The Influence of Guided Error-Based Learning on Motor Skills Self-Efficacy and Achievement.
Chien, Kuei-Pin; Chen, Sufen
2018-01-01
The authors investigated the role of errors in motor skills teaching, specifically the influence of errors on skills self-efficacy and achievement. The participants were 75 undergraduate students enrolled in pétanque courses. The experimental group (guided error-based learning, n = 37) received a 6-week period of instruction based on the students' errors, whereas the control group (correct motion instruction, n = 38) received a 6-week period of instruction emphasizing correct motor skills. The experimental group had significantly higher scores in motor skills self-efficacy and outcomes than did the control group. Novices' errors reflect their schema in motor skills learning, which provides a basis for instructors to implement student-centered instruction and to facilitate the learning process. Guided error-based learning can effectively enhance beginners' skills self-efficacy and achievement in precision sports such as pétanque.
Instructional Feedback in Motor Skill Learning.
ERIC Educational Resources Information Center
Dul, J.; And Others
1987-01-01
Presents a model of the role of instructional feedback in learning a motor skill and identifies six levels of motor skill output, each of which has a characteristic type of feedback. The usefulness of several feedback techniques reported in the literature is discussed. (Author/LRW)
Focus of Attention in Children's Motor Learning: Examining the Role of Age and Working Memory.
Brocken, J E A; Kal, E C; van der Kamp, J
2016-01-01
The authors investigated the relative effectiveness of different attentional focus instructions on motor learning in primary school children. In addition, we explored whether the effect of attentional focus on motor learning was influenced by children's age and verbal working memory capacity. Novice 8-9-year old children (n = 30) and 11-12-year-old children (n = 30) practiced a golf putting task. For each age group, half the participants received instructions to focus (internally) on the swing of their arm, while the other half was instructed to focus (externally) on the swing of the club. Children's verbal working memory capacity was assessed with the Automated Working Memory Assessment. Consistent with many reports on adult's motor learning, children in the external groups demonstrated greater improvements in putting accuracy than children who practiced with an internal focus. This effect was similar across age groups. Verbal working memory capacity was not found to be predictive of motor learning, neither for children in the internal focus groups nor for children in the external focus groups. In conclusion, primary school children's motor learning is enhanced by external focus instructions compared to internal focus instructions. The purported modulatory roles of children's working memory, attentional capacity, or focus preferences require further investigation.
Analogy motor learning by young children: a study of rope skipping.
Tse, Andy C Y; Fong, Shirley S M; Wong, Thomson W L; Masters, Rich
2017-03-01
Research in psychology suggests that provision of an instruction by analogy can enhance acquisition and understanding of knowledge. Limited research has been conducted to test this proposition in motor learning by children. The purpose of the present study was to examine the feasibility of analogy instructions in motor skill acquisition by children. Thirty-two children were randomly assigned to one of the two instruction protocols: analogy and explicit instruction protocols for a two-week rope skipping training. Each participant completed a pretest (Lesson 1), three practice sessions (Lesson 2-4), a posttest and a secondary task test (Lesson 5). Children in the analogy protocol displayed better rope skip performance than those in the explicit instruction protocol (p < .001). Moreover, a cognitive secondary task test indicated that children in the analogy protocol performed more effectively, whereas children in the explicit protocol displayed decrements in performance. Analogy learning may aid children to acquire complex motor skills, and have potential benefits related to reduced cognitive processing requirements.
Kleynen, Melanie; Braun, Susy M.; Rasquin, Sascha M. C.; Bleijlevens, Michel H. C.; Lexis, Monique A. S.; Halfens, Jos; Wilson, Mark R.; Masters, Rich S. W.; Beurskens, Anna J.
2015-01-01
Background A variety of options and techniques for causing implicit and explicit motor learning have been described in the literature. The aim of the current paper was to provide clearer guidance for practitioners on how to apply motor learning in practice by exploring experts’ opinions and experiences, using the distinction between implicit and explicit motor learning as a conceptual departure point. Methods A survey was designed to collect and aggregate informed opinions and experiences from 40 international respondents who had demonstrable expertise related to motor learning in practice and/or research. The survey was administered through an online survey tool and addressed potential options and learning strategies for applying implicit and explicit motor learning. Responses were analysed in terms of consensus (≥ 70%) and trends (≥ 50%). A summary figure was developed to illustrate a taxonomy of the different learning strategies and options indicated by the experts in the survey. Results Answers of experts were widely distributed. No consensus was found regarding the application of implicit and explicit motor learning. Some trends were identified: Explicit motor learning can be promoted by using instructions and various types of feedback, but when promoting implicit motor learning, instructions and feedback should be restricted. Further, for implicit motor learning, an external focus of attention should be considered, as well as practicing the entire skill. Experts agreed on three factors that influence motor learning choices: the learner’s abilities, the type of task, and the stage of motor learning (94.5%; n = 34/36). Most experts agreed with the summary figure (64.7%; n = 22/34). Conclusion The results provide an overview of possible ways to cause implicit or explicit motor learning, signposting examples from practice and factors that influence day-to-day motor learning decisions. PMID:26296203
ERIC Educational Resources Information Center
Jampolsky, Gerald G.
Hypnosis was combined with sensory and motor stimulation to remediate reversal problems in five children (6 1/2- 9-years-old). Under hypnosis Ss were given the suggestion that they learn their numbers through feel and then given 1 hour of structured instruction daily for 10 days. Instruction stressed conditioning, vibratory memory, touch memory,…
Working Memory Capacity Limits Motor Learning When Implementing Multiple Instructions
Buszard, Tim; Farrow, Damian; Verswijveren, Simone J. J. M.; Reid, Machar; Williams, Jacqueline; Polman, Remco; Ling, Fiona Chun Man; Masters, Rich S. W.
2017-01-01
Although it is generally accepted that certain practice conditions can place large demands on working memory (WM) when performing and learning a motor skill, the influence that WM capacity has on the acquisition of motor skills remains unsubstantiated. This study examined the role of WM capacity in a motor skill practice context that promoted WM involvement through the provision of explicit instructions. A cohort of 90 children aged 8 to 10 years were assessed on measures of WM capacity and attention. Children who scored in the lowest and highest thirds on the WM tasks were allocated to lower WM capacity (n = 24) and higher WM capacity (n = 24) groups, respectively. The remaining 42 participants did not participate in the motor task. The motor task required children to practice basketball shooting for 240 trials in blocks of 20 shots, with pre- and post-tests occurring before and after the intervention. A retention test was administered 1 week after the post-test. Prior to every practice block, children were provided with five explicit instructions that were specific to the technique of shooting a basketball. Results revealed that the higher WM capacity group displayed consistent improvements from pre- to post-test and through to the retention test, while the opposite effect occurred in the lower WM capacity group. This implies that the explicit instructions had a negative influence on learning by the lower WM capacity children. Results are discussed in relation to strategy selection for dealing with instructions and the role of attention control. PMID:28878701
Impacts of autonomy-supportive versus controlling instructional language on motor learning.
Hooyman, Andrew; Wulf, Gabriele; Lewthwaite, Rebecca
2014-08-01
The authors examined the influence of autonomy-supportive (ASL), controlling (CL), and neutral instructional language (NL) on motor skill learning (cricket bowling action). Prior to and several times during the practice phase, participants watched the same video demonstration of the bowling action but with different voice-over instructions. The instructions were designed to provide the same technical information but to vary in terms of the degree of choice performers would perceive when executing the task. In addition to measurements of throwing accuracy (i.e., deviation from the target), perceived choice, self-efficacy, and positive and negative affect were assessed at the end of the practice phase and after a retention test without demonstrations and instructions on Day 2. ASL resulted in perceptions of greater choice, higher self-efficacy, and more positive affect during practice than CL, and enhanced learning as demonstrated by retention test performance. Thus, granting learners autonomy appeared to endow them with confidence in their ability, diminished needs for control of negative emotional responses, and created more positive affect, which may help consolidate motor memories. Copyright © 2014 Elsevier B.V. All rights reserved.
Blumen, Helena M; Gopher, Daniel; Steinerman, Joshua R; Stern, Yaakov
2010-01-01
This study examined if and how cognitively healthy older adults can learn to play a complex computer-based action game called the Space Fortress (SF) as a function of training instructions [Standard vs. Emphasis Change (EC); e.g., Gopher et al., 1989] and basic motor ability. A total of 35 cognitively healthy older adults completed a 3-month SF training program with three SF sessions weekly. Twelve 3-min games were played during each session. Basic motor ability was assessed with an aiming task, which required rapidly rotating a spaceship to shoot targets. Older adults showed improved performance on the SF task over time, but did not perform at the same level as younger adults. Unlike studies of younger adults, overall SF performance in older adults was greater following standard instructions than following EC instructions. However, this advantage was primarily due to collecting more bonus points and not - the primary goal of the game - shooting and destroying the fortress, which in contrast benefited from EC instructions. Basic motor ability was low and influenced many different aspects of SF game learning, often interacted with learning rate, and influenced overall SF performance. These findings show that older adults can be trained to deal with the complexity of the SF task but that overall SF performance, and the ability to capitalize on EC instructions, differs when a basic ability such as motor control is low. Hence, the development of this training program as a cognitive intervention that can potentially compensate for age-related cognitive decline should consider that basic motor ability can interact with the efficiency of training instructions that promote the use of cognitive control (e.g., EC instructions) - and the confluence between such basic abilities and higher-level cognitive control abilities should be further examined.
Blumen, Helena M.; Gopher, Daniel; Steinerman, Joshua R.; Stern, Yaakov
2010-01-01
This study examined if and how cognitively healthy older adults can learn to play a complex computer-based action game called the Space Fortress (SF) as a function of training instructions [Standard vs. Emphasis Change (EC); e.g., Gopher et al., 1989] and basic motor ability. A total of 35 cognitively healthy older adults completed a 3-month SF training program with three SF sessions weekly. Twelve 3-min games were played during each session. Basic motor ability was assessed with an aiming task, which required rapidly rotating a spaceship to shoot targets. Older adults showed improved performance on the SF task over time, but did not perform at the same level as younger adults. Unlike studies of younger adults, overall SF performance in older adults was greater following standard instructions than following EC instructions. However, this advantage was primarily due to collecting more bonus points and not – the primary goal of the game – shooting and destroying the fortress, which in contrast benefited from EC instructions. Basic motor ability was low and influenced many different aspects of SF game learning, often interacted with learning rate, and influenced overall SF performance. These findings show that older adults can be trained to deal with the complexity of the SF task but that overall SF performance, and the ability to capitalize on EC instructions, differs when a basic ability such as motor control is low. Hence, the development of this training program as a cognitive intervention that can potentially compensate for age-related cognitive decline should consider that basic motor ability can interact with the efficiency of training instructions that promote the use of cognitive control (e.g., EC instructions) – and the confluence between such basic abilities and higher-level cognitive control abilities should be further examined. PMID:21120135
How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI.
Sepulveda, Pradyumna; Sitaram, Ranganatha; Rana, Mohit; Montalba, Cristian; Tejos, Cristian; Ruiz, Sergio
2016-09-01
The learning process involved in achieving brain self-regulation is presumed to be related to several factors, such as type of feedback, reward, mental imagery, duration of training, among others. Explicitly instructing participants to use mental imagery and monetary reward are common practices in real-time fMRI (rtfMRI) neurofeedback (NF), under the assumption that they will enhance and accelerate the learning process. However, it is still not clear what the optimal strategy is for improving volitional control. We investigated the differential effect of feedback, explicit instructions and monetary reward while training healthy individuals to up-regulate the blood-oxygen-level dependent (BOLD) signal in the supplementary motor area (SMA). Four groups were trained in a two-day rtfMRI-NF protocol: GF with NF only, GF,I with NF + explicit instructions (motor imagery), GF,R with NF + monetary reward, and GF,I,R with NF + explicit instructions (motor imagery) + monetary reward. Our results showed that GF increased significantly their BOLD self-regulation from day-1 to day-2 and GF,R showed the highest BOLD signal amplitude in SMA during the training. The two groups who were instructed to use motor imagery did not show a significant learning effect over the 2 days. The additional factors, namely motor imagery and reward, tended to increase the intersubject variability in the SMA during the course of training. Whole brain univariate and functional connectivity analyses showed common as well as distinct patterns in the four groups, representing the varied influences of feedback, reward, and instructions on the brain. Hum Brain Mapp 37:3153-3171, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Assembling old tricks for new tasks: a neural model of instructional learning and control.
Huang, Tsung-Ren; Hazy, Thomas E; Herd, Seth A; O'Reilly, Randall C
2013-06-01
We can learn from the wisdom of others to maximize success. However, it is unclear how humans take advice to flexibly adapt behavior. On the basis of data from neuroanatomy, neurophysiology, and neuroimaging, a biologically plausible model is developed to illustrate the neural mechanisms of learning from instructions. The model consists of two complementary learning pathways. The slow-learning parietal pathway carries out simple or habitual stimulus-response (S-R) mappings, whereas the fast-learning hippocampal pathway implements novel S-R rules. Specifically, the hippocampus can rapidly encode arbitrary S-R associations, and stimulus-cued responses are later recalled into the basal ganglia-gated pFC to bias response selection in the premotor and motor cortices. The interactions between the two model learning pathways explain how instructions can override habits and how automaticity can be achieved through motor consolidation.
Role of Plasticity at Different Sites across the Time Course of Cerebellar Motor Learning
Lisberger, Stephen G.
2014-01-01
Learning comprises multiple components that probably involve cellular and synaptic plasticity at multiple sites. Different neural sites may play their largest roles at different times during behavioral learning. We have used motor learning in smooth pursuit eye movements of monkeys to determine how and when different components of learning occur in a known cerebellar circuit. The earliest learning occurs when one climbing-fiber response to a learning instruction causes simple-spike firing rate of Purkinje cells in the floccular complex of the cerebellum to be depressed transiently at the time of the instruction on the next trial. Trial-over-trial depression and the associated learning in eye movement are forgotten in <6 s, but facilitate long-term behavioral learning over a time scale of ∼5 min. During 100 repetitions of a learning instruction, simple-spike firing rate becomes progressively depressed in Purkinje cells that receive climbing-fiber inputs from the instruction. In Purkinje cells that prefer the opposite direction of pursuit and therefore do not receive climbing-fiber inputs related to the instruction, simple-spike responses undergo potentiation, but more weakly and more slowly. Analysis of the relationship between the learned changes in simple-spike firing and learning in eye velocity suggests an orderly progression of plasticity: first on Purkinje cells with complex-spike (CS) responses to the instruction, later on Purkinje cells with CS responses to the opposite direction of instruction, and last in sites outside the cerebellar cortex. Climbing-fiber inputs appear to play a fast and primary, but nonexclusive, role in pursuit learning. PMID:24849344
Instructional Curriculum Mapping.
ERIC Educational Resources Information Center
Wager, Walter
Instructional Curriculum Mapping (ICM) is a set of guidelines for diagramming the interrelationships among objectives from different domains of learning. Five major learning domains are identified: (1) intellectual skills; (2) cognitive strategies; (3) verbal information; (4) motor skills; and (5) attitudes. This paper examines the functional…
Re-examining the effects of verbal instructional type on early stage motor learning.
Bobrownicki, Ray; MacPherson, Alan C; Coleman, Simon G S; Collins, Dave; Sproule, John
2015-12-01
The present study investigated the differential effects of analogy and explicit instructions on early stage motor learning and movement in a modified high jump task. Participants were randomly assigned to one of three experimental conditions: analogy, explicit light (reduced informational load), or traditional explicit (large informational load). During the two-day learning phase, participants learned a novel high jump technique based on the 'scissors' style using the instructions for their respective conditions. For the single-day testing phase, participants completed both a retention test and task-relevant pressure test, the latter of which featured a rising high-jump-bar pressure manipulation. Although analogy learners demonstrated slightly more efficient technique and reported fewer technical rules on average, the differences between the conditions were not statistically significant. There were, however, significant differences in joint variability with respect to instructional type, as variability was lowest for the analogy condition during both the learning and testing phases, and as a function of block, as joint variability decreased for all conditions during the learning phase. Findings suggest that reducing the informational volume of explicit instructions may mitigate the deleterious effects on performance previously associated with explicit learning in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.
Proactive Interference and Directed Forgetting in Short-Term Motor Memory
ERIC Educational Resources Information Center
Burwitz, Leslie
1974-01-01
The present study was designed to test the effect of instructions to forget prior motor learning and the results were relevant to the understanding of short-term motor memory (STMM) proactive interference (PI). (Author/RK)
Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina
2018-05-01
Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.
A novel approach to enhance ACL injury prevention programs.
Gokeler, Alli; Seil, Romain; Kerkhoffs, Gino; Verhagen, Evert
2018-06-18
Efficacy studies have demonstrated decreased anterior cruciate ligament (ACL) injury rates for athletes participating in injury prevention programs. Typically, ACL injury prevention programs entail a combination of plyometrics, strength training, agility and balance exercises. Unfortunately, improvements of movement patterns are not sustained over time. The reason may be related to the type of instructions given during training. Encouraging athletes to consciously control knee movements during exercises may not be optimal for the acquisition of complex motor skills as needed in complex sports environments. In the motor learning domain, these types of instructions are defined as an internal attentional focus. An internal focus, on one's own movements results in a more conscious type of control that may hamper motor learning. It has been established in numerous studies that an external focus of attention facilitates motor learning more effectively due to the utilization of automatic motor control. Subsequently, the athlete has more recourses available to anticipate on situations on the field and take appropriate feed forward directed actions. The purpose of this manuscript was to present methods to optimize motor skill acquisition of athletes and elaborate on athletes' behavior.
ERIC Educational Resources Information Center
Burke, James P.
The practicum designed a perceptual activities program for learning disabled second graders using computer-assisted instruction. The program develops skills involving visual motor coordination, figure-ground differentiation, form constancy, position in space, and spatial relationships. Five behavioral objectives for each developmental area were…
The Modular Approach (with Strategies) to Learning Motor Skills
1980-03-01
Sciencies . ~~LThe findings in this report are not to be construed as an official Dopertment of the Army posotion, unless so designated by other...13 Conducting an Instructional Analysis .. ................ 14 Pre-Instructional Activities .. ............... ..... 16 Instructional Materials ...domains. Further, many processes that underlie a person’s use of strategies to enhance the learning of written material appears to be similar in the
Yang, Yan; Lisberger, Stephen G
2013-01-01
Motor learning occurs through interactions between the cerebellar circuit and cellular plasticity at different sites. Previous work has established plasticity in brain slices and suggested plausible sites of behavioral learning. We now reveal what actually happens in the cerebellum during short-term learning. We monitor the expression of plasticity in the simple-spike firing of cerebellar Purkinje cells during trial-over-trial learning in smooth pursuit eye movements of monkeys. Our findings imply that: 1) a single complex-spike response driven by one instruction for learning causes short-term plasticity in a Purkinje cell’s mossy fiber/parallel-fiber input pathways; 2) complex-spike responses and simple-spike firing rate are correlated across the Purkinje cell population; and 3) simple-spike firing rate at the time of an instruction for learning modulates the probability of a complex-spike response, possibly through a disynaptic feedback pathway to the inferior olive. These mechanisms may participate in long-term motor learning. DOI: http://dx.doi.org/10.7554/eLife.01574.001 PMID:24381248
Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning
Sanchez, Daniel J.; Reber, Paul J.
2012-01-01
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key question is whether this observation reflects parallel intact memory systems or an integrated representation of memory in healthy participants. Learning of complex tasks in which both explicit instruction and practice is used depends on both kinds of memory, and how these systems interact will be an important component of the learning process. Theories that posit an integrated, or single, memory system for both types of memory predict that explicit instruction should contribute directly to strengthening task knowledge. In contrast, if the two types of memory are independent and acquired in parallel, explicit knowledge should have no direct impact and may serve in a “scaffolding” role in complex learning. Using an implicit perceptual-motor sequence learning task, the effect of explicit pre-training instruction on skill learning and performance was assessed. Explicit pre-training instruction led to robust explicit knowledge, but sequence learning did not benefit from the contribution of pre-training sequence memorization. The lack of an instruction benefit suggests that during skill learning, implicit and explicit memory operate independently. While healthy participants will generally accrue parallel implicit and explicit knowledge in complex tasks, these types of information appear to be separately represented in the human brain consistent with multiple memory systems theory. PMID:23280147
Kleynen, Melanie; Moser, Albine; Haarsma, Frederike A; Beurskens, Anna J; Braun, Susy M
2017-08-01
The goal of this study was to examine which motor learning options are applied by experienced physiotherapists in neurological rehabilitation, and how they choose between the different options. A descriptive qualitative approach was used. A purposive sample of five expert physiotherapists from the neurological ward of a rehabilitation center participated. Data were collected using nine videotaped therapy situations. During retrospective think-aloud interviews, the physiotherapists were instructed to constantly "think aloud" while they were watching their own videos. Five "operators" were identified: "act", "know", "observe", "assess" and "argue". The "act" operator consisted of 34 motor learning options, which were clustered into "instruction", "feedback" and "organization". The "know", "observe", "assess" and "argue" operators explained how therapists chose one of these options. The four operators seem to be interrelated and together lead to a decision to apply a particular motor learning option. Results show that the participating physiotherapists used a great variety of motor learning options in their treatment sessions. Further, the decision-making process with regard to these motor learning options was identified. Results may support future intervention studies that match the content and process of therapy in daily practice. The study should be repeated with other physiotherapists. Implications for Rehabilitation The study provided insight into the way experienced therapist handle the great variety of possible motor learning options, including concrete ideas on how to operationalize these options in specific situations. Despite differences in patients' abilities, it seems that therapists use the same underlying clinical reasoning process when choosing a particular motor learning option. Participating physiotherapists used more than the in guidelines suggested motor learning options and considered more than the suggested factors, hence adding practice based options of motor learning to the recommended ones in the guidelines. A think-aloud approach can be considered for peer-to-peer and student coaching to enhance discussion on the motor learning options applied and the underlying choices and to encourage research by practicing clinicians.
Explicit and implicit motor learning in children with unilateral cerebral palsy.
van der Kamp, John; Steenbergen, Bert; Masters, Rich S W
2017-07-30
The current study aimed to investigate the capacity for explicit and implicit learning in children with unilateral cerebral palsy. Children with left and right unilateral cerebral palsy and typically developing children shuffled disks toward a target. A prism-adaptation design was implemented, consisting of pre-exposure, prism exposure, and post-exposure phases. Half of the participants were instructed about the function of the prism glasses, while the other half were not. For each trial, the distance between the target and the shuffled disk was determined. Explicit learning was indicated by the rate of adaptation during the prism exposure phase, whereas implicit learning was indicated by the magnitude of the negative after-effect at the start of the post-exposure phase. Results No significant effects were revealed between typically developing participants and participants with unilateral cerebral palsy. Comparison of participants with left and right unilateral cerebral palsy demonstrated that participants with right unilateral cerebral palsy had a significantly lower rate of adaptation than participants with left unilateral cerebral palsy, but only when no instructions were provided. The magnitude of the negative after-effects did not differ significantly between participants with right and left unilateral cerebral palsy. The capacity for explicit motor learning is reduced among individuals with right unilateral cerebral palsy when accumulation of declarative knowledge is unguided (i.e., discovery learning). In contrast, the capacity for implicit learning appears to remain intact among individuals with left as well as right unilateral cerebral palsy. Implications for rehabilitation Implicit motor learning interventions are recommended for individuals with cerebral palsy, particularly for individuals with right unilateral cerebral palsy Explicit motor learning interventions for individual with cerebral palsy - if used - best consist of singular verbal instruction.
Differences in children's thinking and learning during attentional focus instruction.
Perreault, Melanie E; French, Karen E
2016-02-01
Considerable evidence supports the motor learning advantage associated with an external focus of attention; however, very few studies have investigated attentional focus effects with children despite individual functional constraints that have the potential to impact use of instructional content. Thus, the purpose of this study was to determine the effect of attentional focus instruction on motor learning in children. Participants (n=42) aged 9-11years were randomly assigned to one of three gender-stratified groups: (1) control, (2) internal focus, or (3) external focus. Following initial instructions and task demonstration, participants performed 100 modified free throws over two days while receiving additional cues respective to their attentional focus condition and returned approximately 48h later to perform 20 additional free throws. Results revealed no significant learning differences between groups. However, responses to retrospective verbal reports suggest that the use of external focus content during practice may have contributed to some participants' superior performance in retention. Future research should continue to examine attentional focus effects across a variety of ages and incorporate retrospective verbal reports in order to examine children's thoughts during attentional focus instruction. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Watson, Gareth; Butterfield, Joe; Curran, Ricky; Craig, Cathy
2010-01-01
Recent studies exploring the effects of instructional animations on learning compared to static graphics have yielded mixed results. Few studies have explored their effectiveness in portraying procedural-motor information. Opportunities exist within an applied (manufacturing) context for instructional animations to be used to facilitate build…
Matching tutors and students: effective strategies for information transfer between circuits
NASA Astrophysics Data System (ADS)
Tesileanu, Tiberiu; Balasubramanian, Vijay; Olveczky, Bence
Many neural circuits transfer learned information to downstream circuits: hippocampal-dependent memories are consolidated into long-term memories elsewhere; motor cortex is essential for skill learning but dispensable for execution; anterior forebrain pathway (AFP) in songbirds drives short-term improvements in song that are later consolidated in pre-motor area RA. We show how to match instructive signals from tutor circuits to synaptic plasticity rules in student circuits to achieve effective two-stage learning. We focus on learning sequential patterns where a timebase is transformed into motor commands by connectivity with a `student' area. If the sign of the synaptic change is given by the magnitude of tutor input, a good teaching strategy uses a strong (weak) tutor signal if student output is below (above) its target. If instead timing of tutor input relative to the timebase determines the sign of synaptic modifications, a good instructive signal accumulates the errors in student output as the motor program progresses. We demonstrate song learning in a biologically-plausible model of the songbird circuit given diverse plasticity rules interpolating between those described above. The model also reproduces qualitative firing statistics of RA neurons in juveniles and adults. Also affiliated to CUNY - Graduate Center.
Enhancing voluntary imitation through attention and motor imagery.
Bek, Judith; Poliakoff, Ellen; Marshall, Hannah; Trueman, Sophie; Gowen, Emma
2016-07-01
Action observation activates brain areas involved in performing the same action and has been shown to increase motor learning, with potential implications for neurorehabilitation. Recent work indicates that the effects of action observation on movement can be increased by motor imagery or by directing attention to observed actions. In voluntary imitation, activation of the motor system during action observation is already increased. We therefore explored whether imitation could be further enhanced by imagery or attention. Healthy participants observed and then immediately imitated videos of human hand movement sequences, while movement kinematics were recorded. Two blocks of trials were completed, and after the first block participants were instructed to imagine performing the observed movement (Imagery group, N = 18) or attend closely to the characteristics of the movement (Attention group, N = 15), or received no further instructions (Control group, N = 17). Kinematics of the imitated movements were modulated by instructions, with both Imagery and Attention groups being closer in duration, peak velocity and amplitude to the observed model compared with controls. These findings show that both attention and motor imagery can increase the accuracy of imitation and have implications for motor learning and rehabilitation. Future work is required to understand the mechanisms by which these two strategies influence imitation accuracy.
Rehabilitation and motor learning through vibrotactile feedback
NASA Astrophysics Data System (ADS)
Panchanathan, Roshan; Rosenthal, Jacob; McDaniel, Troy
2014-05-01
Group instruction is the most common delivery method of motor skill training given its cost and time effectiveness. This is also the case during rehabilitation where therapists divide their attention among several patients. Compared to dedicated one-on-one instruction, group instruction often suffers from reduced quality and quantity of instruction and feedback. Further, during rehabilitation programs, patients struggle outside of therapy sessions given the lack of instruction and feedback found only during clinic visits. We propose a wearable, low-cost motion sensing and actuation system capable of providing real-time vibrotactile feedback for trainer-defined goal movements and repetitions. The trainer inputs movement goals for the user, and adapts these values (joint angles, movement speeds) over time for continued progress. In this paper, we present a novel second generation design, and introduce a flexible vibrotactile strip to overcome construction challenges of these types of systems. The flexible display is constructed using commercial LED strips that have been modified by attaching pancake style vibration motors. The flexible display does not require external microcontrollers to enable or disable motors, and may allow these systems to be expanded to the whole body. We also summarize two previous studies that have assessed appropriate body sites and pattern designs for vibrotactile motor instructions and feedback signals.
Schnackers, Marlous; Beckers, Laura; Janssen-Potten, Yvonne; Aarts, Pauline; Rameckers, Eugène; van der Burg, Jan; de Groot, Imelda; Smeets, Rob; Geurts, Sander; Steenbergen, Bert
2018-04-18
Home-based training is considered an important intervention in rehabilitation of children with unilateral cerebral palsy. Despite consensus on the value of home-based upper limb training, no evidence-based best practice exists. Promoting compliance of children to adhere to an intensive program while keeping parental stress levels low is an important challenge when designing home-based training programs. Incorporating implicit motor learning principles emerges to be a promising method to resolve this challenge. Here we describe two protocols for home-based bimanual training programs, one based on implicit motor learning principles and one based on explicit motor learning principles, for children with unilateral spastic cerebral palsy aged 2 through 7 years. Children receive goal-oriented, task-specific bimanual training in their home environment from their parents for 3.5 h/week for 12 weeks according to an individualized program. Parents will be intensively coached by a multidisciplinary team, consisting of a pediatric therapist and remedial educationalist. Both programs consist of a preparation phase (goal setting, introductory meetings with coaching professionals, design of individualized program, instruction of parents, home visit) and home-based training phase (training, video-recordings, registrations, and telecoaching and home visits by the coaching team). The programs contrast with respect to the teaching strategy, i.e. how the parents support their child during training. In both programs parents provide their child with instructions and feedback that focus on the activity (i.e. task-oriented) or the result of the activity (i.e. result-oriented). However, in the explicit program parents are in addition instructed to give exact instructions and feedback on the motor performance of the bimanual activities, whereas in the implicit program the use of both hands and the appropriate motor performance of the activity are elicited via manipulation of the organization of the activities. With the protocols described here, we aim to take a next step in the development of much needed evidence-based home-based training programs for children with unilateral cerebral palsy.
ERIC Educational Resources Information Center
And Others; Worthington, R. Kirby
1980-01-01
Thirty-two preschool children were matched by age, sex, and pretest scores on spatial concept knowledge. Four groups were (1) instruction (see and hear) only, (2) verbal repetition, (3) fine motor treatment (hand manipulation), and (4) gross motor treatment (body movement). There was no difference in performance between groups given instruction…
[The effectiveness of interaction of volunteer coaches in training].
Boudreau, P; Tousignant, M
1991-06-01
This study describes teaching and learning processes during a series of soccer training sessions. The predetermined course content formed the initial practicum for volunteer coaches who were in the first stage of their training. In general, the players demonstrated patterns of motor behaviour favourable to their motor learning. The coaches adopted most of the effective behaviors that had been recommended during the theoretical portion of their preparation. These observations tend to indicate the usefulness of having volunteer coaches participate in a practicum as part of their preparation, in order to improve the effectiveness of their subsequent instruction. Such instruction is likely to be even more effective if the practicum is based on training sessions of predetermined content.
ERIC Educational Resources Information Center
Macedonia, Manuela
2014-01-01
This study investigates the role of perception and sensory motor learning on speech production in L2. Compared to natural language learning, acoustic input in formal adult instruction is deprived of multiple sensory motor cues and lacks the imitation component. Consequently, it is possible that inaccurate pronunciation results from training.…
Jarus, Tal; Ghanouni, Parisa; Abel, Rachel L; Fomenoff, Shelby L; Lundberg, Jocelyn; Davidson, Stephanie; Caswell, Sarah; Bickerton, Laura; Zwicker, Jill G
2015-02-01
Children with developmental coordination disorder (DCD) struggle to learn new motor skills. It is unknown whether children with DCD learn motor skills more effectively with an external focus of attention (focusing on impact of movement on the environment) or an internal focus of attention (focusing on one's body movements) during implicit (unconscious) and explicit (conscious) motor learning. This paper aims to determine the trends of implicit motor learning in children with DCD, and how focus of attention influences motor learning in children with DCD in comparison with typically developing children. 25 children, aged 8-12, with (n=12) and without (n=13) DCD were randomly assigned to receive instructions that focused attention externally or internally while completing a computer tracking task during acquisition, retention, and transfer phases. The motor task involved tracking both repeated and random patterns, with the repeated pattern indicative of implicit learning. Children with DCD scored lower on the motor task in all three phases of the study, demonstrating poorer implicit learning. Furthermore, graphical data showed that for the children with DCD, there was no apparent difference between internal and external focus of attention during retention and transfer, while there was an advantage to the external focus of attention group for typically developing children. Children with DCD demonstrate less accuracy than typically developing children in learning a motor task. Also, the effect of focus of attention on motor performance is different in children with DCD versus their typically developing counterparts during the three phases of motor learning. Results may inform clinicians how to facilitate motor learning in children with DCD by incorporating explicit learning with either internal or external focus of attention within interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Performance of motor imitation in children with and without dyspraxia.
Ruttanathantong, Korrawan; Siritaratiwat, Wantana; Sriphetcharawut, Sarinya; Emasithi, Alongkot; Saengsuwan, Jiamjit; Saengsuwan, Jittima
2013-07-01
Motor imitation is truly essential for young children to learn new motor skills, social behavior and skilled acts or praxis. The present study aimed to investigate motor imitation ability between typically-developing children and dyspraxic children and to examine the development trends in both children groups. The comparison ofmotor imitation was studied in 55 typically-developing children and 59 dyspraxic children aged 5 to 8 years. The Motor Imitation subtest consisted of two sections, imitation of postures and imitation of verbal instructions. Typically-developing children and dyspraxic children were examined for developmental trends. The independent samples t-test was used to analyze the differences between both groups. Two-way analysis of variance (ANOVA) was used to analyze inter-age differences for each age group. The results revealed significant differences between dyspraxic and typically-developing children. Both typically-developing and dyspraxic children demonstrated age trends. The older children scored higher than younger children. Imitation is a primary learning strategy of young children. It is essential that children with dyspraxia receive early detection and need effective intervention. Typically-developing children and dyspraxic children showed higher mean score on the Imitation of Posture section than the Verbal Instructions section. Motor imitation competency, therefore, changes and improves with age.
Enhancing motor learning through peer tutoring.
Feinberg, Judy R; Elkington, Sarah J; Dewey, Kimberly A; Dzielawa, Dawn M; Hayden, Nicky L; Blankenship, Staci L; Nahrwold, Christopher M; Smith, Jennifer L
2002-01-01
The purpose of this study was to examine the efficacy of incorporating mnemonic memory aids and having a subject teach another person a given task (peer tutoring) as a method of enhancing task acquisition and recall by the subject and to discuss the implications for occupational therapists who instruct clients in motor tasks such as therapeutic exercise programs. Sixty-seven college students were randomly assigned to one of three groups using different teaching methods for the purpose of learning a motor task, specifically the American Sign Language alphabet. Subjects who were taught using mnemonics and peer tutoring scored significantly better on post-testing two days following instruction than did the control groups. Use of these techniques did not increase direct teaching time by the instructor, nor did they incur additional costs. Thus, these techniques may be easily incorporated into client education to improve recall and performance.
FILMIC COMMUNICATION AND COMPLEX LEARNING. WORKING PAPER NO. 4.
ERIC Educational Resources Information Center
PRYLUCK, CALVIN
RESEARCH AND EXPERIENCE SHOW THAT FILM IS MORE EFFECTIVE IN FACTUAL LEARNING AND IN PERCEPTUAL MOTOR LEARNING THAN IN TEACHING RATIONAL ACTIVITIES. LANGUAGE AND FILM HAVE DIFFERENT STRUCTURES WHICH DETERMINE THEIR FUNCTIONS IN INSTRUCTIONAL SETTINGS. ESSENTIALLY, PICTURES ARE INDUCTIVE WHILE LANGUAGE IS DEDUCTIVE. LANGUAGE IS CAPABLE OF NUMBERLESS…
Constraints of Motor Skill Acquisition: Implications for Teaching and Learning.
ERIC Educational Resources Information Center
Hamilton, Michelle L.; Pankey, Robert; Kinnunen, David
This article presents various solutions to possible problems associated with providing skill-based instruction in physical education. It explores and applies Newell's (1986) constraints model to the analysis and teaching of motor skills in physical education, describing the role of individual, task, and environmental constraints in physical…
To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?
Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob
2016-01-01
Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery. PMID:28154614
To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?
Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob
2016-01-01
Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.
Using Learning Preferences to Improve Coaching and Athletic Performance
ERIC Educational Resources Information Center
Dunn, Julia L.
2009-01-01
Each individual learns in a different manner, depending on his or her perceptual or learning preferences (visual, auditory, read/write, or kinesthetic). In sport, coaches and athletes must speak a common language of instructions, verbal cues, and appropriate motor responses. Thus, developing a clear understanding of how to use students' learning…
Is Motor Learning Mediated by tDCS Intensity?
van den Berg, Femke E.; Nitsche, Michael A.; Thijs, Herbert; Wenderoth, Nicole; Meesen, Raf L. J.
2013-01-01
Although tDCS has been shown to improve motor learning, previous studies reported rather small effects. Since physiological effects of tDCS depend on intensity, the present study evaluated this parameter in order to enhance the effect of tDCS on skill acquisition. The effect of different stimulation intensities of anodal tDCS (atDCS) was investigated in a double blind, sham controlled crossover design. In each condition, thirteen healthy subjects were instructed to perform a unimanual motor (sequence) learning task. Our results showed (1) a significant increase in the slope of the learning curve and (2) a significant improvement in motor performance at retention for 1.5 mA atDCS as compared to sham tDCS. No significant differences were reported between 1 mA atDCS and sham tDCS; and between 1.5 mA atDCS and 1 mA atDCS. PMID:23826272
Early Learning in Psychomotor Training of Down's Syndrome.
ERIC Educational Resources Information Center
Sanz Aparicio, Maria Teresa; Menendez Balana, Javier
2003-01-01
Compared effectiveness of modeling from a clinician to that of written instructions to train parents to use a motor stimulation program with their infants with Down syndrome. Obtained motor development quotients prior to the program and at 6, 12, 18, and 24 months. Found that infants of parents trained by modeling obtained higher motor…
Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird.
Tian, Lucas Y; Brainard, Michael S
2017-12-06
Motor skills depend on the reuse of individual gestures in multiple sequential contexts (e.g., a single phoneme in different words). Yet optimal performance requires that a given gesture be modified appropriately depending on the sequence in which it occurs. To investigate the neural architecture underlying such context-dependent modifications, we studied Bengalese finch song, which, like speech, consists of variable sequences of "syllables." We found that when birds are instructed to modify a syllable in one sequential context, learning generalizes across contexts; however, if unique instruction is provided in different contexts, learning is specific for each context. Using localized inactivation of a cortical-basal ganglia circuit specialized for song, we show that this balance between generalization and specificity reflects a hierarchical organization of neural substrates. Primary motor circuitry encodes a core syllable representation that contributes to generalization, while top-down input from cortical-basal ganglia circuitry biases this representation to enable context-specific learning. Copyright © 2017 Elsevier Inc. All rights reserved.
The many facets of motor learning and their relevance for Parkinson's disease.
Marinelli, Lucio; Quartarone, Angelo; Hallett, Mark; Frazzitta, Giuseppe; Ghilardi, Maria Felice
2017-07-01
The final goal of motor learning, a complex process that includes both implicit and explicit (or declarative) components, is the optimization and automatization of motor skills. Motor learning involves different neural networks and neurotransmitters systems depending on the type of task and on the stage of learning. After the first phase of acquisition, a motor skill goes through consolidation (i.e., becoming resistant to interference) and retention, processes in which sleep and long-term potentiation seem to play important roles. The studies of motor learning in Parkinson's disease have yielded controversial results that likely stem from the use of different experimental paradigms. When a task's characteristics, instructions, context, learning phase and type of measures are taken into consideration, it is apparent that, in general, only learning that relies on attentional resources and cognitive strategies is affected by PD, in agreement with the finding of a fronto-striatal deficit in this disease. Levodopa administration does not seem to reverse the learning deficits in PD, while deep brain stimulation of either globus pallidus or subthalamic nucleus appears to be beneficial. Finally and most importantly, patients with PD often show a decrease in retention of newly learned skill, a problem that is present even in the early stages of the disease. A thorough dissection and understanding of the processes involved in motor learning is warranted to provide solid bases for effective medical, surgical and rehabilitative approaches in PD. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.
