Sample records for instruction problem-based learning

  1. Problem-based learning: effects on student’s scientific reasoning skills in science

    NASA Astrophysics Data System (ADS)

    Wulandari, F. E.; Shofiyah, N.

    2018-04-01

    This research aimed to develop instructional package of problem-based learning to enhance student’s scientific reasoning from concrete to formal reasoning skills level. The instructional package was developed using the Dick and Carey Model. Subject of this study was instructional package of problem-based learning which was consisting of lesson plan, handout, student’s worksheet, and scientific reasoning test. The instructional package was tried out on 4th semester science education students of Universitas Muhammadiyah Sidoarjo by using the one-group pre-test post-test design. The data of scientific reasoning skills was collected by making use of the test. The findings showed that the developed instructional package reflecting problem-based learning was feasible to be implemented in classroom. Furthermore, through applying the problem-based learning, students could dominate formal scientific reasoning skills in terms of functionality and proportional reasoning, control variables, and theoretical reasoning.

  2. Instructional Designers' Media Selection Practices for Distributed Problem-Based Learning Environments

    ERIC Educational Resources Information Center

    Fells, Stephanie

    2012-01-01

    The design of online or distributed problem-based learning (dPBL) is a nascent, complex design problem. Instructional designers are challenged to effectively unite the constructivist principles of problem-based learning (PBL) with appropriate media in order to create quality dPBL environments. While computer-mediated communication (CMC) tools and…

  3. Why Problem-Based Learning Works: Theoretical Foundations

    ERIC Educational Resources Information Center

    Marra, Rose M.; Jonassen, David H.; Palmer, Betsy; Luft, Steve

    2014-01-01

    Problem-based learning (PBL) is an instructional method where student learning occurs in the context of solving an authentic problem. PBL was initially developed out of an instructional need to help medical school students learn their basic sciences knowledge in a way that would be more lasting while helping to develop clinical skills…

  4. Direct Problem-Based Learning (DPBL): A Framework for Integrating Direct Instruction and Problem-Based Learning Approach

    ERIC Educational Resources Information Center

    Winarno, Sri; Muthu, Kalaiarasi Sonai; Ling, Lew Sook

    2018-01-01

    Direct instruction approach has been widely used in higher education. Many studies revealed that direct instruction improved students' knowledge. The characteristics of direct instruction include the subject delivered through face-to-face interaction with the lecturers and materials that sequenced deliberately and taught explicitly. However,…

  5. A Framework for Problem-Based Learning: Teaching Mathematics with a Relational Problem-Based Pedagogy

    ERIC Educational Resources Information Center

    Schettino, Carmel

    2016-01-01

    One recommendation for encouraging young women and other underrepresented students in their mathematical studies is to find instructional methods, such as problem-based learning (PBL), that allow them to feel included in the learning process. Using a more relationally centered pedagogy along with more inclusive instructional methods may be a way…

  6. Problem-Centered Supplemental Instruction in Biology: Influence on Content Recall, Content Understanding, and Problem Solving Ability

    ERIC Educational Resources Information Center

    Gardner, Joel; Belland, Brian R.

    2017-01-01

    To address the need for effective, efficient ways to apply active learning in undergraduate biology courses, in this paper, we propose a problem-centered approach that utilizes supplemental web-based instructional materials based on principles of active learning. We compared two supplementary web-based modules using active learning strategies: the…

  7. The Effect of Agent-Based Lectures on Student Learning and Conceptual Change in an Online Inquiry-Based Learning Environment

    ERIC Educational Resources Information Center

    Chang, Ju-Yu

    2013-01-01

    Cognitive load theorists claim that problem-centered instruction is not an effective instruction because it is not compatible with human cognitive structure. They argue that the nature of problem-centered instruction tends to over-load learner working memory capacity. That is why many problem-centered practices fail. To better support students and…

  8. Examining the Implementation of a Problem-Based Learning and Traditional Hybrid Model of Instruction in Remedial Mathematics Classes Designed for State Testing Preparation of Eleventh Grade Students

    ERIC Educational Resources Information Center

    Rodgers, Lindsay D.

    2011-01-01

    The following paper examined the effects of a new method of teaching for remedial mathematics, named the hybrid model of instruction. Due to increasing importance of high stakes testing, the study sought to determine if this method of instruction, that blends traditional teaching and problem-based learning, had different learning effects on…

  9. Problem-Based Learning and Creative Instructional Approaches for Laboratory Exercises in Introductory Crop Science

    ERIC Educational Resources Information Center

    Teplitski, Max; McMahon, Margaret J.

    2006-01-01

    The implementation of problem-based learning (PBL) and other inquiry-driven educational techniques is often resisted by both faculty and students, who may not be comfortable with this learning/instructional style. We present here a hybrid approach, which combines elements of expository education with inquiry-driven laboratory exercises and…

  10. Improving Primary Students' Mathematical Literacy through Problem Based Learning and Direct Instruction

    ERIC Educational Resources Information Center

    Firdaus, Fery Muhamad; Wahyudin; Herman, Tatang

    2017-01-01

    This research was done on primary school students who are able to understand mathematical concepts, but unable to apply them in solving real life problems. Therefore, this study aims to improve primary school students' mathematical literacy through problem-based learning and direct instruction. In addition, the research was conducted to determine…

  11. The Effects of Varied Visual Organizational Strategies within Computer-Based Instruction on Factual, Conceptual and Problem Solving Learning.

    ERIC Educational Resources Information Center

    Haag, Brenda Bannan; Grabowski, Barbara L.

    The purpose of this exploratory study was to examine the effectiveness of learner manipulation of visuals with and without organizing cues in computer-based instruction on adults' factual, conceptual, and problem-solving learning. An instructional unit involving the physiology and the anatomy of the heart was used. A post-test only control group…

  12. Effect of Instructional Strategy on Critical Thinking and Content Knowledge: Using Problem-Based Learning in the Secondary Classroom

    ERIC Educational Resources Information Center

    Burris, Scott; Garton, Bryan L.

    2007-01-01

    The purpose of the study was to determine the effect of problem-based learning (PBL) on critical thinking ability and content knowledge among selected secondary agriculture students in Missouri. The study employed a quasi-experimental, non-equivalent comparison group design. The treatment consisted of two instructional strategies: problem-based…

  13. Authenticity in the Process of Learning about Instructional Design

    ERIC Educational Resources Information Center

    Wilson, Jay R.; Schwier, Richard A.

    2009-01-01

    Authentic learning is touted as a powerful learning approach, particularly in the context of problem-based learning (Savery, 2006). Teaching and learning in the area of instructional design appears to offer a strong fit between the tenets of authentic learning and the practice of instructional design. This paper details the efforts to broaden and…

  14. Impact of Cognitive-Based Instructional Intervention on Learning Motivation: The Implementation of Student-Made Glossary in a Programming-Oriented Engineering Problem-Solving Course and Its Impact on Learning Motivation

    ERIC Educational Resources Information Center

    Huang, David Wenhao; Aagard, Hans; Diefes-Dux, Heidi

    2004-01-01

    This article describes the purpose, development, and implementation of a cognitive-based instructional intervention and its impact on learning motivation. The study was conducted in a programming-based problemsolving course for first-year engineering students. The results suggest that the instructional intervention developed based on the…

  15. Embellishing Problem-Solving Examples with Deep Structure Information Facilitates Transfer

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Betts, Shawn; Anderson, John R.

    2017-01-01

    Appreciation of problem structure is critical to successful learning. Two experiments investigated effective ways of communicating problem structure in a computer-based learning environment and tested whether verbal instruction is necessary to specify solution steps, when deep structure is already embellished by instructional examples.…

  16. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  17. Problem-Based Learning in Foods and Nutrition Classes

    ERIC Educational Resources Information Center

    Smith, Bettye P.; Katz, Shana H.

    2006-01-01

    This article focuses on the use of problem-based learning in high school foods and nutrition classes. Problem-based learning, an instructional approach that promotes active learning, is the elaboration of knowledge that occurs through discussion, answering questions, peer teaching, and critiquing. Students are confronted with a simulated or real…

  18. Simulation-Based Evaluation of Learning Sequences for Instructional Technologies

    ERIC Educational Resources Information Center

    McEneaney, John E.

    2016-01-01

    Instructional technologies critically depend on systematic design, and learning hierarchies are a commonly advocated tool for designing instructional sequences. But hierarchies routinely allow numerous sequences and choosing an optimal sequence remains an unsolved problem. This study explores a simulation-based approach to modeling learning…

  19. Problem-Based Learning and High School Macroeconomics: A Comparative Study of Instructional Methods

    ERIC Educational Resources Information Center

    Maxwell, Nan L.; Mergendoller, John R.; Bellisimo, Yolanda

    2005-01-01

    The authors examined the potential differences between problem-based learning (PBL) and traditional instructional approaches in building knowledge of macroeconomic concepts and principles in high school students. Using data from 252 economics students at 11 high schools and controlling for individual characteristics, most notably verbal ability,…

  20. Problem-based Learning Behavior: The Impact of Differences in Problem-Based Learning Style and Activity on Students' Achievement.

    ERIC Educational Resources Information Center

    van Til, Cita T.; And Others

    Problem-based learning (PBL) as a new instructional method is becoming increasingly popular. PBL is hypothesized to have a number of advantages for learning because it applies insights from cognitive learning theory and it fosters a lifelong learning strategy. As in all learning programs there are individual differences between students. This…

  1. Effects of congruence between preferred and perceived learning environments in nursing education in Taiwan: a cross-sectional study

    PubMed Central

    Yeh, Ting-Kuang; Huang, Hsiu-Mei; Chan, Wing P; Chang, Chun-Yen

    2016-01-01

    Objective To investigate the effects of congruence between preferred and perceived learning environments on learning outcomes of nursing students. Setting A nursing course at a university in central Taiwan. Participants 124 Taiwanese nursing students enrolled in a 13-week problem-based Fundamental Nursing curriculum. Design and methods Students' preferred learning environment, perceptions about the learning environment and learning outcomes (knowledge, self-efficacy and attitudes) were assessed. On the basis of test scores measuring their preferred and perceived learning environments, students were assigned to one of two groups: a ‘preferred environment aligned with perceived learning environment’ group and a ‘preferred environment discordant with perceived learning environment’ group. Learning outcomes were analysed by group. Outcome measures Most participants preferred learning in a classroom environment that combined problem-based and lecture-based instruction. However, a mismatch of problem-based instruction with students' perceptions occurred. Learning outcomes were significantly better when students' perceptions of their instructional activities were congruent with their preferred learning environment. Conclusions As problem-based learning becomes a focus of educational reform in nursing, teachers need to be aware of students' preferences and perceptions of the learning environment. Teachers may also need to improve the match between an individual student's perception and a teacher's intention in the learning environment, and between the student's preferred and actual perceptions of the learning environment. PMID:27207620

  2. Working Towards a Scalable Model of Problem-Based Learning Instruction in Undergraduate Engineering Education

    ERIC Educational Resources Information Center

    Mantri, Archana

    2014-01-01

    The intent of the study presented in this paper is to show that the model of problem-based learning (PBL) can be made scalable by designing curriculum around a set of open-ended problems (OEPs). The detailed statistical analysis of the data collected to measure the effects of traditional and PBL instructions for three courses in Electronics and…

  3. Renewed roles for librarians in problem-based learning in the medical curriculum.

    PubMed

    Mi, Misa

    2011-01-01

    Problem-based learning (PBL) is a teaching-learning process or method of instruction that is widely used in medical education curricula. Librarians play important roles as facilitators for PBL as well as guides for information resources. Involvement in PBL activities presents unique opportunities to incorporate library resources and instruction into the medical curriculum. This article reviews the problem-based learning method within the conceptual framework of the learning theory of constructivism. It describes how a medical librarian at a U.S. medical school used emerging technologies to facilitate PBL small group case discussions, guide students to quality information resources, and enhance the learning environment for the PBL process.

  4. Do Students' Topic Interest and Tutors' Instructional Style Matter in Problem-Based Learning?

    ERIC Educational Resources Information Center

    Wijnia, Lisette; Loyens, Sofie M. M.; Derous, Eva; Schmidt, Henk G.

    2014-01-01

    Two studies investigated the importance of initial topic interest (i.e., expectation of interest) and tutors' autonomy-supportive or controlling instructional styles for students' motivation and performance in problem-based learning (PBL). In Study 1 (N = 93, a lab experiment), each student participated in a simulated group discussion in…

  5. Problem- and case-based learning in science: an introduction to distinctions, values, and outcomes.

    PubMed

    Allchin, Douglas

    2013-01-01

    Case-based learning and problem-based learning have demonstrated great promise in reforming science education. Yet an instructor, in newly considering this suite of interrelated pedagogical strategies, faces a number of important instructional choices. Different features and their related values and learning outcomes are profiled here, including: the level of student autonomy; instructional focus on content, skills development, or nature-of-science understanding; the role of history, or known outcomes; scope, clarity, and authenticity of problems provided to students; extent of collaboration; complexity, in terms of number of interpretive perspectives; and, perhaps most importantly, the role of applying versus generating knowledge.

  6. Problem- and Case-Based Learning in Science: An Introduction to Distinctions, Values, and Outcomes

    PubMed Central

    Allchin, Douglas

    2013-01-01

    Case-based learning and problem-based learning have demonstrated great promise in reforming science education. Yet an instructor, in newly considering this suite of interrelated pedagogical strategies, faces a number of important instructional choices. Different features and their related values and learning outcomes are profiled here, including: the level of student autonomy; instructional focus on content, skills development, or nature-of-science understanding; the role of history, or known outcomes; scope, clarity, and authenticity of problems provided to students; extent of collaboration; complexity, in terms of number of interpretive perspectives; and, perhaps most importantly, the role of applying versus generating knowledge. PMID:24006385

  7. The Effectiveness of Problem-Based Instruction: A Comparative Study of Instructional Methods and Student Characteristics

    ERIC Educational Resources Information Center

    Mergendoller, John R.; Maxwell, Nan L.; Bellisimo, Yolanda

    2006-01-01

    This study compared the effectiveness of problem-based learning (PBL) and traditional instructional approaches in developing high-school students' macroeconomics knowledge and examined whether PBL was differentially effective with students demonstrating different levels of four aptitudes: verbal ability, interest in economics, preference for group…

  8. An Instructional Theory for the Post-Industrial Age

    ERIC Educational Resources Information Center

    Reigeluth, Charles M.

    2011-01-01

    This article describes instructional theory that supports post-industrial education and training systems--ones that are customized and learner-centered, in which student progress is based on learning rather than time. The author discusses the importance of problem-based instruction (PBI), identifies some problems with PBI, overviews an…

  9. Effects of congruence between preferred and perceived learning environments in nursing education in Taiwan: a cross-sectional study.

    PubMed

    Yeh, Ting-Kuang; Huang, Hsiu-Mei; Chan, Wing P; Chang, Chun-Yen

    2016-05-20

    To investigate the effects of congruence between preferred and perceived learning environments on learning outcomes of nursing students. A nursing course at a university in central Taiwan. 124 Taiwanese nursing students enrolled in a 13-week problem-based Fundamental Nursing curriculum. Students' preferred learning environment, perceptions about the learning environment and learning outcomes (knowledge, self-efficacy and attitudes) were assessed. On the basis of test scores measuring their preferred and perceived learning environments, students were assigned to one of two groups: a 'preferred environment aligned with perceived learning environment' group and a 'preferred environment discordant with perceived learning environment' group. Learning outcomes were analysed by group. Most participants preferred learning in a classroom environment that combined problem-based and lecture-based instruction. However, a mismatch of problem-based instruction with students' perceptions occurred. Learning outcomes were significantly better when students' perceptions of their instructional activities were congruent with their preferred learning environment. As problem-based learning becomes a focus of educational reform in nursing, teachers need to be aware of students' preferences and perceptions of the learning environment. Teachers may also need to improve the match between an individual student's perception and a teacher's intention in the learning environment, and between the student's preferred and actual perceptions of the learning environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Problem-Centered Supplemental Instruction in Biology: Influence on Content Recall, Content Understanding, and Problem Solving Ability

    NASA Astrophysics Data System (ADS)

    Gardner, Joel; Belland, Brian R.

    2017-08-01

    To address the need for effective, efficient ways to apply active learning in undergraduate biology courses, in this paper, we propose a problem-centered approach that utilizes supplemental web-based instructional materials based on principles of active learning. We compared two supplementary web-based modules using active learning strategies: the first used Merrill's First Principles of Instruction as a framework for organizing multiple active learning strategies; the second used a traditional web-based approach. Results indicated that (a) the First Principles group gained significantly from pretest to posttest at the Remember level ( t(40) = -1.432, p = 0.08, ES = 0.4) and at the Problem Solving level ( U = 142.5, N1 = 21, N2 = 21, p = .02, ES = 0.7) and (b) the Traditional group gained significantly from pretest to posttest at the Remember level ( t(36) = 1.762, p = 0.043, ES = 0.6). Those in the First Principles group were significantly more likely than the traditional group to be confident in their ability to solve problems in the future (χ2 (2, N = 40) = 3.585, p = 0.09).

  11. Problem-Based Learning: Instructor Characteristics, Competencies, and Professional Development

    DTIC Science & Technology

    2011-01-01

    cognitive learning objectives addressed by student -centered instruction . For instance, experiential learning , a variation of which is used at the...based learning in grade school science or mathematics . However, the measures could be modified to focus on adult PBL (or student -centered learning ... student -centered learning methods, the findings should generalize across instructional methods of interest to the Army. Further research is required

  12. Middle School Engineering Problem Solving Using Traditional vs. E-PBL Module Instruction

    ERIC Educational Resources Information Center

    Baele, Loren C.

    2017-01-01

    This multiple methods (Denzin, 1978) study investigated two instructional approaches, traditional module and electronic Problem-Based Learning instruction (e-PBL), used within a middle school engineering classroom focused on the variables of engagement, content knowledge, student self-assessment and teacher assessment of problem solving solutions.…

  13. Brain Based Instruction in Correctional Settings: Strategies for Teachers.

    ERIC Educational Resources Information Center

    Becktold, Toni Hill

    2001-01-01

    Brain-based learning strategies (learner choice, movement, small groups) may be inappropriate in corrections for security reasons. Problems encountered in correctional education (attention deficit disorder, learned helplessness) complicate the use of these strategies. Incorporating brain-based instruction in these settings requires creativity and…

  14. Systematizing Scaffolding for Problem-Based Learning: A View from Case-Based Reasoning

    ERIC Educational Resources Information Center

    Tawfik, Andrew A.; Kolodner, Janet L.

    2016-01-01

    Current theories and models of education often argue that instruction is best administered when knowledge is situated within a context. Problem-based learning (PBL) provides an approach to education that has particularly powerful affordances for learning disciplinary content and practices by solving authentic problems within a discipline. However,…

  15. The Effect of Problem Based Learning (PBL) Instruction on Students' Motivation and Problem Solving Skills of Physics

    ERIC Educational Resources Information Center

    Argaw, Aweke Shishigu; Haile, Beyene Bashu; Ayalew, Beyene Tesfaw; Kuma, Shiferaw Gadisa

    2017-01-01

    Through the learning of physics, students will acquire problem solving skills which are relevant to their daily life. Determining the best way in which students learn physics takes a priority in physics education. The goal of the present study was to determine the effect of problem based learning strategy on students' problem solving skills and…

  16. Rebecca's in the Dark: A Comparative Study of Problem-Based Learning and Direct Instruction/Experiential Learning in Two 4th-Grade Classrooms

    ERIC Educational Resources Information Center

    Drake, Kay N.; Long, Deborah

    2009-01-01

    Seeking improved student performance in elementary schools has led educators to advocate inquiry-based teaching approaches, including problem-based learning (PBL). In PBL, students simultaneously develop problem-solving strategies, disciplinary knowledge bases, collaborative skills, and dispositions. Research into the efficacy of PBL in elementary…

  17. Accelerated Proficiency and Facilitated Retention: Recommendations Based on an Integration of Research and Findings from a Working Meeting

    DTIC Science & Technology

    2010-12-01

    Psychology– Learning , Memory and Cognition , 13, 344-349. Bahrick, H. P., & Hall, L. K. (1991a). Lifetime maintenance of high school mathematics content...been through an initiation ceremony—a novice who has begun introductory instruction . APPRENTICE Literally, one who is learning —a student undergoing...area of medical education, Problem-Based Learning is an instructional method that has students collaborate in work on challenging practical problems

  18. Effects of a Problem-based Structure of Physics Contents on Conceptual Learning and the Ability to Solve Problems

    NASA Astrophysics Data System (ADS)

    Becerra-Labra, Carlos; Gras-Martí, Albert; Martínez Torregrosa, Joaquín

    2012-05-01

    A model of teaching/learning is proposed based on a 'problem-based structure' of the contents of the course, in combination with a training in paper and pencil problem solving that emphasizes discussion and quantitative analysis, rather than formulae plug-in. The aim is to reverse the high failure and attrition rate among engineering undergraduates taking physics. A number of tests and questionnaires were administered to a group of students following a traditional lecture-based instruction, as well as to another group that was following an instruction scheme based on the proposed approach and the teaching materials developed ad hoc. The results show that students following the new method can develop scientific reasoning habits in problem-solving skills, and show gains in conceptual learning, attitudes and interests, and that the effects of this approach on learning are noticeable several months after the course is over.

  19. Effects of Faded Scaffolding in Computer-Based Instruction on Learners' Performance, Cognitive Load, and Test Anxiety

    ERIC Educational Resources Information Center

    Hao, Shuang

    2016-01-01

    Scaffolding is a type of instructional support that helps students to complete a learning task that exceeds their current ability. Scaffolding plays an important role in augmenting other instructional approaches, such as problem-based learning, and facilitates gradual shifts of responsibility from the more advanced others to the learner (Belland,…

  20. Problem-Based Learning and Problem-Solving Tools: Synthesis and Direction for Distributed Education Environments.

    ERIC Educational Resources Information Center

    Friedman, Robert S.; Deek, Fadi P.

    2002-01-01

    Discusses how the design and implementation of problem-solving tools used in programming instruction are complementary with both the theories of problem-based learning (PBL), including constructivism, and the practices of distributed education environments. Examines how combining PBL, Web-based distributed education, and a problem-solving…

  1. A case study of secondary teachers facilitating a historical problem-based learning instructional unit

    NASA Astrophysics Data System (ADS)

    Pecore, John L.

    Current curriculum trends promote inquiry-based student-centered strategies as a way to foster critical thinking and learning. Problem-based learning (PBL), a type of inquiry focusing on an issue or "problem," is an instructional approach taught on the basis that science reform efforts increase scientific literacy. PBL is a constructivist approach to learning real life problems where understanding is a function of content, context, experiences, and learner goals; historical PBL situates the lesson in a historical context and provides opportunities for teaching NOS concepts. While much research exists on the benefits of historical PBL to student learning in general, more research is warranted on how teachers implement PBL in the secondary science curriculum. The purpose of this study was to examine the classroom-learning environment of four science teachers implementing a historical PBL instructional unit to identify the teachers' understandings, successes and obstacles. By identifying teachers' possible achievements and barriers with implementing a constructivist philosophy when executing historical PBL, educators and curriculum designers may improve alignment of the learning environment to constructivist principles. A qualitative interpretive case study guided this research study. The four participants of this study were purposefully and conveniently selected from biology teachers with at least three years of teaching experience, degrees in education, State Licensure, and completion of a PBL workshop. Data collection consisted of pre and post questionnaires, structured interviews, a card sort activity in which participants categorized instructional outcomes, and participant observations. Results indicated that the four teachers assimilated reform-based constructivist practices to fit within their preexisting routines and highlighted the importance of incorporating teachers' current systems into reform-based teacher instruction. While participating teachers addressed a few NOS tenets, emphasizing the full range of possible NOS objectives included in historical PBL is warranted. This study also revealed the importance of creating a collaborative classroom culture and building positive student-teacher relationships when implementing PBL instruction. The four teachers agreed that the historical PBL instructional unit provided a context for learning state standards, and they positively viewed their experiences teaching the lesson. Thus findings from this study suggest that teaching science in a historical context using PBL can be effective.

  2. Effects of Instructional Preparation Strategies on Problem Solving in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2010-01-01

    This study reports the effects of different types of instructional preparation strategies on the problem solving performance of college students taking an introductory physics class. Students were divided into four equally skilled groups and solved the same physics problems after receiving different instructional preparations (engaging in…

  3. Failing to Learn: Towards a Unified Design Approach for Failure-Based Learning

    ERIC Educational Resources Information Center

    Tawfik, Andrew A.; Rong, Hui; Choi, Ikseon

    2015-01-01

    To date, many instructional systems are designed to support learners as they progress through a problem-solving task. Often these systems are designed in accordance with instructional design models that progress the learner efficiently through the problem-solving process. However, theories from various fields have discussed failure as a strategic…

  4. Unifying Computer-Based Assessment across Conceptual Instruction, Problem-Solving, and Digital Games

    ERIC Educational Resources Information Center

    Miller, William L.; Baker, Ryan S.; Rossi, Lisa M.

