a program was initiated using in-stream and aerial (whole-watershed) liming to improve water quality and Brook Trout (Salvelinus fontinalis) recruitment in three acidified tributaries of a high-elevation Adirondack lake in New York State. Concurrently, macroinvertebrates were sampled annually between 2013 and 2016 at 3 treated sites and 3 untreated reference sites to assess the effects of each liming technique on this community. Despite improvements in water chemistry in all three limed streams, our results generally suggest that neither liming technique succeeded in improving the condition of macroinvertebrate communities. The watershed application caused an immediate and unsustained decrease in the density of macroinvertebrates and increase in the proportion of sensitive taxa. These changes were driven primarily by a one-year 71 percent reduction of the acid-tolerant Leuctra stoneflies and likely represent an initial chemistry shock from the lime application rather than a recovery response. The in-stream applications appeared to reduce the density of macroinvertebrates, particularly in one stream where undissolved lime covered the natural substrate. The close proximity of our study sites to the in-stream application points (50 and 1230 m) may partly explain these negative effects. Our results are consistent with prior studies of in-stream liming which indicate that this technique often fails to restore macroinvertebrate communities to a pre-acidification condition, especially at distances <1.5 km downstream of the lime application point. The inability of either liming technique to improve the condition of macroinvertebrate communities may be partly explained by the persistence of acidic episodes in all three streams. This suggests that in order to be effective, liming programs should attempt to eliminate even temporary episodes of unsuitable water chemistry rather than just meeting minimal criteria the majority of the time. Because watershed liming produced a more stable water chemistry regime than in-stream liming, this technique may have greater future potential to eliminate toxic episodes and accelerate the recovery of acid-impacted macroinvertebrate communities.

  17. Urbanization in a great plains river: Effects on fishes and food webs

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    Spatial variation of habitat and food web structure of the fish community was investigated at three reaches in the Kansas River, USA to determine if ??13C variability and ??15N values differ longitudinally and are related to urbanization and instream habitat. Fish and macroinvertebrates were collected at three river reaches in the Kansas River classified as the less urbanized reach (no urban in riparian zone; 40% grass islands and sand bars, braided channel), intermediate (14% riparian zone as urban; 22% grass islands and sand bars) and urbanized (59% of riparian zone as urban; 6% grass islands and sand bars, highly channelized) reaches in June 2006. The less urbanized reach had higher variability in ??13C than the intermediate and urbanized reaches, suggesting fish from these reaches utilized a variety of carbon sources. The ??15N also indicated that omnivorous and detritivorous fish species tended to consume prey at higher trophic levels in the less urbanized reach. Channelization and reduction of habitat related to urbanization may be linked to homogenization of instream habitat, which was related to river food webs. ?? 2009.

  18. Application and utility of a low-cost unmanned aerial system to manage and conserve aquatic resources in four Texas rivers

    USGS Publications Warehouse

    Birdsong, Timothy W.; Bean, Megan; Grabowski, Timothy B.; Hardy, Thomas B.; Heard, Thomas; Holdstock, Derrick; Kollaus, Kristy; Magnelia, Stephan J.; Tolman, Kristina

    2015-01-01

    Low-cost unmanned aerial systems (UAS) have recently gained increasing attention in natural resources management due to their versatility and demonstrated utility in collection of high-resolution, temporally-specific geospatial data. This study applied low-cost UAS to support the geospatial data needs of aquatic resources management projects in four Texas rivers. Specifically, a UAS was used to (1) map invasive salt cedar (multiple species in the genus Tamarix) that have degraded instream habitat conditions in the Pease River, (2) map instream meso-habitats and structural habitat features (e.g., boulders, woody debris) in the South Llano River as a baseline prior to watershed-scale habitat improvements, (3) map enduring pools in the Blanco River during drought conditions to guide smallmouth bass removal efforts, and (4) quantify river use by anglers in the Guadalupe River. These four case studies represent an initial step toward assessing the full range of UAS applications in aquatic resources management, including their ability to offer potential cost savings, time efficiencies, and higher quality data over traditional survey methods.

  19. Grid-connected in-stream hydroelectric generation based on the doubly fed induction machine

    NASA Astrophysics Data System (ADS)

    Lenberg, Timothy J.

    Within the United States, there is a growing demand for new environmentally friendly power generation. This has led to a surge in wind turbine development. Unfortunately, wind is not a stable prime mover, but water is. Why not apply the advances made for wind to in-stream hydroelectric generation? One important advancement is the creation of the Doubly Fed Induction Machine (DFIM). This thesis covers the application of a gearless DFIM topology for hydrokinetic generation. After providing background, this thesis presents many of the options available for the mechanical portion of the design. A mechanical turbine is then specified. Next, a method is presented for designing a DFIM including the actual design for this application. In Chapter 4, a simulation model of the system is presented, complete with a control system that maximizes power generation based on water speed. This section then goes on to present simulation results demonstrating proper operation.

  20. Riparian forest and instream large wood characteristics, West Branch Sheepscot River, Maine, USA

    Treesearch

    Melissa Laser; James Jordan; Keith Nislow

    2009-01-01

    This study examined riparian forest and instream large wood characteristics in a 2.7 km reach of the West Branch of the Sheepscot River in Maine in order to increase our basic knowledge of these components in a system that is known to have undergone multiple land conversion. The West Branch is approximately 40 km long, drains a 132 km2...

  1. Effects of Land Use and Land Cover, Stream Discharge, and Interannual Climate on the Magnitude and Timing of Nitrogen, Phosphorus, and Organic Carbon Concentrations in Three Coastal Plain Watersheds

    EPA Science Inventory

    In-stream nitrogen, phosphorus, organic carbon, and suspended sediment concentrations were measured in 18 sub-basins over two annual cycles to assess how land-use/land-cover (LULC) and stream discharge regulate water quality variables. LULC was a primary driver of in-stream const...

  2. A two end-member model of wood dynamics in headwater neotropical rivers

    Treesearch

    Ellen Wohl; Susan Bolton; Daniel Cadol; Francesco Comiti; Jaime R. Goode; Luca Mao

    2012-01-01

    Geomorphic and ecological effects of instream wood have been documented primarily along rivers in the temperate zones. Instream wood loads in tropical rivers might be expected to differ from those in analogous temperate rivers because of the higher transport capacity and higher rates of wood decay in the tropics. We use data from four field sites in Costa Rica and...

  3. A SURVEY OF METHODS FOR SETTING MINIMUM INSTREAM FLOW STANDARDS IN THE CARIBBEAN BASIN.

    Treesearch

    F. N. SCATENA

    2004-01-01

    To evaluate the current status of instream flow practices in streams that drain into the Caribbean Basin, a voluntary survey of practising water resource managers was conducted. Responses were received from 70% of the potential continental countries, 100% of the islands in the Greater Antilles, and 56% of all the Caribbean island nations. Respondents identified ‘...

  4. The Assessment of Instruments for Detecting Surface Water Spills Associated with Oil and Gas Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Aubrey E.; Hopkinson, Leslie; Soeder, Daniel

    Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been usedmore » to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.« less

  5. Quantification of Water Quality Parameters for the Wabash River Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, J.; Cherkauer, K. A.; Chaubey, I.

    2011-12-01

    Increasingly impaired water bodies in the agriculturally dominated Midwestern United States pose a risk to water supplies, aquatic ecology and contribute to the eutrophication of the Gulf of Mexico. Improving regional water quality calls for new techniques for monitoring and managing water quality over large river systems. Optical indicators of water quality enable a timely and cost-effective method for observing and quantifying water quality conditions by remote sensing. Compared to broad spectral sensors such as Landsat, which observe reflectance over limited spectral bands, hyperspectral sensors should have significant advantages in their ability to estimate water quality parameters because they are designed to split the spectral signature into hundreds of very narrow spectral bands increasing their ability to resolve optically sensitive water quality indicators. Two airborne hyperspectral images were acquired over the Wabash River using a ProSpecTIR-VS2 sensor system on May 15th, 2010. These images were analyzed together with concurrent in-stream water quality data collected to assess our ability to extract optically sensitive constituents. Utilizing the correlation between in-stream data and reflectance from the hyperspectral images, models were developed to estimate the concentrations of chlorophyll a, dissolved organic carbon and total suspended solids. Models were developed using the full array of hyperspectral bands, as well as Landsat bands synthesized by averaging hyperspectral bands within the Landsat spectral range. Higher R2 and lower RMSE values were found for the models taking full advantage of the hyperspectral sensor, supporting the conclusion that the hyperspectral sensor was better at predicting the in-stream concentrations of chlorophyll a, dissolved organic carbon and total suspended solids in the Wabash River. Results also suggest that predictive models may not be the same for the Wabash River as for its tributaries.

  6. Assessment of Gas Potential in the Niobrara Formation, Rosebud Reservation, South Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Aubrey E.; Hopkinson, Leslie; Soeder, Daniel

    2016-01-23

    Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been usedmore » to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.« less

  7. AQUATIC ECOSYSTEM PROTECTION AND FISHERIES MANAGEMENT IN THE MID-ATLANTIC HIGHLANDS (USA) USING WHAT IF: A COLLABORATION OF THE CANAAN VALLEY INSTITUTE, THE OFFICE OF RESEARCH AND DEVELOPMENT AND REGION III

    EPA Science Inventory

    As described in its Highlands Action Program, the Canaan Valley Institute (CVI) partnered with the US EPA to develop a watershed assessment and management tool that allows managers to evaluate riparian restoration actions to improve instream habitat quality and aquatic community ...

  8. Seasonal changes in the diurnal in-stream nitrate concentration oscillations

    NASA Astrophysics Data System (ADS)

    Rusjan, S.; Mikoš, M.

    2009-04-01

    A variability of seasonal changes in the diurnal in-stream NO3-N concentration oscillations was studied through high-frequency measurements of the stream-water's physical, chemical parameters (in-stream NO3-N concentration, water temperature, dissolved oxygen, pH) and hydrometeorological variables (stream discharge, solar radiation) under hydrologically stable conditions. The study was carried out in 2006, within the 42 km2 forested Padež stream watershed in the southwestern part of Slovenia, which is characterized by distinctive hydrogeological settings (flysch) and climate conditions (transitional area between the Mediterranean and continental climate). Fine temporal resolution of the data measured at 15 minute intervals enabled the identification of the main driving factors responsible for the seasonal variability in the diurnal pattern of the streamwater NO3-N concentrations vs. seasonal and diurnal behavior of meteorological and other water chemistry constituents. Seasonal variability of the shifts in daily maximum (up to 6 hours) and minimum NO3-N concentrations (between 1 and 3 hours) and changes in the amplitude of the daily NO3-N concentration oscillations (in order of 0.1-0.3 mg/l-N) offer supplementary evidence of the in-stream NO3-N processing by photoautotrophs. A wavelet analysis was further used to acquire clear, de-noised NO3-N concentration signals on which models in the form of Fourier series were build, reaching R2 values between 0.73 and 0.94. The models can be used to simulate the in-stream NO3-N oscillating signal in order to obtain more accurate assessment of the NO3-N exports from the forested watershed in different seasonal settings, undisturbed by the changing hydrological conditions.

  9. Seasonal Changes in diurnal in-Stream Nitrate Concentration Oscillations

    NASA Astrophysics Data System (ADS)

    Rusjan, Simon; Mikoš, Matjaž; Mitja, Brilly; Vidmar, Andrej

    2010-05-01

    A variability of seasonal changes in the diurnal in-stream NO3-N concentration oscillations was studied through high-frequency measurements of the stream-water's physical, chemical parameters (in-stream NO3-N concentration, water temperature, dissolved oxygen, pH) and hydrometeorological variables (stream discharge, solar radiation) under hydrologically stable conditions. The study was carried out in 2006, within the 42 km2 forested Padež stream watershed in the southwestern part of Slovenia, which is characterized by distinctive hydrogeological settings (flysch) and climate conditions (transitional area between the Mediterranean and continental climate). Fine temporal resolution of the data measured at 15 minute intervals enabled the identification of the main driving factors responsible for the seasonal variability in the diurnal pattern of the streamwater NO3-N concentrations vs. seasonal and diurnal behavior of meteorological and other water chemistry constituents. Seasonal variability of the shifts in daily maximum (up to 6 hours) and minimum NO3-N concentrations (between 1 and 3 hours) and changes in the amplitude of the daily NO3-N concentration oscillations (in order of 0.1-0.3 mg/l-N) offer supplementary evidence of the in-stream NO3-N processing by photoautotrophs. A wavelet analysis was further used to acquire clear, de-noised NO3-N concentration signals on which models in the form of Fourier series were build, reaching R2 values between 0.73 and 0.94. The models can be used to simulate the in-stream NO3-N oscillating signal in order to obtain more accurate assessment of the NO3-N exports from the forested watershed in different seasonal settings, undisturbed by the changing hydrological conditions.

  10. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    PubMed

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Application of SELECT and SWAT models to simulate source load, fate, and transport of fecal bacteria in watersheds.

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.

    2017-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads from SELECT model were input to the SWAT model, and simulate the bacteria transport through the land and in-stream. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on regional land use, population and household forecast (up to 2040). Based on the reductions required to meet the water quality standards in-stream, the corresponding required source load reductions were estimated.

  12. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams

    USGS Publications Warehouse

    Roberts, B.J.; Mulholland, P.J.; Houser, J.N.

    2007-01-01

    Delivery of water, sediments, nutrients, and organic matter to stream ecosystems is strongly influenced by the catchment of the stream and can be altered greatly by upland soil and vegetation disturbance. At the Fort Benning Military Installation (near Columbus, Georgia), spatial variability in intensity of military training results in a wide range of intensities of upland disturbance in stream catchments. A set of 8 streams in catchments spanning this upland disturbance gradient was selected for investigation of the impact of disturbance intensity on hydrodynamics and nutrient uptake. The size of transient storage zones and rates of NH4+ uptake in all study streams were among the lowest reported in the literature. Upland disturbance did not appear to influence stream hydrodynamics strongly, but it caused significant decreases in instream nutrient uptake. In October 2003, coarse woody debris (CWD) was added to 1/2 of the study streams (spanning the disturbance gradient) in an attempt to increase hydrodynamic and structural complexity, with the goals of enhancing biotic habitat and increasing nutrient uptake rates. CWD additions had positive short-term (within 1 mo) effects on hydrodynamic complexity (water velocity decreased and transient storage zone cross-sectional area, relative size of the transient storage zone, fraction of the median travel time attributable to transient storage over a standardized length of 200 m, and the hydraulic retention factor increased) and nutrient uptake (NH4+ uptake rates increased). Our results suggest that water quality in streams with intense upland disturbances can be improved by enhancing instream biotic nutrient uptake capacity through measures such as restoring stream CWD. ?? 2007 by The North American Benthological Society.

  13. In-Stream Sediment Dynamics for predicted environmental concentration calculations of plant protection products in the FOCUSSW Scenarios

    NASA Astrophysics Data System (ADS)

    Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard

    2016-04-01

    The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by considering in-stream sediment dynamics and estimating long-term sediment deposition and substance burial in the river bed. At last, the study shows that the development of a scientifically sound and justifiable sediment accumulation factor for a long-term exposure assessment is only possible by considering the relevant riverine sediment processes.

  14. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Urbanization causes stream degradation in various ways, but perhaps the most extreme example is the burial of streams in underground storm drains to facilitate above ground development or to promote the rapid conveyance of stormwater. Stream burial is extensive in urban basins (...

  15. 75 FR 65503 - Odessa Subarea Special Study; Adams, Franklin, Grant, and Lincoln Counties, Washington INT-DES 10-54

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... Draft EIS for the Odessa Subarea Special Study. The Washington Department of Ecology (Ecology) is a... associated economic and other effects, Congress has funded Reclamation to investigate this problem. Ecology... (HB 2860) that directs Ecology to aggressively pursue development of water benefiting both instream...

  16. APPLYING MULTIMETRIC INDICES AT HIGH RESOLUTION: AN INVESTIGATION OF SPATIAL PATTERNS AND TEMPORAL VARIATION WITHIN AN OREGON WATERSHED

    EPA Science Inventory

    Like many inland waters worldwide, streams and rivers of the Western U.S. are faced with a multitude of challenges stemming from past land use practices and changing future conditions. To address these issues, the USEPA has developed empirical tools for evaluating instream condi...

  17. FUTURE WATER ALLOCATION AND IN-STREAM VALUES IN THE WILLAMETTE RIVER BASIN: A BASIN-WIDE ANALYSIS

    EPA Science Inventory

    Our research investigated the impact on surface water resources of three different scenarios for the future development of the Willamette River Basin in Oregon (USA). Water rights in the basin, and in the western United States in general, are based on a system of law that binds ...

  18. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT

    NASA Astrophysics Data System (ADS)

    Cho, Kyung Hwa; Pachepsky, Yakov A.; Kim, Minjeong; Pyo, JongCheol; Park, Mi-Hyun; Kim, Young Mo; Kim, Jung-Woo; Kim, Joon Ha

    2016-04-01

    Fecal coliforms are indicators of pathogens and thereby, understanding of their fate and transport in surface waters is important to protect drinking water sources and public health. We compiled fecal coliform observations from four different sites in the USA and Korea and found a seasonal variability with a significant connection to temperature levels. In all observations, fecal coliform concentrations were relatively higher in summer and lower during the winter season. This could be explained by the seasonal dominance of growth or die-off of bacteria in soil and in-stream. Existing hydrologic models, however, have limitations in simulating the seasonal variability of fecal coliform. Soil and in-stream bacterial modules of the Soil and Water Assessment Tool (SWAT) model are oversimplified in that they exclude simulations of alternating bacterial growth. This study develops a new bacteria subroutine for the SWAT in an attempt to improve its prediction accuracy. We introduced critical temperatures as a parameter to simulate the onset of bacterial growth/die-off and to reproduce the seasonal variability of bacteria. The module developed in this study will improve modeling for environmental management schemes.

  19. Colonization and development of stream communities across a 200-year gradient in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Milner, Alexander M.; Knudsen, E. Eric; Soiseth, Chad; Robertson, Anne L.; Schell, Don; Phillips, Ian T.; Magnusson, Katrina

    2000-01-01

    In May 1997, physical and biological variables were studied in 16 streams of different ages and contrasting stages of development following glacial recession in Glacier Bay National Park, southeast Alaska. The number of microcrustacean and macroinvertebrate taxa and juvenile fish abundance and diversity were significantly greater in older streams. Microcrustacean diversity was related to the amount of instream wood and percent pool habitat, while the number of macroinvertebrate taxa was related to bed stability, amount of instream wood, and percent pool habitat. The percent contribution of Ephemeroptera to stream benthic communities increased significantly with stream age and the amount of coarse benthic organic matter. Juvenile Dolly Varden (Salvelinus malma) were dominant in the younger streams, but juvenile coho salmon (Oncorhynchus kisutch) abundance was greater in older streams associated with increased pool habitat. Upstream lakes significantly influenced channel stability, percent Chironomidae, total macroinvertebrate and meiofaunal abundance, and percent fish cover. Stable isotope analyses indicated nitrogen enrichment from marine sources in macroinvertebrates and juvenile fish in older streams with established salmon runs. The findings are encapsulated in a conceptual summary of stream development that proposes stream assemblages to be determined by direct interactions with the terrestrial, marine, and lake ecosystems.

  20. Assessing changes to in-stream turbidity following construction of a forest road in West Virginia

    Treesearch

    Jingxin Wang; Pamela J. Edwards; William A. Goff

    2011-01-01

    Two forested headwater watersheds were monitored to examine changes to in-stream turbidity following the construction of a forest haul road. One watershed was used as an undisturbed reference, while the other had a 0.92-km (0.57-mi) haul road constructed in it. The channels in both are intermittent tributaries of the Left Fork of Clover Run in the Cheat River watershed...

  1. Links between riparian landcover, instream environment and fish assemblages in headwater streams of south-eastern Brazil

    USGS Publications Warehouse

    Cruz, Bruna B.; Miranda, Leandro E.; Cetra, Mauricio

    2013-01-01

    We hypothesised and tested a hierarchical organisation model where riparian landcover would influence bank composition and light availability, which in turn would influence instream environments and control fish assemblages. The study was conducted during the dry season in 11 headwater tributaries of the Sorocaba River in the upper Paraná River Basin, south-eastern Brazil. We focused on seven environmental factors each represented by one or multiple environmental variables and seven fish functional traits each represented by two or more classes. Multivariate direct gradient analyses suggested that riparian zone landcover can be considered a higher level causal factor in a network of relations that control instream characteristics and fish assemblages. Our results provide a framework for a hierarchical conceptual model that identifies singular and collective influences of variables from different scales on each other and ultimately on different aspects related to stream fish functional composition. This conceptual model is focused on the relationships between riparian landcover and instream variables as causal factors on the organisation of stream fish assemblages. Our results can also be viewed as a model for headwater stream management in that landcover can be manipulated to influence factors such as bank composition, substrates and water quality, whereas fish assemblage composition can be used as indicators to monitor the success of such efforts.

  2. Migrant Child Welfare: A State of the Field Study of Child Welfare Services for Migrant Children and Their Families Who Are In-Stream, Home Based, Or Settled-Out. Final Report, June 1977.

    ERIC Educational Resources Information Center

    Cavenaugh, David N.; And Others

    The five parts of this report present the findings and recommendations of the Migrant Child Welfare study. Part I briefly summarizes the impact of the child welfare services and the family interview results, and reviews the organizational structure of program delivery at the state and local levels. Part II synthesizes the information obtained from…

  3. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunitiesmore » for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Planting 31,733 plants along 3.7 stream miles, (4) Establishing 71 new photopoints and retaking 254 existing photopoint pictures; (5) Monitoring stream temperatures at 12 locations on 6 streams; (6) Completing riparian fence, water gap and other maintenance on 100.5 miles of project fences. Since initiation of the project in 1984 over 68.7 miles of anadromous fish bearing streams and 1,933 acres of habitat have been protected, enhanced and maintained.« less

  4. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    USGS Publications Warehouse

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  5. The design of water markets when instream flows have value.

    PubMed

    Murphy, James J; Dinar, Ariel; Howitt, Richard E; Rassenti, Stephen J; Smith, Vernon L; Weinberg, Marca

    2009-02-01

    The main objective of this paper is to design and test a decentralized exchange mechanism that generates the location-specific pricing necessary to achieve efficient allocations in the presence of instream flow values. Although a market-oriented approach has the potential to improve upon traditional command and control regulations, questions remain about how these rights-based institutions can be implemented such that the potential gains from liberalized trade can be realized. This article uses laboratory experiments to test three different water market institutions designed to incorporate instream flow values into the allocation mechanism through active participation of an environmental trader. The smart, computer-coordinated market described herein offers the potential to significantly reduce coordination problems and transaction costs associated with finding mutually beneficial trades that satisfy environmental constraints. We find that direct environmental participation in the market can achieve highly efficient and stable outcomes, although the potential does exist for the environmental agent to influence outcomes.

  6. Characterization of water quality in selected tributaries of the Alamosa River, southwestern Colorado, including comparisons to instream water-quality standards and toxicological reference values, 1995-97

    USGS Publications Warehouse

    Ortiz, Roderick F.; Ferguson, Sheryl A.

    2001-01-01

    A comprehensive water-quality sampling network was implemented by the U.S. Geological Survey from 1995 through 1997 at 12 tributary sites to the Alamosa River. The network was designed to address data gaps identified in the initial ecological risk assessment of the Summitville Superfund site. Tributaries draining hydrothermally altered areas had higher median values for nearly all measured properties and constituents than tributaries draining unaltered areas. Colorado instream standards for pH, copper, iron, and zinc were in attainment at most tributary sites. Instream standards for pH and chronic aquatic-life standards for iron were not attained in Jasper Creek. Toxicological reference values were most often exceeded at Iron Creek, Alum Creek, Bitter Creek, Wightman Fork, and Burnt Creek. These tributaries all drain hydrothermally altered areas.

  7. MODELING THE DISTRIBUTION OF NONPOINT NITROGEN SOURCES AND SINKS IN THE NEUSE RIVER BASIN OF NORTH CAROLINA, USA

    EPA Science Inventory

    This study quantified nonpoint nitrogen (N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide a tabular database to initialize in-stream N decay models and graphic overlay products for the development of management approaches to...

  8. Quantifying in-stream nitrate reaction rates using continuously-collected water quality data

    Treesearch

    Matthew Miller; Anthony Tesoriero; Paul Capel

    2016-01-01

    High frequency in situ nitrate data from three streams of varying hydrologic condition, land use, and watershed size were used to quantify the mass loading of nitrate to streams from two sources – groundwater discharge and event flow – at a daily time step for one year. These estimated loadings were used to quantify temporally-variable in-stream nitrate processing ...

  9. Mixing zone and drinking water intake dilution factor and wastewater generation distributions to enable probabilistic assessment of down-the-drain consumer product chemicals in the U.S.

    PubMed

    Kapo, Katherine E; McDonough, Kathleen; Federle, Thomas; Dyer, Scott; Vamshi, Raghu

    2015-06-15

    Environmental exposure and associated ecological risk related to down-the-drain chemicals discharged by municipal wastewater treatment plants (WWTPs) are strongly influenced by in-stream dilution of receiving waters which varies by geography, flow conditions and upstream wastewater inputs. The iSTREEM® model (American Cleaning Institute, Washington D.C.) was utilized to determine probabilistic distributions for no decay and decay-based dilution factors in mean annual and low (7Q10) flow conditions. The dilution factors derived in this study are "combined" dilution factors which account for both hydrologic dilution and cumulative upstream effluent contributions that will differ depending on the rate of in-stream decay due to biodegradation, volatilization, sorption, etc. for the chemical being evaluated. The median dilution factors estimated in this study (based on various in-stream decay rates from zero decay to a 1h half-life) for WWTP mixing zones dominated by domestic wastewater flow ranged from 132 to 609 at mean flow and 5 to 25 at low flow, while median dilution factors at drinking water intakes (mean flow) ranged from 146 to 2×10(7) depending on the in-stream decay rate. WWTPs within the iSTREEM® model were used to generate a distribution of per capita wastewater generated in the U.S. The dilution factor and per capita wastewater generation distributions developed by this work can be used to conduct probabilistic exposure assessments for down-the-drain chemicals in influent wastewater, wastewater treatment plant mixing zones and at drinking water intakes in the conterminous U.S. In addition, evaluation of types and abundance of U.S. wastewater treatment processes provided insight into treatment trends and the flow volume treated by each type of process. Moreover, removal efficiencies of chemicals can differ by treatment type. Hence, the availability of distributions for per capita wastewater production, treatment type, and dilution factors at a national level provides a series of practical and powerful tools for building probabilistic exposure models. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Do network relationships matter? Comparing network and instream habitat variables to explain densities of juvenile coho salmon (Oncorhynchus kisutch) in mid-coastal Oregon, USA

    Treesearch

    Rebecca L. Flitcroft; Kelly M. Burnett; Gordon H. Reeves; Lisa M. Ganio

    2012-01-01

    Aquatic ecologists are working to develop theory and techniques for analysis of dynamic stream processes and communities of organisms. Such work is critical for the development of conservation plans that are relevant at the scale of entire ecosystems. The stream network is the foundation upon which stream systems are organized. Natural and human disturbances in streams...

  11. Instream wood in a steep headwater channel: geomorphic significance of large and small wood

    NASA Astrophysics Data System (ADS)

    Galia, Tomáš; Šilhán, Karel; Ruiz-Villanueva, Virginia; Tichavský, Radek

    2016-04-01

    Besides the well-known significance of large wood (LW), also small woody pieces (SW; here defined as pieces with dimensions at least 0.5 m length and 0.05 m diameter), can play an important role in steep narrow headwaters. We inventoried instream wood in the 0.4 km long Mazák headwater channel, Moravskoslezské Beskydy Mts, Czech Republic (2

  12. Stream habitat analysis using the instream flow incremental methodology

    USGS Publications Warehouse

    Bovee, Ken D.; Lamb, Berton L.; Bartholow, John M.; Stalnaker, Clair B.; Taylor, Jonathan; Henriksen, Jim

    1998-01-01

    This document describes the Instream Flow Methodology in its entirety. This also is to serve as a comprehensive introductory textbook on IFIM for training courses as it contains the most complete and comprehensive description of IFIM in existence today. This should also serve as an official guide to IFIM in publication to counteract the misconceptions about the methodology that have pervaded the professional literature since the mid-1980's as this describes IFIM as it is envisioned by its developers. The document is aimed at the decisionmakers of management and allocation of natural resources in providing them an overview; and to those who design and implement studies to inform the decisionmakers. There should be enough background on model concepts, data requirements, calibration techniques, and quality assurance to help the technical user design and implement a cost-effective application of IFIM that will provide policy-relevant information. Some of the chapters deal with basic organization of IFIM, procedural sequence of applying IFIM starting with problem identification, study planning and implementation, and problem resolution.

  13. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  14. A coupled upland-erosion and instream hydrodynamic-sediment transport model for evaluating sediment transport in forested watersheds

    Treesearch

    W. J. Conroy; R. H. Hotchkiss; W. J. Elliot

    2006-01-01

    This article describes a prototype modeling system for assessing forest management-related erosion at its source and predicting sediment transport from hillslopes to stream channels and through channel networks to a watershed outlet. We demonstrate that it is possible to develop a land management tool capable of accurately assessing the primary impacts of...

  15. Watershed Models for Predicting Nitrogen Loads from Artificially Drained Lands

    Treesearch

    R. Wayne Skaggs; George M. Chescheir; Glenn Fernandez; Devendra M. Amatya

    2003-01-01

    Non-point sources of pollutants originate at the field scale but water quality problems usually occur at the watershed or basin scale. This paper describes a series of models developed for poorly drained watersheds. The models use DRAINMOD to predict hydrology at the field scale and a range of methods to predict channel hydraulics and nitrogen transport. In-stream...

  16. Estimated water use, by county, in North Carolina, 1990

    USGS Publications Warehouse

    Terziotti, Silvia; Schrader, Tony P.; Treece, M.W.

    1994-01-01

    Data on water use in North Carolina were compiled for 1990 as part of a cooperative agreement between the U.S. Geological Survey and the Division of Water Resources of the North Carolina Department of Environment, Health, and Natural Resources. Data were compiled from a number of Federal, State, and private sources for the offstream water-use categories of public supply, domestic, commercial, industrial, mining, livestock, irrigation, and thermoelectric-power generation. Data also were collected for instream use from hydroelectric facilities. Total estimated offstream water use in the State for 1990 was about 8,940 million gallons per day. About 95 percent of the water withdrawn was from surface-water sources. Thermoelectric-power generation accounted for about 81 percent of all withdrawals. Data for instream water use for hydroelectric-power generation also were compiled. This instream water use totaled about 66,900 million gallons per day. eAch water-use category is summarized in this report by county and source of water supply.

  17. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  18. Large wood and in-stream habitat for juvenile coho salmon and larval lampreys in a Pacific Northwest stream

    USGS Publications Warehouse

    Gonzalez, Rosalinda; Dunham, Jason B.; Lightcap, Scott W.; McEnroe, Jeffery R.

    2017-01-01

    The influences of large wood on Pacific salmon are well-studied, but studies of nonsalmonid species such as lampreys are uncommon. To address this need, we evaluated the potential effects of large wood on larval lampreys (Pacific Lamprey, Entosphenus tridentatus; and potentially Western Brook Lamprey Lampetra richardsoni), as well as juvenile Coho Salmon Oncorhynchus kisutch, in a small coastal Oregon stream. Our objectives were to 1) identify in-stream habitat characteristics associated with the presence of larval lampreys and abundance of juvenile Coho Salmon; and 2) evaluate how these characteristics were associated with in-stream wood. To address habitat use, we quantified presence of larval lampreys in 92 pools and abundance of juvenile Coho Salmon in 44 pools during summer low flows. We focused on a study reach where large wood was introduced into the stream between 2008 and 2009. Results indicated that presence of larval lampreys was significantly associated with availability of fine sediment and deeper substrate. The abundance of juvenile Coho Salmon (fish/pool) was strongly associated with pool surface area and to a weaker extent with the proportion of cobble and boulder substrates in pools. Pools with wood, regardless of whether they were formed by wood, had significantly greater coverage of fine sediment, deeper substrate, and greater pool surface area. Taken together, these results suggest that in-stream wood can provide habitat associated with presence of larval lampreys and greater abundance of juvenile Coho Salmon.

  19. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  20. Estimating shallow groundwater availability in small catchments using streamflow recession and instream flow requirements of rivers in South Africa

    NASA Astrophysics Data System (ADS)

    Ebrahim, Girma Y.; Villholth, Karen G.

    2016-10-01

    Groundwater is an important resource for multiple uses in South Africa. Hence, setting limits to its sustainable abstraction while assuring basic human needs is required. Due to prevalent data scarcity related to groundwater replenishment, which is the traditional basis for estimating groundwater availability, the present article presents a novel method for determining allocatable groundwater in quaternary (fourth-order) catchments through information on streamflow. Using established methodologies for assessing baseflow, recession flow, and instream ecological flow requirement, the methodology develops a combined stepwise methodology to determine annual available groundwater storage volume using linear reservoir theory, essentially linking low flows proportionally to upstream groundwater storages. The approach was trialled for twenty-one perennial and relatively undisturbed catchments with long-term and reliable streamflow records. Using the Desktop Reserve Model, instream flow requirements necessary to meet the present ecological state of the streams were determined, and baseflows in excess of these flows were converted into a conservative estimates of allocatable groundwater storages on an annual basis. Results show that groundwater development potential exists in fourteen of the catchments, with upper limits to allocatable groundwater volumes (including present uses) ranging from 0.02 to 3.54 × 106 m3 a-1 (0.10-11.83 mm a-1) per catchment. With a secured availability of these volume 75% of the years, variability between years is assumed to be manageable. A significant (R2 = 0.88) correlation between baseflow index and the drainage time scale for the catchments underscores the physical basis of the methodology and also enables the reduction of the procedure by one step, omitting recession flow analysis. The method serves as an important complementary tool for the assessment of the groundwater part of the Reserve and the Groundwater Resource Directed Measures in South Africa and could be adapted and applied elsewhere.

  1. Multi-Scale, Direct and Indirect Effects of the Urban Stream Syndrome on Amphibian Communities in Streams

    PubMed Central

    Canessa, Stefano; Parris, Kirsten M.

    2013-01-01

    Urbanization affects streams by modifying hydrology, increasing pollution and disrupting in-stream and riparian conditions, leading to negative responses by biotic communities. Given the global trend of increasing urbanization, improved understanding of its direct and indirect effects at multiple scales is needed to assist management. The theory of stream ecology suggests that the riverscape and the surrounding landscape are inextricably linked, and watershed-scale processes will also affect in-stream conditions and communities. This is particularly true for species with semi-aquatic life cycles, such as amphibians, which transfer energy between streams and surrounding terrestrial areas. We related measures of urbanization at different scales to frog communities in streams along an urbanization gradient in Melbourne, Australia. We used boosted regression trees to determine the importance of predictors and the shape of species responses. We then used structural equation models to investigate possible indirect effects of watershed imperviousness on in-stream parameters. The proportion of riparian vegetation and road density surrounding the site at the reach scale (500-m radius) had positive and negative effects, respectively, on species richness and on the occurrence of the two most common species in the area ( Crinia signifera and Limnodynastesdumerilii ). Road density and local aquatic vegetation interacted in influencing species richness, suggesting that isolation of a site can prevent colonization, in spite of apparently good local habitat. Attenuated imperviousness at the catchment scale had a negative effect on local aquatic vegetation, indicating possible indirect effects on frog species not revealed by single-level models. Processes at the landscape scale, particularly related to individual ranging distances, can affect frog species directly and indirectly. Catchment imperviousness might not affect adult frogs directly, but by modifying hydrology it can disrupt local vegetation and prove indirectly detrimental. Integrating multiple-scale management actions may help to meet conservation targets for streams in the face of urbanization. PMID:23922963

  2. Analysis of equivalent widths of alluvial channels and application for instream habitat in the Rio Grande

    Treesearch

    Claudia A. Leon

    2003-01-01

    Rivers are natural systems that adjust to variable water and sediment discharges. Channels with spatial variability in width that are managed to maintain constant widths over a period of time are able to transport the same water and sediment discharges by adjusting the bed slope. Methods developed to de ne equilibrium hydraulic geometry characteristics of alluvial...

  3. Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: a case study.

    PubMed

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from in-stream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the in-stream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty(-1) of sand (8.764 million ty(-1) of in-stream sand and 2.763 million ty(-1) of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its biophysical environment.

  4. Environmental Impact Assessment of Sand Mining from the Small Catchment Rivers in the Southwestern Coast of India: A Case Study

    NASA Astrophysics Data System (ADS)

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from instream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the instream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty-1 of sand (8.764 million ty-1 of instream sand and 2.763 million ty-1 of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its biophysical environment.

  5. Selected Physical, Chemical, and Biological Data Used to Study Urbanizing Streams in Nine Metropolitan Areas of the United States, 1999-2004

    USGS Publications Warehouse

    Giddings, Elise M.P.; Bell, Amanda H.; Beaulieu, Karen M.; Cuffney, Thomas F.; Coles, James F.; Brown, Larry R.; Fitzpatrick, Faith A.; Falcone, James A.; Sprague, Lori A.; Bryant, Wade L.; Peppler, Marie C.; Stephens, Cory; McMahon, Gerard

    2009-01-01

    This report documents and summarizes physical, chemical, and biological data collected during 1999-2004 in a study titled Effects of Urbanization on Stream Ecosystems, undertaken as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Data-collection methods and data processing are described in this report for streamflow; stream temperature; instream chemistry; instream aquatic habitat; and algal, macroinvertebrate, and fish communities. Data summaries prepared for analytical use are presented in downloadable data tables.

  6. Estimated use of water in the United States in 1995

    USGS Publications Warehouse

    Solley, Wayne B.; Pierce, Robert R.; Perlman, Howard A.

    1998-01-01

    The purpose of this report is to present consistent and current water-use estimates by state and water-resources region for the United States, Puerto Rico, the U.S. Virgin Islands, and the District of Columbia. Estimates of water withdrawn from surface- and ground-water sources, estimates of consumptive use, and estimates of instream use and wastewater releases during 1995 are presented in this report. This report discusses eight categories of offstream water use--public supply, domestic, commercial, irrigation, livestock, industrial, mining, and thermoelectric power--and one category of instream use: hydroelectric power.

  7. Instream Flows Incremental Methodology :Kootenai River, Montana : Final Report 1990-2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Greg; Skaar, Don; Dalbey, Steve

    2002-11-01

    Regulated rivers such as the Kootenai River below Libby Dam often exhibit hydrographs and water fluctuation levels that are atypical when compared to non-regulated rivers. These flow regimes are often different conditions than those which native fish species evolved with, and can be important limiting factors in some systems. Fluctuating discharge levels can change the quantity and quality of aquatic habitat for fish. The instream flow incremental methodology (IFIM) is a tool that can help water managers evaluate different discharges in terms of their effects on available habitat for a particular fish species. The U.S. Fish and Wildlife Service developedmore » the IFIM (Bovee 1982) to quantify changes in aquatic habitat with changes in instream flow (Waite and Barnhart 1992; Baldridge and Amos 1981; Gore and Judy 1981; Irvine et al. 1987). IFIM modeling uses hydraulic computer models to relate changes in discharge to changes in the physical parameters such as water depth, current velocity and substrate particle size, within the aquatic environment. Habitat utilization curves are developed to describe the physical habitat most needed, preferred or tolerated for a selected species at various life stages (Bovee and Cochnauer 1977; Raleigh et al. 1984). Through the use of physical habitat simulation computer models, hydraulic and physical variables are simulated for differing flows, and the amount of usable habitat is predicted for the selected species and life stages. The Kootenai River IFIM project was first initiated in 1990, with the collection of habitat utilization and physical hydraulic data through 1996. The physical habitat simulation computer modeling was completed from 1996 through 2000 with the assistance from Thomas Payne and Associates. This report summarizes the results of these efforts.« less

  8. Understanding the diurnal cycle in fluvial dissolved organic carbon - The interplay of in-stream residence time, day length and organic matter turnover

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2015-04-01

    There is increasing interest in characterising the diurnal fluctuation of stream solute concentrations because observed data series derived from spot samples may be highly subjective if such diurnal fluctuations are large. This can therefore lead to large uncertainties, bias or systematic errors in calculation of fluvial solute fluxes, depending upon the particular sampling regime. A simplistic approach would be to assume diurnal fluctuations are constant throughout the water year, but this study proposes diurnal cycles in stream water quality can only be interpreted in the context of stream residence time and changing day length. Three years of hourly dissolved organic carbon (DOC) concentration and flow data from the River Dee catchment (1674 km2) were analysed, and statistical analysis of the entire record shows there is no consistent diurnal cycle in the record. From the 3-year record (1095 days) there were only 96 diurnal cycles could be analysed. Cycles were quantified in terms of their: relative and absolute amplitude; duration; time to maximum concentration; asymmetry; percentile flow and in-stream residence time. The median diurnal cycle showed an amplitude that was 9.2% of the starting concentration; it was not significantly asymmetric; and occurred at the 19th percentile flow. The median DOC removal rate was 0.07 mg C/l/hr with an inter-quartile range of 0.052-0.100 mg C/l/hr. Results were interpreted as controlled by two, separate, zero-order kinetic rate laws, one for the day and one for the night. There was no single diurnal cycle present across the record, rather a number of different cycles controlled by the combination of in-stream residence time and exposure to contrasting light conditions. Over the 3-year period the average in-stream loss of DOC was 32%. The diurnal cycles evident in high resolution DOC data are interpretable, but require contextual information for their influence on in-stream processes to be understood or for them to be utilised.

  9. Macroinvertebrate community response to pulse exposure with the insecticide lambda-cyhalothrin using in-stream mesocosms.

    PubMed

    Heckmann, Lars-Henrik; Friberg, Nikolai

    2005-03-01

    Pesticides are constantly being applied to agricultural catchments, but little is known about their impact on aquatic biota during natural exposure. In the present study, the impact of the pyrethroid lambda-cyhalothrin was studied in an in-stream mesocosm setup. Twice during the summer of 2002, the natural macroinvertebrate community was exposed in situ to a 30-min pulse of lambda-cyhalothrin. Pyrethroid doses were released through a modified drip set with nominal concentrations of 0.10, 1.00, and 10.0 microg L(-1) during the first exposure and 0.05, 0.50, and 5.00 microg L(-1) in the second exposure. Before, during, and after exposure, drifting macroinvertebrates were caught in nets. Quantitative benthic samples were taken both before and on two occasions after exposure. Macroinvertebrate drift increased immediately after the pulse exposure, with total drift being significantly higher at all concentrations. Gammarus pulex, various Ephemeroptera, Leuctra sp., and Simuliidae were some of the taxa showing the most pronounced drift response. Structural change in the community was found only at 5.00 and 10.0 microg L(-1), and recovery occurred within approximately two weeks. The present study may be valuable in assessing extrapolations based on laboratory results as well as in evaluating pyrethroid impact on natural freshwater environments.