Deroost, Natacha; Coomans, Daphné
2018-02-01
We examined the role of sequence awareness in a pure perceptual sequence learning design. Participants had to react to the target's colour that changed according to a perceptual sequence. By varying the mapping of the target's colour onto the response keys, motor responses changed randomly. The effect of sequence awareness on perceptual sequence learning was determined by manipulating the learning instructions (explicit versus implicit) and assessing the amount of sequence awareness after the experiment. In the explicit instruction condition (n = 15), participants were instructed to intentionally search for the colour sequence, whereas in the implicit instruction condition (n = 15), they were left uninformed about the sequenced nature of the task. Sequence awareness after the sequence learning task was tested by means of a questionnaire and the process-dissociation-procedure. The results showed that the instruction manipulation had no effect on the amount of perceptual sequence learning. Based on their report to have actively applied their sequence knowledge during the experiment, participants were subsequently regrouped in a sequence strategy group (n = 14, of which 4 participants from the implicit instruction condition and 10 participants from the explicit instruction condition) and a no-sequence strategy group (n = 16, of which 11 participants from the implicit instruction condition and 5 participants from the explicit instruction condition). Only participants of the sequence strategy group showed reliable perceptual sequence learning and sequence awareness. These results indicate that perceptual sequence learning depends upon the continuous employment of strategic cognitive control processes on sequence knowledge. Sequence awareness is suggested to be a necessary but not sufficient condition for perceptual learning to take place. Copyright © 2018 Elsevier B.V. All rights reserved.
Electric Motors. An Instructional Unit for High School Teachers of Vocational Agriculture.
ERIC Educational Resources Information Center
Dalton, Delmer; Carpenter, Bruce
Designed as a 3-week course of study in the agricultural mechanics curriculum to be taught at the junior or senior high school level, this unit on electric motors is divided into 11 major performance objectives. Each objective is subdivided into the areas of content, suggested teaching and learning activities, resources, and evaluation. Topics for…
Educators Prescriptive Handbook: A Developmental Sequence of Learning Skills.
ERIC Educational Resources Information Center
Santa Ana Unified School District, CA.
The handbook lists 141 developmental objectives with instructions for remediation to aid children with learning problems in the areas of sensory motor development, auditory perception, language, visual perception, and academic achievement. Objectives are listed in chart format with each objective associated with one or more skill examples,…
Computerized visual feedback: an adjunct to robotic-assisted gait training.
Banz, Raphael; Bolliger, Marc; Colombo, Gery; Dietz, Volker; Lünenburger, Lars
2008-10-01
Robotic devices for walking rehabilitation allow new possibilities for providing performance-related information to patients during gait training. Based on motor learning principles, augmented feedback during robotic-assisted gait training might improve the rehabilitation process used to regain walking function. This report presents a method to provide visual feedback implemented in a driven gait orthosis (DGO). The purpose of the study was to compare the immediate effect on motor output in subjects during robotic-assisted gait training when they used computerized visual feedback and when they followed verbal instructions of a physical therapist. Twelve people with neurological gait disorders due to incomplete spinal cord injury participated. Subjects were instructed to walk within the DGO in 2 different conditions. They were asked to increase their motor output by following the instructions of a therapist and by observing visual feedback. In addition, the subjects' opinions about using visual feedback were investigated by a questionnaire. Computerized visual feedback and verbal instructions by the therapist were observed to result in a similar change in motor output in subjects when walking within the DGO. Subjects reported that they were more motivated and concentrated on their movements when using computerized visual feedback compared with when no form of feedback was provided. Computerized visual feedback is a valuable adjunct to robotic-assisted gait training. It represents a relevant tool to increase patients' motor output, involvement, and motivation during gait training, similar to verbal instructions by a therapist.
Magnifying visual target information and the role of eye movements in motor sequence learning.
Massing, Matthias; Blandin, Yannick; Panzer, Stefan
2016-01-01
An experiment investigated the influence of eye movements on learning a simple motor sequence task when the visual display was magnified. The task was to reproduce a 1300 ms spatial-temporal pattern of elbow flexions and extensions. The spatial-temporal pattern was displayed in front of the participants. Participants were randomly assigned to four groups differing on eye movements (free to use their eyes/instructed to fixate) and the visual display (small/magnified). All participants had to perform a pre-test, an acquisition phase, a delayed retention test, and a transfer test. The results indicated that participants in each practice condition increased their performance during acquisition. The participants who were permitted to use their eyes in the magnified visual display outperformed those who were instructed to fixate on the magnified visual display. When a small visual display was used, the instruction to fixate induced no performance decrements compared to participants who were permitted to use their eyes during acquisition. The findings demonstrated that a spatial-temporal pattern can be learned without eye movements, but being permitting to use eye movements facilitates the response production when the visual angle is increased. Copyright © 2015 Elsevier B.V. All rights reserved.
Exercise-enhanced Neuroplasticity Targeting Motor and Cognitive Circuitry in Parkinson’s Disease
Petzinger, G. M.; Fisher, B. E.; McEwen, S.; Beeler, J. A.; Walsh, J. P.; Jakowec, M. W.
2013-01-01
The purpose of this review is to highlight the potential role of exercise in promoting neuroplasticity and repair in Parkinson’s disease (PD). Exercise interventions in individuals with PD incorporate goal-based motor skill training in order to engage cognitive circuitry important in motor learning. Using this exercise approach, physical therapy facilitates learning through instruction and feedback (reinforcement), and encouragement to perform beyond self-perceived capability. Individuals with PD become more cognitively engaged with the practice and learning of movements and skills that were previously automatic and unconscious. Studies that have incorporated both goal-based training and aerobic exercise have supported the potential for improving both cognitive and automatic components of motor control. Utilizing animal models, basic research is beginning to reveal exercise-induced effects on neuroplasticity. Since neuroplasticity occurs at the level of circuits and synaptic connections, we examine the effects of exercise from this perspective. PMID:23769598
ERIC Educational Resources Information Center
Agar, Charles; Humphries, Charlotte A.; Naquin, Millie; Hebert, Edward; Wood, Ralph
2016-01-01
Recently, researchers have concluded that motor skill performance is enhanced when learners adopt an external attentional focus, compared to adopting an internal focus. We extended the line of inquiry to children and examined if skill learning in children was differentially affected by providing instructions and feedback that direct attentional…
Concreteness Fading of Algebraic Instruction: Effects on Learning
ERIC Educational Resources Information Center
Ottmar, Erin; Landy, David
2017-01-01
Learning algebra is difficult for many students in part because of an emphasis on the memorization of abstract rules. Algebraic reasoners across expertise levels often rely on perceptual-motor strategies to make these rules meaningful and memorable. However, in many cases, rules are provided as patterns to be memorized verbally, with little overt…
Explicit Pre-Training Instruction Does Not Improve Implicit Perceptual-Motor Sequence Learning
ERIC Educational Resources Information Center
Sanchez, Daniel J.; Reber, Paul J.
2013-01-01
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key…
Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning
Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.
2011-01-01
The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements (e.g., language production, music performance, athletic skills). Research examining incidental sequence learning has previously relied on a perceptually-cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. Using a novel perceptual-motor sequence learning task, learning a precisely timed cued sequence of motor actions is shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In a second experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order, and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511
Murtazina, E P
2015-01-01
Investigation of the processes of studying human instructions relevant follow-up in terms of systemic mechanisms of learning and memory processes, and moreover affects such a fundamental issue as psychophysiology focused attention, understanding the meaning of the information provided and the formation of social motivation in human activities. Analysis of heart rate variability in reading the instructions compared to the initial state of operational rest showed that this stage of the activity causes pronounced emotional stress, which is manifested in increased heart rate, decrease in variability and pronounced changes in the spectral characteristics of heart rate. Besides, it was revealed that heart rate variability in a state of operational rest before testing, and in the process of reading instructions positively correlated with the duration of the instruction reading and inversely correlated with effectiveness and the level of resistance of the subjects to the error after error when follow-up activities. Showing pronounced gender differences in the relationships between changes in the variability of heart rate when reading the instructions and the subsequent execution indicators of visual-motor test.
Incidental Learning of S-R Contingencies in the Masked Prime Task
ERIC Educational Resources Information Center
Schlaghecken, Friederike; Blagrove, Elisabeth; Maylor, Elizabeth A.
2007-01-01
Subliminal motor priming effects in the masked prime paradigm can only be obtained when primes are part of the task set. In 2 experiments, the authors investigated whether the relevant task set feature needs to be explicitly instructed or could be extracted automatically in an incidental learning paradigm. Primes and targets were symmetrical…
Children benefit differently from night- and day-time sleep in motor learning.
Yan, Jin H
2017-08-01
Motor skill acquisition occurs while practicing (on-line) and when asleep or awake (off-line). However, developmental questions still remain about whether children of various ages benefit similarly or differentially from night- and day-time sleeping. The likely circadian effects (time-of-day) and the possible between-test-interference (order effects) associated with children's off-line motor learning are currently unknown. Therefore, this study examines the contributions of over-night sleeping and mid-day napping to procedural skill learning. One hundred and eight children were instructed to practice a finger sequence task using computer keyboards. After an equivalent 11-h interval in one of the three states (sleep, nap, wakefulness), children performed the same sequence in retention tests and a novel sequence in transfer tests. Changes in the movement time and sequence accuracy were evaluated between ages (6-7, 8-9, 10-11years) during practice, and from skill training to retrievals across three states. Results suggest that night-time sleeping and day-time napping improved the tapping speed, especially for the 6-year-olds. The circadian factor did not affect off-line motor learning in children. The interference between the two counter-balanced retrieval tests was not found for the off-line motor learning. This research offers possible evidence about the age-related motor learning characteristics in children and a potential means for enhancing developmental motor skills. The dynamics between age, experience, memory formation, and the theoretical implications of motor skill acquisition are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Gofer-Levi, Moran; Silberg, Tamar; Brezner, Amichai; Vakil, Eli
2013-11-01
Skill learning (SL) is learning as a result of repeated exposure and practice, which encompasses independent explicit (response to instructions) and implicit (response to hidden regularities) processes. Little is known about the effects of developmental disorders, such as Cerebral Palsy (CP), on the ability to acquire new skills. We compared performance of CP and typically developing (TD) children and adolescents in completing the serial reaction time (SRT) task, which is a motor sequence learning task, and examined the impact of various factors on this performance as indicative of the ability to acquire motor skills. While both groups improved in performance, participants with CP were significantly slower than TD controls and did not learn the implicit sequence. Our results indicate that SL in children and adolescents with CP is qualitatively and quantitatively different than that of their peers. Understanding the unique aspects of SL in children and adolescents with CP might help plan appropriate and efficient interventions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Haguenauer, Marianne; Fargier, Patrick; Legreneur, Pierre; Dufour, Anne-Béatrice; Cogerino, Geneviève; Begon, Mickaël; Monteil, Karine M
2005-02-01
This study examined whether providing verbal instructions plus demonstration and task repetition facilitates the early acquisition of a sport skill for which learners had a prior knowledge of the individual motor components. After one demonstration of the task by an expert, 18 novice skaters practiced a figure skating jump during a 15-min. period. Subjects were randomly assigned to one of 3 groups: a group provided with a verbal instruction that specified the subgoals of the task (Subgoals group), a group provided with a verbal instruction that used a metaphor (Metaphoric group), and a group not receiving any specific instruction during training (Control group). Subjects were filmed prior to and immediately following the practice session. Analysis indicated that the modifications of performance were related to the demonstration and the subsequent task repetitions only. Providing additional verbal instructions generated no effect. Therefore, guiding the learner toward a solution to the task problem by means of verbal instruction seems to be ineffective if done too early in the course of learning.
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C.; Haberfield, Miranda; Edwards, Hannah; White, Jason M.
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use. PMID:26819778
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C; Haberfield, Miranda; Edwards, Hannah; White, Jason M
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use.
Sounds and Sense-Abilities: Science for All
ERIC Educational Resources Information Center
Plourde, Lee A.; Klemm, E. Barbara
2004-01-01
Activities-oriented instruction offers multi modal opportunities for learning science. How do college students in elementary pre-service teacher preparation programs describe science lab activities in terms of visual, kinesthetic, auditory and motor characteristics? Research with elementary science methods students shows that the Levels of…
Videotape Feedback. Make It More Effective.
ERIC Educational Resources Information Center
Jambor, Elizabeth A.; Weekes, Esther M.
1995-01-01
In physical education and athletics, teachers use video to help with instruction and demonstration. Interpersonal Process Recall lets students direct videotape viewing of their physical education activities so they can better comprehend their motor skill performance. Interactive discussions about the tapes help students evaluate their learning and…
Eliminating mirror responses by instructions.
Bardi, Lara; Bundt, Carsten; Notebaert, Wim; Brass, Marcel
2015-09-01
The observation of an action leads to the activation of the corresponding motor plan in the observer. This phenomenon of motor resonance has an important role in social interaction, promoting imitation, learning and action understanding. However, mirror responses not always have a positive impact on our behavior. An automatic tendency to imitate others can introduce interference in action execution and non-imitative or opposite responses have an advantage in some contexts. Previous studies suggest that mirror tendencies can be suppressed after extensive practice or in complementary joint action situations revealing that mirror responses are more flexible than previously thought. The aim of the present study was to gain insight into the mechanisms that allow response flexibility of motor mirroring. Here we show that the mere instruction of a counter-imitative mapping changes mirror responses as indexed by motor evoked potentials (MEPs) enhancement induced by transcranial magnetic stimulation (TMS). Importantly, mirror activation was measured while participants were passively watching finger movements, without having the opportunity to execute the task. This result suggests that the implementation of task instructions activates stimulus-response association that can overwrite the mirror representations. Our outcome reveals one of the crucial mechanisms that might allow flexible adjustments of mirror responses in different contexts. The implications of this outcome are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Musical learning in children and adults with Williams syndrome.
Lense, M; Dykens, E
2013-09-01
There is recent interest in using music making as an empirically supported intervention for various neurodevelopmental disorders due to music's engagement of perceptual-motor mapping processes. However, little is known about music learning in populations with developmental disabilities. Williams syndrome (WS) is a neurodevelopmental genetic disorder whose characteristic auditory strengths and visual-spatial weaknesses map onto the processes used to learn to play a musical instrument. We identified correlates of novel musical instrument learning in WS by teaching 46 children and adults (7-49 years) with WS to play the Appalachian dulcimer. Obtained dulcimer skill was associated with prior musical abilities (r = 0.634, P < 0.001) and visual-motor integration abilities (r = 0.487, P = 0.001), but not age, gender, IQ, handedness, auditory sensitivities or musical interest/emotionality. Use of auditory learning strategies, but not visual or instructional strategies, predicted greater dulcimer skill beyond individual musical and visual-motor integration abilities (β = 0.285, sr(2) = 0.06, P = 0.019). These findings map onto behavioural and emerging neural evidence for greater auditory-motor mapping processes in WS. Results suggest that explicit awareness of task-specific learning approaches is important when learning a new skill. Implications for using music with populations with syndrome-specific strengths and weakness will be discussed. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSID.
2017-01-01
Abstract Activation of an inferior olivary neuron powerfully excites Purkinje cells via its climbing fiber input and triggers a characteristic high-frequency burst, known as the complex spike (CS). The theory of cerebellar learning postulates that the CS induces long-lasting depression of the strength of synapses from active parallel fibers onto Purkinje cells, and that synaptic depression leads to changes in behavior. Prior reports showed that a CS on one learning trial is linked to a properly timed depression of simple spikes on the subsequent trial, as well as a learned change in pursuit eye movement. Further, the duration of a CS is a graded instruction for single-trial plasticity and behavioral learning. We now show across multiple learning paradigms that both the probability and duration of CS responses are correlated with the magnitudes of neural and behavioral learning in awake behaving monkeys. When the direction of the instruction for learning repeatedly was in the same direction or alternated directions, the duration and probability of CS responses decreased over a learning block along with the magnitude of trial-over-trial neural learning. When the direction of the instruction was randomized, CS duration, CS probability, and neural and behavioral learning remained stable across time. In contrast to depression, potentiation of simple-spike firing rate for ON-direction learning instructions follows a longer time course and plays a larger role as depression wanes. Computational analysis provides a model that accounts fully for the detailed statistics of a complex set of data. PMID:28698888
Learning stage-dependent effect of M1 disruption on value-based motor decisions.
Derosiere, Gerard; Vassiliadis, Pierre; Demaret, Sophie; Zénon, Alexandre; Duque, Julie
2017-11-15
The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions. Continuous theta burst stimulation (cTBS) was applied over M1 either on Day 1 or on Day 3, producing a temporary lesion either during reinforcement learning (cTBS Learning group) or after consolidation of the implicit rule, during decision-making (cTBS Decision group), respectively. Interestingly, disrupting M1 activity on Day 1 improved the reliance on the implicit rule, plausibly because M1 cTBS increased dopamine release in the putamen in an indirect way. This finding corroborates the view that cTBS may affect activity in unstimulated areas, such as the basal ganglia. Notably, this effect was short-lasting; it did not persist overnight, suggesting that the functional integrity of M1 during learning is a prerequisite for the consolidation of implicit value information to occur. Besides, cTBS over M1 did not impact the use of the implicit rule when applied on Day 3, although it did so when applied on Day 2 in a recent study where the reliance on the implicit rule declined following cTBS (Derosiere et al., 2017). Overall, these findings indicate that the human M1 is functionally involved in the consolidation and implementation of implicit value information underlying motor decisions. However, M1 contribution seems to vanish as subjects become more experienced in using the implicit value information to make their motor decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
You're the coach : a guide for parents of new drivers.
DOT National Transportation Integrated Search
2011-01-01
This publication is a guide for parents and guardians of teenagers learning to drive. It should be used with the Iowa Driver's Manual to aid you in instructing your new driver about how to safely and responsibly operate a motor vehicle. Since the tas...
ERIC Educational Resources Information Center
Tuller, Betty; Jantzen, Kelly J.; Olvera, Dianne; Steinberg, Fred; Scott Kelso, J. A.
2007-01-01
Teenagers with nonverbal learning disabilities (NLD) have difficulty with fine-motor coordination, which may relate to the novelty of the task or the lack of "self-talk" to mediate action. In this study, we required two teenagers with NLD and two control group teenagers to touch the thumb of each hand firmly and accurately to the fingertips of the…
ERIC Educational Resources Information Center
Glushkova, Alina; Manitsaris, Sotiris
2018-01-01
This paper presents a methodological framework for the use of gesture recognition technologies in the learning/mastery of the gestural skills required in wheel-throwing pottery. In the case of self-instruction or training, learners face difficulties due to the absence of the teacher/expert and the consequent lack of guidance. Motion capture…
A Theoretical Framework for Studying Educational Media: A Pilot Study.
ERIC Educational Resources Information Center
Wager, Walter
1980-01-01
Three types of stimulus materials (text, film, and live demonstration) were used to teach graduate students cardiopulmonary resuscitation; and verbal learning and a motor skill task were measured to determine the effectiveness of the different media. No significant differences were found among the three modes of instruction. (Author/JEG)
Attentional Focus in Classical Ballet: A Survey Of Professional Dancers.
Guss-West, Clare; Wulf, Gabriele
2016-03-01
Focus of attention and its effects on skilled motor performance has become an important line of research in the motor learning domain. Numerous studies have demonstrated that an external focus of attention (i.e., on the movement effect) enhances motor performance and learning relative to an internal focus (i.e., on body movements). Thus, small differences in the wording of instructions or feedback given by teachers can have a significant impact on the effectiveness and efficiency of motor skill performance. In this paper, we review some of the attentional focus studies that are relevant to ballet performance. In addition, we report the findings of a survey among professional ballet dancers (N = 53) that we conducted to determine their typical attentional focus while performing certain movements. The results showed that the majority adopted internal foci, or combinations of internal and external foci, most of the time. This suggests that there is room for improvement for performance and teaching. We provide examples of how external foci can be promoted in ballet practice.
Nicholls, Delwyn; Sweet, Linda; Muller, Amanda; Hyett, Jon
2016-10-01
A diverse range of health professionals use psychomotor skills as part of their professional practice roles. Most health disciplines use large or complex psychomotor skills. These skills are first taught by the educator then acquired, performed, and lastly learned. Psychomotor skills may be taught using a variety of widely-accepted and published teaching models. The number of teaching steps used in these models varies from two to seven. However, the utility of these models to teach skill acquisition and skill retention are disputable when teaching complex skills, in contrast to simple skills. Contemporary motor learning and cognition literature frames instructional practices which may assist the teaching and learning of complex task-based skills. This paper reports 11 steps to be considered when teaching psychomotor skills.
ERIC Educational Resources Information Center
Graue, Elizabeth
2009-01-01
The traditional kindergarten program often reflected a rich but generic approach with creative contexts for typical kindergartners organized around materials (manipulatives or dramatic play) or a developmental area (fine motor or language). The purpose of kindergarten reflected beliefs about how children learn, specialized training for…
NASPE Sets the Standard: 35 Years of National Leadership in Sport and Physical Education
ERIC Educational Resources Information Center
Zieff, Susan G.; Lumpkin, Angela; Guedes, Claudia; Eguaoje, Terry
2009-01-01
With 17,000 members, NASPE is the largest of the five national associations of the American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD) and comprises six Academy Committees (Biomechanics; Curriculum and Instruction; Exercise Physiology; Motor Development and Learning; Sport and Exercise Psychology; and Sport History,…
Active learning: learning a motor skill without a coach.
Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn
2008-08-01
When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence.
Vidoni, Eric D; Boyd, Lara A
2007-09-01
Two major memory and learning systems operate in the brain: one for facts and ideas (ie, the declarative or explicit system), one for habits and behaviors (ie, the procedural or implicit system). Broadly speaking these two memory systems can operate either in concert or entirely independently of one another during the performance and learning of skilled motor behaviors. This Special Issue article has two parts. In the first, we present a review of implicit motor skill learning that is largely centered on the interactions between declarative and procedural learning and memory. Because distinct neuroanatomical substrates support unique aspects of learning and memory and thus focal injury can cause impairments that are dependent on lesion location, we also broadly consider which brain regions mediate implicit and explicit learning and memory. In the second part of this article, the interactive nature of these two memory systems is illustrated by the presentation of new data that reveal that both learning implicitly and acquiring explicit knowledge through physical practice lead to motor sequence learning. In our new data, we discovered that for healthy individuals use of the implicit versus explicit memory system differently affected variability of performance during acquisition practice; variability was higher early in practice for the implicit group and later in practice for the acquired explicit group. Despite the difference in performance variability, by retention both groups demonstrated comparable change in tracking accuracy and thus, motor sequence learning. Clinicians should be aware of the potential effects of implicit and explicit interactions when designing rehabilitation interventions, particularly when delivering explicit instructions before task practice, working with individuals with focal brain damage, and/or adjusting therapeutic parameters based on acquisition performance variability.
Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.
Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V
2015-01-01
It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability.
Effects of Visual Feedback-Induced Variability on Motor Learning of Handrim Wheelchair Propulsion
Leving, Marika T.; Vegter, Riemer J. K.; Hartog, Johanneke; Lamoth, Claudine J. C.; de Groot, Sonja; van der Woude, Lucas H. V.
2015-01-01
Background It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. Methods 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. Results The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. Conclusion These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability. PMID:25992626
ERIC Educational Resources Information Center
Lauritzen, Louis Dee
2014-01-01
Machine shop students face the daunting task of learning the operation of complex three-dimensional machine tools, and welding students must develop specific motor skills in addition to understanding the complexity of material types and characteristics. The use of consumer technology by the Millennial generation of vocational students, the…
An external focus of attention enhances balance learning in older adults.
Chiviacowsky, Suzete; Wulf, Gabriele; Wally, Raquel
2010-10-01
Studies with young adults have shown that an external focus of attention (i.e., on the movement effect) results in more effective motor learning and greater automaticity than an internal focus (i.e., on one's own body movements). The present study examined whether instructions inducing an external versus internal attentional focus would differentially affect the learning of a balance task in 32 older adults (24 females and 8 males, mean age: 69.4 years), divided equally, by number and gender, into two groups. The task required participants to stand on a balance platform (stabilometer) tilting to the left and right, and to try to keep the platform as close to horizontal as possible during each 30-s trial. The external focus group was instructed to concentrate on keeping markers on the platform horizontal, while the internal focus group was instructed to concentrate on keeping their feet horizontal. The dependent variable was time in balance (i.e., platform movements within ± 5°). Participants performed 10 practice trials on day 1, with focus reminders given before each trial. Learning was assessed by a retention test, consisting of five trials without instructions, performed 1 day later. The external focus group outperformed the internal focus group in retention [F(4, 120)=3.46, p=.01]. The results demonstrate that the learning benefits of an external attentional focus are generalizable to older learners. Copyright © 2010 Elsevier B.V. All rights reserved.
Independent voluntary correction and savings in locomotor learning.
Leech, Kristan A; Roemmich, Ryan T
2018-06-14
People can acquire new walking patterns in many different ways. For example, we can change our gait voluntarily in response to instruction or adapt by sensing our movement errors. Here we investigated how acquisition of a new walking pattern through simultaneous voluntary correction and adaptive learning affected the resulting motor memory of the learned pattern. We studied adaptation to split-belt treadmill walking with and without visual feedback of stepping patterns. As expected, visual feedback enabled faster acquisition of the new walking pattern. However, upon later re-exposure to the same split-belt perturbation, participants exhibited similar motor memories whether they had learned with or without visual feedback. Participants who received feedback did not re-engage the mechanism used to accelerate initial acquisition of the new walking pattern to similarly accelerate subsequent relearning. These findings reveal that voluntary correction neither benefits nor interferes with the ability to save a new walking pattern over time. © 2018. Published by The Company of Biologists Ltd.
A Mirror Therapy-Based Action Observation Protocol to Improve Motor Learning After Stroke.
Harmsen, Wouter J; Bussmann, Johannes B J; Selles, Ruud W; Hurkmans, Henri L P; Ribbers, Gerard M
2015-07-01
Mirror therapy is a priming technique to improve motor function of the affected arm after stroke. To investigate whether a mirror therapy-based action observation (AO) protocol contributes to motor learning of the affected arm after stroke. A total of 37 participants in the chronic stage after stroke were randomly allocated to the AO or control observation (CO) group. Participants were instructed to perform an upper-arm reaching task as fast and as fluently as possible. All participants trained the upper-arm reaching task with their affected arm alternated with either AO or CO. Participants in the AO group observed mirrored video tapes of reaching movements performed by their unaffected arm, whereas participants in the CO group observed static photographs of landscapes. The experimental condition effect was investigated by evaluating the primary outcome measure: movement time (in seconds) of the reaching movement, measured by accelerometry. Movement time decreased significantly in both groups: 18.3% in the AO and 9.1% in the CO group. Decrease in movement time was significantly more in the AO compared with the CO group (mean difference = 0.14 s; 95% confidence interval = 0.02, 0.26; P = .026). The present study showed that a mirror therapy-based AO protocol contributes to motor learning after stroke. © The Author(s) 2014.
The Development of the Control of Adult Instructions Over Non-Verbal Behavior.
ERIC Educational Resources Information Center
Van Duyne, H. John
The purpose of the study was (1) to examine the results from a two-association perceptual-motor task as to their implications for Luria's theory about the development of verbal control of non-verbal behavior; (2) to explore the effects of various learning experiences upon this development. The sample consisted of 20 randomly selected children in…
ERIC Educational Resources Information Center
Paas, Fred; Sweller, John
2012-01-01
Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with…
ERIC Educational Resources Information Center
Whinnery, Stacie B.; Whinnery, Keith W.; Eddins, Daisy
2016-01-01
This article addresses the challenges educators face when attempting to find a balance between both functional and academic skill instruction for students with severe, multiple disabilities including motor impairments. The authors describe a strategy that employs embedded instruction of early numeracy and functional motor skills during physical…
Modeling the Value of Strategic Actions in the Superior Colliculus
Thevarajah, Dhushan; Webb, Ryan; Ferrall, Christopher; Dorris, Michael C.
2009-01-01
In learning models of strategic game play, an agent constructs a valuation (action value) over possible future choices as a function of past actions and rewards. Choices are then stochastic functions of these action values. Our goal is to uncover a neural signal that correlates with the action value posited by behavioral learning models. We measured activity from neurons in the superior colliculus (SC), a midbrain region involved in planning saccadic eye movements, while monkeys performed two saccade tasks. In the strategic task, monkeys competed against a computer in a saccade version of the mixed-strategy game ”matching-pennies”. In the instructed task, saccades were elicited through explicit instruction rather than free choices. In both tasks neuronal activity and behavior were shaped by past actions and rewards with more recent events exerting a larger influence. Further, SC activity predicted upcoming choices during the strategic task and upcoming reaction times during the instructed task. Finally, we found that neuronal activity in both tasks correlated with an established learning model, the Experience Weighted Attraction model of action valuation (Camerer and Ho, 1999). Collectively, our results provide evidence that action values hypothesized by learning models are represented in the motor planning regions of the brain in a manner that could be used to select strategic actions. PMID:20161807
Directing visual attention during action observation modulates corticospinal excitability
Wood, Greg; Franklin, Zoe C.; Marshall, Ben; Riach, Martin; Holmes, Paul S.
2018-01-01
Transcranial magnetic stimulation (TMS) research has shown that corticospinal excitability is facilitated during the observation of human movement. However, the relationship between corticospinal excitability and participants’ visual attention during action observation is rarely considered. Nineteen participants took part in four conditions: (i) a static hand condition, involving observation of a right hand holding a ball between the thumb and index finger; (ii) a free observation condition, involving observation of the ball being pinched between thumb and index finger; and (iii and iv) finger-focused and ball-focused conditions, involving observation of the same ball pinch action with instructions to focus visual attention on either the index finger or the ball. Single-pulse TMS was delivered to the left motor cortex and motor evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi muscles of the right hand. Eye movements were recorded simultaneously throughout each condition. The ball-focused condition produced MEPs of significantly larger amplitude in the FDI muscle, compared to the free observation or static hand conditions. Furthermore, regression analysis indicated that the number of fixations on the ball was a significant predictor of MEP amplitude in the ball-focused condition. These results have important implications for the design and delivery of action observation interventions in motor (re)learning settings. Specifically, providing viewing instructions that direct participants to focus visual attention on task-relevant objects affected by the observed movement promotes activity in the motor system in a more optimal manner than free observation or no instructions. PMID:29304044
Effect of different external attention of focus instruction on learning of golf putting skill.
Shafizadeh, Mohsen; McMorris, Terry; Sproule, John
2011-10-01
The effect of different sources of external attentional focus on learning a motor skill was assessed in the present study. 30 students (12 men, 18 women) participated voluntarily and were divided, according to type of external focus, into target, club swing, and target-club swing groups. The task was a golf putting skill. The target focus group attended to the target (hole), the club swing focus group attended to the execution of the club's swing, and the target-club swing focus group attended to both. All participants performed 50 trials of the putting skill in the acquisition phase and 10 trials in the 24-hr. delayed retention phase. The dependent variable was the error in the putting skill measured as the distance from the hole to the ball after each strike. Results showed the target-club swing focus group had better scores in the acquisition and retention phases than the other groups. It was concluded that external focus instruction helped the learners to integrate target cue with action cue and is more effective in skill learning than other external-focus instructions. These results support the claims of ecological psychology theorists concerning the effects of external focus of attention.
ERIC Educational Resources Information Center
Altunsöz, Irmak Hürmeriç; Goodway, Jacqueline D.
2016-01-01
Background: Preschool children who are at risk have been shown to demonstrate developmental delays in their fundamental motor skills. The body of research on motor skill development of children indicates that these children, when provided with motor skill instruction, significantly improved their locomotor and object control (OC) skill…
Correction of a Technical Error in the Golf Swing: Error Amplification Versus Direct Instruction.
Milanese, Chiara; Corte, Stefano; Salvetti, Luca; Cavedon, Valentina; Agostini, Tiziano
2016-01-01
Performance errors drive motor learning for many tasks. The authors' aim was to determine which of two strategies, method of amplification of error (MAE) or direct instruction (DI), would be more beneficial for error correction during a full golfing swing with a driver. Thirty-four golfers were randomly assigned to one of three training conditions (MAE, DI, and control). Participants were tested in a practice session in which each golfer performed 7 pretraining trials, 6 training-intervention trials, and 7 posttraining trials; and a retention test after 1 week. An optoeletronic motion capture system was used to measure the kinematic parameters of each golfer's performance. Results showed that MAE is an effective strategy for correcting the technical errors leading to a rapid improvement in performance. These findings could have practical implications for sport psychology and physical education because, while practice is obviously necessary for improving learning, the efficacy of the learning process is essential in enhancing learners' motivation and sport enjoyment.
49 CFR 397.19 - Instructions and documents.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HAZARDOUS MATERIALS; DRIVING AND PARKING RULES General § 397.19 Instructions and documents. (a) A motor carrier that...
Do actions speak louder than words? Examining children's ability to follow instructions.
Waterman, Amanda H; Atkinson, Amy L; Aslam, Sadia S; Holmes, Joni; Jaroslawska, Agnieszka; Allen, Richard J
2017-08-01
The ability to encode, retain, and implement instructions within working memory is central to many behaviours, including classroom activities which underpin learning. The three experiments presented here explored how action-planned, enacted, and observed-impacted 6- to 10-year-old's ability to follow instructions. Experiment 1 (N = 81) found enacted recall was superior to verbal recall, but self-enactment at encoding had a negative effect on enacted recall and verbal recall. In contrast, observation of other-enactment (demonstration) at encoding facilitated both types of recall (Experiment 2a: N = 81). Further, reducing task demands through a reduced set of possible actions (Experiment 2b; N = 64) led to a positive effect of self-enactment at encoding for later recall (both verbal and enacted). Expecting to enact at recall may lead to the creation of an imaginal spatial-motoric plan at encoding that boosts later recall. However, children's ability to use the additional spatial-motoric codes generated via self-enactment at encoding depends on the demands the task places on central executive resources. Demonstration at encoding appears to reduce executive demands and enable use of these additional forms of coding.
The effectiveness of video prompting on teaching aquatic play skills for children with autism.
Yanardag, Mehmet; Akmanoglu, Nurgul; Yilmaz, Ilker
2013-01-01
To investigate the effectiveness of the video prompting procedure on teaching aquatic play skills and to determine the effects of aquatic exercise training on the motor performance of children with autism. A multiple probe design across behaviours was used and replicated across subjects for the instructional part of this study. Pretest-posttest design was applied for the exercise training part of this study. Three children with autism were taught three aquatic play skills in a one-to-one training format. Aquatic play skills intervention and aquatic exercise training were performed separately throughout 12 weeks at three sessions per week, each lasting 1 h. The video prompting procedure was utilized for the instruction part of this study. Video prompting was effective in teaching aquatic play skills to children with autism. In addition, aquatic exercise training increased the total motor performance scores of all the participants after 12 weeks. According to the social validity results, the families gave positive feedback about the learned skills and movement capabilities of their children. Aquatic play skills and swimming pools are favoured for children with autism. This attractive intervention is recommended as a means to extend knowledge of leisure skills and motor development of children with autism.
Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.
Goal-directed imitation: the means to an end.
Hayes, Spencer J; Ashford, Derek; Bennett, Simon J
2008-02-01
The effects of goal-directed imitation and observational learning were examined whilst learning a goal-directed motor skill (three-ball cascade juggling). An observational learning (OL) group observed a model and a control (CON) group received minimal verbal instructions regarding how to hold and release the juggling balls. The OL group performed more juggling cycles across practice and retention than the CON group. In addition, the OL group's upper limb coordination and ball flight trajectory pattern were more similar to the model's movements than the CON group. These data show that when the to-be-learnt movement pattern and end-goal are not specified by the task's mechanical constraints, or can be achieved by modifying a pre-existing motor skill, individuals have difficulty learning on the basis of discovery processes alone. Under these circumstances, observational learning is effective because it conveys to the individual the specific means by which the end-goal can be achieved. These findings lead us to suggest that when the end-goal and the means to achieve the end-goal are directly linked, the means are given sufficient weight in the goal hierarchy such that the model's movement is imitated.
Kurtz, Matthew M; Wexler, Bruce E
2006-01-31
The aim of this study was two-fold: 1) to determine whether a priori subtyping of patients with schizophrenia based on both overall performance on a measure of executive-function, the Wisconsin Card Sorting Test (WCST), and ability to learn the task with expanded instruction, could be confirmed with other, independent measures of executive-function and learning, and, if so, 2) to determine whether these groups have different neurocognitive profiles and show differences in functional capacity. Fifty-four outpatients with schizophrenia were divided by WCST performance into three groups: intact executive-function (n=28), "good learner" (n=13), and "poor learner" (n=13) groups. These groups were then assessed with a comprehensive neurocognitive test battery and a performance-based measure of functional status, the UCSD Performance-based Skills Assessment (UPSA). The WCST-intact subgroup performed significantly better than other groups on a second measure of executive-function and in working memory, and speeded motor sequencing. Impaired WCST patients who benefited from expanded WCST instruction ("good learners") also showed better performance than patients who did not benefit from instruction ("poor-learners") on a second measure of learning, as well as on a measure of auditory divided attention. The intact WCST subgroup had greater functional capacity than either "strong" or "poor" learners. These subtypes may have implications for response to behavioral treatment interventions.
ERIC Educational Resources Information Center
Gould, Mauri
1975-01-01
Presents complete instructions for assembling an electric motor which does not require large amounts of power to operate and which is inexpensive as well as reliable. Several open-ended experiments with the motor are included as well as information for obtaining a kit of parts and instructions. (BR)
Rossi, R; Pascolo, P B
2015-09-01
Driving in degraded psychophysical conditions, such as under the influence of alcohol or drugs but also in a state of fatigue or drowsiness, is a growing problem. The current roadside tests used for detecting drugs from drivers suffer various limitations, while impairment is subjective and does not necessarily correlate with drug metabolite concentration found in body fluids. This work is a validation step towards the study of feasibility of a novel test conceived to assess psychophysical conditions of individuals performing at-risk activities. Motor gestures, long-term retention and learning phase related to the protocol are analysed in unimpaired subjects. The protocol is a divided attention test, which combines a critical tracking test achieved with postural movements and a visual choice reaction test. Ten healthy subjects participated in a first set of trials and in a second set after about six months. Each session required the carrying out of the test for ten times in order to investigate learning effect and performance over repetitions. In the first set the subjects showed a learning trend up to the third trial, whilst in the second set of trials they showed motor retention. Nevertheless, the overall performance did not significantly improve. Gestures are probably retained due to the type of tasks and the way in which the instructions are conveyed to the subjects. Moreover, motor retention after a short training suggests that the protocol is easy to learn and understand. Implications for roadside test usage and comparison with current tests are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Motor Transportation Technology: Automechanics. Tune-Up. Block VIII. A-VIII.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Instructional materials on tune-ups are provided for an auto mechanics course in the motor transportation technology program. Instructor's plans are provided for three units. Each unit consists of instructional and manipulative lessons. The format of an instructional lesson is as follows: the subject, aim, a listing of teaching aids and materials,…
Gross Motor Skill Acquisition in Adolescents with Down Syndrome
ERIC Educational Resources Information Center
Meegan, Sarah; Maraj, Brian K. V.; Weeks, Daniel; Chua, Romeo
2006-01-01
The purpose of this study was to assess whether verbal-motor performances deficits exhibited by individuals with Down syndrome limited their ability to acquire gross motor skills when given visual and verbal instruction together and then transferred to either a visual or verbal instructional mode to reproduce the movement. Nine individuals with…
Making sense of movement in embodied design for mathematics learning.