    2014-01-01

    As students work through online learning systems such as the Reasoning Mind blended learning system, they often are not confined to working within a single educational activity; instead, they work through various different activities such as conceptual instruction, problem-solving items, and fluency-building games. However, most work on assessing…

  5. Designing Tools for Reflection on Problem-Based Instruction and Problem-Based Instructional Design

    ERIC Educational Resources Information Center

    Keefer, Matthew W.; Hui, Diane; RuffusDoerr, Amy Marie

    2009-01-01

    The objective of this research project into teacher education was to document the collaborative development and refection on teachers' tools in a problem-based learning (PBL) program. These results were then used to design materials and formats for the transmission of this teaching knowledge to less-experienced PBL teachers. The tools were…

  6. Effects of Problem-Based Learning on Recognition Learning and Transfer Accounting for GPA and Goal Orientation

    ERIC Educational Resources Information Center

    Bergstrom, Cassendra M.; Pugh, Kevin J.; Phillips, Michael M.; Machlev, Moshe

    2016-01-01

    Conflicting research results have stirred controversy over the effectiveness of problem-based learning (PBL) compared to direct instruction at fostering content learning, particularly for novices. We addressed this by investigating effectiveness with respect to recognition learning and transfer and conducting an aptitude-treatment interaction…

  7. Perceptions of Missouri Elementary Principals to Lead Differentiated Instruction Initiatives

    ERIC Educational Resources Information Center

    Eftink, Adrian

    2014-01-01

    The following document represents a Problem Based Learning Project (PBL) around the central theme of differentiated instruction leadership. "As demonstrated through literature the emerging problem was elementary school principals lack the necessary understanding and needed preparation in differentiated instruction (DI) leadership to support…

  8. Elements of Problem-Based Learning: Suggestions for Implementation in the Asynchronous Environment

    ERIC Educational Resources Information Center

    Nelson, Erik

    2010-01-01

    Problem-based learning, or PBL, is a student-centered instructional approach that is derived from constructivist epistemology. It is based upon ill-structured real-world problems with the goal of strengthening and developing critical thinking and problem-solving skills in learners. Initially utilized in medical schools to strengthen diagnostic…

  9. Problem-Based Learning in Formal and Informal Learning Environments

    ERIC Educational Resources Information Center

    Shimic, Goran; Jevremovic, Aleksandar

    2012-01-01

    Problem-based learning (PBL) is a student-centered instructional strategy in which students solve problems and reflect on their experiences. Different domains need different approaches in the design of PBL systems. Therefore, we present one case study in this article: A Java Programming PBL. The application is developed as an additional module for…

  10. The STEAM-Powered Classroom

    ERIC Educational Resources Information Center

    Harper, Charlie

    2017-01-01

    An instructional coach argues that STEAM (science, technology, engineering, arts, and mathematics) programming combined with problem-based learning can offer rich academic experiences--and not just in science classrooms. He outlines relevant problem-based lesson ideas, and discusses ways school leaders can better support instructional practices…

  11. [The application of new technologies to solving maths problems for students with learning disabilities: the 'underwater school'].

    PubMed

    Miranda-Casas, A; Marco-Taverner, R; Soriano-Ferrer, M; Melià de Alba, A; Simó-Casañ, P

    2008-01-01

    Different procedures have demonstrated efficacy to teach cognitive and metacognitive strategies to problem solving in mathematics. Some studies have used computer-based problem solving instructional programs. To analyze in students with learning disabilities the efficacy of a cognitive strategies training for problem solving, with three instructional delivery formats: a teacher-directed program (T-D), a computer-assisted instructional (CAI) program, and a combined program (T-D + CAI). Forty-four children with mathematics learning disabilities, between 8 and 10 years old participated in this study. The children were randomly assigned to one of the three instructional formats and a control group without cognitive strategies training. In the three instructional conditions which were compared all the students learnt problems solving linguistic and visual cognitive strategies trough the self-instructional procedure. Several types of measurements were used for analysing the possible differential efficacy of the three instructional methods implemented: solving problems tests, marks in mathematics, internal achievement responsibility scale, and school behaviours teacher ratings. Our findings show that the T-D training group and the T-D + CAI group improved significantly on math word problem solving and on marks in Maths from pre- to post-testing. In addition, the results indicated that the students of the T-D + CAI group solved more real-life problems and developed more internal attributions compared to both control and CAI groups. Finally, with regard to school behaviours, improvements in school adjustment and learning problems were observed in the students of the group with a combined instructional format (T-D + CAI).

  12. The Goal Specificity Effect on Strategy Use and Instructional Efficiency during Computer-Based Scientific Discovery Learning

    ERIC Educational Resources Information Center

    Kunsting, Josef; Wirth, Joachim; Paas, Fred

    2011-01-01

    Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…

  13. Effects of Problem Based Economics on High School Economics Instruction

    ERIC Educational Resources Information Center

    Finkelstein, Neal; Hanson, Thomas

    2011-01-01

    The primary purpose of this study is to assess student-level impacts of a problem-based instructional approach to high school economics. The curriculum approach examined here was designed to increase class participation and content knowledge for high school students who are learning economics. This study tests the effectiveness of Problem Based…

  14. Web-based learning: pros, cons and controversies.

    PubMed

    Cook, David A

    2007-01-01

    Advantages of web-based learning (WBL) in medical education include overcoming barriers of distance and time, economies of scale, and novel instructional methods, while disadvantages include social isolation, up-front costs, and technical problems. Web-based learning is purported to facilitate individualised instruction, but this is currently more vision than reality. More importantly, many WBL instructional designs fail to incorporate principles of effective learning, and WBL is often used for the wrong reasons (e.g., for the sake of technology). Rather than trying to decide whether WBL is superior to or equivalent to other instructional media (research addressing this question will always be confounded), we should accept it as a potentially powerful instructional tool, and focus on learning when and how to use it. Educators should recognise that high fidelity, multimedia, simulations, and even WBL itself will not always be necessary to effectively facilitate learning.

  15. Influence of Students' Learning Styles on the Effectiveness of Instructional Interventions

    ERIC Educational Resources Information Center

    Lehmann, Thomas; Ifenthaler, Dirk

    2012-01-01

    This research contributes to answer the question whether learning/cognitive styles of students serve as a justified starting point for creating target-group appropriate instruction. The study was realized in a self-regulated problem-based learning environment. Data of 56 participants on their individual learning styles, their acquired problem…

  16. Lack of interaction between sensing-intuitive learning styles and problem-first versus information-first instruction: a randomized crossover trial.

    PubMed

    Cook, David A; Thompson, Warren G; Thomas, Kris G; Thomas, Matthew R

    2009-03-01

    Adaptation to learning styles has been proposed to enhance learning. We hypothesized that learners with sensing learning style would perform better using a problem-first instructional method while intuitive learners would do better using an information-first method. Randomized, controlled, crossover trial. Resident ambulatory clinics. 123 internal medicine residents. Four Web-based modules in ambulatory internal medicine were developed in both "didactic" (information first, followed by patient problem and questions) and "problem" (case and questions first, followed by information) format. Knowledge posttest, format preference, learning style (Index of Learning Styles). Knowledge scores were similar between the didactic (mean +/- standard error, 83.0 +/- 0.8) and problem (82.3 +/- 0.8) formats (p = .42; 95% confidence interval [CI] for difference, -2.3 to 0.9). There was no difference between formats in regression slopes of knowledge scores on sensing-intuitive scores (p = .63) or in analysis of knowledge scores by styles classification (sensing 82.5 +/- 1.0, intermediate 83.7 +/- 1.2, intuitive 81.0 +/- 1.5; p = .37 for main effect, p = .59 for interaction with format). Format preference was neutral (3.2 +/- 0.2 [1 strongly prefers didactic, 6 strongly prefers problem], p = .12), and there was no association between learning styles and preference (p = .44). Formats were similar in time to complete modules (43.7 +/- 2.2 vs 43.2 +/- 2.2 minutes, p = .72). Starting instruction with a problem (versus employing problems later on) may not improve learning outcomes. Sensing and intuitive learners perform similarly following problem-first and didactic-first instruction. Results may apply to other instructional media.

  17. Project-Based Learning: Differentiating Instruction for the 21st Century

    ERIC Educational Resources Information Center

    Bender, William N.

    2012-01-01

    Project-based learning has emerged as one of today's most effective instructional practices. In PBL, students confront real-world issues and problems, collaborate to create solutions, and present their results. This exciting new book describes how PBL fosters 21st century skills and innovative thinking. The author provides instructional…

  18. Using Problem-Based Learning to Increase Computer Self-Efficacy in Taiwanese Students

    ERIC Educational Resources Information Center

    Smith, Cary Stacy; Hung, Li-Ching

    2017-01-01

    In Taiwan, teaching focuses around lecturing, with students having little opportunity to interact with each other. Problem-based learning (PBL) is a means of instruction where students learn the subject by being active participants in the pedagogical process, with the emphasis on problem-solving. In this study, the authors investigated whether PBL…

  19. "What's so Terrible about Swallowing an Apple Seed?" Problem-Based Learning in Kindergarten

    ERIC Educational Resources Information Center

    Zhang, Meilan; Parker, Joyce; Eberhardt, Jan; Passalacqua, Susan

    2011-01-01

    Problem-Based Learning (PBL), an instructional approach originated in medical education, has gained increasing attention in K-12 science education because of its emphasis on self-directed learning and real-world problem-solving. Yet few studies have examined how PBL can be adapted for kindergarten. In this study, we examined how a veteran…

  20. Comparison of Science-Technology-Society Approach and Textbook Oriented Instruction on Students' Abilities to Apply Science Concepts

    ERIC Educational Resources Information Center

    Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.

    2017-01-01

    It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…

  1. Implementation of Problem Based Learning Model in Concept Learning Mushroom as a Result of Student Learning Improvement Efforts Guidelines for Teachers

    ERIC Educational Resources Information Center

    Rubiah, Musriadi

    2016-01-01

    Problem based learning is a training strategy, students work together in groups, and take responsibility for solving problems in a professional manner. Instructional materials such as textbooks become the main reference of students in study of mushrooms, especially the material is considered less effective in responding to the information needs of…

  2. Schema-Based Instruction with Concrete and Virtual Manipulatives to Teach Problem Solving to Students with Autism

    ERIC Educational Resources Information Center

    Root, Jenny R.; Browder, Diane M.; Saunders, Alicia F.; Lo, Ya-yu

    2017-01-01

    The current study evaluated the effects of modified schema-based instruction on the mathematical word problem solving skills of three elementary students with autism spectrum disorders and moderate intellectual disability. Participants learned to solve compare problem type with themes that related to their interests and daily experiences. In…

  3. An Evaluation of Resource Development and Dissemination Activities Designed to Promote Problem-Based Learning at the University of Ulster

    ERIC Educational Resources Information Center

    Hack, Catherine; McKillop, Aine; Sweetman, Sandra; McCormack, Jacqueline

    2015-01-01

    The transition from traditional instruction to a problem-based approach to learning requires many changes for educators and for students. The aim of this project was to develop an online problem-based learning (PBL) resource centre to provide academic staff from across the University with support in incorporating PBL in their curriculum design.…

  4. Linking Project-Based Interdisciplinary Learning and Recommended Professional Competencies with Business Management, Digital Media, Distance Learning, Engineering Technology, and English

    ERIC Educational Resources Information Center

    Bender, Melinda; Fulwider, Miles; Stemkoski, Michael J.

    2008-01-01

    This paper encourages the investigation of real world problems by students and faculty and links recommended student competencies with project based learning. In addition to the traditional course objectives, project-based learning (PBL) uses real world problems for classroom instruction and fieldwork to connect students, instructors, and industry…

  5. A Project-Based Digital Storytelling Approach for Improving Students' Learning Motivation, Problem-Solving Competence and Learning Achievement

    ERIC Educational Resources Information Center

    Hung, Chun-Ming; Hwang, Gwo-Jen; Huang, Iwen

    2012-01-01

    Although project-based learning is a well-known and widely used instructional strategy, it remains a challenging issue to effectively apply this approach to practical settings for improving the learning performance of students. In this study, a project-based digital storytelling approach is proposed to cope with this problem. With a…

  6. Problem-Based Learning in Instrumentation: Synergism of Real and Virtual Modular Acquisition Chains

    ERIC Educational Resources Information Center

    Nonclercq, A.; Biest, A. V.; De Cuyper, K.; Leroy, E.; Martinez, D. L.; Robert, F.

    2010-01-01

    As part of an instrumentation course, a problem-based learning framework was selected for laboratory instruction. Two acquisition chains were designed to help students carry out realistic instrumentation problems. The first tool is a virtual (simulated) modular acquisition chain that allows rapid overall understanding of the main problems in…

  7. Can Learning Style Predict Student Satisfaction with Different Instruction Methods and Academic Achievement in Medical Education?

    ERIC Educational Resources Information Center

    Gurpinar, Erol; Alimoglu, Mustafa Kemal; Mamakli, Sumer; Aktekin, Mehmet

    2010-01-01

    The curriculum of our medical school has a hybrid structure including both traditional training (lectures) and problem-based learning (PBL) applications. The purpose of this study was to determine the learning styles of our medical students and investigate the relation of learning styles with each of satisfaction with different instruction methods…

  8. Integrated and Contextual Basic Science Instruction in Preclinical Education: Problem-Based Learning Experience Enriched with Brain/Mind Learning Principles

    ERIC Educational Resources Information Center

    Gülpinar, Mehmet Ali; Isoglu-Alkaç, Ümmühan; Yegen, Berrak Çaglayan

    2015-01-01

    Recently, integrated and contextual learning models such as problem-based learning (PBL) and brain/mind learning (BML) have become prominent. The present study aimed to develop and evaluate a PBL program enriched with BML principles. In this study, participants were 295 first-year medical students. The study used both quantitative and qualitative…

  9. Effectiveness of Problem-Based Learning in Introductory Business Courses

    ERIC Educational Resources Information Center

    Hartman, Katherine B.; Moberg, Christopher R.; Lambert, Jamie M.

    2013-01-01

    Problem-based learning (PBL) is an instructional approach that provides learners with opportunities to identify solutions to ill-structured, real-world problems. Previous research provides evidence to support claims about the positive effects of PBL on cognitive skill development and knowledge retention. This study contributes to existing…

  10. Using a Brief Form of Problem-Based Learning in a Research Methods Class: Perspectives of Instructor and Students

    ERIC Educational Resources Information Center

    Elder, Anastasia D.

    2015-01-01

    Problem based learning (PBL) is an instructional method aimed at engaging students in collaboratively solving an ill-structured problem. PBL has been presented and researched as an overhaul of existing curriculum design, yet a modified version may be attractive to college instructors who desire active learning on the part of their students, but…

  11. The Use of Comics-Based Cases in Anchored Instruction

    ERIC Educational Resources Information Center

    Kneller, Matthew F.

    2009-01-01

    The primary purpose of this research was to understand how comics fulfill the role of anchor in an anchored instruction learning environment. Anchored instruction addresses the inert knowledge problem through the use of realistic multimedia stories, or "anchors," that embed a problem and the necessary data to solve it within the narrative. In the…

  12. Instructional strategies for online introductory college physics based on learning styles

    NASA Astrophysics Data System (ADS)

    Ekwue, Eleazer U.

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.

  13. Using activity-based learning approach to enhance the quality of instruction in civil engineering in Indonesian universities

    NASA Astrophysics Data System (ADS)

    Priyono, Wena, Made; Rahardjo, Boedi

    2017-09-01

    Experts and practitioners agree that the quality of higher education in Indonesia needs to be improved significantly and continuously. The low quality of university graduates is caused by many factors, one of which is the poor quality of learning. Today's instruction process tends to place great emphasis only on delivering knowledge. To avoid the pitfalls of such instruction, e.g. passive learning, thus Civil Engineering students should be given more opportunities to interact with others and actively participate in the learning process. Based on a number of theoretical and empirical studies, one appropriate strategy to overcome the aforementioned problem is by developing and implementing activity-based learning approach.

  14. Exploring Small Group Analysis of Instructional Design Cases in Online Learning Environments

    ERIC Educational Resources Information Center

    Trespalacios, Jesus

    2017-01-01

    The case-based approach is a constructivist instructional strategy that helps students apply their emerging knowledge by studying design problems in authentic real-world situations. One important instructional strategy in case-based instruction is to analyze cases in small groups before discussing them with the whole class. This study investigates…

  15. Problem-based learning through field investigation: Boosting questioning skill, biological literacy, and academic achievement

    NASA Astrophysics Data System (ADS)

    Suwono, Hadi; Wibowo, Agung

    2018-01-01

    Biology learning emphasizes problem-based learning as a learning strategy to develop students ability in identifying and solving problems in the surrounding environment. Problem identification skills are closely correlated with questioning skills. By holding this skill, students tend to deliver a procedural question instead of the descriptive one. Problem-based learning through field investigation is an instruction model which directly exposes the students to problems or phenomena that occur in the environment, and then the students design the field investigation activities to solve these problems. The purpose of this research was to describe the improvement of undergraduate biology students on questioning skills, biological literacy, and academic achievement through problem-based learning through field investigation (PBFI) compared with the lecture-based instruction (LBI). This research was a time series quasi-experimental design. The research was conducted on August - December 2015 and involved 26 undergraduate biology students at the State University of Malang on the Freshwater Ecology course. The data were collected during the learning with LBI and PBFI, in which questioning skills, biological literacy, and academic achievement were collected 3 times in each learning model. The data showed that the procedural correlative and causal types of questions are produced by the students to guide them in conducting investigations and problem-solving in PBFI. The biological literacy and academic achievement of the students at PBFI are significantly higher than those at LBI. The results show that PBFI increases the questioning skill, biological literacy, and the academic achievement of undergraduate biology students.

  16. Effects of Instruction-Supported Learning with Worked Examples in Quantitative Method Training

    ERIC Educational Resources Information Center

    Wagner, Kai; Klein, Martin; Klopp, Eric; Puhl, Thomas; Stark, Robin

    2013-01-01

    An experimental field study at a German university was conducted in order to test the effectiveness of an integrated learning environment to improve the acquisition of knowledge about empirical research methods. The integrated learning environment was based on the combination of instruction-oriented and problem-oriented design principles and…

  17. The Self-Formation of Collaborative Groups in a Problem Based Learning Environment

    ERIC Educational Resources Information Center

    Raiyn, Jamal; Tilchin, Oleg

    2016-01-01

    The aim of this paper is to present "the three steps method" of the self-formation of collaborative groups in a problem-based learning environment. The self-formation of collaborative groups is based on sharing of accountability among students for solving instructional problems. The steps of the method are planning collaborative problem…

  18. Enhancing Problem-Solving Expertise by Means of an Authentic, Collaborative, Computer Supported and Problem-Based Course

    ERIC Educational Resources Information Center

    Arts, Jos A. R.; Gijselaers, Wim H.; Segers, Mien S. R.

    2006-01-01

    Instructional designs, embedding learning in meaningful contexts such as problem-based learning (PBL) are increasingly used for fostering expertise to prepare students for the demands of the future workplace. However, cognitive outcomes of these curricula in terms of expertise outcomes are not always conclusive. Based on the instructional…

  19. An Instructional Model to Support Problem-Based Historical Inquiry: The Persistent Issues in History Network

    ERIC Educational Resources Information Center

    Brush, Thomas; Saye, John

    2014-01-01

    For over a decade, we have collaborated with secondary school history teachers in an evolving line of inquiry that applies research-based propositions to the design and testing of a problem-based learning framework and a set of wise practices that represent a professional teaching knowledge base for implementing a particular model of instruction,…

  20. Students' Performance Awareness, Motivational Orientations and Learning Strategies in a Problem-Based Electromagnetism Course

    ERIC Educational Resources Information Center

    Saglam, Murat

    2010-01-01

    This study aims to explore problem-based learning (PBL) in conjunction with students' confidence in the basic ideas of electromagnetism and their motivational orientations and learning strategies. The 78 first-year geology and geophysics students followed a three-week PBL instruction in electromagnetism. The students' confidence was assessed…

  1. Feedback and Feed-Forward for Promoting Problem-Based Learning in Online Learning Environments

    ERIC Educational Resources Information Center

    Webb, Ashley; Moallem, Mahnaz

    2016-01-01

    Purpose: The study aimed to (1) review the literature to construct conceptual models that could guide instructional designers in developing problem/project-based learning environments while applying effective feedback strategies, (2) use the models to design, develop, and implement an online graduate course, and (3) assess the efficiency of the…

  2. Dynamic Assessment of Algebraic Learning in Predicting Third Graders’ Development of Mathematical Problem Solving

    PubMed Central

    Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.

    2008-01-01

    Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957

  3. "The NASA Sci Files": The Case of the Biological Biosphere. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    The NASA Science Files is a series of instructional programs consisting of broadcast, print, and online elements. Emphasizing standards-based instruction, problem-based learning, and science as inquiry, the series seeks to motivate students in grades 3-5 to become critical thinkers and active problem solvers. Each program supports the national…

  4. Knowledge acquisition and learning process description in context of e-learning

    NASA Astrophysics Data System (ADS)

    Kiselev, B. G.; Yakutenko, V. A.; Yuriev, M. A.

    2017-01-01

    This paper investigates the problem of design of e-learning and MOOC systems. It describes instructional design-based approaches to e-learning systems design: IMS Learning Design, MISA and TELOS. To solve this problem we present Knowledge Field of Educational Environment with Competence boundary conditions - instructional engineering method for self-learning systems design. It is based on the simplified TELOS approach and enables a user to create their individual learning path by choosing prerequisite and target competencies. The paper provides the ontology model for the described instructional engineering method, real life use cases and the classification of the presented model. Ontology model consists of 13 classes and 15 properties. Some of them are inherited from Knowledge Field of Educational Environment and some are new and describe competence boundary conditions and knowledge validation objects. Ontology model uses logical constraints and is described using OWL 2 standard. To give TELOS users better understanding of our approach we list mapping between TELOS and KFEEC.

  5. A Model of Small-Group Problem-Based Learning in Pharmacy Education: Teaching in the Clinical Environment

    ERIC Educational Resources Information Center

    Khumsikiew, Jeerisuda; Donsamak, Sisira; Saeteaw, Manit

    2015-01-01

    Problem-based Learning (PBL) is an alternate method of instruction that incorporates basic elements of cognitive learning theory. Colleges of pharmacy use PBL to aid anticipated learning outcomes and practice competencies for pharmacy student. The purpose of this study were to implement and evaluate a model of small group PBL for 5th year pharmacy…

  6. A Meta-Analytic and Qualitative Review of Online versus Face-to-Face Problem-Based Learning

    ERIC Educational Resources Information Center

    Jurewitsch, Brian

    2012-01-01

    Problem-based learning (PBL) is an instructional strategy that is poised for widespread application in the current, growing, on-line digital learning environment. While enjoying a track record as a defensible strategy in face-to-face learning settings, the research evidence is not clear regarding PBL in on-line environments. A review of the…

  7. Learning Stoichiometry: A Comparison of Text and Multimedia Formats

    ERIC Educational Resources Information Center

    Evans, Karen L.; Yaron, David; Leinhardt, Gaea

    2008-01-01

    Even after repeated instruction, first year college chemistry students are often unable to apply stoichiometry knowledge to equilibrium and acid-base chemistry problems. The dynamic and interactive capabilities of online technology may facilitate stoichiometry instruction that promotes more meaningful learning. This study compares a…

  8. Effects of Modified Schema-Based Instruction on Real-World Algebra Problem Solving of Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Root, Jenny Rose

    2016-01-01

    The current study evaluated the effects of modified schema-based instruction (SBI) on the algebra problem solving skills of three middle school students with autism spectrum disorder and moderate intellectual disability (ASD/ID). Participants learned to solve two types of group word problems: missing-whole and missing-part. The themes of the word…

  9. Improving Course Evaluations to Improve Instruction and Complex Learning in Higher Education

    ERIC Educational Resources Information Center

    Frick, Theodore W.; Chadha, Rajat; Watson, Carol; Zlatkovska, Emilija

    2010-01-01

    Recent research has touted the benefits of learner-centered instruction, problem-based learning, and a focus on complex learning. Instructors often struggle to put these goals into practice as well as to measure the effectiveness of these new teaching strategies in terms of mastery of course objectives. Enter the course evaluation, often a…

  10. To Compare the Effects of Computer Based Learning and the Laboratory Based Learning on Students' Achievement Regarding Electric Circuits

    ERIC Educational Resources Information Center

    Bayrak, Bekir; Kanli, Uygar; Kandil Ingeç, Sebnem

    2007-01-01

    In this study, the research problem was: "Is the computer based physics instruction as effective as laboratory intensive physics instruction with regards to academic success on electric circuits 9th grade students?" For this research of experimental quality the design of pre-test and post-test are applied with an experiment and a control…

  11. Using Literature to Build Self-Esteem in Adolescents with Learning and Behavior Problems.

    ERIC Educational Resources Information Center

    Miller, Darcy

    1994-01-01

    Describes the Literature Project, a literature-based thematic approach to reading instruction designed to improve self-esteem in adolescents with learning and behavior problems. Discusses the effectiveness of the program. (SR)

  12. Travels towards Problem Based Learning in Medical Education (VPBL).

    ERIC Educational Resources Information Center

    Bowdish, Bruce E.; Chauvin, Sheila W.; Kreisman, Norman; Britt, Mike

    2003-01-01

    Reports results of an investigation of the effectiveness of a prototype virtual problem-based learning (VPBL) exercise delivered via the World Wide Web to first year medical students. Compares the VPBL and a text-based version of the same exercise on students' achievement and examines instructional design issues including learner control and…

  13. Motivating Calculus-Based Kinematics Instruction with Super Mario Bros

    NASA Astrophysics Data System (ADS)

    Nordine, Jeffrey C.