  10. Economic Value of Instream Flow for Non-Commercial Whitewater Boating Using Recreation Demand and Contingent Valuation Methods

    NASA Astrophysics Data System (ADS)

    Loomis, John; McTernan, James

    2014-03-01

    Whitewater river kayaking and river rafting require adequate instream flows that are often adversely affected by upstream water diversions. However, there are very few studies in the USA of the economic value of instream flow to inform environmental managers. This study estimates the economic value of instream flow to non-commercial kayakers derived using a Travel Cost Method recreation demand model and Contingent Valuation Method (CVM), a type of Contingent Behavior Method (CBM). Data were obtained from a visitor survey administered along the Poudre River in Colorado. In the dichotomous choice CVM willingness to pay (WTP) question, visitors were asked if they would still visit the river if the cost of their trip was Y higher, and the level of Y was varied across the sample. The CVM yielded an estimate of WTP that was sensitive to flows ranging from 55 per person per day at 300 Cubic Feet per Second (CFS) to a maximum 97 per person per day at flows of 1900 CFS. The recreation demand model estimated a boater's number of trips per season. We found the number of trips taken was also sensitive to flow, ranging from as little as 1.63 trips at 300 CFS to a maximum number of 14 trips over the season at 1900 CFS. Thus, there is consistency between peak benefits per trip and number of trips, respectively. With an average of about 100 non-commercial boaters per day, the maximum marginal values per acre foot averages about 220. This value exceeds irrigation water values in this area of Colorado.

  11. Optical Measurements at the Combustor Exit of the HIFiRE 2 Ground Test Engine

    NASA Technical Reports Server (NTRS)

    Brown, Michael S.; Herring, Gregory C.; Cabell, Karen; Hass, Neal; Barhorst, Todd F.; Gruber, Mark

    2012-01-01

    The development of optical techniques capable of measuring in-stream flow properties of air breathing hypersonic engines is a goal of the Aerospace Propulsion Division at AFRL. Of particular interest are techniques such as tunable diode laser absorption spectroscopy that can be implemented in both ground and flight test efforts. We recently executed a measurement campaign at the exit of the combustor of the HIFiRE 2 ground test engine during Phase II operation of the engine. Data was collected in anticipation of similar data sets to be collected during the flight experiment. The ground test optical data provides a means to evaluate signal processing algorithms particularly those associated with limited line of sight tomography. Equally important, this in-stream data was collected to compliment data acquired with surface-mounted instrumentation and the accompanying flowpath modeling efforts-both CFD and lower order modeling. Here we discuss the specifics of hardware and data collection along with a coarse-grained look at the acquired data and our approach to processing and analyzing it.

  12. Influence of gravel mining and other factors on detection probabilities of Coastal Plain fishes in the Mobile River Basin, Alabama

    USGS Publications Warehouse

    Hayer, C.-A.; Irwin, E.R.

    2008-01-01

    We used an information-theoretic approach to examine the variation in detection probabilities for 87 Piedmont and Coastal Plain fishes in relation to instream gravel mining in four Alabama streams of the Mobile River drainage. Biotic and abiotic variables were also included in candidate models. Detection probabilities were heterogeneous across species and varied with habitat type, stream, season, and water quality. Instream gravel mining influenced the variation in detection probabilities for 38% of the species collected, probably because it led to habitat loss and increased sedimentation. Higher detection probabilities were apparent at unmined sites than at mined sites for 78% of the species for which gravel mining was shown to influence detection probabilities, indicating potential negative impacts to these species. Physical and chemical attributes also explained the variation in detection probabilities for many species. These results indicate that anthropogenic impacts can affect detection probabilities for fishes, and such variation should be considered when developing monitoring programs or routine sampling protocols. ?? Copyright by the American Fisheries Society 2008.

  13. Assessing the Effects of Water Rights Purchases on Dissolved Oxygen, Stream Temperatures, and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Mouzon, N. R.; Null, S. E.

    2014-12-01

    Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.

  14. Spatial and seasonal dynamics of brook trout populations inhabiting a central Appalachian watershed

    USGS Publications Warehouse

    Petty, J.T.; Lamothe, P.J.; Mazik, P.M.

    2005-01-01

    We quantified the watershed-scale spatial population dynamics of brook trout Salvelinus fontinalis in the Second Fork, a third-order tributary of Shavers Fork in eastern West Virginia. We used visual surveys, electrofishing, and mark-recapture techniques to quantify brook trout spawning intensity, population density, size structure, and demographic rates (apparent survival and immigration) throughout the watershed. Our analyses produced the following results. Spawning by brook trout was concentrated in streams with small basin areas (i.e., segments draining less than 3 km2), relatively high alkalinity (>10 mg CaCO3/L), and high amounts of instream cover. The spatial distribution of juvenile and small-adult brook trout within the watershed was relatively stable and was significantly correlated with spawning intensity. However, no such relationship was observed for large adults, which exhibited highly variable distribution patterns related to seasonally important habitat features, including instream cover, stream depth and width, and riparian canopy cover. Brook trout survival and immigration rates varied seasonally, spatially, and among size-classes. Differential survival and immigration tended to concentrate juveniles and small adults in small, alkaline streams, whereas dispersal tended to redistribute large adults at the watershed scale. Our results suggest that spatial and temporal variations in spawning, survival, and movement interact to determine the distribution, abundance, and size structure of brook trout populations at a watershed scale. These results underscore the importance of small tributaries for the persistence of brook trout in this watershed and the need to consider watershed-scale processes when designing management plans for Appalachian brook trout populations. ?? Copyright by the American Fisheries Society 2005.

  15. Arsenic loads in Spearfish Creek, western South Dakota, water years 1989-91

    USGS Publications Warehouse

    Driscoll, Daniel G.; Hayes, Timothy S.

    1995-01-01

    Numerous small tributaries on the eastern flank of Spearfish Creek originate within a mineralized area with a long history of gold-mining activity. Some streams draining this area are known to have elevated concentrations of arsenic. One such tributary is Annie Creek, where arsenic concentrations regularly approach the Maximum Contaminant Level of 50 mg/L (micrograms per liter) established by the U.S. Environmental Protection Agency. A site on Annie Creek was proposed for inclusion on the National Priorities List by the Environmental Protection Agency in 1991. This report presents information about arsenic loads and concentrations in Spearfish Creek and its tributaries, including Annie Creek. Stream types were classified according to geologic characteris- tics and in-stream arsenic concentrations. The first type includes streams that lack significant arsenic sources and have low in-stream arsenic concentra- tions. The second type has abundant arsenic sources and high in-stream concentrations. The third type has abundant arsenic sources but only moderate in-stream concentrations. The fourth type is a mixture of the first three types. Annual loads of dissolved arsenic were calculated for two reaches of Spearfish Creek to quantify arsenic loads at selected gaging stations during water years 1989-91. Mass-balance calculations also were performed to estimate arsenic concentrations for ungaged inflows to Spearfish Creek. The drainage area of the upstream reach includes significant mineralized areas, whereas the drainage area of the downstream reach generally is without known arsenic sources. The average load of dissolved arsenic transported from the upstream reach of Spearfish Creek, which is representative of a type 4 stream, was 158 kilograms per year, calculated for station 06430900, Spearfish Creek above Spearfish. Gaged headwater tributaries draining unmineralized areas (type 1) contributed only 16 percent of the arsenic load in 63 percent of the discharge. Annie Creek (type 2), which has the highest measured arsenic concentra- tions in the Spearfish Creek drainage, contributed about 15 percent of the arsenic load in about 2 percent of the discharge of the upstream reach. Squaw Creek, which drains another mineralized area, but has only moderate in-stream concentrations (type 3), contributed 4 percent of the arsenic load in 5 percent of the discharge. Ungaged inflows to the reach contributed the remaining 65 percent of the arsenic load in 30 percent of the discharge. The calculated loads from ungaged inflows include all arsenic contributed by surface- and ground-water sources, as well as any additions of arsenic from dissolution of arsenic-bearing solid phases, or from desorption of arsenic from solid surfaces, within the streambed of the upstream reach. Mass-balance calculations indicate that dissolved arsenic concentrations of the ungaged inflows in the upstream reach averaged about 9 mg/L. In-stream arsenic concentrations of ungaged inflows from the unmineralized western flank of Spearfish Creek probably are generally low (type 1). Thus, in-stream arsenic concentrations for ungaged inflows draining the mineralized eastern flank of Spearfish probably average almost twice that level, or about 18 mg/L. Some ungaged, eastern-flank inflows probably are derived from type 3 drainages, with only moderate arsenic concentrations. If so, other ungaged, eastern-flank inflows could have in-stream arsenic concentrations similar to those of Annie Creek. No significant arsenic sources were apparent in the downstream reach of Spearfish Creek. Over the course of the downstream reach, arsenic concentrations decreased somewhat, probably resulting from dilution, as well as from possible chemical adsorption to sediment surfaces or arsenic-phase precipitation. A decrease in arsenic loads resulted from various diversions from the creek and from the potential chemical removal processes. Because of a large margin of error associated with calculation o

  16. Managing the rippling stream: decisionmaking in natural resource administration

    USGS Publications Warehouse

    Doerksen, Harvey R.; Lamb, Berton L.

    1979-01-01

    This article addresses the conflict which exists within the water resources decisionmaking arena over the allocation of water for instream uses. The discussion reviews the literature on public administration regarding decisionmaking, and is based on research performed by the authors which synthesizes a model of decisionmaking. This model can be used as both a description of agency behavior, and as the basis for developing a prescription for strategy formulation.

  17. Sea lamprey orient toward a source of a synthesized pheromone using odor-conditioned rheotaxis

    USGS Publications Warehouse

    Johnson, Nicholas S.; Muhammad, Azizah; Thompson, Henry; Choi, Jongeun; Li, Weiming

    2012-01-01

    Characterization of vertebrate chemo-orientation strategies over long distances is difficult because it is often not feasible to conduct highly controlled hypothesis-based experiments in natural environments. To overcome the challenge, we couple in-stream behavioral observations of female sea lampreys (Petromyzon marinus) orienting to plumes of a synthesized mating pheromone, 7a,12a,24-trihydroxy-5a-cholan-3-one-24-sulfate (3kPZS), and engineering algorithms to systematically test chemo-orientation hypotheses. In-stream field observations and simulated movements of female sea lampreys according to control algorithms support that odor-conditioned rheotaxis is a component of the mechanism used to track plumes of 3kPZS over hundreds of meters in flowing water. Simulated movements of female sea lampreys do not support that rheotaxis or klinotaxis alone is sufficient to enable the movement patterns displayed by females in locating 3kPZS sources in the experimental stream. Odor-conditioned rheotaxis may not only be effective at small spatial scales as previous described in crustaceans, but may also be effectively used by fishes over hundreds of meters. These results may prove useful for developing management strategies for the control of invasive species that exploit the odor-conditioned tracking behavior and for developing biologically inspired navigation strategies for robotic fish.

  18. Conceptual model for quantifying pre-smolt production from flow-dependent physical habitat and water temperature

    USGS Publications Warehouse

    Williamson, S. C.; Bartholow, J. M.; Stalnaker, C. B.

    1993-01-01

    A conceptual model has been developed to test river regulation concepts by linking physical habitat and water temperature with salmonid population and production in cold water streams. Work is in progress to examine numerous questions as part of flow evaluation and habitat restoration programmes in the Trinity River of California and elsewhere. For instance, how much change in pre-smolt chinook salmon (Oncorhynchus tshawytscha) production in the Trinity River would result from a different annual instream allocation (i.e. up or down from 271 × 106 m3released in the late 1980s) and how much change in pre-smolt production would result from a different release pattern (i.e. different from the 8.5 m3 s−1 year-round release). The conceptual model is being used to: design, integrate and improve young-of-year population data collection efforts; test hypotheses that physical habitat significantly influences movement, growth and mortality of salmonid fishes; and analyse the relative severity of limiting factors during each life stage. The conceptual model, in conjunction with previously developed tools in the Instream Flow Incremental Methodology, should provide the means to more effectively manage a fishery resource below a regulated reservoir and to provide positive feedback to planning of annual reservoir operations.

  19. Stream vulnerability to widespread and emergent stressors: a focus on unconventional oil and gas

    USGS Publications Warehouse

    Entrekin, Sally; Maloney, Kelly O.; Katherine E. Kapo,; Walters, Annika W.; Evans-White, Michelle A.; Klemow, Kenneth M.

    2015-01-01

    Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects.

  20. Stream Vulnerability to Widespread and Emergent Stressors: A Focus on Unconventional Oil and Gas

    PubMed Central

    Entrekin, Sally A.; Maloney, Kelly O.; Kapo, Katherine E.; Walters, Annika W.; Evans-White, Michelle A.; Klemow, Kenneth M.

    2015-01-01

    Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects. PMID:26397727

  1. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-106) - Water Entity (Trout Unlimited Montana Water Project 2003)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarde, Richard

    2003-06-13

    BPA proposes to fund several water rights acquisition projects proposed by Trout Unlimited Montana Water Project (TU). The funding will be administered by the National Fish and Wildlife Foundation, the entity administering the Columbia Basin Water Transactions Program, initiated under RPA 151 of the National Marine Fisheries Service’s 2000 Biological Opinion on the Operation of the Federal Columbia River Power System. The water rights acquired by TU will be left instream to increase flow and improve water quality. Increasing instream flow of water-limited streams benefits fish listed under the Endangered Species Act. The three projects proposed by TU include: amore » Diversion Reduction Agreement, where the landowner agrees to leave up to 4 cubic feet per second (cfs) of water in Rock Creek for the 2003 irrigation season; another Diversion Reduction Agreement for the latter part of the 2003 irrigation season, under which the landowner would agree to cease diverting 1.65 cfs on Rock Creek and between 3 to 6 cfs from the North Fork Blackfoot River; the final proposal is one piece of a larger project in conjunction with other local, federal and state entities, to install a pipeline and sprinkler system to replace a ditch and flood irrigation system, which will result in the conversion of 15.11 cfs of water rights to instream flow. TU's contribution to the proposal (and BPA’s funding) is limited to working with the landowner to convert the water rights to instream flow; all other components of the project, including the irrigation efficiency work, is being done in conjunction with other federal agencies with independent NEPA and other environmental review and consultation obligations.« less

  2. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Hilaire, Danny R.

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and,more » more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.« less

  3. Where the rubber meets the road: long-term in-stream data collection to inform regional land management monitoring in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Hirsch, C.

    2017-12-01

    The initiation of the Northwest Forest Plan (NWFP) in 1994 brought a sea change to federal land management agencies of the Pacific Northwest. The NWFP was developed in response to the listing of the Northern Spotted Owl and concern about declining populations of Pacific Salmon. The Aquatic and Riparian Effectiveness Monitoring Program (AREMP) was developed to track changes that occurred as a result of active and passive management on the landscape. A significant management change affecting riparian areas was the creation of buffers around fish bearing and non-fish bearing streams. Two monitoring arms of the AREMP program focus on upslope and in-stream conditions in order to capture watershed-scale effects of land management changes. Field data to support the in-stream monitoring mission of AREMP began in 2002 with a study design based on an 8-year re-survey rotation. The sampling design was intended to capture watershed-scale variability across the broad and diverse study area in western Washington, western Oregon, and northwest California. 2017 marks repeat visits of every site and opens the door to more detailed assessments of changes that have occurred at local and regional extents over this time period. Results so far show improving trends in characteristics such as water temperature and macroinvertebrate community diversity. Maintaining an ongoing and relevant monitoring program over time has required a strong commitment to quality control in terms of data collection and analysis, and an openness to how AREMP can provide management relevant information as new challenges occur. AREMP's mandated role as the aquatic monitoring arm of the NWFP provides the overarching framework within which the program operates. However, new emerging topics of relevance to aquatic managers such as climate change and aquatic invasive species have been rolled into the mission over time. By being responsive to new challenges, and providing consistent feedback, AREMP has been able to evolve over time. AREMP is now poised to provide relevant feedback on changes to date, while also informing the emerging challenges faced by federal land managers in the west.

  4. Estimated Water Use in Puerto Rico, 2005

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.; Gómez-Gómez, Fernando

    2008-01-01

    Water-use data were compiled for the 78 municipios of the Commonwealth of Puerto Rico for 2005. Five offstream categories were considered: public-supply water withdrawals and deliveries, domestic self-supplied water use, industrial self-supplied ground-water withdrawals, crop irrigation water use, and thermoelectric power freshwater use. One water-use category also was considered: power-generation instream water use (thermoelectric-saline withdrawals and hydroelectric power). Freshwater withdrawals and deliveries for offstream use from surface- and ground-water sources in Puerto Rico were estimated at 712 million gallons per day (Mgal/d). The largest amount of freshwater withdrawn was by public-supply water facilities and was estimated at 652 Mgal/d. The public-supply domestic water use was estimated at 347 Mgal/d. Fresh surface- and ground-water withdrawals by domestic self-supplied users were estimated at 2.1 Mgal/d and the industrial self-supplied withdrawals were estimated at 9.4 Mgal/d. Withdrawals for crop irrigation purposes were estimated at 45.2 Mgal/d, or approximately 6.3 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were estimated at 568 Mgal/d and saline instream surface-water withdrawals for cooling purposes by thermoelectric-power facilities was estimated at 2,288 Mgal/d.

  5. An unexpected truth: increasing nitrate loading can decrease nitrate export from watersheds

    NASA Astrophysics Data System (ADS)

    Askarizadeh Bardsiri, A.; Grant, S. B.; Rippy, M.

    2015-12-01

    The discharge of anthropogenic nitrate (e.g., from partially treated sewage, return flows from agricultural irrigation, and runoff from animal feeding operations) to streams can negatively impact both human and ecosystem health. Managing these many point and non-point sources to achieve some specific end-point—for example, reducing the annual mass of nitrate exported from a watershed—can be a challenge, particularly in rapidly growing urban areas. Adding to this complexity is the fact that streams are not inert: they too can add or remove nitrate through assimilation (e.g., by stream-associated plants and animals) and microbially-mediated biogeochemical reactions that occur in streambed sediments (e.g., respiration, ammonification, nitrification, denitrification). By coupling a previously published correlation for in-stream processing of nitrate [Mulholland et al., Nature, 2008, 452, 202-205] with a stream network model of the Jacksons Creek watershed (Victoria, Australia) I demonstrate that managing anthropogenic sources of stream nitrate without consideration of in-stream processing can result in a number of non-intuitive "surprises"; for example, wastewater effluent discharges that increase nitrate loading but decrease in-stream nitrate concentrations can reduce the mass of nitrate exported from a watershed.

  6. Instream investigations in the Beaver Creek Watershed in West Tennessee, 1991-95

    USGS Publications Warehouse

    Byl, T.D.; Carney, K.A.

    1996-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Agriculture, began a long-term scientific investigation in 1989 to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver Creek watershed, West Tennessee. In 1993 as a part of this study, the USGS, in cooperation with the Natural Resources Conservation Service, Shelby County Soil Conservation District, and the Tennessee Soybean Promotion Board, began an evaluation of the physical, chemical, biological and hydrological factors that affect water quality in streams and wetlands, and instream resource-management systems to treat agricultural nonpoint-source runoff and improve water quality. The purpose of this report is to present the results of three studies of stream and wetland investigations and a study on the transport of aldicarb from an agricultural field in the Beaver Creek watershed. A natural bottomland hardwood wetland and an artificially constructed wetland were evaluated as instream resource-management systems. These two studies showed that wetlands are an effective way to improve the quality of agricultural nonpoint-source runoff. The wetlands reduced concentrations and loads of suspended sediments, nutrients, and pesticides in the streams. A third paper documents the influence of riparian vegetation on the biological structure and water quality of a small stream draining an agricultural field. A comparison of the upper reach lined with herbaceous plants and the lower reach with mature woody vegetation showed a more stable biological community structure and Water- quality characteristics in the woody reach than in the herbaceous reach. The water-quality characteristics monitored were pH, temperature, dissolved oxygen, and specific conductance. The herbaceous reach had a greater diversity and abundance of organisms during spring and early summer, but the abundance dropped by approximately 85 percent during late summer. A fourth study describes the transport of aldicarb and its metabolites--aldicarb sulfoxide and aldicarb sulfone-in runoff at a small stream draining a cotton field. During 1991 to 1995, aldicarb and its metabolites were detected in runoff events. The highest concentrations occurred when aldicarb was applied to the field just hours before a rain storm. Aldicarb was not detectable in runoff a few weeks after application. The metabolites of aldicarb were detectable for 76 days after application. These studies demonstrate streambank vegetation and wetlands have a significant influence on stream water quality. The importance of weather conditions to herbicide application and runoff also is evident. This information can be used by resource managers to sustain and improve our Nation's streams for future generations.

  7. A Bayesian methodological framework for accommodating interannual variability of nutrient loading with the SPARROW model

    NASA Astrophysics Data System (ADS)

    Wellen, Christopher; Arhonditsis, George B.; Labencki, Tanya; Boyd, Duncan

    2012-10-01

    Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow) have assumed a prominent role in efforts to estimate the sources and transport of nutrient pollution at river basin scales. However, almost no attempts have been made to explicitly accommodate interannual nutrient loading variability in their structure, despite empirical and theoretical evidence indicating that the associated source/sink processes are quite variable at annual timescales. In this study, we present two methodological approaches to accommodate interannual variability with the Spatially Referenced Regressions on Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses the SPARROW model to estimate a static baseline load and climatic variables (e.g., precipitation) to drive the interannual variability. The second approach allows the source/sink processes within the SPARROW model to vary at annual timescales using dynamic parameter estimation techniques akin to those used in dynamic linear models. Model parameterization is founded upon Bayesian inference techniques that explicitly consider calibration data and model uncertainty. Our case study is the Hamilton Harbor watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more parsimonious of the two strategies tested and can offer insights into the temporal structural changes associated with watershed functioning. Consistent with empirical and theoretical work, model estimated annual in-stream attenuation rates varied inversely with annual discharge. Estimated phosphorus source areas were concentrated near the receiving water body during years of high in-stream attenuation and dispersed along the main stems of the streams during years of low attenuation, suggesting that nutrient source areas are subject to interannual variability.

  8. Partitioning taxonomic diversity of aquatic insect assemblages ...

    EPA Pesticide Factsheets

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feeding groups (FFG) in Neotropical Savanna (southeastern Brazilian Cerrado) streams. To do so, we considered three diversity components: stream site (α), among stream sites (β1), and among hydrologic units (β2). We also evaluated the association of EPT genera composition with heterogeneity in land use, instream physical habitat structure, and instream water quality variables. The percent of EPT taxonomic α diversity (20.7%) was lower than the β1 and β2 diversities (53.1% and 26.2%, respectively). The EPT FFG α diversity (26.5%) was lower than the β1 diversity (55.8%) and higher than the β2 (17.7%) diversity. The collector-gatherer FFG was predominant and had the greatest β diversity among stream sites (β1, 55.8%). Our findings support the need for implementing regional scale conservation strategies in the Cerrado biome, which has been degraded by anthropogenic activities. Using adaptations of the US EPA’s National Aquatic Resource Survey (NARS) designs and methods, Ferreira and colleagues examined the distribution of taxonomic and functional diversity of aquatic insects among basins, stream sites within basins, and within stream sample reaches. They sampled 160 low-order stre

  9. Characterizing the Effects of Stormwater Mitigation on Nutrient Export and Stream Concentrations

    NASA Astrophysics Data System (ADS)

    Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.

    2017-04-01

    Urbanization increases nutrient loading and lowers residence times for processing of reactive solutes, including nitrate, total dissolved nitrogen, orthophosphate, and dissolved organic carbon), which leads to increased stream concentrations and mass export. Stormwater control measures mitigate the impacts of urbanization, and have the potential to improve stream water quality, however the net effect instream is not well understood. We monitored two urban and two suburban watersheds in Charlotte, NC to determine if mitigation controlled the fraction of total mass export during storm, if development classification as either urban or suburban (defined by the age, density and distribution of urban development) controlled storm nutrient and carbon dynamics, and if stormwater control measures were able to change stream water chemistry. While average concentrations during stormflow were generally greater than baseflow, indicating that storms are important times of solute export, the fraction of storm-derived export was unrelated to mitigation by stormwater control measures. Development classification was generally not an important control on export of N and dissolved organic carbon. However, event mean concentrations of orthophosphate were higher at the suburban sites, possibly from greater fertilizer application. Stormwater control measures influenced instream water chemistry at only one site, which also had the greatest mitigated area, but differences between stormwater control measure outflow and stream water suggest the potential for water quality improvements. Together, results suggest stormwater control measures have the potential to decrease solute concentrations from urban runoff, but the type, location, and extent of urban development in the watershed may influence the magnitude of this effect.

  10. A regional modeling framework of phosphorus sources and transport in streams of the southeastern United States

    USGS Publications Warehouse

    Garcia, Ana Maria.; Hoos, Anne B.; Terziotti, Silvia

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p < 0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables – soil organic matter and soil pH – are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity.

  11. Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.

    2007-01-01

    The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.

  12. Simulations of a hypothetical temperature control structure at Detroit Dam on the North Santiam River, northwestern Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Stonewall, Adam J.; Rounds, Stewart A.

    2015-01-01

    Estimated egg-emergence days for endangered Upper Willamette River Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River winter steelhead (Oncorhynchus mykiss) were assessed for all scenarios. Estimated spring Chinook fry emergence under SlidingWeir scenarios was 9 days later immediately downstream of Big Cliff Dam, and 4 days later at Greens Bridge compared with existing structural scenarios at Detroit Dam. Despite the inclusion of a hypothetical sliding weir at Detroit Dam, temperatures exceeded without-dams temperatures during November and December. These late-autumn exceedances likely represent the residual thermal effect of Detroit Lake operated to meet minimum dry-season release rates (supporting instream habitat and irrigation requirements) and lake levels specified by the current (2014) operating rules (supporting recreation and flood mitigation).

  13. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River

    PubMed Central

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the importance of considering habitat at spatial scales larger than the sampling site, and (iii) that the importance of (river morphological) habitat characteristics differs depending on the spatial scale. PMID:26569119

  14. Habitat Suitability Index Models: Yellow perch

    USGS Publications Warehouse

    Krieger, Douglas A.; Terrell, James W.; Nelson, Patrick C.

    1983-01-01

    A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for yellow perch (Perca flavescens). The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for riverine, lacustrine, and palustrine habitat in the 48 contiguous United States. Habitat Suitability Indexes (HSI's) are designed for use with the Habitat Evaluation Procedures developed by the U.S. Fish and Wildlife Service. Also included are discussions of Suitability Index (SI) curves as used in the Instream Flow Incremental Methodology (IFIM) and SI curves available for an IFIM analysis of yellow perch habitat.

  15. Development of an Adaptive Framework for Management of Military Operations in Arid/Semi-Arid Regions to Minimize Watershed and Instream Impacts from Non-Point Pollution

    DTIC Science & Technology

    2007-12-01

    equivalent TMDL Total Maximum Daily Load USLE Universal Soil Loss Equation VTM Virtual Transect Model WEPP Water Erosion Prediction Project WMS Web...models, which do not reproduce the large storm dominance of sediment yield (e.g., Universal Soil Loss Equation [ USLE ]/RUSLE) significantly underestimate...technology is the USLE /RUSLE soil erosion prediction technology. The USLE (Wischmeier and Smith 1978) is the simplest and historically most widely

  16. "HIP" new software: The Hydroecological Integrity Assessment Process

    USGS Publications Warehouse

    Henriksen, Jim; Wilson, Juliette T.

    2006-01-01

    Center (FORT) have developed the Hydroecological Integrity Assessment Process (HIP) and a suite of software tools for conducting a hydrologic classification of streams, addressing instream flow needs, and assessing past and proposed hydrologic alterations on streamflow and other ecosystem components. The HIP recognizes that streamflow is strongly related to many critical physiochemical components of rivers, such as dissolved oxygen, channel geomorphology, and habitats. Streamflow is considered a “master variable” that limits the distribution, abundance, and diversity of many aquatic plant and animal species.

  17. Preliminary assessment of vertical stability and gravel transport along the Umpqua River, southwestern Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Wallick, J. Rose; Sobieszczyk, Steven; Cannon, Charles; Anderson, Scott W.

    2009-01-01

    This report addresses physical channel issues related to instream gravel mining on the Umpqua River and its two primary tributaries, the North and South Umpqua Rivers. This analysis constitutes a “Phase I” investigation, as designated by an interagency team cochaired by the U.S. Army Corps of Engineers, Portland District, and the Oregon Department of State Lands to address instream gravel mining issues across Oregon. Phase I analyses rely primarily on existing datasets and cursory analysis to determine the vertical stability of a channel to ascertain whether a particular river channel is aggrading, degrading, or at equilibrium. Additionally, a Phase I analysis identifies other critical issues or questions pertinent to physical channel conditions that may be related to instream gravel mining activities.This analysis can support agency permitting decisions as well as possibly indicating the need for additional studies. This specific analysis focuses on the mainstem Umpqua River from the Pacific Ocean at River Mile (RM) 0 to the confluence of the North and South Umpqua Rivers (at RM 111.8), as well as the lower 29 mi of the North Umpqua River and the lower 80 mi of the South Umpqua River (fig. 1). It is within these reaches where mining of gravel bars for aggregate has been most prevalent.

  18. Estimated water use in Puerto Rico, 2000

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.

    2005-01-01

    Water-use data were compiled for the 78 municipios of the Commonwealth of Puerto Rico for 2000. Five offstream categories were considered: public-supply water withdrawals, domestic self-supplied water use, industrial self-supplied withdrawals, crop irrigation water use, and thermoelectric power fresh water use. Two additional categories also were considered: power generation instream use and public wastewater treatment return-flows. Fresh water withdrawals for offstream use from surface- and ground-water sources in Puerto Rico were estimated at 617 million gallons per day. The largest amount of fresh water withdrawn was by public-supply water facilities and was estimated at 540 million gallons per day. Fresh surface- and ground-water withdrawals by domestic self-supplied users was estimated at 2 million gallons per day and the industrial self-supplied withdrawals were estimated at 9.5 million gallons per day. Withdrawals for crop irrigation purposes were estimated at 64 million gallons per day, or approximately 10 percent of all offstream fresh water withdrawals. Saline instream surface-water withdrawals for cooling purposes by thermoelectric power facilities was estimated at 2,191 million gallons per day, and instream fresh water withdrawals by hydroelectric facilities at 171 million gallons per day. Total discharge from public wastewater treatment facilities was estimated at 211 million gallons per day.

  19. Multi-scale assessment of human-induced changes to ...

    EPA Pesticide Factsheets

    Context: Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.Objectives: Determine the degree to which physical and chemical characteristics of the instream habitat of low-order Amazonian streams change in response to past local- and catchment-level anthropogenic disturbances. Methods: To do so, we collected field instream habitat (i.e., physical habitat and water quality) and landscape data from 99 stream sites in two eastern Brazilian Amazon regions. We used random forest regression trees to assess the relative importance of different predictor variables in determining changes in instream habitat response variables. Adaptations the USEPA’s National Aquatic Resource Survey (NARS) designs, field methods, and approaches for assessing ecological condition have been applied in state and basin stream surveys throughout the U.S., and also in countries outside of the U.S. These applications not only provide valuable tests of the NARS approaches, but generate new understandings of natural and anthropogenic controls on biota and physical habitat in streams. Results from applications in Brazil, for example, not only aid interpretation of the condition of Brazilian streams, but also refine approaches for interpreting aquatic resource surveys in the U.S. and elsewhere. In this article, the authors des

  20. In-stream biogeochemical processes of a temporary river.

    PubMed

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Amaxidis, Yorgos; Skoulikidis, Nikolaos Th

    2007-02-15

    A reach at the estuary of Krathis River in Greece was used to assess how in-stream processes alter its hydrologic and biogeochemical regime. Krathis River exhibited high annual flow variability and its transmission losses become significant, especially during the dry months. These transmission losses are enhanced in chemistry due to release of nutrients from river sediments. These fluxes are significant because they correspond to 11% of the dissolved inorganic nitrogen flux of the river. Release of nitrogen species was influenced by temperature, while release of phosphate was not because phosphate levels were below the equilibrium concentration. There is a significant amount of sediments with fine composition that create "hot spot" areas in the river reach. These sediments are mobilized during the first flush events in the fall carrying with them a significant load of nutrient and suspended matter to the coastal zone. The nutrient organic content of sediments was also significant and it was studied in terms of its mineralization capacity. The capacity for mineralization was influenced by soil moisture, exhibiting significant capacity even at moisture levels of 40%. Temporary rivers are sensitive ecosystems, vulnerable to climate changes. In-stream processes play a significant role in altering the hydrology and biogeochemistry of the water and its impacts to the coastal zone.

  1. The chemistry of iron, aluminum, and dissolved organic material in three acidic, metal-enriched, mountain streams, as controlled by watershed and in-stream processes

    USGS Publications Warehouse

    McKnight, Diane M.; Bencala, Kenneth E.

    1990-01-01

    Several studies were conducted in three acidic, metal-enriched, mountain streams, and the results are discussed together in this paper to provide a synthesis of watershed and in-stream processes controlling Fe, Al, and DOC (dissolved organic carbon) concentrations. One of the streams, the Snake River, is naturally acidic; the other two, Peru Creek and St. Kevin Gulch, receive acid mine drainage. Analysis of stream water chemistry data for the acidic headwaters of the Snake River shows that some trace metal solutes (Al, Mn, Zn) are correlated with major ions, indicating that watershed processes control their concentrations. Once in the stream, biogeochemical processes can control transport if they occur over time scales comparable to those for hydrologic transport. Examples of the following in-stream reactions are presented: (1) photoreduction and dissolution of hydrous iron oxides in response to an experimental decrease in stream pH, (2) precipitation of Al at three stream confluences, and (3) sorption of dissolved organic material by hydrous iron and aluminum oxides in a stream confluence. The extent of these reactions is evaluated using conservative tracers and a transport model that includes storage in the substream zone.

  2. Predicting non-stationary algal dynamics following changes in hydrometeorological conditions using data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Kim, S.; Seo, D. J.

    2017-12-01

    When water temperature (TW) increases due to changes in hydrometeorological conditions, the overall ecological conditions change in the aquatic system. The changes can be harmful to human health and potentially fatal to fish habitat. Therefore, it is important to assess the impacts of thermal disturbances on in-stream processes of water quality variables and be able to predict effectiveness of possible actions that may be taken for water quality protection. For skillful prediction of in-stream water quality processes, it is necessary for the watershed water quality models to be able to reflect such changes. Most of the currently available models, however, assume static parameters for the biophysiochemical processes and hence are not able to capture nonstationaries seen in water quality observations. In this work, we assess the performance of the Hydrological Simulation Program-Fortran (HSPF) in predicting algal dynamics following TW increase. The study area is located in the Republic of Korea where waterway change due to weir construction and drought concurrently occurred around 2012. In this work we use data assimilation (DA) techniques to update model parameters as well as the initial condition of selected state variables for in-stream processes relevant to algal growth. For assessment of model performance and characterization of temporal variability, various goodness-of-fit measures and wavelet analysis are used.

  3. Effects of turbulent hyporheic mixing on reach-scale solute transport

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Li, A.; Packman, A. I.

    2017-12-01

    Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of flow and mixing over the surface-subsurface continuum must be explicitly considered to properly interpret solute transport in coarse-bed streams.

  4. Geostatistical modeling of the spatial distribution of sediment oxygen demand within a Coastal Plain blackwater watershed

    PubMed Central

    Todd, M. Jason; Lowrance, R. Richard; Goovaerts, Pierre; Vellidis, George; Pringle, Catherine M.

    2010-01-01

    Blackwater streams are found throughout the Coastal Plain of the southeastern United States and are characterized by a series of instream floodplain swamps that play a critical role in determining the water quality of these systems. Within the state of Georgia, many of these streams are listed in violation of the state’s dissolved oxygen (DO) standard. Previous work has shown that sediment oxygen demand (SOD) is elevated in instream floodplain swamps and due to these areas of intense oxygen demand, these locations play a major role in determining the oxygen balance of the watershed as a whole. This work also showed SOD rates to be positively correlated with the concentration of total organic carbon. This study builds on previous work by using geostatistics and Sequential Gaussian Simulation to investigate the patchiness and distribution of total organic carbon (TOC) at the reach scale. This was achieved by interpolating TOC observations and simulated SOD rates based on a linear regression. Additionally, this study identifies areas within the stream system prone to high SOD at representative 3rd and 5th order locations. Results show that SOD was spatially correlated with the differences in distribution of TOC at both locations and that these differences in distribution are likely a result of the differing hydrologic regime and watershed position. Mapping of floodplain soils at the watershed scale shows that areas of organic sediment are widespread and become more prevalent in higher order streams. DO dynamics within blackwater systems are a complicated mix of natural and anthropogenic influences, but this paper illustrates the importance of instream swamps in enhancing SOD at the watershed scale. Moreover, our study illustrates the influence of instream swamps on oxygen demand while providing support that many of these systems are naturally low in DO. PMID:20938491

  5. Instream wood recruitment, channel complexity, and their relationship to stream ecology in forested headwater streams under alternative stable states

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2015-12-01

    Human alteration to forests has had lasting effects on stream channels worldwide. Such land use changes affect how wood enters and is stored in streams as individual pieces and as logjams. Changes in wood recruitment affect the complexity and benefits wood can provide to the stream environment, such as zones of flow separation that store fine sediment and organic matter, increased nutrient processing, and greater habitat potential, which can enhance biota and cascade through stream-riparian ecosystems. Previous research in our study area shows that modern headwater streams flowing through old-growth, unmanaged forests have more wood than streams in young, managed forests, but does not explicitly evaluate how wood affects channel complexity or local ecology. 'Managed' refers to forests previously or currently exposed to human alteration. Alteration has long since ceased in some areas, but reduced wood loads in managed streams persist. Our primary objective was to quantify stream complexity metrics, with instream wood as a mediator, on streams across a gradient of management and disturbance histories in order to examine legacy effects of human alteration to forests. Data collected in the Southern Rocky Mountains include 24 2nd to 3rd order subalpine streams categorized into: old-growth unmanaged; younger, naturally disturbed unmanaged; and younger managed. We assessed instream wood loads and logjams and evaluated how they relate to channel complexity using a number of metrics, such as standard deviation of bed and banks, volume of pools, ratios of stream to valley lengths and stream to valley area, and diversity of substrate, gradient, and morphology. Preliminary results show that channel complexity is directly related to instream wood loads and is greatest in streams in old-growth. Related research in the field area indicates that streams with greater wood loads also have increased nutrient processing and greater abundance and diversity of aquatic insect predators.

  6. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98

    USGS Publications Warehouse

    Battaglin, William A.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Campbell, D.H.

    2001-01-01

    Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (δ15N and δ18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the δ15N and δ18O of NO3 provide information about NO3 sources and transformation processes in a large river system (drainage area 2 900 000 km2) that would otherwise be unavailable using concentration and discharge data alone. Results from 42 samples indicate that the δ15N and δ18O ratios between sites on the Mississippi River and its tributaries are somewhat distinctive, and vary with season and discharge rate. Of particular interest are two nearly Lagrangian sample sets, in which samples from the Mississippi River at St Francisville, LA, are compared with samples collected from the Ohio River at Grand Chain, II, and the Mississippi River at Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months.

  7. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics

    NASA Astrophysics Data System (ADS)

    Marcé, R.; Armengol, J.

    2009-01-01

    One of the fundamental problems of using large-scale biogeochemical models is the uncertainty involved in aggregating the components of fine-scale deterministic models in watershed applications, and in extrapolating the results of field-scale measurements to larger spatial scales. Although spatial or temporal lumping may reduce the problem, information obtained during fine-scale research may not apply to lumped categories. Thus, the use of knowledge gained through fine-scale studies to predict coarse-scale phenomena is not straightforward. In this study, we used the nutrient uptake metrics defined in the Nutrient Spiralling concept to formulate the equations governing total phosphorus in-stream fate in a watershed-scale biogeochemical model. The rationale of this approach relies on the fact that the working unit for the nutrient in-stream processes of most watershed-scale models is the reach, the same unit used in field research based on the Nutrient Spiralling concept. Automatic calibration of the model using data from the study watershed confirmed that the Nutrient Spiralling formulation is a convenient simplification of the biogeochemical transformations involved in total phosphorus in-stream fate. Following calibration, the model was used as a heuristic tool in two ways. First, we compared the Nutrient Spiralling metrics obtained during calibration with results obtained during field-based research in the study watershed. The simulated and measured metrics were similar, suggesting that information collected at the reach scale during research based on the Nutrient Spiralling concept can be directly incorporated into models, without the problems associated with upscaling results from fine-scale studies. Second, we used results from our model to examine some patterns observed in several reports on Nutrient Spiralling metrics measured in impaired streams. Although these two exercises involve circular reasoning and, consequently, cannot validate any hypothesis, this is a powerful example of how models can work as heuristic tools to compare hypotheses and stimulate research in ecology.

  8. Habitat suitability of the Carolina madtom, an imperiled, endemic stream fish

    USGS Publications Warehouse

    Midway, S.R.; Kwak, Thomas J.; Aday, D.D.

    2010-01-01

    The Carolina madtom Noturus furiosus is an imperiled stream ictalurid that is endemic to the Tar and Neuse River basins in North Carolina. The Carolina madtom is listed as a threatened species by the state of North Carolina, and whereas recent distribution surveys have found that the Tar River basin population occupies a range similar to its historical range, the Neuse River basin population has shown recent significant decline. Quantification of habitat requirements and availability is critical for effective management and subsequent survival of the species. We investigated six reaches (three in each basin) to (1) quantify Carolina madtom microhabitat use, availability, and suitability; (2) compare suitable microhabitat availability between the two basins; and (3) examine use of an instream artificial cover unit. Carolina madtoms were located and their habitat was quantified at four of the six survey reaches. They most frequently occupied shallow to moderate depths of swift moving water over a sand substrate and used cobble for cover. Univariate and principal components analyses both showed that Carolina madtom use of instream habitat was selective (i.e., nonrandom). Interbasin comparisons suggested that suitable microhabitats were more prevalent in the impacted Neuse River basin than in the Tar River basin. We suggest that other physical or biotic effects may be responsible for the decline in the Neuse River basin population. We designed instream artificial cover units that were occupied by Carolina madtoms (25% of the time) and occasionally by other organisms. Carolina madtom abundance among all areas treated with the artificial cover unit was statistically higher than that in the control areas, demonstrating use of artificial cover when available. Microhabitat characteristics of occupied artificial cover units closely resembled those of natural instream microhabitat used by Carolina madtoms; these units present an option for conservation and restoration if increased management is deemed necessary. Results from our study provide habitat suitability criteria and artificial cover information that can inform management and conservation of the Carolina madtom.

  9. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  10. The economic value of Trinity River water

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1999-01-01

    The Trinity River, largest tributary of the Klamath River, has its head-waters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.The Trinity River, largest tributary of the Klamath River, has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.

  11. Changes in phosphorus concentrations and loads in the Assabet River, Massachusetts, October 2008 through April 2014

    USGS Publications Warehouse

    Savoie, Jennifer G.; DeSimone, Leslie A.; Mullaney, John R.; Zimmerman, Marc J.; Waldron, Marcus C.