Abrahamson, Dor; Bakker, Arthur
2016-01-01
Embodiment perspectives from the cognitive sciences offer a rethinking of the role of sensorimotor activity in human learning, knowing, and reasoning. Educational researchers have been evaluating whether and how these perspectives might inform the theory and practice of STEM instruction. Some of these researchers have created technological systems, where students solve sensorimotor interaction problems as cognitive entry into curricular content. However, the field has yet to agree on a conceptually coherent and empirically validated design framework, inspired by embodiment perspectives, for developing these instructional resources. A stumbling block toward such consensus, we propose, is an implicit disagreement among educational researchers on the relation between physical movement and conceptual learning. This hypothesized disagreement could explain the contrasting choices we witness among current designs for learning with respect to instructional methodology for cultivating new physical actions - whereas some researchers use an approach of direct instruction, such as explicit teaching of gestures, others use an indirect approach, where students must discover effective movements to solve a task. Prior to comparing these approaches, it may help first to clarify key constructs. In this theoretical essay we draw on embodiment and systems literature as well as findings from our design research so as to offer the following taxonomy that may facilitate discourse about movement in STEM learning: (1) distal movement is the technologically extended effect of physical movement on the environment; (2) proximal movement is the physical movements themselves; and (3) sensorimotor schemes are the routinized patterns of cognitive activity that become enacted through proximal movement by orienting on so-called attentional anchors. Attentional anchors are goal-oriented phenomenological objects or enactive perceptions ("sensori-") that organize proximal movement to effect distal movement ("-motor"). All three facets of movement must be considered in analyzing embodied learning processes. We demonstrate that indirect movement instruction enables students to develop new sensorimotor schemes including attentional anchors as idiosyncratic solutions to physical interaction problems. These schemes are, by necessity, grounded in students' own agentive relation to the world while also grounding target content such as mathematical notions.
Training voluntary motor suppression with real-time feedback of motor evoked potentials.
Majid, D S Adnan; Lewis, Christina; Aron, Adam R
2015-05-01
Training people to suppress motor representations voluntarily could improve response control. We evaluated a novel training procedure of real-time feedback of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) over motor cortex. On each trial, a cue instructed participants to use a mental strategy to suppress a particular finger representation without overt movement. A single pulse of TMS was delivered over motor cortex, and an MEP-derived measure of hand motor excitability was delivered visually to the participant within 500 ms. In experiment 1, we showed that participants learned to reduce the excitability of a particular finger beneath baseline (selective motor suppression) within 30 min of practice. In experiment 2, we performed a double-blind study with 2 training groups (1 with veridical feedback and 1 with matched sham feedback) to show that selective motor suppression depends on the veridical feedback itself. Experiment 3 further demonstrated the importance of veridical feedback by showing that selective motor suppression did not arise from mere mental imagery, even when incentivized with reward. Thus participants can use real-time feedback of TMS-induced MEPs to discover an effective mental strategy for selective motor suppression. This high-temporal-resolution, trial-by-trial-feedback training method could be used to help people better control response tendencies and may serve as a potential therapy for motor disorders such as Tourette's and dystonia. Copyright © 2015 the American Physiological Society.
Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B.
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. PMID:22761555
On the advantage of an external focus of attention: a benefit to learning or performance?
Lohse, Keith R; Sherwood, David E; Healy, Alice F
2014-02-01
Although there is general agreement in the sport science community that the focus of attention (FOA) has significant effects on performance, there is some debate about whether or not the FOA adopted during training affects learning. A large number of studies on the focus of attention have shown that subjects who train with an external FOA perform better on subsequent retention and transfer tests. However, the FOA in these studies was not experimentally controlled during testing. Therefore, the current study used a dart-throwing paradigm in which the FOA was experimentally manipulated at both acquisition and testing over very short and long training times. Performance at test, in terms of accuracy and precision, was improved by adopting an external focus at test regardless of the focus instructed during acquisition, in both Experiment 1 and 2. Although an effect of acquisition focus during testing in Experiment 2 provides some evidence that FOA affects learning, the current data demonstrate a much stronger effect for performance than learning, and stronger effects of attention on precision than accuracy. Theoretical implications of these results are discussed, but in general these data provide a more nuanced understanding of how attentional focus instructions influence motor learning and performance. Copyright © 2013 Elsevier B.V. All rights reserved.
Motor Transportation Technology: Automechanics. [Fuel and Exhaust System.] Block VII. A-VII.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Instructional materials on fuel and exhaust systems are provided for an auto mechanics course in the motor transportation technology program. Instructor's plans are provided for five units. Each unit consists of instructional and manipulative lessons. The format of an instructional lesson is as follows: the subject, aim, a listing of teaching aids…
Gross-Motor Skill Acquisition by Preschool Dance Students under Self-Instruction Procedures
ERIC Educational Resources Information Center
Vintere, Parsla; Hemmes, Nancy S.; Brown, Bruce L.; Poulson, Claire L.
2004-01-01
The effects of two training procedures -- (a) modeling and praise and (b) self-instruction, modeling, and praise -- on complex gross-motor chain acquisition for preschool dance class students were evaluated. Six girls participated in the study. A multiple baseline design across six gross-motor chains with a secondary group comparison for treatment…
Kal, Elmar; van den Brink, Henrieke; Houdijk, Han; van der Kamp, John; Goossens, Paulien Helena; van Bennekom, Coen; Scherder, Erik
2018-05-01
People without neurological impairments show superior motor learning when they focus on movement effects (external focus) rather than on movement execution itself (internal focus). Despite its potential for neurorehabilitation, it remains unclear to what extent external focus strategies are currently incorporated in rehabilitation post-stroke. Therefore, we observed how physical therapists use attentional focus when treating gait of rehabilitating patients with stroke. Twenty physical therapist-patient couples from six rehabilitation centers participated. Per couple, one regular gait-training session was video-recorded. Therapists' statements were classified using a standardized scoring method to determine the relative proportion of internally and externally focused instructions/feedback. Also, we explored associations between therapists' use of external/internal focus strategies and patients' focus preference, length of stay, mobility, and cognition. Therapists' instructions were generally more external while feedback was more internal. Therapists used relatively more externally focused statements for patients with a longer length of stay (B = -0.239, p = 0.013) and for patients who had a stronger internal focus preference (B = -0.930, p = 0.035). Physical therapists used more external focus instructions, but more internally focused feedback. Also, they seem to adapt their attentional focus use to patients' focus preference and rehabilitation phase. Future research may determine how these factors influence the effectiveness of different attentional foci for motor learning post-stroke. IMPLICATIONS FOR REHABILITATION Physical therapists use a balanced mix of internal focus and external focus instructions and feedback when treating gait of stroke patients. Therapists predominantly used an external focus for patients in later rehabilitation phases, and for patients with stronger internal focus preferences, possibly in an attempt to stimulate more automatic control of movement in these patients. Future research should further explore how a patients' focus preference and rehabilitation phase influence the effectiveness of different focus strategies. Awaiting further research, we recommend that therapists use both attentional focus strategies, and explore per patient which focus works best on a trial-and-error basis.
In-group biases and oculomotor responses: beyond simple approach motivation.
Moradi, Zahra Zargol; Manohar, Sanjay; Duta, Mihaela; Enock, Florence; Humphreys, Glyn W
2018-05-01
An in-group bias describes an individual's bias towards a group that they belong to. Previous studies suggest that in-group bias facilitates approach motor responses, but disrupts avoidance ones. Such motor biases are shown to be more robust when the out-group is threatening. We investigated whether, under controlled visual familiarity and complexity, in-group biases still promote pro-saccade and hinder anti-saccades oculomotor responses. Participants first learned to associate an in-group or out-group label with an arbitrary shape. They were then instructed to listen to the group-relevant auditory cue (name of own and a rival university) followed by one of the shapes. Half of the participants were instructed to look towards the visual target if it matched the preceding group-relevant auditory cue and to look away from it if it did not match. The other half of the participants received reversed instructions. This design allowed us to orthogonally manipulate the effect of in-group bias and cognitive control demand on oculomotor responses. Both pro- and anti-saccades were faster and more accurate following the in-group auditory cue. Independently, pro-saccades were performed better than anti-saccades, and match judgements were faster and more accurate than non-match judgements. Our findings indicate that under higher cognitive control demands individuals' oculomotor responses improved following the motivationally salient cue (in-group). Our findings have important implications for learning and cognitive control in a social context. As we included rival groups, our results might to some extent reflect the effects of out-group threat. Future studies could extend our findings using non-threatening out-groups instead.
Transfer of learned perception of sensorimotor simultaneity.
Pesavento, Michael J; Schlag, John
2006-10-01
Synchronizing a motor response to a predictable sensory stimulus, like a periodic flash or click, relies on feedback (somesthetic, auditory, visual, or other) from the motor response. Practically, this results in a small (<50 ms) asynchrony in which the motor response leads the sensory event. Here we show that the perceived simultaneity in a coincidence-anticipation task (line crossing) is affected by changing the perceived simultaneity in a different task (pacing). In the pace task, human subjects were instructed to press a key in perfect synchrony with a red square flashed every second. In training sessions, feedback was provided by flashing a blue square with each key press, below the red square. There were two types of training pace sessions: one in which the feedback was provided with no delay, the other (adapting), in which the feedback was progressively delayed (up to 100 ms). Subjects' asynchrony was unchanged in the first case, but it was significantly increased in the pace task with delay. In the coincidence-anticipation task, a horizontally moving vertical bar crossed a vertical line in the middle of a screen. Subjects were instructed to press a key exactly when the bar crossed the line. They were given no feedback on their performance. Asynchrony on the line-crossing task was tested after the training pace task with feedback. We found that this asynchrony to be significantly increased even though there never was any feedback on the coincidence-anticipation task itself. Subjects were not aware that their sensorimotor asynchrony had been lengthened (sometimes doubled). We conclude that perception of simultaneity in a sensorimotor task is learned. If this perception is caused by coincidence of signals in the brain, the timing of these signals depends on something-acquired by experience-more adaptable than physiological latencies.
Harmon, Thomas C; Magaram, Uri; McLean, David L; Raman, Indira M
2017-01-01
To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish. DOI: http://dx.doi.org/10.7554/eLife.22537.001 PMID:28541889
Bryce, Thomas N.; Dijkers, Marcel P.
2015-01-01
Background: Powered exoskeletons have been demonstrated as being safe for persons with spinal cord injury (SCI), but little is known about how users learn to manage these devices. Objective: To quantify the time and effort required by persons with SCI to learn to use an exoskeleton for assisted walking. Methods: A convenience sample was enrolled to learn to use the first-generation Ekso powered exoskeleton to walk. Participants were given up to 24 weekly sessions of instruction. Data were collected on assistance level, walking distance and speed, heart rate, perceived exertion, and adverse events. Time and effort was quantified by the number of sessions required for participants to stand up, walk for 30 minutes, and sit down, initially with minimal and subsequently with contact guard assistance. Results: Of 22 enrolled participants, 9 screen-failed, and 7 had complete data. All of these 7 were men; 2 had tetraplegia and 5 had motor-complete injuries. Of these, 5 participants could stand, walk, and sit with contact guard or close supervision assistance, and 2 required minimal to moderate assistance. Walk times ranged from 28 to 94 minutes with average speeds ranging from 0.11 to 0.21 m/s. For all participants, heart rate changes and reported perceived exertion were consistent with light to moderate exercise. Conclusion: This study provides preliminary evidence that persons with neurological weakness due to SCI can learn to walk with little or no assistance and light to somewhat hard perceived exertion using a powered exoskeleton. Persons with different severities of injury, including those with motor complete C7 tetraplegia and motor incomplete C4 tetraplegia, may be able to learn to use this device. PMID:26364280
Kozlowski, Allan J; Bryce, Thomas N; Dijkers, Marcel P
2015-01-01
Powered exoskeletons have been demonstrated as being safe for persons with spinal cord injury (SCI), but little is known about how users learn to manage these devices. To quantify the time and effort required by persons with SCI to learn to use an exoskeleton for assisted walking. A convenience sample was enrolled to learn to use the first-generation Ekso powered exoskeleton to walk. Participants were given up to 24 weekly sessions of instruction. Data were collected on assistance level, walking distance and speed, heart rate, perceived exertion, and adverse events. Time and effort was quantified by the number of sessions required for participants to stand up, walk for 30 minutes, and sit down, initially with minimal and subsequently with contact guard assistance. Of 22 enrolled participants, 9 screen-failed, and 7 had complete data. All of these 7 were men; 2 had tetraplegia and 5 had motor-complete injuries. Of these, 5 participants could stand, walk, and sit with contact guard or close supervision assistance, and 2 required minimal to moderate assistance. Walk times ranged from 28 to 94 minutes with average speeds ranging from 0.11 to 0.21 m/s. For all participants, heart rate changes and reported perceived exertion were consistent with light to moderate exercise. This study provides preliminary evidence that persons with neurological weakness due to SCI can learn to walk with little or no assistance and light to somewhat hard perceived exertion using a powered exoskeleton. Persons with different severities of injury, including those with motor complete C7 tetraplegia and motor incomplete C4 tetraplegia, may be able to learn to use this device.
Joint Cost, Production Technology and Output Disaggregation in Regulated Motor Carriers
DOT National Transportation Integrated Search
1978-11-01
The study uses a sample of 252 Class I Instruction 27 Motor Carriers (Instruction 27 carriers earned at least 75 percent of their revenues from intercity transportation of general commodities over a three year period) of general freight that existed ...
Auditory-motor learning influences auditory memory for music.
Brown, Rachel M; Palmer, Caroline
2012-05-01
In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.
Munzert, Jörn; Maurer, Heiko; Reiser, Mathias
2014-01-01
The authors examined how varying the content of verbal-motor instructions and requesting an internal versus external focus influenced the kinematics and outcome of a golf putting task. On Day 1, 30 novices performed 120 trials with the instruction to focus attention either on performing a pendulum-like movement (internal) or on the desired ball path (external). After 20 retention trials on Day 2, they performed 20 transfer trials with the opposite instruction. Group differences for retention and a group by block interaction showed that external instruction enhanced movement outcome. Kinematic data indicated that specific instruction content influenced outcomes by eliciting changes in movement execution. Switching from the external to the internal focus instruction resulted in a more pendulum-like movement.
Efficacy of Web-Based Instruction to Provide Training on Federal Motor Carrier Safety Regulations
DOT National Transportation Integrated Search
2011-05-01
This report presents an evaluation of the current state-of-the-art Web-based instruction (WBI), reviews the current computer platforms of potential users of WBI, reviews the current status of WBI applications for Federal Motor Carrier Safety Administ...
Self-control over combined video feedback and modeling facilitates motor learning.
Post, Phillip G; Aiken, Christopher A; Laughlin, David D; Fairbrother, Jeffrey T
2016-06-01
Allowing learners to control the video presentation of knowledge of performance (KP) or an expert model during practice has been shown to facilitate motor learning (Aiken, Fairbrother, & Post, 2012; Wulf, Raupach, & Pfeiffer, 2005). Split-screen replay features now allow for the simultaneous presentation of these modes of instructional support. It is uncertain, however, if such a combination incorporated into a self-control protocol would yield similar benefits seen in earlier self-control studies. Therefore, the purpose of the present study was to examine the effects of self-controlled split-screen replay on the learning of a golf chip shot. Participants completed 60 practice trials, three administrations of the Intrinsic Motivation Inventory, and a questionnaire on day one. Retention and transfer tests and a final motivation inventory were completed on day two. Results revealed significantly higher form and accuracy scores for the self-control group during transfer. The self-control group also had significantly higher scores on the perceived competence subscale, reported requesting feedback mostly after perceived poor trials, and recalled a greater number of critical task features compared to the yoked group. The findings for the performance measures were consistent with previous self-control research. Copyright © 2016 Elsevier B.V. All rights reserved.
Brown, J; Sherrill, C; Gench, B
1981-08-01
Two approaches to facilitating perceptual-motor development in children, ages 4 to 6 yr., were investigated. The experimental group (n = 15) received 24 sessions of integrated physical education/music instruction based upon concepts of Kodaly and Dalcroze. The control group (n = 15) received 24 sessions of movement exploration and self-testing instruction. Analysis of covariance indicated that significant improvement occurred only in the experimental group, with discharges changes in the motor, auditory, and language aspects of perceptual-motor performance as well as total score.
Ioffe, M E; Ustinova, K I; Chernikova, L A; Kulikov, M A
2006-01-01
Supervised learning of different postural tasks in patients with lesions of the motor cortex or pyramidal system (poststroke hemiparesis: 20 patients), nigro-striatal system (Parkinson's disease: 33 patients) and cerebellum (spinocerebellar ataxia: 37 patients) was studied. A control group consisted of 13 healthy subjects. The subjects stood on a force platform and were trained to change the position of the center of pressure (CP) presented as a cursor on a monitor screen in front of the patient. Subjects were instructed to align the CP with the target and then move the target by shifting the CP in the indicated direction. Two different tasks were used. In "Balls", the target (a ball) position varied randomly, so the subject learned a general strategy of voluntary CP control. In "Bricks", the subject had to always move the target in a single direction (downward) from the top to the bottom of the screen, so that a precise postural coordination had to be learned. The training consisted of 10 sessions for each task. The number of correctly performed trials for a session (2 min for each task) was scored. The voluntary control of the CP position was initially impaired in all groups of patients in both tasks. In "Balls", there were no differences between the groups of the patients on the first day. The learning course was somewhat better in hemiparetic patients than in the other groups. In "Bricks", the initial deficit was greater in the groups of parkinsonian and cerebellar patients than in hemiparetic patients. However, learning was more efficient in parkinsonian than in hemiparetic and cerebellar patients. After 10 days of training, the hemiparetic and cerebellar patients completed the acquisition at a certain level whereas the parkinsonian patients showed the ability for further improvement. The results suggest that motor cortex, cerebellum, and basal ganglia are involved in voluntary control of posture and learning different postural tasks. However, these structures play different roles in postural control and learning: basal ganglia are mainly involved in learning a general strategy of CP control while the function of the motor cortex chiefly concerns learning a specific CP trajectory. The cerebellum is involved in both kinds of learning.
ERIC Educational Resources Information Center
Brown, Judy; And Others
1981-01-01
Two approaches to facilitating perceptual-motor development in children ages 4-6 were investigated. Fifteen children (the experimental group) received integrated physical education/music instruction based on Kodaly and Dalcroze (Eurhythmics) concepts. The control group received movement exploration and self-testing instruction. Significant…
41 CFR 101-26.501-6 - Forms used in connection with delivery of vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... left in place during the warranty period to permit prompt identification of vehicles requiring dealer... order. (c) Instructions to Consignee Receiving New Motor Vehicles Purchased by General Services... and information contained in the document entitled “Instructions to Consignee Receiving New Motor...
Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy.
de Mello Monteiro, Carlos Bandeira; Massetti, Thais; da Silva, Talita Dias; van der Kamp, John; de Abreu, Luiz Carlos; Leone, Claudio; Savelsbergh, Geert J P
2014-10-01
With the growing accessibility of computer-assisted technology, rehabilitation programs for individuals with cerebral palsy (CP) increasingly use virtual reality environments to enhance motor practice. Thus, it is important to examine whether performance improvements in the virtual environment generalize to the natural environment. To examine this issue, we had 64 individuals, 32 of which were individuals with CP and 32 typically developing individuals, practice two coincidence-timing tasks. In the more tangible button-press task, the individuals were required to 'intercept' a falling virtual object at the moment it reached the interception point by pressing a key. In the more abstract, less tangible task, they were instructed to 'intercept' the virtual object by making a hand movement in a virtual environment. The results showed that individuals with CP timed less accurate than typically developing individuals, especially for the more abstract task in the virtual environment. The individuals with CP did-as did their typically developing peers-improve coincidence timing with practice on both tasks. Importantly, however, these improvements were specific to the practice environment; there was no transfer of learning. It is concluded that the implementation of virtual environments for motor rehabilitation in individuals with CP should not be taken for granted but needs to be considered carefully. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mental Transformation Skill in Young Children: The Role of Concrete and Abstract Motor Training.
Levine, Susan C; Goldin-Meadow, Susan; Carlson, Matthew T; Hemani-Lopez, Naureen
2018-05-01
We examined the effects of three different training conditions, all of which involve the motor system, on kindergarteners' mental transformation skill. We focused on three main questions. First, we asked whether training that involves making a motor movement that is relevant to the mental transformation-either concretely through action (action training) or more abstractly through gestural movements that represent the action (move-gesture training)-resulted in greater gains than training using motor movements irrelevant to the mental transformation (point-gesture training). We tested children prior to training, immediately after training (posttest), and 1 week after training (retest), and we found greater improvement in mental transformation skill in both the action and move-gesture training conditions than in the point-gesture condition, at both posttest and retest. Second, we asked whether the total gain made by retest differed depending on the abstractness of the movement-relevant training (action vs. move-gesture), and we found that it did not. Finally, we asked whether the time course of improvement differed for the two movement-relevant conditions, and we found that it did-gains in the action condition were realized immediately at posttest, with no further gains at retest; gains in the move-gesture condition were realized throughout, with comparable gains from pretest-to-posttest and from posttest-to-retest. Training that involves movement, whether concrete or abstract, can thus benefit children's mental transformation skill. However, the benefits unfold differently over time-the benefits of concrete training unfold immediately after training (online learning); the benefits of more abstract training unfold in equal steps immediately after training (online learning) and during the intervening week with no additional training (offline learning). These findings have implications for the kinds of instruction that can best support spatial learning. Copyright © 2018 Cognitive Science Society, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... . Follow the online instructions for submitting comments. Mail: Docket Management Facility: U.S. Department... on behalf of an association, business, labor union, etc.). You may review DOT's complete Privacy Act... address listed above. Follow the online instructions for accessing the dockets. FOR FURTHER INFORMATION...
Mason, Robert A; Just, Marcel Adam
2015-05-01
Incremental instruction on the workings of a set of mechanical systems induced a progression of changes in the neural representations of the systems. The neural representations of four mechanical systems were assessed before, during, and after three phases of incremental instruction (which first provided information about the system components, then provided partial causal information, and finally provided full functional information). In 14 participants, the neural representations of four systems (a bathroom scale, a fire extinguisher, an automobile braking system, and a trumpet) were assessed using three recently developed techniques: (1) machine learning and classification of multi-voxel patterns; (2) localization of consistently responding voxels; and (3) representational similarity analysis (RSA). The neural representations of the systems progressed through four stages, or states, involving spatially and temporally distinct multi-voxel patterns: (1) initially, the representation was primarily visual (occipital cortex); (2) it subsequently included a large parietal component; (3) it eventually became cortically diverse (frontal, parietal, temporal, and medial frontal regions); and (4) at the end, it demonstrated a strong frontal cortex weighting (frontal and motor regions). At each stage of knowledge, it was possible for a classifier to identify which one of four mechanical systems a participant was thinking about, based on their brain activation patterns. The progression of representational states was suggestive of progressive stages of learning: (1) encoding information from the display; (2) mental animation, possibly involving imagining the components moving; (3) generating causal hypotheses associated with mental animation; and finally (4) determining how a person (probably oneself) would interact with the system. This interpretation yields an initial, cortically-grounded, theory of learning of physical systems that potentially can be related to cognitive learning theories by suggesting links between cortical representations, stages of learning, and the understanding of simple systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Education and distance learning: changing the trends.
Merrell, Ronald C
2004-01-01
Training and instruction are activities deeply ingrained in human relations and derive from the critical need for the young to learn survival skills. The responsibility in primitive society for such training almost certainly fell to parents who continued their pedagogical role after childhood issues to include hunting, gathering, fine motor activities and other life skills needed for personal or family survival. Such instruction only ended when the young were ready for independent life and- contribution to tribal well-being. Delegation of teaching to others was inevitable. Teaching has become a specialty and has at least one interesting story in ancient literature. Ulysses was certain to be away at the Trojan War and subsequent adventures for many years. He would not be able to provide his son, Telemachus, with the guidance and training to prepare him for adulthood. Therefore, he asked Mentor to act In Loco Parentis and instruct the young man toward competence and adult success. Teaching as a profession and discipline has been through many stages and many controversies. Socrates was a great teacher with a distinct technique for learning by questioning. His influence on his students was profound. Plato was such a good student he recorded all the master's works. Socrates has never been credited with even the briefest lecture note. As great as he was Socrates was forced to drink the bitter hemlock because his teaching was considered a corruption of youth rather than a proper preparation for effective adulthood. Dissonance between the expectations of learners, parents and teachers has a rich history. Certainly even now education is not something the professoriate may invent for the naïve learner and then expect grateful acquiesce with faithful learning. Learning has -dimensions in human psychology and communication. The learners' autonomy, privacy and motivation cannot be denied. Learning is collaboration with teacher and the endpoint is the acquisition of new knowledge or skill.
Learning procedures from interactive natural language instructions
NASA Technical Reports Server (NTRS)
Huffman, Scott B.; Laird, John E.
1994-01-01
Despite its ubiquity in human learning, very little work has been done in artificial intelligence on agents that learn from interactive natural language instructions. In this paper, the problem of learning procedures from interactive, situated instruction is examined in which the student is attempting to perform tasks within the instructional domain, and asks for instruction when it is needed. Presented is Instructo-Soar, a system that behaves and learns in response to interactive natural language instructions. Instructo-Soar learns completely new procedures from sequences of instruction, and also learns how to extend its knowledge of previously known procedures to new situations. These learning tasks require both inductive and analytic learning. Instructo-Soar exhibits a multiple execution learning process in which initial learning has a rote, episodic flavor, and later executions allow the initially learned knowledge to be generalized properly.
47 CFR 32.2112 - Motor vehicles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...
Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.
van Abswoude, Femke; Nuijen, Nienke B; van der Kamp, John; Steenbergen, Bert
2018-06-01
A large pool of evidence supports the beneficial effect of an external focus of attention on motor skill performance in adults. In children, this effect has been studied less and results are inconclusive. Importantly, individual differences are often not taken into account. We investigated the role of working memory, conscious motor control, and task-specific focus preferences on performance with an internal and external focus of attention in children. Twenty-five children practiced a golf putting task in both an internal focus condition and external focus condition. Performance was defined as the average distance toward the hole in 3 blocks of 10 trials. Task-specific focus preference was determined by asking how much effort it took to apply the instruction in each condition. In addition, working memory capacity and conscious motor control were assessed. Children improved performance in both the internal focus condition and external focus condition (ŋ p 2 = .47), with no difference between conditions (ŋ p 2 = .01). Task-specific focus preference was the only factor moderately related to the difference between performance with an internal focus and performance with an external focus (r = .56), indicating better performance for the preferred instruction in Block 3. Children can benefit from instruction with both an internal and external focus of attention to improve short-term motor performance. Individual, task-specific focus preference influenced the effect of the instructions, with children performing better with their preferred focus. The results highlight that individual differences are a key factor in the effectiveness in children's motor performance. The precise mechanisms underpinning this effect warrant further research.
Lissek, Silke; Vallana, Guido S.; Schlaffke, Lara; Lenz, Melanie; Dinse, Hubert R.; Tegenthoff, Martin
2014-01-01
The dopaminergic system is involved in learning and participates in the modulation of cortical excitability (CE). CE has been suggested as a marker of learning and use-dependent plasticity. However, results from separate studies on either motor CE or motor learning challenge this notion, suggesting opposing effects of dopaminergic modulation upon these parameters: while agonists decrease and antagonists increase CE, motor learning is enhanced by agonists and disturbed by antagonists. To examine whether this discrepancy persists when complex motor learning and motor CE are measured in the same experimental setup, we investigated the effects of dopaminergic (DA) antagonism upon both parameters and upon task-associated brain activation. Our results demonstrate that DA-antagonism has opposing effects upon motor CE and motor sequence learning. Tiapride did not alter baseline CE, but increased CE post training of a complex motor sequence while simultaneously impairing motor learning. Moreover, tiapride reduced activation in several brain regions associated with motor sequence performance, i.e., dorsolateral PFC (dlPFC), supplementary motor area (SMA), Broca's area, cingulate and caudate body. Blood-oxygenation-level-dependent (BOLD) intensity in anterior cingulate and caudate body, but not CE, correlated with performance across groups. In summary, our results do not support a concept of CE as a general marker of motor learning, since they demonstrate that a straightforward relation of increased CE and higher learning success does not apply to all instances of motor learning. At least for complex motor tasks that recruit a network of brain regions outside motor cortex, CE in primary motor cortex is probably no central determinant for learning success. PMID:24994972
Artificial Instruction. A Method for Relating Learning Theory to Instructional Design.
ERIC Educational Resources Information Center
Ohlsson, Stellan
Prior research on learning has been linked to instruction by the derivation of general principles of instructional design from learning theories. However, such design principles are often difficult to apply to particular instructional issues. A new method for relating research on learning to instructional design is proposed: Different ways of…
Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A
2014-02-01
Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.
Temporal structure of motor variability is dynamically regulated and predicts motor learning ability
Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A
2015-01-01
Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700
Applying learning theories and instructional design models for effective instruction.
Khalil, Mohammed K; Elkhider, Ihsan A
2016-06-01
Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning outcomes, the science of instruction and instructional design models are used to guide the development of instructional design strategies that elicit appropriate cognitive processes. Here, the major learning theories are discussed and selected examples of instructional design models are explained. The main objective of this article is to present the science of learning and instruction as theoretical evidence for the design and delivery of instructional materials. In addition, this article provides a practical framework for implementing those theories in the classroom and laboratory. Copyright © 2016 The American Physiological Society.
47 CFR 32.6112 - Motor vehicle expense.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Motor vehicle expense. 32.6112 Section 32.6112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6112 Motor vehicle expense. (a... motor vehicles, such as chauffeurs and shuttle bus drivers. The costs of users of motor vehicles whose...
47 CFR 32.6112 - Motor vehicle expense.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Motor vehicle expense. 32.6112 Section 32.6112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6112 Motor vehicle expense. (a... motor vehicles, such as chauffeurs and shuttle bus drivers. The costs of users of motor vehicles whose...
47 CFR 32.6112 - Motor vehicle expense.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Motor vehicle expense. 32.6112 Section 32.6112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6112 Motor vehicle expense. (a... motor vehicles, such as chauffeurs and shuttle bus drivers. The costs of users of motor vehicles whose...
Whipp, Peter R; Jackson, Ben; Dimmock, James A; Soh, Jenny
2015-01-01
Peer teaching is recognized as a powerful instructional method; however, there is a paucity of studies that have evaluated the outcomes experienced by peer-teachers and their student recipients in the context of trained, non-reciprocal, high school physical education (PE). Accordingly, the effectiveness of a formalized and trained non-reciprocal peer teaching (T-PT) program upon psychosocial, behavioral, pedagogical, and student learning outcomes within high school PE classes was investigated. Students from eight intact classes (106 males, 94 females, Mage = 12.46, SD = 0.59) were randomly assigned to either a T-PT intervention group (taught by a volunteer peer-teacher who was trained in line with a tactical games approach) or untrained group (U-PT; where volunteer peer-teachers received no formal training, but did receive guidance on the game concepts to teach). Data were collected over 10 lessons in a 5-week soccer unit. Mixed-model ANOVAs/MANOVAs revealed that, in comparison to U-PT, the T-PT program significantly enhanced in-game performance actions and academic learning time among student recipients. Those in the T-PT also provided greater levels of feedback and structured learning time, as well as reporting more positive feelings about peer teaching and fewer perceived barriers to accessing learning outcomes. These findings show that non-reciprocal peer-teachers who receive formalized support through training and tactical games approach-based teaching resources can enhance behavioral, pedagogical, and motor performance outcomes in PE.
Whipp, Peter R.; Jackson, Ben; Dimmock, James A.; Soh, Jenny
2015-01-01
Peer teaching is recognized as a powerful instructional method; however, there is a paucity of studies that have evaluated the outcomes experienced by peer-teachers and their student recipients in the context of trained, non-reciprocal, high school physical education (PE). Accordingly, the effectiveness of a formalized and trained non-reciprocal peer teaching (T-PT) program upon psychosocial, behavioral, pedagogical, and student learning outcomes within high school PE classes was investigated. Students from eight intact classes (106 males, 94 females, Mage = 12.46, SD = 0.59) were randomly assigned to either a T-PT intervention group (taught by a volunteer peer-teacher who was trained in line with a tactical games approach) or untrained group (U-PT; where volunteer peer-teachers received no formal training, but did receive guidance on the game concepts to teach). Data were collected over 10 lessons in a 5-week soccer unit. Mixed-model ANOVAs/MANOVAs revealed that, in comparison to U-PT, the T-PT program significantly enhanced in-game performance actions and academic learning time among student recipients. Those in the T-PT also provided greater levels of feedback and structured learning time, as well as reporting more positive feelings about peer teaching and fewer perceived barriers to accessing learning outcomes. These findings show that non-reciprocal peer-teachers who receive formalized support through training and tactical games approach-based teaching resources can enhance behavioral, pedagogical, and motor performance outcomes in PE. PMID:25741309
Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577
A DNA-based molecular motor that can navigate a network of tracks
NASA Astrophysics Data System (ADS)
Wickham, Shelley F. J.; Bath, Jonathan; Katsuda, Yousuke; Endo, Masayuki; Hidaka, Kumi; Sugiyama, Hiroshi; Turberfield, Andrew J.
2012-03-01
Synthetic molecular motors can be fuelled by the hydrolysis or hybridization of DNA. Such motors can move autonomously and programmably, and long-range transport has been observed on linear tracks. It has also been shown that DNA systems can compute. Here, we report a synthetic DNA-based system that integrates long-range transport and information processing. We show that the path of a motor through a network of tracks containing four possible routes can be programmed using instructions that are added externally or carried by the motor itself. When external control is used we find that 87% of the motors follow the correct path, and when internal control is used 71% of the motors follow the correct path. Programmable motion will allow the development of computing networks, molecular systems that can sort and process cargoes according to instructions that they carry, and assembly lines that can be reconfigured dynamically in response to changing demands.
Predicting explorative motor learning using decision-making and motor noise.
Chen, Xiuli; Mohr, Kieran; Galea, Joseph M
2017-04-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant's level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.
Predicting explorative motor learning using decision-making and motor noise
Galea, Joseph M.
2017-01-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning. PMID:28437451
Dancey, Erin; Andrew, Danielle; Yielder, Paul
2016-01-01
Previous work has demonstrated differential changes in early somatosensory evoked potentials (SEPs) when motor learning acquisition occurred in the presence of acute pain; however, the learning task was insufficiently complex to determine how these underlying neurophysiological differences impacted learning acquisition and retention. To address this limitation, we have utilized a complex motor task in conjunction with SEPs. Two groups of 12 participants (n = 24) were randomly assigned to either a capsaicin (capsaicin cream) or a control (inert lotion) group. SEP amplitudes were collected at baseline, after application, and after motor learning acquisition. Participants performed a motor acquisition task followed by a pain-free retention task within 24–48 h. After motor learning acquisition, the amplitude of the N20 SEP peak significantly increased (P < 0.05) and the N24 SEP peak significantly decreased (P < 0.001) for the control group while the N18 SEP peak significantly decreased (P < 0.01) for the capsaicin group. The N30 SEP peak was significantly increased (P < 0.001) after motor learning acquisition for both groups. The P25 SEP peak decreased significantly (P < 0.05) after the application of capsaicin cream. Both groups improved in accuracy after motor learning acquisition (P < 0.001). The capsaicin group outperformed the control group before motor learning acquisition (P < 0.05) and after motor learning acquisition (P < 0.05) and approached significance at retention (P = 0.06). Improved motor learning in the presence of capsaicin provides support for the enhancement of motor learning while in acute pain. In addition, the changes in SEP peak amplitudes suggest that early SEP changes reflect neurophysiological alterations accompanying both motor learning and mild acute pain. PMID:27535371
Motor learning and working memory in children born preterm: a systematic review.
Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G
2012-04-01
Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.
Web-Based Instruction, Learning Effectiveness and Learning Behavior: The Impact of Relatedness
ERIC Educational Resources Information Center
Shieh, Chich-Jen; Liao, Ying; Hu, Ridong
2013-01-01
This study aims to discuss the effects of Web-based Instruction and Learning Behavior on Learning Effectiveness. Web-based Instruction contains the dimensions of Active Learning, Simulation-based Learning, Interactive Learning, and Accumulative Learning; and, Learning Behavior covers Learning Approach, Learning Habit, and Learning Attitude. The…
Effectiveness of multimedia-supported education in practical sports courses.
Leser, Roland; Baca, Arnold; Uhlig, Johannes
2011-01-01
Multimedia-assisted teaching and learning have become standard forms of education. In sports, multimedia material has been used to teach practical aspects of courses, such as motor skills. The main goal of this study is to examine if multimedia technology impacts learning in the field of sport motor skill acquisition. This question was investigated during a practical sports education course involving 35 students who participated in a university soccer class. The whole course was split into two groups: Group A was taught traditionally with no assistance of multimedia and Group B was prepared with multimedia-assisted instructional units. To quantify selected skills of soccer technique and tactic, the test subjects performed a specific passing test and a tactical assessment. Furthermore, a ques-tionnaire was used to assess the subjective impressions of the test subjects. All testing instruments were applied before and after a six-week-long teaching period. A comparison of the gathered data between the two groups resulted in no significant differences, neither concerning the results of the technique test nor concerning the tactic test. However, the results of the ques-tionnaire showed a positive agreement among the participants in the usability and assistance of multimedia for the sports practical course. Considering the reviewed conditions, it can be concluded that the use of multimedia content doesn't affect the learning effects. Key pointsMultimedia-assisted learning showed no positive learning effects on technical skills in soccer.Multimedia-assisted learning showed no positive learning effects on tactical skills in soccer.Students participating in practical sports courses have very good attitudes towards the use of multi-media learning material. This may be considered for motivational effects.
Effectiveness of Multimedia-Supported Education in Practical Sports Courses
Leser, Roland; Baca, Arnold; Uhlig, Johannes
2011-01-01
Multimedia-assisted teaching and learning have become standard forms of education. In sports, multimedia material has been used to teach practical aspects of courses, such as motor skills. The main goal of this study is to examine if multimedia technology impacts learning in the field of sport motor skill acquisition. This question was investigated during a practical sports education course involving 35 students who participated in a university soccer class. The whole course was split into two groups: Group A was taught traditionally with no assistance of multimedia and Group B was prepared with multimedia-assisted instructional units. To quantify selected skills of soccer technique and tactic, the test subjects performed a specific passing test and a tactical assessment. Furthermore, a ques-tionnaire was used to assess the subjective impressions of the test subjects. All testing instruments were applied before and after a six-week-long teaching period. A comparison of the gathered data between the two groups resulted in no significant differences, neither concerning the results of the technique test nor concerning the tactic test. However, the results of the ques-tionnaire showed a positive agreement among the participants in the usability and assistance of multimedia for the sports practical course. Considering the reviewed conditions, it can be concluded that the use of multimedia content doesn’t affect the learning effects. Key points Multimedia-assisted learning showed no positive learning effects on technical skills in soccer. Multimedia-assisted learning showed no positive learning effects on tactical skills in soccer. Students participating in practical sports courses have very good attitudes towards the use of multi-media learning material. This may be considered for motivational effects. PMID:24149313
Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li
2012-01-01
Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation and motor skill learning deserves more attention and further investigation. PMID:22629308
Somatosensory Contribution to the Initial Stages of Human Motor Learning
Bernardi, Nicolò F.; Darainy, Mohammad
2015-01-01
The early stages of motor skill acquisition are often marked by uncertainty about the sensory and motor goals of the task, as is the case in learning to speak or learning the feel of a good tennis serve. Here we present an experimental model of this early learning process, in which targets are acquired by exploration and reinforcement rather than sensory error. We use this model to investigate the relative contribution of motor and sensory factors to human motor learning. Participants make active reaching movements or matched passive movements to an unseen target using a robot arm. We find that learning through passive movements paired with reinforcement is comparable with learning associated with active movement, both in terms of magnitude and durability, with improvements due to training still observable at a 1 week retest. Motor learning is also accompanied by changes in somatosensory perceptual acuity. No stable changes in motor performance are observed for participants that train, actively or passively, in the absence of reinforcement, or for participants who are given explicit information about target position in the absence of somatosensory experience. These findings indicate that the somatosensory system dominates learning in the early stages of motor skill acquisition. SIGNIFICANCE STATEMENT The research focuses on the initial stages of human motor learning, introducing a new experimental model that closely approximates the key features of motor learning outside of the laboratory. The finding indicates that it is the somatosensory system rather than the motor system that dominates learning in the early stages of motor skill acquisition. This is important given that most of our computational models of motor learning are based on the idea that learning is motoric in origin. This is also a valuable finding for rehabilitation of patients with limited mobility as it shows that reinforcement in conjunction with passive movement results in benefits to motor learning that are as great as those observed for active movement training. PMID:26490869
Eiriksdottir, Elsa; Catrambone, Richard
2011-12-01
The goal of this article is to investigate how instructions can be constructed to enhance performance and learning of procedural tasks. Important determinants of the effectiveness of instructions are type of instructions (procedural information, principles, and examples) and pedagogical goal (initial performance, learning, and transfer). Procedural instructions describe how to complete tasks in a stepwise manner, principles describe rules governing the tasks, and examples demonstrate how instances of the task are carried out. The authors review the research literature associated with each type of instruction to identify factors determining effectiveness for different pedagogical goals. The results suggest a trade-off between usability and learnability. Specific instructions help initial performance, whereas more general instructions, requiring problem solving, help learning and transfer. Learning from instructions takes cognitive effort, and research suggests that learners typically opt for low effort. However, it is possible to meet both goals of good initial performance and learning with methods such as fading and by combining different types of instructions. How instructions are constructed influences their effectiveness for the goals of good initial performance, learning, and transfer, and it is therefore important for researchers and practitioners alike to define the pedagogical goal of instructions. If the goal is good initial performance, then instructions should highly resemble the task at hand (e.g., in the form of detailed procedural instructions and examples), but if the goal is good learning and transfer, then instructions should be more abstract, inducing learners to expend the necessary cognitive effort for learning.