    2011-09-01

    High-quality physics instruction is contextualized, motivates students to learn, and represents the discipline as a way of investigating the world rather than as a collection of facts and equations. Inquiry-oriented pedagogy, such as problem-based instruction, holds great promise for both teaching physics content and representing the process of doing real science.2 A challenge for physics teachers is to find instructional contexts that are meaningful, accessible, and motivating for students. Today's students are spending a growing fraction of their lives interacting with virtual environments, and these environments—physically realistic or not—can provide valuable contexts for physics explorations3-5 and lead to thoughtful discussions about decisions that programmers make when designing virtual environments. In this article, I describe a problem-based approach to calculus-based kinematics instruction that contextualizes students' learning within the Super Mario Bros. video game—a game that is more than 20 years old, but still remarkably popular with today's high school and college students.

  14. Guided-Inquiry Based Laboratory Instruction: Investigation of Critical Thinking Skills, Problem Solving Skills, and Implementing Student Roles in Chemistry

    ERIC Educational Resources Information Center

    Gupta, Tanya

    2012-01-01

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with…

  15. Q & A with Ed Tech Leaders: Interview with John R. Savery

    ERIC Educational Resources Information Center

    Fulgham, Susan M.; Shaughnessy, Michael F.

    2014-01-01

    John R. Savery is Professor of Education and Director of Instructional Services at the University of Akron. His research and teaching interests focus on problem-based learning and technology-rich learning environments. As Director he supports faculty integration of instructional technology across the spectrum, from traditional classrooms to…

  16. Impact of the Second Semester University Modeling Instruction Course on Students' Representation Choices

    ERIC Educational Resources Information Center

    McPadden, Daryl; Brewe, Eric

    2017-01-01

    Representation use is a critical skill for learning, problem solving, and communicating in science, especially in physics where multiple representations often scaffold the understanding of a phenomenon. University Modeling Instruction, which is an active-learning, research-based introductory physics curriculum centered on students' use of…

  17. Motivating Calculus-Based Kinematics Instruction with Super Mario Bros

    ERIC Educational Resources Information Center

    Nordine, Jeffrey C.

    2011-01-01

    High-quality physics instruction is contextualized, motivates students to learn, and represents the discipline as a way of investigating the world rather than as a collection of facts and equations. Inquiry-oriented pedagogy, such as problem-based instruction, holds great promise for both teaching physics content and representing the process of…

  18. ROENTGEN: case-based reasoning and radiation therapy planning.

    PubMed Central

    Berger, J.

    1992-01-01

    ROENTGEN is a design assistant for radiation therapy planning which uses case-based reasoning, an artificial intelligence technique. It learns both from specific problem-solving experiences and from direct instruction from the user. The first sort of learning is the normal case-based method of storing problem solutions so that they can be reused. The second sort is necessary because ROENTGEN does not, initially, have an internal model of the physics of its problem domain. This dependence on explicit user instruction brings to the forefront representational questions regarding indexing, failure definition, failure explanation and repair. This paper presents the techniques used by ROENTGEN in its knowledge acquisition and design activities. PMID:1482869

  19. Teaching Mathematical Word Problem Solving: The Quality of Evidence for Strategy Instruction Priming the Problem Structure

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Petersen-Brown, Shawna; Lein, Amy E.; Zaslofsky, Anne F.; Kunkel, Amy K.; Jung, Pyung-Gang; Egan, Andrea M.

    2015-01-01

    This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et…

  20. The Effects of Differentiating Instruction by Learning Styles on Problem Solving in Cooperative Groups

    ERIC Educational Resources Information Center

    Westbrook, Amy F.

    2011-01-01

    It can be difficult to find adequate strategies when teaching problem solving in a standard based mathematics classroom. The purpose of this study was to improve students' problem solving skills and attitudes through differentiated instruction when working on lengthy performance tasks in cooperative groups. This action research studied for 15 days…

  1. Creating a Multimedia Enhanced Problem-Based Learning Environment for Middle School Science: Voices from the Developers

    ERIC Educational Resources Information Center

    Liu, Min; Horton, Lucas; Lee, Jaejin; Kang, Jina; Rosenblum, Jason; O'Hair, Matthew; Lu, Chu-Wei

    2014-01-01

    This paper describes the design and development process used to create Alien Rescue, a multimedia-enhanced learning environment that supports problem-based learning (PBL) in middle school science. The goal of the project is to further our understandings of technology, pedagogy, and instructional theories as they relate to the application of PBL…

  2. Solving Word Problems using Schemas: A Review of the Literature

    PubMed Central

    Powell, Sarah R.

    2011-01-01

    Solving word problems is a difficult task for students at-risk for or with learning disabilities (LD). One instructional approach that has emerged as a valid method for helping students at-risk for or with LD to become more proficient at word-problem solving is using schemas. A schema is a framework for solving a problem. With a schema, students are taught to recognize problems as falling within word-problem types and to apply a problem solution method that matches that problem type. This review highlights two schema approaches for 2nd- and 3rd-grade students at-risk for or with LD: schema-based instruction and schema-broadening instruction. A total of 12 schema studies were reviewed and synthesized. Both types of schema approaches enhanced the word-problem skill of students at-risk for or with LD. Based on the review, suggestions are provided for incorporating word-problem instruction using schemas. PMID:21643477

  3. Teaching Problem-Solving and Critical-Thinking Skills Online Using Problem-Based Learning

    ERIC Educational Resources Information Center

    Romero, Liz; Orzechowski, Agnes; Rahatka, Ola

    2014-01-01

    The availability of technological tools is promoting a shift toward more student-centered online instruction. This article describes the implementation of a Problem-Based Learning (PBL) model and the technological tools used to meet the expectations of the model as well as the needs of the students. The end product is a hybrid course with eight…

  4. A Scaffolding Framework to Support the Construction of Evidence-Based Arguments among Middle School Students

    ERIC Educational Resources Information Center

    Belland, Brian R.; Glazewski, Krista D.; Richardson, Jennifer C.

    2008-01-01

    Problem-based learning (PBL) is an instructional approach in which students in small groups engage in an authentic, ill-structured problem, and must (1) define, generate and pursue learning issues to understand the problem, (2) develop a possible solution, (3) provide evidence to support their solution, and (4) present their solution and the…

  5. A System for Generating Instructional Computer Graphics.

    ERIC Educational Resources Information Center

    Nygard, Kendall E.; Ranganathan, Babusankar

    1983-01-01

    Description of the Tektronix-Based Interactive Graphics System for Instruction (TIGSI), which was developed for generating graphics displays in computer-assisted instruction materials, discusses several applications (e.g., reinforcing learning of concepts, principles, rules, and problem-solving techniques) and presents advantages of the TIGSI…

  6. Guided-inquiry based laboratory instruction: Investigation of critical thinking skills, problem solving skills, and implementing student roles in chemistry

    NASA Astrophysics Data System (ADS)

    Gupta, Tanya

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.

  7. Project-Based Learning with an Online Peer Assessment System in a Photonics Instruction for Enhancing LED Design Skills

    ERIC Educational Resources Information Center

    Chang, Shu-Hsuan; Wu, Tsung-Chih; Kuo, Yen-Kuang; You, Li-Chih

    2012-01-01

    This study proposed a novel instructional approach, a two-stage LED simulation of Project-based learning (PBL) course with online peer assessment (OPA), and explored how to apply OPA to the different structured problems in a PBL course to enhance students' professional skills in LED design as well as meta-cognitive thinking. The participants of…

  8. Cognitive patterns of neuroanatomy concepts: Knowledge organizations that emerge from problem solving versus information gathering

    NASA Astrophysics Data System (ADS)

    Weidner, Jeanne Margaret O'malley

    2000-10-01

    This study was motivated by some of the claims that are found in the literature on Problem-Based Learning (PBL). This instructional technique, which uses case studies as its primary instructional tool, has been advanced as an alternative to traditional instruction in order to foster more meaningful, integrative learning of scientific concepts. Several of the advantages attributed to Problem-Based Learning are that it (1) is generally preferred by students because it appears to foster a more nurturing and enjoyable learning experience, (2) fosters greater retention of knowledge and concepts acquired, and (3) results in increased ability to apply this knowledge toward solving new problems. This study examines the differences that result when students learn neuroanatomy concepts under two instructional contexts: problem solving vs. information gathering. The technological resource provided to students to support learning under each of these contexts was the multimedia program BrainStorm: An Interactive Neuroanatomy Atlas (Coppa & Tancred, 1995). The study explores the influence of context with regard to subjects' performance on objective post-tests, organization of knowledge as measured by Pathfinder Networks, differential use of the multimedia software and discourse differences emerging from the transcripts. The findings support previous research in the literature that problem-solving results in less knowledge acquisition in the short term, greater retention of material over time, and a subjects' preference for the method. However, both the degree of retention and preference were influenced by subjects' prior knowledge of the material in the exercises, as there was a significant difference in performance between the two exercises: for the exercise about which subjects appeared to have greater background information, memory decay was less, and subject attitude toward the problem solving instructional format was more favorable, than for the exercise for which subjects had less prior knowledge. Subjects also used the software differently under each format with regard to modules accessed, time spent in modules, and types of information sought. In addition, analyses of the transcripts showed more numerous occurrences of explanations and summarizations in the problem-solving context, compared to the information gathering context. The attempts to show significant differences between the contexts by means of Pathfinder analyses were less than successful.

  9. Improving the Fraction Word Problem Solving of Students with Mathematics Learning Disabilities: Interactive Computer Application

    ERIC Educational Resources Information Center

    Shin, Mikyung; Bryant, Diane P.

    2017-01-01

    Students with mathematics learning disabilities (MLD) have a weak understanding of fraction concepts and skills, which are foundations of algebra. Such students might benefit from computer-assisted instruction that utilizes evidence-based instructional components (cognitive strategies, feedback, virtual manipulatives). As a pilot study using a…

  10. Facilitators' Perspectives of the Factors That Affect the Effectiveness of Problem-Based Learning Process

    ERIC Educational Resources Information Center

    Chan, Cecilia K. Y.

    2016-01-01

    Many educational researchers have established problem-based learning (PBL) as a total approach to education--both a product and a process--from a pedagogical instructional strategy to skills development to assessment. This study provides qualitative evidences from educational practitioners in various professional disciplines, namely, Medicine,…

  11. Problem-Based Learning in Secondary Education: Evaluation by an Experiment

    ERIC Educational Resources Information Center

    De Witte, Kristof; Rogge, Nicky

    2016-01-01

    The effectiveness of problem-based learning (PBL) in terms of increasing students' educational attainments has been extensively studied for higher education students and in nonexperimental settings. This paper tests the effectiveness of PBL as an alternative instruction method in secondary education. In a controlled experiment at the class level,…

  12. Are South African Geography Education Students Ready for Problem-Based Learning?

    ERIC Educational Resources Information Center

    Golightly, Aubrey; Muniz, Osvaldo A.

    2013-01-01

    Problem-based learning (PBL) is one of the possible training strategies that could be more fully implemented in the South African formal education system. The intention to migrate from teacher-centred to learner-centred instructions in higher education institutions and schools makes PBL a plausible option. Geography education students might be…

  13. Problem-Based Learning in Wind Energy Using Virtual and Real Setups

    ERIC Educational Resources Information Center

    Santos-Martin, D.; Alonso-Martinez, J.; Eloy-Garcia Carrasco, J.; Arnaltes, S.

    2012-01-01

    The use of wind energy is now an established fact, and many educational institutions are introducing this topic into their engineering studies. Problem-based learning (PBL), as a student-centered instructional approach, has contributed to important developments in engineering education over the last few years. This paper presents the experience of…

  14. Development of an Inquiry-Based Learning Support System Based on an Intelligent Knowledge Exploration Approach

    ERIC Educational Resources Information Center

    Wu, Ji-Wei; Tseng, Judy C. R.; Hwang, Gwo-Jen

    2015-01-01

    Inquiry-Based Learning (IBL) is an effective approach for promoting active learning. When inquiry-based learning is incorporated into instruction, teachers provide guiding questions for students to actively explore the required knowledge in order to solve the problems. Although the World Wide Web (WWW) is a rich knowledge resource for students to…

  15. Instructional Design as Knowledge Management: A Knowledge-in-Practice Approach to Choosing Instructional Methods

    ERIC Educational Resources Information Center

    McIver, Derrick; Fitzsimmons, Stacey; Flanagan, David

    2016-01-01

    Decisions about instructional methods are becoming more complex, with options ranging from problem sets to experiential service-learning projects. However, instructors not trained in instructional design may make these important decisions based on convenience, comfort, or trends. Instead, this article draws on the knowledge management literature…

  16. The NASA SCI Files[TM]: The Case of the Shaky Quake. A Lesson Guide with Activities in Mathematics, Science, and Technology.

    ERIC Educational Resources Information Center

    Ricles, Shannon

    The NASA SCI Files is a series of instructional programs consisting of broadcast, print, and online elements emphasizing standards-based instruction, problem-based learning, and science as inquiry. The series seeks to motivate students in grades 3-5 to become critical thinkers and active problem solvers. In this program, the tree house detectives…

  17. Incorporating Problem-Based Learning Methodology To Prepare for the Medical College Admission Test.

    ERIC Educational Resources Information Center

    Baiyee, William Agbor

    The effectiveness of problem-based learning (PBL) in preparing for the Medical College Admission Test (MCAT) was studied. A 10-week PBL experience was implemented to supplement lecture-based instruction in preparing for the MCAT. Over 2 years, 33 students participated. Participants met for 3 hours in small PBL groups directed by a tutor three…

  18. Teaching Renewable Energy Using Online PBL in Investigating Its Effect on Behaviour towards Energy Conservation among Malaysian Students: ANOVA Repeated Measures Approach

    ERIC Educational Resources Information Center

    Nordin, Norfarah; Samsudin, Mohd Ali; Harun, Abdul Hadi

    2017-01-01

    This research aimed to investigate whether online problem based learning (PBL) approach to teach renewable energy topic improves students' behaviour towards energy conservation. A renewable energy online problem based learning (REePBaL) instruction package was developed based on the theory of constructivism and adaptation of the online learning…

  19. Beyond Passive Learning: Problem-Based Learning and Concept Maps to Promote Basic and Higher-Order Thinking in Basic Skills Instruction

    ERIC Educational Resources Information Center

    Smith, Regina O.

    2014-01-01

    Research into the best practices for basic skills education, national bridge programs, the new GED® assessment, and accelerated developmental education indicated that contextualized instruction was most effective when preparing adult literacy students for college and work. Nevertheless, "remedial pedagogy" with a sole focus on the…

  20. The Effects of a Collaborative Problem-Based Learning Experience on Students' Motivation in Engineering Capstone Courses

    ERIC Educational Resources Information Center

    Jones, Brett D.; Epler, Cory M.; Mokri, Parastou; Bryant, Lauren H.; Paretti, Marie C.

    2013-01-01

    We identified and examined how the instructional elements of problem-based learning capstone engineering courses affected students' motivation to engage in the courses. We employed a two-phase, sequential, explanatory, mixed methods research design. For the quantitative phase, 47 undergraduate students at a large public university completed a…

  1. Optimising Inter-Disciplinary Problem-Based Learning in Postgraduate Environmental and Science Education: Recommendations from a Case Study

    ERIC Educational Resources Information Center

    Redshaw, Clare H; Frampton, Ian

    2014-01-01

    As the value of multi-disciplinary working in the business and research worlds is becoming more recognised, the number of inter-disciplinary postgraduate environmental and health sciences courses is also increasing. Equally, the popularity of problem-based learning (PBL) is expected to grow and influence instructional approaches in many…

  2. Student-Teachers' Emotional Needs and Dichotomous Problem-Solving: Non-Cognitive Root Causes of Teaching and Learning Problems

    ERIC Educational Resources Information Center

    Soslau, Elizabeth

    2016-01-01

    This study investigated whether typical field instruction practice adequately addressed student-teachers' emotional needs and discerned whether unmet needs interrupted teacher learning. Four student-teachers completed weekly needs-based writing tasks, based on a broad application of Needs Theory. At the conclusion of the 16-week practicum, data…

  3. The NASA "Why?" Files: The Case of the "Wright" Invention. A Lesson Guide with Activities in Mathematics, Science, and Technology.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This lesson guide for instruction of students in grades 3-5 contains activities in mathematics, science, and technology. The NASA "Why?" Files is a series of instructional programs consisting of broadcast, print, and online elements. Emphasizing standards-based instruction, Problem-Based Learning, and science as inquiry, the series seeks to…

  4. Classroom Discussion and Individual Problem-Solving in the Teaching of History: Do Different Instructional Approaches Affect Interest in Different Ways?

    ERIC Educational Resources Information Center

    Del Favero, Laura; Boscolo, Pietro; Vidotto, Giulio; Vicentini, Marco

    2007-01-01

    In this study, 100 Italian eighth graders were divided into two groups to compare the effects of two instructional interventions--the first based on problem-solving through discussion, the second on individual problem-solving--on students' learning of two historical topics (World War I and the economic boom), interest and self-perception of…

  5. The Role of Technology-Based Scaffolding in Problem-Based Online Asynchronous Discussion

    ERIC Educational Resources Information Center

    Ak, Serife

    2016-01-01

    This study examined the effects of technology-based scaffolds that were composed through the use of the seven-stage, problem-based learning strategy on knowledge construction in a problem-based online asynchronous discussion. In a quasi-experimental setting, 60 students in an undergraduate Instructional Technology and Material Design course were…

  6. Implications of Whole-Brained Theories of Learning and Thinking for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Torrance, E. Paul

    1981-01-01

    Discusses the implications of theories of hemispheric dominance for computer-assisted instruction, highlights some of the computer's instructional uses, lists specialized functions of the cerebral hemispheres, and lists recommended solutions to CBI program problems which were submitted by gifted children. Thirty-five sources are listed. (FM)

  7. Peer Instruction: An Evaluation of Its Theory, Application, and Contribution

    ERIC Educational Resources Information Center

    Gok, Tolga; Gok, Ozge

    2017-01-01

    Many qualitative and quantitative studies performed on peer instruction based on interactive engagement method used in many different disciplines and courses were reviewed in the present study. The researchers examined the effects of peer instruction on students' cognitive skills (conceptual learning, problem solving, reasoning ability, etc.) and…

  8. Teaching for Engagement: Part 2: Technology in the Service of Active Learning

    ERIC Educational Resources Information Center

    Hunter, William J.

    2015-01-01

    In the first piece in this series ("Teaching for Engagement: Part 1: Constructivist Principles, Case-Based Teaching, and Active Learning"), William Hunter sought to make the case that a wide range of teaching methods (e.g., case-based teaching, problem-based learning, anchored instruction) that share an intellectual grounding in…

  9. Using the concrete-representational-abstract approach to support students with intellectual disability to solve change-making problems.

    PubMed

    Bouck, Emily; Park, Jiyoon; Nickell, Barb

    2017-01-01

    The Concrete-Representational-Abstract (CRA) instructional approach supports students with disabilities in mathematics. Yet, no research explores the use of the CRA approach to teach functional-based mathematics for this population and limited research explores the CRA approach for students who have a disability different from a learning disability, such as an intellectual disability. This study investigated the effects of using the CRA approach to teach middle school students in a self-contained mathematics class focused on functional-based mathematics to solve making change problems. Researchers used a multiple probe across participants design to determine if a functional relation existed between the CRA strategy and students' ability to solve making change problems. The study of consisted of five-to-eight baseline sessions, 9-11 intervention sessions, and two maintenance sessions for each student. Data were collected on percentage of making change problems students solved correctly. The CRA instructional strategy was effective in teaching all four participants to correctly solve the problems; a functional relation between the CRA approach and solving making change with coins problems across all participants was found. The CRA instructional approach can be used to support students with mild intellectual disability or severe learning disabilities in learning functional-based mathematics, such as purchasing skills (i.e., making change). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Effect of a Case-Based Reasoning Instructional Model on Korean High School Students' Awareness in Climate Change Unit

    ERIC Educational Resources Information Center

    Jeong, Jinwoo; Kim, Hyoungbum; Chae, Dong-hyun; Kim, Eunjeong

    2014-01-01

    The purpose of this study is to investigate the effects of the case-based reasoning instructional model on learning about climate change unit. Results suggest that students showed interest because it allowed them to find the solution to the problem and solve the problem for themselves by analogy from other cases such as crossword puzzles in an…

  11. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    ERIC Educational Resources Information Center

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  12. Instructional design in mathematics for undergraduate students based on learning by mistakes approach utilizing scilab assistance

    NASA Astrophysics Data System (ADS)

    Kartika, H.

    2018-03-01

    The issue related to making mistake while learning such as negative emotion is found while students learn mathematics with the aid of a computer. When the computer output showed a mistake message, the students considered it as a computer software malfunction. Based on this issue, the writer designs an instructional model based on learning by mistake approach and which is Scilab assisted. The method used in this research is research design involving undergraduate students in matrix algebra courses. The data collected throught survey with questionnaire to gain feedback about the approach implemented. The data analyzed using quantitative descriptive. The instructional design proposed is the student act as a mistake corrector while the teacher acts as a mistake maker. Teacher deliberately makes mistakes with the help of Scilab software. On the other hand, students correct, analyze and explain errors resulting from Scilab software. The result of this research is an ICT based instructional design which is expected to be applicable as an alternative learning in directing students to think positively about mistakes in learning. Furthermore, students are also expected to improve their ability in understanding and thinking critically while solving problems and improving themselves in learning mathematics.

  13. A comparison of in-class learner engagement across lecture, problem-based learning, and team learning using the STROBE classroom observation tool.

    PubMed

    Kelly, P Adam; Haidet, Paul; Schneider, Virginia; Searle, Nancy; Seidel, Charles L; Richards, Boyd F

    2005-01-01

    Having recently introduced team learning into the preclinical medical curriculum, evidence of the relative impact of this instructional method on in-class learner engagement was sought. To compare patterns of engagement behaviors among learners in class sessions across 3 distinct instructional methods: lecture, problem-based learning (PBL), and team learning. Trained observers used the STROBE classroom observation tool to measure learner engagement in 7 lecture, 4 PBL, and 3 team learning classrooms over a 12-month period. Proportions of different types of engagement behaviors were compared using chi-square. In PBL and team learning, the amount of learner-to-learner engagement was similar and much greater than in lecture, where most engagement was of the learner-to-instructor and self-engagement types. Also, learner-to-instructor engagement appeared greater in team learning than in PBL. Observed engagement behaviors confirm the potential of team learning to foster engagement similar to PBL, but with greater faculty input.

  14. Mnemonic Instruction in Science and Social Studies for Students with Learning Problems: A Review

    ERIC Educational Resources Information Center

    Lubin, Jacqueline; Polloway, Edward A.

    2016-01-01

    Over the years, mnemonic instruction has been promoted as an effective strategy to teach students with learning problems including learning disabilities (LD) or mild intellectual disability (MID). This paper discusses mnemonic instruction, including types, versatility in use, and effectiveness with struggling learners. Specific emphasis then is…

  15. An Exploratory Study Contrasting High- and Low-Achieving Students' Percent Word Problem Solving

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Star, Jon R.

    2012-01-01

    This study evaluated whether schema-based instruction (SBI), a promising method for teaching students to represent and solve mathematical word problems, impacted the learning of percent word problems. Of particular interest was the extent that SBI improved high- and low-achieving students' learning and to a lesser degree on the indirect effect of…

  16. Conceptual Learning in a Principled Design Problem Solving Environment

    ERIC Educational Resources Information Center

    Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.

    2013-01-01

    To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…

  17. The Experimental Research on E-Learning Instructional Design Model Based on Cognitive Flexibility Theory

    NASA Astrophysics Data System (ADS)

    Cao, Xianzhong; Wang, Feng; Zheng, Zhongmei

    The paper reports an educational experiment on the e-Learning instructional design model based on Cognitive Flexibility Theory, the experiment were made to explore the feasibility and effectiveness of the model in promoting the learning quality in ill-structured domain. The study performed the experiment on two groups of students: one group learned through the system designed by the model and the other learned by the traditional method. The results of the experiment indicate that the e-Learning designed through the model is helpful to promote the intrinsic motivation, learning quality in ill-structured domains, ability to resolve ill-structured problem and creative thinking ability of the students.