    2016-10-24

    Treated effluent discharged from municipal wastewater-treatment plants to the Assabet River in central Massachusetts includes phosphorus, which leads to increased growth of nuisance aquatic plants that decrease the river’s water quality and aesthetics in impounded reaches during the growing season. To improve the river’s water quality and aesthetics, the U.S. Environmental Protection Agency approved a total maximum daily load for phosphorus in 2004 that directed the wastewater-treatment plants to reduce the amount of total phosphorus discharged to the river by 2012. The permitted total phosphorus monthly average of 0.75 milligrams per liter during the aquatic plant growing season (April 1 through October 31) was reduced by the total maximum daily load to a target of 0.1 milligrams per liter by 2012, and the nongrowing-season limit was unchanged at 1.0 milligrams per liter.From October 2008 through April 2014, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, measured streamflow and collected weekly flow-proportional, composite samples of water from the Assabet River for analysis of concentrations of total phosphorus and orthophosphate. Streamflow and concentration data were used to estimate total phosphorus and orthophosphate loads in the river. The purpose of this monitoring effort was to evaluate phosphorus concentrations and loads in the river before, during, and after the wastewater-treatment-plant upgrades and to assess the effects of seasonal differences in permitted discharges. The locations of water-quality-monitoring stations, with respect to the Hudson and Ben Smith impoundments, enabled examination of effects of phosphorus entering and leaving the impoundments.Annual median concentrations of total phosphorus in wastewater-treatment plants were reduced by more than 80 percent with the plant upgrades. Measured instream annual median concentrations of total phosphorus in the Assabet River decreased by about 38 to 50 percent at three of the four monitoring stations following the wastewater-treatment-plant upgrades. At the station farthest upstream, the median total phosphorus concentration remained unchanged throughout the study; this may be attributed to the site location and potential resuspension of particulate organic matter during periods of increased streamflow. Annual median loads from the wastewater-treatment plants were reduced by up to 91 percent following the upgrades, instream annual median total phosphorus loads at the three downstream stations decreased by 71 to 76 percent, and instream orthophosphate loads at the three downstream stations decreased by 79 to 87 percent.Seasonal fluctuations (growing versus nongrowing) of total phosphorus and orthophosphate were observed instream before the upgrades. However, after the upgrades, fluctuations in phosphorus released from the treatment plants were slight and seasonal changes were typically not observed instream.Annual loads entering and leaving the two impoundments were inconclusive in determining whether the impoundments were sources or sinks of total phosphorus during the study. Total phosphorus loads entering the Hudson impoundment were consistently greater than those leaving; however, there was uncertainty about the loads at the monitoring station upstream from this impoundment. At the Ben Smith impoundment, total phosphorus and orthophosphate loads downstream were slightly greater than those upstream from the impoundment, but the differences may reflect additions from tributaries and overland runoff.Estimated instream total phosphorus concentrations and loads indicated that the decreases in total phosphorus in wastewater-treatment-plant discharges were accompanied by reductions measured in the Assabet River. A statistical analysis which incorporates the effect of varying flow conditions demonstrated significant reductions in total phosphorus concentrations after the wastewater-treatment-plant upgrades at three of the four instream monitoring stations. No significant change was observed at the most upstream location, the Assabet River at Port Street at Hudson, Massachusetts (station number 01096835), which may have been affected by flow-related resuspension of particulate phosphorus.

  12. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  13. Investigations on the Influence of the In-Stream Pylon and Strut on the Performance of a Scramjet Combustor

    PubMed Central

    Liu, Weidong; Sun, Mingbo

    2014-01-01

    The influence of the in-stream pylon and strut on the performance of scramjet combustor was experimentally and numerically investigated. The experiments were conducted with a direct-connect supersonic model combustor equipped with multiple cavities. The entrance parameter of combustor corresponds to scramjet flight Mach number 4.0 with a total temperature of 947 K. The research results show that, compared with the scramjet combustor without pylon and strut, the wall pressure and the thrust of the scramjet increase due to the improvement of mixing and combustion effect due to the pylon and strut. The total pressure loss caused by the strut is considerable whereas pylon influence is slight. PMID:25254234

  14. Effects of geomorphology, habitat, and spatial location on fish assemblages in a watershed in Ohio, USA.

    PubMed

    D'Ambrosio, Jessica L; Williams, Lance R; Witter, Jonathan D; Ward, Andy

    2009-01-01

    In this paper, we evaluate relationships between in-stream habitat, water chemistry, spatial distribution within a predominantly agricultural Midwestern watershed and geomorphic features and fish assemblage attributes and abundances. Our specific objectives were to: (1) identify and quantify key environmental variables at reach and system wide (watershed) scales; and (2) evaluate the relative influence of those environmental factors in structuring and explaining fish assemblage attributes at reach scales to help prioritize stream monitoring efforts and better incorporate all factors that influence aquatic biology in watershed management programs. The original combined data set consisted of 31 variables measured at 32 sites, which was reduced to 9 variables through correlation and linear regression analysis: stream order, percent wooded riparian zone, drainage area, in-stream cover quality, substrate quality, gradient, cross-sectional area, width of the flood prone area, and average substrate size. Canonical correspondence analysis (CCA) and variance partitioning were used to relate environmental variables to fish species abundance and assemblage attributes. Fish assemblages and abundances were explained best by stream size, gradient, substrate size and quality, and percent wooded riparian zone. Further data are needed to investigate why water chemistry variables had insignificant relationships with IBI scores. Results suggest that more quantifiable variables and consideration of spatial location of a stream reach within a watershed system should be standard data incorporated into stream monitoring programs to identify impairments that, while biologically limiting, are not fully captured or elucidated using current bioassessment methods.

  15. Collection of short papers on Beaver Creek watershed studies in West Tennessee, 1989-94

    USGS Publications Warehouse

    Doyle, W. Harry.; Baker, Eva G.

    1995-01-01

    In 1989, the U.S. Geological Survey began a scientific investigation to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver Creek watershed, West Tennessee. The project is being conducted jointly with other Federal, State, county agencies, the farming community, and academic institutions, in support of the U.S. Department of Agriculture's Hydrologic Unit Area program. The Beaver Creek project has evolved into a long-term watershed assessment and monitoring program. In 1991, a grant was received to develop and evaluate sampling strategies for higher order streams. During the summer of 1992, a reconnaissance of water-quality conditions for the shallow aquifers in Shelby, Tipton, Fayette, and Haywood Counties was conducted and included 89 domestic wells in the Beaver Creek watershed. Results from this effort lead to the development of a 1-year program to evaluate cause- and-effect relations that can explain the observed water-quality conditions for the shallow aquifers in the watershed. In 1992 the USGS, in cooperation with the Soil Conservation Service and the Shelby County Soil Conservation District, began an evaluation of in-stream processes and in-stream resource-management systems. In 1993, a biomonitoring program was established in the watershed. This collection of eight articles and abstracts was originally published in the American Water Resources Association National Symposium on Water Quality Proceedings for the national conference held in Chicago in 1994 and describes what has been learned in the study to date.

  16. A Regional Modeling Framework of Phosphorus Sources and Transport in Streams of the Southeastern United States

    USGS Publications Warehouse

    Garcia, A.M.; Hoos, A.B.; Terziotti, S.

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p<0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables - soil organic matter and soil pH - are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity. ?? 2011 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.

  17. APPLYING MULTIMETRIC INDICES AT HIGH RESOLUTION ...

    EPA Pesticide Factsheets

    Like many inland waters worldwide, streams and rivers of the Western U.S. are faced with a multitude of challenges stemming from past land use practices and changing future conditions. To address these issues, the USEPA has developed empirical tools for evaluating instream conditions and monitoring the status of our freshwater resources over time. These efforts have made substantial progress in integrating quantitative methods into multimetric indices (MMIs) used for national and regional assessments and have provided an enhanced understanding of condition patterns across the broader landscape. To examine the extent of spatial and temporal variability not captured by the sparse distribution of sample sites used in these large-scale assessments, we applied two existing MMIs to inter-seasonal fish and macroinvertebrate data from the Calapooia Basin in Oregon’s Willamette Valley. Our chosen indices revealed a high degree of variation in biotic condition within our study area. With notable exceptions, indices were seasonally robust, indicating potential flexibility for scheduling sampling. An increased understanding of condition patterns occurring at fine spatial scales and the natural and anthropogenic effects influencing them can help guide and prioritize restoration and management. Multimetric indices (MMIs) that incorporate data on the biological and physical characteristics of freshwater systems and provide meaningful indicators of instream conditions

  18. Ecological drought: Accounting for the non-human impacts of water shortage in the Upper Missouri Headwaters Basin, Montana, USA

    USGS Publications Warehouse

    McEvoy, Jamie; Bathke, Deborah J.; Burkardt, Nina; Cravens, Amanda; Haigh, Tonya; Hall, Kimberly R.; Hayes, Michael J.; Jedd, Theresa; Podebradska, Marketa; Wickham, Elliot

    2018-01-01

    Water laws and drought plans are used to prioritize and allocate scarce water resources. Both have historically been human-centric, failing to account for non-human water needs. In this paper, we examine the development of instream flow legislation and the evolution of drought planning to highlight the growing concern for the non-human impacts of water scarcity. Utilizing a new framework for ecological drought, we analyzed five watershed-scale drought plans in southwestern Montana, USA to understand if, and how, the ecological impacts of drought are currently being assessed. We found that while these plans do account for some ecological impacts, it is primarily through the narrow lens of impacts to fish as measured by water temperature and streamflow. The latter is typically based on the same ecological principles used to determine instream flow requirements. We also found that other resource plans in the same watersheds (e.g., Watershed Restoration Plans, Bureau of Land Management (BLM) Watershed Assessments or United States Forest Service (USFS) Forest Plans) identify a broader range of ecological drought risks. Given limited resources and the potential for mutual benefits and synergies, we suggest greater integration between various planning processes could result in a more holistic consideration of water needs and uses across the landscape.

  19. Environmental flow studies of the Fort Collins Science Center, U.S. Geological Survey-Cherry Creek, Arizona

    USGS Publications Warehouse

    Waddle, Terry J.; Bovee, Ken D.

    2010-01-01

    At the request of the U.S. Forest Service, an instream flow assessment was conducted at Cherry Creek, Ariz., to investigate habitat for native and introduced fish species and to describe the beneficial use of a possible instream flow water right. The U.S. Geological Survey (USGS) Fort Collins Science Center performed an intensive field study of two sections of Cherry Creek in September 2008 to provide base data for hydrodynamic simulation of the flow conditions in the stream. The USGS Arizona Cooperative Fish and Wildlife Research Unit, at the University of Arizona School of Natural Resources, conducted a survey of the habitat requirements of the resident fish species in Cherry Creek and provided the habitat suitability criteria used in this study. The habitat suitability criteria were combined with hydrodynamic simulation results to quantify fish habitat for the full range of daily flow experienced in the creek and to produce maps of habitat occurrence for those flows. The flow record at the Cherry Creek stream gage was used to generate habitat response values over time. The long-term habitat response was incorporated into an Excel (Registered) spreadsheet to allow evaluation of habitat occurrence with and without an instream water right under different hypothetical water withdrawal scenarios. The spreadsheet displays information about the time sequence of habitat events, the duration of critical events, and habitat retention.

  20. Explaining and modeling the concentration and loading of Escherichia coli in a stream-A case study.

    PubMed

    Wang, Chaozi; Schneider, Rebecca L; Parlange, Jean-Yves; Dahlke, Helen E; Walter, M Todd

    2018-09-01

    Escherichia coli (E. coli) level in streams is a public health indicator. Therefore, being able to explain why E. coli levels are sometimes high and sometimes low is important. Using citizen science data from Fall Creek in central NY we found that complementarily using principal component analysis (PCA) and partial least squares (PLS) regression provided insights into the drivers of E. coli and a mechanism for predicting E. coli levels, respectively. We found that stormwater, temperature/season and shallow subsurface flow are the three dominant processes driving the fate and transport of E. coli. PLS regression modeling provided very good predictions under stormwater conditions (R 2  = 0.85 for log (E. coli concentration) and R 2  = 0.90 for log (E. coli loading)); predictions under baseflow conditions were less robust. But, in our case, both E. coli concentration and E. coli loading were significantly higher under stormwater condition, so it is probably more important to predict high-flow E. coli hazards than low-flow conditions. Besides previously reported good indicators of in-stream E. coli level, nitrate-/nitrite-nitrogen and soluble reactive phosphorus were also found to be good indicators of in-stream E. coli levels. These findings suggest management practices to reduce E. coli concentrations and loads in-streams and, eventually, reduce the risk of waterborne disease outbreak. Copyright © 2018. Published by Elsevier B.V.

  1. Water Use in Georgia by County for 2005; and Water-Use Trends, 1980-2005

    USGS Publications Warehouse

    Fanning, Julia L.; Trent, Victoria P.

    2009-01-01

    Water use for 2005 for each county in Georgia was estimated using data obtained from various Federal and State agencies and local sources. Total consumptive water use also was estimated for each county in Georgia for 2005. Water use is subdivided according to offstream and instream use. Offstream use is defined as water withdrawn or diverted from a ground- or surface-water source and transported to the place of use. Estimates for offstream water use include the categories of public supply, domestic, commercial, industrial, mining, irrigation, livestock, aquaculture, and thermoelectric power. Instream use is that which occurs within a stream channel for such purposes as hydroelectric-power generation, navigation, water-quality improvement, fish propagation, and recreation. The only category of instream use estimated was hydroelectric-power generation. Georgia law (the Georgia Ground-Water Use Act of 1972 and the Georgia Water Supply Act of 1978 [Georgia Department of Natural Resources, 2008a,b]) requires any water user who withdraws more than 100,000 gallons per day on a monthly average to obtain a withdrawal permit from the Georgia Environmental Protection Division. Permit holders generally must report their withdrawals by month. The Georgia Water-Use Program collects the reported information under the withdrawal permit system and the drinking-water permit system and stores the data in the Georgia Water-Use Data System.

  2. Advancing the Food-Energy-Water Nexus: Closing Nutrient Loops in Arid River Corridors.

    PubMed

    Mortensen, Jacob G; González-Pinzón, Ricardo; Dahm, Clifford N; Wang, Jingjing; Zeglin, Lydia H; Van Horn, David J

    2016-08-16

    Closing nutrient loops in terrestrial and aquatic ecosystems is integral to achieve resource security in the food-energy-water (FEW) nexus. We performed multiyear (2005-2008), monthly sampling of instream dissolved inorganic nutrient concentrations (NH4-N, NO3-N, soluble reactive phosphorus-SRP) along a ∼ 300-km arid-land river (Rio Grande, NM) and generated nutrient budgets to investigate how the net source/sink behavior of wastewater and irrigated agriculture can be holistically managed to improve water quality and close nutrient loops. Treated wastewater on average contributed over 90% of the instream dissolved inorganic nutrients (101 kg/day NH4-N, 1097 kg/day NO3-N, 656 kg/day SRP). During growing seasons, the irrigation network downstream of wastewater outfalls retained on average 37% of NO3-N and 45% of SRP inputs, with maximum retention exceeding 60% and 80% of NO3-N and SRP inputs, respectively. Accurate quantification of NH4-N retention was hindered by low loading and high variability. Nutrient retention in the irrigation network and instream processes together limited downstream export during growing seasons, with total retention of 33-99% of NO3-N inputs and 45-99% of SRP inputs. From our synoptic analysis, we identify trade-offs associated with wastewater reuse for agriculture within the scope of the FEW nexus and propose strategies for closing nutrient loops in arid-land rivers.

  3. Data to support statistical modeling of instream nutrient load based on watershed attributes, southeastern United States, 2002

    USGS Publications Warehouse

    Hoos, Anne B.; Terziotti, Silvia; McMahon, Gerard; Savvas, Katerina; Tighe, Kirsten C.; Alkons-Wolinsky, Ruth

    2008-01-01

    This report presents and describes the digital datasets that characterize nutrient source inputs, environmental characteristics, and instream nutrient loads for the purpose of calibrating and applying a nutrient water-quality model for the southeastern United States for 2002. The model area includes all of the river basins draining to the south Atlantic and the eastern Gulf of Mexico, as well as the Tennessee River basin (referred to collectively as the SAGT area). The water-quality model SPARROW (SPAtially-Referenced Regression On Watershed attributes), developed by the U.S. Geological Survey, uses a regression equation to describe the relation between watershed attributes (predictors) and measured instream loads (response). Watershed attributes that are considered to describe nutrient input conditions and are tested in the SPARROW model for the SAGT area as source variables include atmospheric deposition, fertilizer application to farmland, manure from livestock production, permitted wastewater discharge, and land cover. Watershed and channel attributes that are considered to affect rates of nutrient transport from land to water and are tested in the SAGT SPARROW model as nutrient-transport variables include characteristics of soil, landform, climate, reach time of travel, and reservoir hydraulic loading. Datasets with estimates of each of these attributes for each individual reach or catchment in the reach-catchment network are presented in this report, along with descriptions of methods used to produce them. Measurements of nutrient water quality at stream monitoring sites from a combination of monitoring programs were used to develop observations of the response variable - mean annual nitrogen or phosphorus load - in the SPARROW regression equation. Instream load of nitrogen and phosphorus was estimated using bias-corrected log-linear regression models using the program Fluxmaster, which provides temporally detrended estimates of long-term mean load well-suited for spatial comparisons. The detrended, or normalized, estimates of load are useful for regional-scale assessments but should be used with caution for local-scale interpretations, for which use of loads estimated for actual time periods and employing more detailed regression analysis is suggested. The mean value of the nitrogen yield estimates, normalized to 2002, for 637 stations in the SAGT area is 4.7 kilograms per hectare; the mean value of nitrogen flow-weighted mean concentration is 1.2 milligrams per liter. The mean value of the phosphorus yield estimates, normalized to 2002, for the 747 stations in the SAGT area is 0.66 kilogram per hectare; the mean value of phosphorus flow-weighted mean concentration is 0.17 milligram per liter. Nutrient conditions measured in streams affected by substantial influx or outflux of water and nutrient mass across surface-water basin divides do not reflect nutrient source and transport conditions in the topographic watershed; therefore, inclusion of such streams in the SPARROW modeling approach is considered inappropriate. River basins identified with this concern include south Florida (where surface-water flow paths have been extensively altered) and the Oklawaha, Crystal, Lower Sante Fe, Lower Suwanee, St. Marks, and Chipola River basins in central and northern Florida (where flow exchange with the underlying regional aquifer may represent substantial nitrogen influx to and outflux from the surface-water basins).

  4. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma- habitat data and characteristics at selected sites, 1993-95

    USGS Publications Warehouse

    Femmer, Suzanne R.

    1997-01-01

    The characterization of instream and riparian habitat is part of the multiple lines of evidence used by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program to assess the water quality of streams. In the NAWQA Program, integrated physical, chemical, and biological assessments are used to describe water-quality conditions. The instream and riparian habitat data are collected at sites selected for surface-water chemistry analyses and biological assessment. Instream and riparian habitat data are structured in a nested scheme?at sampling reach, segment, and basin scales. The habitat data were collected in the Ozark Plateaus study unit at 41 sites during 1993-95. Thirteen of these sites, representative of selected combinations of physiography, land use, and basin size, have longitudinal, transverse, and quarter point vegetation plot surveys in addition to the Level I survey measurements (reach length, depth, velocity, dominant substrate, embeddedness, and vegetation quarter points, for example) recommended by the NAWQA Program protocols. These habitat data were from onsite measurements, U.S. Geological Survey topographic maps, and a geographic information system. The analyses of the habitat data indicates substantial differences between sites of differing physiography and basin-scale land-use activities. The basins range from 46.4 to 4,318 square kilometers and have stream orders from 2 to 6. All streams studied are a riffle/pool type, and most have cobble that is less than 50 percent embedded as the dominant streambed substrate. Of the three physiographic sections studied, the Boston Mountains have the largest mean segment and sideslope gradients, basin relief, woody species diversity, and stream depths when compared with sites of similar size. Channel sinuosities, mean velocities, and canopy angles are largest at sites in the Springfield Plateau physiographic section. The sites in the Salem Plateau physiographic section have the largest woody vegetation densities and mean channel widths. Sites in basins with predominantly agricultural land use tend to have more open canopies, steeper segment gradients, and more sinuous stream channels than the forested sites. Sites in predominantly forested basins tend to have deeper and swifter flow, smaller channel widths, and more dense woody riparian vegetation (at small basins) than the agricultural sites.

  5. Valuing instream flows using the hedonic price method

    NASA Astrophysics Data System (ADS)

    Netusil, Noelwah R.; Summers, Matthew T.

    2009-11-01

    The Oregon Water Trust (OWT) uses a market-based approach to protect and enhance instream flows in Oregon. We use the hedonic price method to estimate the effect of numerous variables on the annualized price OWT pays for water rights: the amount of water protected by the transaction, transaction type (state approved or contractual agreement), presence of anadromous and/or resident fish, and if a fish is listed under the Endangered Species Act (ESA). We find evidence of a premium for state-approved transactions and for transactions that protect water in streams with listed species. Adjusting the amount of water protected by each transaction to include only rights that will be delivered with a high degree of certainty produces coefficient estimates that are similar, but more accurate, than using unadjusted water rights amounts.

  6. Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington

    USGS Publications Warehouse

    Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.

    2015-01-01

    From a management perspective, preservation and improvement of instream nutrient attenuation should focus on increasing the travel time through a reach and contact time of water sediment (reactive) surfaces and lowering nutrient concentrations (and loads) to avoid saturation of instream attenuation and increase attenuation efficiency. These goals can be reached by maintaining and restoring channel-flood plain connectivity, maintaining and restoring healthy riparian zones along streams, managing point and nonpoint nutrient loads to streams and rivers, and restoring channel features that promote attenuation such as the addition of woody debris and maintaining pool-riffle morphologies. Many of these management approaches are already being undertaken during projects aimed to restore quality salmon habitat. Therefore, there is a dual benefit to these projects that also may lead to enhanced potential for nitrogen and phosphorus attenuation.

  7. Trends in Streamflow Characteristics of Selected Sites in the Elkhorn River, Salt Creek, and Lower Platte River Basins, Eastern Nebraska, 1928-2004, and Evaluation of Streamflows in Relation to Instream-Flow Criteria, 1953-2004

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.

    2009-01-01

    The Nebraska Department of Natural Resources approved instream-flow appropriations on the Platte River to maintain fish communities, whooping crane roost habitat, and wet meadows used by several wild bird species. In the lower Platte River region, the Nebraska Game and Parks Commission owns an appropriation filed to maintain streamflow for fish communities between the Platte River confluence with the Elkhorn River and the mouth of the Platte River. Because Elkhorn River flow is an integral part of the flow in the reach addressed by this appropriation, the Upper Elkhorn and Lower Elkhorn Natural Resources Districts are involved in overall management of anthropogenic effects on the availability of surface water for instream requirements. The Physical Habitat Simulation System (PHABSIM) and other estimation methodologies were used previously to determine instream requirements for Platte River biota, which led to the filing of five water appropriations applications with the Nebraska Department of Natural Resources in 1993 by the Nebraska Game and Parks Commission. One of these requested instream-flow appropriations of 3,700 cubic feet per second was for the reach from the Elkhorn River to the mouth of the Platte River. Four appropriations were granted with modifications in 1998, by the Nebraska Department of Natural Resources. Daily streamflow data for the periods of record were summarized for 17 streamflow-gaging stations in Nebraska to evaluate streamflow characteristics, including low-flow intervals for consecutive durations of 1, 3, 7, 14, 30, 60, and 183 days. Temporal trends in selected streamflow statistics were not adjusted for variability in precipitation. Results indicated significant positive temporal trends in annual flow for the period of record at eight streamflow-gaging stations - Platte River near Duncan (06774000), Platte River at North Bend (06796000), Elkhorn River at Neligh (06798500), Logan Creek near Uehling (06799500), Maple Creek near Nickerson (06800000), Elkhorn River at Waterloo (06800500), Salt Creek at Greenwood (06803555), and Platte River at Louisville (06805500). In general, sites in the Elkhorn River Basin upstream from Norfolk showed fewer significant trends than did sites downstream from Norfolk and sites in the Platte River and Salt Creek basins, where trends in low flows also were positive. Historical Platte River streamflow records for the streamflow-gaging station at Louisville, Nebraska, were used to determine the number of days per water year (Sept. 30 to Oct. 1) when flows failed to satisfy the minimum criteria of the instream-flow appropriation prior to its filing in 1993. Before 1993, the median number of days the criteria were not satisfied was about 120 days per water year. During 1993 through 2004, daily mean flows at Louisville, Nebraska, have failed to satisfy the criteria for 638 days total (median value equals 21.5 days per year). Most of these low-flow intervals occurred in summer through early fall. For water years 1953 through 2004, of the discrete intervals when flow was less that the criteria levels, 61 percent were 3 days or greater in duration, and 38 percent were 7 days or greater in duration. The median duration of intervals of flow less than the criteria levels was 4 consecutive days during 1953 through 2004.

  8. Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems

    NASA Astrophysics Data System (ADS)

    Hunter, Jason M.; Maier, Holger R.; Gibbs, Matthew S.; Foale, Eloise R.; Grosvenor, Naomi A.; Harders, Nathan P.; Kikuchi-Miller, Tahali C.

    2018-05-01

    Salinity modelling in river systems is complicated by a number of processes, including in-stream salt transport and various mechanisms of saline accession that vary dynamically as a function of water level and flow, often at different temporal scales. Traditionally, salinity models in rivers have either been process- or data-driven. The primary problem with process-based models is that in many instances, not all of the underlying processes are fully understood or able to be represented mathematically. There are also often insufficient historical data to support model development. The major limitation of data-driven models, such as artificial neural networks (ANNs) in comparison, is that they provide limited system understanding and are generally not able to be used to inform management decisions targeting specific processes, as different processes are generally modelled implicitly. In order to overcome these limitations, a generic framework for developing hybrid process and data-driven models of salinity in river systems is introduced and applied in this paper. As part of the approach, the most suitable sub-models are developed for each sub-process affecting salinity at the location of interest based on consideration of model purpose, the degree of process understanding and data availability, which are then combined to form the hybrid model. The approach is applied to a 46 km reach of the Murray River in South Australia, which is affected by high levels of salinity. In this reach, the major processes affecting salinity include in-stream salt transport, accession of saline groundwater along the length of the reach and the flushing of three waterbodies in the floodplain during overbank flows of various magnitudes. Based on trade-offs between the degree of process understanding and data availability, a process-driven model is developed for in-stream salt transport, an ANN model is used to model saline groundwater accession and three linear regression models are used to account for the flushing of the different floodplain storages. The resulting hybrid model performs very well on approximately 3 years of daily validation data, with a Nash-Sutcliffe efficiency (NSE) of 0.89 and a root mean squared error (RMSE) of 12.62 mg L-1 (over a range from approximately 50 to 250 mg L-1). Each component of the hybrid model results in noticeable improvements in model performance corresponding to the range of flows for which they are developed. The predictive performance of the hybrid model is significantly better than that of a benchmark process-driven model (NSE = -0.14, RMSE = 41.10 mg L-1, Gbench index = 0.90) and slightly better than that of a benchmark data-driven (ANN) model (NSE = 0.83, RMSE = 15.93 mg L-1, Gbench index = 0.36). Apart from improved predictive performance, the hybrid model also has advantages over the ANN benchmark model in terms of increased capacity for improving system understanding and greater ability to support management decisions.

  9. Can warmwater streams be rehabilitated using watershed-scale standard erosion control measures alone?

    PubMed

    Shields, F Douglas; Knight, Scott S; Cooper, Charles M

    2007-07-01

    Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks ("habitat rehabilitation"). Fish and their habitats were sampled semiannually during 1-2 years before rehabilitation, 3-4 years after rehabilitation, and 10-11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means > or = 40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.

  10. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish productionmore » within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No.199202601). Work undertaken during 2007 included: (1) Starting 1 new fencing project in the NFJD subbasin that will protect an additional 1.82 miles of stream and 216.2 acres of habitat; (2) Constructing 0.47 miles of new channel on the Wallowa River to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) Planting 22,100 plants along 3 streams totaling 3.6 stream miles; (4) Establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) Monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) Completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; (7) Initiated writing of a comprehensive project summary report that will present a summary of conclusions of the benefits to focal species and management recommendations for the future. Since initiation of this program 56 individual projects have been implemented, monitored and maintained along 84.8 miles of anadromous fish bearing streams that protect and enhance 3,501 acres of riparian and instream habitat.« less

  11. Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin.

    PubMed

    Donley, Erin E; Naiman, Robert J; Marineau, Mathieu D

    2012-10-01

    We provide a case study prioritizing instream flow restoration activities by sub-basin according to the habitat needs of Endangered Species Act (ESA)-listed salmonids relative to climate change in the central Columbia River basin in Washington State (USA). The objective is to employ scenario analysis to inform and improve existing instream flow restoration projects. We assess the sensitivity of late summer (July, August, and September) flows to the following scenario simulations - singly or in combination: climate change, changes in the quantity of water used for irrigation and possible changes to existing water resource policy. Flows for four sub-basins were modeled using the Water Evaluation and Planning system (WEAP) under historical and projected conditions of 2020 and 2040 for each scenario. Results indicate that Yakima will be the most flow-limited sub-basin with average reductions in streamflow of 41% under climate conditions of 2020 and 56% under 2040 conditions; 1.3-2.5 times greater than those of other sub-basins. In addition, irrigation plays a key role in the hydrology of the Yakima sub-basin - with flow reductions ranging from 78% to 90% under severe to extreme (i.e., 20-40%) increases in agricultural water use (2.0-4.4 times the reductions in the other sub-basins). The Yakima and Okanogan sub-basins are the most responsive to simulations of flow-bolstering policy change (providing salmon with first priority water allocation and at biologically relevant flows), as demonstrated by 91-100% target flows attained. The Wenatchee and Methow sub-basins do not exhibit similar responsiveness to simulated policy changes. Considering climate change only, we conclude that flow restoration should be prioritized first in the Yakima and Wenatchee sub-basins, and second in the Okanogan and Methow. Considering both climate change and possible policy changes, we recommend that the Yakima sub-basin receive the highest priority for flow restoration activities to sustain critical instream habitat for ESA-listed salmonids. © 2012 Blackwell Publishing Ltd.

  12. Quantifying and Predicting Three-Dimensional Heterogeneity in Transient Storage Using Roving Profiling

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Reaver, N.; Hensley, R. T.; Cohen, M. J.

    2017-12-01

    Hydraulic transport is an important component of nutrient spiraling in streams. Quantifying conservative solute transport is a prerequisite for understanding the cycling and fate of reactive solutes, such as nutrients. Numerous studies have modeled solute transport within streams using the one-dimensional advection, dispersion and storage (ADS) equation calibrated to experimental data from tracer experiments. However, there are limitations to the information about in-stream transient storage that can be derived from calibrated ADS model parameters. Transient storage (TS) in the ADS model is most often modeled as a single process, and calibrated model parameters are "lumped" values that are the best-fit representation of multiple real-world TS processes. In this study, we developed a roving profiling method to assess and predict spatial heterogeneity of in-stream TS. We performed five tracer experiments on three spring-fed rivers in Florida (USA) using Rhodamine WT. During each tracer release, stationary fluorometers were deployed to measure breakthrough curves for multiple reaches within the river. Teams of roving samplers moved along the rivers measuring tracer concentrations at various locations and depths within the reaches. A Bayesian statistical method was used to calibrate the ADS model to the stationary breakthrough curves, resulting in probability distributions for both the advective and TS zone as a function of river distance and time. Rover samples were then assigned a probability of being from either the advective or TS zone by comparing measured concentrations to the probability distributions of concentrations in the ADS advective and TS zones. A regression model was used to predict the probability of any in-stream position being located within the advective versus TS zone based on spatiotemporal predictors (time, river position, depth, and distance from bank) and eco-geomorphological feature (eddies, woody debris, benthic depressions, and aquatic vegetation). Results confirm that TS is spatially variable as a function of spatiotemporal and eco-geomorphological features. A substantial number of samples with nearly equivalent chances of being from the advective or TS zones suggests that the distinction between zones is often poorly defined.

  13. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek,more » Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety of fisheries monitoring techniques and habitat assessments used to determine existing conditions and identify factors limiting anadromous salmonid abundance. Proper selection and implementation of the most effective site-specific habitat restoration plan, taking into consideration the unique characteristics of each project site, and conducted in cooperation with landowners and project partners, was of paramount importance to ensure each project's success.« less

  14. Short-term Hydropower Reservoir Operations in Chile's Central Interconnected System: Tradeoffs between Hydrologic Alteration and Economic Performance

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.

    2011-12-01

    Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System (CIS). Chile's CIS is structured as a mandatory pool with audited costs and therefore the economic dispatch can be formulated as a cost minimization problem. Consequently, hydropower reservoir operations are controlled by the ISO. Reservoirs with the most potential to cause short-term hydrologic alteration were identified from existing operational records. These records have also been used to validate our simulated operations. Results in terms of daily and subdaily hydrologic alteration as well as the economic performance of the CIS are presented for alternative energy matrix scenarios. Tradeoff curves representing the compromise between indicators of hydrologic alteration and economic indicators of the CIS operation are developed.

  15. Assessment of freshwater ecosystem services in the Beas River Basin, Himalayas region, India

    NASA Astrophysics Data System (ADS)

    Ncube, Sikhululekile; Beevers, Lindsay; Adeloye, Adebayo J.; Visser, Annie

    2018-06-01

    River systems provide a diverse range of ecosystem services, examples include: flood regulation (regulating), fish (provisioning), nutrient cycling (supporting) and recreation (cultural). Developing water resources through the construction of dams (hydropower or irrigation) can enhance the delivery of provisioning ecosystem services. However, these hydrologic alterations result in reductions in less tangible regulating, cultural and supporting ecosystem services. This study seeks to understand how multiple impoundments, abstractions and transfers within the upper Beas River Basin, Western Himalayas, India, are affecting the delivery of supporting ecosystem services. Whilst approaches for assessing supporting ecosystem services are under development, the immediate aim of this paper is to set out a framework for their quantification, using the macroinvertebrate index Lotic-Invertebrate Index for Flow Evaluation (LIFE). LIFE is a weighted measure of the flow velocity preferences of the macroinvertebrate community. Flow records from multiple gauging stations within the basin were used to investigate flow variability at seasonal, inter-annual and decadal time scales. The findings show that both mean monthly and seasonal cumulative flows have decreased over time in the Beas River Basin. A positive hydroecological relationship between LIFE and flow was also identified, indicative of macroinvertebrate response to seasonal changes in the flow regime. For example, high LIFE scores (7.7-9.3) in the winter and summer seasons indicate an abundance of macroinvertebrates with a preference for high flows; this represents a high potential for instream supporting ecosystem services delivery. However, further analysis is required to understand these hydroecological interactions in the study basin and the impact on instream supporting ecosystem services delivery.

  16. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    NASA Astrophysics Data System (ADS)

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  17. Relation of physical and chemical characteristics of streams to fish communities in the Red River of the North basin, Minnesota and North Dakota, 1993-95

    USGS Publications Warehouse

    Goldstein, R.M.; Stauffer, J.C.; Larson, P.R.; Lorenz, D.L.

    1996-01-01

    Within the instream habitat data set, measures of habitat volume (channel width and depth) and habitat diversity were most significant in explaining the variability of the fish communities. The amount of nonagricultural land and riparian zone integrity from the terrestrial habitat data set were also useful in explaining fish community composition. Variability of mean monthly discharge and the frequency of high and low discharge events during the three years prior to fish sampling were the most influential of the hydrologic variables.The first two axes of the canonical correspondence analysis accounted for 43.3 percent of the variation in the fish community and 52.5 percent of the variation in the environmental-species relation. Water-quality indicators such as the percent of fine material in suspended sediment, minimum dissolved oxygen concentrations, minimum concentrations of dissolved organic carbon, and the range of concentrations of major ions and nutrients were the variables that were most important in the canonical correspondence analysis of water-quality data with fish. No single environmental variable or data set appeared to be more important than another in explaining variation in the fish community. The environmental factors affecting the fish communities of the Red River of the North are interrelated. For the most part, instream environmental conditions (instream habitat, hydrology, and water chemistry) appear to be more important in explaining variability in fish community composition than factors related to the agricultural nature of the basin.

  18. Biological assessment of the lower Boise River, October 1995 through January 1998, Ada and Canyon Counties, Idaho

    USGS Publications Warehouse

    Mullins, William H.

    1999-01-01

    The lower Boise River, between Lucky Peak Dam and the mouth of the river near Parma, Idaho, is adversely affected by various land- and water-use activities. To assess the biotic integrity of the river and the effects of environmental perturbations on aquatic community structure, and to provide a baseline from which to identify future changes in habitat conditions, biological data were collected from October 1995 through January 1998 and evaluated using protocols developed for the U.S. Geological Survey National Water-Quality Assessment Program. Aquatic biological communities were sampled according to the following schedule: epilithic periphyton were collected in October 1995, October 1996, and August 1997; benthic macroinvertebrates were collected in October 1995, 1996, and 1997; and fish were collected in December 1996 and August 1997. Qualitative measurements of instream and riparian habitat indicated an overall decrease in instream habitat quality in a downstream direction. Embeddedness was high at all sites but was lower at the Eckert Road site than at the downstream sites near Middleton and Parma. Silt/sand substrate increased from 17 percent at the Eckert Road site to 49 percent near the mouth of the river. The Eckert Road site had a mix of geomorphic channel units (pool/riffle/run), whereas the Middleton and Parma sites were dominated by runs with very little pool or riffle habitat. Epilithic periphyton chlorophyll-a and ashfree dry weight values tended to increase downstream to the Middleton site and decrease from Middleton to the downstream sites near Caldwell and near Parma. Benthic index of biotic integrity (B-IBI) scores for macroinvertebrates collected in 1995, 1996, and 1997 were highest at the Eckert Road site and decreased at sites downstream. IBI scores for fish collected in 1996 were similar at the Glenwood Bridge and Middleton sites (17 and 16, respectively) and were indicative of a low to moderate level of disturbance. In contrast, the IBI score of 6 at the site near Parma was markedly lower and was indicative of more degraded conditions.

  19. SCIMAP: Modelling Diffuse Pollution in Large River Basins

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Heathwaite, L.; Lane, S. N.; Reaney, S. M.

    2009-12-01

    Polluted rivers are a problem for the plants and animals that require clean water to survive. Watershed scale processes can influence instream aquatic ecosystems by delivering fine sediment, solutes and organic matter from diffuse sources. To improve our rivers we need to identify the pollution sources. Models can help us to do this but these rarely address the extent to which risky land uses are hydrologically-connected, and hence able to deliver, to the drainage network. Those that do tend to apply a full hydrological scheme, which is unfeasible for large watersheds. Here we develop a risk-based modelling framework, SCIMAP, for diffuse pollution from agriculture (Nitrate, Phosphate and Fine Sediment). In each case the basis of the analysis is the joint consideration of the probability of a unit of land (25 m2 cell) producing a particular environmental risk and then of that risk reaching the river. The components share a common treatment of hydrological connectivity but differ in their treatment of each pollution type. We test and apply SCIMAP using spatially-distributed instream water quality data for some of the UK’s largest catchments to infer the processes and the associated process parameters that matter in defining their concentrations. We use these to identify a series of risky field locations, where this land use is readily connected to the river system by overland flow.

  20. Case Study-Removal and Restoration of In-stream Sediment Ponds

    EPA Pesticide Factsheets

    Presentation from 2011 on goals and objectives of Case study was to restore impacted streams to a proper dimension, pattern, and profile with an emphasis on restoration of stream and riparian habitats.

  1. Indicators: Shallow Water Habitat/In-stream Fish Habitat

    EPA Pesticide Factsheets

    Shallow water habitat, also referred to as in-stream fish habitat, refers to areas that fish and other aquatic organisms need for concealment, breeding and feeding. This includes large woody snags, boulders, rock ledges, and undercut banks.

  2. Estimated water use, by county, in North Carolina, 1995

    USGS Publications Warehouse

    Walters, D.A.

    1997-01-01

    Data on water use in North Carolina were compiled for 1995 as part of a cooperative agreement between the U.S. Geological Survey and the Division of Water Resources of the North Carolina Department of Environment and Natural Resources. Data were compiled from a number of Federal, State, and private sources for the offstream water-use categories of public supply, domestic, commercial, industrial, mining, livestock, irrigation, and thermoelectric-power generation. Data also were collected for instream use from hydroelectric facilities. Total withdrawals (fresh and saline) during 1995 were an estimated 9,286 million gallons per day for the offstream water-use categories. About 94 percent of the water withdrawn was from surface water. Thermoelectric-power generation accounted for 80 percent of all withdrawals. Instream water use for hydroelectric-power generation totaled about 56,400 million gallons per day. Each water-use category is summarized in this report by county and source of water supply.

  3. Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998

    USGS Publications Warehouse

    Paschke, Suzanne S.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    Drainage from abandoned and inactive mines and from naturally mineralized areas in the San Juan Mountains of southern Colorado contributes metals to the upper Animas River near Silverton, Colorado. Tracer-injection studies and associated synoptic sampling were performed along two reaches of the upper Animas River to develop detailed profiles of stream discharge and to locate and quantify sources of metal loading. One tracer-injection study was performed in September 1997 on the Animas River reach from Howardsville to Silverton, and a second study was performed in August 1998 on the stream reach from Eureka to Howardsville. Drainage in the upper Animas River study reaches contributed aluminum, calcium, copper, iron, magnesium, manganese, sulfate, and zinc to the surface-water system in 1997 and 1998. Colloidal aluminum, dissolved copper, and dissolved zinc were attenuated through a braided stream reach downstream from Eureka. Instream dissolved copper concentrations were lower than the State of Colorado acute and chronic toxicity standards downstream from the braided reach to Silverton. Dissolved iron load and concentrations increased downstream from Howardsville and Arrastra Gulch, and colloidal iron remained constant at low concentrations downstream from Howardsville. Instream sulfate concentrations were lower than the U.S. Environmental Protection Agency's secondary drinking-water standard of 250 milligrams per liter throughout the two study reaches. Elevated zinc concentrations are the primary concern for aquatic life in the upper Animas River. In the 1998 Eureka to Howardsville study, instream dissolved zinc load increased downstream from the Forest Queen mine, the Kittimack tailings, and Howardsville. In the 1997 Howardsville to Silverton study, there were four primary areas where zinc load increased. First, was the increase downstream from Howardsville and abandoned mining sites downstream from the Cunningham Gulch confluence, which also was measured during the 1998 study. The second affected reach was downstream from Arrastra Gulch, where the increase in zinc load seems related to a series of right-bank inflows with low pH Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998By Suzanne S. Paschke, Briant A. Kimball, and Robert L. Runkeland elevated dissolved zinc concentrations. A third increase in zinc load occurred 6,100 meters downstream from the 1997 injection site and may have been from ground-water discharge with elevated zinc concentrations based on mass-loading graphs and the lack of visible inflow in the reach. A fourth but lesser dissolved zinc load increase occurred downstream from tailings near the Lackawanna Mill. Results of the tracer-injection studies and the effects of potential remediation were analyzed using the one- dimensional stream-transport computer code OTIS. Based on simulation results, instream zinc concentrations downstream from the Kittimack tailings to upstream from Arrastra Gulch would approach 0.16 milligram per liter (the upper limit of acute toxicity for some sensitive aquatic species) if zinc inflow concentrations were reduced by 75 percent in the stream reaches receiving inflow from the Forest Queen mine, the Kittimack tailings, and downstream from Howardsville. However, simulated zinc concentrations downstream from Arrastra Gulch were higher than approximately 0.30 milligram per liter due to numerous visible inflows and assumed ground-water discharge with elevated zinc concentrations in the lower part of the study reach. Remediation of discrete visible inflows seems a viable approach to reducing zinc inflow loads to the upper Animas River. Remediation downstream from Arrastra Gulch is more complicated because ground-water discharge with elevated zinc concentrations seems to contribute to the instream zinc load.