NASA Astrophysics Data System (ADS)
Nurlaela, L.; Samani, M.; Asto, I. G. P.; Wibawa, S. C.
2018-01-01
This study aims at gaining empirical findings of the effectiveness of thematic instructional model as compared to conventional instruction; and the potential capacity of thematic instructional model in accommodating different learning styles and reading abilities. This is an experimental research design with 140 elementary students as research subject. The data were collected by using achievement test, learning style questionnaire, and reading comprehension test, and analyzed by using Anava. The results indicate: there is a significant difference in achievement between students who use thematic instructional model and those using conventional model; a significant difference in achievement between students with visual learning style and those having auditorial learning style; a significant difference between students with high reading ability and those with low reading ability. Student’s achievement is influenced by the interaction between instructional model and student’s learning style. Student’s achievement is not influenced by the interaction between instructional model and student’s reading ability, the interaction between student’s learning style and student’s reading ability, and the interaction among instructional model, learning style and student’s reading ability. The conclusion is thematic instructional model was more effective than conventional instruction and thematic instructional model had a capacity in accommodating different learning styles and reading abilities.
Investigating Discourses for Administrators' Learning within Instructional Rounds
ERIC Educational Resources Information Center
Allen, David; Roegman, Rachel; Hatch, Thomas
2016-01-01
Instructional rounds is a professional learning practice for supporting school and district leaders' understanding of the instructional core, the interaction among curricular content, instruction, and student learning, which is a foundation for instructional leadership practices. This article examines instructional rounds visits within a network…
Feedforward Self-Modeling Enhances Skill Acquisition in Children Learning Trampoline Skills
Ste-Marie, Diane M.; Vertes, Kelly; Rymal, Amanda M.; Martini, Rose
2011-01-01
The purpose of this research was to examine whether children would benefit from a feedforward self-modeling (FSM) video and to explore possible explanatory mechanisms for the potential benefits, using a self-regulation framework. To this end, children were involved in learning two five-skill trampoline routines. For one of the routines, a FSM video was provided during acquisition, whereas only verbal instructions were provided for the alternate routine. The FSM involved editing video footage such that it showed the learner performing the trampoline routine at a higher skill level than their current capability. Analyses of the data showed that while physical performance benefits were observed for the routine that was learned with the FSM video, no differences were obtained in relation to the self-regulatory measures. Thus, the FSM video enhanced motor skill acquisition, but this could not be explained by changes to the varied self-regulatory processes examined. PMID:21779270
Feedforward self-modeling enhances skill acquisition in children learning trampoline skills.
Ste-Marie, Diane M; Vertes, Kelly; Rymal, Amanda M; Martini, Rose
2011-01-01
The purpose of this research was to examine whether children would benefit from a feedforward self-modeling (FSM) video and to explore possible explanatory mechanisms for the potential benefits, using a self-regulation framework. To this end, children were involved in learning two five-skill trampoline routines. For one of the routines, a FSM video was provided during acquisition, whereas only verbal instructions were provided for the alternate routine. The FSM involved editing video footage such that it showed the learner performing the trampoline routine at a higher skill level than their current capability. Analyses of the data showed that while physical performance benefits were observed for the routine that was learned with the FSM video, no differences were obtained in relation to the self-regulatory measures. Thus, the FSM video enhanced motor skill acquisition, but this could not be explained by changes to the varied self-regulatory processes examined.
Specifications for an Advanced Instructional Design Advisor (AIDA) for Computer-Based Training
1991-05-01
student time under instruction o increased student comprehension and learning transfer o establishment of instruction standards o...strategies. 6. The nature of the cognitive task determines the learning objective. 7. Learning is internal; instruction is external. 12 Major...AIDAs and to its instructional products. Halff argued that cognitive structures have a role to play in instructional design. He maintained that learning
47 CFR 32.2112 - Motor vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...
47 CFR 32.2112 - Motor vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...
47 CFR 32.2112 - Motor vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...
47 CFR 32.2112 - Motor vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...
NASA Astrophysics Data System (ADS)
Nurhuda; Lukito, A.; Masriyah
2018-01-01
This study aims to develop instructional tools and implement it to see the effectiveness. The method used in this research referred to Designing Effective Instruction. Experimental research with two-group pretest-posttest design method was conducted. The instructional tools have been developed is cooperative learning model with predict-observe-explain strategy on the topic of cuboid and cube volume which consist of lesson plans, POE tasks, and Tests. Instructional tools were of good quality by criteria of validity, practicality, and effectiveness. These instructional tools was very effective for teaching the volume of cuboid and cube. Cooperative instructional tool with predict-observe-explain (POE) strategy was good of quality because the teacher was easy to implement the steps of learning, students easy to understand the material and students’ learning outcomes completed classically. Learning by using this instructional tool was effective because learning activities were appropriate and students were very active. Students’ learning outcomes were completed classically and better than conventional learning. This study produced a good instructional tool and effectively used in learning. Therefore, these instructional tools can be used as an alternative to teach volume of cuboid and cube topics.
Resource Letter ALIP-1: Active-Learning Instruction in Physics
NASA Astrophysics Data System (ADS)
Meltzer, David E.; Thornton, Ronald K.
2012-06-01
This Resource Letter provides a guide to the literature on research-based active-learning instruction in physics. These are instructional methods that are based on, assessed by, and validated through research on the teaching and learning of physics. They involve students in their own learning more deeply and more intensely than does traditional instruction, particularly during class time. The instructional methods and supporting body of research reviewed here offer potential for significantly improved learning in comparison to traditional lecture-based methods of college and university physics instruction. We begin with an introduction to the history of active learning in physics in the United States, and then discuss some methods for and outcomes of assessing pedagogical effectiveness. We enumerate and describe common characteristics of successful active-learning instructional strategies in physics. We then discuss a range of methods for introducing active-learning instruction in physics and provide references to those methods for which there is published documentation of student learning gains.
Krok, Anne C.; Xu, Jian; Contractor, Anis; McGehee, Daniel S.; Zhuang, Xiaoxi
2016-01-01
Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon “aberrant motor learning” and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of function and/or receptor expression of β2-containing nicotinic receptors alters presynaptic and postsynaptic striatal signaling to protect against aberrant motor learning. Moreover, these results suggest that cNIC treatment may alleviate motor symptoms and/or delay the deterioration of motor function in movement disorders by blocking aberrant motor learning. PMID:27170121
Instructable autonomous agents. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Huffman, Scott Bradley
1994-01-01
In contrast to current intelligent systems, which must be laboriously programmed for each task they are meant to perform, instructable agents can be taught new tasks and associated knowledge. This thesis presents a general theory of learning from tutorial instruction and its use to produce an instructable agent. Tutorial instruction is a particularly powerful form of instruction, because it allows the instructor to communicate whatever kind of knowledge a student needs at whatever point it is needed. To exploit this broad flexibility, however, a tutorable agent must support a full range of interaction with its instructor to learn a full range of knowledge. Thus, unlike most machine learning tasks, which target deep learning of a single kind of knowledge from a single kind of input, tutorability requires a breadth of learning from a broad range of instructional interactions. The theory of learning from tutorial instruction presented here has two parts. First, a computational model of an intelligent agent, the problem space computational model, indicates the types of knowledge that determine an agent's performance, and thus, that should be acquirable via instruction. Second, a learning technique, called situated explanation specifies how the agent learns general knowledge from instruction. The theory is embodied by an implemented agent, Instructo-Soar, built within the Soar architecture. Instructo-Soar is able to learn hierarchies of completely new tasks, to extend task knowledge to apply in new situations, and in fact to acquire every type of knowledge it uses during task performance - control knowledge, knowledge of operators' effects, state inferences, etc. - from interactive natural language instructions. This variety of learning occurs by applying the situated explanation technique to a variety of instructional interactions involving a variety of types of instructions (commands, statements, conditionals, etc.). By taking seriously the requirements of flexible tutorial instruction, Instructo-Soar demonstrates a breadth of interaction and learning capabilities that goes beyond previous instructable systems, such as learning apprentice systems. Instructo-Soar's techniques could form the basis for future 'instructable technologies' that come equipped with basic capabilities, and can be taught by novice users to perform any number of desired tasks.
ERIC Educational Resources Information Center
Wolf, Beverly; Abbott, Robert D.; Berninger, Virginia W.
2017-01-01
In Study 1, the treatment group (N = 33 first graders, M = 6 years 10 months, 16 girls) received Slingerland multi-modal (auditory, visual, tactile, motor through hand, and motor through mouth) manuscript (unjoined) handwriting instruction embedded in systematic spelling, reading, and composing lessons; and the control group (N = 16 first graders,…
Skill Training Using Adaptive Technology: A Better Way to Hover
2005-09-01
instructional presentation strategies as discussed below. Primary Presentations Merrill’s CDT suggests that instruction be organized around a series of...conducted a series of experiments designed to investigate the application of Shiffrin and Schneider’s (1977) theory of automatic and controlled...perceptual-motor in content. The results of a series of interlocking studies, using various cognitive and perceptual-motor tasks and observational
ERIC Educational Resources Information Center
Miller, James F.; Throop, Robert K.
To determine the effects of an aquatics program on the psycho-motor functions and body image of trainable mentally handicapped children, 60 children under 16 years of age were selected, and 39 children instructed three days per week over a period of one year. Results did not support the hypothesis that subjects in instructional aquatic classes…
Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.
Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz
2016-01-01
Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill-even exceeding usually expected acoustic rhythmic effects on motor learning.
Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments
Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz
2016-01-01
Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill—even exceeding usually expected acoustic rhythmic effects on motor learning. PMID:27303255
ERIC Educational Resources Information Center
Butler, Andrew J.; James, Thomas W.; James, Karin Harman
2011-01-01
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…
Auditory and motor imagery modulate learning in music performance
Brown, Rachel M.; Palmer, Caroline
2013-01-01
Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences. PMID:23847495
Aging Affects Motor Learning but Not Savings at Transfer of Learning
ERIC Educational Resources Information Center
Seidler, Rachael D.
2007-01-01
Two important components of skill learning are the learning process itself (motor acquisition) and the ability to transfer what has been learned to new task variants (motor transfer). Many studies have documented age-related declines in the ability to learn new manual motor skills. In this study, I tested whether the degree of savings at transfer…
Prepared stimuli enhance aversive learning without weakening the impact of verbal instructions
2018-01-01
Fear-relevant stimuli such as snakes and spiders are thought to capture attention due to evolutionary significance. Classical conditioning experiments indicate that these stimuli accelerate learning, while instructed extinction experiments suggest they may be less responsive to instructions. We manipulated stimulus type during instructed aversive reversal learning and used quantitative modeling to simultaneously test both hypotheses. Skin conductance reversed immediately upon instruction in both groups. However, fear-relevant stimuli enhanced dynamic learning, as measured by higher learning rates in participants conditioned with images of snakes and spiders. Results are consistent with findings that dissociable neural pathways underlie feedback-driven and instructed aversive learning. PMID:29339561
Lin, Yi-Hui; Liang, Jyh-Chong; Tsai, Chin-Chung
2012-03-01
The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.
van de Ruit, Mark; Grey, Michael J.
2017-01-01
Both motor imagery and mirror training have been used in motor rehabilitation settings to promote skill learning and plasticity. As motor imagery and mirror training are suggested to be closely linked, it was hypothesized that mirror training augmented by motor imagery would increase corticospinal excitability (CSE) significantly compared to mirror training alone. Forty-four participants were split over two experimental groups. Each participant visited the laboratory once to receive either mirror training alone or mirror training augmented with layered stimulus response training (LSRT), a type of motor imagery training. Participants performed 16 min of mirror training, making repetitive grasping movements paced by a metronome. Transcranial magnetic stimulation (TMS) mapping was performed before and after the mirror training to test for changes in CSE of the untrained hand. Self-reports suggested that the imagery training was effective in helping the participant to perform the mirror training task as instructed. Nonetheless, neither training type resulted in a significant change of TMS map area, nor was there an interaction between the groups. The results from the study revealed no effect of a single session of 16 min of either mirror training or mirror training enhanced by imagery on TMS map area. Despite the negative result of the present experiment, this does not suggest that either motor imagery or mirror training might be ineffective as a rehabilitation therapy. Further study is required to allow disentangling the role of imagery and action observation in mirror training so that mirror training can be further tailored to the individual according to their abilities. PMID:29311869
van de Ruit, Mark; Grey, Michael J
2017-01-01
Both motor imagery and mirror training have been used in motor rehabilitation settings to promote skill learning and plasticity. As motor imagery and mirror training are suggested to be closely linked, it was hypothesized that mirror training augmented by motor imagery would increase corticospinal excitability (CSE) significantly compared to mirror training alone. Forty-four participants were split over two experimental groups. Each participant visited the laboratory once to receive either mirror training alone or mirror training augmented with layered stimulus response training (LSRT), a type of motor imagery training. Participants performed 16 min of mirror training, making repetitive grasping movements paced by a metronome. Transcranial magnetic stimulation (TMS) mapping was performed before and after the mirror training to test for changes in CSE of the untrained hand. Self-reports suggested that the imagery training was effective in helping the participant to perform the mirror training task as instructed. Nonetheless, neither training type resulted in a significant change of TMS map area, nor was there an interaction between the groups. The results from the study revealed no effect of a single session of 16 min of either mirror training or mirror training enhanced by imagery on TMS map area. Despite the negative result of the present experiment, this does not suggest that either motor imagery or mirror training might be ineffective as a rehabilitation therapy. Further study is required to allow disentangling the role of imagery and action observation in mirror training so that mirror training can be further tailored to the individual according to their abilities.
Mastery Learning through Individualized Instruction: A Reinforcement Strategy
ERIC Educational Resources Information Center
Sagy, John; Ravi, R.; Ananthasayanam, R.
2009-01-01
The present study attempts to gauge the effect of individualized instructional methods as a reinforcement strategy for mastery learning. Among various individualized instructional methods, the study focuses on PIM (Programmed Instructional Method) and CAIM (Computer Assisted Instruction Method). Mastery learning is a process where students achieve…
Johnson, Heather A; Barrett, Laura
2017-01-01
The purpose of this study was to compare two pedagogical methods, active learning and passive instruction, to determine which is more useful in helping students to achieve the learning outcomes in a one-hour research skills instructional session. Two groups of high school students attended an instructional session to learn about consumer health resources and strategies to enhance their searching skills. The first group received passive instruction, and the second engaged in active learning. We assessed both groups' learning using 2 methods with differing complexity. A total of 59 students attended the instructional sessions (passive instruction, n=28; active learning, n=31). We found that the active learning group scored more favorably in four assessment categories. Active learning may help students engage with and develop a meaningful understanding of several resources in a single session. Moreover, when using a complex teaching strategy, librarians should be mindful to gauge learning using an equally complex assessment method.
Johnson, Heather A.; Barrett, Laura
2017-01-01
Objective The purpose of this study was to compare two pedagogical methods, active learning and passive instruction, to determine which is more useful in helping students to achieve the learning outcomes in a one-hour research skills instructional session. Methods Two groups of high school students attended an instructional session to learn about consumer health resources and strategies to enhance their searching skills. The first group received passive instruction, and the second engaged in active learning. We assessed both groups’ learning using 2 methods with differing complexity. A total of 59 students attended the instructional sessions (passive instruction, n=28; active learning, n=31). Results We found that the active learning group scored more favorably in four assessment categories. Conclusions Active learning may help students engage with and develop a meaningful understanding of several resources in a single session. Moreover, when using a complex teaching strategy, librarians should be mindful to gauge learning using an equally complex assessment method. PMID:28096745
Seidler, Katie J; Duncan, Ryan P; McNeely, Marie E; Hackney, Madeleine E; Earhart, Gammon M
2017-09-01
People with Parkinson disease (PD) demonstrate improvements in motor function following group tango classes, but report long commutes as a barrier to participation. To increase access, we investigated a telerehabilitation approach to group tango instruction. Twenty-six people with mild-to-moderate PD were assigned based on commute distance to either the telerehabilitation group (Telerehab) or an in-person instruction group (In-person). Both groups followed the same twice-weekly, 12-week curriculum with the same instructor. Feasibility metrics were participant retention, attendance and adverse events. Outcomes assessed were balance, PD motor sign severity and gait. Participant retention was 85% in both groups. Attendance was 87% in the Telerehab group and 84% in the In-person group. No adverse events occurred. Balance and motor sign severity improved significantly over time ( p < 0.001) in both groups, with no significant group × time effects. Gait did not significantly change. Since a priori feasibility criteria were met or exceeded, and there were no notable outcome differences between the two instruction approaches, this pilot study suggests a telerehabilitation approach to group tango class for people with PD is feasible and may have similar outcomes to in-person instruction.
Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G
2013-04-12
Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Applying Learning Theories and Instructional Design Models for Effective Instruction
ERIC Educational Resources Information Center
Khalil, Mohammed K.; Elkhider, Ihsan A.
2016-01-01
Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning…
Instructional Design Theory: Advancements from Cognitive Science and Instructional Technology.
ERIC Educational Resources Information Center
Tennyson, Robert D.
Scientific advancements in cognitive science and instructional technology extend the behaviorally-oriented learning paradigm of instructional design and management in three major areas: (1) analysis of information-to-be-learned; (2) means of evaluating learners; and (3) linkage of learning theory to instructional prescriptions. The two basic types…
Identifying Instructional Strategies Used to Design Mobile Learning in a Corporate Setting
ERIC Educational Resources Information Center
Jackson-Butler, Uletta
2016-01-01
The purpose of this qualitative embedded multiple case study was to describe what instructional strategies corporate instructional designers were using to design mobile learning and to understand from their experiences which instructional strategies they believed enhance learning. Participants were five instructional designers who were actively…
All Tapped Out: Touchscreen Interactivity and Young Children’s Word Learning
Russo-Johnson, Colleen; Troseth, Georgene; Duncan, Charlotte; Mesghina, Almaz
2017-01-01
Touchscreen devices differ from passive screen media in promoting physical interaction with events on the screen. Two studies examined how young children’s screen-directed actions related to self-regulation (Study 1) and word learning (Study 2). In Study 1, 30 2-year-old children’s tapping behaviors during game play were related to their self-regulation, measured using Carlson’s snack task: girls and children with high self-regulation tapped significantly less during instruction portions of an app (including object labeling events) than did boys and children with low self-regulation. Older preschoolers (N = 47, aged 4–6 years) tapped significantly less during instruction than 2-year-olds did. Study 2 explored whether the particular way in which 170 children (2–4 years of age) interacted with a touchscreen app affected their learning of novel object labels. Conditions in which children tapped or dragged a named object to move it across the screen required different amounts of effort and focus, compared to a non-interactive (watching) condition. Age by sex interactions revealed a particular benefit of dragging (a motorically challenging behavior) for preschool girls’ learning compared to that of boys, especially for girls older than age 2. Boys benefited more from watching than dragging. Children from low socioeconomic status families learned more object names when dragging objects versus tapping them, possibly because tapping is a prepotent response that does not require thoughtful attention. Parents and industry experts should consider age, sex, self-regulation, and the physical requirements of children’s engagement with touchscreens when designing and using educational content. PMID:28446895
The dissociable effects of punishment and reward on motor learning.
Galea, Joseph M; Mallia, Elizabeth; Rothwell, John; Diedrichsen, Jörn
2015-04-01
A common assumption regarding error-based motor learning (motor adaptation) in humans is that its underlying mechanism is automatic and insensitive to reward- or punishment-based feedback. Contrary to this hypothesis, we show in a double dissociation that the two have independent effects on the learning and retention components of motor adaptation. Negative feedback, whether graded or binary, accelerated learning. While it was not necessary for the negative feedback to be coupled to monetary loss, it had to be clearly related to the actual performance on the preceding movement. Positive feedback did not speed up learning, but it increased retention of the motor memory when performance feedback was withdrawn. These findings reinforce the view that independent mechanisms underpin learning and retention in motor adaptation, reject the assumption that motor adaptation is independent of motivational feedback, and raise new questions regarding the neural basis of negative and positive motivational feedback in motor learning.
Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.
McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L
2016-04-04
An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Butler, Andrew J; James, Thomas W; James, Karin Harman
2011-11-01
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer.
Langan, Jeanne; Seidler, Rachael D
2011-11-20
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer [10]. Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults [16]. Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings [12]. Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. Copyright © 2011 Elsevier B.V. All rights reserved.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer
Langan, Jeanne; Seidler, Rachael. D.
2011-01-01
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer (Seidler, 2007). Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults (Anguera et al., 2011). Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings (Anguera et al., 2010). Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. PMID:21784106
NASA Astrophysics Data System (ADS)
Hapsari, T.; Darhim; Dahlan, J. A.
2018-05-01
This research discusses the differentiated instruction, a mathematic learning which is as expected by the students in connection with the differentiated instruction itself, its implementation, and the students’ responses. This research employs a survey method which involves 62 students as the research respondents. The mathematics learning types required by the students and their responses to the differentiated instruction are examined through questionnaire and interview. The mathematics learning types in orderly required by the students, from the highest frequency cover the easily understood instructions, slowly/not rushing teaching, fun, not complicated, interspersed with humour, various question practices, not too serious, and conducive class atmosphere for the instructions. Implementing the differentiated instruction is not easy. The teacher should be able to constantly assess the students, s/he should have good knowledge of relevant materials and instructions, and properly prepare the instructions, although it is time-consuming. The differentiated instruction is implemented on the instructions of numerical pattern materials. The strategies implemented are flexible grouping, tiered assignment, and compacting. The students positively respond the differentiated learning instruction that they become more motivated and involved in the instruction.
McGregor, Heather R; Gribble, Paul L
2017-08-01
Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Sozcu, Omer Faruk
2014-01-01
This study examines the relationships between cognitive styles of field dependent learners with their attitudes towards e-learning (distance education) and instructional behavior in e-learning instruction. The Group Embedded Figures Test (GEFT) and the attitude survey (for students' preferences) towards e-learning instruction as distance education…
Designing Technology-Enabled Instruction to Utilize Learning Analytics
ERIC Educational Resources Information Center
Davies, Randall; Nyland, Robert; Bodily, Robert; Chapman, John; Jones, Brian; Young, Jay
2017-01-01
A key notion conveyed by those who advocate for the use of data to enhance instruction is an awareness that learning analytics has the potential to improve instruction and learning but is not currently reaching that potential. Gibbons (2014) suggested that a lack of learning facilitated by current technology-enabled instructional systems may be…
Psychosocial Modulators of Motor Learning in Parkinson’s Disease
Zemankova, Petra; Lungu, Ovidiu; Bares, Martin
2016-01-01
Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD) and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here, we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD. PMID:26973495
Special Focus: Effective Instruction in Reading. Strategies for Vocabulary Instruction.
ERIC Educational Resources Information Center
Peters, Ellen, Ed.; Dixon, Robert
1987-01-01
Research based suggestions are presented for effective vocabulary instruction strategies, including: learning new labels; learning concepts; and learning to learn meanings. Regardless of the method chosen, it is crucial that students: demonstrate generalization abilities; be given time to learn new material; periodically review what they learn;…
Feel, Imagine and Learn!--Haptic Augmented Simulation and Embodied Instruction in Physics Learning
ERIC Educational Resources Information Center
Han, In Sook
2010-01-01
The purpose of this study was to investigate the potentials and effects of an embodied instructional model in abstract concept learning. This embodied instructional process included haptic augmented educational simulation as an instructional tool to provide perceptual experiences as well as further instruction to activate those previous…
What Do Eye Gaze Metrics Tell Us about Motor Imagery?
Poiroux, Elodie; Cavaro-Ménard, Christine; Leruez, Stéphanie; Lemée, Jean Michel; Richard, Isabelle; Dinomais, Mickael
2015-01-01
Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to "spy" on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.
47 CFR 32.6112 - Motor vehicle expense.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Motor vehicle expense. 32.6112 Section 32.6112 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6112 Motor vehicle expense. (a...
Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice
Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.
2013-01-01
The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820
Ford, Paul R; Yates, Ian; Williams, A Mark
2010-03-01
We examined the practice activities and instructional behaviours employed by 25 youth soccer coaches during 70 different practice sessions. We evaluated the extent to which these activities and behaviours differ from those shown in contemporary research to best facilitate skill acquisition. Nine coaches worked with the under-9 years age group and eight coaches each with the under-13 and under-16 years age groups; nine of those coaches were employed at the elite level, nine at the sub-elite level, and seven at the non-elite level. Coaches had players spend more time in activities that were deemed less relevant to soccer match performance, termed "training form" (e.g. physical training, technique and skills practices), than activities deemed more relevant, termed "playing form" (e.g. small-sided/conditioned games and phase of play activities). Coaches provided high levels of instruction, feedback, and management, irrespective of the activity in which players engaged. Few differences in practice activities and instructional behaviours were reported across skill and age groups, implying the absence of any notable age- or skill-related progression. Findings are discussed with reference to recent research in the areas of skill acquisition, motor learning, and expert performance.
Authenticity in the Process of Learning about Instructional Design
ERIC Educational Resources Information Center
Wilson, Jay R.; Schwier, Richard A.
2009-01-01
Authentic learning is touted as a powerful learning approach, particularly in the context of problem-based learning (Savery, 2006). Teaching and learning in the area of instructional design appears to offer a strong fit between the tenets of authentic learning and the practice of instructional design. This paper details the efforts to broaden and…
Liberating Learning Object Design from the Learning Style of Student Instructional Designers
ERIC Educational Resources Information Center
Akpinar, Yavuz
2007-01-01
Learning objects are a new form of learning resource, and the design of these digital environments has many facets. To investigate senior instructional design students' use of reflection tools in designing learning objects, a series of studies was conducted using the Reflective Action Instructional Design and Learning Object Review Instrument…
Computer-Assisted Programmed Instruction in Textiles.
ERIC Educational Resources Information Center
Kean, Rita C.; Laughlin, Joan
Students in an introductory textiles course at the University of Nebraska's College of Home Economics actively participate in the learning experience through a self-paced instructional technique. Specific learning packets were developed adapting programmed instructional learning materials to computer assisted instruction (CAI). A study booklet…
Motor Sequence Learning-Induced Neural Efficiency in Functional Brain Connectivity
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2016-01-01
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. PMID:27845228
Dissociation of visual associative and motor learning in Drosophila at the flight simulator.
Wang, Shunpeng; Li, Yan; Feng, Chunhua; Guo, Aike
2003-08-29
Ever since operant conditioning was studied experimentally, the relationship between associative learning and possible motor learning has become controversial. Although motor learning and its underlying neural substrates have been extensively studied in mammals, it is still poorly understood in invertebrates. The visual discriminative avoidance paradigm of Drosophila at the flight simulator has been widely used to study the flies' visual associative learning and related functions, but it has not been used to study the motor learning process. In this study, newly-designed data analysis was employed to examine the flies' solitary behavioural variable that was recorded at the flight simulator-yaw torque. Analysis was conducted to explore torque distributions of both wild-type and mutant flies in conditioning, with the following results: (1) Wild-type Canton-S flies had motor learning performance in conditioning, which was proved by modifications of the animal's behavioural mode in conditioning. (2) Repetition of training improved the motor learning performance of wild-type Canton-S flies. (3) Although mutant dunce(1) flies were defective in visual associative learning, they showed essentially normal motor learning performance in terms of yaw torque distribution in conditioning. Finally, we tentatively proposed that both visual associative learning and motor learning were involved in the visual operant conditioning of Drosophila at the flight simulator, that the two learning forms could be dissociated and they might have different neural bases.
Robert, Maxime T; Sambasivan, Krithika; Levin, Mindy F
2017-01-01
Improvment of upper limb motor skills occurs through motor learning that can be enhanced by providing extrinsic feedback. Different types and frequencies of feedback are discussed but specific guidelines for use of feedback for motor learning in typically-developing (TD) children and children with Cerebral Palsy (CP) are not available. Identify the most effective modalities and frequencies of feedback for improving upper limb motor skills in TD children and children with CP. Ovid MEDLINE, Cochrane, PEDro and PubMed-NCBI were searched from 1950 to December 2015 to identify English-language articles addressing the role of extrinsic feedback on upper limb motor learning in TD children and children with CP. Nine studies were selected with a total of 243 TD children and 102 children with CP. Study quality was evaluated using the Downs and Black scale and levels of evidence were determined with Sackett's quality ratings. There was a lack of consistency in the modalities and frequencies of feedback delivery used to improve motor learning in TD children and in children with CP. Moreover, the complexity of the task to be learned influenced the degree of motor learning achieved. A better understanding of the influence of feedback on motor learning is needed to optimize motor skill acquisition in children with CP.
Motor cortex is required for learning but not executing a motor skill
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.
2018-01-01
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304
Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task
NASA Astrophysics Data System (ADS)
Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.
2000-06-01
When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.
Is Implicit Motor Learning Preserved after Stroke? A Systematic Review with Meta-Analysis
Kal, E.; Winters, M.; van der Kamp, J.; Houdijk, H.; Groet, E.; van Bennekom, C.; Scherder, E.
2016-01-01
Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients’ automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved post-stroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts. PMID:27992442
Atlas, Lauren Y; Doll, Bradley B; Li, Jian; Daw, Nathaniel D; Phelps, Elizabeth A
2016-01-01
Socially-conveyed rules and instructions strongly shape expectations and emotions. Yet most neuroscientific studies of learning consider reinforcement history alone, irrespective of knowledge acquired through other means. We examined fear conditioning and reversal in humans to test whether instructed knowledge modulates the neural mechanisms of feedback-driven learning. One group was informed about contingencies and reversals. A second group learned only from reinforcement. We combined quantitative models with functional magnetic resonance imaging and found that instructions induced dissociations in the neural systems of aversive learning. Responses in striatum and orbitofrontal cortex updated with instructions and correlated with prefrontal responses to instructions. Amygdala responses were influenced by reinforcement similarly in both groups and did not update with instructions. Results extend work on instructed reward learning and reveal novel dissociations that have not been observed with punishments or rewards. Findings support theories of specialized threat-detection and may have implications for fear maintenance in anxiety. DOI: http://dx.doi.org/10.7554/eLife.15192.001 PMID:27171199
How Explicit and Implicit Test Instructions in an Implicit Learning Task Affect Performance
Witt, Arnaud; Puspitawati, Ira; Vinter, Annie
2013-01-01
Typically developing children aged 5 to 8 years were exposed to artificial grammar learning. Following an implicit exposure phase, half of the participants received neutral instructions at test while the other half received instructions making a direct, explicit reference to the training phase. We first aimed to assess whether implicit learning operated in the two test conditions. We then evaluated the differential impact of age on learning performances as a function of test instructions. The results showed that performance did not vary as a function of age in the implicit instructions condition, while age effects emerged when explicit instructions were employed at test. However, performance was affected differently by age and the instructions given at test, depending on whether the implicit learning of short or long units was assessed. These results suggest that the claim that the implicit learning process is independent of age needs to be revised. PMID:23326409
Neural substrates underlying stimulation-enhanced motor skill learning after stroke
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the ‘circuit game’, involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention’s enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. PMID:25488186
Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.
ERIC Educational Resources Information Center
Baylor, Amy L.
2002-01-01
Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…
ERIC Educational Resources Information Center
Baeten, Marlies; Dochy, Filip; Struyven, Katrien; Parmentier, Emmeline; Vanderbruggen, Anne
2016-01-01
The use of student-centred learning environments in education has increased. This study investigated student teachers' instructional preferences for these learning environments and how these preferences are related to their approaches to learning. Participants were professional Bachelor students in teacher education. Instructional preferences and…
Stöckel, Tino; Summers, Jeffery J.; Hinder, Mark R.
2015-01-01
Intermittent theta burst stimulation (iTBS) has the potential to enhance corticospinal excitability (CSE) and subsequent motor learning. However, the effects of iTBS following motor learning are unknown. The purpose of the present study was to explore the effect of iTBS on CSE and performance following motor learning. Therefore twenty-four healthy participants practiced a ballistic motor task for a total of 150 movements. iTBS was subsequently applied to the trained motor cortex (STIM group) or the vertex (SHAM group). Performance and CSE were assessed before motor learning and before and after iTBS. Training significantly increased performance and CSE in both groups. In STIM group participants, subsequent iTBS significantly reduced motor performance with smaller reductions in CSE. CSE changes as a result of motor learning were negatively correlated with both the CSE changes and performance changes as a result of iTBS. No significant effects of iTBS were found for SHAM group participants. We conclude that iTBS has the potential to degrade prior motor learning as a function of training-induced CSE changes. That means the expected LTP-like effects of iTBS are reversed following motor learning. PMID:26167305
Stöckel, Tino; Summers, Jeffery J; Hinder, Mark R
2015-01-01
Intermittent theta burst stimulation (iTBS) has the potential to enhance corticospinal excitability (CSE) and subsequent motor learning. However, the effects of iTBS following motor learning are unknown. The purpose of the present study was to explore the effect of iTBS on CSE and performance following motor learning. Therefore twenty-four healthy participants practiced a ballistic motor task for a total of 150 movements. iTBS was subsequently applied to the trained motor cortex (STIM group) or the vertex (SHAM group). Performance and CSE were assessed before motor learning and before and after iTBS. Training significantly increased performance and CSE in both groups. In STIM group participants, subsequent iTBS significantly reduced motor performance with smaller reductions in CSE. CSE changes as a result of motor learning were negatively correlated with both the CSE changes and performance changes as a result of iTBS. No significant effects of iTBS were found for SHAM group participants. We conclude that iTBS has the potential to degrade prior motor learning as a function of training-induced CSE changes. That means the expected LTP-like effects of iTBS are reversed following motor learning.
Smith, A Russell; Cavanaugh, Catherine; Jones, Joyce; Venn, John; Wilson, William
2006-01-01
Learning outcomes may improve in graduate healthcare students when attention is given to individual learning styles. Interactive multimedia is one tool shown to increase success in meeting the needs of diverse learners. The purpose of this study was to examine the effect of learning style and type of instruction on physical therapy students' cognitive and psychomotor performance. Participants were obtained by a sample of convenience with students recruited from two physical therapy programs. Twenty-seven students volunteered to participate from Program 1. Twenty-three students volunteered to participate from Program 2. Gregorc learning styles were identified through completion of the Gregorc Style Delineator. Students were randomly assigned to one of two instructional strategies: 1) instructional CD or 2) live demonstration. Differences in cognitive or psychomotor performance following instructional multimedia based on learning style were not demonstrated in this study. Written examination scores improved with both instructional strategies demonstrating no differences between the strategies. Practical examination ankle scores were significantly higher in participants receiving CD instruction than in participants receiving live presentation. Learning style did not significantly affect this improvement. Program 2 performed significantly better on written knee and practical knee and ankle examinations. Learning style had no significant effect on student performance following instruction in clinical skills via interactive multimedia. Future research may include additional measurement instruments assessing other models of learning styles and possible interaction of learning style and instructional strategy on students over longer periods of time, such as a semester or an entire curriculum.
ERIC Educational Resources Information Center
Chiu, Thomas K. F.; Churchill, Daniel
2016-01-01
Literature suggests using multimedia learning principles in the design of instructional material. However, these principles may not be sufficient for the design of learning objects for concept learning in mathematics. This paper reports on an experimental study that investigated the effects of an instructional approach, which includes two teaching…
ERIC Educational Resources Information Center
McCormick, Sandra; Becker, Evelyn Z.
1996-01-01
Reviews investigations related to word learning of learning disabled students. Finds that direct word study leads to reading improvement for learning disabled pupils, but that indirect instruction also provides assistance. Finds also that word knowledge instruction not only promotes word learning, but can heighten learning disabled students'…
Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation
Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger
2015-01-01
Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease. PMID:25938462
Connecting Effective Instruction and Technology. Intel-elebration: Safari.
ERIC Educational Resources Information Center
Burton, Larry D.; Prest, Sharon
Intel-ebration is an attempt to integrate the following research-based instructional frameworks and strategies: (1) dimensions of learning; (2) multiple intelligences; (3) thematic instruction; (4) cooperative learning; (5) project-based learning; and (6) instructional technology. This paper presents a thematic unit on safari, using the…
Young Athletes: A Special Olympics Motor Skill Development Program
ERIC Educational Resources Information Center
Favazza, Paddy C.; Siperstein, Gary N.
2013-01-01
While motor skills develop naturally among most typically developing preschoolers, young children with disabilities often experience deficits in this area. Therefore, it is important that children with disabilities are provided with "direct and intentional instruction" for motor skill development during the preschool years. One program…
Schmidt, James R; De Houwer, Jan
2012-12-01
In three experiments, each of a set colour-unrelated distracting words was presented most often in a particular target print colour (e.g., "month" most often in red). In Experiment 1, half of the participants were told the word-colour contingencies in advance (instructed) and half were not (control). The instructed group showed a larger learning effect. This instruction effect was fully explained by increases in subjective awareness with instruction. In Experiment 2, contingency instructions were again given, but no contingencies were actually present. Although many participants claimed to be aware of these (non-existent) contingencies, they did not produce an instructed contingency effect. In Experiment 3, half of the participants were given contingency instructions that did not correspond to the correct contingencies. Participants with these false instructions learned the actual contingencies worse than controls. Collectively, our results suggest that conscious contingency knowledge might play a moderating role in the strength of implicit learning. Copyright © 2012 Elsevier Inc. All rights reserved.
Classification/Categorization Model of Instruction for Learning Disabled Students.
ERIC Educational Resources Information Center
Freund, Lisa A.
1987-01-01
Learning-disabled students deficient in classification and categorization require specific instruction in these skills. Use of a classification/categorization instructional model improved the questioning strategies of 60 learning-disabled students, aged 10 to 12. The use of similar models is discussed as a basis for instruction in science, social…
Efficacy of Learning Strategies Instruction in Adult Education
ERIC Educational Resources Information Center
Hock, Michael F.; Mellard, Daryl F.
2011-01-01
Results from randomized controlled trials of learning strategies instruction with 375 adult basic education participants are reported. Reading outcomes from whole group strategic instruction in 1 of 4 learning strategies were compared to outcomes of reading instruction delivered in the context of typical adult education units on social studies,…
Science Learning and Instruction: Taking Advantage of Technology to Promote Knowledge Integration
ERIC Educational Resources Information Center
Linn, Marcia C.; Eylon, Bat-Sheva
2011-01-01
"Science Learning and Instruction" describes advances in understanding the nature of science learning and their implications for the design of science instruction. The authors show how design patterns, design principles, and professional development opportunities coalesce to create and sustain effective instruction in each primary scientific…
The Effects of Goal-Oriented Instructions in Digital Game-Based Learning
ERIC Educational Resources Information Center
Erhel, Séverine; Jamet, Eric
2016-01-01
Few studies have investigated the effects of the instructions provided in educational computer games on cognitive processing and learning outcomes. In our experiment, we sought to compare the effects on learning outcomes of two different types of goal-oriented instructions: "mastery-goal" instructions, which prompt learners to develop…
Instructional Patterns: Strategies for Maximizing Student Learning [with CD-ROM
ERIC Educational Resources Information Center
Holt, Larry Charles; Kysilka, Marcella L.