  18. Can goal-free problems facilitating students' flexible thinking?

    NASA Astrophysics Data System (ADS)

    Maulidya, Sity Rahmy; Hasanah, Rusi Ulfa; Retnowati, Endah

    2017-08-01

    Problem solving is the key of doing and also learning mathematics. It takes also the fundamental role of developing mathematical knowledge. Responding to the current reform movement in mathematics, students are expected to learn to be a flexible thinker. The ability to think flexible is challenged by the globalisation, hence influence mathematics education. A flexible thinking includes ability to apply knowledge in different contexts rather than simply use it in similar context when it is studied. Arguably problem solving activities can contribute to the development of the ability to apply skills to unfamiliar situations. Accordingly, an appropriate classroom instructional strategy must be developed. A cognitive load theory suggests that by reducing extraneous cognitive load during learning could enhance transfer learning. A goal-free problem strategy that is developed based in cognitive load theory have been showed to be effective for transfer learning. This strategy enables students to learn a large numbers of problem solving moves from a mathematics problem. The instruction in a goal-free problem directs students to `calculate as many solution as you can' rather than to calculate a single given goal. Many experiment research evident goal-free problem enhance learning. This literature review will discuss evidence goal-free problem facilitate students to solve problems flexibly and thus enhance their problem solving skills, including how its implication in the classroom.

  19. An Instructional Systems Technology Model for Institutional Change.

    ERIC Educational Resources Information Center

    Dudgeon, Paul J.

    A program based on instructional systems technology was developed at Canadore College as a means of devising the optimal learning experience for each individual student. The systems approach is used to solve educational problems through a process of analysis, synthesis, modeling, and simulation, based on the LOGOS (Language for Optimizing…

  20. An Architecture for Case-Based Learning

    ERIC Educational Resources Information Center

    Cifuentes, Laurent; Mercer, Rene; Alverez, Omar; Bettati, Riccardo

    2010-01-01

    We report on the design, development, implementation, and evaluation of a case-based instructional environment designed for learning network engineering skills for cybersecurity. We describe the societal problem addressed, the theory-based solution, and the preliminary testing and evaluation of that solution. We identify an architecture for…

  1. Video Game-Based Learning: An Emerging Paradigm for Instruction

    ERIC Educational Resources Information Center

    Squire, Kurt D.

    2008-01-01

    Interactive digital media, or video games, are a powerful new medium. They offer immersive experiences in which players solve problems. Players learn more than just facts--ways of seeing and understanding problems so that they "become" different kinds of people. "Serious games" coming from business strategy, advergaming, and entertainment gaming…

  2. Video Game-Based Learning: An Emerging Paradigm for Instruction

    ERIC Educational Resources Information Center

    Squire, Kurt D.

    2013-01-01

    Interactive digital media, or video games, are a powerful new medium. They offer immersive experiences in which players solve problems. Players learn more than just facts--ways of seeing and understanding problems so that they "become" different kinds of people. "Serious games" coming from business strategy, advergaming, and entertainment gaming…

  3. The Views of Preservice Teachers for Problem Based Learning Model Supported by Geocaching in Environmental Education

    ERIC Educational Resources Information Center

    Adanali, Rukiye; Alim, Mete

    2017-01-01

    The purpose of this study is to investigate the usability of Problem-Based Learning model supported by Instructional Geocaching Game (PBL-IGG). The study was conducted in Turkey, in 2015-2016 spring term with 19 geography teacher candidates who chosen by convenience sampling method. In this study, within Educational Geocaching Game (IGG) which is…

  4. Gifted Middle School Students' Achievement and Perceptions of Science Classroom Quality during Problem-Based Learning

    ERIC Educational Resources Information Center

    Horak, Anne K.; Galluzzo, Gary R.

    2017-01-01

    The purpose of this study was to explore the effect of problem-based learning (PBL) on student achievement and students' perceptions of classroom quality. A group of students taught using PBL and a comparison group of students taught using traditional instruction were studied. A total of 457 students participated in the study. Pre- and…

  5. Summer Teacher Enhancement Institute for Science, Mathematics, and Technology Using the Problem-Based Learning Model

    NASA Technical Reports Server (NTRS)

    Petersen, Richard H.

    1997-01-01

    The objectives of the Institute were: (a) increase participants' content knowledge about aeronautics, science, mathematics, and technology, (b) model and promote the use of scientific inquiry through problem-based learning, (c) investigate the use of instructional technologies and their applications to curricula, and (d) encourage the dissemination of TEI experiences to colleagues, students, and parents.

  6. Exploring University Students' Expectations and Beliefs about Physics and Physics Learning in a Problem-Based Learning Context

    ERIC Educational Resources Information Center

    Sahin, Mehmet

    2009-01-01

    This paper reports the results of an exploratory study aimed to determine university students' expectations and beliefs in a problem-based introductory physics course, how those expectations compare to that of students in other universities, and change as a result of one semester of instruction. In total, 264 freshmen engineering students of Dokuz…

  7. The Impact of Guidance during Problem-Solving Prior to Instruction on Students' Inventions and Learning Outcomes

    ERIC Educational Resources Information Center

    Loibl, Katharina; Rummel, Nikol

    2014-01-01

    Multiple studies have shown benefits of problem-solving prior to instruction (cf. Productive Failure, Invention) in comparison to direct instruction. However, students' solutions prior to instruction are usually erroneous or incomplete. In analogy to "guided" discovery learning, it might therefore be fruitful to lead students…

  8. An Alternative Time for Telling: When Conceptual Instruction Prior to Problem Solving Improves Mathematical Knowledge

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany

    2014-01-01

    Background: The sequencing of learning materials greatly influences the knowledge that learners construct. Recently, learning theorists have focused on the sequencing of instruction in relation to solving related problems. The general consensus suggests explicit instruction should be provided; however, when to provide instruction remains unclear.…

  9. Implementing the Next Generation Science Standards: How Instructional Coaches Mediate Standards-Based Educational Reform to Teacher Practice

    NASA Astrophysics Data System (ADS)

    Laxton, Katherine E.

    This dissertation takes a close look at how district-level instructional coaches support teachers in learning to shifting their instructional practice, related to the Next Generation Science Standards. This dissertation aims to address how re-structuring professional development to a job-embedded coaching model supports individual teacher learning of new reform-related instructional practice. Implementing the NGSS is a problem of supporting professional learning in a way that will enable educators to make fundamental changes to their teaching practice. However, there are few examples in the literature that explain how coaches interact with teachers to improve teacher learning of reform-related instructional practice. There are also few examples in the literature that specifically address how supporting teachers with extended professional learning opportunities, aligned with high-leverage practices, tools and curriculum, impacts how teachers make sense of new standards-based educational reforms and what manifests in classroom instruction. This dissertation proposes four conceptual categories of sense-making that influence how instructional coaches interpret the nature of reform, their roles and in instructional improvement and how to work with teachers. It is important to understand how coaches interpret reform because their interpretations may have unintended consequences related to privileging certain views about instruction, or establishing priorities for how to work with teachers. In this dissertation, we found that re-structuring professional development to a job-embedded coaching model supported teachers in learning new reform-related instructional practice. However, individual teacher interpretations of reform emerged and seemed to be linked to how instructional coaches supported teacher learning.

  10. Effects of Problem-Based Learning with Web-Anchored Instruction in Nanotechnology on the Science Conceptual Understanding, the Attitude towards Science, and the Perception of Science in Society of Elementary Students

    ERIC Educational Resources Information Center

    Yurick, Karla Anne

    2011-01-01

    This study explored the effects of Problem-Based Leaning (PBL) with web-anchored instruction in nanotechnology on the science conceptual understanding, the attitude towards science, and the perception of science in society of elementary students. A mixed-methods approach was used. Subjects (N=46) participated in the study for approximately two…

  11. Learning from Examples versus Verbal Directions in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Fincham, Jon M.; Anderson, John R.

    2015-01-01

    This event-related fMRI study investigated the differences between learning from examples and learning from verbal directions in mathematical problem solving and how these instruction types affect the activity of relevant brain regions during instruction and solution periods within problem-solving trials. We identified distinct neural signatures…

  12. Jumping In: Redefining Teaching and Learning in Physical Education through Project-Based Learning

    ERIC Educational Resources Information Center

    Coyne, Jaime; Hollas, Tori; Potter, Jalene P.

    2016-01-01

    Project-based learning (PBL) is an inquiry-based instructional approach that allows students to gain knowledge and skills by investigating and respond to engaging, complex problems or challenges. For some, PBL may seem like an unnatural fit in PE classrooms. However, this article describes how, with careful and creative planning, PBL can easily…

  13. Applying Web-Enabled Problem-Based Learning and Self-Regulated Learning to Add Value to Computing Education in Taiwan's Vocational Schools

    ERIC Educational Resources Information Center

    Lee, Tsang-Hsiung; Shen, Pei-Di; Tsai, Chia-Wen

    2008-01-01

    This article describes the design and delivery of a compulsory course in packaged software at vocational schools in Taiwan. A course website was devised and deployed to supplement learning activities in the traditional classroom. A series of quasi-experiments was conducted with innovative instructional designs, that is, web-enabled problem-based…

  14. Problem Based Learning: Application to Technology Education in Three Countries

    ERIC Educational Resources Information Center

    Williams, P. John; Iglesias, Juan; Barak, Moshe

    2008-01-01

    An increasing variety of professional educational and training disciplines are now problem based (e.g., medicine, nursing, engineering, community health), and they may have a corresponding variety of educational objectives. However, they all have in common the use of problems in the instructional sequence. The problems may be as diverse as a…

  15. Prompting in Web-Based Environments: Supporting Self-Monitoring and Problem Solving Skills in College Students

    ERIC Educational Resources Information Center

    Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei

    2008-01-01

    This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…

  16. The effect of mathematical model development on the instruction of acceleration to introductory physics students

    NASA Astrophysics Data System (ADS)

    Sauer, Tim Allen

    The purpose of this study was to evaluate the effectiveness of utilizing student constructed theoretical math models when teaching acceleration to high school introductory physics students. The goal of the study was for the students to be able to utilize mathematical modeling strategies to improve their problem solving skills, as well as their standardized scientific and conceptual understanding. This study was based on mathematical modeling research, conceptual change research and constructivist theory of learning, all of which suggest that mathematical modeling is an effective way to influence students' conceptual connectiveness and sense making of formulaic equations and problem solving. A total of 48 students in two sections of high school introductory physics classes received constructivist, inquiry-based, cooperative learning, and conceptual change-oriented instruction. The difference in the instruction for the 24 students in the mathematical modeling treatment group was that they constructed every formula they needed to solve problems from data they collected. In contrast, the instructional design for the control group of 24 students allowed the same instruction with assigned problems solved with formulas given to them without explanation. The results indicated that the mathematical modeling students were able to solve less familiar and more complicated problems with greater confidence and mental flexibility than the control group students. The mathematical modeling group maintained fewer alternative conceptions consistently in the interviews than did the control group. The implications for acceleration instruction from these results were discussed.

  17. Moving Beyond the Training Room: Fostering Workplace Learning through Online Journaling

    ERIC Educational Resources Information Center

    Cyboran, Vincent L.

    2005-01-01

    A variety of instructional methods have been shown to be effective in fostering employee learning in workplace training. These include problem-based learning, cooperative learning, and situated learning. Despite their success, however, there are at least two important reasons to actively foster learning beyond the training room: The transfer of…

  18. Inventing Motivates and Prepares Student Teachers for Computer-Based Learning

    ERIC Educational Resources Information Center

    Glogger-Frey, I.; Kappich, J.; Schwonke, R.; Holzäpfel, L.; Nückles, M.; Renkl, A.

    2015-01-01

    A brief, problem-oriented phase such as an inventing activity is one potential instructional method for preparing learners not only cognitively but also motivationally for learning. Student teachers often need to overcome motivational barriers in order to use computer-based learning opportunities. In a preliminary experiment, we found that student…

  19. Promoting Positive Academic Dispositions Using a Web-Based PBL Environment: The GlobalEd 2 Project

    ERIC Educational Resources Information Center

    Brown, Scott W.; Lawless, Kimberly A.; Boyer, Mark A.

    2013-01-01

    Problem-based learning (PBL) is an instructional design approach for promoting student learning, understanding and knowledge development in context rich settings. Previous PBL research has primarily focused on face-to-face learning environments, but current technologies afford PBL designers the opportunities to create online, virtual, PBL…

  20. Fundamental Research in Engineering Education. Student Learning in Industrially Situated Virtual Laboratories

    ERIC Educational Resources Information Center

    Koretsky, Milo D.; Kelly, Christine; Gummer, Edith

    2011-01-01

    The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…

  1. An Analysis of Didactic and Inquiry-Based Teaching and Learning on Student Achievement in Urban Elementary Schools

    ERIC Educational Resources Information Center

    Varnado, Jacqueline

    2011-01-01

    Limited research has been conducted on inquiry based teaching strategies on language arts and mathematics instruction. The research problem at the study site was the lack of research-based findings on the effectiveness of traditional and inquiry based teaching strategies on language arts and mathematics instruction. The purpose of this case study…

  2. Using Web 2.0 Tools to Facilitate Case-Based Instruction: Considering the Possibilities

    ERIC Educational Resources Information Center

    Koehler, Adrie A.; Ertmer, Peggy A.

    2016-01-01

    Case-based instruction (CBI) offers a promising method for promoting problem-solving skills in learners. However, during CBI, the instructor shoulders major responsibility for shaping the learning that takes place. Research indicates that the facilitation techniques used during case discussions influence what gets covered, and to what extent,…

  3. Students' and Teachers' Experiences with the Implementation of Problem-Based Learning at a University Law School

    ERIC Educational Resources Information Center

    Wijnen, Marit; Loyens, Sofie M. M.; Smeets, Guus; Kroeze, Maarten J.; Van der Molen, Henk T.

    2017-01-01

    A few years ago, the Erasmus School of Law implemented problem-based learning (PBL) as an instructional method in the bachelor's program. Transition to a PBL program often brings some difficulties for the teaching staff. To find out whether the implementation at the Erasmus School of Law has been successful, students and teachers were asked about…

  4. The application of brain-based learning principles aided by GeoGebra to improve mathematical representation ability

    NASA Astrophysics Data System (ADS)

    Priatna, Nanang

    2017-08-01

    The use of Information and Communication Technology (ICT) in mathematics instruction will help students in building conceptual understanding. One of the software products used in mathematics instruction is GeoGebra. The program enables simple visualization of complex geometric concepts and helps improve students' understanding of geometric concepts. Instruction applying brain-based learning principles is one oriented at the efforts of naturally empowering the brain potentials which enable students to build their own knowledge. One of the goals of mathematics instruction in school is to develop mathematical communication ability. Mathematical representation is regarded as a part of mathematical communication. It is a description, expression, symbolization, or modeling of mathematical ideas/concepts as an attempt of clarifying meanings or seeking for solutions to the problems encountered by students. The research aims to develop a learning model and teaching materials by applying the principles of brain-based learning aided by GeoGebra to improve junior high school students' mathematical representation ability. It adopted a quasi-experimental method with the non-randomized control group pretest-posttest design and the 2x3 factorial model. Based on analysis of the data, it is found that the increase in the mathematical representation ability of students who were treated with mathematics instruction applying the brain-based learning principles aided by GeoGebra was greater than the increase of the students given conventional instruction, both as a whole and based on the categories of students' initial mathematical ability.

  5. Modifying a Research-Based Problem-Solving Intervention to Improve the Problem-Solving Performance of Fifth and Sixth Graders With and Without Learning Disabilities.

    PubMed

    Krawec, Jennifer; Huang, Jia

    The purpose of the present study was to test the efficacy of a modified cognitive strategy instructional intervention originally developed to improve the mathematical problem solving of middle and high school students with learning disabilities (LD). Fifth and sixth grade general education mathematics teachers and their students of varying ability (i.e., average-achieving [AA] students, low-achieving [LA] students, and students with LD) participated in the research study. Several features of the intervention were modified, including (a) explicitness of instruction, (b) emphasis on meta-cognition, (c) focus on problem-solving prerequisites, (d) extended duration of initial intervention, and (e) addition of visual supports. General education math teachers taught all instructional sessions to their inclusive classrooms. Curriculum-based measures (CBMs) of math problem solving were administered five times over the course of the year. A multilevel model (repeated measures nested within students and students nested within schools) was used to analyze student progress on CBMs. Though CBM scores in the intervention group were initially lower than that of the comparison group, intervention students improved significantly more in the first phase, with no differences in the second phase. Implications for instruction are discussed as well as directions for future research.

  6. A Systematic Review of Function-Based Interventions for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    McKenna, John William; Flower, Andrea; Kyung Kim, Min; Ciullo, Stephen; Haring, Christa

    2015-01-01

    Students with learning disabilities (LD) experience pervasive academic deficits requiring extensive academic intervention; however, they may also engage in problem behaviors that adversely affect teaching and learning, thus lessening the potential impact of specialized instruction and supports. The learning deficits of students with LD are…

  7. Equity and Access: All Students Are Mathematical Problem Solvers

    ERIC Educational Resources Information Center

    Franz, Dana Pompkyl; Ivy, Jessica; McKissick, Bethany R.

    2016-01-01

    Often mathematical instruction for students with disabilities, especially those with learning disabilities, includes an overabundance of instruction on mathematical computation and does not include high-quality instruction on mathematical reasoning and problem solving. In fact, it is a common misconception that students with learning disabilities…

  8. Recent Trends in Minicomputer-Based Integrated Learning Systems for Reading and Language Arts Instruction.

    ERIC Educational Resources Information Center

    Balajthy, Ernest

    This paper discusses minicomputer-based ILSs (integrated learning systems), i.e., computer-based systems of hardware and software. An example of a minicomputer-based system in a school district (a composite of several actual districts) considers hardware, staffing, scheduling, reactions, problems, and training for a subskill-oriented reading…

  9. Using Categorization of Problems as an Instructional Tool to Help Introductory Students Learn Physics

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2016-01-01

    The ability to categorize problems based upon underlying principles, rather than contexts, is considered a hallmark of expertise in physics problem solving. With inspiration from a classic study by Chi, Feltovich, and Glaser, we compared the categorization of 25 introductory mechanics problems based upon similarity of solution by students in large…

  10. eLearning techniques supporting problem based learning in clinical simulation.

    PubMed

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2005-08-01

    This paper details the results of the first phase of a project using eLearning to support students' learning within a simulated environment. The locus was a purpose built clinical simulation laboratory (CSL) where the School's philosophy of problem based learning (PBL) was challenged through lecturers using traditional teaching methods. a student-centred, problem based approach to the acquisition of clinical skills that used high quality learning objects embedded within web pages, substituting for lecturers providing instruction and demonstration. This encouraged student nurses to explore, analyse and make decisions within the safety of a clinical simulation. Learning was facilitated through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that eLearning techniques can help students acquire clinical skills in the safety of a simulated environment within the context of a problem based learning curriculum.

  11. Teaching mathematical word problem solving: the quality of evidence for strategy instruction priming the problem structure.

    PubMed

    Jitendra, Asha K; Petersen-Brown, Shawna; Lein, Amy E; Zaslofsky, Anne F; Kunkel, Amy K; Jung, Pyung-Gang; Egan, Andrea M

    2015-01-01

    This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et al. and 10 single case design (SCD) research studies using criteria suggested by Horner et al. and the What Works Clearinghouse. Results indicated that 14 group design studies met the criteria for high-quality or acceptable research, whereas SCD studies did not meet the standards for an evidence-based practice. Based on these findings, strategy instruction priming the mathematics problem structure is considered an evidence-based practice using only group design methodological criteria. Implications for future research and for practice are discussed. © Hammill Institute on Disabilities 2013.

  12. Treating of Content-Based Instruction to Teach Writing Viewed from EFL Learners' Creativity

    ERIC Educational Resources Information Center

    Jaelani, Selamet Riadi

    2017-01-01

    The objectives of the research are to examine: (1) whether Content-Based Instruction is more effective than Problem-based learning to teach writing to the EFL Learners; (2) whether the EFL Learners having high creativity have better writing than those having low creativity; and (3) whether there is an interaction between teaching methods and EFL…

  13. Innovating Professional Development for Future Health Care Practitioners.

    ERIC Educational Resources Information Center

    Hamilton, Charlene; Rucinski, Ann; Schakelman, Justin

    2001-01-01

    Describes a Web-based professional development curriculum that was designed at the University of Delaware for the internship portion of the Registered Dieticians program. Topics include distance learning; technology integration; combining in-class with online instruction; multimedia use for problem-based learning case studies; course management…

  14. Case-Based Instruction and Learning: An Interdisciplinary Project.

    ERIC Educational Resources Information Center

    Alvarez, Marino C.; And Others

    Case-based learning is one method that can be used to foster critical thinking and schema construction. Students need to be provided with problem solving lessons in meaningful learning contexts for critical thinking to take place. In order for schema construction to occur, a framework needs to be provided that helps readers to elaborate upon new…

  15. Is Project Based Learning More Effective than Direct Instruction in School Science Classrooms? An Analysis of the Empirical Research Evidence

    NASA Astrophysics Data System (ADS)

    Dann, Clifford

    An increasingly loud call by parents, school administrators, teachers, and even business leaders for "authentic learning", emphasizing both group-work and problem solving, has led to growing enthusiasm for inquiry-based learning over the past decade. Although "inquiry" can be defined in many ways, a curriculum called "project-based learning" has recently emerged as the inquiry practice-of-choice with roots in the educational constructivism that emerged in the mid-twentieth century. Often, project-based learning is framed as an alternative instructional strategy to direct instruction for maximizing student content knowledge. This study investigates the empirical evidence for such a comparison while also evaluating the overall quality of the available studies in the light of accepted standards for educational research. Specifically, this thesis investigates what the body of quantitative research says about the efficacy of project-based learning vs. direct instruction when considering student acquisition of content knowledge in science classrooms. Further, existing limitations of the research pertaining to project based learning and secondary school education are explored. The thesis concludes with a discussion of where and how we should focus our empirical efforts in the future. The research revealed that the available empirical research contains flaws in both design and instrumentation. In particular, randomization is poor amongst all the studies considered. The empirical evidence indicates that project-based learning curricula improved student content knowledge but that, while the results were statistically significant, increases in raw test scores were marginal.

  16. Middle School Engineering Problem Solving Using Traditional vs. e-PBL Module Instruction

    NASA Astrophysics Data System (ADS)

    Baele, Loren C.

    This multiple methods (Denzin, 1978) study investigated two instructional approaches, traditional module and electronic Problem-Based Learning instruction (e-PBL), used within a middle school engineering classroom focused on the variables of engagement, content knowledge, student self-assessment and teacher assessment of problem solving solutions. A non-equivalent group quasi-experimental research design (Creswell, 2015) was used on middle school students (N = 100) between those that received traditional module instruction (n = 51) and e-PBL instruction (n = 49). The qualitative approach of triangulation (Jick, 1979) was used to identify emergent themes for both between and within methods of data analysis on student engagement survey responses, two days of field observations notes, and six student interview transcripts. The quantitative results identified that students who received e-PBL instruction self-reported significantly greater engagement than those who received traditional module instruction. Further, there was a significant interaction effect between engineering content knowledge by group and gender as males who received e-PBL instruction had greater growth of content knowledge scores than males receiving traditional instruction, while females who received traditional instruction had greater growth of content knowledge scores than females in the e-PBL group. Through triangulation of the qualitative data, the emergent themes of the study suggest that hands-on learning produces higher levels of reported engagement independent of instructional method. The emergence of problem solving fatigue developed when both study groups reported a decline in engagement when entering into the final phase of the quantitative study suggesting that too many complex, ill-structured problems in rapid succession may negatively impact student engagement. Although females within the treatment group were most engaged, they did not achieve the knowledge growth of the females in the control group, who were the least engaged. Males presented with e-PBL instruction not only had better engagement, they had the greatest content knowledge growth of any group. Females were likely to have a greater negative difference between self-assessment scores and teacher assessment scores, while males self-assessed themselves closer to the teacher assessment score. Challenges to e-PBL implementation were identified including time, teacher training, and the strict school schedule. A learning management system (LMS) was found to effectively facilitate an e-PBL learning environment.

  17. Comparing the Long-Term Retention of a Physiology Course for Medical Students with the Traditional and Problem-Based Learning

    ERIC Educational Resources Information Center

    Pourshanazari, A. A.; Roohbakhsh, A.; Khazaei, M.; Tajadini, H.

    2013-01-01

    The rapid improvements in medical sciences and the ever-increasing related data, however, require novel methods of instruction. One such method, which has been given less than due attention in Iran, is problem-based learning (PBL). In this study, we aimed to evaluate the impact of study skills and the PBL methods on short and long-term retention…

  18. The Effect of Cognitive- and Metacognitive-Based Instruction on Problem Solving by Elementary Students with Mathematical Learning Difficulties

    ERIC Educational Resources Information Center

    Grizzle-Martin, Tamieka

    2014-01-01

    Children who struggle in mathematics may also lack cognitive awareness in mathematical problem solving. The cognitively-driven program IMPROVE, a multidimensional method for teaching mathematics, has been shown to be helpful for students with mathematical learning difficulties (MLD). Guided by cognitive theory, the purpose of this…

  19. Instructional Strategies for Online Introductory College Physics Based on Learning Styles

    ERIC Educational Resources Information Center

    Ekwue, Eleazer U.