  4. Modeling nutrient retention at the watershed scale: Does small stream research apply to the whole river network?

    NASA Astrophysics Data System (ADS)

    Aguilera, Rosana; Marcé, Rafael; Sabater, Sergi

    2013-06-01

    are conveyed from terrestrial and upstream sources through drainage networks. Streams and rivers contribute to regulate the material exported downstream by means of transformation, storage, and removal of nutrients. It has been recently suggested that the efficiency of process rates relative to available nutrient concentration in streams eventually declines, following an efficiency loss (EL) dynamics. However, most of these predictions are based at the reach scale in pristine streams, failing to describe the role of entire river networks. Models provide the means to study nutrient cycling from the stream network perspective via upscaling to the watershed the key mechanisms occurring at the reach scale. We applied a hybrid process-based and statistical model (SPARROW, Spatially Referenced Regression on Watershed Attributes) as a heuristic approach to describe in-stream nutrient processes in a highly impaired, high stream order watershed (the Llobregat River Basin, NE Spain). The in-stream decay specifications of the model were modified to include a partial saturation effect in uptake efficiency (expressed as a power law) and better capture biological nutrient retention in river systems under high anthropogenic stress. The stream decay coefficients were statistically significant in both nitrate and phosphate models, indicating the potential role of in-stream processing in limiting nutrient export. However, the EL concept did not reliably describe the patterns of nutrient uptake efficiency for the concentration gradient and streamflow values found in the Llobregat River basin, posing in doubt its complete applicability to explain nutrient retention processes in stream networks comprising highly impaired rivers.

  5. Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first-order stream

    NASA Astrophysics Data System (ADS)

    Westhoff, M. C.; Gooseff, M. N.; Bogaard, T. A.; Savenije, H. H. G.

    2011-10-01

    Hyporheic exchange is an important process that underpins stream ecosystem function, and there have been numerous ways to characterize and quantify exchange flow rates and hyporheic zone size. The most common approach, using conservative stream tracer experiments and 1-D solute transport modeling, results in oversimplified representations of the system. Here we present a new approach to quantify hyporheic exchange and the size of the hyporheic zone (HZ) using high-resolution temperature measurements and a coupled 1-D transient storage and energy balance model to simulate in-stream water temperatures. Distributed temperature sensing was used to observe in-stream water temperatures with a spatial and temporal resolution of 2 and 3 min, respectively. The hyporheic exchange coefficient (which describes the rate of exchange) and the volume of the HZ were determined to range between 0 and 2.7 × 10-3 s-1 and 0 and 0.032 m3 m-1, respectively, at a spatial resolution of 1-10 m, by simulating a time series of in-stream water temperatures along a 565 m long stretch of a small first-order stream in central Luxembourg. As opposed to conventional stream tracer tests, two advantages of this approach are that exchange parameters can be determined for any stream segment over which data have been collected and that the depth of the HZ can be estimated as well. Although the presented method was tested on a small stream, it has potential for any stream where rapid (in regard to time) temperature change of a few degrees can be obtained.

  6. The mass distribution of coarse particulate organic matter exported from an Alpine headwater stream

    NASA Astrophysics Data System (ADS)

    Turowski, J. M.; Badoux, A.; Bunte, K.; Rickli, C.; Federspiel, N.; Jochner, M.

    2013-09-01

    Coarse particulate organic matter (CPOM) particles span sizes from 1 mm, with a dry mass less than 1 mg, to large logs and entire trees, which can have a dry mass of several hundred kilograms. Pieces of different size and mass play different roles in stream environments, from being the prime source of energy in stream ecosystems to macroscopically determining channel morphology and local hydraulics. We show that a single scaling exponent can describe the mass distribution of CPOM heavier than 0.1 g transported in the Erlenbach, a steep mountain stream in the Swiss pre-Alps. This exponent takes an average value of -1.8, is independent of discharge and valid for particle masses spanning almost seven orders of magnitude. Similarly, the mass distribution of in-stream large woody debris (LWD) in several Swiss streams can be described by power law scaling distributions, with exponents varying between -1.8 and -2.0, if all in-stream LWD is considered, and between -1.3 and -1.8 for material locked in log jams. We found similar values for in-stream and transported material in the literature. We had expected that scaling exponents are determined by stream type, vegetation, climate, substrate properties, and the connectivity between channels and hillslopes. However, none of the descriptor variables tested here, including drainage area, channel bed slope and the percentage of forested area, show a strong control on exponent value. Together with a rating curve of CPOM transport rates with discharge, the scaling exponents can be used in the design of measuring strategies and in natural hazard mitigation.

  7. Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data

    USGS Publications Warehouse

    Miller, Matthew P.; Tesoriero, Anthony J.; Capel, Paul D.; Pellerin, Brian A.; Hyer, Kenneth E.; Burns, Douglas A.

    2016-01-01

    We describe a new approach that couples hydrograph separation with high-frequency nitrate data to quantify time-variable groundwater and runoff loading of nitrate to streams, and the net in-stream fate of nitrate at the watershed-scale. The approach was applied at three sites spanning gradients in watershed size and land use in the Chesapeake Bay watershed. Results indicate that 58-73% of the annual nitrate load to the streams was groundwater-discharged nitrate. Average annual first order nitrate loss rate constants (k) were similar to those reported in both modelling and in-stream process-based studies, and were greater at the small streams (0.06 and 0.22 d-1) than at the large river (0.05 d-1), but 11% of the annual loads were retained/lost in the small streams, compared with 23% in the large river. Larger streambed area to water volume ratios in small streams result in greater loss rates, but shorter residence times in small streams result in a smaller fraction of nitrate loads being removed than in larger streams. A seasonal evaluation of k values suggests that nitrate was retained/lost at varying rates during the growing season. Consistent with previous studies, streamflow and nitrate concentration were inversely related to k. This new approach for interpreting high-frequency nitrate data and the associated findings furthers our ability to understand, predict, and mitigate nitrate impacts on streams and receiving waters by providing insights into temporal nitrate dynamics that would be difficult to obtain using traditional field-based studies.

  8. Instream cover and shade mediate avian predation on trout in semi-natural streams

    USGS Publications Warehouse

    Penaluna, Brooke E.; Dunham, Jason B.; Noakes, David L. G.

    2015-01-01

    Piscivory by birds can be significant, particularly on fish in small streams and during seasonal low flow when available cover from predators can be limited. Yet, how varying amounts of cover may change the extent of predation mortality from avian predators on fish is not clear. We evaluated size-selective survival of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in replicated semi-natural stream sections. These sections provided high (0.01 m2 of cover per m2 of stream) or low (0.002 m2 of cover per m2 of stream) levels of instream cover available to trout and were closed to emigration. Each fish was individually tagged, allowing us to track retention of individuals during the course of the 36-day experiment, which we attributed to survival from predators, because fish had no other way to leave the streams. Although other avian predators may have been active in our system and not detected, the only predator observed was the belted kingfisher Megaceryle alcyon, which is known to prey heavily on fish. In both treatments, trout >20.4 cm were not preyed upon indicating an increased ability to prey upon on smaller individuals. Increased availability of cover improved survival of trout by 12% in high relative to low cover stream sections. Trout also survived better in stream sections with greater shade, a factor we could not control in our system. Collectively, these findings indicate that instream cover and shade from avian predators can play an important role in driving survival of fish in small streams or during periods of low flow.

  9. 75 FR 30388 - Natural Currents Energy Services, LLC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... and marinas within the site. Natural Currents Red Hawk \\TM\\ Tidal In-Stream Energy Conversion (TISEC) modules would generate electricity in the free flow of the tides. The initial installations will consist...

  10. Linkages Between Nutrients and Assemblages of Macroinvertebrates and Fish in Wadeable Streams: Implication to Nutrient Criteria Development

    NASA Astrophysics Data System (ADS)

    Wang, Lizhu; Robertson, Dale M.; Garrison, Paul J.

    2007-02-01

    We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated ( P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables.

  11. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: Implication to nutrient criteria development

    USGS Publications Warehouse

    Wang, L.; Robertson, Dale M.; Garrison, P.J.

    2007-01-01

    We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated (P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables. ?? 2006 Springer Science+Business Media, Inc.

  12. Pseudo-spectral methodology for a quantitative assessment of the cover of in-stream vegetation in small streams

    NASA Astrophysics Data System (ADS)

    Hershkovitz, Yaron; Anker, Yaakov; Ben-Dor, Eyal; Schwartz, Guy; Gasith, Avital

    2010-05-01

    In-stream vegetation is a key ecosystem component in many fluvial ecosystems, having cascading effects on stream conditions and biotic structure. Traditionally, ground-level surveys (e.g. grid and transect analyses) are commonly used for estimating cover of aquatic macrophytes. Nonetheless, this methodological approach is highly time consuming and usually yields information which is practically limited to habitat and sub-reach scales. In contrast, remote-sensing techniques (e.g. satellite imagery and airborne photography), enable collection of large datasets over section, stream and basin scales, in relatively short time and reasonable cost. However, the commonly used spatial high resolution (1m) is often inadequate for examining aquatic vegetation on habitat or sub-reach scales. We examined the utility of a pseudo-spectral methodology, using RGB digital photography for estimating the cover of in-stream vegetation in a small Mediterranean-climate stream. We compared this methodology with that obtained by traditional ground-level grid methodology and with an airborne hyper-spectral remote sensing survey (AISA-ES). The study was conducted along a 2 km section of an intermittent stream (Taninim stream, Israel). When studied, the stream was dominated by patches of watercress (Nasturtium officinale) and mats of filamentous algae (Cladophora glomerata). The extent of vegetation cover at the habitat and section scales (100 and 104 m, respectively) were estimated by the pseudo-spectral methodology, using an airborne Roli camera with a Phase-One P 45 (39 MP) CCD image acquisition unit. The swaths were taken in elevation of about 460 m having a spatial resolution of about 4 cm (NADIR). For measuring vegetation cover at the section scale (104 m) we also used a 'push-broom' AISA-ES hyper-spectral swath having a sensor configuration of 182 bands (350-2500 nm) at elevation of ca. 1,200 m (i.e. spatial resolution of ca. 1 m). Simultaneously, with every swath we used an Analytical Spectral Device (ASD) to measure hyper-spectral signatures (2150 bands configuration; 350-2500 nm) of selected ground-level targets (located by GPS) of soil, water; vegetation (common reed, watercress, filamentous algae) and standard EVA foam colored sheets (red, green, blue, black and white). Processing and analysis of the data were performed over an ITT ENVI platform. The hyper-spectral image underwent radiometric calibration according to the flight and sensor calibration parameters on CALIGEO platform and the raw DN scale was converted into radiance scale. Ground level visual survey of vegetation cover and height was applied at the habitat scale (100 m) by placing a 1m2 netted grids (10x10cm cells) along 'bank-to-bank' transect (in triplicates). Estimates of plant cover obtained by the pseudo-spectral methodology at the habitat scale were 35-61% for the watercress, 0.4-25% for the filamentous algae and 27-51% for plant-free patches. The respective estimates by ground level visual survey were 26-50, 14-43% and 36-50%. The pseudo-spectral methodology also yielded estimates for the section scale (104 m) of ca. 39% for the watercress, ca. 32% for the filamentous algae and 6% for plant-free patches. The respective estimates obtained by hyper-spectral swath were 38, 26 and 8%. Validation against ground-level measurements proved that pseudo-spectral methodology gives reasonably good estimates of in-stream plant cover. Therefore, this methodology can serve as a substitute for ground level estimates at small stream scales and for the low resolution hyper-spectral methodology at larger scales.

  13. National Biological Service Research Supports Watershed Planning

    USGS Publications Warehouse

    Snyder, Craig D.

    1996-01-01

    The National Biological Service's Leetown Science Center is investigating how human impacts on watershed, riparian, and in-stream habitats affect fish communities. The research will provide the basis for a Ridge and Valley model that will allow resource managers to accurately predict and effectively mitigate human impacts on water quality. The study takes place in the Opequon Creek drainage basin of West Virginia. A fourth-order tributary of the Potomac, the basin falls within the Ridge and Valley. The study will identify biological components sensitive to land use patterns and the condition of the riparian zone; the effect of stream size, location, and other characteristics on fish communities; the extent to which remote sensing can reliable measure the riparian zone; and the relationship between the rate of landscape change and the structure of fish communities.

  14. Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1988.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Roger C.; Marx, Steven D.

    1989-04-01

    The goal of the Fifteenmile Creek Habitat Enhancement Project is to improve wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power Administration. Cooperators in the habitat enhancement project include the USDA Forest Service, Wasco County Soil and Water Conservation District and the Confederated Tribes of the Warms Springs. Installation of instream fish habitat structures was completed on four miles of Ramsey Creek and on one mile of Fifteenmile Creek. One hundred thirty-five structures were installed in treatment areas. Construction materials included logs andmore » rock. Riparian protection fencing was completed on Dry Creek and Ramsey Creek worksites. Five and one-half miles of new fence was added to existing fence on Ramsey Creek to afford riparian protection to four miles of stream. Six miles of stream on Dry Creek will be afforded riparian protection by constructing 4.5 miles of fence to complement existing fence. 2 refs., 5 figs.« less

  15. A Workflow to Model Microbial Loadings in Watersheds

    EPA Science Inventory

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  16. Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept

    NASA Astrophysics Data System (ADS)

    Fulton, John; Ostrowski, Joseph

    2008-07-01

    SummaryForecasting streamflow during extreme hydrologic events such as floods can be problematic. This is particularly true when flow is unsteady, and river forecasts rely on models that require uniform-flow rating curves to route water from one forecast point to another. As a result, alternative methods for measuring streamflow are needed to properly route flood waves and account for inertial and pressure forces in natural channels dominated by nonuniform-flow conditions such as mild water surface slopes, backwater, tributary inflows, and reservoir operations. The objective of the demonstration was to use emerging technologies to measure instantaneous streamflow in open channels at two existing US Geological Survey streamflow-gaging stations in Pennsylvania. Surface-water and instream-point velocities were measured using hand-held radar and hydroacoustics. Streamflow was computed using the probability concept, which requires velocity data from a single vertical containing the maximum instream velocity. The percent difference in streamflow at the Susquehanna River at Bloomsburg, PA ranged from 0% to 8% with an average difference of 4% and standard deviation of 8.81 m 3/s. The percent difference in streamflow at Chartiers Creek at Carnegie, PA ranged from 0% to 11% with an average difference of 5% and standard deviation of 0.28 m 3/s. New generation equipment is being tested and developed to advance the use of radar-derived surface-water velocity and instantaneous streamflow to facilitate the collection and transmission of real-time streamflow that can be used to parameterize hydraulic routing models.

  17. Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept

    USGS Publications Warehouse

    Fulton, J.; Ostrowski, J.

    2008-01-01

    Forecasting streamflow during extreme hydrologic events such as floods can be problematic. This is particularly true when flow is unsteady, and river forecasts rely on models that require uniform-flow rating curves to route water from one forecast point to another. As a result, alternative methods for measuring streamflow are needed to properly route flood waves and account for inertial and pressure forces in natural channels dominated by nonuniform-flow conditions such as mild water surface slopes, backwater, tributary inflows, and reservoir operations. The objective of the demonstration was to use emerging technologies to measure instantaneous streamflow in open channels at two existing US Geological Survey streamflow-gaging stations in Pennsylvania. Surface-water and instream-point velocities were measured using hand-held radar and hydroacoustics. Streamflow was computed using the probability concept, which requires velocity data from a single vertical containing the maximum instream velocity. The percent difference in streamflow at the Susquehanna River at Bloomsburg, PA ranged from 0% to 8% with an average difference of 4% and standard deviation of 8.81 m3/s. The percent difference in streamflow at Chartiers Creek at Carnegie, PA ranged from 0% to 11% with an average difference of 5% and standard deviation of 0.28 m3/s. New generation equipment is being tested and developed to advance the use of radar-derived surface-water velocity and instantaneous streamflow to facilitate the collection and transmission of real-time streamflow that can be used to parameterize hydraulic routing models.

  18. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    NASA Astrophysics Data System (ADS)

    Beaulieu, J. J.; Mayer, P. M.; Kaushal, S.; Pennino, M. J.; Arango, C. P.; Balz, D. A.; Fritz, K. M.; Golden, H. E.; Knightes, C. D.

    2012-12-01

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to facilitate above ground development or stormwater runoff. We predicted that burial suppresses the capacity of streams to retain and transform nitrate, the dominate form of bioavailable N in urban streams, by eliminating primary production, reducing respiration rates, and decreasing water residence time. We tested these predictions by measuring whole-stream nitrate (NO3-) removal rates using 15NO3- isotope tracer releases in reaches that were buried and open to the sunlight in three streams in Cincinnati, Ohio and three streams in Baltimore, Maryland during four seasons. Nitrate uptake lengths in buried reaches (range: 560 - 43,650 m) were 2-98 times greater than open reaches exposed to daylight (range: 85 - 7195 m), indicating that buried reaches were substantially less effective at retaining NO3- than open reaches. Nitrate retention in buried reaches was suppressed by a combination of hydrological and biological processes. High water velocities in buried reaches (buried= 5.8 m/s, open=1.48 m/s) rapidly exported NO3- from the channel, reducing the potential for in-stream NO3- retention. Uptake lengths in the buried reaches were lengthened further by low in-stream biological NO3- demand, as indicated by NO3- uptake velocities 16-fold lower than that of the open reaches. Similarly, buried reaches had lower ecosystem respiration rates than open reaches (buried=1.5g O2/m2/hr, open=4.5g O2/m2/hr), likely due to lower organic matter standing stocks (buried=12 gAFMD/m2, open=48 gAFDM/m2). Biological activity in the buried reaches was further suppressed by the absence of light which precluded photosynthetic activity and the associated assimilative N demand. Overall, our results demonstrate that the combined effects of elevated water velocity and reduced biological activity as a result of stream burial inhibits NO3- retention, exacerbating the export of excess N to downstream water bodies. Future work will scale these results to a river network to assess the cumulative effect of stream burial on watershed NO3- export.

  19. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of adaptive monitoring. We suspect our situation is not unique and many programs may suffer from the same inferential disconnect. Commonly, the survey design is optimized for robust estimates of regional status and trend detection and not necessarily to provide statistical inferences on the causal mechanisms outlined in the conceptual model, even though these relationships are typically used to justify and promote the long-term monitoring of a chosen ecological indicator. Our application demonstrates a process for empirical evaluation of conceptual models and exemplifies the need for such interim assessments in order for programs to evolve and persist.

  20. Consideration of exposure and species sensitivity of triclosan in the freshwater environment.

    PubMed

    Capdevielle, Marie; Van Egmond, Roger; Whelan, Mick; Versteeg, Donald; Hofmann-Kamensky, Matthias; Inauen, Josef; Cunningham, Virginia; Woltering, Daniel

    2008-01-01

    Triclosan (TCS) is a broad-spectrum antimicrobial used in consumer products including toothpaste and hand soap. After being used, TCS is washed or rinsed off and residuals that are not biodegraded or otherwise removed during wastewater treatment can enter the aquatic environment in wastewater effluents and sludges. The environmental exposure and toxicity of TCS has been the subject of various scientific and regulatory discussions in recent years. There have been a number of publications in the past 5 y reporting toxicity, fate and transport, and in-stream monitoring data as well as predictions from aquatic risk assessments. State-of-the-science probabilistic exposure models, including Geography-referenced Regional Exposure Assessment Tool for European Rivers (GREAT-ER) for European surface waters and Pharmaceutical Assessment and Transport Evalutation (PhATE) for US surface waters, have been used to predict in-stream concentrations (PECs). These models take into account spatial and temporal variability in river flows and wastewater emissions based on empirically derived estimates of chemical removal in wastewater treatment and in receiving waters. These model simulations (based on realistic use levels of TCS) have been validated with river monitoring data in areas known to be receiving high wastewater loads. The results suggest that 90th percentile (low flow) TCS concentrations are less than 200 ng/L for the Aire-Calder catchment in the United Kingdom and between 250 ng/L (with in-stream removal) and 850 ng/L (without in-stream removal) for a range of US surface waters. To better identify the aquatic risk of TCS, a species sensitivity distribution (SSD) was constructed based on chronic toxicity values, either no observed effect concentrations (NOECs) or various percentile adverse effect concentrations (EC10-25 values) for 14 aquatic species including fish, invertebrates, macrophytes, and algae. The SSD approach is believed to represent a more realistic threshold of effect than a predicted no effect concentration (PNEC) based on the data from the single most sensitive species tested. The log-logistic SSD was used to estimate a PNEC, based on an HC5,50 (the concentration estimated to affect the survival, reproduction and/or growth of 5% of species with a 50% confidence interval). The PNEC for TCS was 1,550 ng/L. Comparing the SSD-based PNEC with the PECs derived from GREATER and PhATE modeling to simulate in-river conditions in Europe and the United States, the PEC to PNEC ratios are less than unity suggesting risks to pelagic species are low even under the highest likely exposures which would occur immediately downstream of wastewater treatment plant (WWTP) discharge points. In-stream sorption, biodegradation, and photodegradation will further reduce pelagic exposures of TCS. Monitoring data in Europe and the United States corroborate the modeled PEC estimates and reductions in TCS concentrations with distance downstream of WWTP discharges. Environmental metabolites, bioaccumulation, biochemical responses including endocrine-related effects, and community level effects are far less well studied for this chemical but are addressed in the discussion. The aquatic risk assessment for TCS should be refined as additional information becomes available.

  1. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    NASA Astrophysics Data System (ADS)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations.

  2. Using Streamflow as a Predictor of Biotic Health in the Upper Oconee Watershed

    EPA Science Inventory

    Macroinvertebrates are commonly used as biological indicators of stream habitat and water quality. Chronic reduced streamflows can have a significant impact on biota, decreasing in-stream habitat and influencing water quality. Many aquatic macroinvertebrates are sensitive to chan...

  3. Identification of techniques to meet pH standard during in-stream construction.

    DOT National Transportation Integrated Search

    2014-03-01

    Many of Marylands tributaries traverse highway infrastructure via culverts that are managed : and maintained by SHA. These culverts are often made of galvanized steel and over time are : subjected to scour. Concrete grout is often used as a repair...

  4. USER'S MANUAL FOR THE INSTREAM SEDIMENT-CONTAMINANT TRANSPORT MODEL SERATRA

    EPA Science Inventory

    This manual guides the user in applying the sediment-contaminant transport model SERATRA. SERATRA is an unsteady, two-dimensional code that uses the finite element computation method with the Galerkin weighted residual technique. The model has general convection-diffusion equatio...

  5. PACIFIC NORTHWEST SIDE-BY-SIDE PROTOCOL COMPARISON TEST

    EPA Science Inventory

    Eleven state, tribal, and federal agencies participated during summer 2005 in a side-by-side comparison of protocols used to measure common in-stream physical attributes to help determine which protocols are best for determining status and trend of stream/watershed condition. Th...

  6. EFFECTS OF SENSOR RESOLUTION ON MAPPING IN-STREAM HABITATS. (R827638)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Performance of National Maps of Watershed Integrity at Watershed Scales

    EPA Science Inventory

    Watershed integrity, the capacity of a watershed to support and maintain ecological processes essential to the sustainability of services provided to society, can be influenced by a range of landscape and in-stream factors. Ecological response data from four intensively monitored...

  8. A Workflow to Model Microbial Loadings in Watersheds (proceedings)

    EPA Science Inventory

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  9. Sorting Out Effects of Active Stream Restoration: Channel Morphology, Channel Change Processes and Potential Controls

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2017-12-01

    In many active restoration projects, instream structures or modifications are designed to produce specific change in channel form, such as reduced W:D or increased pool depth, yet there is little monitoring to evaluate effectiveness. Active restoration often takes place within a context of other land management changes that can have an effect on channel form. Thus, the effects of active restoration are difficult to separate from the effects of other management actions. We measured morphologic response to restoration designs on sections of the Middle Fork John Day River, a gravel-cobble bed river under a cattle grazing regime in the Blue Mountain of Oregon. Since 2000, restoration actions have included elimination of cattle grazing in the riparian zone (passive restoration), riparian planting of woody vegetation, instream log structures for fish habitat and pool maintenance, and elimination of a major flow diversion. We listed the hypothetical effects of each of these management changes, showing overlap among effects of active and passive restoration. Repeat cross-section and longitudinal profile surveys over eight years, and repeat aerial imagery, documented changes in channel width, depth and bed morphology, and processes of change (bank erosion or aggradation, point bar erosion or aggradation, bed incision or aggradation), in two restored reaches and two adjacent control (unrestored) reaches. Morphologic changes were modest. Bankfull cross-section area, width, and W:D all decreased slightly in both restored reaches. Control reaches were unchanged or increased slightly. Processes of change were markedly different among the four reaches, with different reaches dominated by different processes. One restored reach was dominated by slight bed aggradation, increased pool depth and deep pools/km, while the other restored reach was dominated by bank erosion, bar aggradation and slight bed incision, along with increased deep pools/km. The longitudinal profile showed significant re-arrangement of bed morphology. The spatial context of processes and controls allows some separation of the effectiveness of different management actions. Active restoration directly increased pool depth, but passive restoration apparently had more impact on aggradation/degradation and width.

  10. In-stream biotic control on nutrient biogeochemistry in a forested sheadwater tream, West Fork of Walker Branch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Brian J; Mulholland, Patrick J

    2007-01-01

    A growing body of evidence demonstrates the importance of in-stream processing in regulating nutrient export, yet the influence of temporal variability in stream metabolism on net nutrient uptake has not been explicitly addressed. Streamwater DIN and SRP concentrations in Walker Branch, a first-order deciduous forest stream in eastern Tennessee, show a repeated pattern of annual maxima in summer and biannual minima in spring and autumn. Temporal variations in catchment hydrologic flowpaths result in lower winter and higher summer nutrient concentrations, but do not explain the spring and autumn nutrient minima. Ambient nutrient uptake rates were measured 2-3 times per weekmore » over an 18-mo period and compared to daily rates of gross primary production (GPP) and ecosystem respiration (ER) to examine the influence of in-stream biotic activity on nutrient export. GPP and ER rates explained 85% of the variation in net DIN retention with high net NO3- uptake (and lower net NH4+ release) rates occurring during spring and autumn and net DIN release in summer. Diel nutrient concentration patterns were examined several times throughout the year to determine the relative importance of autotrophic and heterotrophic activity on net nutrient uptake. High spring GPP corresponded to daily decreases in NO3- over the illuminated hours resulting in high diel NO3- amplitude which dampened as the canopy closed. GPP explained 91% of the variance in diel NO3- amplitude. In contrast, the autumn nutrient minima was largely explained by heterotrophic respiration since GPP remained low and little diel NO3- variation was observed during the autumn.« less

  11. Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment

    NASA Astrophysics Data System (ADS)

    Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia

    2018-03-01

    Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.

  12. Estimated water use in Montana in 2000

    USGS Publications Warehouse

    Cannon, M.R.; Johnson, Dave R.

    2004-01-01

    The future health and economic welfare of Montana's population is dependent on a continuing supply of fresh water. Montana's finite water resources are being stressed by increasing water withdrawals and instream-flow requirements. Various water managers in Montana need comprehensive, current, and detailed water-use data to quantify current stresses and estimate and plan for future water needs. This report summarizes selected water-use data for all of Montana's counties and stream basins to help meet those needs. In 2000, the citizens of Montana withdrew and used about 10,749 million gallons per day (Mgal/d) of water from Montana's streams and aquifers. Withdrawals from surface water were about 10,477 Mgal/d and withdrawals from ground water were about 272 Mgal/d. Agricultural irrigation accounted for about 10,378 Mgal/d or about 96.5 percent of total withdrawals for all uses. Withdrawals for public supply were about 136 Mgal/d, self-supplied domestic withdrawals were about 23 Mgal/d, self-supplied industrial withdrawals were about 61 Mgal/d, withdrawals for thermoelectric power generation were about 110 Mgal/d, and withdrawals for livestock were about 41 Mgal/d. Total consumptive use of water in 2000 was about 2,370 Mgal/d, of which about 2,220 Mgal/d (93.6 percent) was for agricultural irrigation. Instream uses of water included hydroelectric power generation and maintenance of instream flows for conservation of wildlife and aquatic life, and for public recreational purposes. In 2000, about 74,486 Mgal/d was used at hydroelectric plants for generation of about 11,591 gigawatt-hours of electricity. Evaporation from large water bodies, although not a classified water use, accounts for a large loss of water in some parts of the State. Net evaporation from Montana's 60 largest reservoirs and regulated lakes averaged about 891 Mgal/d.

  13. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  14. Climate Change Impacts on Sediment Transport In a Lowland Watershed System: Controlling Processes and Projection

    NASA Astrophysics Data System (ADS)

    al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.

    2017-12-01

    Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.

  15. Conducting a FERC environmental assessment: a case study and recommendations from the Terror Lake Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, S.W.; Lamb, B.L.

    This paper is an account of the process that evolved during acquisition of the license to operate the Terror Lake hydroelectric power project under the auspices of the Federal Energy Regulatory Commission (FERC). The Commission is responsible for granting these licenses under the Federal Power Act (16 U.S.C. 792 et seq.). This act provides, in part, that FERC may condition a license to protect the public interest. The public interest in these cases has come to include both instream and terrestrial values. The Terror River is located on Kodiak Island in Alaska. The river is within the Kodiak National Wildlifemore » Refuge; it supports excellent runs of several species of Pacific Salmon which are both commercially important and a prime source of nutrition for the Kodiak brown bear. The river is also a prime resource for generating electric power. One major concern in the negotiations was the impact of land disturbance and management practices on brown bear habitat - i.e., protection of the brown bear. Maintenance of the bears' habitat is the main purpose of the Kodiak National Wildlife Refuge. But, like many other projects, resolving the instream flow issue was of major importance in the issuance of the FERC license. This paper discusses the fish and wildlife questions, but concentrates on instream uses and how protection of these uses was decided. With this as a focus, the paper explains the FERC process, gives a history of the Terror Lake Project, and, ultimately, makes recommendations for improved management of controversies within the context of the FERC licensing procedures. 65 references.« less

  16. Increasing in-stream nitrogen concentrations under different bioenergy crop management practices in central Germany

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Thraen, Daniela; Rode, Michael

    2015-04-01

    Understanding how nitrogen fluxes respond to changes in land use and agriculture practices is crucial for improving instream water quality prediction. In central Germany, expansion of bioenergy crops such as maize and rape for ethanol production during the last decade led to increasing of fertilizer application rates. To examine the effect of these changes, surface water quality of a drinking water reservoir catchment was investigated for more than 30 years. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% agricultural land use with significant changes in agricultural practices within the investigation period. For the period 2004-2012, the share of maize and rape has been increased by 52% and 20%, respectively, for enhancing bioenergy production. To achieve our gaols, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was calibrated for discharge and inorganic nitrogen concentrations (IN) during the period 1997-2000.The model was validated successfully (with lowest performance of NSE = 0.78 and PBIAS = 3.74% for discharge) for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates. Results showed that the HYPE model reproduced reasonably well discharge and IN daily loads (with lowest NSE = 0.64 for IN-load). In addition, the HYPE model was evaluated successfully to predict the discharge and IN concentrations for the period 2004-2012, where detailed input data in terms of crops management (field-specific survey) have been considered. Land use and crop rotations scenarios, with high hypothetical percentage of acceptance by the farmers, revealed that continuous conversion of agricultural land into bioenergy crops, will most likely, lead to an enrichment of in-stream nitrogen, especially after spring storms.

  17. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change

    PubMed Central

    Lind, Lovisa; Nilsson, Christer; Weber, Christine

    2014-01-01

    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns. PMID:25505542

  18. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Weber, Christine

    2014-11-01

    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.

  19. IN-STREAM AND WATERSHED PREDICTORS OF GENETIC DIVERSITY, EFFECTIVE POPULATION SIZE AND IMMIGRATION ACROSS RIVER-STREAM NETWORKS

    EPA Science Inventory

    The influence of spatial processes on population dynamics within river-stream networks is poorly understood. Utilizing spatially explicit analyses of temporal genetic variance, we examined whether persistence of Central Stonerollers (Campostoma anomalum) reflects differences in h...

  20. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    USDA-ARS?s Scientific Manuscript database

    Controls on baseflow nutrient concentrations in agroecosystems are poorly characterized in comparison with storm events. However, in landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can drive deleterious environm...

  1. QUANTIFYING THE RELATIONSHIPS BETWEEN LANDSCAPE IMPERVIOUSNESS AND AQUATIC BIOLOGICAL COMMUNITY RESPONSE

    EPA Science Inventory

    The relationship between landscape impervious surface area and instream biological integrity was investigated for watersheds in the Eastern CornBelt Plains ecoregion (ECBP) in western Ohio. Landsat TM imagery was classified to create an impervious surface map for the ECBP. The ac...

  2. Identification of techniques to meet pH standard during in-stream construction : research summary.

    DOT National Transportation Integrated Search

    2014-03-01

    Many of Marylands tributaries traverse highway infrastructure via culverts that are managed : and maintained by SHA. These culverts are often made of galvanized steel and over time are : subjected to scour. Concrete grout is often used as a repair...

  3. Results of Boron, Surfactant, and Cyanide Investigation, Beale AFB, California

    DTIC Science & Technology

    1991-07-01

    ensure that their discharge does not produce instream toxicity. The Discharger shall carry-out the biotoxicity monitoring program in accordance with...Discharger shall implement the approved biotoxicity monitoring program. d. The Discharger shall submit the results of the biotoxicity monitoring program to

  4. Terrestrial laser scanning for delineating in-stream boulders and quantifying habitat complexity measures

    USDA-ARS?s Scientific Manuscript database

    Accurate stream topography measurement is important for many ecological applications such as hydraulic modeling and habitat characterization. Habitat complexity measures are often made using total station surveying or visual approximation, which can be subjective and have spatial resolution limitati...

  5. 40 CFR 131.12 - Antidegradation policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... minimum, be consistent with the following: (1) Existing instream water uses and the level of water quality... waters exceed levels necessary to support propagation of fish, shellfish, and wildlife and recreation in... continuing planning process, that allowing lower water quality is necessary to accommodate important economic...

  6. Multi-scale assessment of human-induced changes to Amazonian instream habitats

    EPA Science Inventory

    Context: Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.Objectives: Determine the degree to which ph...

  7. Evaluation of the instream flow incremental methodology by U.S. Fish and Wildlife Service field users

    USGS Publications Warehouse

    Armour, Carl L.; Taylor, Jonathan G.

    1991-01-01

    This paper summarizes results of a survey conducted in 1988 of 57 U.S. Fish and Wildlife Service field offices. The purpose was to document opinions of biologists experienced in applying the Instream Flow Incremental Methodology (IFIM). Responses were received from 35 offices where 616 IFIM applications were reported. The existence of six monitoring studies designed to evaluate the adequacy of flows provided at sites was confirmed. The two principal categories reported as stumbling blocks to the successful application of IFIM were beliefs that the methodology is technically too simplistic or that it is too complex to apply. Recommendations receiving the highest scores for future initiatives to enhance IFIM use were (1) training and workshops for field biologists; and (2) improving suitability index (SI) curves and computer models, and evaluating the relationship of weighted useable area (WUA) to fish responses. The authors concur that emphasis for research should be on addressing technical concerns about SI curves and WUA.

  8. Selected Physical, Chemical, and Biological Data for 30 Urbanizing Streams in the North Carolina Piedmont Ecoregion, 2002-2003

    USGS Publications Warehouse

    Giddings, E.M.; Moorman, Michelle; Cuffney, Thomas F.; McMahon, Gerard; Harned, Douglas A.

    2007-01-01

    This report provides summarized physical, chemical, and biological data collected during a study of the effects of urbanization on stream ecosystems as part of the U.S. Geological Survey's National Water-Quality Assessment study. The purpose of this study was to examine differences in biological, chemical, and physical characteristics of streams across a gradient of urban intensity. Thirty sites were selected along an urbanization gradient that represents conditions in the North Carolina Piedmont ecoregion, including the cities of Raleigh, Durham, Cary, Greensboro, Winston-Salem, High Point, Asheboro, and Oxford. Data collected included streamflow variability, stream temperature, instream chemistry, instream aquatic habitat, and collections of the algal, macroinvertebrate, and fish communities. In addition, ancillary data describing land use, socioeconomic conditions, and urban infrastructure were compiled for each basin using a geographic information system analysis. All data were processed and summarized for analytical use and are presented in downloadable data tables, along with the methods of data collection and processing.

  9. Management of adverse effects of a public water supply well field on the aquatic habitat of a stratified drift stream in eastern Connecticut.

    PubMed

    Nadim, Farhad; Bagtzoglou, Amvrossios C; Baun, Sandrine A; Warner, Glenn S; Ogden, Fred; Jacobson, Richard A; Parasiewicz, Piotr

    2007-01-01

    A study was conducted to determine the effect of water withdrawals from the University of Connecticut's (Storrs) water supply wells on the fisheries habitat of the Fenton River adjacent to the well field. The study was designed to investigate the relationships between in-stream flow and selected fish habitat in the section of the Fenton River situated in the main zone of influence of the pumping field. With the aid of historical data, new data collection, and mathematical simulation modeling, the relation between the magnitude and timing of groundwater withdrawals on the stage and flow of water in the stream was derived. Fish sampling and habitat modeling were used to assess the effects of human influence on certain reaches of the Fenton River. Among the various water management scenarios studied, several are presented that would optimize water withdrawals, while minimizing adverse effects on the stream flow and in-stream habitat.

  10. Interaction of fine sediment with alluvial streambeds

    USGS Publications Warehouse

    Jobson, Harvey E.; Carey, William P.

    1989-01-01

    More knowledge is needed about the physical processes that control the transport of fine sediment moving over an alluvial bed. The knowledge is needed to design rational sampling and monitoring programs that assess the transport and fate of toxic substances in surface waters because the toxics are often associated with silt- and clay-sized particles. This technical note reviews some of the past research in areas that may contribute to an increased understanding of the processes involved. An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. Alluvial flow tends to segregate the deposited material according to size and density. Some of the storage locations are temporary, but some can store the fine sediment for very long periods of time.

  11. Dendritic network models: Improving isoscapes and quantifying influence of landscape and in-stream processes on strontium isotopes in rivers

    USGS Publications Warehouse

    Brennan, Sean R.; Torgersen, Christian E.; Hollenbeck, Jeff P.; Fernandez, Diego P.; Jensen, Carrie K; Schindler, Daniel E.

    2016-01-01

    A critical challenge for the Earth sciences is to trace the transport and flux of matter within and among aquatic, terrestrial, and atmospheric systems. Robust descriptions of isotopic patterns across space and time, called “isoscapes,” form the basis of a rapidly growing and wide-ranging body of research aimed at quantifying connectivity within and among Earth's systems. However, isoscapes of rivers have been limited by conventional Euclidean approaches in geostatistics and the lack of a quantitative framework to apportion the influence of processes driven by landscape features versus in-stream phenomena. Here we demonstrate how dendritic network models substantially improve the accuracy of isoscapes of strontium isotopes and partition the influence of hydrologic transport versus local geologic features on strontium isotope ratios in a large Alaska river. This work illustrates the analytical power of dendritic network models for the field of isotope biogeochemistry, particularly for provenance studies of modern and ancient animals.

  12. 40 CFR 131.12 - Antidegradation policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... QUALITY STANDARDS Establishment of Water Quality Standards § 131.12 Antidegradation policy. (a) The State... minimum, be consistent with the following: (1) Existing instream water uses and the level of water quality... and on the water, that quality shall be maintained and protected unless the State finds, after full...

  13. EVALUATING THE ACCOTINK CREEK RESTORATION PROJECT FOR IMPROVING WATER QUALITY, IN-STREAM HABITAT, AND BANK STABILITY

    EPA Science Inventory

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy me...

  14. Assessing the condition of riverine systems using multimetric indices: An example from Oregon's Calapooia basin

    EPA Science Inventory

    Streams and rivers of the Western United States are susceptible to the combined influences of climate change and an expanding human population. Empirical tools for assessing instream conditions play a critical role in monitoring change, preventing degradation, and mitigating imp...

  15. Using Model Comparisons to Understand Sources of Nitrogen Delivered to US Coastal Areas

    EPA Science Inventory

    Nitrogen loading to water bodies can result in eutrophication-related hypoxia and degraded water quality. The relative contributions of different anthropogenic and natural sources of in-stream N cannot be directly measured at whole-watershed scales; hence, N source attribution e...

  16. Synchronicity of long-term nitrate patterns in forested catchments across the northeastern U.S.

    EPA Science Inventory

    Nitrogen movement through minimally-disturbed catchments can be affected by a variety of biogeochemical processes, climatic effects, hydrology and in-stream or in-lake processes. These combine to create dizzying complexity in long-term and seasonal nitrate patterns, with adjacen...

  17. EFFECTIVENESS OF LARGE WOODY DEBRIS IN STREAM REHABILITATION PROJECTS IN URBAN BASINS. (R825284)

    EPA Science Inventory

    Urban stream rehabilitation projects commonly include log placement to establish the types of habitat features associated with large woody debris (LWD) in undisturbed streams. Six urban in-stream rehabilitation projects were examined in the Puget Sound Lowland of western Washi...

  18. THE INFLUENCE OF FOREST FRAGMENTATION AND OTHER ENVIRONMENTAL FACTORS ON LAKE SUPERIOR STREAM FISH ASSEMBLAGE

    EPA Science Inventory

    As part of a comparative watershed project investigating land cover/land use disturbance gradients for streams in the western Lake Superior region, we wanted to determine the relative influence of hydrogeomorphic region, forest fragmentation, watershed storage, and in-stream habi...

  19. THE INFLUENCE OF FOREST FRAGMENTATION AND OTHER ENVIRONMENTAL FACTORS ON LAKE SUPERIOR STREAM FISH ASSEMBLAGES

    EPA Science Inventory

    As part of a comparative watershed project investigation land cover/land use disturbance gradients for streams in the western Lake Superior region, we wanted to determine the relative influence of hydrogeomorphic region, forest fragmentation, watershed storage and in-stream habit...

  20. Continuous instream monitoring of nutrients and sediment in the agricultural watersheds

    USDA-ARS?s Scientific Manuscript database

    Pollutants concentrations and loads in the watersheds vary considerably with time and space. Accurate and timely information on the magnitude of pollutants in water resources is a pre-requisite for understanding the drivers of the pollutant loads and making informed water resource management decisio...

  1. Woody Debris: Denitrification Hotspots and N2O Production in Fluvial Systems

    EPA Science Inventory

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and control nitrous oxide (N2O) production. We examined the effects of ...