2005-01-01
"Instructional Patterns: Strategies for Maximizing Student Learning" examines instruction from the learners' point of view by showing how instructional patterns can be used to maximize the potential for students to learn. This book explores the interactive patterns that exist in today's classroom and demonstrates how teachers can…
Time and learning efficiency in Internet-based learning: a systematic review and meta-analysis.
Cook, David A; Levinson, Anthony J; Garside, Sarah
2010-12-01
Authors have claimed that Internet-based instruction promotes greater learning efficiency than non-computer methods. determine, through a systematic synthesis of evidence in health professions education, how Internet-based instruction compares with non-computer instruction in time spent learning, and what features of Internet-based instruction are associated with improved learning efficiency. we searched databases including MEDLINE, CINAHL, EMBASE, and ERIC from 1990 through November 2008. STUDY SELECTION AND DATA ABSTRACTION we included all studies quantifying learning time for Internet-based instruction for health professionals, compared with other instruction. Reviewers worked independently, in duplicate, to abstract information on interventions, outcomes, and study design. we identified 20 eligible studies. Random effects meta-analysis of 8 studies comparing Internet-based with non-Internet instruction (positive numbers indicating Internet longer) revealed pooled effect size (ES) for time -0.10 (p = 0.63). Among comparisons of two Internet-based interventions, providing feedback adds time (ES 0.67, p =0.003, two studies), and greater interactivity generally takes longer (ES 0.25, p = 0.089, five studies). One study demonstrated that adapting to learner prior knowledge saves time without significantly affecting knowledge scores. Other studies revealed that audio narration, video clips, interactive models, and animations increase learning time but also facilitate higher knowledge and/or satisfaction. Across all studies, time correlated positively with knowledge outcomes (r = 0.53, p = 0.021). on average, Internet-based instruction and non-computer instruction require similar time. Instructional strategies to enhance feedback and interactivity typically prolong learning time, but in many cases also enhance learning outcomes. Isolated examples suggest potential for improving efficiency in Internet-based instruction.
NASA Astrophysics Data System (ADS)
Blums, Angela
The present study examines instructional approaches and cognitive factors involved in elementary school children's thinking and learning the Control of Variables Strategy (CVS), a critical aspect of scientific reasoning. Previous research has identified several features related to effective instruction of CVS, including using a guided learning approach, the use of self-reflective questions, and learning in individual and group contexts. The current study examined the roles of procedural and conceptual instruction in learning CVS and investigated the role of executive function in the learning process. Additionally, this study examined how learning to identify variables is a part of the CVS process. In two studies (individual and classroom experiments), 139 third, fourth, and fifth grade students participated in hands-on and paper and pencil CVS learning activities and, in each study, were assigned to either a procedural instruction, conceptual instruction, or control (no instruction) group. Participants also completed a series of executive function tasks. The study was carried out with two parts--Study 1 used an individual context and Study 2 was carried out in a group setting. Results indicated that procedural and conceptual instruction were more effective than no instruction, and the ability to identify variables was identified as a key piece to the CVS process. Executive function predicted ability to identify variables and predicted success on CVS tasks. Developmental differences were present, in that older children outperformed younger children on CVS tasks, and that conceptual instruction was slightly more effective for older children. Some differences between individual and group instruction were found, with those in the individual context showing some advantage over the those in the group setting in learning CVS concepts. Conceptual implications about scientific thinking and practical implications in science education are discussed.
6 Steps to Learning Leadership
ERIC Educational Resources Information Center
Toll, Cathy A.
2010-01-01
A generation of principals has heard the mantra that they should be instructional leaders, but rarely have they been encouraged to be learning leaders. While an instructional leader pays attention to the planning, implementation, and evaluation of instruction, a learning leader focuses on what is learned and how it is learned. These roles are not…
Kantak, Shailesh S; Winstein, Carolee J
2012-03-01
Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Sonoma Developmental Curriculum: Instructional Programs. Volume II.
ERIC Educational Resources Information Center
Adams, Patrick, Ed.; And Others
The guide presents instructional materials for teaching developmentally delayed children from birth to 6 years old. The following five instructional areas are covered (with sample activities in parentheses): gross motor (demonstrates a tonic-neck reflex, demonstrates ability to bear almost full weight, and crawls backward down three steps); fine…
Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals
Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C.; Nielsen, Jens Bo
2011-01-01
Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals. PMID:21408054
Sleep benefits consolidation of visuo-motor adaptation learning in older adults.
Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C
2016-02-01
Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.
Chauvel, Guillaume; Maquestiaux, François; Hartley, Alan A; Joubert, Sven; Didierjean, André; Masters, Rich S W
2012-01-01
Can motor learning be equivalent in younger and older adults? To address this question, 48 younger (M = 23.5 years) and 48 older (M = 65.0 years) participants learned to perform a golf-putting task in two different motor learning situations: one that resulted in infrequent errors or one that resulted in frequent errors. The results demonstrated that infrequent-error learning predominantly relied on nondeclarative, automatic memory processes whereas frequent-error learning predominantly relied on declarative, effortful memory processes: After learning, infrequent-error learners verbalized fewer strategies than frequent-error learners; at transfer, a concurrent, attention-demanding secondary task (tone counting) left motor performance of infrequent-error learners unaffected but impaired that of frequent-error learners. The results showed age-equivalent motor performance in infrequent-error learning but age deficits in frequent-error learning. Motor performance of frequent-error learners required more attention with age, as evidenced by an age deficit on the attention-demanding secondary task. The disappearance of age effects when nondeclarative, automatic memory processes predominated suggests that these processes are preserved with age and are available even early in motor learning.
Modulation of motor performance and motor learning by transcranial direct current stimulation.
Reis, Janine; Fritsch, Brita
2011-12-01
Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.
NASA Astrophysics Data System (ADS)
Gaskill, Martonia; McNulty, Anastasia; Brooks, David W.
2006-04-01
WebQuests are activities in which students use Web resources to learn about school topics. WebQuests are advocated as constructivist activities and ones generally well regarded by students. Two experiments were conducted in school settings to compare learning using WebQuests versus conventional instruction. Students and teachers both enjoyed WebQuest instruction and spoke highly of it. In one experiment, however, conventional instruction led to significantly greater student learning. In the other, there were no significant differences in the learning outcomes between conventional versus WebQuest-based instruction.
Utilizing Oral-Motor Feedback in Auditory Conceptualization.
ERIC Educational Resources Information Center
Howard, Marilyn
The Auditory Discrimination in Depth (ADD) program, an oral-motor approach to beginning reading instruction, trains first grade children in auditory skills by a process in which language and oral-motor feedback are used to integrate auditory properties with visual properties. This emphasis of the ADD program makes the child's perceptual…
Does Computer-Based Motor Skill Assessment Training Transfer to Live Assessing?
ERIC Educational Resources Information Center
Kelly, Luke E.; Taliaferro, Andrea; Krause, Jennifer
2012-01-01
Developing competency in motor skill assessment has been identified as a critical need in physical educator preparation. We conducted this study to evaluate (a) the effectiveness of a web-based instructional program--Motor Skill Assessment Program (MSAP)--for developing assessment competency, and specifically (b) whether competency developed by…
Cantarero, Gabriela; Lloyd, Ashley
2013-01-01
Plasticity of synaptic connections in the primary motor cortex (M1) is thought to play an essential role in learning and memory. Human and animal studies have shown that motor learning results in long-term potentiation (LTP)-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. Moreover, biochemical processes essential for LTP are also crucial for certain types of motor learning and memory. Thus, it has been speculated that the occlusion of LTP-like plasticity after learning, indicative of how much LTP was used to learn, is essential for retention. Here we provide supporting evidence of it in humans. Induction of LTP-like plasticity can be abolished using a depotentiation protocol (DePo) consisting of brief continuous theta burst stimulation. We used transcranial magnetic stimulation to assess whether application of DePo over M1 after motor learning affected (1) occlusion of LTP-like plasticity and (2) retention of motor skill learning. We found that the magnitude of motor memory retention is proportional to the magnitude of occlusion of LTP-like plasticity. Moreover, DePo stimulation over M1, but not over a control site, reversed the occlusion of LTP-like plasticity induced by motor learning and disrupted skill retention relative to control subjects. Altogether, these results provide evidence of a link between occlusion of LTP-like plasticity and retention and that this measure could be used as a biomarker to predict retention. Importantly, attempts to reverse the occlusion of LTP-like plasticity after motor learning comes with the cost of reducing retention of motor learning. PMID:23904621
Motor sequence learning-induced neural efficiency in functional brain connectivity.
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2017-02-15
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrifying the motor engram: effects of tDCS on motor learning and control
de Xivry, Jean-Jacques Orban; Shadmehr, Reza
2014-01-01
Learning to control our movements accompanies neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e. the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: 1) firing rates are increased by anodal polarization and decreased by cathodal polarization, 2) anodal polarization strengthens newly formed associations, and 3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178
Electrifying the motor engram: effects of tDCS on motor learning and control.
Orban de Xivry, Jean-Jacques; Shadmehr, Reza
2014-11-01
Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.
Motor cortex is required for learning but not for executing a motor skill.
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P
2015-05-06
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Refinement of learned skilled movement representation in motor cortex deep output layer
Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho
2017-01-01
The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433
Kleynen, Melanie; Braun, Susy M.; Bleijlevens, Michel H.; Lexis, Monique A.; Rasquin, Sascha M.; Halfens, Jos; Wilson, Mark R.; Beurskens, Anna J.; Masters, Rich S. W.
2014-01-01
Background Motor learning is central to domains such as sports and rehabilitation; however, often terminologies are insufficiently uniform to allow effective sharing of experience or translation of knowledge. A study using a Delphi technique was conducted to ascertain level of agreement between experts from different motor learning domains (i.e., therapists, coaches, researchers) with respect to definitions and descriptions of a fundamental conceptual distinction within motor learning, namely implicit and explicit motor learning. Methods A Delphi technique was embedded in multiple rounds of a survey designed to collect and aggregate informed opinions of 49 international respondents with expertise related to motor learning. The survey was administered via an online survey program and accompanied by feedback after each round. Consensus was considered to be reached if ≥70% of the experts agreed on a topic. Results Consensus was reached with respect to definitions of implicit and explicit motor learning, and seven common primary intervention strategies were identified in the context of implicit and explicit motor learning. Consensus was not reached with respect to whether the strategies promote implicit or explicit forms of learning. Discussion The definitions and descriptions agreed upon may aid translation and transfer of knowledge between domains in the field of motor learning. Empirical and clinical research is required to confirm the accuracy of the definitions and to explore the feasibility of the strategies that were identified in research, everyday practice and education. PMID:24968228
Improving Learning in Rural Schools through Instructional Computing.
ERIC Educational Resources Information Center
Friedman, Daniel
Effective individualized learning continues to be the primary educational goal of small-rural schools. Three thrusts towards individualized learning--non-graded instruction, an emphasis on basic skills, and socially relevant education--can be enhanced by instructional computing, the use of microcomputers to facilitate learning. However, most…
Enhancing an Instructional Design Model for Virtual Reality-Based Learning
ERIC Educational Resources Information Center
Chen, Chwen Jen; Teh, Chee Siong
2013-01-01
In order to effectively utilize the capabilities of virtual reality (VR) in supporting the desired learning outcomes, careful consideration in the design of instruction for VR learning is crucial. In line with this concern, previous work proposed an instructional design model that prescribes instructional methods to guide the design of VR-based…
ERIC Educational Resources Information Center
Mitsugi, Makoto
2017-01-01
The purpose of this study is to investigate the effectiveness of two instruction methods for teaching polysemous English prepositions ("at, in, on") and to explore learners' perception on learning tools used in the instruction when learning polysemous words. The first study investigated the effectiveness of schema-based instruction…
Exploring Mathematics Problems Prepares Children to Learn from Instruction
ERIC Educational Resources Information Center
DeCaro, Marci S.; Rittle-Johnson, Bethany
2012-01-01
Both exploration and explicit instruction are thought to benefit learning in many ways, but much less is known about how the two can be combined. We tested the hypothesis that engaging in exploratory activities prior to receiving explicit instruction better prepares children to learn from the instruction. Children (159 second- to fourth-grade…
Nielsen, Kathleen; Henderson, Sheila; Barnett, Anna L; Abbott, Robert D; Berninger, Virginia
2018-01-01
Movement, which draws on motor skills and executive functions for managing them, plays an important role in literacy learning (e.g., movement of mouth during oral reading and movement of hand and fingers during writing); but relatively little research has focused on movement skills in students with specific learning disabilities as the current study did. Parents completed normed Movement Assessment Battery for Children Checklist, 2nd edition (ABC-2), ratings and their children in grades 4 to 9 ( M = 11 years, 11 months; 94 boys, 61 girls) completed diagnostic assessment used to assign them to diagnostic groups: control typical language learning ( N = 42), dysgraphia (impaired handwriting) ( N = 29), dyslexia (impaired word decoding/reading and spelling) ( N = 65), or oral and written language learning disability (OWL LD) (impaired syntax in oral and written language) ( N = 19). The research aims were to (a) correlate the Movement ABC-2 parent ratings for Scale A Static/Predictable Environment (15 items) and Scale B Dynamic/Unpredictable Environment (15 items) with reading and writing achievement in total sample varying within and across different skills; and (b) compare each specific learning disability group with the control group on Movement ABC-2 parent ratings for Scale A, Scale B, and Scale C Movement-Related (Non-Motor Executive Functions, or Self-Efficacy, or Affect) (13 items). At least one Movement ABC-2 parent rating was correlated with each assessed literacy achievement skill. Each of three specific learning disability groups differed from the control group on two Scale A (static/predictable environment) items (fastens buttons and forms letters with pencil or pen) and on three Scale C items (distractibility, overactive, and underestimates own ability); but only OWL LD differed from control on Scale B (dynamic/unpredictable environment) items. Applications of findings to assessment and instruction for students ascertained for and diagnosed with persisting specific learning disabilities in literacy learning, and future research directions are discussed.
ERIC Educational Resources Information Center
Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.
2009-01-01
Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…
Acquisition of Internal Models of Motor Tasks in Children with Autism
ERIC Educational Resources Information Center
Gidley Larson, Jennifer C.; Bastian, Amy J.; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H.
2008-01-01
Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to…
Neural substrates underlying stimulation-enhanced motor skill learning after stroke.
Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves
2015-01-01
Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Peine, Arne; Kabino, Klaus; Spreckelsen, Cord
2016-06-03
Modernised medical curricula in Germany (so called "reformed study programs") rely increasingly on alternative self-instructed learning forms such as e-learning and curriculum-guided self-study. However, there is a lack of evidence that these methods can outperform conventional teaching methods such as lectures and seminars. This study was conducted in order to compare extant traditional teaching methods with new instruction forms in terms of learning effect and student satisfaction. In a randomised trial, 244 students of medicine in their third academic year were assigned to one of four study branches representing self-instructed learning forms (e-learning and curriculum-based self-study) and instructed learning forms (lectures and seminars). All groups participated in their respective learning module with standardised materials and instructions. Learning effect was measured with pre-test and post-test multiple-choice questionnaires. Student satisfaction and learning style were examined via self-assessment. Of 244 initial participants, 223 completed the respective module and were included in the study. In the pre-test, the groups showed relatively homogenous scores. All students showed notable improvements compared with the pre-test results. Participants in the non-self-instructed learning groups reached scores of 14.71 (seminar) and 14.37 (lecture), while the groups of self-instructed learners reached higher scores with 17.23 (e-learning) and 15.81 (self-study). All groups improved significantly (p < .001) in the post-test regarding their self-assessment, led by the e-learning group, whose self-assessment improved by 2.36. The study shows that students in modern study curricula learn better through modern self-instructed methods than through conventional methods. These methods should be used more, as they also show good levels of student acceptance and higher scores in personal self-assessment of knowledge.
Chen, David D; Pei, Laura; Chan, John S Y; Yan, Jin H
2012-10-01
Recent research using deliberate amplification of spatial errors to increase motor learning leads to the question of whether amplifying temporal errors may also facilitate learning. We investigated transfer effects caused by manipulating temporal constraints on learning a two-choice reaction time (CRT) task with varying degrees of stimulus-response compatibility. Thirty-four participants were randomly assigned to one of the three groups and completed 120 trials during acquisition. For every fourth trial, one group was instructed to decrease CRT by 50 msec. relative to the previous trial and a second group was instructed to increase CRT by 50 msec. The third group (the control) was told not to change their responses. After a 5-min. break, participants completed a 40-trial no-feedback transfer test. A 40-trial delayed transfer test was administered 24 hours later. During acquisition, the Decreased Reaction Time group responded faster than the two other groups, but this group also made more errors than the other two groups. In the 5-min. delayed test (immediate transfer), the Decreased Reaction Time group had faster reaction times than the other two groups, while for the 24-hr. delayed test (delayed transfer), both the Decreased Reaction Time group and Increased Reaction Time group had significantly faster reaction times than the control. For delayed transfer, both Decreased and Increased Reaction Time groups reacted significantly faster than the control group. Analyses of error scores in the transfer tests indicated revealed no significant group differences. Results were discussed with regard to the notion of practice variability and goal-setting benefits.
Agency attributions of mental effort during self-regulated learning.
Koriat, Asher
2018-04-01
Previous results suggest that the monitoring of one's own performance during self-regulated learning is mediated by self-agency attributions and that these attributions can be influenced by poststudy effort-framing instructions. These results pose a challenge to the study of issues of self-agency in metacognition when the objects of self-regulation are mental operations rather than motor actions that have observable outcomes. When participants studied items in Experiment 1 under time pressure, they invested greater study effort in the easier items in the list. However, the effects of effort framing were the same as when learners typically invest more study effort in the more difficult items: Judgments of learning (JOLs) decreased with effort when instructions biased the attribution of effort to nonagentic sources but increased when they biased attribution to agentic sources. However, the effects of effort framing were constrained by parameters of the study task: Interitem differences in difficulty constrained the attribution of effort to agentic regulation (Experiment 2) whereas interitem differences in the incentive for recall constrained the attribution of effort to nonagentic sources (Experiment 3). The results suggest that the regulation and attribution of effort during self-regulated learning occur within a module that is dissociated from the learner's superordinate agenda but is sensitive to parameters of the task. A model specifies the stage at which effort framing affects the effort-JOL relationship by biasing the attribution of effort to agentic or nonagentic sources. The potentialities that exist in metacognition for the investigation of issues of self-agency are discussed.
ERIC Educational Resources Information Center
Mitchem, Katherine; Koury, Kevin; Fitzgerald, Gail; Hollingsead, Candice; Miller, Kevin; Tsai, Hui-Hsien; Zha, Shenghua
2009-01-01
Interactive, multimedia cases with technology supports present new ways of teaching and learning in teacher education. In this mixed-methods, naturalistic study, the authors investigate how and what participants learn from multimedia cases and, in particular, how instructional implementation affects learning outcomes from multimedia cases.…
School to community: service learning in hospitaliy and tourism
Kimberly Monk; Jessica Bourdeau; Michele Capra
2007-01-01
In the effort to augment hospitality and tourism education beyond classroom instruction and internships, the added instructional methodology of community service learning is suggested. Service learning is an instructional method where students learn and develop through active participation in organized experiences that meet actual needs, increasing their sense of...
ERIC Educational Resources Information Center
Yang, Pei-Ling; Wang, Ai-Ling
2015-01-01
The present study aims to investigate the relationship among EFL college learners' language learning strategies, English self-efficacy, and explicit strategy instruction from the perspectives of Social Cognitive Theory. Three constructs, namely language learning strategies, English learning self-efficacy, and explicit strategy instruction, were…
Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children
Shiller, Douglas M.; Rochon, Marie-Lyne
2015-01-01
Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067
Dissociable effects of practice variability on learning motor and timing skills.
Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline
2018-01-01
Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a dissociable effect of practice variability on learning complex skills that involve both motor and timing constraints.
Triadic instruction of chained food preparation responses: acquisition and observational learning.
Griffen, A K; Wolery, M; Schuster, J W
1992-01-01
This research examined whether constant time delay would be effective in teaching students with moderate mental retardation in triads to perform chained tasks and whether observational learning would occur. Three chained snack preparation tasks were identified, and each student was directly taught one task. The other 2 students observed the instruction. The instructed student told the observers to watch and to turn pages of a pictorial recipe book. The teacher provided frequent praise to the instructed student based on performance and to the observers for watching the instruction and turning pages. A multiple probe design across students and tasks was used to evaluate the instruction. The results indicated that each student learned the skill he or she was taught directly, and the observers learned nearly all of the steps of the chains they observed. The implications for classroom instruction and future research in observational learning are discussed. PMID:1533856
Strategy Instruction in Mathematics.
ERIC Educational Resources Information Center
Goldman, Susan R.
1989-01-01
Experiments in strategy instruction for mathematics have been conducted using three models (direct instruction, self-instruction, and guided learning) applied to the tasks of computation and word problem solving. Results have implications for effective strategy instruction for learning disabled students. It is recommended that strategy instruction…
The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model
ERIC Educational Resources Information Center
Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma
2015-01-01
The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…
Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.
2010-01-01
Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908
Instruction in high schools: the evidence and the challenge.
Corcoran, Tom; Silander, Megan
2009-01-01
The combined effects of standards-based reforms and accountability demands arising from recent technological and economic changes, say Tom Corcoran and Megan Silander, are requiring high schools to accomplish something they have never been required to do-ensure that substantially all students achieve at a relatively high level. Meeting that challenge, say the authors, will require high schools to improve the effectiveness of their core technology-instruction. The authors first examine how organizational structures affect instruction. Most high schools, they say, organize instruction by subject or discipline, thus encouraging an isolated and independent approach to teaching rather than one in which teachers are guided by a shared vision or goals. Many schools have focused on increasing teacher collaboration, often through teaming, interdisciplinary teaching, or professional learning communities. Citing limited evidence that these reforms improve instruction and learning, Corcoran and Silander urge researchers to examine whether the changes help schools implement specific instructional reforms and support sustained efforts to improve instruction. Next the authors explore the effects on student learning of instructional strategies such as interdisciplinary teaching, cooperative learning, project-based learning, adaptive instruction, inquiry, and dialogic teaching. The evidence suggests the power of well-designed student grouping strategies, of allowing students to express their ideas and questions, and of offering students challenging tasks. But, the authors say, less than half of American high school students report working in groups, and little class time is devoted to student-centered discussions. The authors conclude that schools should promote the use of proven instructional practices. In addition, teachers should systematically monitor how students vary in what they are learning and adapt their instruction in response to students' progress and needs, in the process learning more about what variations in instruction respond most effectively to common variations in students' learning. The authors argue that such "adaptive instruction" has the greatest potential for success in today's standards-based policy environment with its twin values of equity and excellence.
Mayor-Dubois, C; Zesiger, P; Van der Linden, M; Roulet-Perez, E
2014-01-01
Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.
ERIC Educational Resources Information Center
Adnan, Nor Hafizah; Ritzhaupt, Albert D.
2018-01-01
The failure of many instructional design initiatives is often attributed to poor instructional design. Current instructional design models do not provide much insight into design processes for creating e-learning instructional solutions. Given the similarities between the fields of instructional design and software engineering, instructional…
Theories and control models and motor learning: clinical applications in neuro-rehabilitation.
Cano-de-la-Cuerda, R; Molero-Sánchez, A; Carratalá-Tejada, M; Alguacil-Diego, I M; Molina-Rueda, F; Miangolarra-Page, J C; Torricelli, D
2015-01-01
In recent decades there has been a special interest in theories that could explain the regulation of motor control, and their applications. These theories are often based on models of brain function, philosophically reflecting different criteria on how movement is controlled by the brain, each being emphasised in different neural components of the movement. The concept of motor learning, regarded as the set of internal processes associated with practice and experience that produce relatively permanent changes in the ability to produce motor activities through a specific skill, is also relevant in the context of neuroscience. Thus, both motor control and learning are seen as key fields of study for health professionals in the field of neuro-rehabilitation. The major theories of motor control are described, which include, motor programming theory, systems theory, the theory of dynamic action, and the theory of parallel distributed processing, as well as the factors that influence motor learning and its applications in neuro-rehabilitation. At present there is no consensus on which theory or model defines the regulations to explain motor control. Theories of motor learning should be the basis for motor rehabilitation. The new research should apply the knowledge generated in the fields of control and motor learning in neuro-rehabilitation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
ERIC Educational Resources Information Center
Abercrombie, Sara
2011-01-01
The case-based instructional method uses fictionalized or actual narratives as instructional tools to support learning, decision-making, and improved transfer to practical settings. Educational theorists and researchers specializing in case-based instruction have suggested that cases can be made more realistic, engaging, and challenging, thus…
ERIC Educational Resources Information Center
Florida Board of Governors, State University System, 2008
2008-01-01
Distance learning is the term used when the delivery of instruction involves the separation of student(s) and the instructor by time and/or space. Some forms of distance learning include correspondence, telecourses, online instruction, computer assisted instruction, and instructional delivery that relies upon satellite, cable, broadcast (TV or…
Physiological Factors in Adult Learning and Instruction. Research to Practice Series.
ERIC Educational Resources Information Center
Verner, Coolie; Davison, Catherine V.
The physiological condition of the adult learner as related to his learning capability is discussed. The design of the instructional process, the selection of learning tasks, the rate at which instruction occurs, and the nature of the instructional setting may all be modified by the instructor to accomodate the variable physiological conditions of…
Koedinger, Kenneth R; Corbett, Albert T; Perfetti, Charles
2012-07-01
Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of high potential for generality, while explicitly identifying constraints of and opportunities for detailed analysis of the knowledge students may acquire in courses. Drawing on research across domains of science, math, and language learning, we illustrate the analyses of knowledge, learning, and instructional events that the KLI framework affords. We present a set of three coordinated taxonomies of knowledge, learning, and instruction. For example, we identify three broad classes of learning events (LEs): (a) memory and fluency processes, (b) induction and refinement processes, and (c) understanding and sense-making processes, and we show how these can lead to different knowledge changes and constraints on optimal instructional choices. Copyright © 2012 Cognitive Science Society, Inc.
Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R
2014-10-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.
Content, Process, and Product: Modeling Differentiated Instruction
ERIC Educational Resources Information Center
Taylor, Barbara Kline
2015-01-01
Modeling differentiated instruction is one way to demonstrate how educators can incorporate instructional strategies to address students' needs, interests, and learning styles. This article discusses how secondary teacher candidates learn to focus on content--the "what" of instruction; process--the "how" of instruction;…
Common mechanisms of human perceptual and motor learning
Censor, Nitzan; Sagi, Dov; Cohen, Leonardo G.
2016-01-01
The adult mammalian brain has a remarkable capacity to learn in both the perceptual and motor domains through the formation and consolidation of memories. Such practice-enabled procedural learning results in perceptual and motor skill improvements. Here, we examine evidence supporting the notion that perceptual and motor learning in humans exhibit analogous properties, including similarities in temporal dynamics and the interactions between primary cortical and higher-order brain areas. These similarities may point to the existence of a common general mechanism for learning in humans. PMID:22903222
NASA Astrophysics Data System (ADS)
Laxton, Katherine E.
This dissertation takes a close look at how district-level instructional coaches support teachers in learning to shifting their instructional practice, related to the Next Generation Science Standards. This dissertation aims to address how re-structuring professional development to a job-embedded coaching model supports individual teacher learning of new reform-related instructional practice. Implementing the NGSS is a problem of supporting professional learning in a way that will enable educators to make fundamental changes to their teaching practice. However, there are few examples in the literature that explain how coaches interact with teachers to improve teacher learning of reform-related instructional practice. There are also few examples in the literature that specifically address how supporting teachers with extended professional learning opportunities, aligned with high-leverage practices, tools and curriculum, impacts how teachers make sense of new standards-based educational reforms and what manifests in classroom instruction. This dissertation proposes four conceptual categories of sense-making that influence how instructional coaches interpret the nature of reform, their roles and in instructional improvement and how to work with teachers. It is important to understand how coaches interpret reform because their interpretations may have unintended consequences related to privileging certain views about instruction, or establishing priorities for how to work with teachers. In this dissertation, we found that re-structuring professional development to a job-embedded coaching model supported teachers in learning new reform-related instructional practice. However, individual teacher interpretations of reform emerged and seemed to be linked to how instructional coaches supported teacher learning.
Chrobak, Adrian Andrzej; Siuda-Krzywicka, Katarzyna; Siwek, Grzegorz Przemysław; Tereszko, Anna; Janeczko, Weronika; Starowicz-Filip, Anna; Siwek, Marcin; Dudek, Dominika
2017-10-03
Impairment of implicit motor sequence learning was shown in schizophrenia (SZ) and, most recently, in bipolar disorder (BD), and was connected to cerebellar abnormalities. The goal of this study was to compare implicit motor sequence learning in BD and SZ. We examined 33 patients with BD, 33 patients with SZ and 31 healthy controls with a use of ambidextrous Serial Reaction Time Task (SRTT), which allows exploring asymmetries in performance depending on the hand used. BD and SZ patients presented impaired implicit motor sequence learning, although the pattern of their impairments was different. While BD patients showed no signs of implicit motor sequence learning for both hands, the SZ group presented some features of motor learning when performing with the right, but not with the left hand. To our best knowledge this is the first study comparing implicit motor sequence learning in BD and SZ. We show that both diseases share impairments in this domain, however in the case of SZ this impairment differs dependently on the hand performing SRTT. We propose that implicit motor sequence learning impairments constitute an overlapping symptom in BD and SZ and suggest further neuroimaging studies to verify cerebellar underpinnings as its cause. Copyright © 2017 Elsevier Inc. All rights reserved.
Does Focus of Attention Improve Snatch Lift Kinematics?
Schutts, Kyle S; Wu, Will F W; Vidal, Anthony D; Hiegel, Jamie; Becker, James
2017-10-01
Recent motor control literature has demonstrated that using verbal instructions to direct a performer's attention externally (i.e., toward the movement outcome) enhances motor skill performance. The purpose of this study was to investigate how an athlete's focus of attention impacts kinematic performance of the snatch. Using a counterbalanced within-participant design, 12 competitively trained athletes (8 male and 4 female athletes) performed 2 instructional blocks of 3 snatch repetitions at 80% of their most recent training 1 repetition maximum. Blocks of internal and external instructions were given to the athlete in a random fashion. Results showed that, when focusing internally, athletes significantly (p ≤ 0.05) increased elbow velocity relative to focusing externally, whereas the external instructions significantly increased horizontal barbell velocity, relative to internal instructions. Additionally, an internal focus resulted in significantly larger barbell-cervical-hip angles at maximum height of the barbell compared with an external focus, indicating that the athletes squatted under the barbell too soon. This information adds to the literature suggesting small changes in coaching instructions can impact performance significantly. It is recommended that coaches use instructions that direct an athlete's attention externally, toward the movement outcome, rather than the action itself.
Time and Learning Efficiency in Internet-Based Learning: A Systematic Review and Meta-Analysis
ERIC Educational Resources Information Center
Cook, David A.; Levinson, Anthony J.; Garside, Sarah
2010-01-01
Authors have claimed that Internet-based instruction promotes greater learning efficiency than non-computer methods. Objectives Determine, through a systematic synthesis of evidence in health professions education, how Internet-based instruction compares with non-computer instruction in time spent learning, and what features of Internet-based…
The Implementation of Service-Learning in Graduate Instructional Design Coursework
ERIC Educational Resources Information Center
Stefaniak, Jill E.
2015-01-01
This paper describes the design of service-learning experiences with a graduate-level instructional design course. Service-learning provides students with real-life experiences in a situated-learning environment. Students were tasked with working on an instructional design project in a real-world setting to gain consultative experience. This paper…
ERIC Educational Resources Information Center
Klein, James D.; Moore, Alison L.
2016-01-01
This article focuses on informal learning and its implications for instructional design and performance improvement. The authors begin by sharing a story of how a novice instructional designer employs informal learning strategies in her professional and personal life. Next, they offer a definition of informal learning that encompasses both…
ERIC Educational Resources Information Center
Jorgensen, Christie L.
2016-01-01
Although instructional coaching and professional learning communities provide ongoing, job-embedded support and professional learning, little is known about what role the instructional coach serves within the setting of the professional learning community or what coaching skills teachers find most helpful within this setting. Research examining…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
...] Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Update of the Motor Vehicle... Implementation Plan (SIP). The revisions consist of an update to the SIP-approved Motor Vehicle Emissions Budgets... operation, and special arrangements should be made for deliveries of boxed information. Instructions: Direct...
75 FR 35877 - Bentley Motors Inc., Receipt of Petition for Decision of Inconsequential Noncompliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
...) of Federal Motor Vehicle Safety Standard (FMVSS) No. 209, Seat Belt Assemblies. BMI filed an... approximately 300 nonconforming seat belt assemblies, produced during the 12 months prior to December 18, 2009...) Installation instructions. A seat belt assembly, other than a seat belt assembly installed in a motor vehicle...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-24
... (Mazda),\\2\\ has determined that certain Mazda brand motor vehicles manufactured between 2007 and 2012 for... concerning the merits of the petition. Vehicles Involved: Affected are approximately 16,748 Mazda brand motor... certain Mazda brand motor vehicles sold in Puerto Rico were not delivered with the instruction statements...
Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.
Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain
2013-02-01
Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.
Sakurada, Takeshi; Hirai, Masahiro; Watanabe, Eiju
2016-01-01
Motor learning performance has been shown to be affected by various cognitive factors such as the focus of attention and motor imagery ability. Most previous studies on motor learning have shown that directing the attention of participants externally, such as on the outcome of an assigned body movement, can be more effective than directing their attention internally, such as on body movement itself. However, to the best of our knowledge, no findings have been reported on the effect of the focus of attention selected according to the motor imagery ability of an individual on motor learning performance. We measured individual motor imagery ability assessed by the Movement Imagery Questionnaire and classified the participants into kinesthetic-dominant (n = 12) and visual-dominant (n = 8) groups based on the questionnaire score. Subsequently, the participants performed a motor learning task such as tracing a trajectory using visuomotor rotation. When the participants were required to direct their attention internally, the after-effects of the learning task in the kinesthetic-dominant group were significantly greater than those in the visual-dominant group. Conversely, when the participants were required to direct their attention externally, the after-effects of the visual-dominant group were significantly greater than those of the kinesthetic-dominant group. Furthermore, we found a significant positive correlation between the size of after-effects and the modality-dominance of motor imagery. These results suggest that a suitable attention strategy based on the intrinsic motor imagery ability of an individual can improve performance during motor learning tasks.
Functional aging impairs the role of feedback in motor learning.
Liu, Yu; Cao, Chunmei; Yan, Jin H
2013-10-01
Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.
Effect of explicit dimension instruction on speech category learning
Chandrasekaran, Bharath; Yi, Han-Gyol; Smayda, Kirsten E.; Maddox, W. Todd
2015-01-01
Learning non-native speech categories is often considered a challenging task in adulthood. This difficulty is driven by cross-language differences in weighting critical auditory dimensions that differentiate speech categories. For example, previous studies have shown that differentiating Mandarin tonal categories requires attending to dimensions related to pitch height and direction. Relative to native speakers of Mandarin, the pitch direction dimension is under-weighted by native English speakers. In the current study, we examined the effect of explicit instructions (dimension instruction) on native English speakers' Mandarin tone category learning within the framework of a dual-learning systems (DLS) model. This model predicts that successful speech category learning is initially mediated by an explicit, reflective learning system that frequently utilizes unidimensional rules, with an eventual switch to a more implicit, reflexive learning system that utilizes multidimensional rules. Participants were explicitly instructed to focus and/or ignore the pitch height dimension, the pitch direction dimension, or were given no explicit prime. Our results show that instruction instructing participants to focus on pitch direction, and instruction diverting attention away from pitch height resulted in enhanced tone categorization. Computational modeling of participant responses suggested that instruction related to pitch direction led to faster and more frequent use of multidimensional reflexive strategies, and enhanced perceptual selectivity along the previously underweighted pitch direction dimension. PMID:26542400
Consciousness and the Consolidation of Motor Learning
Song, Sunbin
2009-01-01
It is no secret that motor learning benefits from repetition. For example, pianists devote countless hours to performing complicated sequences of key presses, and golfers practice their swings thousands of times to reach a level of proficiency. Interestingly, the subsequent waking and sleeping hours after practice also play important roles in motor learning. During this time, a motor skill can consolidate into a more stable form that can lead to improved future performance without intervening practice. Though it is widely believed that sleep is crucial for this consolidation of motor learning, this is not generally true. In many instances only day-time consolidates motor learning, while in other instances neither day-time nor sleep consolidates learning. Recent studies have suggested that conscious awareness during motor training can determine whether sleep or day-time plays a role in consolidation. However, ongoing studies suggest that this explanation is also incomplete. In addition to conscious awareness, attention is an important factor to consider. This review discusses how attention and conscious awareness interact with day and night processes to consolidate a motor memory. PMID:18951924
NASA Astrophysics Data System (ADS)
Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi
2018-04-01
The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.
NASA Astrophysics Data System (ADS)
Kuda Malwathumullage, Chamathca Priyanwada
Recent advancements in instructional technology and interactive learning space designs have transformed how undergraduate classrooms are envisioned and conducted today. Large number of research studies have documented the impact of instructional technology and interactive learning spaces on elevated student learning gains, positive attitudes, and increased student engagement in undergraduate classrooms across nation. These research findings combined with the movement towards student-centered instructional strategies have motivated college professors to explore the unfamiliar territories of instructional technology and interactive learning spaces. Only a limited number of research studies that explored college professors' perspective on instructional technology and interactive learning space use in undergraduate classrooms exist in the education research literature. Since college professors are an essential factor in undergraduate students' academic success, investigating how college professors perceive and utilize instructional technology and interactive learning environments can provide insights into designing effective professional development programs for college professors across undergraduate institutions. Therefore, the purpose of this study was to investigate college professors' pedagogical reasoning behind incorporating different types of instructional technologies and teaching strategies to foster student learning in technology-infused interactive learning environments. Furthermore, this study explored the extent to which college professors' instructional decisions and practices are affected by teaching in an interactive learning space along with their overall perception of instructional technology and interactive learning spaces. Four college professors from a large public Midwestern university who taught undergraduate science courses in a classroom based on the 'SCALE-UP model' participated in this study. Major data sources included classroom observations, interviews and questionnaires. An enumerative approach and the constant comparative method were utilized to analyze the data. According to the results obtained, all the participating college professors of this study employed a variety of instructional technologies and learning space features to actively engage their students in classroom activities. Participants were largely influenced by the instructional technology and the learning space features at lesson planning and execution stages whereas this influence was less notable at the student assessment stage. Overall, college professors perceive technology-infused interactive learning environments to be advantageous in terms of enabling flexibility and creativity along with easy facilitation of classroom activities. However, they felt challenged when designing effective classroom activities and preferred continuous professional development support. Overall, college professors' pedagogical decision making process, their perceived benefits and challenges seemed to be interrelated and centered on the learners and the learning process. Primary implication of this study is to implement effective professional development programs for college professors which enable them to familiarize themselves with student-centered pedagogy and effective classroom activity design along with the novel trends in learning space design and instructional technologies. Furthermore, higher education institutions need to devise incentives and recognition measures to appreciate college professors' contributions to advance scholarship of teaching and learning.
A Fun Alternative: Using Instructional Games to Foster Student Learning.
ERIC Educational Resources Information Center
Blum, H. Timothy; Yocom, Dorothy Jean
1996-01-01
This article provides guidelines for designing effective instructional games for all students, including students with disabilities or other special learning needs. The benefits of instructional games, including student motivation and the ability of games to facilitate individualized instruction, are discussed. Sample instructional games,…
Implicit and explicit motor learning: Application to children with Autism Spectrum Disorder (ASD).