    2013-01-01

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…

  20. Efficacy of problem based learning in a high school science classroom

    NASA Astrophysics Data System (ADS)

    Rissi, James Ryan

    At the high school level, the maturity of the students, as well as constraints of the traditional high school (both in terms of class time, and number of students), impedes the use of the Problem-based instruction. But with more coaching, guidance, and planning, Problem-based Learning may be an effective teaching technique with secondary students. In recent years, the State of Michigan High School Content Expectations have emphasized the importance of inquiry and problem solving in the high school science classroom. In order to help students gain inquiry and problem solving skills, a move towards a problem-based curriculum and away from the didactic approach may lead to favorable results. In this study, the problem-based-learning framework was implemented in a high school Anatomy and Physiology classroom. Using pre-tests and post-tests over the material presented using the Problem-based technique, student comprehension and long-term retention of the material was monitored. It was found that Problem-based Learning produced comparable test performance when compared to traditional lecture, note-taking, and enrichment activities. In addition, students showed evidence of gaining research and team-working skills.

  1. The implications and outcomes of using problem-based learning to teach middle school science

    NASA Astrophysics Data System (ADS)

    Nowak, Jeffrey Andrew

    Problem-based learning (PBL) is an educational approach where a purposefully ill-structured problem initiates learning and the teacher serves as a coach instead of an information repository (Gallagher & Stepien, 1996). This approach is becoming a very popular curricular innovation, especially at the middle and secondary levels. PBL is necessarily interdisciplinary: By modeling real-world problems, which are seldom unidisciplinary, students are required to cross the traditional disciplinary boundaries in their quest to solve the problem. PBL is also based upon the theories of situated cognition, which posit that transfer occurs infrequently and that learning requires situation-specific competence (Brown, Collins, & Duguid, 1989; Plucker & Nowak, 2000; Resnick, 1987). Rather than present students with information that they may or may not be able to use to solve problems, situated cognition stresses that knowledge should be presented in context, preferably in a problem-solving scenario (Plucker & Nowak, 2000). In addition, PBL is consistent with the principles of constructivism (Savery & Duffy, 1995). Several questions have been raised about the appropriateness of using PBL in the K--12 classroom setting. The purpose of this study is to specifically address whether or not students learn as much via PBL techniques as they do in traditional classroom settings. This was accomplished by comparing two eighth grade gifted and talented science classes in a Midwest public middle school. Focused observations, interviews, test score analyses, and document analyses were incorporated into this study. Test score analyses of pretest and posttests indicate that students in a teacher-directed classroom learn factual content at a higher rate than students learning via a PBL instructional approach. Students engaged in PBL, however, have better retention than those who learn under a teacher-directed instructional approach. Interview analyses indicate that students favor learning via PBL, but many students suggest that embedding teacher-directed lessons within a PBL unit would benefit the students more than an exclusively PBL-based curriculum.

  2. Challenges and Opportunities for Learning Biology in Distance-Based Settings

    ERIC Educational Resources Information Center

    Hallyburton, Chad L.; Lunsford, Eddie

    2013-01-01

    The history of learning biology through distance education is documented. A review of terminology and unique problems associated with biology instruction is presented. Using published research and their own teaching experience, the authors present recommendations and best practices for managing biology in distance-based formats. They offer ideas…

  3. The Effect of Cooperative Learning on the Learning Approaches of Students with Different Learning Styles

    ERIC Educational Resources Information Center

    Çolak, Esma

    2015-01-01

    Problem Statement: For this study, a cooperative learning process was designed in which students with different learning styles could help each other in heterogeneous groups to perform teamwork-based activities. One aspect deemed important in this context was whether the instructional environment designed to reach students with different learning…

  4. A narrative study of novice elementary teachers' perceptions of science instruction

    NASA Astrophysics Data System (ADS)

    Harrell, Roberta

    It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).

  5. A case study examining classroom instructional practices at a U.S. dental school.

    PubMed

    Behar-Horenstein, Linda S; Mitchell, Gail S; Dolan, Teresa A

    2005-06-01

    A case study is used to illustrate how an evaluation strategy was used to assess classroom instructional practices following a multiyear institutional curriculum revision process. From January through April of 2003, twelve faculty in medicine and three faculty in dentistry who taught in the first- and second-year basic science courses within the dental curriculum participated in a qualitative study. The purpose was to use a formative evaluation process to assess the impact of the curriculum revision at the level of classroom instruction. The observations revealed that seventeen of the twenty classes observed were teacher-centered, passive, and lacked observable effort to help students understand the relationship of the lecture content to the oral health problems. Findings illustrate the importance of using formative evaluation as a mechanism to assess change efforts and how evidence-based study can be used to support initiatives directed toward assessing active student learning and problem solving. Raising faculty awareness about the importance of acquiring evidence-based educational skills, aligning instruction with course goals and objectives, formatively assessing teaching, and providing learning experiences that will actually be used in practice are essential to ensuring that active learning and critical thinking are demonstrated in the curriculum.

  6. Physics students' approaches to learning and cognitive processes in solving physics problems

    NASA Astrophysics Data System (ADS)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly physical intuition, even if it was only implemented for a short period of time. Other findings relate to the nature of the cognitive actions and activities that the students engage in when learning to solve electromagnetism problems in a PBL environment for the first time and the tutoring actions that guide students in this context.

  7. Using Technology to Meet the Developmental Needs of Deaf Students To Improve Their Mathematical Word Problem Solving Skills.

    ERIC Educational Resources Information Center

    Kelly, Ronald R.

    2003-01-01

    Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)

  8. A Comparison of Two Mathematics Problem-Solving Strategies: Facilitate Algebra-Readiness

    ERIC Educational Resources Information Center

    Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tom, Kinsey; Whipple, Amanda; Si, Luo

    2011-01-01

    The authors compared a conceptual model-based problem-solving (COMPS) approach with a general heuristic instructional approach for teaching multiplication-division word-problem solving to elementary students with learning problems (LP). The results indicate that only the COMPS group significantly improved, from pretests to posttests, their…

  9. Strategy Instruction in Mathematics.

    ERIC Educational Resources Information Center

    Goldman, Susan R.

    1989-01-01

    Experiments in strategy instruction for mathematics have been conducted using three models (direct instruction, self-instruction, and guided learning) applied to the tasks of computation and word problem solving. Results have implications for effective strategy instruction for learning disabled students. It is recommended that strategy instruction…

  10. Studying the Positive Influence of the Use of Video in Teaching & Learning Environments, Focusing on Registration of the Directions Where It Improves the PBL Effectiveness: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Aronis, Alexis

    2016-01-01

    Previous studies report the involvement of the use of video in the frameworks of problem-based learning (PBL), case-based learning, and project-based learning. This systematic literature review, through two research questions, explores the positive influence of the use of video in those instructional methods, and, while focusing on PBL, identifies…

  11. Designing Science Learning in the First Years of Schooling. An Intervention Study with Sequenced Learning Material on the Topic of "Floating and Sinking"

    ERIC Educational Resources Information Center

    Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca

    2014-01-01

    Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus…

  12. Lack of Interaction between Sensing-Intuitive Learning Styles and Problem-First versus Information-First Instruction: A Randomized Crossover Trial

    ERIC Educational Resources Information Center

    Cook, David A.; Thompson, Warren G.; Thomas, Kris G.; Thomas, Matthew R.

    2009-01-01

    Background: Adaptation to learning styles has been proposed to enhance learning. Objective: We hypothesized that learners with sensing learning style would perform better using a problem-first instructional method while intuitive learners would do better using an information-first method. Design: Randomized, controlled, crossover trial. Setting:…

  13. Tutoring electronic troubleshooting in a simulated maintenance work environment

    NASA Technical Reports Server (NTRS)

    Gott, Sherrie P.

    1987-01-01

    A series of intelligent tutoring systems, or intelligent maintenance simulators, is being developed based on expert and novice problem solving data. A graded series of authentic troubleshooting problems provides the curriculum, and adaptive instructional treatments foster active learning in trainees who engage in extensive fault isolation practice and thus in conditionalizing what they know. A proof of concept training study involving human tutoring was conducted as a precursor to the computer tutors to assess this integrated, problem based approach to task analysis and instruction. Statistically significant improvements in apprentice technicians' troubleshooting efficiency were achieved after approximately six hours of training.

  14. The Impact of Project-Based Learning on Minority Student Achievement: Implications for School Redesign

    ERIC Educational Resources Information Center

    Cervantes, Bernadine; Hemmer, Lynn; Kouzekanani, Kamiar

    2015-01-01

    Project-Based Learning (PBL) serves as an instructional approach to classroom teaching and learning that is designed to engage students in the investigation of real-world problems to create meaningful and relevant educational experiences. The causal-comparative study compared 7th and 8th students who had utilized the PBL with a comparison group in…

  15. Including Teachers in the Design of Collaborative Professional Development

    ERIC Educational Resources Information Center

    Jensen, Christopher M.

    2014-01-01

    Improving instruction has been shown to be among the best means of improving student achievement, and professional development has, in turn, been shown to be integral to improving instruction. Moreover, to be effective, professional development programs should be based on adult learning principles and incorporate teacher input. The problem serving…

  16. An Ecological Approach to the On-Line Assessment of Problem-Solving Paths: Principles and Applications.

    ERIC Educational Resources Information Center

    Shaw, Robert E.; And Others

    1997-01-01

    Proposes a theoretical framework for designing online-situated assessment tools for multimedia instructional systems. Uses a graphic method based on ecological psychology to monitor student performance through a learning activity. Explores the method's feasibility in case studies describing instructional systems teaching critical-thinking and…

  17. Computer-Assisted Instruction to Avert Teen Pregnancy.

    ERIC Educational Resources Information Center

    Starn, Jane Ryburn; Paperny, David M.

    Teenage pregnancy has become a major public health problem in the United States. A study was conducted to assess an intervention based upon computer-assisted instruction (CAI) to avert teenage pregnancy. Social learning and decision theory were applied to mediate the adolescent environment through CAI so that adolescent development would be…

  18. Exploring Mathematics Problems Prepares Children to Learn from Instruction

    ERIC Educational Resources Information Center

    DeCaro, Marci S.; Rittle-Johnson, Bethany

    2012-01-01

    Both exploration and explicit instruction are thought to benefit learning in many ways, but much less is known about how the two can be combined. We tested the hypothesis that engaging in exploratory activities prior to receiving explicit instruction better prepares children to learn from the instruction. Children (159 second- to fourth-grade…

  19. Working towards a scalable model of problem-based learning instruction in undergraduate engineering education

    NASA Astrophysics Data System (ADS)

    Mantri, Archana

    2014-05-01

    The intent of the study presented in this paper is to show that the model of problem-based learning (PBL) can be made scalable by designing curriculum around a set of open-ended problems (OEPs). The detailed statistical analysis of the data collected to measure the effects of traditional and PBL instructions for three courses in Electronics and Communication Engineering, namely Analog Electronics, Digital Electronics and Pulse, Digital & Switching Circuits is presented here. It measures the effects of pedagogy, gender and cognitive styles on the knowledge, skill and attitude of the students. The study was conducted two times with content designed around same set of OEPs but with two different trained facilitators for all the three courses. The repeatability of results for effects of the independent parameters on dependent parameters is studied and inferences are drawn.

  20. Using Inquiry-Based Instructional Strategies to Increase Student Achievement in 3rd Grade Social Studies

    ERIC Educational Resources Information Center

    McRae-Jones, Wanda Joycelyn

    2017-01-01

    21st Century skills such as critical-thinking and problem-solving skills are very important when it comes to Science Technology Engineering and Mathematics or STEM. But those same skills should be integrated in social studies. The impact of students' learning in social studies as a result of implementing inquiry-based instructional strategies was…

  1. Comparison of Student Achievement Using Didactic, Inquiry-Based, and the Combination of Two Approaches of Science Instruction

    NASA Astrophysics Data System (ADS)

    Foster, Hyacinth Carmen

    Science educators and administrators support the idea that inquiry-based and didactic-based instructional strategies have varying effects on students' acquisition of science concepts. The research problem addressed whether incorporating the two approaches covered the learning requirements of all students in science classes, enabling them to meet state and national standards. The purpose of this quasiexperimental, posttest design research study was to determine if student learning and achievement in high school biology classes differed for each type of instructional method. Constructivism theory suggested that each learner creates knowledge over time because of the learners' interactions with the environment. The optimal teaching method, didactic (teacher-directed), inquiry-based, or a combination of two approaches instructional method, becomes essential if students are to discover ways to learn information. The research question examined which form of instruction had a significant effect on student achievement in biology. The data analysis consisted of single-factor, independent-measures analysis of variance (ANOVA) that tested the hypotheses of the research study. Locally, the results indicated greater and statistically significant differences in standardized laboratory scores for students who were taught using the combination of two approaches. Based on these results, biology instructors will gain new insights into ways of improving the instructional process. Social change may occur as the science curriculum leadership applies the combination of two instructional approaches to improve acquisition of science concepts by biology students.

  2. Open problem-based instruction impacts understanding of physiological concepts differently in undergraduate students

    PubMed Central

    Franklin, Brandon M.; Xiang, Lin; Collett, Jason A.; Rhoads, Megan K.

    2015-01-01

    Student populations are diverse such that different types of learners struggle with traditional didactic instruction. Problem-based learning has existed for several decades, but there is still controversy regarding the optimal mode of instruction to ensure success at all levels of students' past achievement. The present study addressed this problem by dividing students into the following three instructional groups for an upper-level course in animal physiology: traditional lecture-style instruction (LI), guided problem-based instruction (GPBI), and open problem-based instruction (OPBI). Student performance was measured by three summative assessments consisting of 50% multiple-choice questions and 50% short-answer questions as well as a final overall course assessment. The present study also examined how students of different academic achievement histories performed under each instructional method. When student achievement levels were not considered, the effects of instructional methods on student outcomes were modest; OPBI students performed moderately better on short-answer exam questions than both LI and GPBI groups. High-achieving students showed no difference in performance for any of the instructional methods on any metric examined. In students with low-achieving academic histories, OPBI students largely outperformed LI students on all metrics (short-answer exam: P < 0.05, d = 1.865; multiple-choice question exam: P < 0.05, d = 1.166; and final score: P < 0.05, d = 1.265). They also outperformed GPBI students on short-answer exam questions (P < 0.05, d = 1.109) but not multiple-choice exam questions (P = 0.071, d = 0.716) or final course outcome (P = 0.328, d = 0.513). These findings strongly suggest that typically low-achieving students perform at a higher level under OPBI as long as the proper support systems (formative assessment and scaffolding) are provided to encourage student success. PMID:26628656

  3. Examining the Preparatory Effects of Problem Generation and Solution Generation on Learning from Instruction

    ERIC Educational Resources Information Center

    Kapur, Manu

    2018-01-01

    The goal of this paper is to isolate the preparatory effects of problem-generation from solution generation in problem-posing contexts, and their underlying mechanisms on learning from instruction. Using a randomized-controlled design, students were assigned to one of two conditions: (a) problem-posing with solution generation, where they…

  4. Enriching Project-Based Learning Environments with Virtual Manipulatives: A Comparative Study

    ERIC Educational Resources Information Center

    Çakiroglu, Ünal

    2014-01-01

    Problem statement: Although there is agreement on the potential of project based learning (PBL) and virtual manipulatives (VMs), their positive impact depends on how they are used. This study was based on supporting the use of online PBL environments and improving the efficacy of the instructional practices in PBL by combining the potentials of…

  5. Rethinking biology instruction: The application of DNR-based instruction to the learning and teaching of biology

    NASA Astrophysics Data System (ADS)

    Maskiewicz, April Lee

    Educational studies report that secondary and college level students have developed only limited understandings of the most basic biological processes and their interrelationships from typical classroom experiences. Furthermore, students have developed undesirable reasoning schemes and beliefs that directly affect how they make sense of and account for biological phenomena. For these reasons, there exists a need to rethink instructional practices in biology. This dissertation discusses how the principles of Harel's (1998, 2001) DNR-based instruction in mathematics could be applied to the teaching and learning of biology. DNR is an acronym for the three foundational principles of the system: Duality, Necessity, and Repeated-reasoning. This study examines the application of these three principles to ecology instruction. Through clinical and teaching interviews, I developed models of students' existing ways of understanding in ecology and inferred their ways of thinking. From these models a hypothetical learning trajectory was developed for 16 college level freshmen enrolled in a 10-week ecology teaching experiment. Through cyclical, interpretive analysis I documented and analyzed the evolution of the participants' progress. The results provide empirical evidence to support the claim that the DNR principles are applicable to ecology instruction. With respect to the Duality Principle, helping students develop specific ways of understanding led to the development of model-based reasoning---a way of thinking and the cognitive objective guiding instruction. Through carefully structured problem solving tasks, the students developed a biological understanding of the relationship between matter cycling, energy flow, and cellular processes such as photosynthesis and respiration, and used this understanding to account for observable phenomena in nature. In the case of intellectual necessity, the results illuminate how problem situations can be developed for biology learners that create cognitive disequilibrium-equilibrium phases and thus lead to modification or refinement of existing schemes. Elements that contributed to creating intellectual need include (a) problem tasks that built on students' existing knowledge; (b) problem tasks that challenged students; (c) a routine in which students presented their group's solution to the class; and (d) the didactical contract (Brousseau, 1997) established in the classroom.

  6. Sense of Accomplishment Is Modulated by a Proper Level of Instruction and Represented in the Brain Reward System.

    PubMed

    Nakai, Tomoya; Nakatani, Hironori; Hosoda, Chihiro; Nonaka, Yulri; Okanoya, Kazuo

    2017-01-01

    Problem-solving can be facilitated with instructions or hints, which provide information about given problems. The proper amount of instruction that should be provided for learners is controversial. Research shows that tasks with intermediate difficulty induce the largest sense of accomplishment (SA), leading to an intrinsic motivation for learning. To investigate the effect of instructions, we prepared three instruction levels (No hint, Indirect hint, and Direct hint) for the same insight-problem types. We hypothesized that indirect instructions impose intermediate difficulty for each individual, thereby inducing the greatest SA per person. Based on previous neuroimaging studies that showed involvement of the bilateral caudate in learning and motivation, we expected SA to be processed in this reward system. We recruited twenty-one participants, and investigated neural activations during problem solving by functional magnetic resonance imaging (fMRI). We confirmed that the Indirect hint, which imposed intermediate difficulty, induced the largest SA among the three instruction types. Using fMRI, we showed that activations in the bilateral caudate and anterior cingulate cortex (ACC) were significantly modulated by SA. In the bilateral caudate, the indirect hint induced the largest activation, while the ACC seemed to reflect the difference between correct and incorrect trials. Importantly, such activation pattern was independent of notations (number or letter). Our results indicate that SA is represented in the reward system, and that the Indirect instruction effectively induces such sensation.

  7. Sense of Accomplishment Is Modulated by a Proper Level of Instruction and Represented in the Brain Reward System

    PubMed Central

    Nakai, Tomoya; Nakatani, Hironori; Hosoda, Chihiro; Nonaka, Yulri; Okanoya, Kazuo

    2017-01-01

    Problem-solving can be facilitated with instructions or hints, which provide information about given problems. The proper amount of instruction that should be provided for learners is controversial. Research shows that tasks with intermediate difficulty induce the largest sense of accomplishment (SA), leading to an intrinsic motivation for learning. To investigate the effect of instructions, we prepared three instruction levels (No hint, Indirect hint, and Direct hint) for the same insight-problem types. We hypothesized that indirect instructions impose intermediate difficulty for each individual, thereby inducing the greatest SA per person. Based on previous neuroimaging studies that showed involvement of the bilateral caudate in learning and motivation, we expected SA to be processed in this reward system. We recruited twenty-one participants, and investigated neural activations during problem solving by functional magnetic resonance imaging (fMRI). We confirmed that the Indirect hint, which imposed intermediate difficulty, induced the largest SA among the three instruction types. Using fMRI, we showed that activations in the bilateral caudate and anterior cingulate cortex (ACC) were significantly modulated by SA. In the bilateral caudate, the indirect hint induced the largest activation, while the ACC seemed to reflect the difference between correct and incorrect trials. Importantly, such activation pattern was independent of notations (number or letter). Our results indicate that SA is represented in the reward system, and that the Indirect instruction effectively induces such sensation. PMID:28052091

  8. Analyzing the Knowledge Construction and Cognitive Patterns of Blog-Based Instructional Activities Using Four Frequent Interactive Strategies (Problem Solving, Peer Assessment, Role Playing and Peer Tutoring): A Preliminary Study

    ERIC Educational Resources Information Center

    Wang, Shu-Ming; Hou, Huei-Tse; Wu, Sheng-Yi

    2017-01-01

    Instructional strategies can be helpful in facilitating students' knowledge construction and developing advanced cognitive skills. In the context of collaborative learning, instructional strategies as scripts can guide learners to engage in more meaningful interaction. Previous studies have been investigated the benefits of different instructional…

  9. Investigating Pre-service Science Teachers' Developing Professional Knowledge Through the Lens of Differentiated Instruction

    NASA Astrophysics Data System (ADS)

    Goodnough, Karen

    2010-03-01

    In this study, the author implemented a problem-based learning (PBL) experience that allowed students in an advanced science methodology course to explore differentiated instruction. Through working systematically in small, collaborative groups, students explored the nature of differentiated instruction. The objective of the study was to examine pre-service teachers’ developing conceptions of differentiated instruction (DI) as a way to teach for diversity. The author adopted action research as a strategy to explore students’ perceptions of DI in the context of science teaching and learning. Several data collection methods and sources were adopted in the study, including student-generated products, student interviews, classroom observation, and journal writing. Outcomes report on students’ perceptions of both the potential and challenges associated with adopting a DI approach to science teaching and learning.

  10. Pattern Analyses Reveal Separate Experience-Based Fear Memories in the Human Right Amygdala.

    PubMed

    Braem, Senne; De Houwer, Jan; Demanet, Jelle; Yuen, Kenneth S L; Kalisch, Raffael; Brass, Marcel

    2017-08-23

    Learning fear via the experience of contingencies between a conditioned stimulus (CS) and an aversive unconditioned stimulus (US) is often assumed to be fundamentally different from learning fear via instructions. An open question is whether fear-related brain areas respond differently to experienced CS-US contingencies than to merely instructed CS-US contingencies. Here, we contrasted two experimental conditions where subjects were instructed to expect the same CS-US contingencies while only one condition was characterized by prior experience with the CS-US contingency. Using multivoxel pattern analysis of fMRI data, we found CS-related neural activation patterns in the right amygdala (but not in other fear-related regions) that dissociated between whether a CS-US contingency had been instructed and experienced versus merely instructed. A second experiment further corroborated this finding by showing a category-independent neural response to instructed and experienced, but not merely instructed, CS presentations in the human right amygdala. Together, these findings are in line with previous studies showing that verbal fear instructions have a strong impact on both brain and behavior. However, even in the face of fear instructions, the human right amygdala still shows a separable neural pattern response to experience-based fear contingencies. SIGNIFICANCE STATEMENT In our study, we addressed a fundamental problem of the science of human fear learning and memory, namely whether fear learning via experience in humans relies on a neural pathway that can be separated from fear learning via verbal information. Using two new procedures and recent advances in the analysis of brain imaging data, we localized purely experience-based fear processing and memory in the right amygdala, thereby making a direct link between human and animal research. Copyright © 2017 the authors 0270-6474/17/378116-15$15.00/0.

  11. The Effect of Web-Based Collaborative Learning Methods to the Accounting Courses in Technical Education

    ERIC Educational Resources Information Center

    Cheng, K. W. Kevin

    2009-01-01

    This study mainly explored the effect of applying web-based collaborative learning instruction to the accounting curriculum on student's problem-solving attitudes in Technical Education. The research findings and proposed suggestions would serve as a reference for the development of accounting-related curricula and teaching strategies. To achieve…

  12. The Role of Guidance in Computer-Based Problem Solving for the Development of Concepts of Logic.

    ERIC Educational Resources Information Center

    Eysink, Tessa H. S.; Dijkstra, Sanne; Kuper, Jan

    2002-01-01

    Describes a study at the University of Twente (Netherlands) that investigated the effect of two instructional variables, manipulation of objects and guidance, in learning to use the logical connective, conditional with a computer-based learning environment, Tarski's World, designed to teach first-order logic. Discusses results of…

  13. Developing Mathematical Resilience of Prospective Math Teachers

    NASA Astrophysics Data System (ADS)

    Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.

    2017-09-01

    Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.

  14. Learning procedures from interactive natural language instructions

    NASA Technical Reports Server (NTRS)

    Huffman, Scott B.; Laird, John E.

    1994-01-01

    Despite its ubiquity in human learning, very little work has been done in artificial intelligence on agents that learn from interactive natural language instructions. In this paper, the problem of learning procedures from interactive, situated instruction is examined in which the student is attempting to perform tasks within the instructional domain, and asks for instruction when it is needed. Presented is Instructo-Soar, a system that behaves and learns in response to interactive natural language instructions. Instructo-Soar learns completely new procedures from sequences of instruction, and also learns how to extend its knowledge of previously known procedures to new situations. These learning tasks require both inductive and analytic learning. Instructo-Soar exhibits a multiple execution learning process in which initial learning has a rote, episodic flavor, and later executions allow the initially learned knowledge to be generalized properly.