  2. Assessing the effectiveness and environmental impacts of using natural flocculants to manage turbidity.

    DOT National Transportation Integrated Search

    2005-08-01

    The objective of this research was to determine the feasibility of using chitosan as a natural flocculant to control : turbidity during in-stream construction work. A series of field tests in Oak Creek, Corvallis, OR were conducted in : order to test...

  3. THE INFLUENCE OF SUBURBAN LAND USE ON HABITAT AND BIOTIC INTEGRITY OF COASTAL RHODE ISLAND STREAMS

    EPA Science Inventory

    Watershed land use in suburban areas can affect stream biota through degradation of instream habitat, water quality, and riparian vegetation. By monitoring stream biotic communities in various geographic regions, we can better understand and conserve our watershed ecosystems. The...

  4. HOME ON THE BIG RIVER: ASSESSING HABITAT CONDITION IN THE GREAT RIVERS OF THE CENTRAL UNITED STATES

    EPA Science Inventory

    The Great Rivers of the mid-North American continent are important human recreational destinations and transportation corridors, and represent significant habitat. Riparian and instream habitat measures are needed to fully characterize these waterbodies and diagnose causes of de...

  5. Anomalies in Trace Metal and Rare-Earth Loads below a Waste-Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Antweiler, R.; Writer, J. H.; Murphy, S.

    2013-12-01

    The changes in chemical loads were examined for 54 inorganic elements and compounds in a 5.4-km reach of Boulder Creek, Colorado downstream of a waste water treatment plant (WWTP) outfall. Elements were partitioned into three categories: those showing a decrease in loading downstream, those showing an increase, and those which were conservative, at least over the length of the study reach. Dissolved loads which declined - generally indicative of in-stream loss via precipitation or sorption - were typically rapid (occurring largely before the first sampling site, 2.3 km downstream); elements showing this behavior were Bi, Cr, Cs, Ga, Ge, Hg, Se and Sn. These results were as expected before the experiment was performed. However, a large group (28 elements, including all the rare-earth elements, REE, except Gd) exhibited dissolved load increases indicating in-stream gains. These gains may be due to particulate matter dissolving or disaggregating, or that desorption is occurring below the WWTP. As with the in-stream loss group, the processes tended to be rapid, typically occurring before the first sampling site. Whole-water samples collected concurrently also had a large group of elements which showed an increase in load downstream of the WWTP. Among these were most of the group which had increases in the dissolved load, including all the REE (except Gd). Because whole-water samples include both dissolved and suspended particulates within them, increases in loads cannot be accounted for by invoking desorption or disaggregation mechanisms; thus, the only source for these increases is from the bed load of the stream. Further, the difference between the whole-water and dissolved loads is a measure of the particulate load, and calculations show that not only did the dissolved and whole-water loads increase, but so did the particulate loads. This implies that at the time of sampling the bed sediment was supplying a significant contribution to the suspended load. In general, it seems untenable as a hypothesis to suppose that the stream bed material can permanently supply the source of the in-stream load increases of a large group of inorganic elements. We propose that the anomalous increase in loads was more a function of the time of sampling (both diurnally and seasonally) and that sampling at different times of day or different seasons during the year would give contradictory results to those seen here. If this is so, inorganic loading studies must include multiple sampling both over the course of a day and during different seasons and flow regimes.

  6. Modeling the effects of climate and land use change on instream temperature in the Upper Tar River, North Carolina

    NASA Astrophysics Data System (ADS)

    Daraio, J. A.; Bales, J. D.

    2011-12-01

    Freshwater mussels are among the most imperiled groups of organisms in the world. Declines in abundance and diversity in North America have been attributed to a wide range of human activities, and many species occur in habitats close to their upper thermal tolerance. We are modeling instream temperature (T) as part of an effort to understand the response of imperiled freshwater mussels to anthropogenically induced changes in water T, habitat, and flow. We used the Precipitation-Runoff Modeling System (PRMS) to model projected changes in stream discharge, and the Stream Network Temperature Model (SNTEMP) to model changes in instream T due to climate and land-use change in the Upper Tar River, North Carolina, which has a drainage area of 2200 mi^2. Down-scaled gridded 12km Global Circulation Models were used for precipitation and T inputs to PRMS simulations from the present through 2060. Land-use change through 2060 in the Upper Tar basin was estimated from SLEUTH, a model that estimates land-use change using the probability of urbanization, (results available from NC State University) and incorporated into PRMS for long term simulations. Stream segment discharge and lateral and groundwater flow into each stream segment from PRMS were used as input for SNTEMP. Groundwater T was assumed equal to the average annual air T for the basin. Lateral inflow T was estimated from physical characteristics of the basin (e.g. impervious area, cover density, cover type, solar radiation, air T) when possible, or from a regression with air T based on empirical field data at 20 sites throughout the basin. In addition to T, data on mussel and fish populations (e.g., density and species composition?) and microhabitat have been collected at these sites. The SNTEMP model was calibrated using the mean daily T at each site. Nash-Sutcliffe efficiency values ranged from 0.86 to 0.94 for mean daily T, and from 0.80 to 0.93 for maximum daily T. Ensemble simulations were run for a range of climate change and land use scenarios to estimate the potential for increased instream T at each of the 20 sites. The results of these simulations will be used in conjunction with field and laboratory data on the thermal tolerances of mussels to assess the potential for elevated temperatures to adversely affect rare and common mussel populations.

  7. Influence of Climate Change on Flood Hazard using Climate Informed Bayesian Hierarchical Model in Johnson Creek River

    NASA Astrophysics Data System (ADS)

    Zarekarizi, M.; Moradkhani, H.

    2015-12-01

    Extreme events are proven to be affected by climate change, influencing hydrologic simulations for which stationarity is usually a main assumption. Studies have discussed that this assumption would lead to large bias in model estimations and higher flood hazard consequently. Getting inspired by the importance of non-stationarity, we determined how the exceedance probabilities have changed over time in Johnson Creek River, Oregon. This could help estimate the probability of failure of a structure that was primarily designed to resist less likely floods according to common practice. Therefore, we built a climate informed Bayesian hierarchical model and non-stationarity was considered in modeling framework. Principle component analysis shows that North Atlantic Oscillation (NAO), Western Pacific Index (WPI) and Eastern Asia (EA) are mostly affecting stream flow in this river. We modeled flood extremes using peaks over threshold (POT) method rather than conventional annual maximum flood (AMF) mainly because it is possible to base the model on more information. We used available threshold selection methods to select a suitable threshold for the study area. Accounting for non-stationarity, model parameters vary through time with climate indices. We developed a couple of model scenarios and chose one which could best explain the variation in data based on performance measures. We also estimated return periods under non-stationarity condition. Results show that ignoring stationarity could increase the flood hazard up to four times which could increase the probability of an in-stream structure being overtopped.

  8. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.

    PubMed

    Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H

    2010-03-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.

  9. Longitudinal differences in habitat complexity and fish assemblage structure of a great plains river

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    We investigated the spatial variation in the Kansas River (USA) fish assemblage to determine how fish community structure changes with habitat complexity in a large river. Fishes were collected at ten sites throughout the Kansas River for assessing assemblage structure in summer 2007. Aerial imagery indicated riparian land use within 200 m from the river edge was dominated by agriculture in the upper river reaches (>35) and tended to increase in urban land use in the lower reaches (>58). Instream habitat complexity (number of braided channels, islands) also decreased with increased urban area (<25). Canonical correspondence analysis indicated that species that prefer high-velocity flows and sandy substrate (e.g., blue sucker Cycleptus elongatus and shovelnose sturgeon Scaphirhynchus platorynchus) were associated with the upper river reaches. Abundance of omnivorous and planktivorous fish species were also higher in the lower river. The presence of fluvial dependent and fluvial specialist species was associated with sites with higher water flows, more sand bars, and log jams. Our results suggest that conserving intolerant, native species in the Kansas River may require maintaining suitable habitat for these species and restoration of impacted areas of the river.

  10. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    USGS Publications Warehouse

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine

    2016-01-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  11. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine A.

    2016-05-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  12. Influence of land use on water quality in a tropical landscape: a multi-scale analysis

    PubMed Central

    Yackulic, Charles B.; Lim, Yili; Arce-Nazario, Javier A.

    2015-01-01

    There is a pressing need to understand the consequences of human activities, such as land transformations, on watershed ecosystem services. This is a challenging task because different indicators of water quality and yield are expected to vary in their responsiveness to large versus local-scale heterogeneity in land use and land cover (LUC). Here we rely on water quality data collected between 1977 and 2000 from dozens of gauge stations in Puerto Rico together with precipitation data and land cover maps to (1) quantify impacts of spatial heterogeneity in LUC on several water quality indicators; (2) determine the spatial scale at which this heterogeneity influences water quality; and (3) examine how antecedent precipitation modulates these impacts. Our models explained 30–58% of observed variance in water quality metrics. Temporal variation in antecedent precipitation and changes in LUC between measurements periods rather than spatial variation in LUC accounted for the majority of variation in water quality. Urbanization and pasture development generally degraded water quality while agriculture and secondary forest re-growth had mixed impacts. The spatial scale over which LUC influenced water quality differed across indicators. Turbidity and dissolved oxygen (DO) responded to LUC in large-scale watersheds, in-stream nitrogen concentrations to LUC in riparian buffers of large watersheds, and fecal matter content and in-stream phosphorus concentration to LUC at the sub-watershed scale. Stream discharge modulated impacts of LUC on water quality for most of the metrics. Our findings highlight the importance of considering multiple spatial scales for understanding the impacts of human activities on watershed ecosystem services. PMID:26146455

  13. Sensitivity of simulated conservation practice effectiveness to representation of field and in-stream processes in the Little River Watershed

    USDA-ARS?s Scientific Manuscript database

    Evaluating the effectiveness of conservation practices (CPs) is an important step to achieving efficient and successful water quality management. Watershed-scale simulation models can provide useful and convenient tools for this evaluation, but simulated conservation practice effectiveness should be...

  14. EVALUATING THE ACCOTINK CREEK URBAN STREAM RESTORATION PROJECT FOR IMPROVING WATER QUALITY, IN-STREAM HABITAT, AND BANK STABILITY

    EPA Science Inventory

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy me...

  15. EVALUATING AN URBAN STREAM RESTORATION PROGRAM FOR IMPROVING WATER QUALITY, IN-STREAM HABITAT, AND BANK STABILITY

    EPA Science Inventory

    To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff, as well as minimize pollutants and other stressors contained in stormwater runoff. It is well known that land use practice...

  16. The role of interior watershed processes in improving parameter estimation and performance of watershed models

    USDA-ARS?s Scientific Manuscript database

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the l...

  17. Using Stream Discharge as a Predictor of Biotic Health in the Upper Oconee Watershed

    EPA Science Inventory

    Drought is viewed typically as an issue of water quantity, but drought also likely has strong effects on water quality in streams. These effects may occur via increased pollutant and nutrient concentrations and stream water temperature, as well as reductions in instream habitat. ...

  18. A comparison of NEWS and SPARROW models to understand sources of nitrogen delivered to US coastal areas

    EPA Science Inventory

    The relative contributions of different anthropogenic and natural sources of in-stream nitrogen (N) cannot be directly measured at whole-watershed scales. Hence, source attribution estimates beyond the scale of small catchments must rely on models. Although such estimates have be...

  19. Role of Stream Restoration on Improving Benthic Macroinvertebrates and In-Stream Water Quality in an Urban Watershed

    EPA Science Inventory

    Many stream restoration projects do not include a requirement for long-term monitoring after the project has been completed, resulting in a lack of information about the success or failure of certain restoration techniques. The National Risk Management Research Laboratory (NRMRL...

  20. Capturing microbial sources distributed in a mixed-use watershed within an integrated environmental modeling workflow

    EPA Science Inventory

    Many watershed models simulate overland and instream microbial fate and transport, but few provide loading rates on land surfaces and point sources to the waterbody network. This paper describes the underlying equations for microbial loading rates associated with 1) land-applied ...

  1. Sensitivity Analysis of SWAT Nitrogen Simulations with and without In-Stream Processes

    EPA Science Inventory

    Nitrogen (N) losses to surface waters are of great concern on both national and regional scales. Scientists have concluded that large areas of hypoxia in the northern Gulf of Mexico are due to excessive nutrients derived primarily from agricultural runoff via the Mississippi Rive...

  2. Capturing microbial sources distributed in a mixed-use watershed within an integrated environmental modeling workflow

    USDA-ARS?s Scientific Manuscript database

    Many watershed models simulate overland and instream microbial fate and transport, but few provide loading rates on land surfaces and point sources to the waterbody network. This paper describes the underlying equations for microbial loading rates associated with 1) land-applied manure on undevelope...

  3. Influence of Drought and Total Phosphorus on Diel pH in Wadeable Streams: Implications for Ecological Risk Assessment of Ionizable Contaminants

    EPA Science Inventory

    Climatological influences on site-specific ecohydrology are particularly germane in semiarid regions where instream flows are strongly influenced by effluent discharges. Because many traditional and emerging aquatic contaminants, such as pharmaceuticals, are ionizable, we examin...

  4. ESTIMATION OF TOTAL DISSOLVED NITRATE LOAD IN NATURAL STREAM FLOWS USING AN IN-STREAM MONITOR

    EPA Science Inventory

    Estuaries respond rapidly to rain events and the nutrients carried by inflowing rivers such that discrete samples at weekly or monthly intervals are inadequate to catch the maxima and minima in nutrient variability. To acquire data with sufficient sampling frequency to realistica...

  5. Nutrient Loading Impacts on Culturable E. coli and other Heterotrophic Bacteria Fate in Simulated Stream Mesocosms

    USDA-ARS?s Scientific Manuscript database

    Understanding fecal indicator bacteria persistence in aquatic environments is important when making management decisions to improve instream water quality. Routinely, bacteria fate and transport models that rely on published kinetic decay constants are used to inform such decision making. The object...

  6. LANDSCAPE INFLUENCES ON IN-STREAM BIOTIC INTEGRITY: USE OF MACROINVERTEBRATE METRICS TO IDENTIFY LANDSCAPE STRESSORS IN HEADWATER CATCHMENTS

    EPA Science Inventory

    The biotic integrity of streams is profoundly influenced by quantitative and qualitative features in the landscape of the surrounding catchment. In this study, aquatic macroinvertebrate metrics (e.g., relative abundance of Ephemeroptera, Trichoptera, and/or Plecoptera taxa, or t...

  7. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values

    EPA Science Inventory

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to an...

  8. Beaver dams maintain fish biodiversity by increasing habitat heterogeneity throughout a low-gradient stream network

    USGS Publications Warehouse

    Smith, Joseph M.; Mather, Martha E.

    2013-01-01

    In summary, within a stream network, beaver dams maintained fish biodiversity by altering in-stream habitat and increasing habitat heterogeneity. Understanding the relationship between habitat heterogeneity and biodiversity can advance basic freshwater ecology and provide science-based support for applied aquatic conservation

  9. An Automated Approach to Extracting River Bank Locations from Aerial Imagery Using Image Texture

    DTIC Science & Technology

    2015-11-04

    is more likely to be encountered in high latitudes. The technique recognizes areas of urban or rural built environments, such as mowed fields...optical remote sensing of river channel morphology and in-stream habitat : physical basis and feasability. Remote Sensing of the Environment 93: 493

  10. Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, Vance R.; Morton, Winston H.

    2009-07-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fishmore » production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No. 199202601). Work undertaken during 2008 included: (1) completing 1 new fencing project in the North Fork John Day subbasin that protects 1.82 miles of stream and 216.2 acres of habitat, and 1 fencing project in the Wallowa subbasin that protects an additional 0.59 miles of stream and 42.5 acres of habitat; (2) constructing 0.47 miles of new channel on the Wallowa river to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) planting 10,084 plants along 0.5 miles of the Wallowa Riverproject; (4) establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; and (7) completed a comprehensive project summary report to the Independent Scientific Review panel (ISRP) that provided our conclusions regarding benefits to focal species, along with management recommendations for the future. Since initiation of this program 57 individual projects have been implemented, monitoring and maintained along 84.9 miles of anadromous fish bearing streams, that protect and enhance 3,564 acres of riparian and instream habitat.« less

  11. Reference manual for generation and analysis of Habitat Time Series: version II

    USGS Publications Warehouse

    Milhous, Robert T.; Bartholow, John M.; Updike, Marlys A.; Moos, Alan R.

    1990-01-01

    The selection of an instream flow requirement for water resource management often requires the review of how the physical habitat changes through time. This review is referred to as 'Time Series Analysis." The Tune Series Library (fSLIB) is a group of programs to enter, transform, analyze, and display time series data for use in stream habitat assessment. A time series may be defined as a sequence of data recorded or calculated over time. Examples might be historical monthly flow, predicted monthly weighted usable area, daily electrical power generation, annual irrigation diversion, and so forth. The time series can be analyzed, both descriptively and analytically, to understand the importance of the variation in the events over time. This is especially useful in the development of instream flow needs based on habitat availability. The TSLIB group of programs assumes that you have an adequate study plan to guide you in your analysis. You need to already have knowledge about such things as time period and time step, species and life stages to consider, and appropriate comparisons or statistics to be produced and displayed or tabulated. Knowing your destination, you must first evaluate whether TSLIB can get you there. Remember, data are not answers. This publication is a reference manual to TSLIB and is intended to be a guide to the process of using the various programs in TSLIB. This manual is essentially limited to the hands-on use of the various programs. a TSLIB use interface program (called RTSM) has been developed to provide an integrated working environment where the use has a brief on-line description of each TSLIB program with the capability to run the TSLIB program while in the user interface. For information on the RTSM program, refer to Appendix F. Before applying the computer models described herein, it is recommended that the user enroll in the short course "Problem Solving with the Instream Flow Incremental Methodology (IFIM)." This course is offered by the Aquatic Systems Branch of the National Ecology Research Center. For more information about the TSLIB software, refer to the Memorandum of Understanding. Chapter 1 provides a brief introduction to the Instream Flow Incremental Methodology and TSLIB. Other chapters in this manual provide information on the different aspects of using the models. The information contained in the other chapters includes (2) acquisition, entry, manipulation, and listing of streamflow data; (3) entry, manipulation, and listing of the habitat-versus-streamflow function; (4) transferring streamflow data; (5) water resources systems analysis; (6) generation and analysis of daily streamflow and habitat values; (7) generation of the time series of monthly habitats; (8) manipulation, analysis, and display of month time series data; and (9) generation, analysis, and display of annual time series data. Each section includes documentation for the programs therein with at least one page of information for each program, including a program description, instructions for running the program, and sample output. The Appendixes contain the following: (A) sample file formats; (B) descriptions of default filenames; (C) alphabetical summary of batch-procedure files; (D) installing and running TSLIB on a microcomputer; (E) running TSLIB on a CDC Cyber computer; (F) using the TSLIB user interface program (RTSM); and (G) running WATSTORE on the USGS Amdahl mainframe computer. The number for this version of TSLIB--Version II-- is somewhat arbitrary, as the TSLIB programs were collected into a library some time ago; but operators tended to use and manage them as individual programs. Therefore, we will consider the group of programs from the past that were only on the CDC Cyber computer as Version 0; the programs from the past that were on both the Cyber and the IBM-compatible microcomputer as Version I; and the programs contained in this reference manual as Version II.

  12. Brief Communication: Mapping river ice using drones and structure from motion

    NASA Astrophysics Data System (ADS)

    Alfredsen, Knut; Haas, Christian; Tuhtan, Jeffrey A.; Zinke, Peggy

    2018-02-01

    In cold climate regions, the formation and break-up of river ice is important for river morphology, winter water supply, and riparian and instream ecology as well as for hydraulic engineering. Data on river ice is therefore significant, both to understand river ice processes directly and to assess ice effects on other systems. Ice measurement is complicated due to difficult site access, the inherent complexity of ice formations, and the potential danger involved in carrying out on-ice measurements. Remote sensing methods are therefore highly useful, and data from satellite-based sensors and, increasingly, aerial and terrestrial imagery are currently applied. Access to low cost drone systems with quality cameras and structure from motion software opens up a new possibility for mapping complex ice formations. Through this method, a georeferenced surface model can be built and data on ice thickness, spatial distribution, and volume can be extracted without accessing the ice, and with considerably fewer measurement efforts compared to traditional surveying methods. A methodology applied to ice mapping is outlined here, and examples are shown of how to successfully derive quantitative data on ice processes.

  13. P2S--Coupled simulation with the Precipitation-Runoff Modeling System (PRMS) and the Stream Temperature Network (SNTemp) Models

    USGS Publications Warehouse

    Markstrom, Steven L.

    2012-01-01

    A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.

  14. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone, with Fe(II) oxidation taking place in the soil surrounding the ditch during summer and in the surface water during winter. The dynamics in Fe(II) oxidation did not affect the dissolved P concentrations. The dissolved P concentrations of the in-stream reservoirs water were an order of magnitude lower than observed in the groundwater and have no seasonal trend. Our data showed preferential binding of P during initial stage of the Fe(II) oxidation process, indicating the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at the groundwater-surface water interface is an important geochemical mechanism in the transformation of dissolved phosphate to particulate phosphate and therefore a major control on the P retention in natural waters that drain anaerobic aquifers.

  15. A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A; Walton-Day, Katherine; Verplanck, Philip L.

    2007-01-01

    Regulatory agencies are often charged with the task of setting site-specific numeric water quality standards for impaired streams. This task is particularly difficult for streams draining highly mineralized watersheds with past mining activity. Baseline water quality data obtained prior to mining are often non-existent and application of generic water quality standards developed for unmineralized watersheds is suspect given the geology of most watersheds affected by mining. Various approaches have been used to estimate premining conditions, but none of the existing approaches rigorously consider the physical and geochemical processes that ultimately determine instream water quality. An approach based on simulation modeling is therefore proposed herein. The approach utilizes synoptic data that provide spatially-detailed profiles of concentration, streamflow, and constituent load along the study reach. This field data set is used to calibrate a reactive stream transport model that considers the suite of physical and geochemical processes that affect constituent concentrations during instream transport. A key input to the model is the quality and quantity of waters entering the study reach. This input is based on chemical analyses available from synoptic sampling and observed increases in streamflow along the study reach. Given the calibrated model, additional simulations are conducted to estimate premining conditions. In these simulations, the chemistry of mining-affected sources is replaced with the chemistry of waters that are thought to be unaffected by mining (proximal, premining analogues). The resultant simulations provide estimates of premining water quality that reflect both the reduced loads that were present prior to mining and the processes that affect these loads as they are transported downstream. This simulation-based approach is demonstrated using data from Red Mountain Creek, Colorado, a small stream draining a heavily-mined watershed. Model application to the premining problem for Red Mountain Creek is based on limited field reconnaissance and chemical analyses; additional field work and analyses may be needed to develop definitive, quantitative estimates of premining water quality.

  16. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve water quality and protect the aquatic habitat of the Roanoke River.

  17. American Recovery and Reinvestment Act: North Fork Skokomish Powerhouse at Cushman No. 2 Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Steve; McCarty, Patrick

    2013-09-30

    The objective of this project was to add generating capacity on an in-stream flow release at Tacoma Power's Cushman hydroelectric project, Cushman No. 2 Dam, FERC Project P-460. The flow that is being used to generate additional electricity was being discharged from a valve at the base of the dam without recovery of the energy. A second objective to the project was to incorporate upstream fish passage by use of a fish collection structure attached to the draft tubes of the hydroelectric units. This will enable reintroduction of native anadromous fish above the dams which have blocked fish passage sincemore » the late 1920's. The project was funded in part by the American Recovery and Reinvestment Act through the Department of Energy, Office of Energy, Efficiency and Renewable Energy, Wind and Water Power Program.« less

  18. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  19. 75 FR 7467 - Natural Currents Energy Services, LLC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... of 300 kW; (3) one or more clusters of Tidal In-Stream Energy Conversion Devices (TISEC devices) to... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13606-000] Natural Currents Energy Services, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

  20. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Treesearch

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  1. 75 FR 19997 - Endangered and Threatened Wildlife and Plants; Permit Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... endangered species in the Code of Federal Regulations (CFR) at 50 CFR part 17. Submit your written data... release) Indiana bats, gray bats, Virginia big-eared bats (Corynorhinus townsendii virginianus), Ozark big... temporarily relocate endangered Topeka shiners to protect them from impacts due to in-stream projects such as...

  2. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values to predict stream temperature

    EPA Science Inventory

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to...

  3. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Treesearch

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  4. Field testing existence values for riparian ecosystems

    Treesearch

    John W. Duffield; Chris J. Neher; David A. Patterson; Patricia A. Champ

    2007-01-01

    This paper presents preliminary findings on a cash and contingent valuation (cv) experiment. The study replicates major elements of an earlier (1990) experiment, which solicited hypothetical and actual donations to benefit instream flows for Montana fisheries. Extensions of the earlier work include: repeat contacts to increase response rate, follow-up of the contingent...

  5. Evidence for polyphosphate accumulating organism (PAO)-mediated phosphorus cycling in stream biofilms under alternating aerobic/anaerobic conditions

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is often a limiting nutrient in freshwater ecosystems and excessive inputs can lead to eutrophication. In-stream cycling of P involves complex biological, chemical, and physical processes that are not fully understood. Microbial metabolisms are suspected to control oxygen-dependent up...

  6. Modeling E. Coli release and transport in a creek during artificial high-flow events

    USDA-ARS?s Scientific Manuscript database

    In-stream fate and transport of E. Coli, is a leading indicator of microbial contamination of natural waters, and so needs to be understood to eventually minimize surface water contamination by microbial organisms. The objective of this work was to simulate E. Coli release and transport from soil se...

  7. 78 FR 46365 - Quarterly Status Report of Water Service, Repayment, and Other Water-Related Contract Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... Stream Commission O&M Operation and Maintenance P-SMBP Pick-Sloan Missouri Basin Program PPR Present... stored water from Applegate Reservoir (a USACE project) for irrigation use in exchange for the transfer... of Oregon for instream flow use. Completed contract action: 11. Prineville Reservoir Water Users...

  8. Photographic guidance for selecting flow resistance coefficients in high-gradient channels

    Treesearch

    Steven E. Yochum; Francesco Comiti; Ellen Wohl; Gabrielle C. L. David; Luca Mao

    2014-01-01

    Photographic guidance is presented to assist with the estimation of Manning’s n and Darcy-Weisbach f in high-gradient plane-bed, step-pool, and cascade channels. Reaches both with and without instream wood are included. These coefficients are necessary for the estimation of reachaverage velocity, energy loss, and...

  9. Dissolved carbon and nitrogen losses from forests of the Oregon Cascades over a successional gradient

    EPA Science Inventory

    Ecologists have long used stream water chemistry records to infer hillslope processes, although a great deal of biogeochemical processing of soil water is known to occur both downslope and in-stream. We report the effects of forest succession on C and N export in the west central...

  10. Residual timber values within Piedmont streamside management zones of different widths and harvest levels

    Treesearch

    William A. Lakel; Wallace Aust; C. Andrew Dolloff; Patrick D. Keyser

    2015-01-01

    Forested streamside management zones (SMZs) provide numerous societal benefits including protection of water quality and enhancement of in-stream and riparian habitats. However, values of residual timber in SMZs are often ignored, yet maintenance of unnecessarily wide SMZs can potentially reduce merchantable timber. Therefore, forestland owners, managers, and logging...

  11. EPA Office of Water (OW): 2002 SPARROW Total NP (Catchments)

    EPA Pesticide Factsheets

    SPARROW (SPAtially Referenced Regressions On Watershed attributes) is a watershed modeling tool with output that allows the user to interpret water quality monitoring data at the regional and sub-regional scale. The model relates in-stream water-quality measurements to spatially referenced characteristics of watersheds, including pollutant sources and environmental factors that affect rates of pollutant delivery to streams from the land and aquatic, in-stream processing . The core of the model consists of a nonlinear regression equation describing the non-conservative transport of contaminants from point and non-point (or ??diffuse??) sources on land to rivers and through the stream and river network. SPARROW estimates contaminant concentrations, loads (or ??mass,?? which is the product of concentration and streamflow), and yields in streams (mass of nitrogen and of phosphorus entering a stream per acre of land). It empirically estimates the origin and fate of contaminants in streams and receiving bodies, and quantifies uncertainties in model predictions. The model predictions are illustrated through detailed maps that provide information about contaminant loadings and source contributions at multiple scales for specific stream reaches, basins, or other geographic areas.

  12. Identification of linear and threshold responses in streams along a gradient of urbanization in Anchorage, Alaska

    USGS Publications Warehouse

    Ourso, R.T.; Frenzel, S.A.

    2003-01-01

    We examined biotic and physiochemical responses in urbanized Anchorage, Alaska, to the percent of impervious area within stream basins, as determined by high-resolution IKONOS satellite imagery and aerial photography. Eighteen of the 86 variables examined, including riparian and instream habitat, macroinvertebrate communities, and water/sediment chemistry, were significantly correlated with percent impervious area. Variables related to channel condition, instream substrate, water chemistry, and residential and transportation right-of-way land uses were identified by principal components analysis as significant factors separating site groups. Detrended canonical correspondence analysis indicated that the macroinvertebrate communities responded to an urbanization gradient closely paralleling the percent of impervious area within the subbasin. A sliding regression analysis of variables significantly correlated with percent impervious area revealed 8 variables exhibiting threshold responses that correspond to a mean of 4.4-5.8% impervious area, much lower than mean values reported in other, similar investigations. As contributing factors to a subbasin's impervious area, storm drains and roads appeared to be important elements influencing the degradation of water quality with respect to the biota.

  13. In-stream measurements of combustion during Mach 5 to 7 tests of the Hypersonic Research Engine (HRE)

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Metzler, Allen J.; Pack, William D.

    1993-01-01

    Results of in-stream combustion measurements taken during Mach 5 to 7 true simulation testing of the Hypersonic Research Engine/Aerothermodynamic Integration Model (HRE/AIM) are presented. These results, the instrumentation techniques, and configuration changes to the engine installation that were required to test this model are described. In test runs at facility Mach numbers of 5 to 7, an exhaust instrumentation ring which formed an extension of the engine exhaust nozzle shroud provided diagnostic measurements at 10 circumferential locations in the HRE combustor exit plane. The measurements included static and pitot pressures using conventional conical probes, combustion gas temperatures from cooled-gas pyrometer probes, and species concentration from analysis of combustion gas samples. Results showed considerable circumferential variation, indicating that efficiency losses were due to nonuniform fuel distribution or incomplete mixing. Results using the Mach 7 facility nozzle but with Mach 6 temperature simulation, 1590 to 1670 K, showed indications of incomplete combustion. Nitric oxide measurements at the combustor exit peaked at 2000 ppmv for stoichiometric combustion at Mach 6.

  14. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-105) - Water Entity (Washington Water Trust 2003)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarde, Richard

    2003-06-13

    BPA proposes to fund several water rights acquisition projects proposed by the Washington Water Trust (WWT). The funding will be administered by the National Fish and Wildlife Foundation, the entity administering the Columbia Basin Water Transactions Program, initiated under RPA 151 of the National Marine Fisheries Service’s 2000 Biological Opinion on the Operation of the Federal Columbia River Power System. The water rights acquired by the WWT will be left instream to increase flow and improve water quality. Increasing instream flow of water-limited streams benefits fish listed under the Endangered Species Act. The three projects proposed by the WWT include:more » renewing a lease for 0.43 cubic feet per second (cfs) in the Methow River for three years; renewing a lease of 1.29 cfs to be protected in a 0.75 mile stretch of Gold Creek, a tributary to the Methow River, for one year; and renewing a lease of 0.17 cfs in a 0.2 mi stretch of Frazer Creek, a tributary of the Methow River, for two years.« less

  15. Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams

    PubMed Central

    Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488

  16. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    PubMed

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  17. Computational and Experimental Characterization of the Mach 6 Facility Nozzle Flow for the Enhanced Injection and Mixing Project at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Cabell, Karen F.; Passe, Bradley J.; Baurle, Robert A.

    2017-01-01

    Computational fluid dynamics analyses and experimental data are presented for the Mach 6 facility nozzle used in the Arc-Heated Scramjet Test Facility for the Enhanced Injection and Mixing Project (EIMP). This project, conducted at the NASA Langley Research Center, aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics relevant to flight Mach numbers greater than 8. The EIMP experiments use a two-dimensional Mach 6 facility nozzle to provide the high-speed air simulating the combustor entrance flow of a scramjet engine. Of interest are the physical extent and the thermodynamic properties of the core flow at the nozzle exit plane. The detailed characterization of this flow is obtained from three-dimensional, viscous, Reynolds-averaged simulations. Thermodynamic nonequilibrium effects are also investigated. The simulations are compared with the available experimental data, which includes wall static pressures as well as in-stream static pressure, pitot pressure and total temperature obtained via in-stream probes positioned just downstream of the nozzle exit plane.

  18. Estimated Nutrient Concentrations and Continuous Water-Quality Monitoring in the Eucha-Spavinaw Basin, Northwestern Arkansas and Northeastern Oklahoma, 2004-2007

    USGS Publications Warehouse

    Christensen, Victoria G.; Esralew, Rachel A.; Allen, Monica L.

    2008-01-01

    The Eucha-Spavinaw basin is the source of water for Lake Eucha and Spavinaw Lake, which are part of the water supply for the City of Tulsa. The City of Tulsa has received complaints of taste and odor in the finished drinking water because of deteriorating water quality. The deterioration is largely because of algal growth from the input of nutrients from the Eucha-Spavinaw basin. The U.S. Geological Survey, in cooperation with the City of Tulsa, implemented a continuous, real-time water-quality monitoring program in the Eucha-Spavinaw basin to better understand the source of the nutrient loading. This program included the manual collection of samples analyzed for nutrients and the collection of continuous, in-stream data from water-quality monitors. Continuous water-quality monitors were installed at two existing continuous streamflow-gaging stations - Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma, from October 2004 through September 2007. Total nitrogen concentrations for manually collected water samples ranged from 2.08 to 9.66 milligrams per liter for the water samples collected from Spavinaw Creek near Colcord, Oklahoma, and from 0.67 to 5.12 milligrams per liter for manually collected water samples from Beaty Creek near Jay, Oklahoma. Total phosphorus concentrations ranged from 0.04 to 1.5 milligrams per liter for the water samples collected from Spavinaw Creek near Colcord and from 0.028 to 1.0 milligram per liter for the water samples collected from Beaty Creek near Jay. Data from water samples and in-stream monitors at Spavinaw and Beaty Creeks (specific conductance and turbidity) were used to develop linear regression equations relating in-stream water properties to total nitrogen and total phosphorus concentrations. The equations developed for the Spavinaw and Beaty sites are site specific and only valid for the concentration ranges of the explanatory variables used in the analysis. The range in estimated and measured phosphorus is not representative for the range of historic streamflow at the Beaty site and that regression equation would benefit from more high flow and high turbidity samples. In addition, all three study years had below average annual precipitation for the area, and streamflow was especially low in Water Year 2006. Average nutrient concentrations from October 2004 through September 2007, which were drier than others, may not be a good indication of conditions in future wetter years. The equations for the Spavinaw and Beaty sites may be used to estimate instantaneous nutrient concentrations, which can be used to compute loads and yields in real time in order to better characterize the effect of land-management practices in these watersheds on the transport of nutrients to Lake Eucha and Spavinaw Lake. The methods used in this study show promise for monitoring future effectiveness of implemented best management practices, development and monitoring of total maximum daily loads, early detection of taste-and-odor occurrences, and to anticipate treatment needs for water suppliers.

  19. Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Salant, N.; Miller, S. W.

    2009-12-01

    The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi-scale, process-based approach evaluates whether a commonly used restoration strategy creates geomorphic heterogeneity at scales relevant to fish diversity and microhabitat utilization, an understanding that will improve the efficiency and success of future restoration projects.

  20. Determination of habitat requirements for Apache Trout

    USGS Publications Warehouse

    Petre, Sally J.; Bonar, Scott A.

    2017-01-01

    The Apache Trout Oncorhynchus apache, a salmonid endemic to east-central Arizona, is currently listed as threatened under the U.S. Endangered Species Act. Establishing and maintaining recovery streams for Apache Trout and other endemic species requires determination of their specific habitat requirements. We built upon previous studies of Apache Trout habitat by defining both stream-specific and generalized optimal and suitable ranges of habitat criteria in three streams located in the White Mountains of Arizona. Habitat criteria were measured at the time thought to be most limiting to juvenile and adult life stages, the summer base flow period. Based on the combined results from three streams, we found that Apache Trout use relatively deep (optimal range = 0.15–0.32 m; suitable range = 0.032–0.470 m) pools with slow stream velocities (suitable range = 0.00–0.22 m/s), gravel or smaller substrate (suitable range = 0.13–2.0 [Wentworth scale]), overhead cover (suitable range = 26–88%), and instream cover (large woody debris and undercut banks were occupied at higher rates than other instream cover types). Fish were captured at cool to moderate temperatures (suitable range = 10.4–21.1°C) in streams with relatively low maximum seasonal temperatures (optimal range = 20.1–22.9°C; suitable range = 17.1–25.9°C). Multiple logistic regression generally confirmed the importance of these variables for predicting the presence of Apache Trout. All measured variables except mean velocity were significant predictors in our model. Understanding habitat needs is necessary in managing for persistence, recolonization, and recruitment of Apache Trout. Management strategies such as fencing areas to restrict ungulate use and grazing and planting native riparian vegetation might favor Apache Trout persistence and recolonization by providing overhead cover and large woody debris to form pools and instream cover, shading streams and lowering temperatures.

  1. Properties of small instream wood as a logjam clogging agent: Implications for clogging dynamics based on wood density, water content, and depositional environment

    NASA Astrophysics Data System (ADS)

    Haga, Hirokazu; Moriishida, Takuya; Morishita, Naoya; Fujimoto, Takaaki

    2017-11-01

    In cooperation with large instream wood (LW) within logjams, small instream wood (SW) can control downstream flux of sediment and particulate organic matter and can play an important role for stream ecosystems. However, information regarding the density and moisture content of SW-which affects wood transport, wood decay, and mass loading-is limited. Here we investigated the SW properties, i.e., density under field conditions (in situ density), basic density, volumetric water content, and depositional environment of SW sampled from five logjams and their backwater areas in two headwater streams (second- and third-order streams) surrounded by mixed broadleaf-conifer forests in western Japan. The in situ density ranged from 0.49 to 1.25 g cm- 3, and pieces with densities > 1.0 g cm- 3 accounted for 45% of all samples. Additionally, the in situ density of SW closely related to the volumetric water content (r2 = 0.76) rather than the basic density as an index of solidity or decay condition of wood. The SW that was partially submerged in water had a higher volumetric water content than SW exposed to air. These results indicate that a nonfloating transport cannot be ignored as an important mechanism for SW movement and that in situ density depends not on the solidity of the wood but on water sorption by SW. However, waterlogged SW should be well decayed because it has a lower basic density than air-exposed and sediment-buried SW. We conclude that the moisture conditions of the depositional environment can affect subsequent transport and decay processes of SW. Moreover, most waterlogged and sediment-buried SW, because of its high in situ density (> 1.0 g cm- 3), may contribute to clogging between the channel bed and LW that initiate a logjam during future movements.

  2. Compliance of the Savannah River Site D-Area cooling system with environmental regulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.; Mackey, H.E.; Paller, M.H.

    1990-08-01

    This document presents information relating to a demonstration under Section 316(a) of the Clean Water Act for the 400-D Area cooling system at the Savannah River Site (SRS) near Aiken, South Carolina. The demonstration was mandated because the National Pollution Discharge Elimination System (NPDES) permit for SRS (SC0000175), granted on January 1, 1984, specified in-stream temperature limits in SRS streams of 32.2{degree}C and a {Delta}T limit of 2.8{degree}C above ambient. To achieve compliance with in-stream temperature limits, the Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC) entered into a Consent Order (84-4-W) whichmore » temporarily superseded the temperature requirements and identified a process for attaining compliance. The preferred option for achieving thermal compliance in Beaver Dam Creek consisted of increased flow, with mixing of the raw water basin overflow with the cooling water discharge during the summer months. Although this action can achieve instream temperatures of less than 32.2{degree}C, {Delta}T's still exceed 2.8{degree}C. Therefore, a 316 (a) Demonstration was initiated to determine whether a balanced indigenous biological community can be supported in the receiving stream with {Delta}T's in excess of 2.8{degree}C. A Biological Monitoring Program for Beaver Dam Creek was approved by SCDHEC in June 1988 and implemented in September 1988. The program monitored the water quality, habitat formers, zooplankton, macroinvertebrates, fish, other vertebrate wildlife and threatened and endangered species in Beaver Dam Creek for an 18-month period (September 1988-February 1990). This document summarizes information collected during the monitoring program and evaluates the data to determine whether Beaver Dam Creek presently supports a balanced indigenous biological community. 97 refs., 32 figs., 51 tabs.« less

  3. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining

    NASA Astrophysics Data System (ADS)

    Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.

    2018-06-01

    The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream distances.

  4. Advancement in Watershed Modelling Using Dynamic Lateral and Longitudinal Sediment (Dis)connectivity Prediction

    NASA Astrophysics Data System (ADS)

    Mahoney, D. T.; al Aamery, N. M. H.; Fox, J.

    2017-12-01

    The authors find that sediment (dis)connectivity has seldom taken precedence within watershed models, and the present study advances this modeling framework and applies the modeling within a bedrock-controlled system. Sediment (dis)connectivity, defined as the detachment and transport of sediment from source to sink between geomorphic zones, is a major control on sediment transport. Given the availability of high resolution geospatial data, coupling sediment connectivity concepts within sediment prediction models offers an approach to simulate sediment sources and pathways within a watershed's sediment cascade. Bedrock controlled catchments are potentially unique due to the presence of rock outcrops causing longitudinal impedance to sediment transport pathways in turn impacting the longitudinal distribution of the energy gradient responsible for conveying sediment. Therefore, the authors were motivated by the need to formulate a sediment transport model that couples sediment (dis)connectivity knowledge to predict sediment flux for bedrock controlled catchments. A watershed-scale sediment transport model was formulated that incorporates sediment (dis)connectivity knowledge collected via field reconnaissance and predicts sediment flux through coupling with the Partheniades equation and sediment continuity model. Sediment (dis)connectivity was formulated by coupling probabilistic upland lateral connectivity prediction with instream longitudinal connectivity assessments via discretization of fluid and sediment pathways. Flux predictions from the upland lateral connectivity model served as an input to the instream longitudinal connectivity model. Disconnectivity in the instream model was simulated via the discretization of stream reaches due to barriers such as bedrock outcroppings and man-made check dams. The model was tested for a bedrock controlled catchment in Kentucky, USA for which extensive historic water and sediment flux data was available. Predicted sediment flux was validated via sediment flux measurements collected by the authors. Watershed configuration and the distribution of lateral and longitudinal impedances to sediment transport were found to have significant influence on sediment connectivity and thus sediment flux.

  5. Estimated water use in Puerto Rico, 1995

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.