Izadi-Najafabadi, Sara; Mirzakhani-Araghi, Navid; Miri-Lavasani, Negar; Nejati, Vahid; Pashazadeh-Azari, Zahra
2015-12-01
This study aims to determine whether children with Autism Spectrum Disorder (ASD) are capable of learning a motor skill both implicitly and explicitly. In the present study, 30 boys with ASD, aged 7-11 with IQ average of 81.2, were compared with 32 typical IQ- and age-matched boys on their performance on a serial reaction time task (SRTT). Children were grouped by ASD and typical children and by implicit and explicit learning groups for the SRTT. Implicit motor learning occurred in both children with ASD (p=.02) and typical children (p=.01). There were no significant differences between groups (p=.39). However, explicit motor learning was only observed in typical children (p=.01) not children with ASD (p=.40). There was a significant difference between groups for explicit learning (p=.01). The results of our study showed that implicit motor learning is not affected in children with ASD. Implications for implicit and explicit learning are applied to the CO-OP approach of motor learning with children with ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kazennikov, O V; Solopova, I A; Talis, V L; Ioffe, M E
2006-01-01
The role of the motor cortex was investigated during learning unusual postural adjustment. Healthy subjects held their right (postural) forearm in a horizontal position while supporting a 1-kG load via an electromagnet. The postural forearm position was perturbed by the load release triggered by other elbow voluntary movement. Repetition of the imposed unloading test resulted in a progressive reduction of the maximal forearm rotation, accompanied by the anticipatory decrease in m. biceps brachii activity (learning). Control situation consisted of the voluntary forearm loading. Using the transcranial magnetic stimulation we examined changes in the motor evoked potential of the m. biceps brahii at the beginning and at the end of learning. The evoked potential amplitude did not significantly change in process of the decrease of m. biceps brachii activity. At the end of learning, motor evoked potential / baseline electromyogram ratio increased as compared to the beginning of learning and to the control situation. The results highlight the fundamental role of the motor cortex in suppression of synergies which interfere with formation of a new coordination during motor learning.
Active Learning and Teaching: Improving Postsecondary Library Instruction.
ERIC Educational Resources Information Center
Allen, Eileen E.
1995-01-01
Discusses ways to improve postsecondary library instruction based on theories of active learning. Topics include a historical background of active learning; student achievement and attitudes; cognitive development; risks; active teaching; and instructional techniques, including modified lectures, brainstorming, small group work, cooperative…
Weiss, Patrice L.; Keshner, Emily A.
2015-01-01
The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522
NASA Astrophysics Data System (ADS)
Chen, Cheng-ping; Wang, Chang-Hwa
2015-12-01
Studies have proven that merging hands-on and online learning can result in an enhanced experience in learning science. In contrast to traditional online learning, multiple in-classroom activities may be involved in an augmented-reality (AR)-embedded e-learning process and thus could reduce the effects of individual differences. Using a three-stage AR-embedded instructional process, we conducted an experiment to investigate the influences of individual differences on learning earth science phenomena of "day, night, and seasons" for junior highs. The mixed-methods sequential explanatory design was employed. In the quantitative phase, factors of learning styles and ICT competences were examined alongside with the overall learning achievement. Independent t tests and ANCOVAs were employed to achieve inferential statistics. The results showed that overall learning achievement was significant for the AR-embedded instruction. Nevertheless, neither of the two learner factors exhibited significant effect on learning achievement. In the qualitative phase, we analyzed student interview records, and a wide variation on student's preferred instructional stages were revealed. These findings could provide an alternative rationale for developing ICT-supported instruction, as our three-stage AR-embedded comprehensive e-learning scheme could enhance instruction adaptiveness to disperse the imparities of individual differences between learners.
Learning Theory and the Study of Instruction
1989-02-01
learning theories (e.g., Fitts 1962, Vygotsky 1978), cultural beliefs about learning, and commonsense observations of teaching and tutoring. But...LEARNING THEORY AND THE STUDY OF INSTRUCTION IRobert Glaser Miriam Bassok LEARNING RESEARCH AND DEVELOPMENT CENTER DTIC 7~jahELECTE (%Q)2 3 FEB 1989...University of Pittsburgh _o role=*--,-mW .,N89 2 23 025 a.wtt- &@I =01% N A I LEARNING THEORY AND THE STUDY OF INSTRUCTION Robert Glaser Miriam Bassok
ERIC Educational Resources Information Center
Mazur, Amber D.; Brown, Barbara; Jacobsen, Michele
2015-01-01
The flipped classroom is an instructional model that leverages technology-enhanced instruction outside of class time in order to maximize student engagement and learning during class time. As part of an action research study, the authors synthesize reflections about how the flipped classroom model can support teaching, learning and assessment…
Engel, Annerose; Hijmans, Brenda S; Cerliani, Leonardo; Bangert, Marc; Nanetti, Luca; Keller, Peter E; Keysers, Christian
2014-05-01
Humans vary substantially in their ability to learn new motor skills. Here, we examined inter-individual differences in learning to play the piano, with the goal of identifying relations to structural properties of white matter fiber tracts relevant to audio-motor learning. Non-musicians (n = 18) learned to perform three short melodies on a piano keyboard in a pure audio-motor training condition (vision of their own fingers was occluded). Initial learning times ranged from 17 to 120 min (mean ± SD: 62 ± 29 min). Diffusion-weighted magnetic resonance imaging was used to derive the fractional anisotropy (FA), an index of white matter microstructural arrangement. A correlation analysis revealed that higher FA values were associated with faster learning of piano melodies. These effects were observed in the bilateral corticospinal tracts, bundles of axons relevant for the execution of voluntary movements, and the right superior longitudinal fasciculus, a tract important for audio-motor transformations. These results suggest that the speed with which novel complex audio-motor skills can be acquired may be determined by variability in structural properties of white matter fiber tracts connecting brain areas functionally relevant for audio-motor learning. Copyright © 2013 Wiley Periodicals, Inc.
Multimodal versus Unimodal Instruction in a Complex Learning Context.
ERIC Educational Resources Information Center
Gellevij, Mark; van der Meij, Hans; de Jong, Ton; Pieters, Jules
2002-01-01
Compared multimodal instruction with text and pictures with unimodal text-only instruction as 44 college students used a visual or textual manual to learn a complex software application. Results initially support dual coding theory and indicate that multimodal instruction led to better performance than unimodal instruction. (SLD)
ERIC Educational Resources Information Center
Peat, D.; And Others
1989-01-01
Describes an instructional model, Strategies Program for Effective Learning/Thinking (SPELT), that was developed to translate cognitive psychological theory and research into a practical instructional program. The extent to which SPELT conforms to current instructional design principles is examined, and macro versus micro instructional sequencing…
Computer-Supported Instruction in Enhancing the Performance of Dyscalculics
ERIC Educational Resources Information Center
Kumar, S. Praveen; Raja, B. William Dharma
2010-01-01
The use of instructional media is an essential component of teaching-learning process which contributes to the efficiency as well as effectiveness of the teaching-learning process. Computer-supported instruction has a very important role to play as an advanced technological instruction as it employs different instructional techniques like…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Wagner, John S.
The purpose of this LDRD is to develop technology allowing warfighters to provide high-level commands to their unmanned assets, freeing them to command a group of them or commit the bulk of their attention elsewhere. To this end, a brain-emulating cognition and control architecture (BECCA) was developed, incorporating novel and uniquely capable feature creation and reinforcement learning algorithms. BECCA was demonstrated on both a mobile manipulator platform and on a seven degree of freedom serial link robot arm. Existing military ground robots are almost universally teleoperated and occupy the complete attention of an operator. They may remove a soldier frommore » harm's way, but they do not necessarily reduce manpower requirements. Current research efforts to solve the problem of autonomous operation in an unstructured, dynamic environment fall short of the desired performance. In order to increase the effectiveness of unmanned vehicle (UV) operators, we proposed to develop robots that can be 'directed' rather than remote-controlled. They are instructed and trained by human operators, rather than driven. The technical approach is modeled closely on psychological and neuroscientific models of human learning. Two Sandia-developed models are utilized in this effort: the Sandia Cognitive Framework (SCF), a cognitive psychology-based model of human processes, and BECCA, a psychophysical-based model of learning, motor control, and conceptualization. Together, these models span the functional space from perceptuo-motor abilities, to high-level motivational and attentional processes.« less
Horita, Haruhito; Kobayashi, Masahiko; Liu, Wan-chun; Oka, Kotaro; Jarvis, Erich D.; Wada, Kazuhiro
2012-01-01
Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits. PMID:22876306
Westendorp, Marieke; Hartman, Esther; Houwen, Suzanne; Smith, Joanne; Visscher, Chris
2011-01-01
The present study compared the gross motor skills of 7- to 12-year-old children with learning disabilities (n = 104) with those of age-matched typically developing children (n = 104) using the Test of Gross Motor Development-2. Additionally, the specific relationships between subsets of gross motor skills and academic performance in reading, spelling, and mathematics were examined in children with learning disabilities. As expected, the children with learning disabilities scored poorer on both the locomotor and object-control subtests than their typically developing peers. Furthermore, in children with learning disabilities a specific relationship was observed between reading and locomotor skills and a trend was found for a relationship between mathematics and object-control skills: the larger children's learning lag, the poorer their motor skill scores. This study stresses the importance of specific interventions facilitating both motor and academic abilities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Klahr, David; Nigam, Milena
2004-10-01
In a study with 112 third- and fourth-grade children, we measured the relative effectiveness of discovery learning and direct instruction at two points in the learning process: (a) during the initial acquisition of the basic cognitive objective (a procedure for designing and interpreting simple, unconfounded experiments) and (b) during the subsequent transfer and application of this basic skill to more diffuse and authentic reasoning associated with the evaluation of science-fair posters. We found not only that many more children learned from direct instruction than from discovery learning, but also that when asked to make broader, richer scientific judgments, the many children who learned about experimental design from direct instruction performed as well as those few children who discovered the method on their own. These results challenge predictions derived from the presumed superiority of discovery approaches in teaching young children basic procedures for early scientific investigations.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.
Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.
A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition
Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.
2015-01-01
Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413
Kasuga, Shoko; Ushiba, Junichi
2014-01-01
Humans have a flexible motor ability to adapt their movements to changes in the internal/external environment. For example, using arm-reaching tasks, a number of studies experimentally showed that participants adapt to a novel visuomotor environment. These results helped develop computational models of motor learning implemented in the central nervous system. Despite the importance of such experimental paradigms for exploring the mechanisms of motor learning, because of the cost and preparation time, most students are unable to participate in such experiments. Therefore, in the current study, to help students better understand motor learning theories, we developed a simple finger-reaching experimental system using commonly used laptop PC components with an open-source programming language (Processing Motor Learning Toolkit: PMLT). We found that compared to a commercially available robotic arm-reaching device, our PMLT accomplished similar learning goals (difference in the error reduction between the devices, P = 0.10). In addition, consistent with previous reports from visuomotor learning studies, the participants showed after-effects indicating an adaptation of the motor learning system. The results suggest that PMLT can serve as a new experimental system for an undergraduate laboratory exercise of motor learning theories with minimal time and cost for instructors.
Implicit and explicit motor sequence learning in children born very preterm.
Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steiner, K; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G
2017-01-01
Motor skills can be learned explicitly (dependent on working memory (WM)) or implicitly (relatively independent of WM). Children born very preterm (VPT) often have working memory deficits. Explicit learning may be compromised in these children. This study investigated implicit and explicit motor learning and the role of working memory in VPT children and controls. Three groups (6-9 years) participated: 20 VPT children with motor problems, 20 VPT children without motor problems, and 20 controls. A nine button sequence was learned implicitly (pressing the lighted button as quickly as possible) and explicitly (discovering the sequence via trial-and-error). Children learned implicitly and explicitly, evidenced by decreased movement duration of the sequence over time. In the explicit condition, children also reduced the number of errors over time. Controls made more errors than VPT children without motor problems. Visual WM had positive effects on both explicit and implicit performance. VPT birth and low motor proficiency did not negatively affect implicit or explicit learning. Visual WM was positively related to both implicit and explicit performance, but did not influence learning curves. These findings question the theoretical difference between implicit and explicit learning and the proposed role of visual WM therein. Copyright © 2016 Elsevier Ltd. All rights reserved.
Motivation and Persistence of Learning among L2 Learners in Self-Instruction
ERIC Educational Resources Information Center
Takahashi, Chika
2013-01-01
This study examined the relationship between learners' motivation to learn a second language (L2) and persistence in their learning using self-instructional radio (SIR) materials with a sample of Japanese high school students learning English. L2 self-instruction remains under-researched, in spite of the importance of out-of-class learning…
ERIC Educational Resources Information Center
Tonsing-Meyer, Julie A.
2012-01-01
As technology has evolved, the way individuals learn and the way instructors teach has changed. Despite the general consensus that learning styles and instructional preferences should be addressed in e-learning, there remains a gap in the research into how different styles might be correlated with certain instructional preferences to improve the…
ERIC Educational Resources Information Center
Murray, Anthony
2017-01-01
This study explored the differences in student achievement on New York State standardized tests between blended learning and traditional instructional methodologies. Specifically, the study compared student achievement in iLearnNYC schools, to their peer schools that deliver instruction in a traditional manner. iLearnNYC is a blended learning…
Effects of Dispositional Mindfulness on the Self-Controlled Learning of a Novel Motor Task
ERIC Educational Resources Information Center
Kee, Ying Hwa; Liu, Yeou-Teh
2011-01-01
Current literature suggests that mindful learning is beneficial to learning but its links with motor learning is seldom examined. In the present study, we examine the effects of learners' mindfulness disposition on the self-controlled learning of a novel motor task. Thirty-two participants undertook five practice sessions, in addition to a pre-,…
King, Bradley R.; Fogel, Stuart M.; Albouy, Geneviève; Doyon, Julien
2013-01-01
As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning. PMID:23616757
Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View
Ammann, Claudia; Spampinato, Danny; Márquez-Ruiz, Javier
2016-01-01
Motor learning consists of the ability to improve motor actions through practice playing a major role in the acquisition of skills required for high-performance sports or motor function recovery after brain lesions. During the last decades, it has been reported that transcranial direct-current stimulation (tDCS), consisting in applying weak direct current through the scalp, is able of inducing polarity-specific changes in the excitability of cortical neurons. This low-cost, painless and well-tolerated portable technique has found a wide-spread use in the motor learning domain where it has been successfully applied to enhance motor learning in healthy individuals and for motor recovery after brain lesion as well as in pathological states associated to motor deficits. The main objective of this mini-review is to offer an integrative view about the potential use of tDCS for human motor learning modulation. Furthermore, we introduce the basic mechanisms underlying immediate and long-term effects associated to tDCS along with important considerations about its limitations and progression in recent years. PMID:28066300
49 CFR 380.201 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SPECIAL TRAINING... behind-the-wheel instruction that is designed to provide an opportunity to develop the skills outlined...
Adaptive downhill skiing in children with cerebral palsy: effect on gross motor function.
Sterba, John A
2006-01-01
The study was designed to examine the effect of adaptive downhill skiing (ADS) on gross motor function in children with spastic cerebral palsy. One girl and four boys participated (mean age = eight years, five months). All were ambulatory. Participants' Gross Motor Function Measure (GMFM) classifications were: Level I (n = 2); Level II (n = 2); Level III (n = 1). ADS was conducted for a 10-week period at one ski resort. Each participant had the same ski instructor. GMFM was obtained every five weeks: beginning five weeks before ADS instruction and continuing to 10 weeks after ADS instruction. After 10 weeks of ADS GMFM-D, and GMFM-Total Score increased 5.4% (p = 0.022) and 3.2% (p = 0.035), respectively, and remained increased 10 weeks after ADS. ADS could be recommended by clinicians as a recreational activity for the gross motor rehabilitation of ambulatory children with spastic cerebral palsy.
The thalamus as a monitor of motor outputs.
Guillery, R W; Sherman, S M
2002-01-01
Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions. PMID:12626014
Older Adults can Learn to Learn New Motor Skills
Seidler, Rachael D.
2007-01-01
Many studies have demonstrated that aging is associated with declines in skill acquisition. In the current study, we tested whether older adults could acquire general, transferable knowledge about skill learning processes. Older adult participants learned five different motor tasks. Two older adult control groups performed the same number of trials, but learned only one task. The experimental group exhibited faster learning than that seen in the control groups. These data demonstrate that older adults can learn to learn new motor skills. PMID:17602760
Kaminski, Elisabeth; Hoff, Maike; Sehm, Bernhard; Taubert, Marco; Conde, Virginia; Steele, Christopher J; Villringer, Arno; Ragert, Patrick
2013-09-27
The aim of the study was to investigate tDCS effects on motor skill learning in a complex whole body dynamic balance task (DBT). We hypothesized that tDCS over the supplementary motor area (SMA), a region that is known to be involved in the control of multi-joint whole body movements, will result in polarity specific changes in DBT learning. In a randomized sham-controlled, double-blinded parallel design, we applied 20 min of tDCS over the supplementary motor area (SMA) and prefrontal cortex (PFC) while subjects performed a DBT. Anodal tDCS over SMA with the cathode placed over contralateral PFC impaired motor skill learning of the DBT compared to sham. This effect was still present on the second day of training. Reversing the polarity (cathode over SMA, anode over PFC) did not affect motor skill learning neither on the first nor on the second day of training. To better disentangle whether the impaired motor skill learning was due to a modulation of SMA or PFC, we performed an additional control experiment. Here, we applied anodal tDCS over SMA together with a larger and presumably more ineffective electrode (cathode) over PFC. Interestingly this alternative tDCS electrode setup did not affect the outcome of DBT learning. Our results provide novel evidence that a modulation of the (right) PFC seems to impair complex multi-joint motor skill learning. Hence, future studies should take the positioning of both tDCS electrodes into account when investigating complex motor skill learning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Maxwell, Jon P; Capio, Catherine M; Masters, Rich S W
2017-05-01
The benefits of implicit and explicit motor learning approaches in young adults have been studied extensively, but much less in children. This study investigated the relationship between fundamental motor ability and implicit/explicit learning in children using the errorless learning paradigm. First, the motor ability of 261 children (142 boys, 119 girls) aged 9-12 years (M = 9.74, SD = 0.67) was measured. Second, children with motor ability scores in the upper and lower quartile learned a golf-putting skill in either an errorless (implicit) or errorful (explicit) learning condition. Four groups were formed: Errorless High-Ability (n = 13), Errorless Low-Ability (n = 11), Errorful High-Ability (n = 10), and Errorful Low-Ability (n = 11). Learning consisted of 300 practice trials, while testing included a 50-trial retention test, followed by a 50-trial secondary task transfer test, and another 50-trial retention test. The results showed that for high- and low-ability errorless learners, motor performance was unaffected by the secondary task, as was the case for high-ability errorful learners. Low-ability errorful learners performed worse with a secondary task and were significantly poorer than the corresponding high-ability group. These results suggest that implicit motor learning (errorless) may be beneficial for children with low motor ability. The findings also show a trend that children of high motor ability might benefit from learning explicitly (errorful). Further research is recommended to examine the compatibility of implicit and explicit approaches for children of different abilities.
Frank, Cornelia; Schack, Thomas
2017-01-01
Learning in intelligent systems is a result of direct and indirect interaction with the environment. While humans can learn by way of different states of (inter)action such as the execution or the imagery of an action, their unique potential to induce brain- and mind-related changes in the motor action system is still being debated. The systematic repetition of different states of action (e.g., physical and/or mental practice) and their contribution to the learning of complex motor actions has traditionally been approached by way of performance improvements. More recently, approaches highlighting the role of action representation in the learning of complex motor actions have evolved and may provide additional insight into the learning process. In the present perspective paper, we build on brain-related findings and sketch recent research on learning by way of imagery and execution from a hierarchical, perceptual-cognitive approach to motor control and learning. These findings provide insights into the learning of intelligent systems from a perceptual-cognitive, representation-based perspective and as such add to our current understanding of action representation in memory and its changes with practice. Future research should build bridges between approaches in order to more thoroughly understand functional changes throughout the learning process and to facilitate motor learning, which may have particular importance for cognitive systems research in robotics, rehabilitation, and sports. PMID:28588510
Rourke, Liam; Leong, Jessica; Chatterly, Patricia
2018-02-16
Phenomenon: An evidence-informed era of medical education encourages the generation and use of comparative-effectiveness reviews, yet the reviews often conclude, curiously, that all instructional approaches are equally effective. We used a conditions-based learning theory to structure a review of the comparative-effectiveness literature on electrocardiogram instruction. We searched MEDLINE, EMBASE (Ovid), ERIC (Ovid), PsycINFO (Ovid), and CINAHL (EBSCO) from inception to June 2016. We selected prospective studies that examined the effect of instructional interventions on participants' knowledge and skill with electrocardiogram interpretation. Two reviewers extracted information on the quality of the studies, the effect of instruction on the acquisition of knowledge and skill, and instructional quality. Instructional quality is an index of the extent to which instruction incorporates 4 practices of Gagne's conditions-based learning theory: presenting information, eliciting performance, providing feedback, and assessing learning. Twenty-five studies (3,286 participants) evaluating 47 instructional interventions were synthesized. The methodological quality of most studies was moderate. Instructional quality varied: All interventions presented information and assessed learning, but fewer than half elicited performances or provided feedback. Instructional interventions that incorporated all 4 components improved trainees' abilities considerably more than those that incorporated 3 or fewer; respectively, standardized mean difference (SMD) = 2.80, 95% confidence interval (CI) [2.05, 3.55], versus SMD = 1.44, 95% CI [1.18, 1.69]. Studies that compared "innovative" to "traditional" types of instruction did not yield a significant pooled effect: SMD = 0.18, 95% CI [-0.09, 0.45]. Insights: The use of a conditions-based learning theory to organize the comparative-effectiveness literature reveals differences in the instructional impact of different instructional approaches. It overturns the unlikely, but common, conclusion that all approaches are equally effective.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This instructor's guide contains the materials required to teach four competency-based course units of instruction in installing compressed natural gas (CNG) systems in motor vehicles. It is designed to accompany an instructional videotape (not included) on CNG installation. The following competencies are covered in the four instructional units:…
Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.
Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T
2015-06-01
It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.
Waters, Sheena; Wiestler, Tobias; Diedrichsen, Jörn
2017-08-02
What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and/or learning of unilateral hand movements. We approached this question by applying double-blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-group design during 4 d of unimanual explicit sequence training in human participants. Independently of whether the anode was placed over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemispheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres. First, we found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent representations. Second, functional imaging during speed-matched execution of trained sequences conducted 48 h after training revealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain stimulation during unimanual skill learning may be beneficial because it harnesses plasticity in the ipsilateral hemisphere. SIGNIFICANCE STATEMENT Many neurorehabilitation approaches are based on the idea that is beneficial to boost excitability in the contralateral hemisphere while attenuating that of the ipsilateral cortex to reduce interhemispheric inhibition. We observed that bihemispheric transcranial direct current stimulation (tDCS) with the excitatory anode either over contralateral or ipsilateral motor cortex facilitated motor learning nearly twice as strongly as unihemispheric tDCS. These increases in motor learning were accompanied by increases in fMRI activation in both motor cortices that outlasted the stimulation period, as well as increased generalization to the untrained hand. Collectively, our findings suggest a cooperative rather than a competitive role of the hemispheres and imply that it is most beneficial to harness plasticity in both hemispheres in neurorehabilitation of motor deficits. Copyright © 2017 Waters et al.
Cerebellar-M1 Connectivity Changes Associated with Motor Learning Are Somatotopic Specific.
Spampinato, Danny A; Block, Hannah J; Celnik, Pablo A
2017-03-01
One of the functions of the cerebellum in motor learning is to predict and account for systematic changes to the body or environment. This form of adaptive learning is mediated by plastic changes occurring within the cerebellar cortex. The strength of cerebellar-to-cerebral pathways for a given muscle may reflect aspects of cerebellum-dependent motor adaptation. These connections with motor cortex (M1) can be estimated as cerebellar inhibition (CBI): a conditioning pulse of transcranial magnetic stimulation delivered to the cerebellum before a test pulse over motor cortex. Previously, we have demonstrated that changes in CBI for a given muscle representation correlate with learning a motor adaptation task with the involved limb. However, the specificity of these effects is unknown. Here, we investigated whether CBI changes in humans are somatotopy specific and how they relate to motor adaptation. We found that learning a visuomotor rotation task with the right hand changed CBI, not only for the involved first dorsal interosseous of the right hand, but also for an uninvolved right leg muscle, the tibialis anterior, likely related to inter-effector transfer of learning. In two follow-up experiments, we investigated whether the preparation of a simple hand or leg movement would produce a somatotopy-specific modulation of CBI. We found that CBI changes only for the effector involved in the movement. These results indicate that learning-related changes in cerebellar-M1 connectivity reflect a somatotopy-specific interaction. Modulation of this pathway is also present in the context of interlimb transfer of learning. SIGNIFICANCE STATEMENT Connectivity between the cerebellum and motor cortex is a critical pathway for the integrity of everyday movements and understanding the somatotopic specificity of this pathway in the context of motor learning is critical to advancing the efficacy of neurorehabilitation. We found that adaptive learning with the hand affects cerebellar-motor cortex connectivity, not only for the trained hand, but also for an untrained leg muscle, an effect likely related to intereffector transfer of learning. Furthermore, we introduce a novel method to measure cerebellar-motor cortex connectivity during movement preparation. With this technique, we show that, outside the context of learning, modulation of cerebellar-motor cortex connectivity is somatotopically specific to the effector being moved. Copyright © 2017 the authors 0270-6474/17/372377-10$15.00/0.
Maximizing Student Success with Differentiated Learning
ERIC Educational Resources Information Center
Morgan, Hani
2014-01-01
Students tend to comprehend little and lose focus of classroom instruction when their teachers fail to use instructional strategies that match students' learning styles. Differentiated instruction can alleviate or eliminate this disengagement. This article describes a case involving a child having difficulty learning and shows how…
Collaborative Instructional Strategies to Enhance Knowledge Convergence
ERIC Educational Resources Information Center
Draper, Darryl C.
2015-01-01
To promote knowledge convergence through collaborative learning activities in groups, this qualitative case study involved a layered approach for the design and delivery of a highly collaborative learning environment incorporating various instructional technologies grounded in learning theory. In a graduate-level instructional technology course,…
Platz, Thomas; Adler-Wiebe, Marija; Roschka, Sybille; Lotze, Martin
2018-01-01
Motor rehabilitation after brain damage relies on motor re-learning as induced by specific training. Non-invasive brain stimulation (NIBS) can alter cortical excitability and thereby has a potential to enhance subsequent training-induced learning. Knowledge about any priming effects of NIBS on motor learning in healthy subjects can help to design targeted therapeutic applications in brain-damaged subjects. To examine whether complex motor learning in healthy subjects can be enhanced by intermittent theta burst stimulation (iTBS) to primary motor or sensory cortical areas. Eighteen young healthy subjects trained eight different arm motor tasks (arm ability training, AAT) once a day for 5 days using their left non-dominant arm. Except for day 1 (baseline), training was performed after applying an excitatory form of repetitive transcranial magnetic stimulation (iTBS) to either (I) right M1 or (II) S1, or (III) sham stimulation to the right M1. Subjects were randomly assigned to conditions I, II, or III. A principal component analysis of the motor behaviour data suggested eight independent motor abilities corresponding to the 8 trained tasks. AAT induced substantial motor learning across abilities with generalisation to a non-trained test of finger dexterity (Nine-Hole-Peg-Test, NHPT). Participants receiving iTBS (to either M1 or S1) showed better performance with the AAT tasks over the period of training compared to sham stimulation as well as a bigger improvement with the generalisation task (NHPT) for the trained left hand after training completion. Priming with an excitatory repetitive transcranial magnetic stimulation as iTBS of either M1 or S1 can enhance motor learning across different sensorimotor abilities.
Learning in a Simple Motor System
ERIC Educational Resources Information Center
Broussard, Dianne M.; Kassardjian, Charles D.
2004-01-01
Motor learning is a very basic, essential form of learning that appears to share common mechanisms across different motor systems. We evaluate and compare a few conceptual models for learning in a relatively simple neural system, the vestibulo-ocular reflex (VOR) of vertebrates. We also compare the different animal models that have been used to…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... (Mazda),\\2\\ has determined that certain Mazda brand motor vehicles manufactured between 2000 and 2012 for... concerning the merits of the petition. Vehicles Involved: Affected are approximately 60,509 Mazda brand motor... certain Mazda brand motor vehicles sold in Puerto Rico were not delivered with instructions on the use of...
Guided Instruction Improves Elementary Student Learning and Self-Efficacy in Science
ERIC Educational Resources Information Center
Hushman, Carolyn J.; Marley, Scott C.
2015-01-01
The authors investigated whether the amount of instructional guidance affects science learning and self-efficacy. Sixty 9- and 10-year-old children were randomly assigned to one of the following three instructional conditions: (a) guided instruction consisting of examples and student-generated explanations, (b) direct instruction consisting of a…
Instructional Leadership: The Role of Heads of Schools in Managing the Instructional Programme
ERIC Educational Resources Information Center
Manaseh, Aaron Mkanga
2016-01-01
Scholars and practitioners agree that instructional leadership (IL) can be one of the most useful tools for creating an effective teaching and learning environment. This paper investigates the instructional leadership practices engaged in by heads of secondary schools to enhance classroom instruction and students learning, particularly the way…
The Use of Instructional Design in Educational Technology for Effective Teaching and Learning
ERIC Educational Resources Information Center
Gillani, Syeda Nosheen; Gujjar, Aijaz Ahmed; Choudhry, Bushra Naoreen
2008-01-01
Educationists are of the opinion that the educational problems relating to quantity and quality could be tackled by the proper utilization of instructional technology. Instructional technology is a systematic way of designing, carrying out and evaluating the teaching learning process. Instructional technology makes instruction more effective,…
Neural substrates of visuomotor learning based on improved feedback control and prediction
Grafton, Scott T.; Schmitt, Paul; Horn, John Van; Diedrichsen, Jörn
2008-01-01
Motor skills emerge from learning feedforward commands as well as improvements in feedback control. These two components of learning were investigated in a compensatory visuomotor tracking task on a trial-by-trial basis. Between trial learning was characterized with a state-space model to provide smoothed estimates of feedforward and feedback learning, separable from random fluctuations in motor performance and error. The resultant parameters were correlated with brain activity using magnetic resonance imaging. Learning related to the generation of a feedforward command correlated with activity in dorsal premotor cortex, inferior parietal lobule, supplementary motor area and cingulate motor area, supporting a role of these areas in retrieving and executing a predictive motor command. Modulation of feedback control was associated with activity in bilateral posterior superior parietal lobule as well as right ventral premotor cortex. Performance error correlated with activity in a widespread cortical and subcortical network including bilateral parietal, premotor and rostral anterior cingulate cortex as well as the cerebellar cortex. Finally, trial-by-trial changes of kinematics, as measured by mean absolute hand acceleration, correlated with activity in motor cortex and anterior cerebellum. The results demonstrate that incremental, learning dependent changes can be modeled on a trial-by-trial basis and neural substrates for feedforward control of novel motor programs are localized to secondary motor areas. PMID:18032069
A safety mechanism for observational learning.
Badets, Arnaud; Boutin, Arnaud; Michelet, Thomas
2018-04-01
This empirical article presents the first evidence of a "safety mechanism" based on an observational-learning paradigm. It is accepted that during observational learning, a person can use different strategies to learn a motor skill, but it is unknown whether the learner is able to circumvent the encoding of an uncompleted observed skill. In this study, participants were tested in a dyadic protocol in which an observer watched a participant practicing two different motor sequences during a learning phase. During this phase, one of the two motor sequences was interrupted by a stop signal that precluded motor learning. The results of the subsequent retention test revealed that both groups learned the two motor sequences, but only the physical practice group showed worse performance for the interrupted sequence. The observers were consequently able to use a safety strategy to learn both sequences equally. Our findings are discussed in light of the implications of the action observation network for sequence learning and the cognitive mechanisms of error-based observation.
Assessing the Impact of Lesson Study on the Teaching Practice of Middle School Science Teachers
NASA Astrophysics Data System (ADS)
Grove, Michael C.
Despite wave after wave of educational reform in the United States our students continue to lag behind their peers in other industrialized countries on virtually all measures of academic achievement. Effective professional development (PD) is seen as a key to improving instructional practice and therefore student learning, but traditional forms of PD have been wholly unsuccessful in changing teaching practice. Over the last two decades an emerging body of research has identified some key features of effective PD that seem to create meaningful change and improvement in instructional practice. Some of this research highlights the promise of adapting Japanese lesson study (LS) to the American context as a means of incrementally improving instruction. Much of the existing research around LS is descriptive in nature and offers little insight into if and how participation in LS impacts subsequent instructional practice. This study utilized case study methodology to examine the instructional practice of one group of four middle school science teachers before, during, and after participation in LS. The study attempted to identify specific learning outcomes of a LS process, to identify influences on teacher learning during LS, and to identify subsequent changes in the instructional practice of participants resulting from participation in LS. Key findings from the study include significant teacher learning derived from the LS process, the identification of influences that enhanced or inhibited teacher learning, and clear evidence that participants successfully integrated learning from the LS into subsequent instructional practice. Learning outcomes included deepening of subject matter knowledge, increased understanding of student thinking and abilities, clarity of expectations for student performance, recognition of the ineffectiveness of past instructional practice, specific instructional strategies, shared student learning goals, and an increased commitment to future development of student learning. Influences supporting teacher learning were trust and honest dialogue among participants, focused collaboration, examination of student work, and the opportunity to watch other teachers deliver instruction. Influences inhibiting teacher learning related to failure to adhere to key features of the LS protocol. The study offers initial evidence confirming the promise of LS as a model of effective PD.
ERIC Educational Resources Information Center
Irby, Travis; Strong, Robert
2015-01-01
Mobile learning is an evolving form of technology-based learning. The novelty of mobile learning gives educators a new tool for evaluating how to develop effective instruction for this new medium. A Delphi study was conducted using a 30-member panel comprised of experts across 20 states. The purpose was to determine the competencies needed to…
Adult Learning Theories: Implications for Online Instruction
ERIC Educational Resources Information Center
Arghode, Vishal; Brieger, Earl W.; McLean, Gary N.
2017-01-01
Purpose: This paper analyzes critically four selected learning theories and their role in online instruction for adults. Design/methodology/approach: A literature review was conducted to analyze the theories. Findings: The theory comparison revealed that no single theory encompasses the entirety of online instruction for adult learning; each…
How Effective Is Instructional Support for Learning with Computer Simulations?
ERIC Educational Resources Information Center
Eckhardt, Marc; Urhahne, Detlef; Conrad, Olaf; Harms, Ute
2013-01-01
The study examined the effects of two different instructional interventions as support for scientific discovery learning using computer simulations. In two well-known categories of difficulty, data interpretation and self-regulation, instructional interventions for learning with computer simulations on the topic "ecosystem water" were developed…
Teacher Candidate Technology Integration: For Student Learning or Instruction?
ERIC Educational Resources Information Center
Clark, Cynthia; Zhang, Shaoan; Strudler, Neal
2015-01-01
Transfer of instructional technology knowledge for student-centered learning by teacher candidates is investigated in this study. Using the transfer of learning theoretical framework, a mixed methods research design was employed to investigate whether secondary teacher candidates were able to transfer the instructional technology knowledge for…
Takiyama, Ken; Sakai, Yutaka
2017-02-01
Certain theoretical frameworks have successfully explained motor learning in either unimanual or bimanual movements. However, no single theoretical framework can comprehensively explain motor learning in both types of movement because the relationship between these two types of movement remains unclear. Although our recent model of a balanced motor primitive framework attempted to simultaneously explain motor learning in unimanual and bimanual movements, this model focused only on a limited subset of bimanual movements and therefore did not elucidate the relationships between unimanual movements and various bimanual movements. Here, we extend the balanced motor primitive framework to simultaneously explain motor learning in unimanual and various bimanual movements as well as the transfer of learning effects between unimanual and various bimanual movements; these phenomena can be simultaneously explained if the mean activity of each primitive for various unimanual movements is balanced with the corresponding mean activity for various bimanual movements. Using this balanced condition, we can reproduce the results of prior behavioral and neurophysiological experiments. Furthermore, we demonstrate that the balanced condition can be implemented in a simple neural network model. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Therrien, Amanda S; Wolpert, Daniel M; Bastian, Amy J
2016-01-01
Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Therrien, Amanda S.; Wolpert, Daniel M.
2016-01-01
Abstract See Miall and Galea (doi: 10.1093/awv343 ) for a scientific commentary on this article. Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise. PMID:26626368
Censor, N
2013-10-10
In both perceptual and motor learning, numerous studies have shown specificity of learning to the trained eye or hand and to the physical features of the task. However, generalization of learning is possible in both perceptual and motor domains. Here, I review evidence for perceptual and motor learning generalization, suggesting that generalization patterns are affected by the way in which the original memory is encoded and consolidated. Generalization may be facilitated during fast learning, with possible engagement of higher-order brain areas recurrently interacting with the primary visual or motor cortices encoding the stimuli or movements' memories. Such generalization may be supported by sleep, involving functional interactions between low and higher-order brain areas. Repeated exposure to the task may alter generalization patterns of learning and overall offline learning. Development of unifying frameworks across learning modalities and better understanding of the conditions under which learning can generalize may enable to gain insight regarding the neural mechanisms underlying procedural learning and have useful clinical implications. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Learning from Instructional Rounds
ERIC Educational Resources Information Center
City, Elizabeth A.
2011-01-01
Instructional rounds are a disciplined way for educators to work together to improve a school's instructional core. The practice combines three common elements of improvement: classroom observation, an improvement strategy, and a network. Instructional rounds differ from supervision and evaluation in that people doing rounds learn something…
Cooperative learning as applied to resident instruction in radiology reporting.
Mueller, Donald; Georges, Alexandra; Vaslow, Dale
2007-12-01
The study is designed to evaluate the effectiveness of an active form of resident instruction, cooperative learning, and the residents' response to that form of instruction. The residents dictated three sets of reports both before and after instruction in radiology reporting using the cooperative learning method. The reports were evaluated for word count, Flesch-Kincaid grade level, advancement on clinical spectrum, clarity, and comparison to prior reports. The reports were evaluated for changes in performance characteristics between the pre- and postinstruction dictations. The residents' response to this form of instruction was evaluated by means of a questionnaire. The instruction was effective in changing the resident dictations. The results became shorter (P<.035), more complex (P<.0126), and demonstrated increased advancement on clinical spectrum (P<.0204). The resident response to this form of instruction was positive. One hundred percent or respondents indicated enjoyment working with their groups. Seventy-five percent stated they would like to participate in more cooperative learning activities. The least positive responses related to the amount of time devoted to the project. Sixty-three percent of respondents stated that the time devoted to the project was appropriate. Cooperative learning can be an effective tool in the setting of the radiology residency. Instructional time requirements must be strongly considered in designing a cooperative learning program.
Cerezo Espinosa, Cristina; Nieto Caballero, Sergio; Juguera Rodríguez, Laura; Castejón-Mochón, José Francisco; Segura Melgarejo, Francisca; Sánchez Martínez, Carmen María; López López, Carmen Amalia; Pardo Ríos, Manuel
2018-02-01
To compare secondary students' learning of basic life support (BLS) theory and the use of an automatic external defibrillator (AED) through face-to-face classroom instruction versus educational video instruction. A total of 2225 secondary students from 15 schools were randomly assigned to one of the following 5 instructional groups: 1) face-to-face instruction with no audiovisual support, 2) face-to-face instruction with audiovisual support, 3) audiovisual instruction without face-to-face instruction, 4) audiovisual instruction with face-to-face instruction, and 5) a control group that received no instruction. The students took a test of BLS and AED theory before instruction, immediately after instruction, and 2 months later. The median (interquartile range) scores overall were 2.33 (2.17) at baseline, 5.33 (4.66) immediately after instruction (P<.001) and 6.00 (3.33) (P<.001). All groups except the control group improved their scores. Scores immediately after instruction and 2 months later were statistically similar after all types of instruction. No significant differences between face-to-face instruction and audiovisual instruction for learning BLS and AED theory were found in secondary school students either immediately after instruction or 2 months later.