  15. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  16. Instructional Approaches on Science Performance, Attitude and Inquiry Ability in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Chen, Chia-Ying

    2012-01-01

    This study examined the effects of an inquiry-based learning (IBL) approach compared to that of a problem-based learning (PBL) approach on learner performance, attitude toward science and inquiry ability. Ninety-six students from three 7th-grade classes at a public school were randomly assigned to two experimental groups and one control group. All…

  17. Proceedings of Selected Research and Development Presentations at the 1997 National Convention of the Association for Educational Communications and Technology Sponsored by the Research and Theory Division (19th, Albuquerque, NM, February 14-18, 1997).

    ERIC Educational Resources Information Center

    Abel, Omalley, Ed.; And Others

    1997-01-01

    This proceedings volume contains 57 papers. Subjects addressed include: cooperative technology education; children's learning strategies with hypermedia lessons; problem-based learning; instructional methodologies for lifelong learning; interactive television (ITV) design; theoretical bases for Human Performance Technology (HPT); use of cognitive…

  18. The Rivalry between Simulation and Problem-Based Learning: A Study of Learning Transfer in Physician Assistant Students

    ERIC Educational Resources Information Center

    Meyer, Kimberly E.

    2010-01-01

    The purpose of this dissertation was to evaluate learning transfer achieved by physician assistant students comparing two instructional methods, human patient simulation and electronic clinical case studies. This prospective, randomized, mixed-methods study utilized first and second-year physician assistant student volunteers taking a pretest and…

  19. Using Digital Game-Based Learning to Support Vocabulary Instruction for Developmental Reading Students

    ERIC Educational Resources Information Center

    Frederick, Patricia A.

    2010-01-01

    The number of underprepared students entering post-secondary education continues to be a national problem community colleges struggle with by providing remedial instruction while having to satisfy the demands for effective teaching accountability. Reading is one identified area needing remediation; and, a goal for programs to address this…

  20. Best Practices in Adolescent Literacy Instruction. Solving Problems in the Teaching of Literacy

    ERIC Educational Resources Information Center

    Hinchman, Kathleen A., Ed.; Sheridan-Thomas, Heather K., Ed.

    2008-01-01

    Covering everything from day-to-day learning activities to schoolwide goals, this engaging book reviews key topics in literacy instruction for grades 5-12 and provides research-based recommendations for practice. Leading scholars present culturally responsive strategies for motivating adolescents; using multiple texts and digital media;…

  1. Cognitive development in introductory physics: A research-based approach to curriculum reform

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.

  2. When Does Provision of Instruction Promote Learning?

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Anderson, Abraham; Betts, Shawn; Anderson, John R.

    2011-01-01

    Contradictory evidence has been reported on the effects of discovery learning approach and the role of instructional explanations. By manipulating the presence of instruction (verbal explanation) and transparency of problem structures, we investigated how effects of instructional explanations differed depending on the transparency of problem…

  3. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    NASA Astrophysics Data System (ADS)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning strategy, constructivist learning strategy, learning cycle strategy, SCALE technique strategy, conceptual change strategy, inquiry-based strategy, cognitive academic language learning approach (CALLA) strategy, and learning from text strategy provide effective science teaching instruction to English learners. These science instructional strategies assist elementary science teachers by providing additional support to make science instruction more comprehensible for English learners.

  4. Reinventing Learning: A Design-Research Odyssey

    ERIC Educational Resources Information Center

    Abrahamson, Dor

    2015-01-01

    Design research is a broad, practice-based approach to investigating problems of education. This approach can catalyze the development of learning theory by fostering opportunities for transformational change in scholars' interpretation of instructional interactions. Surveying a succession of design-research projects, I explain how challenges in…

  5. Peer Instruction in Chemistry Education: Assessment of Students' Learning Strategies, Conceptual Learning and Problem Solving

    ERIC Educational Resources Information Center

    Gok, Tolga; Gok, Ozge

    2016-01-01

    The aim of this research was to investigate the effects of peer instruction on learning strategies, problem solving performance, and conceptual understanding of college students in a general chemistry course. The research was performed students enrolled in experimental and control groups of a chemistry course were selected. Students in the…

  6. The Use of Instructional Design in Educational Technology for Effective Teaching and Learning

    ERIC Educational Resources Information Center

    Gillani, Syeda Nosheen; Gujjar, Aijaz Ahmed; Choudhry, Bushra Naoreen

    2008-01-01

    Educationists are of the opinion that the educational problems relating to quantity and quality could be tackled by the proper utilization of instructional technology. Instructional technology is a systematic way of designing, carrying out and evaluating the teaching learning process. Instructional technology makes instruction more effective,…

  7. Fundamental concepts of problem-based learning for the new facilitator.

    PubMed Central

    Kanter, S L

    1998-01-01

    Problem-based learning (PBL) is a powerful small group learning tool that should be part of the armamentarium of every serious educator. Classic PBL uses ill-structured problems to simulate the conditions that occur in the real environment. Students play an active role and use an iterative process of seeking new information based on identified learning issues, restructuring the information in light of the new knowledge, gathering additional information, and so forth. Faculty play a facilitatory role, not a traditional instructional role, by posing metacognitive questions to students. These questions serve to assist in organizing, generalizing, and evaluating knowledge; to probe for supporting evidence; to explore faulty reasoning; to stimulate discussion of attitudes; and to develop self-directed learning and self-assessment skills. Professional librarians play significant roles in the PBL environment extending from traditional service provider to resource person to educator. Students and faculty usually find the learning experience productive and enjoyable. PMID:9681175

  8. The Effects of Cognitive Strategy Instruction on Knowledge of Math Problem-Solving Processes of Middle School Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Krawec, Jennifer; Huang, Jia; Montague, Marjorie; Kressler, Benikia; de Alba, Amanda Melia

    2013-01-01

    This study investigated the effectiveness of "Solve It!" instruction on students' knowledge of math problem-solving strategies. "Solve It!" is a cognitive strategy intervention designed to improve the math problem solving of middle school students with learning disabilities (LD). Participants included seventh- and eighth-grade…

  9. Using Expectancy-Value Theory to Explore Aspects of Motivation and Engagement in Inquiry-Based Learning in Primary Mathematics

    ERIC Educational Resources Information Center

    Fielding-Wells, Jill; O'Brien, Mia; Makar, Katie

    2017-01-01

    Inquiry-based learning (IBL) is a pedagogical approach in which students address complex, ill-structured problems set in authentic contexts. While IBL is gaining ground in Australia as an instructional practice, there has been little research that considers implications for student motivation and engagement. Expectancy-value theory (Eccles and…

  10. The Impact of a Simulation and Problem-Based Learning Design Project on Student Learning and Teamwork Skills. CSE Technical Report.

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.

    This study examined a civil engineering capstone course that embedded a sophisticated simulation-based task within instruction. Students (n=28) were required to conduct a hazardous waste site investigation using simulation software designed specifically for the course (Interactive Site Investigation Software) (ISIS). The software simulated…

  11. Learning stoichiometry: A comparison of text and multimedia instructional formats

    NASA Astrophysics Data System (ADS)

    Evans, Karen L.

    Even after multiple instructional opportunities, first year college chemistry students are often unable to apply stoichiometry knowledge in equilibrium and acid-base chemistry problem solving. Cognitive research findings suggest that for learning to be meaningful, learners need to actively construct their own knowledge by integrating new information into, and reorganizing, their prior understandings. Scaffolded inquiry in which facts, procedures, and principles are introduced as needed within the context of authentic problem solving may provide the practice and encoding opportunities necessary for construction of a memorable and usable knowledge base. The dynamic and interactive capabilities of online technology may facilitate stoichiometry instruction that promotes this meaningful learning. Entering college freshmen were randomly assigned to either a technology-rich or text-only set of cognitively informed stoichiometry review materials. Analysis of posttest scores revealed a significant but small difference in the performance of the two treatment groups, with the technology-rich group having the advantage. Both SAT and gender, however, explained more of the variability in the scores. Analysis of the posttest scores from the technology-rich treatment group revealed that the degree of interaction with the Virtual Lab simulation was significantly related to posttest performance and subsumed any effect of prior knowledge as measured by SAT scores. Future users of the online course should be encouraged to engage with the problem-solving opportunities provided by the Virtual Lab simulation through either explicit instruction and/or implementation of some level of program control within the course's navigational features.

  12. Theoretical links supporting the use of problem-based learning in the education of the nurse practitioner.

    PubMed

    Chikotas, Noreen Elaine

    2008-01-01

    The need to evaluate current strategies in educating the advanced practice nurse, specifically the nurse practitioner, is becoming more and more imperative due to the ever-changing health care environment. This article addresses the role of problem-based learning (PBL) as an instructional strategy in educating and preparing the nurse practitioner for future practice.Two theoretical frameworks supporting PBL, andragogy and constructivism, are presented as important to the use of PBL in the education of the nurse practitioner.

  13. Using Technology to Facilitate and Enhance Project-based Learning in Mathematical Physics

    NASA Astrophysics Data System (ADS)

    Duda, Gintaras

    2011-04-01

    Problem-based and project-based learning are two pedagogical techniques that have several clear advantages over traditional instructional methods: 1) both techniques are active and student centered, 2) students confront real-world and/or highly complex problems, and 3) such exercises model the way science and engineering are done professionally. This talk will present an experiment in project/problem-based learning in a mathematical physics course. The group project in the course involved modeling a zombie outbreak of the type seen in AMC's ``The Walking Dead.'' Students researched, devised, and solved their mathematical models for the spread of zombie-like infection. Students used technology in all stages; in fact, since analytical solutions to the models were often impossible, technology was a necessary and critical component of the challenge. This talk will explore the use of technology in general in problem and project-based learning and will detail some specific examples of how technology was used to enhance student learning in this course. A larger issue of how students use the Internet to learn will also be explored.

  14. Web-Based Instruction, Learning Effectiveness and Learning Behavior: The Impact of Relatedness

    ERIC Educational Resources Information Center

    Shieh, Chich-Jen; Liao, Ying; Hu, Ridong

    2013-01-01

    This study aims to discuss the effects of Web-based Instruction and Learning Behavior on Learning Effectiveness. Web-based Instruction contains the dimensions of Active Learning, Simulation-based Learning, Interactive Learning, and Accumulative Learning; and, Learning Behavior covers Learning Approach, Learning Habit, and Learning Attitude. The…

  15. A Critical Approach to Social Emotional Learning Instruction through Community-Based Service Learning

    ERIC Educational Resources Information Center

    McKay-Jackson, Cassandra

    2014-01-01

    The traditional teaching of reading, writing, and arithmetic alone will not fully prepare students to lead with integrity, govern fairly, analyze problems, and work collectively with people different from themselves. Social emotional learning (SEL) has been described as one of the missing links in academic education, but a restrictive approach to…

  16. Transfer of Learning: The Effects of Different Instruction Methods on Software Application Learning

    ERIC Educational Resources Information Center

    Larson, Mark E.

    2010-01-01

    Human Resource Departments (HRD), especially instructors, are challenged to keep pace with rapidly changing computer software applications and technology. The problem under investigation revealed after instruction of a software application if a particular method of instruction was a predictor of transfer of learning, when other risk factors were…

  17. The Promise of Technology to Confront Dilemmas in Teacher Education: The Use of WebQuests in Problem-Based Methods Courses

    ERIC Educational Resources Information Center

    Smith, Leigh K.; Draper, Roni Jo; Sabey, Brenda L.

    2005-01-01

    This qualitative study examined the use of WebQuests as a teaching tool in problem-based elementary methods courses. We explored the potential of WebQuests to address three dilemmas faced in teacher education: (a) modeling instruction that is based on current learning theory and research-based practices, (b) providing preservice teachers with…

  18. Connecting Instructional and Cognitive Aspects of an LE: A Study of the Global Seminar Project

    ERIC Educational Resources Information Center

    Savelyeva, Tamara

    2012-01-01

    My research problem is based on the lack of unifying conceptual cohesion between the discourses concerning cognitive and instructional aspects of learning environments (LE). I contrast that lack with practical developments of LE studies connected at the level of practical implementation and evaluation. Next, I briefly review the LE boundaries,…

  19. Students' Perceptions of Blended Learning and its Effectiveness As a Part of Second Year Dental Curriculum

    NASA Astrophysics Data System (ADS)

    Varthis, Spyridon

    The field of dental medical education is one of the most rapidly evolving fields in education. Newer teaching methods are being evaluated and incorporated in dental institutions. One of the promising new methods is the blended learning approach that may involve a "flipped" instructional sequencing, where online instruction precedes the group meeting, allowing for more sophisticated learning through discussion and critical thinking. The author conducted a mixed method, experimental study that focused on second year dental students' perceptions of blended learning and its effectiveness. A sample size of 40 dental students in their second year from a Northeastern Regional Dental School were invited to participate in this study to evaluate a blended learning approach in comparison to a more traditional lecture format. Students who participated in the study, participated in group problem-solving, responded to Likert-type surveys, completed content exams, and were interviewed individually. Based on Likert survey data and interview responses, the participants in the blended learning treatment reported very positive opinions including positive perceptions of the organization, support of meaningful learning and potential merits for use in dental education. There also was evidence that the blended learning group achieved at least as well as the traditional lecture group, and excelled on certain content test items. The results of this study support the conclusion that blended instruction promotes active, in-depth and self-regulated learning. During blended learning, students set standards or goals regarding their learning, evaluate their progress toward these goals, and then adapt and regulate their cognition, motivation, and behavior in order to accomplish their goals. Overall, the results of this research on blended learning, including the use of problem-based learning in group discussions, supports the merits of incorporating blended earning in dental education curricula.

  20. Overcoming the "Walmart Syndrome": Adapting Problem-Based Management Education in East Asia

    ERIC Educational Resources Information Center

    Hallinger, Philip; Lu, Jiafang

    2012-01-01

    This paper explores design issues to be considered in adapting the problem-based learning (PBL) for use in the context of East Asian higher education and tests its instructional effectiveness in a Master of Management degree program at a graduate school of business (GSB) in Thailand. The research analyzes course evaluation data obtained from…

  1. Problems and Procedures in Planning a Situation Based Video Test on Teaching.

    ERIC Educational Resources Information Center

    Masonis, Edward J.

    This paper briefly outlines some problems one must solve when developing a video-based test to evaluate what a teacher knows about learning and instruction. Consideration is given to the effect the use of videotapes of actual classroom behavior have on test planning. Two methods of incorporating such situational material into the test…

  2. Learning and the Brain: How Administrators Can Improve Teacher Effectiveness through Instruction on How the Brain Learns

    ERIC Educational Resources Information Center

    Willis, Judith

    2004-01-01

    Brain-based teaching and learning focuses on how the brain learns best, and emerging brain research is a significant resource, but only if one knows how to use it as such. Teachers have the professional training and classroom experience to know first hand where there are problems in educational practices, but most teachers haven't been taught…

  3. Data Literacy: Real-World Learning through Problem-Solving with Data Sets

    ERIC Educational Resources Information Center

    Erwin, Robin W., Jr.

    2015-01-01

    The achievement of deep learning by secondary students requires teaching approaches that draw students into task commitment, integrated curricula, and analytical thinking. By using real-world data sets in project based instructional units, teachers can guide students in analyzing, interpreting, and reporting quantitative data. Working with…

  4. Students' Silence and Identity in Small Group Interactions

    ERIC Educational Resources Information Center

    Jin, Jun

    2017-01-01

    Problem-based learning (PBL) has been increasingly employed as a teaching and learning approach in many disciplines in higher education. In English medium of instruction (EMI) universities in Asia, PBL can further enhance knowledge construction as well as development of disciplinary language and communicative skills. It is necessary to explore how…

  5. The Activity Summary Board

    ERIC Educational Resources Information Center

    Touitou, Israel; Barry, Stephen; Bielik, Tom; Schneider, Barbara; Krajcik, Joseph

    2018-01-01

    Project-based learning (PBL) is an instructional approach to science teaching that supports the "Next Generation Science Standards" (Krajcik 2015; NGSS Lead States 2013). In a PBL lesson, students design and solve real-world problems or explain scientific phenomena. Students using a PBL model learn and retain more than those not using…

  6. An Augmented-Reality-Based Concept Map to Support Mobile Learning for Science

    ERIC Educational Resources Information Center

    Chen, Chien-Hsu; Chou, Yin-Yu; Huang, Chun-Yen

    2016-01-01

    Computer hardware and mobile devices have developed rapidly in recent years, and augmented reality (AR) technology has been increasingly applied in mobile learning. Although instructional AR applications have yielded satisfactory results and prompted students' curiosity and interest, a number of problems remain. The crucial topic for AR…

  7. Technology Implementation in Education--Identifying Barriers to Fidelity

    ERIC Educational Resources Information Center

    Dennis, William J.; Johnson, Daniel L.; Monroe, Arla K.

    2012-01-01

    This report describes a problem-based learning project focused on determining the barriers to the implementation of technological innovations. Research findings offered evidence that properly executed technology implementation is an instructional variable related to student achievement; yet, school district leaders are faced with the problem of…

  8. Technology Implementation in Education--Identifying Barriers to Fidelity

    ERIC Educational Resources Information Center

    Monroe, Arla K.; Dennis, William J.; Johnson, Daniel L.

    2012-01-01

    This report describes a problem-based learning project focused on determining the barriers to the implementation of technological innovations. that properly executed technology implementation is an instructional variable related to student achievement; yet, school district leaders are faced with the problem of recognizing and identifying the…

  9. Meta-Analysis of Acquisition and Fluency Math Interventions with Instructional and Frustration Level Skills: Evidence for a Skill-by-Treatment Interaction

    ERIC Educational Resources Information Center

    Burns, Matthew K.; Codding, Robin S.; Boice, Christina H.; Lukito, G.

    2010-01-01

    Implementation of effective interventions relies on the use of assessment data to adequately describe the learning problem and offer potential solutions. The use of curriculum-based assessment and measurement when combined with the learning hierarchy could offer a paradigm for decision making based on a skill-by-treatment interaction.…

  10. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  11. Partnerships in Learning: A Collaborative Project between Higher Education Students and Elementary School Students

    ERIC Educational Resources Information Center

    Hunter, Peggi E.; Botchwey, Nisha D.

    2017-01-01

    Higher education and K-12 school partnerships are typically designed with an end-goal that serves the instructional needs of one group over the other. For this project, a university professor and elementary school instructor used problem-based and project-based learning strategies to design a curriculum that served the academic needs of both…

  12. Significant Increase in Factual Knowledge with Web-Assisted Problem-Based Learning as Part of an Undergraduate Cardio-Respiratory Curriculum

    ERIC Educational Resources Information Center

    Raupach, T.; Munscher, C.; Pukrop, T.; Anders, S.; Harendza, S.

    2010-01-01

    In recent years, increasing attention has been paid to web-based learning although the advantages of computer-aided instruction over traditional teaching formats still need to be confirmed. This study examined whether participation in an online module on the differential diagnosis of dyspnoea impacts on student performance in a multiple choice…

  13. Guidelines for Instructional Sequencing in Emotional Literacy Learning Using PATHS Curriculum as an Example.

    ERIC Educational Resources Information Center

    Wu, Yann-Shya

    The purpose of this paper is to provide guidance for instructional sequencing in emotional literacy curricula. First, the concepts of instructional sequence and the problems involved with instructional sequence in the affective domain of learning are addressed. Then, through the analysis of the emotional literacy curriculum, Promoting Alternative…

  14. Effectiveness of problem based learning as an instructional tool for acquisition of content knowledge and promotion of critical thinking among medical students.

    PubMed

    Tayyeb, Rakhshanda

    2013-01-01

    To assess effectiveness of PBL as an instructional tool in clinical years to improve learning of undergraduate students in terms of acquisition of content knowledge, critical thinking and problem solving skills through problem based learning and traditional way of teaching. Quasi-experimental study. Fatima Jinnah Medical College for Women, Lahore, from October 2009 to April 2010. Final year medical students attending Obstetrics and Gynaecology and Surgery rotations were inducted as participants in this study. Two batches of 50 students each attended Gynaecology rotation and two batches attended Surgery rotation, i.e. 100 students in each. Each batch was divided into two groups i.e. A and B of 25 students each. Group-A learnt through traditional teaching, involving bedside teaching and lectures in wards and Group-B learnt relevant clinical knowledge through a modified PBL process. Content knowledge was tested by MCQs testing recall while clinical reasoning and problem were assessed by MCQs testing analysis and critical thinking. Intra-group comparison of mean scores of pre and post-test scores was done using paired sample t-tests while for intergroup comparison of mean scores was done through independent sample t-test. Teaching through traditional method significantly improved content knowledge, (p = 0.001) but did not considerably improve clinical reasoning and problem solving skills (p = 0.093) whereas, content knowledge of students who studied through PBL remained the same (p = 0.202) but there was marked improvement in their clinical reasoning and problem solving skills (p = < 0.001). PBL is an effective instructional tool to foster critical thinking and problem solving skills among medical students.

  15. Strategy Instruction for Students with Learning Disabilities. What Works for Special Needs Learners

    ERIC Educational Resources Information Center

    Reid, Robert; Lienemann, Torri Ortiz

    2006-01-01

    Practical and accessible, this book provides the first step-by-step guide to cognitive strategy instruction, which has been shown to be one of the most effective instructional techniques for students with learning problems. Presented are proven strategies that students can use to improve their self-regulated learning, study skills, and performance…

  16. Using Elearning techniques to support problem based learning within a clinical simulation laboratory.

    PubMed

    Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn

    2004-01-01

    This paper details the results of the first phase of a project that used eLearning to support students' learning within a simulated environment. The locus was a purpose built Clinical Simulation Laboratory (CSL) where the School's newly adopted philosophy of Problem Based Learning (PBL) was challenged through lecturers reverting to traditional teaching methods. The solution, a student-centred, problem-based approach to the acquisition of clinical skills was developed using learning objects embedded within web pages that substituted for lecturers providing instruction and demonstration. This allowed lecturers to retain their facilitator role, and encouraged students to explore, analyse and make decisions within the safety of a clinical simulation. Learning was enhanced through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that an elearning approach can support PBL in delivering a student centred learning experience.

  17. Integrating on campus problem based learning and practice based learning: issues and challenges in using computer mediated communication.

    PubMed

    Conway, J; Sharkey, R

    2002-10-01

    The Faculty of Nursing, University of Newcastle, Australia, has been keen to initiate strategies that enhance student learning and nursing practice. Two strategies are problem based learning (PBL) and clinical practice. The Faculty has maintained a comparatively high proportion of the undergraduate hours in the clinical setting in times when financial constraints suggest that simulations and on campus laboratory experiences may be less expensive.Increasingly, computer based technologies are becoming sufficiently refined to support the exploration of nursing practice in a non-traditional lecture/tutorial environment. In 1998, a group of faculty members proposed that computer mediated instruction would provide an opportunity for partnership between students, academics and clinicians that would promote more positive outcomes for all and maintain the integrity of the PBL approach. This paper discusses the similarities between problem based and practice based learning and presents the findings of an evaluative study of the implementation of a practice based learning model that uses computer mediated communication to promote integration of practice experiences with the broader goals of the undergraduate curriculum.

  18. Developing Instruction Materials Based on Joyful PBL to Improve Students Mathematical Representation Ability

    ERIC Educational Resources Information Center

    Minarni, Ani; Napitupulu, E. Elvis

    2017-01-01

    Solving problem either within mathematics or beyond is one of the ultimate goal students learn mathematics. It is since mathematics takes role tool as well as vehicle to develop problem solving ability. One of the supporting components to problem solving is mathematical representation ability (MRA). Nowadays, many teachers and researchers find out…

  19. Effect of Cooperative Problem-Based Lab Instruction on Metacognition and Problem-Solving Skills

    ERIC Educational Resources Information Center

    Sandi-Urena, Santiago; Cooper, Melanie; Stevens, Ron

    2012-01-01

    While most scientists agree that laboratory work is an important part of introductory science courses, there is scant evidence for the relationship between laboratory work and student learning, particularly at the college level. This work reports the quantitative component of a mixed-methods study of the effect of cooperative problem-based…

  20. Reflections on Graduate Student PBL Experiences

    ERIC Educational Resources Information Center

    McDonald, Betty

    2008-01-01

    The study designed to contribute to existing research on Problem-Based Learning (PBL) chose a focus group comprising 16 MSc. Petroleum Engineering students (six females). Using PBL as the method of instruction, students examined a real-life petroleum engineering problem that highlighted numerous areas of their existing curriculum. They worked in…

  1. Learning the Lessons of Leadership: Case Method Teaching with Interactive Computer-Based Tools and Film-Based Cases

    DTIC Science & Technology

    2008-03-01

    report describes how the AXL system capitalizes on the best practices of traditional case method instruction and addresses some of the limitations of...system were addressed in the AXL system, producing an innovative technology solution for delivering case method instruction. Several case method best ...approaches for addressing such problems. The report also documents how case method best practices in traditional classroom environments can be translated into

  2. A Problem-Solving Template for Integrating Qualitative and Quantitative Physics Instruction

    ERIC Educational Resources Information Center

    Fink, Janice M.; Mankey, Gary J.