    1998-01-01

    Water-use data during calendar year 1995 was compiled for the 78 municipios of the Commonwealth of Puerto Rico. Eight offstream water-use categories were considered during the study: public supply, wastewater treatment discharges, domestic, industrial, mining, thermoelectric power, livestock, and irrigation. Three instream water-use categories were considered: hydroelectric power, saline water used at thermoelectric power plants, and reservoir evaporation. Freshwater withdrawals for offstream use from surface- and ground-water sources in Puerto Rico were estimated to be 566 million gallons per day. The largest amount of freshwater withdrawn was 431 million gallons per day for public supply. Total discharge from public wastewater treatment facilities was reported as 185 million gallons per day. Fresh surface- and ground-water withdrawals for domestic and industrial self-supplied facilities were estimated to be about 19 million gallons per day. Mining activities, which in Puerto Rico are mostly limited to the production of sand and gravel, withdrew about 4.2 million gallons per day of freshwater. Livestock activities used 6.3 million gallons per day from surface- and ground-water sources to meet the water needs of the 12.1 million animals counted in the 1992 Census of Agriculture in Puerto Rico. Self-supplied ground-water withdrawals for thermoelectric facilities were estimated to be 2.2 million gallons per day. Freshwater withdrawals for irrigation purposes were estimated to be 103 million gallons per day, or approximately 18 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were 349 million gallons per day. Reservoir evaporation is considered to be a consumptive use associated with the storage of water. The evaporation from 15 reservoirs in Puerto Rico was estimated to average about 23,900 acre-feet from a total reservoir surface area of 6,900 acres. The largest amount of withdrawals was 2,260 million gallons per day of saline water (instream use) for thermoelectric power.

  6. The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds – a review of the scientific literature

    USGS Publications Warehouse

    Ranalli, Anthony J.; Macalady, Donald L.

    2010-01-01

    We reviewed published studies from primarily glaciated regions in the United States, Canada, and Europe of the (1) transport of nitrate from terrestrial ecosystems to aquatic ecosystems, (2) attenuation of nitrate in the riparian zone of undisturbed and agricultural watersheds, (3) processes contributing to nitrate attenuation in riparian zones, (4) variation in the attenuation of nitrate in the riparian zone, and (5) importance of in-stream and hyporheic processes for nitrate attenuation in the stream channel. Our objectives were to synthesize the results of these studies and suggest methodologies to (1) monitor regional trends in nitrate concentration in undisturbed 1st order watersheds and (2) reduce nitrate loads in streams draining agricultural watersheds. Our review reveals that undisturbed headwater watersheds have been shown to be very retentive of nitrogen, but the importance of biogeochemical and hydrological riparian zone processes in retaining nitrogen in these watersheds has not been demonstrated as it has for agricultural watersheds. An understanding of the role of the riparian zone in nitrate attenuation in undisturbed watersheds is crucial because these watersheds are increasingly subject to stressors, such as changes in land use and climate, wildfire, and increases in atmospheric nitrogen deposition. In general, understanding processes controlling the concentration and flux of nitrate is critical to identifying and mapping the vulnerability of watersheds to water quality changes due to a variety of stressors. In undisturbed and agricultural watersheds we propose that understanding the importance of riparian zone processes in 2nd order and larger watersheds is critical. Research is needed that addresses the relative importance of how the following sources of nitrate along any given stream reach might change as watersheds increase in size and with flow: (1) inputs upstream from the reach, (2) tributary inflow, (3) water derived from the riparian zone, (4) groundwater from outside the riparian zone (intermediate or regional sources), and (5) in-stream (hyporheic) processes.

  7. Unlocking the relationship of biotic integrity of impaired waters to anthropogenic stresses.

    PubMed

    Novotny, Vladimir; Bartosová, Alena; O'Reilly, Neal; Ehlinger, Timothy

    2005-01-01

    The Clean Water Act expressed its goals in terms of restoring and preserving the physical, chemical and biological integrity of the Nation's waters. Integrity has been defined as the ability of the water body's ecological system to support and maintain a balanced integrated, adaptive community of organisms comparable to that of a natural biota of the region. Several indices of biotic integrity (IBIs) have been developed to measure quantitatively the biotic composition and, hence, the integrity. Integrity can be impaired by discharges of pollutants from point and nonpoint sources and by other pollution-related to watershed/landscape and channel stresses, including channel and riparian zone modifications and habitat impairment. Various models that link the stressors to the biotic assessment endpoints, i.e., the IBIs, have been presented and discussed. Simple models that link IBIs directly to single or multiple surrogate stressors such as percent imperviousness are inadequate because they may not represent a true cause-effect proximate relationship. Furthermore, some surrogate landscape parameters are irreversible and the relationships cannot be used for development of plans for restoration of the water body integrity. A concept of a layered hierarchical model that will link the watershed, landscape and stream morphology pollution stressors to the biotic assessment endpoints (IBIs) is described. The key groups of structural components of the model are: IBIs and their metrics in the top layer, chemical water and sediment risks and a habitat quality index in the layer below, in-stream concentrations in water and sediments and channel/habitat impairment parameters in the third layer, and watershed/landscaper pollution generating stressors, land use change rates, and hydrology in the lowest layer of stressors. A modified and expanded Maximum Species Richness concept is developed and used to reveal quantitatively the functional relationships between the top two layers of the structural components and parameters of the model.

  8. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada

    USGS Publications Warehouse

    Wilkie, J.A.; Hering, J.G.

    1998-01-01

    Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete oxidation occurring within 1200 m. Based on assumed plug flow transport and a flow velocity of about 0.4 m/s, the pseudo- first-order half-life calculated for this reaction was approximately 0.3 h. Conservative transport of total dissolved arsenic was observed over the reach. Pseudo-first-order reaction rates determined for As(III) oxidation in batch studies conducted in the field with aquatic macrophytes and/or macrophyte surface matter were comparable to the in-stream oxidation rate observed along Hot Creek. In batch kinetic studies, oxidation was not observed after sterile filtration or after the addition of antibiotics, which indicates that bacteria attached to submerged macrophytes are mediating the rapid As(III) oxidation reaction.Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete oxidation occurring within 1200 m. Based on assumed plug flow transport and a flow velocity of about 0.4 m/s, the pseudo-first-order half-life calculated for this reaction was approximately 0.3 h. Conservative transport of total dissolved arsenic was observed over the reach. Pseudo-first-order reaction rates determined for As(III) oxidation in batch studies conducted in the field with aquatic macrophytes and/or macrophyte surface matter were comparable to the in-stream oxidation rate observed along Hot Creek. In batch kinetic studies, oxidation was not observed after sterile filtration or after the addition of antibiotics, which indicates that bacteria attached to submerged macrophytes are mediating the rapid As(III) oxidation reaction.

  9. Assessing patterns of bed-material storage and flux on a mixed bedrock-alluvium river: Umpqua River Oregon, USA

    NASA Astrophysics Data System (ADS)

    Wallick, R.; Anderson, S.; Keith, M.; Cannon, C.; O'Connor, J. E.

    2010-12-01

    Gravel bed rivers in the Pacific Northwest and elsewhere provide an important source of commercial aggregate. Mining in-stream gravel, however, can alter channel and bar morphology, resulting in habitat degradation for aquatic species. In order to sustainably manage rivers subject to in-stream gravel extraction, regulatory agencies in Oregon have requested that the USGS complete a series of comprehensive geomorphic and sediment transport studies to provide context for regulatory-agency management of in-stream gravel extraction in Oregon streams. The Umpqua River in western Oregon poses special challenges to this type of assessment. Whereas most rivers subject to gravel extraction are relatively rich in bed-material sediment, the Umpqua River is a mixed bedrock-alluvium system draining a large (1,804 km2) basin; hence typical bed-material transport analyses and ecologic and geomorphic lessons of in-stream gravel extraction on more gravel-rich rivers have limited applicability. Consequently, we have relied upon multiple analyses, including comprehensive historical mapping, bedload transport modeling, and a GIS-based sediment yield analysis to assess patterns of bed-material transport and annual rates of bed-material flux. These analyses, combined with numerous historical accounts, indicate that since at least the 1840’s, the Umpqua River planform has been stable, as bar geometry is largely fixed by valley physiography and the channel itself is underlain mainly by bedrock. Preliminary estimates of annual bedload transport rates calculated for the period 1951-2008 from bed-material transport capacity relations at 42 bars along the South Umpqua and mainstem Umpqua Rivers vary from 0 to 600,000 metric tons per year, with this large spread reflecting variability in bar geometry and grainsize. Large stable bars are activated only during exceptionally large floods and have negligible transport during most years whereas smaller, low elevation bars serve as transient storage for gravel transported during typical flood events. A more plausible range of average annual transport rates, based on bedload transport capacity estimates for bars with reasonable values for reference shear stress, is 500-50,000 metric tons/year. Our sediment yield and mapping analyses support these more conservative estimates, providing annual transport rates of 13,000-50,000 metric tons per year for the South Umpqua River and mainstem Umpqua River through the Coast Range. Downstream, predicted flux rates decrease as attrition exceeds input of bed material, gradually diminishing to 30,000-40,000 metric tons at the head of tide. Because bed-material transport along the supply-limited Umpqua River is highly variable in time and space, the range of predicted flux values is thought to characterize the upper bounds of annual gravel transport.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brennan T; Jager, Yetta; March, Patrick

    Reservoir releases are typically operated to maximize the efficiency of hydropower production and the value of hydropower produced. In practice, ecological considerations are limited to those required by law. We first describe reservoir optimization methods that include mandated constraints on environmental and other water uses. Next, we describe research to formulate and solve reservoir optimization problems involving both energy and environmental water needs as objectives. Evaluating ecological objectives is a challenge in these problems for several reasons. First, it is difficult to predict how biological populations will respond to flow release patterns. This problem can be circumvented by using ecologicalmore » models. Second, most optimization methods require complex ecological responses to flow to be quantified by a single metric, preferably a currency that can also represent hydropower benefits. Ecological valuation of instream flows can make optimization methods that require a single currency for the effects of flow on energy and river ecology possible. Third, holistic reservoir optimization problems are unlikely to be structured such that simple solution methods can be used, necessitating the use of flexible numerical methods. One strong advantage of optimal control is the ability to plan for the effects of climate change. We present ideas for developing holistic methods to the point where they can be used for real-time operation of reservoirs. We suggest that developing ecologically sound optimization tools should be a priority for hydropower in light of the increasing value placed on sustaining both the ecological and energy benefits of riverine ecosystems long into the future.« less

  11. Using Bayesian hierarchical models to better understand nitrate sources and sinks in agricultural watersheds.

    PubMed

    Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan

    2016-11-15

    Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R 2  = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope, while instream nitrate retention was positively correlated with nitrate concentration. By quantifying spatial and temporal variability in sources and sinks, the DPM provides new information to better target management actions to the most effective times and places. Given the wide use of ECMs as research and management tools, our approach can be broadly applied in other watersheds and to other materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A horizon scan of global conservation issues for 2012.

    PubMed

    Sutherland, William J; Aveling, Ros; Bennun, Leon; Chapman, Eleanor; Clout, Mick; Côté, Isabelle M; Depledge, Michael H; Dicks, Lynn V; Dobson, Andrew P; Fellman, Liz; Fleishman, Erica; Gibbons, David W; Keim, Brandon; Lickorish, Fiona; Lindenmayer, David B; Monk, Kathryn A; Norris, Kenneth; Peck, Lloyd S; Prior, Stephanie V; Scharlemann, Jörn P W; Spalding, Mark; Watkinson, Andrew R

    2012-01-01

    Our aim in conducting annual horizon scans is to identify issues that, although currently receiving little attention, may be of increasing importance to the conservation of biological diversity in the future. The 15 issues presented here were identified by a diverse team of 22 experts in horizon scanning, and conservation science and its application. Methods for identifying and refining issues were the same as in two previous annual scans and are widely transferable to other disciplines. The issues highlight potential changes in climate, technology and human behaviour. Examples include warming of the deep sea, increased cultivation of perennial grains, burning of Arctic tundra, and the development of nuclear batteries and hydrokinetic in-stream turbines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Retention and Migration of Fine Organic Particles within an Agricultural Stream: Toenepi, Waikato, New Zealand

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Davies-Colley, R.; Stott, R.; Sukias, J.; Nagels, J.; Sharp, A.; Packman, A. I.

    2013-12-01

    Fine organic particle dynamics are important to stream biogeochemistry, ecology, and transport of contaminant microbes. These particles migrate downstream through a series of deposition and resuspension events, which results in a wide range of residence times. This retention influences biogeochemical processing and in-stream stores of contaminant microbes that may mobilize during flood events and present a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into organic particle dynamics in streams, with a campaign of experiments and modeling. The results should improve understanding of nutrient (C, N, P) spiraling and fine sediment movement in streams, and have particular application to microbial hazards. We directly measure microbial transport by including the indicator organism, E. coli, as a tracer, which is compared to a fluorescent inert particle tracer and conservative solute to gain insight on both microbial ecology and waterborne disease transmission. We developed a stochastic model to describe the transport and retention of fine suspended particles in rivers, including advective delivery of particles to the streambed, transport through porewaters, and reversible filtration within the streambed. Because fine particles are only episodically transported in streams, with intervening periods at rest in the bed, this transport process violates conventional advection-dispersion assumptions. Instead we adopt a stochastic mobile-immobile model formulation to describe fine particle transport. We apply this model to measurements of particle transport from multiple tracer experiments in an agricultural stream in the Waikato dairy region of New Zealand, and use the model to improve interpretation of baseflow particle dynamics. Our results show the importance of the benthic and hyporheic regions and in-stream vegetation as a reservoir for fine organic particles in streams.

  14. Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling

    NASA Astrophysics Data System (ADS)

    Kuriqi, Alban; Rivaes, Rui; Sordo-Ward, Alvaro; Pinheiro, António N.; Garrote, Luis

    2017-04-01

    Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions. Keywords: ecohydrology, e-flow, Mediterranean rivers, river conservation, fish habitat, River-2D, Hydropower.

  15. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Sand Creek, Decatur County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)

  16. Importance of fish behaviour in modelling conservation problems: food limitation as an example

    Treesearch

    Steven Railsback; Bret Harvey

    2011-01-01

    Simulation experiments using the inSTREAM individual-based brown trout Salmo trutta population model explored the role of individual adaptive behaviour in food limitation, as an example of how behaviour can affect managers’ understanding of conservation problems. The model includes many natural complexities in habitat (spatial and temporal variation in characteristics...

  17. 40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Great Lakes Water Quality Initiative Criteria Documents for the Protection of Aquatic Life in Ambient... water quality criteria to protect against acute effects in aquatic life and is the highest instream... any aquatic life or human health use classifications in the Water Quality Control Plans for the...

  18. Undercover isotopes: tracking the fate of nitrogen in streams

    Treesearch

    Rhonda Mazza; Sherri Johnson

    2009-01-01

    Excess nitrogen stemming from human activities is a common water pollutant. Fertilizer runoff, sewage, and fossil fuel emission all contain nitrogen that often ends in streams, rivers, and ultimately the ocean. Research has found that more nitrogen enters a river system than can be accounted for at its mouth, indicating that instream processing is occurring. A team of...

  19. Post-landslide recovery patterns in a coast redwood forest

    Treesearch

    Leslie M. Reid; Elizabeth Keppeler; Sue Hilton

    2017-01-01

    Large landslides can exert a lasting influence on hillslope and channel form and can continue to contribute to high in-stream sediment loads long after the event. We used discharge and suspended sediment concentration data from the Caspar Creek Experimental Watersheds to evaluate the temporal distribution of sediment inputs from 11 landslides of 100 to 5500 m

  20. Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient

    Treesearch

    Elizabeth Hagen; Matthew McTammany; Jackson Webster; Ernest Benfield

    2010-01-01

    Relative contributions of allochthonous inputs and autochthonous production vary depending on terrestrial land use and biome. Terrestrially derived organic matter and in-stream primary production were measured in 12 headwater streams along an agricultural land-use gradient. Streams were examined to see how carbon (C) supply shifts from forested streams receiving...

  1. A simple approach to estimate daily loads of total, refractory, and labile organic carbon from their seasonal loads in a watershed

    Treesearch

    Ying Ouyang; Johnny M. Grace; Wayne C. Zipperer; Jeff Hatten; Janet Dewey

    2018-01-01

    Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) instreams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities throughabsorption of light and complex metals with production of carcinogenic compounds....

  2. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to...

  3. Preliminary assessment of channel stability and bed-material transport in the Coquille River basin, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Coquille River basin, which encompasses 2,745 km2 (square kilometers) of the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that:

  4. Instream cover and shade mediate avian predation on trout in semi-natural streams

    Treesearch

    Brooke E. Penaluna; David L. G. Noakes

    2015-01-01

    Piscivory by birds can be important, particularly on fish in small streams and during seasonal low flows when available cover from predators can be limited. We conducted an experiment at the Oregon Hatchery Research Center to evaluate size-selective survival of Coastal Cutthroat Trout (Figure 8; Oncorhynchus clarkii clarkii) in replicated semi-...

  5. Enhancing model prediction reliability through improved soil representation and constrained model auto calibration - A paired waterhsed study

    USDA-ARS?s Scientific Manuscript database

    Process based and distributed watershed models possess a large number of parameters that are not directly measured in field and need to be calibrated through matching modeled in-stream fluxes with monitored data. Recently, there have been waves of concern about the reliability of this common practic...

  6. Distribution of subtidal sedimentary bedforms in a macrotidal setting: The Bay of Fundy, Atlantic Canada

    NASA Astrophysics Data System (ADS)

    Todd, Brian J.; Shaw, John; Li, Michael Z.; Kostylev, Vladimir E.; Wu, Yongsheng

    2014-07-01

    The Bay of Fundy, Canada, a large macrotidal embayment with the World's highest recorded tides, was mapped using multibeam sonar systems. High-resolution imagery of seafloor terrain and backscatter strength, combined with geophysical and sampling data, reveal for the first time the morphology, architecture, and spatial relationships of a spectrum of bedforms: (1) flow-transverse bedforms occur as both discrete large two-dimensional dunes and as three-dimensional dunes in sand sheets; (2) flow-parallel bedforms are numerous straight ridges described by others as horse mussel bioherms; (3) sets of banner banks that flank prominent headlands and major shoals. The suite of bedforms developed during the Holocene, as tidal energy increased due to the bay approaching resonance. We consider the evolution of these bedforms, their migration potential and how they may place limitations on future in-stream tidal power development in the Bay of Fundy.

  7. Can We Asses the Impact of Water Factor on Ecosystems and Agriculture under Future Climate Conditions? Case Study from Poland.

    NASA Astrophysics Data System (ADS)

    Okruszko, T.; O'Keeffe, J.; Marcinkowski, P.; Utratna, M.; Szcześniak, M.; Piniewski, M.

    2016-12-01

    This study presents a broad overview of climate change impacts on eco- and agro-systems in Poland using an index-based approach for the Vistula and Odra river basins in Poland. The issues of risks to biodiversity and agricultural productivity caused by climate change (CC) are explicitly addressed. The biodiversity issue is tackled by the analysis of two types of ecosystems: instream and wetland (both river-and groundwater fed). Agro-systems are analyzed using key crops (spring and winter grains, potatoes, corn and grasslands),including their regional differentiation and dominant soil types. The study was accomplished in the following steps: (1) development of historical climate dataset and its application for bias correction of climate projections, (2) modelling the hydrological system using the SWAT model for historical and future climate, (3) development of indices quantifying the impact of water factoron eco- and agro-systems based on the SWAT model results, (4) calculation and critical analysis of results for two emission scenarios (RCPs) and two time horizons. The 5-km resolution precipitation and temperature dataset (10.5194/essd-8-127-2016) was developed and applied for bias correction of the multi-model ensemble of 9 CORDEX RCMs under two RCPs 4.5 and 8.5. Comprehensive calibration/validation of SWAT showed overall good results across a range of catchment sizes in Poland. The ensemble median increase (relative to historical period) ranged between 6 and 16 % for precipitation and between 18 and 48 % for water yield simulated by SWAT, depending on the future time horizon and RCP. The Indicators of Hydrological Alteration (IHA) quantifying the natural flow regime were used as a proxy for quantifying the CC effect on instream biota (notably fish). Changes in frequency and magnitude of the identified flood events informed about the alteration to the water supply for riparian wetlands. Changes in groundwater recharge are used as a proxy for water conditions in mires. The SWAT output on water stress has proven to be a good indicator of agricultural drought. The results showed that developed indicators are highly sensitive to projected changes in water conditions under changing climate. It means that they can be used for agriculture adaptation programs and in conservation policy.

  8. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    NASA Astrophysics Data System (ADS)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices (grazing, cropping, and manure application), evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Future development should include modeling contributions of wildlife, manure weathering, and weather effects on manure-borne microorganism survival and release.

  9. Evaluation of Fish Passage at Whitewater Parks Using 2D and 3D Hydraulic Modeling

    NASA Astrophysics Data System (ADS)

    Hardee, T.; Nelson, P. A.; Kondratieff, M.; Bledsoe, B. P.

    2016-12-01

    In-stream whitewater parks (WWPs) are increasingly popular recreational amenities that typically create waves by constricting flow through a chute to increase velocities and form a hydraulic jump. However, the hydraulic conditions these structures create can limit longitudinal habitat connectivity and potentially inhibit upstream fish migration, especially of native fishes. An improved understanding of the fundamental hydraulic processes and potential environmental effects of whitewater parks is needed to inform management decisions about Recreational In-Channel Diversions (RICDs). Here, we use hydraulic models to compute a continuous and spatially explicit description of velocity and depth along potential fish swimming paths in the flow field, and the ensemble of potential paths are compared to fish swimming performance data to predict fish passage via logistic regression analysis. While 3d models have been shown to accurately predict trout movement through WWP structures, 2d methods can provide a more cost-effective and manager-friendly approach to assessing the effects of similar hydraulic structures on fish passage when 3d analysis in not feasible. Here, we use 2d models to examine the hydraulics in several WWP structures on the North Fork of the St. Vrain River at Lyons, Colorado, and we compare these model results to fish passage predictions from a 3d model. Our analysis establishes a foundation for a practical, transferable and physically-rigorous 2d modeling approach for mechanistically evaluating the effects of hydraulic structures on fish passage.

  10. Hydraulic complexity metrics for evaluating in-stream brook trout habitat

    Treesearch

    J. Kozarek; W. Hession; M. ASCE; C. Dolloff; P. Diplas

    2010-01-01

    A two-dimensional hydraulic model (River2D) was used to investigate the significance of flow complexity on habitat preferences of brook trout (Salvelinus fontinalis) in the high-gradient Staunton River in Shenandoah National Park, Virginia. Two 100-m reaches were modeled where detailed brook trout surveys (10–30-m resolution) have been conducted annually since 1997....

  11. Instream cover and shade mediate avian predation on trout in semi-natural streams

    Treesearch

    Brooke E. Penaluna; Jason B. Dunham; David L. G. Noakes

    2015-01-01

    Piscivory by birds can be significant, particularly on fish in small streams and during seasonal low flow when available cover from predators can be limited. Yet, how varying amounts of cover may change the extent of predation mortality from avian predators on fish is not clear. We evaluated size-selective survival of coastal cutthroat trout (Oncorhynchus...

  12. Recreation use of upper Pemigewasset and Swift River Drainages, New Hampshire

    Treesearch

    Ronald J. Glass; Gerald S. Walton

    1995-01-01

    In-stream recreation use of the upper Pemigewasset and Swift River Drainages was estimated by a technique based on modified, stratified sampling. Results are reported by category of stream segment, season, day of week, time of day, and activity. "Weekend and holiday" use exceeded weekday use during spring and fall, but weekdays had the heaviest use during the...

  13. Estimates of recreational stream use in the White River drainage, Vermont

    Treesearch

    Ronald J. Glass; Gerald Walton; Herbert E. Echelberger; Herbert E. Echelberger

    1992-01-01

    An observation technique that incorporates Godified, stratified sampling was used to estimate in-stream recreation use in the White River Drainage in Vermont. Results were reported by season, day of week, time of day, kind of activity, and portion of stream. Summer had the highest use followed by spring and fall. Except in fall, weekends and holidays received...

  14. Fast response to fast-forwarding nature: instream large wood habitat restoration

    Treesearch

    Cheryl A. Hayhurst; William R. Short

    2017-01-01

    How quickly and in what way does a channel bed respond when large wood elements are introduced in a way that imitates natural wood loading processes (un-anchored or anchored by burial)? Using a design streamflow threshold for determining the size of key large wood elements, what changes in channel bed and habitat complexity occur after streamflow events above...

  15. The role of the geophysical template and environmental regimes in controlling stream-living trout populations

    Treesearch

    Brooke E. Penaluna; Steve F. Railsback; Jason B. Dunham; Sherri Johnson; Robert E. Bilby; Arne E. Skaugset; Michael Bradford

    2015-01-01

    The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus...

  16. DRAINWAT--Based Methods For Estimating Nitrogen Transport in Poorly Drained Watersheds

    Treesearch

    Devendra M. Amatya; George M. Chescheir; Glenn P. Fernandez; R. Wayne Skaggs; J.W. Gilliam

    2004-01-01

    Methods are needed to quantify effects of land use and management practices on nutrient and sediment loads at the watershed scale. Two methods were used to apply a DRAINMOD-based watershed-scale model (DRAINWAT) to estimate total nitrogen (N) transport from a poorly drained, forested watershed. In both methods, in-stream retention or losses of N were calculated with a...

  17. Disturbance legacies of historic tie-drives persistently alter geomorphology and large wood characteristics in headwater streams, southeast Wyoming

    Treesearch

    Claire M. Ruffing; Melinda D. Daniels; Kathleen A. Dwire

    2015-01-01

    Instream wood is recognized as an integral component of stream morphology in forested areas. However, few studies have evaluated the legacy effects of historic wood removal activities and associated impacts on channel morphology, contemporary wood loading, and recruitment. This study investigates the role of historic tie-driving, a widespread channel disturbance legacy...

  18. The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon

    USGS Publications Warehouse

    Doyle, Micelis C.; Rounds, Stewart

    2003-01-01

    The same resuspension effect probably exists in the Tualatin River during storm-runoff events following prolonged periods of low flow, when increased stream velocity may result in the resuspension of bottom sediments. The resuspension causes increased turbidity and increased oxygen demand, resulting in lower instream dissolved oxygen concentrations.

  19. Depth Optimization Study

    DOE Data Explorer

    Kawase, Mitsuhiro

    2009-11-22

    The zipped file contains a directory of data and routines used in the NNMREC turbine depth optimization study (Kawase et al., 2011), and calculation results thereof. For further info, please contact Mitsuhiro Kawase at kawase@uw.edu. Reference: Mitsuhiro Kawase, Patricia Beba, and Brian Fabien (2011), Finding an Optimal Placement Depth for a Tidal In-Stream Conversion Device in an Energetic, Baroclinic Tidal Channel, NNMREC Technical Report.

  20. Summary of technical testimony in the Colorado Water Division 1 Trial

    Treesearch

    Nancy (Tech. Coord.) Gordon

    1995-01-01

    The Colorado Water Division 1 Water Rights Trial was one of the most significant federal reserved instream flow water rights cases to occur since the Supreme Court of the United States ruled in the case of United States v. New Mexico in 1978. This document summarize the large amount of technical data and information pertaining to the disciplines of geomorphology,...

  1. Application of a hierarchical habitat unit classification system: stream habitat and salmonid distribution in Ward Creek, southeast Alaska.

    Treesearch

    M.D. Bryant; B.E. Wright; B.J. Davies

    1992-01-01

    A hierarchical classification system separating stream habitat into habitat units defined by stream morphology and hydrology was used in a pre-enhancement stream survey. The system separates habitat units into macrounits, mesounits, and micro- units and includes a separate evaluation of instream cover that also uses the hierarchical scheme. This paper presents an...

  2. Riparian communities associated with pacific northwest headwater streams: assemblages, processes, and uniqueness.

    Treesearch

    John S. Richardson; Robert J. Naiman; Frederick J. Swanson; David E. Hibbs

    2005-01-01

    Riparian areas of large streams provide important habitat to many species and control many instream processes - but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from...

  3. Habitat connectivity and in-stream vegetation control temporal variability of benthic invertebrate communities.

    PubMed

    Huttunen, K-L; Mykrä, H; Oksanen, J; Astorga, A; Paavola, R; Muotka, T

    2017-05-03

    One of the key challenges to understanding patterns of β diversity is to disentangle deterministic patterns from stochastic ones. Stochastic processes may mask the influence of deterministic factors on community dynamics, hindering identification of the mechanisms causing variation in community composition. We studied temporal β diversity (among-year dissimilarity) of macroinvertebrate communities in near-pristine boreal streams across 14 years. To assess whether the observed β diversity deviates from that expected by chance, and to identify processes (deterministic vs. stochastic) through which different explanatory factors affect community variability, we used a null model approach. We observed that at the majority of sites temporal β diversity was low indicating high community stability. When stochastic variation was unaccounted for, connectivity was the only variable explaining temporal β diversity, with weakly connected sites exhibiting higher community variability through time. After accounting for stochastic effects, connectivity lost importance, suggesting that it was related to temporal β diversity via random colonization processes. Instead, β diversity was best explained by in-stream vegetation, community variability decreasing with increasing bryophyte cover. These results highlight the potential of stochastic factors to dampen the influence of deterministic processes, affecting our ability to understand and predict changes in biological communities through time.

  4. The flexible focus: whether spatial attention is unitary or divided depends on observer goals.

    PubMed

    Jefferies, Lisa N; Enns, James T; Di Lollo, Vincent

    2014-04-01

    The distribution of visual attention has been the topic of much investigation, and various theories have posited that attention is allocated either as a single unitary focus or as multiple independent foci. In the present experiment, we demonstrate that attention can be flexibly deployed as either a unitary or a divided focus in the same experimental task, depending on the observer's goals. To assess the distribution of attention, we used a dual-stream Attentional Blink (AB) paradigm and 2 target pairs. One component of the AB, Lag-1 sparing, occurs only if the second target pair appears within the focus of attention. By varying whether the first-target-pair could be expected in a predictable location (always in-stream) or not (unpredictably in-stream or between-streams), observers were encouraged to deploy a divided or a unitary focus, respectively. When the second-target-pair appeared between the streams, Lag-1 sparing occurred for the Unpredictable group (consistent with a unitary focus) but not for the Predictable group (consistent with a divided focus). Thus, diametrically different outcomes occurred for physically identical displays, depending on the expectations of the observer about where spatial attention would be required.

  5. Mechanisms of iron photoreduction in a metal-rich, acidic stream (St. Kevin Gulch, Colorado, U.S.A.)

    USGS Publications Warehouse

    Kimball, B.A.; McKnight, Diane M.; Wetherbee, G.A.; Harnish, R.A.

    1992-01-01

    Iron photoreduction in metal-rich, acidic streams affected by mine drainage accounts for some of the variability in metal chemistry of such streams, producing diel variations in Fe(II). Differentiation of the mechanisms of the Fe photoreduction reaction by a series of in-stream experiments at St. Kevin Gulch, Colorado, indicates that a homogeneous, solution-phase reaction can occur in the absence of suspended particulate Fe and bacteria, and the rate of reaction is increased by the presence of Fe colloids in the stream water. In-stream Fe photoreduction is limited during the diel cycle by the available Fe(III) in the water column and streambed. The quantum yield of Fe(II) was reproducible in diel measurements: the quantum yield, in mol E-1 (from 300 to 400 nm) was 1.4 ?? 10-3 in 1986, 0.8 ?? 10-3 in 1988 and 1.2 ?? 10-3 in 1989, at the same location and under similar streamflow and stream-chemistry conditions. In a photolysis control experiment, there was no detectable production of Fe(II) above background concentrations in stream-water samples that were experimentally excluded from sunlight. ?? 1992.

  6. Identifying community thresholds for lotic benthic diatoms in response to human disturbance.

    PubMed

    Tang, Tao; Tang, Ting; Tan, Lu; Gu, Yuan; Jiang, Wanxiang; Cai, Qinghua

    2017-06-23

    Although human disturbance indirectly influences lotic assemblages through modifying physical and chemical conditions, identifying thresholds of human disturbance would provide direct evidence for preventing anthropogenic degradation of biological conditions. In the present study, we used data obtained from tributaries of the Three Gorges Reservoir in China to detect effects of human disturbance on streams and to identify disturbance thresholds for benthic diatoms. Diatom species composition was significantly affected by three in-stream stressors including TP, TN and pH. Diatoms were also influenced by watershed % farmland and natural environmental variables. Considering three in-stream stressors, TP was positively influenced by % farmland and % impervious surface area (ISA). In contrast, TN and pH were principally affected by natural environmental variables. Among measured natural environmental variables, average annual air temperature, average annual precipitation, and topsoil % CaCO 3 , % gravel, and total exchangeable bases had significant effects on study streams. When effects of natural variables were accounted for, substantial compositional changes in diatoms occurred when farmland or ISA land use exceeded 25% or 0.3%, respectively. Our study demonstrated the rationale for identifying thresholds of human disturbance for lotic assemblages and addressed the importance of accounting for effects of natural factors for accurate disturbance thresholds.

  7. Soil Microbial Community Contribution to Small Headwater Stream Metabolism.

    NASA Astrophysics Data System (ADS)

    Clapcott, J. E.; Gooderham, J. P.; Barmuta, L. A.; Davies, P. E.

    2005-05-01

    The temporal dynamics of sediment respiration were examined in seven small headwater streams in forested catchments in 2004. A strong seasonal response was observed with higher respiration rates in depositional zones than in gravel runs. The data were also examined in the context of proportional habitat distributions that highlighted the importance of high flow events in shaping whole stream metabolic budgets. This study specifically examines the question of terrestrial soil respiration contribution to whole stream metabolism by the controlled inundation of terrestrial soils. The experiment included six experimentally inundated terrestrial zones, six terrestrial controls, and six in-stream depositional zones. Sediment bacterial respiration was measured using 14C leucine incorporation and cotton strip bioassays were also employed to provide an indicative measure of sediment microbial activity. Despite high variability and exhibiting significantly lower bacterial activity than in-stream sediments, modelling using flow data and habitat mapping illustrated the important contribution of terrestrial soil respiration to the whole stream metabolic budgets of small headwater streams. In addition, microbial community composition examined using phospholipid fatty acid analysis clearly differentiated between terrestrial and aquatic communities. Freshly inundated terrestrial communities remained similar to un-inundated controls after 28 days.

  8. Geomorphic and hydraulic Analyses of In-stream Step-pool Structures (I)

    NASA Astrophysics Data System (ADS)

    Kuo, W. C.; Hu, Y. L.; Wang, H. W.

    2016-12-01

    Longitudinal stair-like structures, such as alternating steps and pools, are found commonly in steep mountain streams. In a way to mimic the natural characteristics, many implementations of constructing artificial step structures have long been found in field practice to stabilize streambeds and enhance aquatic systems. To better understand how constructed step-pool systems form and function, this paper discusses the hydraulic and geomorphic factors based on flume experiments, and further compare to our field observations in Chijiawan Creek in Taiwan. We constructed a 2.9-m-long, 0.15-wide, and 0.3-m-high acrylic walled recirculating channel and conducted experiments to understand the formation, hydraulic features, and channel stability of step-pools of scenarios considering different channel slopes, discharges, feeding sediments. The results indicated that the keystones played a crucial role in stabilizing step-pool structures. The grain sizes of keystones from the experiments ranged approximately from one-third to one-tenth of channel width, while those from the field observations were about one-ninth to two-ninths. While the experimental discharge increased from 0.0012 cms to 0.006 cms, the flow transformed from nappe flow to skimming flow and the difference of average velocity between steps and pools reduced 30%. Besides, experiments showed that the step-pool structures failed immediately after keystones destroyed at a sediment transportation rate about 1.5 times of sediment feeding rate. It highlights the step-pools and channel stability is highly related to keystones. We further found the step-pools were buried at the experimental cases with coarse sediment fed upstream, similar to our field observations in Chijiawan Creek, with an approximately 1 3m deposition after Typhoon Soudelor, a 5-year event. The results obtained in this study would serve as a basis for ongoing discussions on how constructed step-pool structures would function and fail. More efforts of field investigations, flume experiments, and field experiments in helping developing specific recommendations and providing scientific insights for not only in Taiwan but around the world are still in need.

  9. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently confirming the robust cross-validation of these results. Average annual SSCs and SSYs were higher in poorly drained catchments (17-27 t km-2 yr-1) than those with well drained soils (8-10 t km-2 yr-1). Catchments with both poorly-drained soils and land use dominated by tillage were most susceptible to field-scale soil erosion due to rapid establishment of overland flow pathways and periods of bare soils during cropping cycles. However results suggest that relatively high SSY may also occur in grassland catchments, particularly on poorly drained soils and with higher stocking densities and greater likelihood of channel bank erosion. Whilst the mean SSY rates are low by international standards, inter-annual variability was significant highlighting the spatial and temporal fluctuations in runoff and soil erosion risk. Such issues are of particular concern as Ireland pursues an agricultural policy of sustainable intensification. Effective soil erosion and sediment management should address catchment specific characteristics.

  10. Instream Attenuation of Nitrogen and Phosphorus in Non-Point Source Dominated Streams: Hydrologic and Biogeochemical Controls

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Chen, X.; Keller, A. A.

    2010-12-01

    Non-point source inputs of total nitrogen (TN) and total phosphorus (TP) in rivers are the leading causes of water quality degradation in the United States (Turner and Rabalais, 2003; Broussard and Turner, 2009). Yet it remains a challenge to adequately quantify the relative role and influence of physical hydrological processes versus biogeochemical processes on the attenuation of TN and TP for individual river reaches. A watershed-scale study of instream dynamics and attenuation of TN and TP in northeastern U.S. headwater streams demonstrates that physical and hydrological processes exert greater control over nutrient removal than biogeochemical processes. To explore these interactions under various attenuation scenarios, we developed the watershed-scale model (WARMF) for 97 catchments to simulate watershed processes, hydrology, and diffuse source loads of nutrients. We simulated a hypothetical nutrient release at a rate of 1 kg/d of TN (50% as ammonium and 50% as nitrate) and TP (100% as phosphate) to predict response lengths of downstream catchments. Resulting attenuation factors are presented as the change in mean load at a given location, normalized to the change in the catchment in which the load is applied. Results indicate that for most catchments, the TN and TP load increase is attenuated from the stream within a few tens of kilometers. Fifty percent attenuation occurs across length scales ranging from a few hundreds of meters to kilometers if the load is introduced in the headwaters, indicating the most rapid nutrient removal occurs in the smallest headwater streams but generally decreases with distance downstream. There are some differences in the attenuation factors for TN and TP, although the pattern of attenuation is the same. Sensitivity analyses highlight five hydrological parameters of paramount importance to concentrations of N and P, namely precipitation, evaporation coefficients (magnitude and skewness), soil layer thickness, soil saturated moisture and soil hydraulic conductivity. These model parameters have a significant effect on the concentrations of nutrients, with TN exhibiting greater sensitivity. Further, attenuation results suggest that stream depth, flow regime, and density of agriculture in small headwater streams are potentially important controls to nutrient uptake and removal; i.e. during periods of low flow, dilution is reduced, attenuation length increases, and removal processes may be dominated by settling as opposed to biogeochemistry. Instream attenuation and model results can be used to assess 1) the scale and nature of best management practices which must be adopted to result in nutrient reductions, 2) the downstream distance at which load reductions will be effective, and 3) the hydrological characteristics of the river network which exert considerable influence on attenuation lengths and nutrient removal.

  11. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  12. Modeling complex flow structures and drag around a submerged plant of varied posture

    NASA Astrophysics Data System (ADS)

    Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.

    2017-04-01

    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

  13. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W.

    2008-01-01

    Seasonal hypoxia in the northern Gulf of Mexico has been linked to increased nitrogen fluxes from the Mississippi and Atchafalaya River Basins, though recent evidence shows that phosphorus also influences productivity in the Gulf. We developed a spatially explicit and structurally detailed SPARROW water-quality model that reveals important differences in the sources and transport processes that control nitrogen (N) and phosphorus (P) delivery to the Gulf. Our model simulations indicate that agricultural sources in the watersheds contribute more than 70% of the delivered N and P. However, corn and soybean cultivation is the largest contributor of N (52%), followed by atmospheric deposition sources (16%); whereas P originates primarily from animal manure on pasture and rangelands (37%), followed by corn and soybeans (25%), other crops (18%), and urban sources (12%). The fraction of in-stream P and N load delivered to the Gulf increases with stream size, but reservoir trapping of P causes large local- and regional-scale differences in delivery. Our results indicate the diversity of management approaches required to achieve efficient control of nutrient loads to the Gulf. These include recognition of important differences in the agricultural sources of N and P, the role of atmospheric N, attention to P sources downstream from reservoirs, and better control of both N and P in close proximity to large rivers. ?? 2008 American Chemical Society.

  14. Chapter A. Effects of urbanization on stream ecosystems in the South Platte River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.

    2006-01-01

    This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 basins along an urban land-use gradient in the South Platte River Basin, Colorado and Wyoming, from 2002 through 2003. Study basins were chosen to minimize natural variability among basins due to factors such as geology, elevation, and climate and to maximize coverage of different stages of urban development among basins. Because land use or population density alone often are not a complete measure of urbanization, land use, land cover, infrastructure, and socioeconomic variables were integrated in a multimetric urban intensity index to represent the degree of urban development in each study basin. Physical characteristics studied included stream hydrology, stream temperature, and habitat; chemical characteristics studied included nutrients, pesticides, suspended sediment, sulfate, chloride, and fecal bacteria concentrations; and biological characteristics studied included algae, fish, and invertebrate communities. Semipermeable membrane devices (SPMDs), passive samplers that concentrate trace levels of hydrophobic organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization; (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin. Commonly observed effects of urbanization on instream physical, chemical, and biological characteristics, such as increased flashiness, higher magnitude and more frequent peak flows, increased concentrations of chemicals, and changes in aquatic community structure, generally were not observed in this study. None of the hydrologic, temperature, habitat, or chemical variables were correlated strongly (Spearman's rho greater than or equal to 0.7) with urban intensity, with the exception of some of the SPMD-based toxicity and chemical variables. SPMD-based measures of potential toxicity and PAH concentrations were positively correlated with urban intensity. The PAH concentrations also were positively correlated with measures of road density and negatively correlated with distance to the nearest road, indicating that automobile exhaust is a major source of these compounds in the study area. This source may be localized enough that the transport of PAHs would be minimally affected by water-management practices such as diversion or storage upstream. In contrast, the predominant sources of nutrients, bacteria, suspended sediment, sulfate, chloride, and pesticides may be more dispersed throughout the drainage area and, therefore, their transport to downstream sites may be subject to greater disruption by water regulation. Although no direct link was found between most water-chemistry characteristics and urbanization, invertebrate, algae, and fish-community characteristics were strongly associated with nutrients, pesticides, sulfate, chloride, and suspended sediment. None of the biological community variables were strongly correlated with the urban intensity index. Algal biomass predominantly was associated with total nitrogen concentrations, nitrite-plus-nitrate concentrations, and the duration of high flows. Fish communities predominantly were associated with housing age, the percentage of suspended sediment finer than 0.063 millimeters and chloride concentrations. Invertebrate communities predominantly were associated with the frequency of rising and falling flow events, the duration of high flows, total nitrogen concentrations, nitrite-plus-nitrate concentrations, and total herbicide concentrations. Historical records indicate that aquatic communities in the region may have been altered prior to any substantial urban development by early agricultural and water-management practices. Present-day aquatic communities are composed primarily of tolerant species even in areas of minimal urban development; when development does occur, the communities already may be resistant to disturbance. In addition to the effects of historical stressors on aquatic community structure, it is possible that current water-management practices in the study basins are having an effect. In the absence of natural, unaltered hydrologic conditions, more sensitive taxa may be unable to recolonize urban streams. The movement and storage of water also may lead to a disconnect between the land surface and streams, resulting in instream physical, chemical, and biological characteristics that, to some degree, are independent of land-cover characteristics.