Chauvel, Guillaume; Maquestiaux, François; Didierjean, André; Joubert, Sven; Dieudonné, Bénédicte; Verny, Marc
2011-12-01
Does normal aging inexorably lead to diminished motor learning abilities? This article provides an overview of the literature on the question, with particular emphasis on the functional dissociation between two sets of memory processes: declarative, effortful processes, and non-declarative, automatic processes. There is abundant evidence suggesting that aging does impair learning when past memories of former actions are required (episodic memory) and recollected through controlled processing (working memory). However, other studies have shown that aging does not impair learning when motor actions are performed non verbally and automatically (tapping procedural memory). These findings led us to hypothesize that one can minimize the impact of aging on the ability to learn new motor actions by favouring procedural learning. Recent data validating this hypothesis are presented. Our findings underline the importance of developing new motor learning strategies, which "bypass" declarative, effortful memory processes.
ERIC Educational Resources Information Center
Gabay, Yafit; Schiff, Rachel; Vakil, Eli
2012-01-01
Motor sequence learning has been studied extensively in Developmental dyslexia (DD). The purpose of the present research was to examine procedural learning of letter names and motor sequences in individuals with DD and control groups. Both groups completed the Serial Search Task which enabled the assessment of learning of letter names and motor…
ERIC Educational Resources Information Center
Roessger, Kevin M.
2012-01-01
Researchers have yet to agree on an approach that supports how adults best learn novel motor skills in formal educational contexts. The literature fails to adequately discuss adult motor learning from the standpoint of adult education. Instead, the subject is addressed by other disciplines. This review attempts to integrate perspectives across…
Profiling Instructional Effectiveness to Reveal Its Relationship to Learning
ERIC Educational Resources Information Center
Kalender, Ilker
2014-01-01
The purpose of the present study is to define instructional profiles and investigate the relationship between these profiles and learning indicators such as end-of-semester grades and self-reported amount of learning. Instructional profiles were obtained using a segmentation method. Student ratings were used as indicators of instructional…
Teacher-Student Communication Games: Some Experiments on Instruction.
ERIC Educational Resources Information Center
Olson, David R.; And Others
This inquiry began with the observation that learning from instruction is radically more efficient for obtaining information than learning by discovery. A series of seven experiments was conducted to determine some of the factors involved in learning from verbal instruction. The perspective adopted was that of communication theory, in which the…
Reading Instruction in Science for Students with Learning Disabilities
ERIC Educational Resources Information Center
Kaldenberg, Erica R.; Watt, Sarah J.; Therrien, William J.
2015-01-01
As a growing number of students with learning disabilities (LD) receive science instruction in general education settings, students with LD continue to perform significantly lower than their non-disabled peers. The shift from textbook-driven instruction to inquiry-based approaches to science learning supports students who struggle with reading.…
The Impact of Supplemental Instruction on Learning Competence and Academic Performance
ERIC Educational Resources Information Center
Ning, Hoi Kwan; Downing, Kevin
2010-01-01
This study investigated the effects of supplemental instruction, a peer-assisted learning approach, on students, learning competence and academic performance. The supplemental instruction intervention facilitated by senior students focused on developing students' use of study skills and enhancing their motivation and academic performance. Pre- and…
Implementing Instructional Development Through Learning Resource Programs. Volume 1.
ERIC Educational Resources Information Center
Holloway, Ralph, Ed.
At a meeting of community/junior college officials on proposed academic redesign based on learning resource centers, various aspects of instructional development were discussed. Topics include the use of television to extend education, organizing for instructional development, bringing about change, the concept of the learning center, organizing…
Instructional strategies for online introductory college physics based on learning styles
NASA Astrophysics Data System (ADS)
Ekwue, Eleazer U.
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.
Patton, J R; Cronin, M E; Bassett, D S; Koppel, A E
1997-01-01
Current mathematics instruction does not address the day-to-day needs of many students with learning disabilities. Although the vast majority of students with learning disabilities are not college bound, much of mathematics instruction provides college preparation. Too often, classes in mathematics ignore the skills needed in home and community and on the job. The present article examines the ways in which general mathematics instruction, focused on daily living skills, can easily be integrated into the classrooms of students with learning disabilities.
Connor, Carol McDonald; Spencer, Mercedes; Day, Stephanie L.; Giuliani, Sarah; Ingebrand, Sarah W.; McLean, Leigh; Morrison, Frederick J.
2014-01-01
We examined classrooms as complex systems that affect students’ literacy learning through interacting effects of content and amount of time individual students spent in literacy instruction along with the global quality of the classroom-learning environment. We observed 27 third grade classrooms serving 315 target students using two different observation systems. The first assessed instruction at a more micro-level; specifically, the amount of time individual students spent in literacy instruction defined by the type of instruction, role of the teacher, and content. The second assessed the quality of the classroom-learning environment at a more macro level focusing on classroom organization, teacher responsiveness, and support for vocabulary and language. Results revealed that both global quality of the classroom learning environment and time individual students spent in specific types of literacy instruction covering specific content interacted to predict students’ comprehension and vocabulary gains whereas neither system alone did. These findings support a dynamic systems model of how individual children learn in the context of classroom literacy instruction and the classroom-learning environment, which can help to improve observations systems, advance research, elevate teacher evaluation and professional development, and enhance student achievement. PMID:25400293
Huang, Lianyan; Yang, Guang
2014-01-01
Background Recent studies in rodents suggest that repeated and prolonged anesthetic exposure at early stages of development leads to cognitive and behavioral impairments later in life. However, the underlying mechanism remains unknown. In this study, we tested whether exposure to general anesthesia during early development will disrupt the maturation of synaptic circuits and compromise learning-related synaptic plasticity later in life. Methods Mice received ketamine/xylazine (20/3 mg/kg) anesthesia for one or three times, starting at either early [postnatal day 14 (P14)] or late (P21) stages of development (n=105). Control mice received saline injections (n=34). At P30, mice were subjected to rotarod motor training and fear conditioning. Motor learning-induced synaptic remodeling was examined in vivo by repeatedly imaging fluorescently-labeled postsynaptic dendritic spines in the primary motor cortex before and after training using two-photon microscopy. Results Three exposures to ketamine/xylazine anesthesia between P14–18 impair the animals’ motor learning and learning-dependent dendritic spine plasticity [new spine formation, 8.4 ± 1.3% (mean ± SD) versus 13.4 ± 1.8%, P = 0.002] without affecting fear memory and cell apoptosis. One exposure at P14 or three exposures between P21–25 has no effects on the animals’ motor learning or spine plasticity. Finally, enriched motor experience ameliorates anesthesia-induced motor learning impairment and synaptic deficits. Conclusion Our study demonstrates that repeated exposures to ketamine/xylazine during early development impair motor learning and learning-dependent dendritic spine plasticity later in life. The reduction in synaptic structural plasticity may underlie anesthesia-induced behavioral impairment. PMID:25575163
Web-based learning: pros, cons and controversies.
Cook, David A
2007-01-01
Advantages of web-based learning (WBL) in medical education include overcoming barriers of distance and time, economies of scale, and novel instructional methods, while disadvantages include social isolation, up-front costs, and technical problems. Web-based learning is purported to facilitate individualised instruction, but this is currently more vision than reality. More importantly, many WBL instructional designs fail to incorporate principles of effective learning, and WBL is often used for the wrong reasons (e.g., for the sake of technology). Rather than trying to decide whether WBL is superior to or equivalent to other instructional media (research addressing this question will always be confounded), we should accept it as a potentially powerful instructional tool, and focus on learning when and how to use it. Educators should recognise that high fidelity, multimedia, simulations, and even WBL itself will not always be necessary to effectively facilitate learning.
Gobel, Eric W; Parrish, Todd B; Reber, Paul J
2011-10-15
Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. Copyright © 2011 Elsevier Inc. All rights reserved.
Gobel, Eric W.; Parrish, Todd B.; Reber, Paul J.
2011-01-01
Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. PMID:21771663
ERIC Educational Resources Information Center
Yeh, Yu-Chu
2009-01-01
The "Direct-instruction Model" favors the use of teacher explanations and modeling combined with student practice and feedback to teach thinking skills. Using this paradigm, this study incorporates e-learning during an 18-week experimental instruction period that includes 48 preservice teachers. The instructional design in this study emphasizes…
When Does Provision of Instruction Promote Learning?
ERIC Educational Resources Information Center
Lee, Hee Seung; Anderson, Abraham; Betts, Shawn; Anderson, John R.
2011-01-01
Contradictory evidence has been reported on the effects of discovery learning approach and the role of instructional explanations. By manipulating the presence of instruction (verbal explanation) and transparency of problem structures, we investigated how effects of instructional explanations differed depending on the transparency of problem…
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.
2008-01-01
Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957
Learning fast accurate movements requires intact frontostriatal circuits
Shabbott, Britne; Ravindran, Roshni; Schumacher, Joseph W.; Wasserman, Paula B.; Marder, Karen S.; Mazzoni, Pietro
2013-01-01
The basal ganglia are known to play a crucial role in movement execution, but their importance for motor skill learning remains unclear. Obstacles to our understanding include the lack of a universally accepted definition of motor skill learning (definition confound), and difficulties in distinguishing learning deficits from execution impairments (performance confound). We studied how healthy subjects and subjects with a basal ganglia disorder learn fast accurate reaching movements. We addressed the definition and performance confounds by: (1) focusing on an operationally defined core element of motor skill learning (speed-accuracy learning), and (2) using normal variation in initial performance to separate movement execution impairment from motor learning abnormalities. We measured motor skill learning as performance improvement in a reaching task with a speed-accuracy trade-off. We compared the performance of subjects with Huntington's disease (HD), a neurodegenerative basal ganglia disorder, to that of premanifest carriers of the HD mutation and of control subjects. The initial movements of HD subjects were less skilled (slower and/or less accurate) than those of control subjects. To factor out these differences in initial execution, we modeled the relationship between learning and baseline performance in control subjects. Subjects with HD exhibited a clear learning impairment that was not explained by differences in initial performance. These results support a role for the basal ganglia in both movement execution and motor skill learning. PMID:24312037
Learner Performance in Multimedia Learning Arrangements: An Analysis across Instructional Approaches
ERIC Educational Resources Information Center
Eysink, Tessa H. S.; de Jong, Ton; Berthold, Kirsten; Kolloffel, Bas; Opfermann, Maria; Wouters, Pieter
2009-01-01
In this study, the authors compared four multimedia learning arrangements differing in instructional approach on effectiveness and efficiency for learning: (a) hypermedia learning, (b) observational learning, (c) self-explanation-based learning, and (d) inquiry learning. The approaches all advocate learners' active attitude toward the learning…
REACH. Electricity Units, Post-Secondary.
ERIC Educational Resources Information Center
Smith, Gene; And Others
As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this postsecondary student manual contains individualized instructional units in the area of electricity. The instructional units focus on electricity fundamentals, electric motors, electrical components, and controls and installation.…
Instructional Models for Children with Special Needs.
ERIC Educational Resources Information Center
Frew, Thomas W.; Klein, Nancy K.
1982-01-01
Various instructional models for use in classrooms with both mildly handicapped and nonhandicapped students are described: (1) developmental model; (2) inquiry and inductive reasoning models; (3) behavioral model; (4) perceptual motor theory; (5) diagnostic-prescriptive models; and (6) individual education plan. (CJ)
Space Shuttle Reusable Solid Rocket Motor Program Overview and Lessons Learned
NASA Technical Reports Server (NTRS)
Graves, Stan R.; McCool, Alex (Technical Monitor)
2001-01-01
An overview of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program is provided with a summary of lessons learned since the first test firing in 1977. Fifteen different lessons learned are discussed that fundamentally changed the motor's design, processing, and RSRM program risk management systems. The evolution of the rocket motor design is presented including the baseline or High Performance Solid Rocket Motor (HPM), the Filament Wound Case (FWC), the RSRM, and the proposed Five-Segment Booster (FSB).
Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W
2012-09-01
Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Brain Activation in Motor Sequence Learning Is Related to the Level of Native Cortical Excitability
Lissek, Silke; Vallana, Guido S.; Güntürkün, Onur; Dinse, Hubert; Tegenthoff, Martin
2013-01-01
Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo) showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi). In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants. PMID:23613956
Following instructions from working memory: Why does action at encoding and recall help?
Jaroslawska, Agnieszka J; Gathercole, Susan E; Allen, Richard J; Holmes, Joni
2016-11-01
Two experiments investigated the consequences of action at encoding and recall on the ability to follow sequences of instructions. Children ages 7-9 years recalled sequences of spoken action commands under presentation and recall conditions that either did or did not involve their physical performance. In both experiments, recall was enhanced by carrying out the instructions as they were being initially presented and also by performing them at recall. In contrast, the accuracy of instruction-following did not improve above spoken presentation alone, either when the instructions were silently read or heard by the child (Experiment 1), or when the child repeated the spoken instructions as they were presented (Experiment 2). These findings suggest that the enactment advantage at presentation does not simply reflect a general benefit of a dual exposure to instructions, and that it is not a result of their self-production at presentation. The benefits of action-based recall were reduced following enactment during presentation, suggesting that the positive effects of action at encoding and recall may have a common origin. It is proposed that the benefits of physical movement arise from the existence of a short-term motor store that maintains the temporal, spatial, and motoric features of either planned or already executed actions.
An impoverished machine: challenges to human learning and instructional technology.
Taraban, Roman
2008-08-01
Many of the limitations to human learning and processing identified by cognitive psychologists over the last 50 years still hold true, including computational constraints, low learning rates, and unreliable processing. Instructional technology can be used in classrooms and in other learning contexts to address these limitations to learning. However, creating technological innovations is not enough. As part of psychological science, the development and assessment of instructional systems should be guided by theories and practices within the discipline. The technology we develop should become an object of research like other phenomena that are studied. In the present article, I present an informal account of my own work in assessing instructional technology for engineering thermodynamics to show not only the benefits, but also the limitations, in studying the technology we create. I conclude by considering several ways of advancing the development of instructional technology within the SCiP community, including interdisciplinary research and envisioning learning contexts that differ radically from traditional learning focused on lectures and testing.
Design of a Blended Learning Environment Based on Merrill’s Principles
NASA Astrophysics Data System (ADS)
Simarmata, Janner; Djohar, Asari; Purba, Janulis; Juanda, Enjang A.
2018-01-01
Designing blended learning courses requires a systematic approach, in instructional design decisions and implementations, instructional principles help educators not only to specify the elements of the course, but also to provide a solid base from which to build the technology. The blended learning course was designed based on Merrill’s First Principles of Instruction with five phases. This paper helps inform educators about how to develop appropriate learning styles and preferences according to students’ learning needs.
Iserbyt, Peter; Byra, Mark
2013-11-01
Research investigating design effects of instructional tools for learning Basic Life Support (BLS) is almost non-existent. To demonstrate the design of instructional tools matter. The effect of spatial contiguity, a design principle stating that people learn more deeply when words and corresponding pictures are placed close (i.e., integrated) rather than far from each other on a page was investigated on task cards for learning Cardiopulmonary Resuscitation (CPR) during reciprocal peer learning. A randomized controlled trial. A total of 111 students (mean age: 13 years) constituting six intact classes learned BLS through reciprocal learning with task cards. Task cards combine a picture of the skill with written instructions about how to perform it. In each class, students were randomly assigned to the experimental group or the control. In the control, written instructions were placed under the picture on the task cards. In the experimental group, written instructions were placed close to the corresponding part of the picture on the task cards reflecting application of the spatial contiguity principle. One-way analysis of variance found significantly better performances in the experimental group for ventilation volumes (P=.03, ηp2=.10) and flow rates (P=.02, ηp2=.10). For chest compression depth, compression frequency, compressions with correct hand placement, and duty cycles no significant differences were found. This study shows that the design of instructional tools (i.e., task cards) affects student learning. Research-based design of learning tools can enhance BLS and CPR education. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Visuomotor learning by passive motor experience
Sakamoto, Takashi; Kondo, Toshiyuki
2015-01-01
Humans can adapt to unfamiliar dynamic and/or kinematic transformations through the active motor experience. Recent studies of neurorehabilitation using robots or brain-computer interface (BCI) technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge of passive motor learning is limited. To clarify the effects of passive motor experience on human motor learning, we performed arm reaching experiments guided by a robotic manipulandum. The results showed that the passive motor experience had an anterograde transfer effect on the subsequent motor execution, whereas no retrograde interference was confirmed in the ABA paradigm experiment. This suggests that the passive experience of the error between visual and proprioceptive sensations leads to the limited but actual compensation of behavior, although it is fragile and cannot be consolidated as a persistent motor memory. PMID:26029091
Di Rienzo, Franck; Debarnot, Ursula; Daligault, Sébastien; Saruco, Elodie; Delpuech, Claude; Doyon, Julien; Collet, Christian; Guillot, Aymeric
2016-01-01
There is now compelling evidence that motor imagery (MI) promotes motor learning. While MI has been shown to influence the early stages of the learning process, recent data revealed that sleep also contributes to the consolidation of the memory trace. How such "online" and "offline" processes take place and how they interact to impact the neural underpinnings of movements has received little attention. The aim of the present review is twofold: (i) providing an overview of recent applied and fundamental studies investigating the effects of MI practice (MIP) on motor learning; and (ii) detangling applied and fundamental findings in support of a sleep contribution to motor consolidation after MIP. We conclude with an integrative approach of online and offline learning resulting from intense MIP in healthy participants, and underline research avenues in the motor learning/clinical domains.
Di Rienzo, Franck; Debarnot, Ursula; Daligault, Sébastien; Saruco, Elodie; Delpuech, Claude; Doyon, Julien; Collet, Christian; Guillot, Aymeric
2016-01-01
There is now compelling evidence that motor imagery (MI) promotes motor learning. While MI has been shown to influence the early stages of the learning process, recent data revealed that sleep also contributes to the consolidation of the memory trace. How such “online” and “offline” processes take place and how they interact to impact the neural underpinnings of movements has received little attention. The aim of the present review is twofold: (i) providing an overview of recent applied and fundamental studies investigating the effects of MI practice (MIP) on motor learning; and (ii) detangling applied and fundamental findings in support of a sleep contribution to motor consolidation after MIP. We conclude with an integrative approach of online and offline learning resulting from intense MIP in healthy participants, and underline research avenues in the motor learning/clinical domains. PMID:27445755
A Model for Designing Library Instruction for Distance Learning
ERIC Educational Resources Information Center
Rand, Angela Doucet
2013-01-01
Providing library instruction in distance learning environments presents a unique set of challenges for instructional librarians. Innovations in computer-mediated communication and advances in cognitive science research provide the opportunity for designing library instruction that meets a variety of student information seeking needs. Using a…
Designing Instructional Texts: Interaction between Text and Learner.
ERIC Educational Resources Information Center
Beukhof, Gijsbertus
A prescriptive theory for learning which delivers prescriptions for designing prototypes of instructional materials with different knowledge structures, the Elaboration Theory of Instruction (ETI) is based on important principles and theories of learning and instruction. This paper reports three experiments which tested ETI. The first experiment…
Direct Instruction, DISTAR, and Language for Learning. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
This report focuses on a family of interventions that includes all "Direct Instruction" products ("DISTAR" and "Language for Learning"). "Direct Instruction" was used to refer to this family of interventions, as well as to all versions past and present. "Direct Instruction" includes teaching…
Barnes, Terra D.; Mao, Jian-Bin; Hu, Dan; Kubota, Yasuo; Dreyer, Anna A.; Stamoulis, Catherine; Brown, Emery N.
2011-01-01
One of the most characteristic features of habitual behaviors is that they can be evoked by a single cue. In the experiments reported here, we tested for the effects of such advance cueing on the firing patterns of striatal neurons in the sensorimotor striatum. Rats ran in a T-maze with instruction cues about the location of reward given at the start of the runs. This advance cueing about reward produced a highly augmented task-bracketing pattern of activity at the beginning and end of procedural task performance relative to the patterns found previously with midtask cueing. Remarkably, the largest increase in activity early during the T-maze runs was not associated with the instruction cues themselves, the earliest predictors of reward; instead, the highest peak of early activity was associated with the beginning of the motor period of the task. We suggest that the advance cueing, reducing midrun demands for decision making but adding a working-memory load, facilitated chunking of the maze runs as executable scripts anchored to sensorimotor aspects of the task and unencumbered by midtask decision-making demands. Our findings suggest that the acquisition of stronger task-bracketing patterns of striatal activity in the sensorimotor striatum could reflect this enhancement of behavioral chunking. Deficits in such representations of learned sequential behaviors could contribute to motor and cognitive problems in a range of neurological disorders affecting the basal ganglia, including Parkinson's disease. PMID:21307317
Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story
Llinás, Rodolfo R
2011-01-01
Abstract Theories concerning the role of the climbing fibre system in motor learning, as opposed to those addressing the olivocerebellar system in the organization of motor timing, are briefly contrasted. The electrophysiological basis for the motor timing hypothesis in relation to the olivocerebellar system is treated in detail. PMID:21486816
ERIC Educational Resources Information Center
Whitcraft, Carol
Investigations and theories concerning interrelationships of motoric experiences, perceptual-motor skills, and learning are reviewed, with emphasis on early engramming of form and space concepts. Covered are studies on haptic perception of form, the matching of perceptual data and motor information, Kephart's perceptual-motor theory, and…
Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.
Longmuir, Kenneth J
2014-03-01
In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.
A quantitative meta-analysis and review of motor learning in the human brain
Hardwick, Robert M.; Rottschy, Claudia; Miall, R. Chris; Eickhoff, Simon B.
2013-01-01
Neuroimaging studies have improved our understanding of which brain structures are involved in motor learning. Despite this, questions remain regarding the areas that contribute consistently across paradigms with different task demands. For instance, sensorimotor tasks focus on learning novel movement kinematics and dynamics, while serial response time task (SRTT) variants focus on sequence learning. These differing task demands are likely to elicit quantifiably different patterns of neural activity on top of a potentially consistent core network. The current study identified consistent activations across 70 motor learning experiments using activation likelihood estimation (ALE) meta-analysis. A global analysis of all tasks revealed a bilateral cortical–subcortical network consistently underlying motor learning across tasks. Converging activations were revealed in the dorsal premotor cortex, supplementary motor cortex, primary motor cortex, primary somatosensory cortex, superior parietal lobule, thalamus, putamen and cerebellum. These activations were broadly consistent across task specific analyses that separated sensorimotor tasks and SRTT variants. Contrast analysis indicated that activity in the basal ganglia and cerebellum was significantly stronger for sensorimotor tasks, while activity in cortical structures and the thalamus was significantly stronger for SRTT variants. Additional conjunction analyses then indicated that the left dorsal premotor cortex was activated across all analyses considered, even when controlling for potential motor confounds. The highly consistent activation of the left dorsal premotor cortex suggests it is a critical node in the motor learning network. PMID:23194819
NASA Astrophysics Data System (ADS)
Vertenten, Kristin
2002-01-01
Finding a way to encourage first year students to use deep processing strategies was the aim of this research. The need for an adequate method became clear after using the Inventory of Learning Styles (ILS) of Vermunt: almost half of the first year students turned out to have an undirected or a reproduction-directed learning style. A possible intervention is process-oriented instruction. In this type of instruction learning strategies are taught in coherence with domain specific knowledge. The emphasis is on a gradual transfer from a strongly instruction-guided regulation of the learning process towards a student-regulation. By promoting congruence and constructive frictions between instruction and learning strategies, students are challenged to improve their learning strategies. These general features of process-oriented instruction were refined by Vermunt (1992) in twelve general and specific principles. Literature was studied in which researchers reported about their experiences with interventions aimed at teaching physics knowledge, physics strategies and/or learning and thinking strategies. It became obvious that several successful interventions stressed four principles: (1) the student must experience (constructive) f&barbelow;rictions, including cognitive conflicts; (2) he must be encouraged to ṟeflect on his experiences (thinking about them and analysing them); (3) the instruction must e&barbelow;xplicate and demonstrate the necessary knowledge and strategies; and (4) the student must be given the opportunity to practice (ḏoing) with the learned knowledge and strategies. These four FRED-principles are useful for teaching both general and domain specific knowledge and strategies. They show similarities with the four stages in the learning cycle of Kolb (1984). Moreover, other elements of process-oriented instruction are also depicted by the learning cycle, which, when used in process-oriented instruction, has to start with experiencing (constructive) frictions. The gradual shift of the regulation of the learning process can also be translated to the learning cycle. This can be accomplished by giving a new meaning to the radius of the circle which must represent the growing self-regulation of the learning process. This transforms the learning cycle into a learning spiral. The four FRED-principles were used to develop a learning environment for the first year physics problem-solving classes. After working in this learning environment during the first semester, students began using deep processing strategies in a self-regulated manner. After the second semester the reproduction-directed and undirected learning style were vanished or strongly diminished. These effects were not found in a traditional learning environment. The experimental group also obtained better study results. Working in the developed learning environment did not heighten the study load. (Abstract shortened by UMI.)
Motor contingency learning and infants with Spina Bifida.
Taylor, Heather B; Barnes, Marcia A; Landry, Susan H; Swank, Paul; Fletcher, Jack M; Huang, Furong
2013-02-01
Infants with Spina Bifida (SB) were compared to typically developing infants (TD) using a conjugate reinforcement paradigm at 6 months-of-age (n = 98) to evaluate learning, and retention of a sensory-motor contingency. Analyses evaluated infant arm-waving rates at baseline (wrist not tethered to mobile), during acquisition of the sensory-motor contingency (wrist tethered), and immediately after the acquisition phase and then after a delay (wrist not tethered), controlling for arm reaching ability, gestational age, and socioeconomic status. Although both groups responded to the contingency with increased arm-waving from baseline to acquisition, 15% to 29% fewer infants with SB than TD were found to learn the contingency depending on the criterion used to determine contingency learning. In addition, infants with SB who had learned the contingency had more difficulty retaining the contingency over time when sensory feedback was absent. The findings suggest that infants with SB do not learn motor contingencies as easily or at the same rate as TD infants, and are more likely to decrease motor responses when sensory feedback is absent. Results are discussed with reference to research on contingency learning in infants with and without neurodevelopmental disorders, and with reference to motor learning in school-age children with SB.
Transfer of Learning: The Effects of Different Instruction Methods on Software Application Learning
ERIC Educational Resources Information Center
Larson, Mark E.
2010-01-01
Human Resource Departments (HRD), especially instructors, are challenged to keep pace with rapidly changing computer software applications and technology. The problem under investigation revealed after instruction of a software application if a particular method of instruction was a predictor of transfer of learning, when other risk factors were…
Two Instructional Aids to Optimise Processing and Learning from Instructional Explanations
ERIC Educational Resources Information Center
Roelle, Julian; Berthold, Kirsten; Renkl, Alexander
2014-01-01
Although instructional explanations are commonly used to introduce learners to new learning content, previous studies have often shown that their effects on learning outcomes are minimal. This failure might partly be due to mental passivity of the learners while processing introductory explanations and to a lack of opportunity to revise potential…
A Practical Approach to Using Learning Styles in Math Instruction.
ERIC Educational Resources Information Center
Midkiff, Ruby Bostick; Thomasson, Rebecca Davis
Instruction based on learning styles has received little attention in the recent reform efforts in mathematics education. The purpose of this book is to address the improvement of mathematics instruction through sensitivity to learning styles. The introduction discusses the scope and rationale of the book. Chapter 2 documents the need for…
Mnemonic Instruction in Science and Social Studies for Students with Learning Problems: A Review
ERIC Educational Resources Information Center
Lubin, Jacqueline; Polloway, Edward A.
2016-01-01
Over the years, mnemonic instruction has been promoted as an effective strategy to teach students with learning problems including learning disabilities (LD) or mild intellectual disability (MID). This paper discusses mnemonic instruction, including types, versatility in use, and effectiveness with struggling learners. Specific emphasis then is…
Rotating Solids and Flipping Instruction
ERIC Educational Resources Information Center
Grypp, Lynette; Luebeck, Jennifer
2015-01-01
Technology is causing educators to rethink the entire notion of classroom learning, not only with respect to what learning should take place but also where it should take place. One such innovation is flipped instruction, broadly defined by Staker and Horn (2012) as an instructional model in which students learn partly through online delivery and…
Symbolic Resources and Sense-Making in Learning and Instruction
ERIC Educational Resources Information Center
Zittoun, Tania
2017-01-01
This paper presents the concept of symbolic resources for apprehending sense-making in learning and instruction. It first reminds the centrality of sense-making in learning and instruction from a sociocultural perspective, and proposes a pragmatist approach to examine what sorts of knowledge people use when they face situations that matter. The…
Mathematical Learning Models that Depend on Prior Knowledge and Instructional Strategies
ERIC Educational Resources Information Center
Pritchard, David E.; Lee, Young-Jin; Bao, Lei
2008-01-01
We present mathematical learning models--predictions of student's knowledge vs amount of instruction--that are based on assumptions motivated by various theories of learning: tabula rasa, constructivist, and tutoring. These models predict the improvement (on the post-test) as a function of the pretest score due to intervening instruction and also…
Exploring an Appropriate Instructional Design Model for Continuing Medical Education
ERIC Educational Resources Information Center
Omrani, Soghra; Fardanesh, Hashem; Hemmati, Nima; Hemmati, Naser
2012-01-01
Instruction, even when designed and based on sound instructional principles, oftentimes does not stimulate learners' motivation to learn. The result may be that learners may not be motivated to pursue lifelong learning and use the knowledge and skills learned to deliver patient care. The purpose of this study was to identify an appropriate…
ERIC Educational Resources Information Center
Hoops, Leah D.; Yu, Shirley L.; Wang, Qianqian; Hollyer, Virginia L.
2016-01-01
Promoting students' self-regulated learning (SRL) is one way to improve postsecondary student success. However, few studies have investigated the instructional practices of postsecondary instructors that may support students' SRL. This study sought to fill this gap. An undergraduate mathematics course was observed to determine instruction utilized…
ERIC Educational Resources Information Center
Watson, Sunnie Lee; Kim, Woori
2016-01-01
This study examines learner enrolment purposes, perceptions on instructional activities and their relationship to learning gains in a Massive Open Online Course (MOOC) for attitudinal change regarding human trafficking. Using an author-developed survey, learners reported their perceptions on instructional activities and learning gains within the…
Faculty Perceptions of Pedagogical Considerations in the Design of Hybrid Courses
ERIC Educational Resources Information Center
Jeghalef, Salma
2016-01-01
Changes in student demographics and in technology are driving American higher education to embrace innovative instruction. The hybrid mode of instruction is providing a learning modality that offers the flexibility and convenience of online learning without losing the benefits of a face-to-face learning environment. This mode of instruction is…
School-Based Instructional Rounds: Improving Teaching and Learning across Classrooms
ERIC Educational Resources Information Center
Teitel, Lee
2013-01-01
In "School-Based Instructional Rounds," Teitel offers detailed case studies of five different models of school-based rounds and investigates critical learning from each. Instructional rounds--one of the most innovative and powerful approaches to improving teaching and learning--has been taken up by districts across the country and around…
Beginning Teachers' Use of Resources to Enact and Learn from Ambitious Instruction
ERIC Educational Resources Information Center
Stroupe, David
2016-01-01
I investigated how five first-year teachers--all peers from the same science methods class framed around ambitious instruction--used resources to plan and learn in schools that promoted pedagogy anchored around information delivery. The participants engaged in different cycles of resource-driven learning based on the instructional framework they…
Instructional Development for Teachers in Higher Education: Effects on Students' Learning Outcomes
ERIC Educational Resources Information Center
Stes, Ann; De Maeyer, Sven; Gijbels, David; Van Petegem, Peter
2012-01-01
Evidence regarding the impact of teachers' instructional development on student learning in higher education is scarce. In this study, we investigate the impact of an instructional development program for beginning university teachers on students' learning outcomes. We also explore whether this impact is dependent on class size and student level.…
ERIC Educational Resources Information Center
Koedinger, Kenneth R.; Corbett, Albert T.; Perfetti, Charles
2012-01-01
Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of…
ERIC Educational Resources Information Center
Warren, Richard Daniel
2012-01-01
The purpose of this research was to investigate the effects of including adaptive confidence strategies in instructionally sound computer-assisted instruction (CAI) on learning and learner confidence. Seventy-one general educational development (GED) learners recruited from various GED learning centers at community colleges in the southeast United…
ERIC Educational Resources Information Center
Rau, Martina A.; Kennedy, Kristopher; Oxtoby, Lucas; Bollom, Mark; Moore, John W.
2017-01-01
Much evidence shows that instruction that actively engages students with learning materials is more effective than traditional, lecture-centric instruction. These "active learning" models comprise an extremely heterogeneous set of instructional methods: they often include collaborative activities, flipped classrooms, or a combination of…
Glaister, Karen
2005-09-01
The ability of nurses to perform accurate drug dosage calculations has repercussions for patients' well-being. How best to assist nurses develop competency in this area is paramount. This paper presents findings of a study conducted with undergraduate nurses to determine the effect of three instructional approaches on the learning of this skill. The quasi-experimental study exposed participants to one of three instructional approaches: integrative learning, computerised learning and a combination of integrative and computerised learning. Quantitative and qualitative approaches were used to explore differences in the instructional approaches and gain further understanding of the learning process. There was no statistical difference between the three instructional approaches on knowledge acquisition and transfer measures, other than measures for procedural knowledge, which was significant (F(2,47) = 3.33 at p < .044). A least-significant difference post hoc test (alpha = 0. 10) indicated computerised learning was significantly more effective in developing procedural knowledge. The provision of instructional strategies, which facilitate development of conditional knowledge and automaticity, is necessary for competency development in dosage calculations. Furthermore, the curriculum must incorporate authentic tasks and permit time to support competency attainment.
Perceptual learning in sensorimotor adaptation.
Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J
2013-11-01
Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.
Caregiver-Provided Physical Therapy Home Programs for Children with Motor Delay: A Scoping Review.
Gorgon, Edward James R
2018-06-01
Caregiver-provided physical therapy home programs (PTHP) play an important role in enhancing motor outcomes in pediatric patient populations. This scoping review systematically mapped clinical trials of caregiver-provided PTHP that were aimed at enhancing motor outcomes in children who have or who are at risk for motor delay, with the purpose of (1) describing trial characteristics; (2) assessing methodologic quality; and (3) examining the reporting of caregiver-related components. Physiotherapy Evidence Database (PEDro), Cochrane CENTRAL, PubMed, Scopus, ScienceDirect, ProQuest Central, CINAHL, LILACS, and OTseeker were searched up to July 31, 2017. Two reviewers independently assessed study eligibility. Randomized or quasi-randomized controlled trials on PTHP administered by parents, other family members, friends, or informal caregivers to children who had or who were at risk for motor delay were included. Two reviewers independently appraised trial quality on the PEDro scale and extracted data. Twenty-four articles representing 17 individual trials were identified. Populations and interventions investigated were heterogeneous. Most of the trials had important research design limitations and methodological issues that could limit usefulness in ascertaining the effectiveness of caregiver-provided PTHP. Few (4 of 17) trials indicated involvement of caregivers in the PTHP planning, assessed how the caregivers learned from the training or instructions provided, or carried out both. Included studies were heterogeneous, and unpublished data were excluded. Although caregiver-provided PTHP are important in addressing motor outcomes in this population, there is a lack of evidence at the level of clinical trials to guide practice. More research is urgently needed to determine the effectiveness of care-giver-provided PTHP. Future studies should address the many important issues identified in this scoping review to improve the usefulness of the trial results.
Gagne's Learning Theory Applied to Technical Instruction
ERIC Educational Resources Information Center
Lawson, Tom E.
1974-01-01
An overview of Robert M. Gagne's theoretical position of learning and instruction is presented with a discussion of possible applications and usefulness of the theory toward the development of technical instruction. (Author/AG)
Changes in the neural control of a complex motor sequence during learning
Otchy, Timothy M.; Goldberg, Jesse H.; Aronov, Dmitriy; Fee, Michale S.
2011-01-01
The acquisition of complex motor sequences often proceeds through trial-and-error learning, requiring the deliberate exploration of motor actions and the concomitant evaluation of the resulting performance. Songbirds learn their song in this manner, producing highly variable vocalizations as juveniles. As the song improves, vocal variability is gradually reduced until it is all but eliminated in adult birds. In the present study we examine how the motor program underlying such a complex motor behavior evolves during learning by recording from the robust nucleus of the arcopallium (RA), a motor cortex analog brain region. In young birds, neurons in RA exhibited highly variable firing patterns that throughout development became more precise, sparse, and bursty. We further explored how the developing motor program in RA is shaped by its two main inputs: LMAN, the output nucleus of a basal ganglia-forebrain circuit, and HVC, a premotor nucleus. Pharmacological inactivation of LMAN during singing made the song-aligned firing patterns of RA neurons adultlike in their stereotypy without dramatically affecting the spike statistics or the overall firing patterns. Removing the input from HVC, on the other hand, resulted in a complete loss of stereotypy of both the song and the underlying motor program. Thus our results show that a basal ganglia-forebrain circuit drives motor exploration required for trial-and-error learning by adding variability to the developing motor program. As learning proceeds and the motor circuits mature, the relative contribution of LMAN is reduced, allowing the premotor input from HVC to drive an increasingly stereotyped song. PMID:21543758
Utilizing New Audiovisual Resources
ERIC Educational Resources Information Center
Miller, Glen
1975-01-01
The University of Arizona's Agriculture Department has found that video cassette systems and 8 mm films are excellent audiovisual aids to classroom instruction at the high school level in small gasoline engines. Each system is capable of improving the instructional process for motor skill development. (MW)
Light Vehicle Preventive Maintenance.
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
This correspondence course, originally developed for the Marine Corps, is designed to instruct students in the performance of preventive maintenance on motor vehicles. Instructional materials are presented in three chapters as follows: (1) Major Maintenance Areas (maintenance system, tires, batteries, cooling systems, and vehicle lubrication; (2)…
Imagery and Verbal Coding Approaches in Chinese Vocabulary Instruction
ERIC Educational Resources Information Center
Shen, Helen H.
2010-01-01
This study consists of two instructional experiments. Within the framework of dual coding theory, the study compares the learning effects of two instructional encoding methods used in Chinese vocabulary instruction among students learning beginning Chinese as a foreign language. One method uses verbal encoding only, and the other method uses…
Prepared Stimuli Enhance Aversive Learning without Weakening the Impact of Verbal Instructions
ERIC Educational Resources Information Center
Atlas, Lauren Y.; Phelps, Elizabeth A.
2018-01-01
Fear-relevant stimuli such as snakes and spiders are thought to capture attention due to evolutionary significance. Classical conditioning experiments indicate that these stimuli accelerate learning, while instructed extinction experiments suggest they may be less responsive to instructions. We manipulated stimulus type during instructed aversive…
Using Cognitive Load Theory to Tailor Instruction to Levels of Accounting Students' Expertise
ERIC Educational Resources Information Center
Blayney, Paul; Kalyuga, Slava; Sweller, John
2015-01-01
Tailoring of instructional methods to learner levels of expertise may reduce extraneous cognitive load and improve learning. Contemporary technology-based learning environments have the potential to substantially enable learner-adapted instruction. This paper investigates the effects of adaptive instruction based on using the isolated-interactive…
An Instructional Media Selection Guide for Distance Learning. Fourth Edition
ERIC Educational Resources Information Center
Holden, Jolly T.; Westfall, Philip J.-L.
2007-01-01
Increasingly, educators and trainers are challenged within their respective organizations to provide for the efficient distribution of instructional content using instructional media. The appropriate selection of instructional media to support distance learning is not intuitive and does not occur as a matter of personal preference. On the…
ERIC Educational Resources Information Center
Wagner, Ellen D.
Two assessment endeavors were undertaken to determine the relative impact of alphanumeric and graphic instructional mediators upon intentional and incidental learning outcomes in applied instructional contexts. The intent of these investigations was to determine the feasibility of embedding strategic organizational cues within instruction to…
Formulating Guidelines for Instructional Planning in Technology Enhanced Learning Environments
ERIC Educational Resources Information Center
Lim, Cher Ping
2009-01-01
Several studies have shown the complexities that teachers faced when planning for instruction in technology enhanced learning environments (TELE). Although classroom-oriented instructional development (ID) models have the potential to help teachers think and plan for effective instruction with technology, teachers are often reluctant to use these…
The Negative Impact of Goal-Oriented Instructions
ERIC Educational Resources Information Center
Shatz, Itamar
2015-01-01
The phrasing of task instructions can facilitate or hinder the learning process. In this study, three groups of participants (N = 526) performed a foreign vocabulary memorization task, with modified instructions for each group. The instructions were either learning oriented, encouraging participants to improve their abilities; outcome oriented,…
Learning from Programmed Instruction: Examining Implications for Modern Instructional Technology
ERIC Educational Resources Information Center
McDonald, Jason K.; Yanchar, Stephen C.; Osguthorpe, Russell T.