    2010-01-01

    A problem-solving template enables a methodology of instruction that integrates aspects of both sequencing and conceptual learning. It is designed to enhance critical-thinking skills when used within the framework of a learner-centered approach to teaching, where regular, thorough assessments of student learning are key components of the…

  3. Numerical Procedures in the Optimal Grouping of Students for Instructional Purposes. Technical Report No. 399 (Parts 1 and 2).

    ERIC Educational Resources Information Center

    Lawrence, Brian F.

    The study was concerned with the formation of grouPs of students and specifically addressed the problem: Can a computerized Procedure be developed which assigns students to instructional groups, which maximizes the homogeneity of these groups when this homogeneity is based on relevent student learning characteristics, and which takes account of…

  4. Learning Problem-Solving Rules as Search Through a Hypothesis Space.

    PubMed

    Lee, Hee Seung; Betts, Shawn; Anderson, John R

    2016-07-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem property such as computational difficulty of the rules biased the search process and so affected learning. Experiment 2 examined the impact of examples as instructional tools and found that their effectiveness was determined by whether they uniquely pointed to the correct rule. Experiment 3 compared verbal directions with examples and found that both could guide search. The final experiment tried to improve learning by using more explicit verbal directions or by adding scaffolding to the example. While both manipulations improved learning, learning still took the form of a search through a hypothesis space of possible rules. We describe a model that embodies two assumptions: (1) the instruction can bias the rules participants hypothesize rather than directly be encoded into a rule; (2) participants do not have memory for past wrong hypotheses and are likely to retry them. These assumptions are realized in a Markov model that fits all the data by estimating two sets of probabilities. First, the learning condition induced one set of Start probabilities of trying various rules. Second, should this first hypothesis prove wrong, the learning condition induced a second set of Choice probabilities of considering various rules. These findings broaden our understanding of effective instruction and provide implications for instructional design. Copyright © 2015 Cognitive Science Society, Inc.

  5. Variables that impact the implementation of project-based learning in high school science

    NASA Astrophysics Data System (ADS)

    Cunningham, Kellie

    Wagner and colleagues (2006) state the mediocrity of teaching and instructional leadership is the central problem that must be addressed if we are to improve student achievement. Educational reform efforts have been initiated to improve student performance and to hold teachers and school leaders accountable for student achievement (Wagner et al., 2006). Specifically, in the area of science, goals for improving student learning have led reformers to establish standards for what students should know and be able to do, as well as what instructional methods should be used. Key concepts and principles have been identified for student learning. Additionally, reformers recommend student-centered, inquiry-based practices that promote a deep understanding of how science is embedded in the everyday world. These new approaches to science education emphasize inquiry as an essential element for student learning (Schneider, Krajcik, Marx, & Soloway, 2002). Project-based learning (PBL) is an inquiry-based instructional approach that addresses these recommendations for science education reform. The objective of this research was to study the implementation of project-based learning (PBL) in an urban school undergoing reform efforts and identify the variables that positively or negatively impacted the PBL implementation process and its outcomes. This study responded to the need to change how science is taught by focusing on the implementation of project-based learning as an instructional approach to improve student achievement in science and identify the role of both school leaders and teachers in the creation of a school environment that supports project-based learning. A case study design using a mixed-method approach was used in this study. Data were collected through individual interviews with the school principal, science instructional coach, and PBL facilitator. A survey, classroom observations and interviews involving three high school science teachers teaching grades 9--12, were also used in the data collection process. The results of the study indicated that the use of PBL increased student engagement, ability to problem-solve, and to some extent academic performance. The results also revealed several factors that impacted the implementation of project-based learning: (a) Student attributes such as high student absenteeism, lack of motivation, and poor behavior prevented teachers from completing the PBL unit in a timely fashion. (b) Certain school and district policies and requirements were not conducive to PBL implementation. Policies and practices impacting instructional time and teaching supplies acquisition made it difficult for teachers to plan lessons and obtain necessary supplies. (c) Teachers did not receive PBL training in a timely fashion. Teachers received training approximately two months prior to implementation. (d) Teacher collaboration influenced PBL implementation as it enabled teachers to share and discuss ideas, resources, and lessons. Implications for practice include: (a) School and district leaders must create and follow policies and procedures that support conditions that support inquiry learning, (b) Teachers need resources to overcome the challenges associated with project-based learning, (c) Teachers must have the freedom to have a vision for the implementation of PBL that fits their particular classroom context, and (d) Steps should be taken to ensure students have the prior knowledge and skills to successfully engage in PBL.

  6. Learning-Disabled Children: General Suggestions for Maximizing Instruction.

    ERIC Educational Resources Information Center

    Telzrow, Cathy F.; Speer, Barbara

    1986-01-01

    Effective intervention strategies for learning disabled students should recognize such cognitive deficiencies as weaknesses in attention, memory deficits, and problems in generalizing and abstracting information. Approaches which emphasize enhanced learning processes include: self-monitoring; repetition and deliberate instruction in control…

  7. Comparing the long-term retention of a physiology course for medical students with the traditional and problem-based learning.

    PubMed

    Pourshanazari, A A; Roohbakhsh, A; Khazaei, M; Tajadini, H

    2013-03-01

    The rapid improvements in medical sciences and the ever-increasing related data, however, require novel methods of instruction. One such method, which has been given less than due attention in Iran, is problem-based learning (PBL). In this study, we aimed to evaluate the impact of study skills and the PBL methods on short and long-term retention of information provided for medical students in the course of respiratory physiology and compare it with traditional learning method. In this study, 39 medical students from Medical School of Kerman University of Medical Sciences, Kerman, Iran (2006-2010) were enrolled in the study and allocated randomly in three equal groups (13 in each group). All groups underwent a pre-test to be assessed for their basic information regarding respiratory physiology. Two groups were instructed using the traditional method, and one group used PBL. Among the two groups of the traditional method, one was instructed about study skills and the other was not. Once the PBL group took the study skill workshop, they were aided by tutors for their education. In the final term test, those students who had learned study skills and were instructed with the traditional method scored higher compared to other groups (p < 0.05). However, in the 1 year (p < 0.05) and 4 year (p < 0.01) interval examinations, the PBL group achieved significantly higher scores. Despite the fact that PBL had no positive effect on the final term exam of our students, it yielded a more profound and retained understanding of the subject course. Moreover, considering the positive effect of study skills on long-term student scores, we recommend students to receive instructions regarding the appropriate study skills when initiated into universities.

  8. Trust-based Access Control in Virtual Learning Community

    NASA Astrophysics Data System (ADS)

    Wang, Shujuan; Liu, Qingtang

    The virtual learning community is an important application pattern of E-Learning. It emphasizes the cooperation of the members in the community, the members would like to share their learning resources, to exchange their experience and complete the study task together. This instructional mode has already been proved as an effective way to improve the quality and efficiency of instruction. At the present time, the virtual learning communities are mostly designed using static access control policy by which the access permission rights are authorized by the super administrator, the super administrator assigns different rights to different roles, but the virtual and social characteristics of virtual learning community make information sharing and collaboration a complex problem, the community realizes its instructional goal only if the members in it believe that others will offer the knowledge they owned and believe the knowledge others offered is well-meaning and worthy. This paper tries to constitute an effective trust mechanism, which could promise favorable interaction and lasting knowledge sharing.

  9. Distributed and Problem-based Learning Techniques for the Family Communication Course.

    ERIC Educational Resources Information Center

    LeBlanc, H. Paul, III

    Current technological advances have made possible teaching techniques which were previously impossible. Distance and distributed learning technologies have made it possible to instruct outside of the classroom setting. An advantage to this advance includes that ability to reach students who are unable to relocate to the university. However, there…

  10. Increasing Students' Science Writing Skills through a PBL Simulation

    ERIC Educational Resources Information Center

    Brown, Scott W.; Lawless, Kimberly A.; Rhoads, Christopher; Newton, Sarah D.; Lynn, Lisa

    2016-01-01

    Problem-based learning (PBL) is an instructional design approach for promoting student learning, in context-rich settings. GlobalEd 2 (GE2) is PBL intervention that combines face-to-face and online environments into a 12-week simulation of international negotiations of science advisors on global water resource issues. The GE2 environment is…

  11. Closing the Math Gap of Native American Students Identified as Learning Disabled

    ERIC Educational Resources Information Center

    Hankes, Judith; Skoning, Stacey; Fast, Gerald; Mason-Williams, Loretta

    2013-01-01

    This article serves as an overview of activities and selected assessment findings of a three-year research study titled, Closing the Mathematics Achievement Gap of Native American Students Identified as Learning Disabled Project (CMAG Project). Methods used were problem-based, consistent with those of Cognitively Guided Instruction, and culturally…

  12. "There's Got to Be a Better Way to Do This": A Qualitative Investigation of Informal Learning among Instructional Designers

    ERIC Educational Resources Information Center

    Yanchar, Stephen C.; Hawkley, Melissa

    2014-01-01

    This study employed a qualitative research design to investigate informal learning among practicing instructional designers. Prior research has examined how instructional designers spend their time, make decisions, use theory, solve problems, and so on, but no published research has explored the nature and role of informal learning in…

  13. Use of Observational Learning Enhanced Instruction in Low Language Competency Audiences

    ERIC Educational Resources Information Center

    Zain-ul-abdin, Khawaja

    2013-01-01

    This dissertation investigates the use of observational learning enhanced health instruction to mitigate problems of low language competency among learners. Low language competency can cause improper comprehension of medical instruction and health education, resulting in misdiagnosis, reduced recall, under reporting of medical conditions and…

  14. Supporting traditional instructional methods with a constructivist approach to learning: Promoting conceputal change and understanding of stoichiometry using e-learning tools

    NASA Astrophysics Data System (ADS)

    Abayan, Kenneth Munoz

    Stoichiometry is a fundamental topic in chemistry that measures a quantifiable relationship between atoms, molecules, etc. Stoichiometry is usually taught using expository teaching methods. Students are passively given information, in the hopes they will retain the transmission of information to be able to solve stoichiometry problems masterfully. Cognitive science research has shown that this kind of instructional teaching method is not very effecting in meaningful learning practice. Instead, students must take ownership of their learning. The students need to actively construct their own knowledge by receiving, interpreting, integrating and reorganizing that information into their own mental schemas. In the absence of active learning practices, tools must be created in such a way to be able to scaffold difficult problems by encoding opportunities necessary to make the construction of knowledge memorable, thereby creating a usable knowledge base. Using an online e-learning tool and its potential to create a dynamic and interactive learning environment may facilitate the learning of stoichiometry. The study entailed requests from volunteer students, IRB consent form, a baseline questionnaire, random assignment of treatment, pre- and post-test assessment, and post assessment survey. These activities were given online. A stoichiometry-based assessment was given in a proctored examination at the University of Texas at Arlington (UTA) campus. The volunteer students who took part in these studies were at least 18 of age and were enrolled in General Chemistry 1441, at the University of Texas at Arlington. Each participant gave their informed consent to use their data in the following study. Students were randomly assigned to one of 4 treatments groups based on teaching methodology, (Dimensional Analysis, Operational Method, Ratios and Proportions) and a control group who just received instruction through lecture only. In this study, an e-learning tool was created to demonstrate several methodologies, on how to solve stoichiometry, which are all supported by chemical education research. Comparisons of student performance based on pre- and post-test assessment, and a stoichiometry-based examination was done to determine if the information provided within the e-learning tool yielded greater learning outcomes compared to the students in the absence of scaffold learning material. The e-learning tool was created to help scaffold the problem solving process necessary to help students (N=394) solve stoichiometry problems. Therein the study investigated possible predictors for success on a stoichiometry based examination, students' conceptual understanding of solving stoichiometry problems, and their explanation of reasoning. It was found that the way the student answered a given stoichiometry question (i.e. whether the student used dimensional analysis, operational method or any other process) was not statistically relevant (p=0.05). More importantly, if the students were able to describe their thought process clearly, these students scored significantly higher on stoichiometry test (mean 84, p<0.05). This finding has major implications in teaching the topic, as lecturers tend to stress and focus on the method rather than the process on how to solve stoichiometry problems.

  15. Generative Strategies and Computer-Based Instruction for Teaching Adult Students

    ERIC Educational Resources Information Center

    Knowlton, Dave S.; Simms, Julia

    2009-01-01

    Educational interventions that are currently in vogue in higher education settings are based upon constructivist approaches, whereby students learn content within the context of authentic activities and problem-based scenarios. Certainly these approaches have value, but proponents of these approaches have been somewhat successful in convincing…

  16. Towards Improving Content and Instruction of the "TESOL/TEFL for Special Needs" Course: An Action Research Study

    ERIC Educational Resources Information Center

    Abdallah, Mahmoud M. S.

    2017-01-01

    Action research (AR)--as a participatory, problem-oriented methodology--has been employed recently in Egypt to resolve complicated classroom and learning problems, and provide context-based solutions. Simultaneously, new "special education" courses have been included recently in the university bylaws of Egyptian colleges of education.…

  17. Effect of Worked Examples on Mental Model Progression in a Computer-Based Simulation Learning Environment

    ERIC Educational Resources Information Center

    Darabi, Aubteen; Nelson, David W.; Meeker, Richard; Liang, Xinya; Boulware, Wilma

    2010-01-01

    In a diagnostic problem solving operation of a computer-simulated chemical plant, chemical engineering students were randomly assigned to two groups: one studying product-oriented worked examples, the other practicing conventional problem solving. Effects of these instructional strategies on the progression of learners' mental models were examined…

  18. Teaching for adaptive expertise in biomedical engineering ethics.

    PubMed

    Martin, Taylor; Rayne, Karen; Kemp, Nate J; Hart, Jack; Diller, Kenneth R

    2005-04-01

    This paper considers an approach to teaching ethics in bioengineering based on the How People Learn (HPL) framework. Curricula based on this framework have been effective in mathematics and science instruction from the kindergarten to the college levels. This framework is well suited to teaching bioengineering ethics because it helps learners develop "adaptive expertise". Adaptive expertise refers to the ability to use knowledge and experience in a domain to learn in unanticipated situations. It differs from routine expertise, which requires using knowledge appropriately to solve routine problems. Adaptive expertise is an important educational objective for bioengineers because the regulations and knowledge base in the discipline are likely to change significantly over the course of their careers. This study compares the performance of undergraduate bioengineering students who learned about ethics for stem cell research using the HPL method of instruction to the performance of students who learned following a standard lecture sequence. Both groups learned the factual material equally well, but the HPL group was more prepared to act adaptively when presented with a novel situation.

  19. Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.

    ERIC Educational Resources Information Center

    Baylor, Amy L.

    2002-01-01

    Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…

  20. Evaluation of a Theory of Instructional Sequences for Physics Instruction

    ERIC Educational Resources Information Center

    Wackermann, Rainer; Trendel, Georg; Fischer, Hans E.

    2010-01-01

    The background of the study is the theory of "basis models of teaching and learning", a comprehensive set of models of learning processes which includes, for example, learning through experience and problem-solving. The combined use of different models of learning processes has not been fully investigated and it is frequently not clear…

  1. "What's So Terrible About Swallowing an Apple Seed?" Problem-Based Learning in Kindergarten

    NASA Astrophysics Data System (ADS)

    Zhang, Meilan; Parker, Joyce; Eberhardt, Jan; Passalacqua, Susan

    2011-10-01

    Problem-Based Learning (PBL), an instructional approach originated in medical education, has gained increasing attention in K-12 science education because of its emphasis on self-directed learning and real-world problem-solving. Yet few studies have examined how PBL can be adapted for kindergarten. In this study, we examined how a veteran kindergarten teacher, who was experienced with PBL in her own learning, adapted PBL to teach students earth materials, a topic emphasized in the new state curriculum standards but students had difficulty understanding. The pre-post tests showed that students improved their content understanding. Analysis of the classroom discourse showed that PBL and the teacher's facilitation strategies provided opportunities for students to develop their questioning skills. In conclusion, we discuss the implications of this study for using PBL in kindergarten classrooms.

  2. It Is More about Telling Interesting Stories: Use Explicit Hints in Storytelling to Help College Students Solve Ill-defined Problems

    ERIC Educational Resources Information Center

    Hseih, Wen-Lan; Smith, Brian K.; Stephanou, Spiro E.

    2004-01-01

    A team consisting of three faculty members from Agricultural Economics, Agribusiness management, and Food Science with two research assistants at Penn State University has been working for three years on creating a food product case library for a problem-based learning and case-based instruction course. With the assistance of experts from the food…

  3. Learning Problems and Classroom Instruction.

    ERIC Educational Resources Information Center

    Adelman, Howard S.

    Defined are categories of learning disabilities (LD) that can be remediated in regular public school classes, and offered are remedial approaches. Stressed in four studies is the heterogeneity of LD problems. Suggested is grouping LD children into three categories: no disorder (problem is from the learning environment); minor disorder (problem is…

  4. Development of instructional manual encouraging student active learning for high school teaching on fluid mechanics through Torricelli's tank experiment

    NASA Astrophysics Data System (ADS)

    Apiwan, Suttinee; Puttharugsa, Chokchai; Khemmani, Supitch

    2018-01-01

    The purposes of this research were to help students to perform Physics laboratory by themselves and to provide guidelines for high school teacher to develop active learning on fluid mechanics by using Torricelli's tank experiment. The research was conducted as follows: 1) constructed an appropriate Torricelli's tank experiment for high school teaching and investigated the condition for maximum water falling distance. As a consequence, it was found that the distance of the falling water measured from the experiment was shorter than that obtained from the theory of ideal fluid because of the energy loss during a flow, 2) developed instructional manual for high school teaching that encourages active learning by using problem based learning (PBL) approach, which is consistent with the trend of teaching and learning in 21st century. The content validity of our instructional manual using Index of Item-objective Congruence (IOC) as evaluated by three experts was over 0.67. The manual developed was therefore qualified for classroom practice.

  5. Attitude of medical students towards Early Clinical Exposure in learning endocrine physiology

    PubMed Central

    Sathishkumar, Solomon; Thomas, Nihal; Tharion, Elizabeth; Neelakantan, Nithya; Vyas, Rashmi

    2007-01-01

    Background Different teaching-learning methods have been used in teaching endocrine physiology for the medical students, so as to increase their interest and enhance their learning. This paper describes the pros and cons of the various approaches used to reinforce didactic instruction in endocrine physiology and goes on to describe the value of adding an Early Clinical Exposure program (ECE) to didactic instruction in endocrine physiology, as well as student reactions to it as an alternative approach. Discussion Various methods have been used to reinforce didactic instruction in endocrine physiology such as case-stimulated learning, problem-based learning, patient-centred learning and multiple-format sessions. We devised a teaching-learning intervention in endocrine physiology, which comprised of traditional didactic lectures, supplemented with an ECE program consisting of case based lectures and a hospital visit to see patients. A focus group discussion was conducted with the medical students and, based on the themes that emerged from it, a questionnaire was developed and administered to further enquire into the attitude of all the students towards ECE in learning endocrine physiology. The students in their feedback commented that ECE increased their interest for the subject and motivated them to read more. They also felt that ECE enhanced their understanding of endocrine physiology, enabled them to remember the subject better, contributed to their knowledge of the subject and also helped them to integrate their knowledge. Many students said that ECE increased their sensitivity toward patient problems and needs. They expressed a desire and a need for ECE to be continued in teaching endocrine physiology for future groups of students and also be extended for teaching other systems as well. The majority of the students (96.4%) in their feedback gave an overall rating of the program as good to excellent on a 5 point Likert scale. Summary The ECE program was introduced as an alternative approach to reinforce didactic instruction in endocrine physiology for the first year medical students. The study demonstrated that students clearly enjoyed the experience and perceived that it was valuable. This method could potentially be used for other basic science topics as well. PMID:17784967

  6. Research-based active-learning instruction in physics

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.; Thornton, Ronald K.

    2013-04-01

    The development of research-based active-learning instructional methods in physics has significantly altered the landscape of U.S. physics education during the past 20 years. Based on a recent review [D.E. Meltzer and R.K. Thornton, Am. J. Phys. 80, 478 (2012)], we define these methods as those (1) explicitly based on research in the learning and teaching of physics, (2) that incorporate classroom and/or laboratory activities that require students to express their thinking through speaking, writing, or other actions that go beyond listening and the copying of notes, or execution of prescribed procedures, and (3) that have been tested repeatedly in actual classroom settings and have yielded objective evidence of improved student learning. We describe some key features common to methods in current use. These features focus on (a) recognizing and addressing students' physics ideas, and (b) guiding students to solve problems in realistic physical settings, in novel and diverse contexts, and to justify or explain the reasoning they have used.

  7. Psychology of Learning for Instruction.

    ERIC Educational Resources Information Center

    Driscoll, Marcy P.

    This cognitively-oriented book focuses on learning and instruction. Specific applications and implications of learning theories are discussed and examples are drawn from educational situations and educational problems. Theoretical concepts are illustrated in concrete terms and a wide variety of examples are provided. The text embodies a theme of…

  8. The effects of using concept mapping as an artifact to engender metacognitive thinking in first-year medical students' problem-based learning discussions: A mixed-methods investigation

    NASA Astrophysics Data System (ADS)

    Shoop, Glenda Hostetter

    Attention in medical education is turning toward instruction that not only focuses on knowledge acquisition, but on developing the medical students' clinical problem-solving skills, and their ability to critically think through complex diseases. Metacognition is regarded as an important consideration in how we teach medical students these higher-order, critical thinking skills. This study used a mixed-methods research design to investigate if concept mapping as an artifact may engender metacognitive thinking in the medical student population. Specifically the purpose of the study is twofold: (1) to determine if concept mapping, functioning as an artifact during problem-based learning, improves learning as measured by scores on test questions; and (2) to explore if the process of concept mapping alters the problem-based learning intragroup discussion in ways that show medical students are engaged in metacognitive thinking. The results showed that students in the problem-based learning concept-mapping groups used more metacognitive thinking patterns than those in the problem-based learning discussion-only group, particularly in the monitoring component. These groups also engaged in a higher level of cognitive thinking associated with reasoning through mechanisms-of-action and breaking down complex biochemical and physiologic principals. The students disclosed in focus-group interviews that concept mapping was beneficial to help them understand how discrete pieces of information fit together in a bigger structure of knowledge. They also stated that concept mapping gave them some time to think through these concepts in a larger conceptual framework. There was no significant difference in the exam-question scores between the problem-based learning concept-mapping groups and the problem-based learning discussion-only group.

  9. Exploring the Factors Influencing UPM English Language Faculty Members' Adoption and Integration of Web-Based Instruction (WBI)

    ERIC Educational Resources Information Center

    Sayadian, Sima; Mukundan, Jayakaran; Baki, Roselan

    2009-01-01

    Technology, if integrated effectively, has been found to influence students' academic performance, develop their higher order thinking and problem solving, improve their motivation, attitude, and interest in learning, and help them prepare for the workforce as well as address the needs of low performing, at-risk, and learning impaired students…

  10. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  11. A Case-Based Learning Model in Orthodontics.

    ERIC Educational Resources Information Center

    Engel, Francoise E.; Hendricson, William D.

    1994-01-01

    A case-based, student-centered instructional model designed to mimic orthodontic problem solving and decision making in dental general practice is described. Small groups of students analyze case data, then record and discuss their diagnoses and treatments. Students and instructors rated the seminars positively, and students reported improved…

  12. IT: An Effective Pedagogic Tool in the Teaching of Quantitative Methods in Management.

    ERIC Educational Resources Information Center

    Nadkami, Sanjay M.

    1998-01-01

    Examines the possibility of supplementing conventional pedagogic methods with information technology-based teaching aids in the instruction of quantitative methods to undergraduate students. Considers the case for a problem-based learning approach, and discusses the role of information technology. (Author/LRW)

  13. Uniform instruction using web-based, asynchronous technology in a geographically distributed clinical clerkship: analysis of osteopathic medical student participation and satisfaction.

    PubMed

    Peska, Don N; Lewis, Kadriye O

    2010-03-01

    As medical schools in the United States increase their class sizes, many institutions are forced to extend their teaching affiliations outside of their immediate communities. Geographic distribution threatens the ability to provide the uniform learning opportunities that students need and accrediting bodies require. To determine if a Web-based, asynchronous learning module can provide an effective, uniform learning opportunity for osteopathic medical students enrolled in clinical clerkship. Third-year osteopathic medical students enrolled in an 8-week core clinical clerkship in surgery were required to participate in a Web-based, asynchronous, interactive instructional module designed to provide opportunities for higher-order thinking through analysis, synthesis, and reflective learning. The quantity and content of students' online course interactions were analyzed to determine quantitative and qualitative features of their course participation. At the completion of the clerkship, students completed a 10-item Likert-type survey of their experience to determine the most helpful attributes of the Web-based learning module. Responses were assigned numerical values from 1 (strongly disagree) to 5 (strongly agree) to obtain a mean score for each question. Sixty-three students completed the Web-based module. The content of their discussions, as determined by message coding, identified the critical thinking needed to acquire abstract conceptualization of the problems presented in a typical surgery clerkship. Students found the content of the module relevant to the clerkship (mean score, 4.18) and valued facilitator feedback (4.00). Although they did not prefer Web-based instruction of classroom lecture (2.66), students indicated that the Web-based module enhanced their overall learning experience in the clerkship (3.30). Web-based technology in the clinical education of third-year osteopathic medical students appears to afford an acceptable teaching alternative when face-to-face instruction cannot be provided. Further study of the impact of instructional design on the quality of higher-order thinking in this domain is needed, as is an appreciation for the dynamics of group learning in a virtual environment.