  15. Fish passage in a western Iowa stream modified by grade control structures

    USGS Publications Warehouse

    Litvan, M.E.; Pierce, C.L.; Stewart, T.W.; Larson, C.J.

    2008-01-01

    Grade control structures (GCSs) are commonly used in streams of western Iowa to control bank erosion and channel headcutting but may be barriers to fish passage. From May 2002 to May 2006, we used mark-recapture methods to evaluate fish passage over a total of five GCSs, ranging in slope (run : rise) from 13:1 to 18:1 in Turkey Creek, Cass County, Iowa. Three structures, over which limited fish movement was documented from 2002 to 2004, were modified in the winter of 2004-2005 to facilitate fish passage. Before modification, the majority of recaptured fish were recaptured at the station where they were originally marked; only 1% displayed movement between sites and either upstream or downstream over a GCS. After modification fish passage improved, 14% of recaptured fish displayed movement either upstream or downstream over a GCS. Individuals of four target species - channel catfish Ictalurus punctatus, yellow bullhead Ameiurus natalis, black bullhead A. melas, and creek chub Semotilus atromaculatus - passed over at least one modified structure. The majority of documented movements over GCSs were in the upstream direction and occurred in late spring and early summer, when streamflow was relatively high. Although we documented low numbers of fish passing both upstream and downstream over GCSs, these structures are probably barriers to fish movement during periods of low flow and when there is a structural failure, such as in-channel movement of riprap. Grade control structures are pervasive in western Iowa streams; nearly every low-order stream contains at least one instream structure. To sustain fish populations, management efforts should focus on constructing or modifying GCSs to allow fish passage. ?? Copyright by the American Fisheries Society 2008.

  16. Riparian buffers and forest thinning: Effects on headwater vertebrates 10 years after thinning

    Treesearch

    Deanna H. Olson; Jeffery B. Leirness; Patrick G. Cunningham; E. Ashley Steel

    2014-01-01

    We monitored instream vertebrate and stream-bank-dwelling amphibian counts during a stand-scale experiment of the effect of riparian buffer width with upland forest thinning in western Oregon, USA using a before/after/control methodology. We analyzed animal counts along 45 streams at 8 study sites, distributed from the foothills of Mount Hood to Coos Bay, Oregon using...

  17. Preliminary study of the effects of headwater riparian reserves with upslope thinning on stream habitats and amphibians in western Oregon.

    Treesearch

    D.H. Olson; C. Rugger

    2007-01-01

    We conducted a preliminary examination of the responses of stream amphibians and instream habitat conditions to alternative riparian buffer zones with forest thinning upslope. Pre- and posttreatment surveys were carried out on 68 headwater stream reaches (including 23 unthinned reference reaches) at 11 sites in western Oregon. Streams were in managed conifer stands 40...

  18. Characterizing the thermal suitability of instream habitat for salmonids: A cautionary example from the Rocky Mountains

    Treesearch

    Robert Al-Chokhachy; Seth J. Wenger; Daniel J. Isaak; Jeffrey L. Kershner

    2013-01-01

    Understanding a species’ thermal niche is becoming increasingly important for management and conservation within the context of global climate change, yet there have been surprisingly few efforts to compare assessments of a species’ thermal niche across methods. To address this uncertainty, we evaluated the differences in model performance and interpretations...

  19. In-stream production of methylmercury in a northern California river during summer baseflow

    NASA Astrophysics Data System (ADS)

    Tsui, M. T.; Finlay, J. C.; Nollet, Y. H.; Balogh, S. J.

    2009-12-01

    In stream ecosystems, it is well established that terrestrial landscape features such as wetlands are important in determining the aqueous concentration and flux of methylmercury. In contrast, our understanding of in-stream production of methylmercury is inadequate, especially on an ecosystem scale. In this study, we examined the relationship between the net production of dissolved methylmercury and algal metabolism in an 8-km reach of a third order stream (South Fork Eel River) in northern California. The stream has a forested watershed with no wetlands and has a long period of baseflow that typically extends from late May to early October. There was an intense rainfall in early May, 2009, but no major precipitation was recorded afterward, as is typical of Mediterranean climate of the study site. We collected surface water samples along the main channel and four major tributaries to the study stream reach. Temporal patterns of algal metabolism were inferred from net changes in total dissolved phosphorus and silica uptake and algal abundance. There was essentially no net production of methylmercury within the study reach (~ 0 µg Hg/km/d) in mid-May but net production of methylmercury occurred afterward when discharge declined exponentially, water temperature increased and algal metabolism increased (i.e. phosphorus and silica were taken up biologically). Net production of dissolved methylmercury peaked in mid-June (100 µg Hg/km/d) and then declined in mid-July (58 µg Hg/km/d) and mid-August (45 µg Hg/km/d) within the 8-km reach. The absence of surface runoff during the summer (e.g. June through September) indicates that the observed net production of methylmercury occurred within the channel and algal metabolism is coupled to the mercury methylation process. In summary, our study suggests that, in addition to watershed features, in-stream production of methylmercury should be considered as an important factor mediating mercury bioavailability in flowing waters especially during baseflow periods and in systems with high rates of algal productivity. Temporal changes of physicochemical properties of the study stream reach.

  20. The Long-Term Effects of Large Wood Placement on Salmonid Habitat in East Fork Mill Creek, Redwood National and State Park, California

    NASA Astrophysics Data System (ADS)

    Rodriguez, D. L.; Stubblefield, A. P.

    2017-12-01

    The conservation and recovery of anadromous salmonids (Oncorhynchus sp.) depend on stream restoration and protection of freshwater habitats. Instream large wood dictates channel morphology, increase retention of terrestrial inputs such as organic matter, nutrients and sediment, and enhances the quality of fish habitat. Historic land use/land cover changes have resulted in aquatic systems devoid of this component. Restoration by placement of large wood jams is intended to restore physical and biological processes. An important question for scientists and managers, in addition to the initial effectiveness of restoration, is the persistence and fate of this type of project. In this study we compare channel change and large wood attributes on the East Fork of Mill Creek, a tributary of the Smith River in northern California, eight years after a major instream wood placement effort took place. Our results are compared with previously published data from before and one year after the restoration. Preliminary results suggest the dramatic increase in spawning gravel abundance and large wood accumulation observed in the earlier study have persisted. From 2008 to 2016 a reduction in median sediment size, ranging from 103-136 percent, has been observed in a majority of the sites. The sites have continued to grow in size and influence by racking floating wood from upstream and destabilizing proximate banks of riparian alder, increasing both instream large wood volume (5-196 %) and floodplain connectivity. Preliminary results also show a decrease in residual pool depth and an increase in pool length which may be attributed to floodplain connectivity. Changes to the following attributes are evaluated: 1) wood loading (total site wood volume, total wood volume in active channel, and wood piece count); 2) percent pool cover by large wood; 3) residual pool depth; 4) upstream sediment aggradation; 5) floodplain connectivity; and 6) mean sediment size directly above and below large wood. We present on these results and statistical comparisons of total site wood volume with response factors.

  1. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value of integrating field and modelling studies of stream metabolism as a means of understanding the dynamic interactions of the riverscape and its surrounding landscape.

  2. Wenatchee River, Washington, Water Temperature Modeling and Assessment Using Remotely Sensed Thermal Infrared and Instream Recorded Data

    NASA Astrophysics Data System (ADS)

    Cristea, N. C.; Burges, S. J.

    2004-12-01

    The stream water spatial and temporal temperature patterns of the Wenatchee River, WA are assessed based on temperature data recorded by instream data loggers in the dry season of 2002 and thermal infrared imagery from August 16th 2002. To gain insights into the possible thermal behavior of the river, the stream temperature model Qual2K (Chapra and Pelletier, 2003) is extended beyond its calibration (10-16 August 2002) and confirmation (9-11 September 2002) periods for use with different meteorological, shade and flow conditions. The temperature longitudinal profile of the Wenatchee River is influenced by the temperature regime in Lake Wenatchee, the source of the Wenatchee River. Model simulations performed at 7-day average with 2-year return period flow conditions show that the potential (maximum average across all reaches) temperature (the temperature that would occur under natural conditions) is about 19.8 deg. C. For the 7-day average with 10-year return period flow conditions the potential temperature increases to about 21.2 deg. C. The simulation results show that under normal flow and meteorological conditions the water temperature exceeds the current water quality standards. Model simulations performed under the 7-day average with 10-year return period flow conditions and a climate change scenario show that the average potential temperature across all reaches can increase by as much as 1.3 deg. C compared to the case where climate change impact is not taken into account. Thermal infrared (TIR) derived stream temperature data were useful for describing spatial distribution patterns of the Wenatchee River water temperature. The TIR and visible band images are effective tools to map cold water refugia for fish and to detect regions that can be improved for fish survival. The images collected during the TIR survey and the TIR derived stream temperature longitudinal profile helps pinpoint additional instream monitoring locations that avoid regions of backwater, cool or warm pockets or regions affected by tributary influence, that are inappropriate for stream temperature monitoring. Groundwater input is difficult to detect from the TIR images in the case of a relatively large river such the Wenatchee River.

  3. Monitoring of stream restoration habitat on the main stem of the Methow River, Washington, during the pre-treatment phase (October 2008-May 2012) with a progress report for activities from March 2011 to November 2011

    USGS Publications Warehouse

    Tibbits, Wesley T.; Martens, Kyle D.; Connolly, Patrick J.

    2012-01-01

    The approach and actions taken or planned by Reclamation to modify off-channel habitat are largely untested as to their effectiveness to improve target fish species’ productivity and survival needs. Those documented strategies that identify both physical parameters and biological relationships and benefits have been identified (Reclamation, 2008). To assess biological performance, we plan to compare age structure, growth, and age at smolting between those fish that stay in natal areas versus those fish that move. To assess retention in, and movement from or into, the restoration reach, we have used a combination of within-reach and out-of-reach sampling. We are using passive integrated transponder (PIT) tags, a network of instream PIT tag interrogation systems, and smolt traps to assess differences in biological performance and the magnitude of retention in, and movement from and into, the restoration reach.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Lynn

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soilmore » and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.« less

  5. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  6. Impact of landscape disturbance on the quality of terrestrial sediment carbon in temperate streams

    NASA Astrophysics Data System (ADS)

    Fox, James F.; Ford, William I.

    2016-09-01

    Recent studies have shown the super saturation of fluvial networks with respect to carbon dioxide, and the concept that the high carbon dioxide is at least partially the result of turnover of sediment organic carbon that ranges in age from years to millennia. Currently, there is a need for more highly resolved studies at stream and river scales that enable estimates of terrestrial carbon turnover within fluvial networks. Our objective was to develop a new isotope-based metric to estimate the quality of sediment organic carbon delivered to temperate streams and to use the new metric to estimate carbon quality across landscape disturbance gradients. Carbon quality is defined to be consistent with in-stream turnover and our metric is used to measure the labile or recalcitrant nature of the terrestrial-derived carbon within streams. Our hypothesis was that intensively-disturbed landscapes would tend to produce low quality carbon because deep, recalcitrant soil carbon would be eroded and transported to the fluvial system while moderately disturbed or undisturbed landscapes would tend to produce higher quality carbon from well-developed surface soils and litter. The hypothesis was tested by applying the new carbon quality metric to 15 temperate streams with a wide range of landscape disturbance levels. We find that our hypothesis premised on an indirect relationship between the extent of landscape disturbance and the quality of sediment carbon in streams holds true for moderate and high disturbances but not for un-disturbed forests. We explain the results based on the connectivity, or dis-connectivity, between terrestrial carbon sources and pathways for sediment transport. While pathways are typically un-limited for disturbed landscapes, the un-disturbed forests have dis-connectivity between labile carbon of the forest floor and the stream corridor. Only in the case when trees fell into the stream corridor due to severe ice storms did the quality of sediment carbon increase in the streams. We argue that as scientists continue to estimate the in-stream turnover of terrestrially-derived carbon in fluvial carbon budgets, the assumption of pathway connectivity between carbon sources to the stream should be justified.

  7. More Soil, Less Storage: The Influence of Soil Characteristics on Rainfall-Runoff Responses Across High to Low Relief Landscapes

    NASA Astrophysics Data System (ADS)

    Gannon, J. P.; Zimmer, M. A.

    2017-12-01

    The balance between surficial watershed properties (e.g. topography) and subsurface watershed properties (e.g. soil depth, horizonation) as drivers of runoff characteristics is not well understood. We addressed this knowledge gap by investigating long-term ( 20 years) daily discharge and precipitation for 74 USGS in-stream gaging sites across the Appalachian Mountain and Piedmont regions of North Carolina, USA. Gaging sites included in this analysis had <10% developed land and ranged in size from 14.1 - 4390 km2. Thirty-five sites were located in the Piedmont Region, which is typically classified as a low relief landscape with deep, highly weathered soils and shallow, clay-rich soil horizons. Thirty-nine sites were located in the Appalachian Mountains, which are typically classified as a steeper landscape with comparatively shallow, highly weathered soils. We calculated an annual baseflow index (BFI) for each site to investigate the changes in stormflow generation in each gaged watershed. We also conducted a stepwise multiple linear regression analysis to identify which landscape and climate characteristics contributed to individual watershed runoff responses. Our results showed that watersheds in the Appalachian Mountain region had BFIs that were generally higher and less dependent on the rainfall of the corresponding year, as compared to the Piedmont region. This suggests that while the Appalachian Mountain region is steeper with comparatively shallower soils, the effective storage is higher than watersheds in the Piedmont. In contrast, while the Piedmont region has deep soils, the shallow soil horizon impeding layers produce flashier runoff responses and a shorter watershed memory. More work is needed to further understand the balance between critical zone structure and watershed structure on runoff responses across a range of landscape types.

  8. Characterization and analysis of temporal and spatial variations in habitat and macroinvertebrate community structure, Fountain Creek basin, Colorado Springs and vicinity, Colorado, 1998-2001

    USGS Publications Warehouse

    Bruce, James F.

    2002-01-01

    The Fountain Creek Basin in and around Colorado Springs, Colorado, is affected by various land- and water-use activities. Biological, hydrological, water-quality, and land-use data were collected at 10 sites in the Fountain Creek Basin from April 1998 through April 2001 to provide a baseline characterization of macroinvertebrate communities and habitat conditions for comparison in subsequent studies; and to assess variation in macroinvertebrate community structure relative to habitat quality. Analysis of variance results indicated that instream and riparian variables were not affected by season, but significant differences were found among sites. Nine metrics were used to describe and evaluate macroinvertebrate community structure. Statistical analysis indicated that for six of the nine metrics, significant variability occurred between spring and fall seasons for 60 percent of the sites. Cluster analysis (unweighted pair group method average) using macroinvertebrate presence-absence data showed a well-defined separation between spring and fall samples. Six of the nine metrics had significant spatial variation. Cluster analysis using Sorenson?s Coefficient of Community values computed from macroinvertebrate density (number of organisms per square meter) data showed that macroinvertebrate community structure was more similar among tributary sites than main-stem sites. Canonical correspondence analysis identified a substrate particle-size gradient from site-specific species-abundance data and environmental correlates that decreased the 10 sites to 5 site clusters and their associated taxa.

  9. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish.

    PubMed

    Coleman, R A; Gauffre, B; Pavlova, A; Beheregaray, L B; Kearns, J; Lyon, J; Sasaki, M; Leblois, R; Sgro, C; Sunnucks, P

    2018-06-01

    Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45-120 years ago. We found evidence of small-scale (<13 km) genetic structure within reaches unimpeded by barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (F ST  = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (<100). Our study highlights that, in structured populations, the ability to detect short-term genetic effects from barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.

  10. A watershed-scale characterication of dissolved organic carbon and nutrients on the South Carolina Coastal Plain

    Treesearch

    Daniel L. Tufford; Setsen Alton-Ochir; Warren Hankinson

    2016-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...

  11. A watershed-scale characterization of dissolved organic carbon and nutrients on the South Carolina Coastal Plain

    Treesearch

    Daniel Tufford; Setsen Alton-Ochir

    2016-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver of numerous biogeochemical processes in aquatic ecosystems, both in-stream and downstream in estuaries. This study sought to characterize chromophoric DOM (CDOM), dissolved organic carbon (DOC), and dissolved nutrients in major rivers and their...

  12. Effectiveness of timber harvesting BMPs: monitoring spatial and temporal dynamics of dissolved oxygen, nitrogen, and phosphorus in a low-gradient watershed, Louisiana

    Treesearch

    Abram DaSilva; Y. Jun Xu; George Ice; John Beebe; Richard Stich

    2012-01-01

    To test effectiveness of Louisiana’s voluntary best management practices (BMPs) at preventing water quality degradation from timber harvesting activities, a study with BACI design was conducted from 2006 through 2010 in the Flat Creek Watershed, north-central Louisiana. Water samples for nutrient analyses and measurements of stream flow and of in-stream dissolved...

  13. Longitudinal variation in suspended sediment and turbidity of two undisturbed streams in northwestern California in relation to the monitoring of water quality above and below a land disturbance

    Treesearch

    Steve G. Markman

    1990-01-01

    Abstract - In-stream water quality regulations of California state that silvicultural disturbances must not increase turbidity levels more than 20 percent above naturally occurring background levels. These regulations fail to take into account the natural variation of turbidity and suspended sediment concentration along a short stretch of an undisturbed stream. At...

  14. A State of the Field Study of Child Welfare Services for Migrant Children and Their Families Who are In-Stream, Home-Based, or Settled-Out. Literature Review.

    ERIC Educational Resources Information Center

    Porteous, Sandra McClure

    Part of a study of migrant child welfare services, this review synthesizes all available materials on the issues affecting migrant child welfare. Each chapter discusses the importance of a particular service area, assesses the migrant child's needs in that area, describes existing barriers to service delivery, and presents a history and the…

  15. Physical-Habitat and Geomorphic Data for Selected River Reaches in Central Arizona Basins, 1995-98

    DTIC Science & Technology

    2000-01-01

    identification purposes only and does not constitute endorsement by the U.S. Geological Survey. Information regarding research and data-collection programs of...of measurement sites for Central Arizona Basins study area [<, less than] Site number (see fig. 1) Site name Station- identification number Latitude...measurements of instream characteristics, solar contribution to the system, and identification of riparian vegetation. The methods used to measure

  16. Healthy Water, Wealthy World. Conservation Camp 1995 Workbook. A Companion Workbook to a Day in Nature's Classroom for Sixth Grade Students and Teachers in Claiborne, Grainger, Hancock, Hawkins and Union Counties.

    ERIC Educational Resources Information Center

    Clinch-Powell Resource Conservation and Development Council, Rutledge, TN.

    This student workbook is designed as a companion to a day of field studies investigating water quality and stream health for sixth grade students in several northeastern Tennessee counties. Nineteen environmental education activities cover topics including wildlife species, wildlife habitats (instream and riparian), connections between water…

  17. Biotic Drivers of Spatial Heterogeneity and Implications for River Ecosystems

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2017-04-01

    Rivers throughout the northern hemisphere have been simplified and homogenized by the removal of beavers and instream wood, along with numerous forms of channel engineering and flow regulation. Loss of spatial heterogeneity in river corridors - channels and floodplains - affects downstream fluxes of water, sediment, organic matter, and nutrients, as well as stream metabolism, biomass, and biodiversity. Recent work in streams of the Colorado Rocky Mountains illustrates how the presence of beavers and instream wood can facilitate spatial heterogeneity by creating stable, persistent, multithread channel planform and high channel-floodplain and channel-hyporheic zone connectivity. This spatial heterogeneity facilitates retention of water in pools, floodplain wetlands, and hyporheic storage. Suspended sediment, particulate organic matter (POM), and solutes are also more likely to be retained in these stream segments than in more uniform stream segments with greater downstream conveyance. Retention of POM and solutes equates to greater volumes of organic carbon storage per unit valley length and greater rates of nitrogen uptake. Spatially heterogeneous stream segments also exhibit greater biomass and biodiversity of aquatic macroinvertebrates, salmonid fish, and riparian spiders than do more uniform stream segments. These significant differences in stream form and function are unlikely to be unique to this field area and can provide a conceptual model for understanding and restoring ecosystem functions in other rivers.

  18. Electrofishing effort requirements for estimating species richness in the Kootenai River, Idaho

    USGS Publications Warehouse

    Watkins, Carson J.; Quist, Michael C.; Shepard, Bradley B.; Ireland, Susan C.

    2016-01-01

    This study was conducted on the Kootenai River, Idaho to provide insight on sampling requirements to optimize future monitoring effort associated with the response of fish assemblages to habitat rehabilitation. Our objective was to define the electrofishing effort (m) needed to have a 95% probability of sampling 50, 75, and 100% of the observed species richness and to evaluate the relative influence of depth, velocity, and instream woody cover on sample size requirements. Sidechannel habitats required more sampling effort to achieve 75 and 100% of the total species richness than main-channel habitats. The sampling effort required to have a 95% probability of sampling 100% of the species richness was 1100 m for main-channel sites and 1400 m for side-channel sites. We hypothesized that the difference in sampling requirements between main- and side-channel habitats was largely due to differences in habitat characteristics and species richness between main- and side-channel habitats. In general, main-channel habitats had lower species richness than side-channel habitats. Habitat characteristics (i.e., depth, current velocity, and woody instream cover) were not related to sample size requirements. Our guidelines will improve sampling efficiency during monitoring effort in the Kootenai River and provide insight on sampling designs for other large western river systems where electrofishing is used to assess fish assemblages.

  19. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  20. Microbial Source Module (MSM): Documenting the Science ...

    EPA Pesticide Factsheets

    The Microbial Source Module (MSM) estimates microbial loading rates to land surfaces from non-point sources, and to streams from point sources for each subwatershed within a watershed. A subwatershed, the smallest modeling unit, represents the common basis for information consumed and produced by the MSM which is based on the HSPF (Bicknell et al., 1997) Bacterial Indicator Tool (EPA, 2013b, 2013c). Non-point sources include numbers, locations, and shedding rates of domestic agricultural animals (dairy and beef cows, swine, poultry, etc.) and wildlife (deer, duck, raccoon, etc.). Monthly maximum microbial storage and accumulation rates on the land surface, adjusted for die-off, are computed over an entire season for four land-use types (cropland, pasture, forest, and urbanized/mixed-use) for each subwatershed. Monthly point source microbial loadings to instream locations (i.e., stream segments that drain individual sub-watersheds) are combined and determined for septic systems, direct instream shedding by cattle, and POTWs/WWTPs (Publicly Owned Treatment Works/Wastewater Treatment Plants). The MSM functions within a larger modeling system that characterizes human-health risk resulting from ingestion of water contaminated with pathogens. The loading estimates produced by the MSM are input to the HSPF model that simulates flow and microbial fate/transport within a watershed. Microbial counts within recreational waters are then input to the MRA-IT model (Soller et

  1. Impact of point-source pollution on phosphorus and nitrogen cycling in stream-bed sediments.

    PubMed

    Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P

    2010-02-01

    Diffusive equilibration in thin films was used to study the cycling of phosphorus and nitrogen at the sediment-water interface in situ and with minimal disturbance to redox conditions. Soluble reactive phosphate (SRP), nitrate, nitrite, ammonium, sulfate, iron, and manganese profiles were measured in a rural stream, 12 m upstream, adjacent to, and 8 m downstream of a septic tank discharge. Sewage fungus adjacent to the discharge resulted in anoxic conditions directly above the sediment. SRP and ammonium increased with depth through the fungus layer to environmentally significant concentrations (440 and 1800 microM, respectively) due to release at the sediment surface. This compared to only 0.8 microM of SRP and 2.0 microM of ammonium in the water column upstream of the discharge. Concomitant removal of ammonium, nitrite and nitrate within 0.5 cm below the fungus-water interface provided evidence for anaerobic ammonium oxidation (anammox). "Hotspots" of porewater SRP (up to 350 microM) at the downstream site demonstrated potential in-stream storage of the elevated P concentrations from the effluent. These results provide direct in situ evidence of phosphorus and nitrogen release from river-bed sediments under anoxic conditions created by sewage-fungus, and highlight the wider importance of redox conditions and rural point sources on in-stream nutrient cycling.

  2. Season-ahead Drought Forecast Models for the Lower Colorado River Authority in Texas

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Zimmerman, B.; Grzegorzewski, M.; Watkins, D. W., Jr.; Anderson, R.

    2014-12-01

    The Lower Colorado River Authority (LCRA) in Austin, Texas, manages the Highland Lakes reservoir system in Central Texas, a series of six lakes on the Lower Colorado River. This system provides water to approximately 1.1 million people in Central Texas, supplies hydropower to a 55-county area, supports rice farming along the Texas Gulf Coast, and sustains in-stream flows in the Lower Colorado River and freshwater inflows to Matagorda Bay. The current, prolonged drought conditions are severely taxing the LCRA's system, making allocation and management decisions exceptionally challenging, and affecting the ability of constituents to conduct proper planning. In this work, we further develop and evaluate season-ahead statistical streamflow and precipitation forecast models for integration into LCRA decision support models. Optimal forecast lead time, predictive skill, form, and communication are all considered.

  3. Real-Time Visualization of Network Behaviors for Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.

    Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less

  4. Modeling water quality, temperature, and flow in Link River, south-central Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.

    2016-09-09

    The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.

  5. Development of a 1 D hydrodynamic habitat model for the Hippopotamus amphibious as basis for sustainable exploitation of hydroelectric power

    NASA Astrophysics Data System (ADS)

    Manful, D. Y.; Kaule, G.; Wieprecht, S.; Rees, J.; Hu, W.

    2009-12-01

    Hydroelectric Power (HEP) is proving to be a good alternative to carbon based energy. In the past hydropower especially large scale hydro attracted significant criticism as a result of its impact on the environment. A new breed of hydroelectric dam is in the offing. The aim is to have as little a footprint as possible on the environment in both pre and post construction phases and thus minimize impact on biodiversity whilst producing clean renewable energy. The Bui dam is 400 MW scheme currently under development on the Black Volta River in the Bui national park in Ghana. The reservoir created by the Bui barrage is expected to impact (through inundation) the habitat of two species of hippos know to exist in the park, the Hippopotamus amphibius and the Choeropsis liberiensis. Computer-based models present a unique opportunity to assess quantitatively the impact of the new reservoir on the habitat of the target species in this case the H. amphibious. Until this undertaking, there were very few studies documenting the habitat of the H. amphibious let alone model it. The work and subsequent presentation will show the development of a habitat model for the Hippopotamus amphibius. The Habitat Information retrieval Program based on Streamflow Analysis, in short HIPStrA, is a one dimensional (1D) in-stream, spatially explicit hybrid construct that combines physico-chemical evidence and expert knowledge to forecast river habitat suitability (Hs) for the Hippopotamus amphibius. The version of the model presented is specifically developed to assess the impact of a reservoir created by a hydroelectric dam on potential dwelling areas in the Bui gorge for hippos. Accordingly, this version of HIPStrA simulates a special reservoir suitability index (Rsi), a metric that captures the”hippo friendliness” of any lake or reservoir. The impact of measured and simulated flood events as well as low flows, representing extreme events is also assessed. Recommendations are made for the operating rules of the reservoir in the post-construction phase of the dam. A great deal of work has been done on the effects of stream flow changes on fish especially salmonids. Very little work however has been done assessing the impact of hydropower schemes on aquatic mammals especially in Africa. HIPStrA is the first attempt at developing a computer-based habitat model for a large aquatic megaherbivore. The need for energy for development, the availability of large rivers and a rich biodiversity base in Africa makes a case for careful and ecological smart exploitation. The overarching aim of the study is the sustainable development of hydroelectric power through the use of methodologies and tools to rigorously assess changes in instream conditions that impact aquatic mammals.

  6. Science for Managing Riverine Ecosystems: Actions for the USGS Identified in the Workshop "Analysis of Flow and Habitat for Instream Aquatic Communities"

    USGS Publications Warehouse

    Bencala, Kenneth E.; Hamilton, David B.; Petersen, James H.

    2006-01-01

    Federal and state agencies need improved scientific analysis to support riverine ecosystem management. The ability of the USGS to integrate geologic, hydrologic, chemical, geographic, and biological data into new tools and models provides unparalleled opportunities to translate the best riverine science into useful approaches and usable information to address issues faced by river managers. In addition to this capability to provide integrated science, the USGS has a long history of providing long-term and nationwide information about natural resources. The USGS is now in a position to advance its ability to provide the scientific support for the management of riverine ecosystems. To address this need, the USGS held a listening session in Fort Collins, Colorado in April 2006. Goals of the workshop were to: 1) learn about the key resource issues facing DOI, other Federal, and state resource management agencies; 2) discuss new approaches and information needs for addressing these issues; and 3) outline a strategy for the USGS role in supporting riverine ecosystem management. Workshop discussions focused on key components of a USGS strategy: Communications, Synthesis, and Research. The workshop identified 3 priority actions the USGS can initiate now to advance its capabilities to support integrated science for resource managers in partner government agencies and non-governmental organizations: 1) Synthesize the existing science of riverine ecosystem processes to produce broadly applicable conceptual models, 2) Enhance selected ongoing instream flow projects with complementary interdisciplinary studies, and 3) Design a long-term, watershed-scale research program that will substantively reinvent riverine ecosystem science. In addition, topical discussion groups on hydrology, geomorphology, aquatic habitat and populations, and socio-economic analysis and negotiation identified eleven important complementary actions required to advance the state of the science and to develop the tools for supporting decisions on riverine ecosystem management. These eleven actions lie within the continuum of Communications, Synthesis, and Research.

  7. A multi-scale GIS and hydrodynamic modelling approach to fish passage assessment: Clarence and Shoalhaven Rivers, NSW Australia

    NASA Astrophysics Data System (ADS)

    Bonetti, Rita M.; Reinfelds, Ivars V.; Butler, Gavin L.; Walsh, Chris T.; Broderick, Tony J.; Chisholm, Laurie A.

    2016-05-01

    Natural barriers such as waterfalls, cascades, rapids and riffles limit the dispersal and in-stream range of migratory fish, yet little is known of the interplay between these gradient dependent landforms, their hydraulic characteristics and flow rates that facilitate fish passage. The resurgence of dam construction in numerous river basins world-wide provides impetus to the development of robust techniques for assessment of the effects of downstream flow regime changes on natural fish passage barriers and associated consequences as to the length of rivers available to migratory species. This paper outlines a multi-scale technique for quantifying the relative magnitude of natural fish passage barriers in river systems and flow rates that facilitate passage by fish. First, a GIS-based approach is used to quantify channel gradients for the length of river or reach under investigation from a high resolution DEM, setting the magnitude of identified passage barriers in a longer context (tens to hundreds of km). Second, LiDAR, topographic and bathymetric survey-based hydrodynamic modelling is used to assess flow rates that can be regarded as facilitating passage across specific barriers identified by the river to reach scale gradient analysis. Examples of multi-scale approaches to fish passage assessment for flood-flow and low-flow passage issues are provided from the Clarence and Shoalhaven Rivers, NSW, Australia. In these river systems, passive acoustic telemetry data on actual movements and migrations by Australian bass (Macquaria novemaculeata) provide a means of validating modelled assessments of flow rates associated with successful fish passage across natural barriers. Analysis of actual fish movements across passage barriers in these river systems indicates that two dimensional hydraulic modelling can usefully quantify flow rates associated with the facilitation of fish passage across natural barriers by a majority of individual fishes for use in management decisions regarding environmental or instream flows.

  8. Columbia Plateau Basin and Fifteenmile Subbasin Water Rights Acquisitons; Oregon Water Trust Combined Work Plan, 2002-2003 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulus, Fritz

    2003-12-01

    This is the Final Report submitted regarding Oregon Water Trust's Combined Work Plan for fiscal year 2003, with the contract period April 2002 to May 2003. Of this 12 month period, six month were spent concluding our work for the 2002 irrigation season and six months were spent preparing for the 2003 irrigation season. After this grant was completed, projects were finished with funding from the Columbia Basin Water Transactions Program. Many of the 2003 irrigation season successes began in the fall of 2002, when projects were researched and partnerships were developed. Trout Creek Ranch was one of the largemore » successes. During the 2003 irrigation season, 2.6 cfs was leased which led to a permanent instream transfer, protecting critical spawning habitat for summer steelhead in the Deschutes basin. Another success was the Walla Walla Lease Bank project. This project is an agreement between the OWT, the Walla Walla Irrigation District and 11 individual landowners. Through this single year lease, 7.9 cfs of water was legally protected in the Walla Walla River. The Vidando lease on Middle Fork John Day River was renewed for 2 more years, protecting 11.29 cfs. An innovative single year split-season lease was conducted with Voight on Standard Creek in the John Day basin to protect 4.93 cfs. Many other deals were conducted and the total was an impressive 50.43 cfs instream during 2003 and 9.39 cfs pending approval for the 2004 season. Included is a summary of the activities within the Fifteenmile subbasin and the Columbia Plateau basin by quarter and two tables. The summary of activities is broken down by objectives and quarters. The first summarizes the total cfs by type of lease or transfer. The second table lists all the projects by subbasin and provides project type, lease number, cfs, cost of acquisition, partners in the project and funding source.« less

  9. Analyzing the Relative Linkages of Land Use and Hydrologic Variables with Urban Surface Water Quality using Multivariate Techniques

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Abdul-Aziz, O. I.

    2015-12-01

    We used a systematic data-analytics approach to analyze and quantify relative linkages of four stream water quality indicators (total nitrogen, TN; total phosphorus, TP; chlorophyll-a, Chla; and dissolved oxygen, DO) with six land use and four hydrologic variables, along with the potential external (upstream in-land and downstream coastal) controls in highly complex coastal urban watersheds of southeast Florida, U.S.A. Multivariate pattern recognition techniques of principle component and factor analyses, in concert with Pearson correlation analysis, were applied to map interrelations and identify latent patterns of the participatory variables. Relative linkages of the in-stream water quality variables with their associated drivers were then quantified by developing dimensionless partial least squares (PLS) regression model based on standardized data. Model fitting efficiency (R2=0.71-0.87) and accuracy (ratio of root-mean-square error to the standard deviation of the observations, RSR=0.35-0.53) suggested good predictions of the water quality variables in both wet and dry seasons. Agricultural land and groundwater exhibited substantial controls on surface water quality. In-stream TN concentration appeared to be mostly contributed by the upstream water entering from Everglades in both wet and dry seasons. In contrast, watershed land uses had stronger linkages with TP and Chla than that of the watershed hydrologic and upstream (Everglades) components for both seasons. Both land use and hydrologic components showed strong linkages with DO in wet season; however, the land use linkage appeared to be less in dry season. The data-analytics method provided a comprehensive empirical framework to achieve crucial mechanistic insights into the urban stream water quality processes. Our study quantitatively identified dominant drivers of water quality, indicating key management targets to maintain healthy stream ecosystems in complex urban-natural environments near the coast.

  10. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling

    USGS Publications Warehouse

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.

    2014-01-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data from other studies can be corrected.

  11. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.

    PubMed

    Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F

    2014-02-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data from other studies can be corrected. © 2013.

  12. A Methodological Intercomparison of Topographic and Aerial Photographic Habitat Survey Techniques

    NASA Astrophysics Data System (ADS)

    Bangen, S. G.; Wheaton, J. M.; Bouwes, N.

    2011-12-01

    A severe decline in Columbia River salmonid populations and subsequent Federal listing of subpopulations has mandated both the monitoring of populations and evaluation of the status of available habitat. Numerous field and analytical methods exist to assist in the quantification of the abundance and quality of in-stream habitat for salmonids. These methods range from field 'stick and tape' surveys to spatially explicit topographic and aerial photographic surveys from a mix of ground-based and remotely sensed airborne platforms. Although several previous studies have assessed the quality of specific individual survey methods, the intercomparison of competing techniques across a diverse range of habitat conditions (wadeable headwater channels to non-wadeable mainstem channels) has not yet been elucidated. In this study, we seek to enumerate relative quality (i.e. accuracy, precision, extent) of habitat metrics and inventories derived from an array of ground-based and remotely sensed surveys of varying degrees of sophistication, as well as quantify the effort and cost in conducting the surveys. Over the summer of 2010, seven sample reaches of varying habitat complexity were surveyed in the Lemhi River Basin, Idaho, USA. Complete topographic surveys were attempted at each site using rtkGPS, total station, ground-based LiDaR and traditional airborne LiDaR. Separate high spatial resolution aerial imagery surveys were acquired using a tethered blimp, a drone UAV, and a traditional fixed-wing aircraft. Here we also developed a relatively simplistic methodology for deriving bathymetry from aerial imagery that could be readily employed by instream habitat monitoring programs. The quality of bathymetric maps derived from aerial imagery was compared with rtkGPS topographic data. The results are helpful for understanding the strengths and weaknesses of different approaches in specific conditions, and how a hybrid of data acquisition methods can be used to build a more complete quantification of salmonid habitat conditions in streams.

  13. Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow

    NASA Astrophysics Data System (ADS)

    Grayson, R. B.; Gippel, C. J.; Finlayson, B. L.; Hart, B. T.

    1997-12-01

    Water quality is usually monitored on a regular basis at only a small number of locations in a catchment, generally focused at the catchment outlet. This integrates the effect of all the point and non-point source processes occurring throughout the catchment. However, effective catchment management requires data which identify major sources and processes. As part of a wider study aimed at providing technical information for the development of integrated catchment management plans for a 5000 km 2 catchment in south eastern Australia, a 'snapshot' of water quality was undertaken during stable summer flow conditions. These low flow conditions exist for long periods so water quality at these flow levels is an important constraint on the health of in-stream biological communities. Over a 4 day period, a study of the low flow water quality characteristics throughout the Latrobe River catchment was undertaken. Sixty-four sites were chosen to enable a longitudinal profile of water quality to be established. All tributary junctions and sites along major tributaries, as well as all major industrial inputs were included. Samples were analysed for a range of parameters including total suspended solids concentration, pH, dissolved oxygen, electrical conductivity, turbidity, flow rate and water temperature. Filtered and unfiltered samples were taken from 27 sites along the main stream and tributary confluences for analysis of total N, NH 4, oxidised N, total P and dissolved reactive P concentrations. The data are used to illustrate the utility of this sampling methodology for establishing specific sources and estimating non-point source loads of phosphorous, total suspended solids and total dissolved solids. The methodology enabled several new insights into system behaviour including quantification of unknown point discharges, identification of key in-stream sources of suspended material and the extent to which biological activity (phytoplankton growth) affects water quality. The costs and benefits of the sampling exercise are reviewed.

  14. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution products from the Sentinel-2 satellite mission for improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  15. Restoring the hydrologic response to pre-developed conditions in an urbanized headwater catchment: Reality or utopia?

    NASA Astrophysics Data System (ADS)

    Wright, O.; Istanbulluoglu, E.

    2012-12-01

    The conversion of forested areas to impervious surfaces, lawns and pastures alters the natural hydrology of an area by increasing the flashiness of stormwater generated runoff, resulting in increased streamflow peaks and volumes. Currently, most of the stormwater from developed areas in the Puget Sound region remains uncontrolled. The lack of adequate stormwater facilities along with increasing urbanization and population growth illustrates the importance of understanding urban watershed behavior and best management practices (BMPs) that improve changes in hydrology. In this study, we developed a lumped urban ecohydrology model that represents vegetation dynamics, connects pervious and impervious surfaces and implements various BMP scenarios. The model is implemented in an urban headwater subcatchment located in the Newaukum Creek Basin. We evaluate the hydrologic impact of controlling runoff at the source and disconnecting impervious surfaces from the storm drain using rain barrels and bioretention cells. BMP scenarios consider the basin's land use/land coverage, the response of different impervious surface types, the potential for BMP placement, the size and drainage area for BMPs, and the mitigation needs to meet in-stream flow goals.

  16. Modeling studies of water consumption for transportation fuel options: Hawaii, US-48

    NASA Astrophysics Data System (ADS)

    King, C. W.; Webber, M. E.

    2011-12-01

    There are now major drivers to move from petroleum transportation: moving to low-carbon transport life cycles for climate change mitigation, fuel diversity to reduce reliance on imported oil, and economic concerns regarding the relatively high price of oil ( $100/barrel) and the resulting impact on discretionary income. Unfortunately many transportation fuel alternatives also have some environmental impacts, particularly with regard to water consumption and biodiversity. In this presentation we will discuss the water and energy sustainability struggle ongoing in Hawai'i on the island of Maui with a brief history and discussion of energy and water modeling scenarios. The vast majority of surface water on Maui is diverted via man-made ditches for irrigation on sugar cane plantations. Maui currently allocates between 250 and 300 million gallons per day (Mgal/d) of irrigation water for sugarcane cultivation each day, and it is likely that the island could support a biofuel-focused sugarcane plantation by shifting production focus from raw sugar to ethanol. However, future water availability is likely to be less than existing water availability because Maui is growing, more water is being reserved for environmental purposes, and precipitation levels are on decline for the past two decades and some expect this trend to continue. While Maui residents cannot control precipitation patterns, they can control the levels of increased requirements for instream flow in Maui's streams. The Hawaii State Commission on Water Resource Management (CWRM) sets instream flow standards, and choosing not to restore instream flow could have what many locals consider negative environmental and cultural impacts that must be weighed against the effects of reducing surface water availability for agriculture. Instream flow standards that reduce legal withdrawals for streams that supply irrigation water would reduce the amount of surface water available for biofuel crop irrigation. Environmental flow restoration that has already been ordered requires that an additional 18.5 Mgal/d from East Maui streams and 12.5 Mgal/d from West Maui streams not be diverted for irrigation or other uses. Further environmental flow requirements based on a habitat-protective standard enumerated by the Department of Aquatic Resources could be an additional 45 Mgal/d. Thus, it is conceivable that over the next several years a total of 76 Mgal/d, which is 20%-30% of the irrigation water at existing sugarcane farms, could be appropriated away from agriculture on Maui. Many locals have never viewed the large-scale diversion of stream flow for agriculture as legitimate. Now that much of the plantation agriculture in Hawai'i has shut down due to lack of competitive economics, the discussion of the priority for use of 'old' agricultural water is prompting more water to be left in streams. At the same time, Hawai'i has goals for energy sustainability that include producing biofuels. Thus, Maui is a microcosm of the struggle for energy and water sustainability. Brief discussions of other studies on the water needs for transportation fuel options for the continental 48 U.S. states will also be presented.

  17. Diurnal feeding behavior of the American Eel Anguilla rostrata

    USGS Publications Warehouse

    Engman, Augustin C.; Fischer, Jesse R.; Kwak, Thomas J.; Walter, Michael J.