2005-01-01
This article reports a theoretical examination of several parallels between contemporary instructional technology (as manifest in one of its most current manifestations, online learning) and one of its direct predecessors, programmed instruction. We place particular focus on the underlying assumptions of the two movements. Our analysis suggests…
Learning Objects and Gerontology
ERIC Educational Resources Information Center
Weinreich, Donna M.; Tompkins, Catherine J.
2006-01-01
Virtual AGE (vAGE) is an asynchronous educational environment that utilizes learning objects focused on gerontology and a learning anytime/anywhere philosophy. This paper discusses the benefits of asynchronous instruction and the process of creating learning objects. Learning objects are "small, reusable chunks of instructional media" Wiley…
ERIC Educational Resources Information Center
Taylor, William; And Others
The effects of the Attention Directing Strategy and Imagery Cue Strategy as program embedded learning strategies for microcomputer-based instruction (MCBI) were examined in this study. Eight learning conditions with identical instructional content on the parts and operation of the human heart were designed: either self-paced or externally-paced,…
Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W
2015-01-01
Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.
Pelletreau, Karen N; Knight, Jennifer K; Lemons, Paula P; McCourt, Jill S; Merrill, John E; Nehm, Ross H; Prevost, Luanna B; Urban-Lurain, Mark; Smith, Michelle K
2018-06-01
Helping faculty develop high-quality instruction that positively affects student learning can be complicated by time limitations, a lack of resources, and inexperience using student data to make iterative improvements. We describe a community of 16 faculty from five institutions who overcame these challenges and collaboratively designed, taught, iteratively revised, and published an instructional unit about the potential effect of mutations on DNA replication, transcription, and translation. The unit was taught to more than 2000 students in 18 courses, and student performance improved from preassessment to postassessment in every classroom. This increase occurred even though faculty varied in their instructional practices when they were teaching identical materials. We present information on how this faculty group was organized and facilitated, how members used student data to positively affect learning, and how they increased their use of active-learning instructional practices in the classroom as a result of participation. We also interviewed faculty to learn more about the most useful components of the process. We suggest that this professional development model can be used for geographically separated faculty who are interested in working together on a known conceptual difficulty to improve student learning and explore active-learning instructional practices.
Distance Learning: A Way of Life-Long Learning
2005-09-01
promise of future benefits. 15. SUBJECT TERMS training, educational technology , distributed learning , distance learning , collaboration, online instruction...knowledge." - Aristotle Introduction Modern learning technology assumes various names: distance learning , distributed training, computer-based...training, web-based learning , or advanced distributed learning . No matter the name, the basic concept is using computer technology for instruction with no
Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.
Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim
2009-08-01
This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.
Yeung, Susanna S S; Siegel, Linda S; Chan, Carol K K
2013-05-01
This study investigated the effects of a 12-week language-enriched phonological awareness instruction on 76 Hong Kong young children who were learning English as a second language. The children were assigned randomly to receive the instruction on phonological awareness skills embedded in vocabulary learning activities or comparison instruction which consisted of vocabulary learning and writing tasks but no direct instruction in phonological awareness skills. They were tested on receptive and expressive vocabulary, phonological awareness at the syllable, rhyme and phoneme levels, reading, and spelling in English before and after the program implementation. The results indicated that children who received the phonological awareness instruction performed significantly better than the comparison group on English word reading, spelling, phonological awareness at all levels and expressive vocabulary on the posttest when age, general intelligence and the pretest scores were controlled statistically. The findings suggest that phonological awareness instruction embedded in vocabulary learning activities might be beneficial to kindergarteners learning English as a second language.
Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals.
McGrath, Robert L; Kantak, Shailesh S
2016-02-01
Hemispheric specialization for motor control influences how individuals perform and adapt to goal-directed movements. In contrast to adaptation, motor skill learning involves a process wherein one learns to synthesize novel movement capabilities in absence of perturbation such that they are performed with greater accuracy, consistency and efficiency. Here, we investigated manual asymmetry in acquisition and retention of a complex motor skill that requires speed and accuracy for optimal performance in right-handed and left-handed individuals. We further determined if degree of handedness influences motor skill learning. Ten right-handed (RH) and 10 left-handed (LH) adults practiced two distinct motor skills with their dominant or nondominant arms during separate sessions two-four weeks apart. Learning was quantified by changes in the speed-accuracy tradeoff function measured at baseline and one-day retention. Manual asymmetry was evident in the RH group but not the LH group. RH group demonstrated significantly greater skill improvement for their dominant-right hand than their nondominant-left hand. In contrast, for the LH group, both dominant and nondominant hands demonstrated comparable learning. Less strongly-LH individuals (lower EHI scores) exhibited more learning of their dominant hand. These results suggest that while hemispheric specialization influences motor skill learning, these effects may be influenced by handedness. Copyright © 2015 Elsevier B.V. All rights reserved.
Teachers' roles in supporting children's literacy development through play.
Saracho, Olivia N
2002-04-01
This study focused on the roles five kindergarten teachers assumed to promote literacy. Data were collected through systematic videotaped observations during the children's play periods. Saracho's analysis of the transcriptions in identifying the roles of the teachers suggested teachers' roles in the children's literacy-play include director of instructions (instructing students to follow directions and learn concepts), transition director (directing students to make smooth transitions), supporter of learning (acknowledging and praising students' work to promote learning), storyteller (reading or telling a story and encouraging children to respond), and instructional guide (providing instructional guidance for learning).
The basal ganglia is necessary for learning spectral, but not temporal features of birdsong
Ali, Farhan; Fantana, Antoniu L.; Burak, Yoram; Ölveczky, Bence P.
2013-01-01
Executing a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control - motor implementation and timing - are acquired, and whether the learning processes underlying them differ, is not well understood. To address this we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits. Our results uncovered a striking dissociation in how neural circuits underlie learning in the two domains. The basal ganglia was required for modifying spectral, but not temporal structure. This functional dissociation extended to the descending motor pathway, where recordings from a premotor cortex analogue nucleus reflected changes to temporal, but not spectral structure. Our results reveal a strategy in which the nervous system employs different and largely independent circuits to learn distinct aspects of a motor skill. PMID:24075977
Toward an instructionally oriented theory of example-based learning.
Renkl, Alexander
2014-01-01
Learning from examples is a very effective means of initial cognitive skill acquisition. There is an enormous body of research on the specifics of this learning method. This article presents an instructionally oriented theory of example-based learning that integrates theoretical assumptions and findings from three research areas: learning from worked examples, observational learning, and analogical reasoning. This theory has descriptive and prescriptive elements. The descriptive subtheory deals with (a) the relevance and effectiveness of examples, (b) phases of skill acquisition, and (c) learning processes. The prescriptive subtheory proposes instructional principles that make full exploitation of the potential of example-based learning possible. Copyright © 2013 Cognitive Science Society, Inc.
McGregor, Heather R; Gribble, Paul L
2015-07-01
Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. Copyright © 2015 the American Physiological Society.
McGregor, Heather R.
2015-01-01
Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349
Zheng, M; Bender, D; Nadershahi, N
2017-05-01
Innovative pedagogies have significantly impacted health professions' education, dental education included. In this context, faculty, defined in this study as instructor in higher education, has been increasingly required to hone their instructional skills. The purpose of this exploratory study was to share the design, implementation and preliminary outcomes of two programmes to enhance dental faculty's instructional skills, the Teaching and Learning Seminar Series and the Course Director Orientation. Data sources included faculty and student surveys developed and administered by the researchers; data extracted from the learning management system; reports from the learning analytics tool; and classroom observations. Participants' satisfaction, self-reported learning, instructional behavioural change, and impact on student learning behaviours and institutional practice were assessed borrowing from Kirkpatrick's 4-level model of evaluation of professional development effectiveness. Initial findings showed that faculty in both programmes reported positive learning experiences. Participants reported that the programmes motivated them to improve instructional practice and improved their knowledge of instructional innovation. Some faculty reported implementation of new instructional strategies and tools, which helped create an active and interactive learning environment that was welcomed by their students. The study contributes to literature and best practice in health sciences faculty development in pedagogy and may guide other dental schools in designing professional development programmes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Brach, Jennifer S.; Van Swearingen, Jessie M.; Perera, Subashan; Wert, David M.; Studenski, Stephanie
2013-01-01
Background Current exercise recommendationsfocus on endurance and strength, but rarely incorporate principles of motor learning. Motor learning exerciseis designed to address neurological aspects of movement. Motor learning exercise has not been evaluated in older adults with subclinical gait dysfunction. Objectives Tocompare motor learning versus standard exercise on measures of mobility and perceived function and disability. Design Single-blind randomized trial. Setting University research center. Participants Olderadults (n=40), mean age 77.1±6.0 years), who had normal walking speed (≥1.0 m/s) and impaired motor skill (Figure of 8 walk time > 8 s). Interventions The motor learning program (ML) incorporated goal-oriented stepping and walking to promote timing and coordination within the phases of the gait cycle. The standard program (S) employed endurance training by treadmill walking.Both included strength training and were offered twice weekly for one hour for 12 weeks. Measurements Primary outcomes included mobility performance (gait efficiency, motor skill in walking, gait speed, and walking endurance)and secondary outcomes included perceived function and disability (Late Life Function and Disability Instrument). Results 38 of 40 participants completed the trial (ML, n=18; S, n=20). ML improved more than Sin gait speed (0.13 vs. 0.05 m/s, p=0.008) and motor skill (−2.2 vs. −0.89 s, p<0.0001). Both groups improved in walking endurance (28.3 and 22.9m, but did not differ significantly p=0.14). Changes in gait efficiency and perceived function and disability were not different between the groups (p>0.10). Conclusion In older adults with subclinical gait dysfunction, motor learning exercise improved some parameters of mobility performance more than standard exercise. PMID:24219189
Laterality effects in motor learning by mental practice in right-handers.
Gentili, R J; Papaxanthis, C
2015-06-25
Converging evidences suggest that mental movement simulation and actual movement production share similar neurocognitive and learning processes. Although a large body of data is available in the literature regarding mental states involving the dominant arm, examinations for the nondominant arm are sparse. Does mental training, through motor-imagery practice, with the dominant arm or the nondominant arm is equally efficient for motor learning? In the current study, we investigated laterality effects in motor learning by motor-imagery practice. Four groups of right-hander adults mentally and physically performed as fast and accurately as possible (speed/accuracy trade-off paradigm) successive reaching movements with their dominant or nondominant arm (physical-training-dominant-arm, mental-training-dominant-arm, physical-training-nondominant-arm, and mental-training-nondominant-arm groups). Movement time was recorded and analyzed before, during, and after the training sessions. We found that physical and mental practice had a positive effect on the motor performance (i.e., decrease in movement time) of both arms through similar learning process (i.e., similar exponential learning curves). However, movement time reduction in the posttest session was significantly higher after physical practice than motor-imagery practice for both arms. More importantly, motor-imagery practice with the dominant arm resulted in larger and more robust improvements in movement speed compared to motor-imagery practice with the nondominant arm. No such improvements were observed in the control group. Our results suggest a superiority of the dominant arm in motor learning by mental practice. We discussed these findings from the perspective of the internal models theory. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya
2016-12-13
The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise.
Exploration of joint redundancy but not task space variability facilitates supervised motor learning
Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya
2016-01-01
The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise. PMID:27911808
Lopez-Alonso, Virginia; Liew, Sook-Lei; Fernández Del Olmo, Miguel; Cheeran, Binith; Sandrini, Marco; Abe, Mitsunari; Cohen, Leonardo G
2018-01-01
Non-invasive brain stimulation (NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown exponentially within the last decade with promising results across a variety of clinical and healthy populations. However, recent work has shown high inter-individual variability and a lack of reproducibility of previous results. Here, we conducted a small preliminary study to explore the effects of three of the most commonly used excitatory NIBS paradigms over the primary motor cortex (M1) on motor learning (Sequential Visuomotor Isometric Pinch Force Tracking Task) and secondarily relate changes in motor learning to changes in cortical excitability (MEP amplitude and SICI). We compared anodal transcranial direct current stimulation (tDCS), paired associative stimulation (PAS 25 ), and intermittent theta burst stimulation (iTBS), along with a sham tDCS control condition. Stimulation was applied prior to motor learning. Participants ( n = 28) were randomized into one of the four groups and were trained on a skilled motor task. Motor learning was measured immediately after training (online), 1 day after training (consolidation), and 1 week after training (retention). We did not find consistent differential effects on motor learning or cortical excitability across groups. Within the boundaries of our small sample sizes, we then assessed effect sizes across the NIBS groups that could help power future studies. These results, which require replication with larger samples, are consistent with previous reports of small and variable effect sizes of these interventions on motor learning.
Lopez-Alonso, Virginia; Liew, Sook-Lei; Fernández del Olmo, Miguel; Cheeran, Binith; Sandrini, Marco; Abe, Mitsunari; Cohen, Leonardo G.
2018-01-01
Non-invasive brain stimulation (NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown exponentially within the last decade with promising results across a variety of clinical and healthy populations. However, recent work has shown high inter-individual variability and a lack of reproducibility of previous results. Here, we conducted a small preliminary study to explore the effects of three of the most commonly used excitatory NIBS paradigms over the primary motor cortex (M1) on motor learning (Sequential Visuomotor Isometric Pinch Force Tracking Task) and secondarily relate changes in motor learning to changes in cortical excitability (MEP amplitude and SICI). We compared anodal transcranial direct current stimulation (tDCS), paired associative stimulation (PAS25), and intermittent theta burst stimulation (iTBS), along with a sham tDCS control condition. Stimulation was applied prior to motor learning. Participants (n = 28) were randomized into one of the four groups and were trained on a skilled motor task. Motor learning was measured immediately after training (online), 1 day after training (consolidation), and 1 week after training (retention). We did not find consistent differential effects on motor learning or cortical excitability across groups. Within the boundaries of our small sample sizes, we then assessed effect sizes across the NIBS groups that could help power future studies. These results, which require replication with larger samples, are consistent with previous reports of small and variable effect sizes of these interventions on motor learning. PMID:29740271
Sagari, Akira; Iso, Naoki; Moriuchi, Takefumi; Ogahara, Kakuya; Kitajima, Eiji; Tanaka, Koji; Tabira, Takayuki; Higashi, Toshio
2015-01-01
Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman's rank correlations. Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.
Strategy Instruction for Students with Learning Disabilities. What Works for Special Needs Learners
ERIC Educational Resources Information Center
Reid, Robert; Lienemann, Torri Ortiz
2006-01-01
Practical and accessible, this book provides the first step-by-step guide to cognitive strategy instruction, which has been shown to be one of the most effective instructional techniques for students with learning problems. Presented are proven strategies that students can use to improve their self-regulated learning, study skills, and performance…
ERIC Educational Resources Information Center
McElvany, Nele; Schroeder, Sascha; Baumert, Jurgen; Schnotz, Wolfgang; Horz, Holger; Ullrich, Mark
2012-01-01
Learning materials incorporating written texts as well as instructional pictures are the basis for learning in many subjects. However, text-picture integration makes high cognitive demands of learners, and it seems plausible that the development of this competence is influenced by teachers' instructional skills. The present studies investigated…
ERIC Educational Resources Information Center
Davis, Anita Price
The paper presents a rationale for individualizing instruction in social studies in elementary and secondary schools and offers suggestions to aid classroom teachers as they develop two individualized instruction techniques. These recommended approaches are learning centers (areas of classrooms set aside for special learning, review, and…
Child Predictors of Learning to Control Variables via Instruction or Self-Discovery
ERIC Educational Resources Information Center
Wagensveld, Barbara; Segers, Eliane; Kleemans, Tijs; Verhoeven, Ludo
2015-01-01
We examined the role child factors on the acquisition and transfer of learning the control of variables strategy (CVS) via instruction or self-discovery. Seventy-six fourth graders and 43 sixth graders were randomly assigned to a group receiving direct CVS instruction or a discovery learning group. Prior to the intervention, cognitive, scientific,…
ERIC Educational Resources Information Center
Brewe, Eric; Dou, Remy; Shand, Robert
2018-01-01
Although active learning is supported by strong evidence of efficacy in undergraduate science instruction, institutions of higher education have yet to embrace comprehensive change. Costs of transforming instruction are regularly cited as a key factor in not adopting active-learning instructional practices. Some cite that alternative methods to…
ERIC Educational Resources Information Center
Morice, J.; Michinov, N.; Delaval, M.; Sideridou, A.; Ferrières, V.
2015-01-01
Peer instruction has been recognized as an instructional method having a positive impact on learning compared to traditional lectures in science. This method has been widely supported by the socio-constructivist approach to learning giving a positive role to interaction between peers in the construction of knowledge. As far as we know, no study…
ERIC Educational Resources Information Center
Black, Robert D.; Weinberg, Lois A.; Brodwin, Martin G.
2015-01-01
Universal design in education is a framework of instruction that aims to be inclusive of different learning preferences and learners, and helps to reduce barriers for students with disabilities. The principles of Universal Design for Learning (UDL) and Universal Design for Instruction (UDI) were used as the framework for this study. The purposes…
ERIC Educational Resources Information Center
Salyer, B. Keith; Thyfault, Alberta
This paper discusses the value of merging real-life events with content instruction and provides six sample lessons to illustrate such instruction. A brief review of the literature notes historic recognition of the importance of applied learning, the issue of retention and transfer of learning, the approach of using content relevant experiences…
ERIC Educational Resources Information Center
Thoe, Ng Khar
2007-01-01
Instructional strategies determine the approaches an educator may take to achieve learning objectives. Research has shown that sets of strategies or instructional models anchored on social constructivist learning theories were found to be effective in enhancing active participation. It is particularly influential and meaningful in many areas of…
ERIC Educational Resources Information Center
Pennsylvania Department of Education, 2007
2007-01-01
Cooperative education is a method of instruction that enables students to combine academic classroom instruction (school-based learning component) with occupational instruction through learning on the job (work-based learning component) in a career area of choice. Emphasis is placed on the students' education and employability skills. Co-op is a…
A Guide to the Use of Non-Projected Displays. Teaching and Learning in Higher Education, 13.
ERIC Educational Resources Information Center
Ellington, Henry
A sequel to the booklet "A Review of the Different Types of Instructional Materials Available to Teachers and Lecturers," this booklet begins by looking at the potential role of non-projected displays in different instruction situations, i.e., mass instruction, individualized learning, and group learning. Four main classes of non-projected…
The Moderating Effect of Instructional Conceptions on the Effect of Powerful Learning Environments
ERIC Educational Resources Information Center
Sarfo, Frederick Kwaku; Elen, Jan
2008-01-01
This study aimed at experimentally investigating the moderating role of instructional conceptions on the effectiveness of powerful learning environments (PLE) designed in line with the four-component instructional design model (4C/ID-model). The study also investigated the influence of learning in a 4C/ID PLE on students' instructional…
ERIC Educational Resources Information Center
Walkington, Candace A.
2013-01-01
Adaptive learning technologies are emerging in educational settings as a means to customize instruction to learners' background, experiences, and prior knowledge. Here, a technology-based personalization intervention within an intelligent tutoring system (ITS) for secondary mathematics was used to adapt instruction to students' personal interests.…
ERIC Educational Resources Information Center
Abeysekera, Indra
2015-01-01
The role of work-integrated learning in student preferences of instructional methods is largely unexplored across the accounting curriculum. This study conducted six experiments to explore student preferences of instructional methods for learning, in six courses of the accounting curriculum that differed in algorithmic rigor, in the context of a…
Basics for sensorimotor information processing: some implications for learning
Vidal, Franck; Meckler, Cédric; Hasbroucq, Thierry
2015-01-01
In sensorimotor activities, learning requires efficient information processing, whether in car driving, sport activities or human–machine interactions. Several factors may affect the efficiency of such processing: they may be extrinsic (i.e., task-related) or intrinsic (i.e., subjects-related). The effects of these factors are intimately related to the structure of human information processing. In the present article we will focus on some of them, which are poorly taken into account, even when minimizing errors or their consequences is an essential issue at stake. Among the extrinsic factors, we will discuss, first, the effects of the quantity and quality of information, secondly, the effects of instruction and thirdly motor program learning. Among the intrinsic factors, we will discuss first the influence of prior information, secondly how individual strategies affect performance and, thirdly, we will stress the fact that although the human brain is not structured to function errorless (which is not new) humans are able to detect their errors very quickly and (in most of the cases), fast enough to correct them before they result in an overt failure. Extrinsic and intrinsic factors are important to take into account for learning because (1) they strongly affect performance, either in terms of speed or accuracy, which facilitates or impairs learning, (2) the effect of certain extrinsic factors may be strongly modified by learning and (3) certain intrinsic factors might be exploited for learning strategies. PMID:25762944
REACH. Electricity Units. Secondary.
ERIC Educational Resources Information Center
Smith, Gene; Sappe, Hoyt
As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of electricity. The instructional units focus on electricity fundamentals and electric motors. Each unit follows a typical format that includes a unit sheet,…
Pedagogical Content of National Physical Behavior of Kazakh People
ERIC Educational Resources Information Center
Lesbekova, Ryskul; Nassiyev, Yermek; ?itpanbet, Amanshol; Nassiyev, Yeldar
2016-01-01
Physical education significantly contributes to students' well-being; therefore, it is an instructional priority for California schools and an integral part of our students' educational experience. High-quality physical education instruction contributes to good health, develops fundamental and advanced motor skills, improves students'…
Links between motor control and classroom behaviors: Moderation by low birth weight
Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne
2016-01-01
It is unclear from past research on effortful control whether one of its components, motor control, independently contributes to adaptive classroom behaviors. The goal of this study was to identify associations between early motor control, measured by the walk-a-line task at age 3, and teacher-reported learning-related behaviors (approaches to learning and attention problems) and behavior problems in kindergarten classrooms. Models tested whether children who were vulnerable to poorer learning behaviors and more behavior problems due to having been born low birth weight benefited more, less, or the same as other children from better motor control. Data were drawn from the national Fragile Families and Child-Wellbeing Study (n = 751). Regression models indicated that motor control was significantly associated with better approaches to learning and fewer behavior problems. Children who were low birth weight benefitted more than normal birth weight children from better motor control with respect to their approaches to learning, but equally with respect to behavior problems. Additionally, for low but not normal birth weight children, better motor control predicted fewer attention problems. These findings suggest that motor control follows a compensatory model of development for low birth weight children and classroom behaviors. PMID:27594776
ERIC Educational Resources Information Center
Nguyen, Dat-Dao; Zhang, Yue
2011-01-01
This study uses the Learning-Style Inventory--LSI (Smith & Kolb, 1985) to explore to what extent student attitudes toward learning process and outcome of online instruction and Distance Learning are affected by their cognitive styles and learning behaviors. It finds that there are not much statistically significant differences in perceptions…
Effects of Instructional Design with Mental Model Analysis on Learning.
ERIC Educational Resources Information Center
Hong, Eunsook
This paper presents a model for systematic instructional design that includes mental model analysis together with the procedures used in developing computer-based instructional materials in the area of statistical hypothesis testing. The instructional design model is based on the premise that the objective for learning is to achieve expert-like…
ERIC Educational Resources Information Center
Schroeder, Sascha; Richter, Tobias; McElvany, Nele; Hachfeld, Axinja; Baumert, Jurgen; Schnotz, Wolfgang; Horz, Holger; Ullrich, Mark
2011-01-01
This study investigated the relations between teachers' pedagogical beliefs and students' self-reported engagement in learning from texts with instructional pictures. Participants were the biology, geography, and German teachers of 46 classes (Grades 5-8) and their students. Teachers' instructional behaviors and students' engagement in learning…
ERIC Educational Resources Information Center
Barhoumi, Chokri; Rossi, Pier Giuseppe
2013-01-01
The use of hypertext systems for learning and teaching complex and ill-structured domain of knowledge has been attracting attention in design of instruction. In this context, an experimental research has been conducted to explore the effectiveness of instructional design oriented hypertext systems. Cognitive flexibility hypertext theory is…
ERIC Educational Resources Information Center
Loibl, Katharina; Rummel, Nikol
2014-01-01
Multiple studies have shown benefits of problem-solving prior to instruction (cf. Productive Failure, Invention) in comparison to direct instruction. However, students' solutions prior to instruction are usually erroneous or incomplete. In analogy to "guided" discovery learning, it might therefore be fruitful to lead students…
ERIC Educational Resources Information Center
Mills, Steven C.; Ragan, Tillman J.
This paper examines a research paradigm that is particularly suited to experimentation-related computer-based instruction and integrated learning systems. The main assumption of the model is that one of the most powerful capabilities of computer-based instruction, and specifically of integrated learning systems, is the capacity to adapt…
ERIC Educational Resources Information Center
Wu, Yann-Shya
The purpose of this paper is to provide guidance for instructional sequencing in emotional literacy curricula. First, the concepts of instructional sequence and the problems involved with instructional sequence in the affective domain of learning are addressed. Then, through the analysis of the emotional literacy curriculum, Promoting Alternative…
ERIC Educational Resources Information Center
King-Sears, Margaret E.; Bowman-Kruhm, Mary
2011-01-01
In this exploratory study, secondary special education co-teachers report about specialized reading instruction for students with learning disabilities in co-taught classes. Almost half of the respondents were concerned that reading instruction was not occurring in co-taught classes. One-third were concerned reading instruction was not occurring…
ERIC Educational Resources Information Center
Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany
2014-01-01
Background: The sequencing of learning materials greatly influences the knowledge that learners construct. Recently, learning theorists have focused on the sequencing of instruction in relation to solving related problems. The general consensus suggests explicit instruction should be provided; however, when to provide instruction remains unclear.…
ERIC Educational Resources Information Center
Winarno, Sri; Muthu, Kalaiarasi Sonai; Ling, Lew Sook
2018-01-01
Direct instruction approach has been widely used in higher education. Many studies revealed that direct instruction improved students' knowledge. The characteristics of direct instruction include the subject delivered through face-to-face interaction with the lecturers and materials that sequenced deliberately and taught explicitly. However,…
Implications of Mediated Instruction to Remote Learning in Mathematics.
ERIC Educational Resources Information Center
Matthews-Lopez, Joy L.; Lopez-Permouth, Sergio R.; Keck, David
Mediated learning utilizes multimedia-based instructional modules to provide students with individualized access to information in alignment with their individual learning styles (Kinser, Morris, & Hewitt). In contrast with traditional pedagogy, the mission of the instructor in a mediated learning environment is to facilitate learning rather than…
Instructional Utility and Learning Efficacy of Common Active Learning Strategies
ERIC Educational Resources Information Center
McConell, David A.; Chapman, LeeAnna; Czaijka, C. Douglas; Jones, Jason P.; Ryker, Katherine D.; Wiggen, Jennifer
2017-01-01
The adoption of active learning instructional practices in college science, technology, engineering, and mathematics (STEM) courses has been shown to result in improvements in student learning, contribute to increased retention rates, and reduce the achievement gap among different student populations. Descriptions of active learning strategies…
Presence and Perceived Learning in Different Higher Education Blended Learning Environments
ERIC Educational Resources Information Center
Khodabandelou, Rouhollah; Jalil, Habibah Ab; Ali, Wan Zah Wan; Daud, Shaffe Mohd
2015-01-01
Blended learning as "third generation" of distance learning has the potential to offer multimethod instruction through the blend, to leverage the strengths of current online and traditional instructions. Therefore, higher education institutions having recognized the fact that blended learning is beneficial, adopted this alternative…
Naveh-Benjamin, Moshe; Guez, Jonathan; Hara, Yoko; Brubaker, Matthew S; Lowenschuss-Erlich, Iris
2014-01-01
Divided attention (DA) at encoding has been shown to significantly disrupt later memory for the studied information. However, what type of processing gets disrupted during DA remains unresolved. In this study, we assessed the degree to which strategic effortful processes are affected under DA by comparing the effects of DA at encoding under intentional and pure incidental learning instructions. In three experiments, participants studied list of words or word pairs under either full or divided attention. Results of three experiments, which used different methodologies, converged to show that the effects of DA at encoding reduce memory performance to the same degree under incidental and intentional learning. Secondary task performance indicated that encoding under intentional learning instructions was more effortful than under incidental learning instructions. In addition, the results indicated enhanced attention to the initial appearance of the words under both types of learning instructions. Results are interpreted to imply that other processes, rather than only strategic effortful ones, might be affected by DA at encoding.
Using Instructional Pervasive Game for School Children's Cultural Learning
ERIC Educational Resources Information Center
Chen, Cheng-Ping; Shih, Ju-Ling; Ma, Yi-Chun
2014-01-01
In the past ten years, mobile learning (m-learning) has created a new learning environment that enables learners, through active learning aids. Instructional pervasive gaming (IPG) seems to be an innovative way introduced to enhance m-learning. This study employed a theoretical IPG model to construct a cultural-based pervasive game. Individual and…
Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja
2017-01-01
Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219
Problem-based learning: effects on student’s scientific reasoning skills in science
NASA Astrophysics Data System (ADS)
Wulandari, F. E.; Shofiyah, N.
2018-04-01
This research aimed to develop instructional package of problem-based learning to enhance student’s scientific reasoning from concrete to formal reasoning skills level. The instructional package was developed using the Dick and Carey Model. Subject of this study was instructional package of problem-based learning which was consisting of lesson plan, handout, student’s worksheet, and scientific reasoning test. The instructional package was tried out on 4th semester science education students of Universitas Muhammadiyah Sidoarjo by using the one-group pre-test post-test design. The data of scientific reasoning skills was collected by making use of the test. The findings showed that the developed instructional package reflecting problem-based learning was feasible to be implemented in classroom. Furthermore, through applying the problem-based learning, students could dominate formal scientific reasoning skills in terms of functionality and proportional reasoning, control variables, and theoretical reasoning.
Mathematical learning models that depend on prior knowledge and instructional strategies
NASA Astrophysics Data System (ADS)
Pritchard, David E.; Lee, Young-Jin; Bao, Lei
2008-06-01
We present mathematical learning models—predictions of student’s knowledge vs amount of instruction—that are based on assumptions motivated by various theories of learning: tabula rasa, constructivist, and tutoring. These models predict the improvement (on the post-test) as a function of the pretest score due to intervening instruction and also depend on the type of instruction. We introduce a connectedness model whose connectedness parameter measures the degree to which the rate of learning is proportional to prior knowledge. Over a wide range of pretest scores on standard tests of introductory physics concepts, it fits high-quality data nearly within error. We suggest that data from MIT have low connectedness (indicating memory-based learning) because the test used the same context and representation as the instruction and that more connected data from the University of Minnesota resulted from instruction in a different representation from the test.
Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R
2013-10-10
Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (p<0.001), 31% higher than in the contralateral M1 of ACT animals (p<0.001) and 48% higher than in controls (p<0.001). Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Sub-processes of motor learning revealed by a robotic manipulandum for rodents.
Lambercy, O; Schubring-Giese, M; Vigaru, B; Gassert, R; Luft, A R; Hosp, J A
2015-02-01
Rodent models are widely used to investigate neural changes in response to motor learning. Usually, the behavioral readout of motor learning tasks used for this purpose is restricted to a binary measure of performance (i.e. "successful" movement vs. "failure"). Thus, the assignability of research in rodents to concepts gained in human research - implying diverse internal models that constitute motor learning - is still limited. To solve this problem, we recently introduced a three-degree-of-freedom robotic platform designed for rats (the ETH-Pattus) that combines an accurate behavioral readout (in the form of kinematics) with the possibility to invasively assess learning related changes within the brain (e.g. by performing immunohistochemistry or electrophysiology in acute slice preparations). Here, we validate this platform as a tool to study motor learning by establishing two forelimb-reaching paradigms that differ in degree of skill. Both conditions can be precisely differentiated in terms of their temporal pattern and performance levels. Based on behavioral data, we hypothesize the presence of several sub-processes contributing to motor learning. These share close similarities with concepts gained in humans or primates. Copyright © 2014 Elsevier B.V. All rights reserved.
Plasticity in the Human Speech Motor System Drives Changes in Speech Perception
Lametti, Daniel R.; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M.
2014-01-01
Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor-learning task involving adaptation to altered auditory feedback and they were subsequently tested for perceptual change. In two separate experiments, involving two different auditory perceptual continua, we show that changes in the speech motor system that accompany learning drive changes in auditory speech perception. Specifically, we obtained changes in speech perception when adaptation to altered auditory feedback led to speech production that fell into the phonetic range of the speech perceptual tests. However, a similar change in perception was not observed when the auditory feedback that subjects' received during learning fell into the phonetic range of the perceptual tests. This indicates that the central motor outflow associated with vocal sensorimotor adaptation drives changes to the perceptual classification of speech sounds. PMID:25080594
Instructional control of reinforcement learning: A behavioral and neurocomputational investigation
Doll, Bradley B.; Jacobs, W. Jake; Sanfey, Alan G.; Frank, Michael J.
2011-01-01
Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes. PMID:19595993
NASA Astrophysics Data System (ADS)
Gerstner, Sabine; Bogner, Franz X.
2010-05-01
Our study monitored the cognitive and motivational effects within different educational instruction schemes: On the one hand, teacher-centred versus hands-on instruction; on the other hand, hands-on instruction with and without a knowledge consolidation phase (concept mapping). All the instructions dealt with the same content. For all participants, the hands-on approach as well as the concept mapping adaptation were totally new. Our hands-on approach followed instruction based on "learning at work stations". A total of 397 high-achieving fifth graders participated in our study. We used a pre-test, post-test, retention test design both to detect students' short-term learning success and long-term learning success, and to document their decrease rates of newly acquired knowledge. Additionally, we monitored intrinsic motivation. Although the teacher-centred approach provided higher short-term learning success, hands-on instruction resulted in relatively lower decrease rates. However, after six weeks, all students reached similar levels of newly acquired knowledge. Nevertheless, concept mapping as a knowledge consolidation phase positively affected short-term increase in knowledge. Regularly placed in instruction, it might increase long-term retention rates. Scores of interest, perceived competence and perceived choice were very high in all the instructional schemes.
Language used in interaction during developmental science instruction
NASA Astrophysics Data System (ADS)
Avenia-Tapper, Brianna
The coordination of theory and evidence is an important part of scientific practice. Developmental approaches to instruction, which make the relationship between the abstract and the concrete a central focus of students' learning activity, provide educators with a unique opportunity to strengthen students' coordination of theory and evidence. Therefore, developmental approaches may be a useful instructional response to documented science achievement gaps for linguistically diverse students. However, if we are to leverage the potential of developmental instruction to improve the science achievement of linguistically diverse students, we need more information on the intersection of developmental science instruction and linguistically diverse learning contexts. This manuscript style dissertation uses discourse analysis to investigate the language used in interaction during developmental teaching-learning in three linguistically diverse third grade classrooms. The first manuscript asks how language was used to construct ascension from the abstract to the concrete. The second manuscript asks how students' non-English home languages were useful (or not) for meeting the learning goals of the developmental instructional program. The third manuscript asks how students' interlocutors may influence student choice to use an important discourse practice--justification--during the developmental teaching-learning activity. All three manuscripts report findings relevant to the instructional decisions that teachers need to make when implementing developmental instruction in linguistically diverse contexts.
Towards Contextualized Learning Services
NASA Astrophysics Data System (ADS)
Specht, Marcus
Personalization of feedback and instruction has often been considered as a key feature in learning support. The adaptations of the instructional process to the individual and its different aspects have been investigated from different research perspectives as learner modelling, intelligent tutoring systems, adaptive hypermedia, adaptive instruction and others. Already in the 1950s first commercial systems for adaptive instruction for trainings of keyboard skills have been developed utilizing adaptive configuration of feedback based on user performance and interaction footprints (Pask 1964). Around adaptive instruction there is a variety of research issues bringing together interdisciplinary research from computer science, engineering, psychology, psychotherapy, cybernetics, system dynamics, instructional design, and empirical research on technology enhanced learning. When classifying best practices of adaptive instruction different parameters of the instructional process have been identified which are adapted to the learner, as: sequence and size of task difficulty, time of feedback, pace of learning speed, reinforcement plan and others these are often referred to the adaptation target. Furthermore Aptitude Treatment Interaction studies explored the effect of adapting instructional parameters to different characteristics of the learner (Tennyson and Christensen 1988) as task performance, personality characteristics, or cognitive abilities, this is information is referred to as adaptation mean.
Untrivial Pursuit: Measuring Motor Procedures Learning in Children with Autism.
Sparaci, Laura; Formica, Domenico; Lasorsa, Francesca Romana; Mazzone, Luigi; Valeri, Giovanni; Vicari, Stefano
2015-08-01
Numerous studies have underscored prevalence of motor impairments in children with autism spectrum disorders (ASD), but only few of them have analyzed motor strategies exploited by ASD children when learning a new motor procedure. To evaluate motor procedure learning and performance strategies in both ASD and typically developing (TD) children, we built a virtual pursuit rotor (VPR) task, requiring tracking a moving target on a computer screen using a digitalized pen and tablet. Procedural learning was measured as increased time on target (TT) across blocks of trials on the same day and consolidation was assessed after a 24-hour rest. The program and the experimental setting (evaluated in a first experiment considering two groups of TD children) allowed also measures of continuous time on target (CTT), distance from target (DT) and distance from path (DP), as well as 2D reconstructions of children's trajectories. Results showed that the VPR was harder for children with ASD than for TD controls matched for chronological age and intelligence quotient, but both groups displayed comparable motor procedure learning (i.e., similarly incremented their TT). However, closer analysis of CTT, DT, and DP as well as 2D trajectories, showed different motor performance strategies in ASD, highlighting difficulties in overall actions planning. Data underscore the need for deeper investigations of motor strategies exploited by children with ASD when learning a new motor procedure. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Whitfield, Jason A; Goberman, Alexander M
2017-06-22
Everyday communication is carried out concurrently with other tasks. Therefore, determining how dual tasks interfere with newly learned speech motor skills can offer insight into the cognitive mechanisms underlying speech motor learning in Parkinson disease (PD). The current investigation examines a recently learned speech motor sequence under dual-task conditions. A previously learned sequence of 6 monosyllabic nonwords was examined using a dual-task paradigm. Participants repeated the sequence while concurrently performing a visuomotor task, and performance on both tasks was measured in single- and dual-task conditions. The younger adult group exhibited little to no dual-task interference on the accuracy and duration of the sequence. The older adult group exhibited variability in dual-task costs, with the group as a whole exhibiting an intermediate, though significant, amount of dual-task interference. The PD group exhibited the largest degree of bidirectional dual-task interference among all the groups. These data suggest that PD affects the later stages of speech motor learning, as the dual-task condition interfered with production of the recently learned sequence beyond the effect of normal aging. Because the basal ganglia is critical for the later stages of motor sequence learning, the observed deficits may result from the underlying neural dysfunction associated with PD.
Motor Contingency Learning and Infants with Spina Bifida
Taylor, Heather B.; Barnes, Marcia A.; Landry, Susan H.; Swank, Paul; Fletcher, Jack M.; Huang, Furong
2014-01-01
Infants with Spina Bifida (SB) were compared to typically developing infants (TD) using a conjugate reinforcement paradigm at 6 months-of-age (n = 98) to evaluate learning, and retention of a sensory-motor contingency. Analyses evaluated infant arm-waving rates at baseline (wrist not tethered to mobile), during acquisition of the sensory-motor contingency (wrist tethered), and immediately after the acquisition phase and then after a delay (wrist not tethered), controlling for arm reaching ability, gestational age, and socioeconomic status. Although both groups responded to the contingency with increased arm-waving from baseline to acquisition, 15% to 29% fewer infants with SB than TD were found to learn the contingency depending on the criterion used to determine contingency learning. In addition, infants with SB who had learned the contingency had more difficulty retaining the contingency over time when sensory feedback was absent. The findings suggest that infants with SB do not learn motor contingencies as easily or at the same rate as TD infants, and are more likely to decrease motor responses when sensory feedback is absent. Results are discussed with reference to research on contingency learning in infants with and without neurodevelopmental disorders, and with reference to motor learning in school-age children with SB. PMID:23298791