    2017-01-01

    Despite potential to structure ecosystem food webs through top-down effects, the trophic interactions of the American Eel Anguilla rostrata remain largely understudied. All previous research on the trophic ecology of American Eel in inland aquatic ecosystems has been conducted in temperate continental regions of the species' range. These studies have led to a paradigm that American Eel is a nocturnally active benthic predator, which most commonly consumes benthic invertebrates. Tropical island streams and rivers have habitats and communities that are distinct from temperate counterparts, but comprise a large portion of the adult habitat in the American Eel's range. We documented a previously undescribed diurnal feeding behavior by American Eel in a Caribbean river and demonstrate that this behavior, and a shift toward more frequent daytime feeding, is linked to periodic mass migrations of postlarvae of amphidromous fish taxa, including the Sicydiine goby Sicydiumspp. Our findings indicate that periodic mass migrations of amphidromous postlarvae could function as a potentially important food source for American Eel in tropical regions of its distribution, despite the intermittence of availability. Furthermore, this suggests that the American Eel plays an important role in the structure of tropical lotic food webs through top-down effects that are potentially augmented by instream barriers.

  18. Assessment of Instream Restoration in the Cache River, Illinois: Macroinvertebrate Community Structure on Rock Weirs Compared to Snag and Streambed Habitats

    NASA Astrophysics Data System (ADS)

    Walther, D. A.; Whiles, M. R.

    2005-05-01

    Rock weirs were constructed in a degraded section of the Cache River in southern Illinois in 2001 and 2003 to prevent channel incision and protect riparian wetlands. We sampled macroinvertebrates in two older weirs and in two sites downstream of the restored section in April 2003, October 2003, and April 2004 to evaluate differences in community structure between weir, snag, and streambed (scoured clay) habitats. Three recently constructed weirs were also sampled in April 2004. Functional composition differed among sample dates and habitats. Although collector-gatherers consistently dominated streambed habitats, functional composition on weirs and snags was more variable. Filterer and predator biomass was generally higher on weirs, and snags harbored the only shredders collected in the system (Pycnopsyche spp.). Weirs generally supported higher biomass of Ephemeroptera, Plecoptera, and Trichoptera than other habitats. For example, mean EPT biomass on weirs in 2003 (April=187 mgAFDM/m2; October=899 mgAFDM/m2) was 4 to 10-fold higher than EPT biomass in snag or streambed habitats. Late instar Pycnopsyche contributed 41% of snag biomass in April 2004, resulting in EPT biomass similar to rock weirs. Results indicate rock weirs provide suitable stable substrate for macroinvertebrates and may enhance populations of sensitive EPT taxa in degraded systems.

  19. Fluvial geomorphology and suspended-sediment transport during construction of the Roanoke River Flood Reduction Project in Roanoke, Virginia, 2005–2012

    USGS Publications Warehouse

    Jastram, John D.; Krstolic, Jennifer L.; Moyer, Douglas; Hyer, Kenneth

    2015-09-30

    Results of the geomorphological and suspended-sediment monitoring components were largely in agreement and consistent with those of a related effort that monitored the logperch population before and during construction. These findings suggest that construction and sediment-control practices sufficiently protected in-stream habitat and the organisms that inhabit those locations, namely the Roanoke logperch, during the period monitored.

  20. Response of a Brook Trout Population and Instream Habitat to a Catastrophic Flood and Debris Flow

    Treesearch

    Criag N. Roghair; C. Andrew Dolloff; Martin K. Underwood

    2002-01-01

    In June 1995, a massive flood and debris flow impacted fish and habitat along the lower 1.9 km of the Staunton River, a headwater stream located in Shenandoah National Park, Virginia. In the area affected by debris flow, the stream bed was scoured and new substrate materials were deposited, trees were removed from a 30-m-wide band in the riparian area, and all fish...

  1. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest) Pink Salmon

    DTIC Science & Technology

    1989-01-01

    methodology weight in the sockeye salmon for determining instream flow re- ( Oncorhynchus nerka ) and the pink quirements for fish. Pages 72-86 in salmon (0...Scientific name ........... Oncorhynchus jor pink salmon runs. Migration gorbuscha (Walbaum) (Figure a patterns of fish entering British Preferred...A dominant male guards the considered the most specialized of the female during the digging process, salmon in the genus Oncorhynchus be- attacking

  2. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: leaf fall, aquatic leaf decay and patterns of invasion

    Treesearch

    PAUL J. O' CONNOR; ALAN P. COVICH; F. N. SCATENA; LLOYD L. LOOPE

    2000-01-01

    The introduction of bamboo to montane rain forests of the Luquillo Mountains, Puerto Rico in the 1930s and 1940s has led to present-day bamboo monocultures in numerous riparian areas. When a non-native species invades a riparian ecosystem, in-stream detritivores can be affected. Bamboo dynamics expected to in¯uence stream communities in the Luquillo Experimental Forest...

  3. Characteristics, transport, and yield of sediment in Juday Creek, St. Joseph County, Indiana, 1993-94

    USGS Publications Warehouse

    Fowler, K.K.; Wilson, J.T.

    1995-01-01

    Surveys of the instream pond determined that the volume of sediment delivered to the pond from April 1993 to April 1994 was approximately 26,500 cubic feet. The average volume weight of the sediment was determined to be 102 pounds per cubic foot. The sediment yield for the upper reach of Juday Creek from April 1993 to April 1994 was estimated to be 48 tons per square mile.

  4. How climate change will affect sessile stages of brown trout (Salmo trutta) in mountain streams of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Santiago, José M.; Alonso, Carlos; García de Jalón, Diego; Solana, Joaquín

    2017-04-01

    Streamflow and temperature regimes are determinant for the availability of suitable physical habitat for instream biological communities. Iberian brown trout (Salmo trutta) populations live in a climatic border in which summer water scarcity and raising temperatures will compromise their viability throughout the current century. Due to their impaired mobility, sessile stages of trout life cycle (i.e. eggs and larvae) are among the most sensitive organisms to environmental changing conditions. At a given spawning redd, thermal habitat is limited by the length of the period at which suitable temperatures occur. At the same time, suitable physical habitat is limited by the instream flow regime during spawning and incubation of eggs and larvae. Temperature and flow do also interact, thus producing synergistic effects on both physical and thermal habitats. This study is aimed at quantitatively predicting thermal and physical habitat loss for the sessile stages of brown trout life cycle due to clime change, in mountain streams at the rear edge of the species natural distribution using high-resolution spatial-temporal simulations of the thermal and physical habitat. Two streams of Central Spain have been studied (Cega and Lozoya streams). Daily temperature and flow data from ad hoc downscaled IPCC (RCP4.5 and RCP8.5) predictions were used as input variables. Physical habitat changes were simulated from previously predicted stream flow data by means of hydraulic simulation tools (River2D). By taking into account the thermal tolerance limits and the proportion of lost physical habitat, limiting factors for the reproduction of brown trout in the study area were determined. The general increase of mean temperatures shortens the duration of the early developmental stages. This reduction of the sessile period is rather similar in both RCP4.5 and RCP8.5 scenarios by 2050. Differences between both scenarios become greater by 2099. The duration of sessile developmental is reduced in 12 days (-10%) according to scenario RCP4.5 and as much as 30 days (-25%) according to RCP8.5 in the Cega stream. Reduction of this sessile period in the Lozoya stream ranges between 14 days (-12%) in RCP4.5 and 35 (-29%) in RCP8.5. However, this acceleration of the development is not sufficient to compensate the much greater reduction of the thermal window in which mean water temperature remain below 10°C (considered a critical threshold). In the Cega stream, suitable thermal window reduction will range between 21% (RCP4.5) and 49% (RCP8.5) by 2099. In contrast, the Lozoya stream will lose much less time of suitable temperatures by 2099: 3% and 21%, according to RCP4.5 and RCP8.5, respectively. Although habitat reductions will be significant during the spawning season, the most important problems for trout population viability seem to be related to the reduction of the available time window for embryos and larvae to complete their development. Besides, due to the differential sensitivity of instream thermal habitat to a general increase in air temperature, it is highly recommendable to address locally adapted mitigation programs to avoid a general retraction of the current native range of this species.

  5. Evaluating expected outcomes of acid remediation in an intensively mined Appalachian watershed.

    PubMed

    Watson, Andrew S; Merovich, George T; Petty, J Todd; Gutta, J Brady

    2017-07-01

    Assessments of watershed-based restoration efforts are rare but are essential for the science of stream restoration to advance. We conducted a watershed scale assessment of Abram Creek before and after implementation of a watershed-based plan designed to maximize ecological recovery from acid mine drainage (AMD) impairment. We surveyed water chemistry, physical habitat, benthic macroinvertebrates, and fish community structure in three stream types: AMD-impacted (14 streams), AMD-treated (13 streams), and unimpaired reference (4 streams). We used in-stream measurements to quantify ecological loss from AMD, the amount of ecological recovery expected through remediation, and the observed degree of post-treatment recovery. Sites impaired by AMD improved in water quality with AMD treatment. Dissolved metals and acidity declined significantly in treated streams, but sulfate and specific conductance did not. Likewise, sites impaired by AMD improved in bio-condition scores with AMD treatment. EPT genera increased significantly but were lower compared to unimpaired streams. We found fish at nine treated sites that had none before treatment. Community-level analyses indicated improved but altered assemblages with AMD treatment. Analysis of pre-treatment conditions indicated that only 30% of the historic fishery remained. Remediation was expected to recover 66% of the historic fishery value, and assessment of post-treatment conditions indicates that 52% of the historic fishery has been recovered after 3 years. Developing expected endpoints for restoration outcomes provides a tool to objectively evaluate successes and can guide adaptive management strategies.

  6. On-site evaluation of the suitability of a wetted instream habitat in the Middle Rio Grande, New Mexico, for the Rio Grande silvery minnow (Hybognathus amarus)

    USGS Publications Warehouse

    2011-01-01

    Two in-situ exposure studies were conducted with the federally-listed endangered Rio Grande silvery minnow (Hybognathus amarus). One-year-old adults were exposed in cages deployed at three sites in the Middle Rio Grande, N. Mex., for 4 days to assess survival and for 26 days to evaluate survival, growth, overall health, and whole-body elemental composition. The test sites were located on the Pueblo of Isleta in the (1) main channel of the Middle Rio Grande, (2) 240-Wasteway irrigation return drain, and (3) wetted instream habitat created below the outfall of the 240-Wasteway irrigation return drain. During the cage exposures, temperature, dissolved oxygen, pH, conductivity, and turbidity were monitored continuously (15-minute intervals) and common constituents, nutrients, carbons, metals, and pesticides were measured at discrete intervals. In both studies, there were statistical differences in several water-quality parameters among sites; and except for turbidity, these differences were small and were not considered to be biologically significant. The cages used in the 4-day exposure study were ineffective at preventing access to the fish by predators, and survival was highly variable (20 percent to 90 percent) across sites. In the 26-day chronic exposure study, weight and condition factor of caged-exposed fish at all sites were significantly lower than those at test initiation. After 26 days of exposure, there were no significant differences in survival, total length, weight, or condition factor of fish across sites, but absolute weight loss and relative reduction in condition factor were significantly greater in fish at the wetted instream habitat site compared to those at the Middle Rio Grande site. There were no statistical differences in health assessment indices, mesenteric fat indices, or prevalence of abnormalities in cage-exposed fish among sites. Cage-exposed fish had higher health assessment indices and prevalence of fin anomalies and a lower mesenteric fat indices compared to pre-exposed fish. Prevalence of macrophage aggregates in the kidney, liver, and spleen of caged-exposed fish was similar across sites and also was similar to those in pre-exposed fish. Absolute and relative weight loss and relative reduced condition factors were inversely correlated with water depth in the cages, which were the lowest at the WIH site.

  7. Exploring the impact of agriculture on nitrogen and phosphorus biogeochemistry in global rivers during the twentieth century (Invited)

    NASA Astrophysics Data System (ADS)

    Bouwman, L.; Beusen, A.; Van Beek, L. P.

    2013-12-01

    Nutrients are transported from land to sea through the continuum formed by soils, groundwater, riparian zones, floodplains, streams, rivers, lakes, and reservoirs. The hydrology, ecology and biogeochemical processing in each of these components are strongly coupled and result in retention of a significant fraction of the nutrients transported. This paper analyzes the global changes in nutrient biogeochemical processes and retention in rivers during the past century (1900-2000); this period encompasses dramatic increases in human population and economic human activities including agriculture that have resulted in major changes in land use, nutrient use in agriculture, wastewater flows and human interventions in the hydrology (1). We use the hydrological PCR-GLOBWB model (2) for the period 1900-2000, including climate variability and the history of dam construction and land use conversion. Global agricultural and natural N and P soil budgets for the period 1900-2000 are the starting point to simulate nutrient flows from the soil via surface runoff and leaching through the groundwater system and riparian zones. In-stream processes are described with the nutrient spiraling concept. In the period 1900-2000, the global soil N budget surplus (inputs minus withdrawal in harvested crops) for agricultural and natural ecosystems increased from 118 to 202 Tg yr-1, and the global P budget increased from < 0.5 to 11 Tg P yr-1. As a result of this massive increase, nutrient delivery to streams and river nutrient export has increased rapidly in the 20th century. Model results are sensitive to factors determining the N and P delivery, as well as in-stream processes. The most uncertain factors are N delivery to streams by groundwater (denitrification as a function of thickness and reactivity of aquifers), and in-stream N and P retention parameters (net uptake velocity, retention as function of concentration). References 1. Bouwman AF, Beusen AHW, Griffioen J, Van Groenigen JW, Hefting MM, Oenema O, et al. Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368(20130112). 2. Van Beek LPH, Wada Y, Bierkens MFP. Global monthly water stress: 1. Water balance and water availability. Water Resour Res. 2011;47(7):W07517.

  8. Survey of beaver-related restoration practices in rangeland streams of the western USA

    USGS Publications Warehouse

    Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  9. Survey of Beaver-related Restoration Practices in Rangeland Streams of the Western USA.

    PubMed

    Pilliod, David S; Rohde, Ashley T; Charnley, Susan; Davee, Rachael R; Dunham, Jason B; Gosnell, Hannah; Grant, Gordon E; Hausner, Mark B; Huntington, Justin L; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  10. Survey of Beaver-related Restoration Practices in Rangeland Streams of the Western USA

    NASA Astrophysics Data System (ADS)

    Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R.; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  11. Comparability and accuracy of fluvial-sediment data - A view from the U.S. Geological Survey

    USGS Publications Warehouse

    Gray, J.R.; Glysson, G.D.; Mueller, D.S.; ,

    2002-01-01

    The quality of historical fluvial-sediment data cannot be taken for granted, based on a review of upper Colorado River basin suspended-sediment discharges, and on an evaluation of the reliability of Total Suspended Solids (TSS) data. Additionally, the quality of future fluvial-sediment data are not assured. Sediment-surrogate technologies, including those that operate on acoustic, laser, bulk optic, digital optic, or pressure differential principles, are being used with increasing frequency to measure in-stream and (or) laboratory fluvial-sediment characteristics. Data from sediment-surrogate technologies may yield results that differ significantly from those obtained by traditional methods for the same sedimentary conditions. Development of national sediment data-quality criteria and rigorous comparisons of data derived from sediment-surrogate technologies to those obtained by traditional techniques will minimize the potential for future fluvial-sediment data-quality concerns.

  12. Measuring the economic benefit of maintaining the ecological integrity of the Río Mameyes in Puerto Rico.

    Treesearch

    Armando González-Cabán; John Loomis

    1999-01-01

    A contingent valuation in-person survey of Puerto Rican households was performed from April to August 1995 to estimate their willingness-to-pay for preserving instream flows in the Río Mameyes and avoiding a dam on the Río Fajardo. Annual willingness-to-pay was $21 for each river. When expanded to the 1 million households in Puerto Rico for the 5-year period households...

  13. Habitat Suitability Index Models and Instream Flow Suitability Curves: Warmouth

    USGS Publications Warehouse

    McMahon, Thomas E.; Gebhart, Glen; Maughan, O. Eugene; Nelson, Patrick C.

    1984-01-01

    The wa rmouth (Lepomi s gul osus) occurs naturally throughout the central and southeastern United States. It is distributed throughout Kansas, Iowa, and Missouri, north to southern Wisconsin, lower Michigan, Lake Erie, and western Pennsylvania, and south to Florida and west through the Gulf States to the Rio Grande (Hubbs and Lagler 1947; Larimore 1957). It has been introduced into California (Hubble 1966; Moyle 1976), Arizona (Minckley 1973), and other western states (Smith 1896).

  14. Determination of hyporheic travel time distributions and other parameters from concurrent conservative and reactive tracer tests by local-in-global optimization

    NASA Astrophysics Data System (ADS)

    Knapp, Julia L. A.; Cirpka, Olaf A.

    2017-06-01

    The complexity of hyporheic flow paths requires reach-scale models of solute transport in streams that are flexible in their representation of the hyporheic passage. We use a model that couples advective-dispersive in-stream transport to hyporheic exchange with a shape-free distribution of hyporheic travel times. The model also accounts for two-site sorption and transformation of reactive solutes. The coefficients of the model are determined by fitting concurrent stream-tracer tests of conservative (fluorescein) and reactive (resazurin/resorufin) compounds. The flexibility of the shape-free models give rise to multiple local minima of the objective function in parameter estimation, thus requiring global-search algorithms, which is hindered by the large number of parameter values to be estimated. We present a local-in-global optimization approach, in which we use a Markov-Chain Monte Carlo method as global-search method to estimate a set of in-stream and hyporheic parameters. Nested therein, we infer the shape-free distribution of hyporheic travel times by a local Gauss-Newton method. The overall approach is independent of the initial guess and provides the joint posterior distribution of all parameters. We apply the described local-in-global optimization method to recorded tracer breakthrough curves of three consecutive stream sections, and infer section-wise hydraulic parameter distributions to analyze how hyporheic exchange processes differ between the stream sections.

  15. Rehabilitating agricultural streams in Australia with wood: a review.

    PubMed

    Lester, Rebecca E; Boulton, Andrew J

    2008-08-01

    Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.

  16. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-66)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2001-10-04

    BPA proposes to fund four projects that will enhance instream flow in several subbasins throughout Oregon. The Oregon Water Trust acquires existing water rights on a voluntary basis through purchase, gift and water conservation projects, and converts the rights to instream flow under Oregon state water law. The proposed projects are all related to an on-going program of water rights acquisition in the Columbia Plateau Basin (Deschutes, John Day, Umatilla and Walla Walla subbasins) and the Columbia Gorge Basin (Fifteenmile subbasin) by the Oregon Water Trust (OWT). The current funding cycle extends through fiscal year 2001. Additional funding is currentlymore » being sought for fiscal years 2002-2004. Specific acquisition transactions are evaluated throughout the duration of the project, so on-the-ground impacts may only be estimated. The proposed project is an extension of previous water rights acquisition projects within the subject subbasins, dating back to 1994. The objective of the proposed projects in the next cycle, 2002 through 2004, is to acquire a total of approximately 12.6 cfs on tributary streams within the subbasins. The target level of water rights acquired, by subbasin, are as follows: Deschutes subbasin--2.0 cfs; Fifteenmile subbasin--1.4 cfs; John Day subbasin--2.0 cfs; Umatilla subbasin--1.0 cfs; Walla Walla subbasin--4.2 cfs; and newly prioritized streams within the region--2.0 cfs.« less

  17. Tracer-based characterization of hyporheic exchange and benthic biolayers in streams

    NASA Astrophysics Data System (ADS)

    Knapp, Julia L. A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.

    2017-02-01

    Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.

  18. Water use in Kentucky, 1990

    USGS Publications Warehouse

    Sholar, C.J.; Wood, P.A.

    1995-01-01

    Water-use information for 1990 was collected and reported, by county, for eight major categories of use. Seven of the categories were offstream uses, which included public supply, commercial, domestic, industrial, mining, thermoelectric, and agricultural uses. The agricultural category was subdivided into irrigation and livestock water use. Instream water- use data also were collected for hydroelectric-power generation. Estimated average water use in Kentucky exceeded 4,300 million gallons per day during 1990 for all offstream uses. About 94 percent of this amount was from surface-water sources, and about 6 percent was from ground-water sources. Per capita use for all offstream uses was almost 1,200 gallons per day. Estimated average consumptive use was 309 million gallons per day. Estimated average instream water use for hydroelectric-power generation was 83,000 million gallons per day. Ninety-seven percent of the offstream water withdrawals during 1990 were withdrawn for thermoelectric, public supply, and industrial use. Cooling water used in the production of thermoelectric power accounted for about 80 percent of the total offstream water use during 1990. Water withdrawn for public supplies was second largest at almost 10 percent of the total, and industrial water withdrawals were about 7 percent of the total. Thermoelectric, domestic, and livestock uses accounted for almost 90 percent of the consumptive use during 1990. The thermoelectric category accounted for almost two-thirds of the total consumptive use in the State for all uses.

  19. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  20. Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration

    NASA Astrophysics Data System (ADS)

    Schwab, Michael P.; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2018-04-01

    Diel fluctuations of stream water DOC concentrations are generally explained by a complex interplay of different instream processes. We measured the light absorption spectrum of water and DOC concentrations in situ and with high frequency by means of a UV-Vis spectrometer during 18 months at the outlet of a forested headwater catchment in Luxembourg (0.45 km2). We generally observed diel DOC fluctuations with a maximum in the afternoon during days that were not affected by rainfall-runoff events. We identified an increased inflow of terrestrial DOC to the stream in the afternoon, causing the DOC maxima in the stream. The terrestrial origin of the DOC was derived from the SUVA-254 (specific UV absorbance at 254 nm) index, which is a good indicator for the aromaticity of DOC. In the studied catchment, the most likely process that can explain the diel DOC input variations towards the stream is the so-called viscosity effect. The water temperature in the upper parts of the saturated riparian zone is increasing during the day, leading to a lower viscosity and therefore a higher hydraulic conductivity. Consequently, more water from areas that are rich in terrestrial DOC passes through the saturated riparian zone and contributes to streamflow in the afternoon. We believe that not only diel instream processes, but also viscosity-driven diel fluctuations of terrestrial DOC input should be considered to explain diel DOC patterns in streams.

  1. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Little Laughery Creek, Ripley and Franklin counties, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    A digital model calibrated to conditions in Little Laughery Creek triutary and Little Laughery Creek, Ripley and Franklin Counties, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero. Headwater flow upstream from the wastewater-treatment facilities consists solely of process cooling water from an industrial discharger. This flow is usually less than 0.5 cubic foot per second. Consequently, benefits from dilution are minimal. As a result, current and projected ammonia-nitrogen concentrations from the municipal discharges will result in in-stream ammonia-nitrogen concentrations that exceed the Indiana ammonia-nitrogen toxicity standards (maximum stream ammonia-nitrogen concentrations of 2.5 and 4.0 milligrams per liter during summer and winter low flows, respectively). Benthic-oxygen demand is probably the most significant factor affecting Little Laughery Creek and is probably responsible for the in-stream dissolved-oxygen concentration being less than the Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) during two water-quality surveys. After municipal dischargers complete advanced waste-treatment facilities, benthic-oxygen demand should be less significant in the stream dissolved-oxygen dynamics. (USGS)

  2. Macroinvertebrate Responses to Constructed Riffles in the Cache River, Illinois, USA

    NASA Astrophysics Data System (ADS)

    Walther, Denise A.; Whiles, Matt R.

    2008-04-01

    Stream restoration practices are becoming increasingly common, but biological assessments of these improvements are still limited. Rock weirs, a type of constructed riffle, were implemented in the upper Cache River in southern Illinois, USA, in 2001 and 2003-2004 to control channel incision and protect high quality riparian wetlands as part of an extensive watershed-level restoration. Construction of the rock weirs provided an opportunity to examine biological responses to a common in-stream restoration technique. We compared macroinvertebrate assemblages on previously constructed rock weirs and newly constructed weirs to those on snags and scoured clay streambed, the two dominant substrates in the unrestored reaches of the river. We quantitatively sampled macroinvertebrates on these substrates on seven occasions during 2003 and 2004. Ephemeroptera, Plecoptera, and Trichoptera (EPT) biomass and aquatic insect biomass were significantly higher on rock weirs than the streambed for most sample periods. Snags supported intermediate EPT and aquatic insect biomass compared to rock weirs and the streambed. Nonmetric multidimensional scaling (NMDS) ordinations for 2003 and 2004 revealed distinct assemblage groups for rock weirs, snags, and the streambed. Analysis of similarity supported visual interpretation of NMDS plots. All pair-wise substrate comparisons differed significantly, except recently constructed weirs versus older weirs. Results indicate positive responses by macroinvertebrate assemblages to in-stream restoration in the Cache River. Moreover, these responses were not evident with more common measures of total density, biomass, and diversity.

  3. A gas-tracer injection for evaluating the fate of methane in a coastal plain stream: Degassing versus in-stream oxidation

    USGS Publications Warehouse

    Heilweil, Victor M.; Solomon, D. Kip; Darrah, Thomas H.; Gilmore, Troy E.; Genereux, David P.

    2016-01-01

    Methane emissions from streams and rivers have recently been recognized as an important component of global greenhouse budgets. Stream methane is lost as evasion to the atmosphere or in-stream methane oxidation. Previous studies have quantified evasion and oxidation with point-scale measurements. In this study, dissolved gases (methane, krypton) were injected into a coastal plain stream in North Carolina to quantify stream CH4 losses at the watershed scale. Stream-reach modeling yielded gas transfer and oxidation rate constants of 3.2 ± 0.5 and 0.5 ± 1.5 d–1, respectively, indicating a ratio of about 6:1. The resulting evasion and oxidation rates of 2.9 mmol m–2 d–1 and 1,140 nmol L–1 d–1, respectively, lie within ranges of published values. Similarly, the gas transfer velocity (K600) of 2.1 m d–1 is consistent with other gas tracer studies. This study illustrates the utility of dissolved-gas tracers for evaluating stream methane fluxes. In contrast to point measurements, this approach provides a larger watershed-scale perspective. Further work is needed to quantify the magnitude of these fluxes under varying conditions (e.g., stream temperature, nutrient load, gradient, flow rate) at regional and global scales before reliable bottom-up estimates of methane evasion can be determined at global scales.

  4. Bed-level adjustments in the Arno River, central Italy

    NASA Astrophysics Data System (ADS)

    Rinaldi, Massimo; Simon, Andrew

    1998-02-01

    Two distinct phases of bed-level adjustment over the last 150 years are identified for the principal alluvial reaches of the Arno River (Upper Valdarno and Lower Valdarno). The planimetric configuration of the river in these reaches is the result of a series of hydraulic works (canalization, rectification, artificial cut-offs, etc.) carried out particularly between the 18th and the 19th centuries. Subsequently, a series of interventions at basin level (construction of weirs, variations in land use), intense instream gravel-mining after World War II, and the construction of two dams on the Arno River, caused widespread degradation of the streambed. Since about 1900, total lowering of the channel bed is typically between 2 and 4 m in the Upper Valdarno Reach and between 5 and 8 m in some areas of the Lower Valdarno Reach. Bed-level adjustments with time are analyzed for a large number of cross-sections and described by an exponential-decay function. This analysis identified the existence of two main phases of lowering: the first, triggered at the end of the past century; the second, triggered in the interval 1945-1960 and characterized by more intense degradation of the streambed. The first phase derived from changes in land-use and land-management practices. The second phase is the result of the superimposition of two factors: intense instream mining of gravel, and the construction of the Levane and La Penna dams.

  5. Water quality, physical habitat, and fish community composition in streams in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Talmage, Philip J.; Lee, Kathy E.; Goldstein, Robert M.; Anderson, Jesse P.; Fallon, James D.

    1999-01-01

    Water quality, physical habitat, and fish-community composition were characterized at 13 Twin Cities metropolitan area streams during low-flow conditions, September 1997. Fish communities were resampled during September 1998. Sites were selected based on a range of human population density. Nutrient concentrations were generally low, rarely exceeding concentrations found in agricultural streams or water-quality criteria. Seventeen pesticides and five pesticide metabolites were detected, with atrazine being the only pesticide detected at all 13 streams. Colony counts of fecal coliform bacteria ranged from 54 to greater than 11,000 colonies per 100 mL. Instream fish habitat was sparse with little woody debris and few boulders, cobble, or other suitable fish habitat. Thirty-eight species and one hybrid from 10 families were collected. Fish communities were characterized by high percentages of omnivores and tolerant species with few intolerant species. Index of Biotic Integrity scores were low, with most streams rating fair to very poor. Percent impervious surface was positively correlated with sodium and chloride concentrations and human population density, but was negatively correlated with fish species richness and diversity. Urban land use and human population density influence fish communities and water quality in Twin Cities metropolitan area streams. Other factors that may influence fish community composition include percent impervious cover, water chemistry, water temperature, geomorphology, substrate, instream habitat, and migration barriers.

  6. Global riverine N and P transport to ocean increased during the twentieth century despite increased retention along the aquatic continuum

    NASA Astrophysics Data System (ADS)

    Beusen, A. H. W.; Bouwman, A. F.; Van Beek, L. P. H.; Mogollón, J. M.; Middelburg, J. J.

    2015-12-01

    Various human activities, including agriculture, water consumption, river damming, and aquaculture, have intensified over the last century. This has had a major impact on nitrogen (N) and phosphorus (P) cycling in global continental waters. In this study, we use a coupled nutrient-input, hydrology, in-stream nutrient retention model to quantitatively track the changes in the global freshwater N and P cycles over the 20th century. Our results suggest that, during this period, the global nutrient delivery to streams increased from 34 to 64 Tg N yr-1 and from 5 to 9 Tg N yr-1. Furthermore, in-stream retention and removal grew from 14 to 27 Tg N yr-1 and 3 to 5 Tg N yr-1. One of the major cause of increased retention is the growing number of reservoirs which now account for 24 and 22 % of global N and P retention/removal in freshwater systems, respectively. This increase in nutrient retention could not balance the increase in nutrient delivery to rivers with the consequence that river nutrient transport to the ocean increased from 19 to 37 Tg N yr-1 and from 2 to 4 Tg N yr-1. Human activities have also led to a global increase in the molar N : P ratio in freshwater bodies.

  7. Estimated use of water in the New England States, 1990

    USGS Publications Warehouse

    Korzendorfer, B.A.; Horn, M.A.

    1995-01-01

    Data on freshwater withdrawals in 1990 were compiled for the New England States. An estimated 4,160 Mgal/d (million gallons per day) of freshwater was withdrawn in 1990 in the six States. Of this total, 1,430 Mgal/d was withdrawn by public suppliers and delivered to users, and 2,720 Mgal/d was withdrawn by domestic, commercial, industrial, agricultural, mining, and thermoelectric power-generation users. More than 83 percent of the freshwater was from surface-water sources. Massachusetts, with the largest population, had the largest withdrawals of water. Data on saline water withdraw, and instream flow at hydroelectric plants were also compiled. An estimated 9, 170 Mgal/d of saline water was used for thermoelectric-power generation and industrial use in Connecticut, Maine, Massachusetts, New Hampshire, and Rhode Island. Return flow fro public wastewater-treatment plants totaled 1,750 Mgal/d; more than half (55 percent) of this return flow was in Massachusetts. In addition, about 178,000 Mgal/d was used for instream hydroelectric power generation; the largest users were Maine (about 83,000 Mgal/d) and New Hampshire (46,000 Mgal/d). These data, some of which were based on site-specific water-use information and some based on estimation techniques, were compiled through joint efforts by the U.S. Geological Survey and State cooperators for the 1990 national water-use compilation.

  8. Historic evidence for a link between riparian vegetation and bank erosion in the context of instream habitat restoration

    NASA Astrophysics Data System (ADS)

    Salant, N.; Baillie, M. B.; Schmidt, J. C.; Intermountain CenterRiver Rehabilitation; Restoration

    2010-12-01

    An analysis of historic aerial photographs of the upper Strawberry River, Utah, demonstrates that rates of lateral bank erosion peaked with the loss of riparian cover during periods of willow removal for livestock grazing. Erosion rates have declined over the past two decades, concurrent with the removal of livestock grazing, modest increases in riparian cover, and the return of natural flows. Contrary to perception, present-day erosion rates are actually lower than pre-disturbance rates. Recent restoration activities to stabilize stream banks were based on the assumption that high erosion rates were contributing excess sediment to the streambed and degrading spawning gravels. However, our results show that while the historic loss of riparian vegetation contributed to an increase in bank erosion rates, bank erosion rates were not high prior to restoration. Furthermore, streambed samples show that the percentage of fine sediment in the substrate is insufficient to have a significant biological impact, supporting the finding that present-day bank erosion rates are not excessive relative to pre-disturbance rates. Current bank stabilization efforts were therefore motivated by a limited understanding of system conditions and history, suggesting that these restoration activities are unnecessary and misconceived. Our results demonstrate the large influence of riparian vegetation on bank erosion and instream habitat, as well as the importance of incorporating system history into restoration design.

  9. Tracer-based characterization of hyporheic exchange and benthic biolayers in streams

    USGS Publications Warehouse

    Knapp, Julia L.A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.

    2017-01-01

    Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.

  10. Review of the effects of in-stream pipeline crossing construction on aquatic ecosystems and examination of Canadian methodologies for impact assessment.

    PubMed

    Lévesque, Lucie M; Dubé, Monique G

    2007-09-01

    Pipeline crossing construction alters river and stream channels, hence may have detrimental effects on aquatic ecosystems. This review examines the effects of crossing construction on fish and fish habitat in rivers and streams, and recommends an approach to monitoring and assessment of impacts associated with these activities. Pipeline crossing construction is shown to not only compromise the integrity of the physical and chemical nature of fish habitat, but also to affect biological habitat (e.g., benthic invertebrates and invertebrate drift), and fish behavior and physiology. Indicators of effect include: water quality (total suspended solids TSS), physical habitat (substrate particle size, channel morphology), benthic invertebrate community structure and drift (abundance, species composition, diversity, standing crop), and fish behavior and physiology (hierarchy, feeding, respiration rate, loss of equilibrium, blood hematocrit and leukocrit levels, heart rate and stroke volume). The Before-After-Control-Impact (BACI) approach, which is often applied in Environmental Effects Monitoring (EEM), is recommended as a basis for impact assessment, as is consideration of site-specific sensitivities, assessment of significance, and cumulative effects.

  11. Simulation of in-stream water quality on global scale under changing climate and anthropogenic conditions

    NASA Astrophysics Data System (ADS)

    Voss, Anja; Bärlund, Ilona; Punzet, Manuel; Williams, Richard; Teichert, Ellen; Malve, Olli; Voß, Frank

    2010-05-01

    Although catchment scale modelling of water and solute transport and transformations is a widely used technique to study pollution pathways and effects of natural changes, policies and mitigation measures there are only a few examples of global water quality modelling. This work will provide a description of the new continental-scale model of water quality WorldQual and the analysis of model simulations under changed climate and anthropogenic conditions with respect to changes in diffuse and point loading as well as surface water quality. BOD is used as an indicator of the level of organic pollution and its oxygen-depleting potential, and for the overall health of aquatic ecosystems. The first application of this new water quality model is to river systems of Europe. The model itself is being developed as part of the EU-funded SCENES Project which has the principal goal of developing new scenarios of the future of freshwater resources in Europe. The aim of the model is to determine chemical fluxes in different pathways combining analysis of water quantity with water quality. Simple equations, consistent with the availability of data on the continental scale, are used to simulate the response of in-stream BOD concentrations to diffuse and anthropogenic point loadings as well as flow dilution. Point sources are divided into manufacturing, domestic and urban loadings, whereas diffuse loadings come from scattered settlements, agricultural input (for instance livestock farming), and also from natural background sources. The model is tested against measured longitudinal gradients and time series data at specific river locations with different loading characteristics like the Thames that is driven by domestic loading and Ebro with relative high share of diffuse loading. With scenario studies the influence of climate and anthropogenic changes on European water resources shall be investigated with the following questions: 1. What percentage of river systems will have degraded water quality due to different driving forces? 2. How will climate change and changes in wastewater discharges affect water quality? For the analysis these scenario aspects are included: 1. climate with changed runoff (affecting diffuse pollution and loading from sealed areas), river discharge (causing dilution or concentration of point source pollution) and water temperature (affecting BOD degradation). 2. Point sources with changed population (affecting domestic pollution), connectivity to treatment plants (influencing domestic and manufacturing pollution as well as input from sealed areas and scattered settlements).

  12. Guidelines for using the Delphi Technique to develop habitat suitability index curves

    USGS Publications Warehouse

    Crance, Johnie H.

    1987-01-01

    Habitat Suitability Index (SI) curves are one method of presenting species habitat suitability criteria. The curves are often used with the Habitat Evaluation Procedures (HEP) and are necessary components of the Instream Flow Incremental Methodology (IFIM) (Armour et al. 1984). Bovee (1986) described three categories of SI curves or habitat suitability criteria based on the procedures and data used to develop the criteria. Category I curves are based on professional judgment, with 1ittle or no empirical data. Both Category II (utilization criteria) and Category III (preference criteria) curves have as their source data collected at locations where target species are observed or collected. Having Category II and Category III curves for all species of concern would be ideal. In reality, no SI curves are available for many species, and SI curves that require intensive field sampling often cannot be developed under prevailing constraints on time and costs. One alternative under these circumstances is the development and interim use of SI curves based on expert opinion. The Delphi technique (Pill 1971; Delbecq et al. 1975; Linstone and Turoff 1975) is one method used for combining the knowledge and opinions of a group of experts. The purpose of this report is to describe how the Delphi technique may be used to develop expert-opinion-based SI curves.

  13. Organic compounds downstream from a treated-wastewater discharge near Dallas, Texas, March 1987

    USGS Publications Warehouse

    Buszka, P.M.; Barber, L.B.; Schroeder, M.P.; Becker, L.D.

    1994-01-01

    Comparison of instantaneous flux values of selected organic compounds in water from downstream sites indicates: (1) the formation of chloroform in the stream following the discharge of the treated effluent, and that (2) instream biodegradation may be decreasing concentrations of linear alkylbenzene compounds in water. The relative persistence of many of the selected organic compounds in Rowlett Creek downstream from the municipal wastewater-treatment plant indicates that they could be transported into Lake Ray Hubbard, a source of municipal water supply.

  14. Wind River watershed restoration: Annual report of U.S. Geological Survey activities November 2010 – October 2011

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.

    2012-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during November 2010 through October 2011 under Bonneville Power Administration (BPA) contract 40481. The primary focus of USGS activities during this contract was on tagging of juvenile steelhead Oncorhynchus mykiss with Passive Integrated Transponder (PIT) tags, and working toward a network of instream PIT tag detection systems to monitor movements and life histories of these fish.

  15. Water use on the Snake River plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Goodell, S.A.

    1988-01-01

    Industries, including aquaculture, withdrew an estimated 1.97 million acre-feet of water. Withdrawals for other offstream uses, including public and rural supplies, totaled 132,000 acre-feet. Hydroelectric power generation is an economically important instream use of water. In 1980, about 52 million acre-feet of surface water was used to generate 2.6 million megawatt-hours of electricity. Native vegetation evapo- transpired an estimated 3.7 million acre-feet, and 900,000 acre-feet evaporated from bare ground and open water.

  16. A Regional Guidebook for Conducting Functional Assessments of Wetland and Riparian Forests in the Ouachita Mountains and Crowley’s Ridge Regions of Arkansas

    DTIC Science & Technology

    2006-12-01

    92–101. Bovee, K . D . 1982. A guide to stream habitat analysis using the in stream flow incremental methodology. Instream Flow Information Paper No...Thames. 1991. Hydrology and the management of watersheds . Iowa State University Press, Ames, IA. Brown, J. K . 1974. Handbook for inventorying downed...woody material. General Technical Report INT-16, U.S. Department of Agriculture, Forest Service. Brown, J. K ., R. D . Oberheu, and C. M. Johnston

  17. Developing user-friendly habitat suitability tools from regional stream fish survey data

    USGS Publications Warehouse

    Zorn, T.G.; Seelbach, P.; Wiley, M.J.

    2011-01-01

    We developed user-friendly fish habitat suitability tools (plots) for fishery managers in Michigan; these tools are based on driving habitat variables and fish population estimates for several hundred stream sites throughout the state. We generated contour plots to show patterns in fish biomass for over 60 common species (and for 120 species grouped at the family level) in relation to axes of catchment area and low-flow yield (90% exceedance flow divided by catchment area) and also in relation to axes of mean and weekly range of July temperatures. The plots showed distinct patterns in fish habitat suitability at each level of biological organization studied and were useful for quantitatively comparing river sites. We demonstrate how these plots can be used to support stream management, and we provide examples pertaining to resource assessment, trout stocking, angling regulations, chemical reclamation of marginal trout streams, indicator species, instream flow protection, and habitat restoration. These straightforward and effective tools are electronically available so that managers can easily access and incorporate them into decision protocols and presentations.

  18. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    USGS Publications Warehouse

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  19. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.

  20. Preliminary effects of streambank fencing of pasture land on the quality of surface water in a small watershed in Lancaster County, Pennsylvania

    USGS Publications Warehouse

    Galeone, Daniel G.

    2000-01-01

    The use of fencing to exclude pastured animals from streams has been recognized as an agricultural best-management practice. Streambank fencing was installed in a small basin within the Mill Creek Watershed of Lancaster County, Pa., during summer 1997 to evaluate the effectiveness of fencing on surface-water quality. A preliminary review of data collected during a pre-treatment, or calibration period (October 1993 through June 1997), and part of the post-treatment period (July 1997 through November 1998) has identified a varied instream nutrient response to streambank fencing.Concentrations of total nitrogen (N) during low-flow periods were significantly reduced by 20 to 31 percent at treated relative to untreated sites, but the yield of total N during low-flow conditions did not change significantly. Low-flow concentrations and yields of total phosphorus (P) did not change significantly at the outlet of the treatment basin, but data from a tributary site (T-2) in the treatment basin showed a 19- to 79-percent increase in the concentration and yield of total P relative to those at untreated sites. The total-P increase was due to increased concentrations of dissolved P. The processes causing the decrease in the concentration of total N and an increase in the concentration of total P were related to stream discharge, which declined after fencing to about one-third lower than the period-of-record mean. Declines in stream discharge after fence installation were caused by lower than normal precipitation. As concentrations of dissolved oxygen decreased in the stream channel as flows decreased, there was increased potential for instream denitrification and solubilization of P from sediments in the stream channel. Vegetative uptake of nitrate could also have contributed to decreased N concentrations. There were few significant changes in concentrations and yields of nutrients during stormflow except for significant reductions of 16 percent for total-N concentrations and 26 percent for total-P concentrations at site T-2 relative to the site at the outlet of the control basin.Suspended-sediment concentrations in the stream were significantly reduced by fencing. These reductions were partially caused by reduced cow access to the stream and hence reduced potential for the cows to destabilize streambanks through trampling. Development of a vegetative buffer along the stream channel after fence installation also helped to retain soil eroding from upgradient land. Reductions in suspended sediment during low flow ranged from 17 to 26 percent; stormflow reductions in suspended sediment ranged from 21 to 54 percent at treated relative to untreated sites. Suspended-sediment yields, however, were significantly reduced only at site T-2, where low-flow and stormflow yields were reduced by about 25 and 10 percent, respectively, relative to untreated sites.Benthic-macroinvertebrate sampling has identified increased number of taxa in the treatment basin after fence installation. Relative to the control basin, there was about a 30-percent increase in the total number of taxa. This increase was most likely related to improved instream habitat as a result of channel revegetation.

Top