  14. Preparation for future learning: a missing competency in health professions education?

    PubMed

    Mylopoulos, Maria; Brydges, Ryan; Woods, Nicole N; Manzone, Julian; Schwartz, Daniel L

    2016-01-01

    Evidence suggests that clinicians may not be learning effectively from all facets of their practice, potentially because their training has not fully prepared them to do so. To address this gap, we argue that there is a need to identify systems of instruction and assessment that enhance clinicians' 'preparation for future learning'. Preparation for future learning (PFL) is understood to be the capacity to learn new information, to use resources effectively and innovatively, and to invent new strategies for learning and problem solving in practice. Education researchers have developed study designs that use dynamic assessments to measure what trainees have acquired in the past, as well as what they are able to learn in the present. More recently, researchers have also started to emphasise and measure whether and how trainees take action to gain the information they need to learn. Knowing that there are study designs and emerging metrics for assessing PFL, the next question is how to design instruction that helps trainees develop PFL capacities. Although research evidence is still accumulating, the current evidence base suggests training that encourages 'productive failure' through guided discovery learning (i.e. where trainees solve problems and perform tasks without direct instruction, though often with some form of feedback) creates challenging conditions that enhance learning and equip trainees with PFL-related behaviours. Preparation for future learning and the associated capacity of being adaptive as one learns in and from training and clinical practice have been missed in most contemporary training and assessment systems. We propose a research agenda that (i) explores how real-world adaptive expert activity unfolds in the health care workplace to inform the design of instruction for developing PFL, (ii) identifies measures of behaviours that relate to PFL, and (iii) addresses potential sociocultural barriers that limit clinicians' opportunities to learn from their daily practice. © 2015 John Wiley & Sons Ltd.

  15. Activating Student to Learn Chemistry using Chemmy Card 6-1 Game as an Instructional Medium in IUPAC Nomenclature of Inorganic Compounds

    NASA Astrophysics Data System (ADS)

    Lutfi, A.; Hidayah, R.

    2018-01-01

    The aim of this study is to know the effect of Internet-assisted Chemmy Card 6-1 game as an instructional medium in IUPAC Nomenclature of Inorganic Compounds material for X grade of senior high school on students’ activity, learning motivation, and learning outcome. The study was conducted at SMA Negeri Sidoarjo, Indonesia, in two different classes. The instruction was done based on the lesson plan made. The observation on students’ activity was conducted during the instruction with the game while test and questionnaire were given after the instruction. The result showed positive activities, which students listened to the teacher’s explanation, actively delivered questions, and enabled to solve problems in naming compounds. It was also effective to avoid the drowsiness. The result of students’ motivation of X MIPA 6 was 74.78% (good) while X MIPA 7 was 83.80% (very good). The pretest results of two classes showed that no students mastered but 100% students mastered and the increase of N-gain scores in two classes was categorized as high, ≥0,7, after the instruction. The result of this study showed that the use of Internet-assisted Chemmy Card 6-1 game in IUPAC nomenclature of inorganic compounds for X grade of senior high school could be pleasant for students to learn and effective in achieving the learning objective.

  16. Facilitating Students' Learning with Hybrid Instruction: A Comparison among Four Learning Styles

    ERIC Educational Resources Information Center

    Wichadee, Saovapa

    2013-01-01

    Introduction: Since a part of the instruction happens online, a hybrid course has usually been used to solve the problems of space and time. This article explores how students' learning styles influence their learning and satisfaction when certain format of a hybrid course is implemented. Methods: Participants were 122 first-year students at a…

  17. Humanizing Instructional Videos in Physics: When Less Is More

    NASA Astrophysics Data System (ADS)

    Schroeder, Noah L.; Traxler, Adrienne L.

    2017-06-01

    Many instructors in science, technology, engineering, and mathematics fields are striving to create active learning environments in their classrooms and in doing so are frequently moving the lecture portion of their course into online video format. In this classroom-based study, we used a two group randomized experimental design to examine the efficacy of an instructional video that incorporates a human hand demonstrating and modeling how to solve frictional inclined plane problems compared to an identical video that did not include the human hand. The results show that the learners who viewed the video without the human hand present performed significantly better on a learning test and experienced a significantly better training efficiency than the learners who viewed the video with the human hand present. Meanwhile, those who learned with the human hand present in the instructional video rated the instructor as being more humanlike and engaging. The results have implications for both theory and practice. Implications for those designing instructional videos are discussed, as well as the limitations of the current study.

  18. Performance-based classrooms: A case study of two elementary teachers of mathematics and science

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth W.

    This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.

  19. Time and learning efficiency in Internet-based learning: a systematic review and meta-analysis.

    PubMed

    Cook, David A; Levinson, Anthony J; Garside, Sarah

    2010-12-01

    Authors have claimed that Internet-based instruction promotes greater learning efficiency than non-computer methods. determine, through a systematic synthesis of evidence in health professions education, how Internet-based instruction compares with non-computer instruction in time spent learning, and what features of Internet-based instruction are associated with improved learning efficiency. we searched databases including MEDLINE, CINAHL, EMBASE, and ERIC from 1990 through November 2008. STUDY SELECTION AND DATA ABSTRACTION we included all studies quantifying learning time for Internet-based instruction for health professionals, compared with other instruction. Reviewers worked independently, in duplicate, to abstract information on interventions, outcomes, and study design. we identified 20 eligible studies. Random effects meta-analysis of 8 studies comparing Internet-based with non-Internet instruction (positive numbers indicating Internet longer) revealed pooled effect size (ES) for time -0.10 (p = 0.63). Among comparisons of two Internet-based interventions, providing feedback adds time (ES 0.67, p =0.003, two studies), and greater interactivity generally takes longer (ES 0.25, p = 0.089, five studies). One study demonstrated that adapting to learner prior knowledge saves time without significantly affecting knowledge scores. Other studies revealed that audio narration, video clips, interactive models, and animations increase learning time but also facilitate higher knowledge and/or satisfaction. Across all studies, time correlated positively with knowledge outcomes (r = 0.53, p = 0.021). on average, Internet-based instruction and non-computer instruction require similar time. Instructional strategies to enhance feedback and interactivity typically prolong learning time, but in many cases also enhance learning outcomes. Isolated examples suggest potential for improving efficiency in Internet-based instruction.

  20. Confidence as a barrier to the use of problem-based learning in veterinary undergraduate students.

    PubMed

    Tarlinton, Rachael E; Yon, Lisa; Klisch, Karl; Tötemeyer, Sabine; Gough, Kevin C

    2011-01-01

    Problem-based or case-based learning is a popular method of instruction in clinical degrees such as veterinary science, nursing, and medicine. It is difficult, however, for students to adapt to this learning method, and this difficulty has been well described. The present study surveyed first-year undergraduate veterinary students at the University of Nottingham about the challenges they faced upon beginning problem-based learning sessions. A surprisingly large percentage of students (36% of females and 38% of males) reported a lack of confidence in speaking in front of the other students as a concern they experienced during their first term. Conversely, only 10% of the female students (and none of the male students) reported overconfidence as a problem. This is in contrast to the perceptions of the staff members who facilitated the sessions who reported that 14% of the students exhibited underconfidence and 14% exhibited overconfidence. The difference between the female and male students' responses as well as the difference between the perceptions of students and those of facilitators is statistically significant (G-test p<.05).

  1. Resource Letter ALIP-1: Active-Learning Instruction in Physics

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.; Thornton, Ronald K.

    2012-06-01

    This Resource Letter provides a guide to the literature on research-based active-learning instruction in physics. These are instructional methods that are based on, assessed by, and validated through research on the teaching and learning of physics. They involve students in their own learning more deeply and more intensely than does traditional instruction, particularly during class time. The instructional methods and supporting body of research reviewed here offer potential for significantly improved learning in comparison to traditional lecture-based methods of college and university physics instruction. We begin with an introduction to the history of active learning in physics in the United States, and then discuss some methods for and outcomes of assessing pedagogical effectiveness. We enumerate and describe common characteristics of successful active-learning instructional strategies in physics. We then discuss a range of methods for introducing active-learning instruction in physics and provide references to those methods for which there is published documentation of student learning gains.

  2. Exploring Teachers' Process of Change in Incorporating Problem Solving into the Mathematics Classroom

    ERIC Educational Resources Information Center

    Rutherford, Vanessa

    2012-01-01

    This study explores how a problem-solving based professional learning community (PLC) affects the beliefs, knowledge, and instructional practices of two sixth-grade mathematics teachers. An interview and two observations were conducted prior to beginning the year-long PLC in order to gather information about the participants' beliefs,…

  3. Reflections on Language and Mathematics Problem Solving: A Case Study of a Bilingual First-Grade Teacher

    ERIC Educational Resources Information Center

    Musanti, Sandra I.; Celedon-Pattichis, Sylvia; Marshall, Mary E.

    2009-01-01

    This case study investigates a professional development initiative in which a first-grade bilingual teacher engages in learning and teaching Cognitively Guided Instruction, a framework for understanding student thinking through context-rich word-problem lessons. The study explores (a) the impact of classroom-based professional development on a…

  4. Applying Computerized Concept Maps in Guiding Pupils to Reason and Solve Mathematical Problems: The Design Rationale and Effect

    ERIC Educational Resources Information Center

    Chen, I-Ching; Hu, Shueh-Cheng

    2013-01-01

    The capability of solving fundamental mathematical problems is essential to elementary school students; however instruction based on ordinary narration usually perplexes students. Concept mapping is well known for its effectiveness on assimilating and organizing knowledge, which is essential to meaningful learning. A variety of concept map-based…

  5. Twenty-First Century Police Training: Recruits' Problem-Solving Skills Following Scenario-Based Training

    ERIC Educational Resources Information Center

    Perry, Lee R.

    2012-01-01

    In response to the diverse requirements of 21st-century police work and the increasing emphasis on community-policing philosophy, the Los Angeles Police Department has implemented changes within its academy curricula and methods of instruction, including the use of adult-learning concepts, a community policing problem-solving model known as…

  6. Status Problem and Expectations of Competence: A Challenging Path for Teachers

    ERIC Educational Resources Information Center

    Pescarmona, Isabella

    2015-01-01

    Complex Instruction (CI) is a cooperative learning approach, which aims at improving the equal status interaction among students working in groups who may be at different academic and social levels. Based on an ethnographic research, the article examines how a group of Italian primary school teachers understand the status problem and how the…

  7. Computer-Based Instruction Research: Implications for Design.

    ERIC Educational Resources Information Center

    Ross, Steven M.; And Others

    The development and evaluation of several microcomputer-based strategies designed to facilitate learning how to solve mathematics word problems by personalizing examples in accord with individuals' background and interests are described in this paper. The first of two studies conducted with fifth and sixth grade students to evaluate these…

  8. Interviewing Practicing Administrators: An Underutilized Field Based Instructional Strategy.

    ERIC Educational Resources Information Center

    Joachim, Pat; Klotz, Jack

    Reform of educational administrator preparation programs has received substantial attention from scholars over the past 15 years. Their works stress the importance of a strong knowledge base, problem-centered learning, and a renewed emphasis on affective development. A trend away from managerial, authoritarian leadership styles and toward…

  9. Designs of goal-free problems for trigonometry learning

    NASA Astrophysics Data System (ADS)

    Retnowati, E.; Maulidya, S. R.

    2018-03-01

    This paper describes the designs of goal-free problems particularly for trigonometry, which may be considered a difficult topic for high school students.Goal-free problem is an instructional design developed based on a Cognitive load theory (CLT). Within the design, instead of asking students to solve a specific goal of a mathematics problem, the instruction is to solve as many Pythagoras as possible. It was assumed that for novice students, goal-free problems encourage students to pay attention more to the given information and the mathematical principles that can be applied to reveal the unknown variables. Hence, students develop more structured knowledge while solving the goal-free problems. The resulted design may be used in regular mathematics classroom with some adjustment on the difficulty level and the allocated lesson time.

  10. Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry

    NASA Astrophysics Data System (ADS)

    Sariyasa

    2017-04-01

    Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.

  11. Teaching renewable energy using online PBL in investigating its effect on behaviour towards energy conservation among Malaysian students: ANOVA repeated measures approach

    NASA Astrophysics Data System (ADS)

    Nordin, Norfarah; Samsudin, Mohd Ali; Hadi Harun, Abdul

    2017-01-01

    This research aimed to investigate whether online problem based learning (PBL) approach to teach renewable energy topic improves students’ behaviour towards energy conservation. A renewable energy online problem based learning (REePBaL) instruction package was developed based on the theory of constructivism and adaptation of the online learning model. This study employed a single group quasi-experimental design to ascertain the changed in students’ behaviour towards energy conservation after underwent the intervention. The study involved 48 secondary school students in a Malaysian public school. ANOVA Repeated Measure technique was employed in order to compare scores of students’ behaviour towards energy conservation before and after the intervention. Based on the finding, students’ behaviour towards energy conservation improved after the intervention.

  12. Dyscalculia and Other Learning Problems in Arithmetic: A Historical Perspective.

    ERIC Educational Resources Information Center

    Sharma, Mahesh C.

    1986-01-01

    Evidence on learning problems due to dyscalculia is surveyed. Definitions, factors responsible for dyscalculia, split-brain research and hemispheric roles, mathematics learning problems and personality, materials for instruction, and levels of knowing mathematics are among the topics discussed with an extensive list of references. (MNS)

  13. SIMON: A Simple Instructional Monitor. Technical Report.

    ERIC Educational Resources Information Center

    Feurzeig, Wallace; And Others

    An instructional monitor is a program which tries to detect, diagnose, and possibly help overcome a student's learning difficulties in the course of solving a problem or performing a task. In one approach to building an instructional monitor, the student uses a special task- or problem-oriented language expressly designed around some particular…

  14. Acquisition of Visual Perceptual Skills from Worked Examples: Learning to Interpret Electrocardiograms (ECGs)

    ERIC Educational Resources Information Center

    van den Berge, Kees; van Gog, Tamara; Mamede, Silvia; Schmidt, Henk G.; van Saase, Jan L. C. M.; Rikers, Remy M. J. P.

    2013-01-01

    Research has shown that for acquiring problem-solving skills, instruction consisting of studying worked examples is more effective and efficient for novice learners than instruction consisting of problem-solving. This study investigated whether worked examples would also be a useful instructional format for the acquisition of visual perceptual…

  15. "Wait for It . . ." Delaying Instruction Improves Mathematics Problem Solving: A Classroom Study

    ERIC Educational Resources Information Center

    Loehr, Abbey Marie; Fyfe, Emily R.; Rittle-Johnson, Bethany

    2014-01-01

    Engaging learners in exploratory problem-solving activities prior to receiving instruction (i.e., explore-instruct approach) has been endorsed as an effective learning approach. However, it remains unclear whether this approach is feasible for elementary-school children in a classroom context. In two experiments, second-graders solved mathematical…

  16. The Combined Use of Hypnosis and Sensory and Motor Stimulation in Assisting Children with Developmental Learning Problems.

    ERIC Educational Resources Information Center

    Jampolsky, Gerald G.

    Hypnosis was combined with sensory and motor stimulation to remediate reversal problems in five children (6 1/2- 9-years-old). Under hypnosis Ss were given the suggestion that they learn their numbers through feel and then given 1 hour of structured instruction daily for 10 days. Instruction stressed conditioning, vibratory memory, touch memory,…

  17. Effect of case-based learning on the development of graduate nurses' problem-solving ability.

    PubMed

    Yoo, Moon-Sook; Park, Jin-Hee

    2014-01-01

    Case-based learning (CBL) is a teaching strategy which promotes clinical problem-solving ability. This research was performed to investigate the effects of CBL on problem-solving ability of graduate nurses. This research was a quasi-experimental design using pre-test, intervention, and post-test with a non-synchronized, non-equivalent control group. The study population was composed of 190 new graduate nurses from university hospital A in Korea. Results of the research indicate that there was a statistically significant difference in objective problem-solving ability scores of CBL group demonstrating higher scores. Subjective problem-solving ability was also significantly higher in CBL group than in the lecture-based group. These results may suggest that CBL is a beneficial and effective instructional method of training graduate nurses to improve their clinical problem-solving ability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Conceptual change strategies in teaching genetics

    NASA Astrophysics Data System (ADS)

    Batzli, Laura Elizabeth

    The purpose of this study was to evaluate the effectiveness of utilizing conceptual change strategies when teaching high school genetics. The study examined the effects of structuring instruction to provide students with cognitive situations which promote conceptual change, specifically instruction was structured to elicit students' prior knowledge. The goal of the study was that the students would not only be able to solve genetics problems and define basic terminology but they would also have constructed more scientific schemas of the actual processes involved in inheritance. This study is based on the constructivist theory of learning and conceptual change research which suggest that students are actively involved in the process of relating new information to prior knowledge as they construct new knowledge. Two sections of biology II classes received inquiry based instruction and participated in structured cooperative learning groups. However, the unique difference in the treatment group's instruction was the use of structured thought time and the resulting social interaction between the students. The treatment group students' instructional design allowed students to socially construct their cognitive knowledge after elicitation of their prior knowledge. In contrast, the instructional design for the control group students allowed them to socially construct their cognitive knowledge of genetics without the individually structured thought time. The results indicated that the conceptual change strategies with individually structured thought time improved the students' scientific mastery of genetics concepts and they maintained fewer post instructional alternative conceptions. Although all students gained the ability to correctly solve genetics problems, the treatment group students were able to explain the processes involved in terms of meiosis. The treatment group students were also able to better apply their knowledge to novel genetic situations. The implications for genetics instruction from these results were discussed.

  19. Comparing the Effects of Traditional Face-to-Face, Technology-Based, and Blended Instructional Strategies in a Post-Secondary Spanish Language Learning Environment

    ERIC Educational Resources Information Center

    Harris, Richard

    2017-01-01

    Understanding the way humans communicate linguistically helps to define what proficiency in a particular language is. The general problem is scholars' assumption that the implementation of technology in the language learning environment acts a substitute for the human dynamic in achieving language proficiency. The purpose of this quantitative…

  20. Exploration of the Factors That Support Learning: Web-Based Activity and Testing Systems in Community College Algebra

    ERIC Educational Resources Information Center

    Hauk, Shandy; Matlen, Bryan

    2016-01-01

    A variety of computerized interactive learning platforms exist. Most include instructional supports in the form of problem sets. Feedback to users ranges from a single word like "Correct!" to offers of hints and partially to fully worked examples. Behind-the-scenes design of such systems varies as well --from static dictionaries of…

  1. Exploration of the Factors That Support Learning: Web-Based Activity and Testing Systems in Community College Algebra [Contributed Report

    ERIC Educational Resources Information Center

    Hauk, Shandy; Matlen, Bryan; Thomas, Larry

    2017-01-01

    A variety of computerized interactive learning platforms exist. Most include instructional supports in the form of problem sets. Feedback to users ranges from a single word like "Correct!" to offers of hints and partially- to fully-worked examples. Behind-the-scenes design of systems varies as well--from static dictionaries of problems…

  2. Assessment of Aerobic Endurance: A Comparison between CD-ROM and Laboratory-Based Instruction.

    ERIC Educational Resources Information Center

    Kirkwood, Margaret; Sharp, Bob; de Vito, Giuseppe; Nimmo, Myra A.

    2002-01-01

    Describes a CD-ROM version of a basic course in exercise physiology that was developed in the United Kingdom to overcome problems of staff time, expense, ethical considerations, and large student numbers. Compares it to a traditional course and concludes that adding more active learning approaches to the CD-ROM would enhance student learning. (LRW)

  3. Effect of a PBL teaching method on learning about nursing care for patients with depression.

    PubMed

    Arrue, Marta; Ruiz de Alegría, Begoña; Zarandona, Jagoba; Hoyos Cillero, Itziar

    2017-05-01

    Depression is a worldwide public health problem that requires the attention of qualified health professionals. The training of skilled nurses is a challenge for nursing instructors due to the complexity of this pathology. The aim was to analyse the declarative and argumentative knowledge acquired about depression by students receiving traditional expository instruction versus students receiving problem-based learning instruction. Quasi-experimental study with pre-test and post-test design in experimental and control group to measure differences in the improvement of declarative and argumentative knowledge. Non parametric tests were used to compare the scores between the experimental group and the control group, and between the pre-test and post-test in each group. 114 students participated in the study. Implementation of the study took place during the 2014-2015 academic year in the third year of the Nursing undergraduate degree courses in the University of the Basque Country (UPV/EHU) as part of the Mental Health Nursing subject. The data indicated that there were no statistically significant differences between the two methodologies in regard to declarative knowledge in the care of patients with depression. Nevertheless, the argumentative capacity of the experimental group improved significantly with the problem-based learning methodology (p=0.000). The results of the implementation indicated that problem-based learning was a satisfactory tool for the acquisition of argumentative capacity in depression nursing care. Still, working examples of teaching sequences that bridge the gap between general clinical practice and classroom practice remain an important goal for continuing research in nursing education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Applying problem-based learning to otolaryngology teaching.

    PubMed

    Abou-Elhamd, K A; Rashad, U M; Al-Sultan, A I

    2011-02-01

    Undergraduate medical education requires ongoing improvement in order to keep pace with the changing demands of twenty-first century medical practice. Problem-based learning is increasingly being adopted in medical schools worldwide. We review its application in the specialty of ENT, and we present our experience of using this approach combined with more traditional methods. We introduced problem-based learning techniques into the ENT course taught to fifth-year medical students at Al-Ahsa College of Medicine, King Faisal University, Saudi Arabia. As a result, the teaching schedule included both clinical and theoretical activities. Six clinical teaching days were allowed for history-taking, examination techniques and clinical scenario discussion. Case scenarios were discussed in small group teaching sessions. Conventional methods were employed to teach audiology and ENT radiology (one three-hour session each); a three-hour simulation laboratory session and three-hour student presentation were also scheduled. In addition, students attended out-patient clinics for three days, and used multimedia facilities to learn about various otolaryngology diseases (in another three-hour session). This input was supplemented with didactic teaching in the form of 16 instructional lectures per semester (one hour per week). From our teaching experience, we believe that the application of problem-based learning to ENT teaching has resulted in a substantial increase in students' knowledge. Furthermore, students have given encouraging feedback on their experience of combined problem-based learning and conventional teaching methods.

  5. Usability and User Satisfaction of Multimedia Instructional Message (MIM) for Packet Tracer Simulation

    ERIC Educational Resources Information Center

    Elias, Mohd Syahrizad; Mohamad Ali, Ahmad Zamzuri

    2016-01-01

    Simulation-aided learning has capability in improving student's learning performance. However, the positive effect of simulation-aided learning still being discussed, which at times has not played the purported role expected. To address these problems, Multimedia Instructional Message (MIM) appeared to be an essential supporting tool in ensuring…

  6. Problem Solved: Middle School Math Instruction Gets a Boost from a Flexible Model for Learning

    ERIC Educational Resources Information Center

    Jacobs, Jennifer; Koellner, Karen; Funderburk, Joanie

    2012-01-01

    Education researchers frequently seek out districts, schools, and teachers as partners for professional learning projects. They share their ambitious vision--a new model of professional learning that will support an empowered community, instructional improvement, and student achievement. The authors, along with other members of their research…

  7. Learning From Physics Instruction

    ERIC Educational Resources Information Center

    Shavelson, Richard J.

    1973-01-01

    Extends P. E. Jonson's studies of physics learning by analyzing, on the basis of a 12-student control group, 24 high-school students' word associations, aptitude scores, and achievement results during instruction. Indicated a positive relationship between problem-solving ability and meaningful concept formation. (CC)

  8. Procedural instructions, principles, and examples: how to structure instructions for procedural tasks to enhance performance, learning, and transfer.

    PubMed

    Eiriksdottir, Elsa; Catrambone, Richard

    2011-12-01

    The goal of this article is to investigate how instructions can be constructed to enhance performance and learning of procedural tasks. Important determinants of the effectiveness of instructions are type of instructions (procedural information, principles, and examples) and pedagogical goal (initial performance, learning, and transfer). Procedural instructions describe how to complete tasks in a stepwise manner, principles describe rules governing the tasks, and examples demonstrate how instances of the task are carried out. The authors review the research literature associated with each type of instruction to identify factors determining effectiveness for different pedagogical goals. The results suggest a trade-off between usability and learnability. Specific instructions help initial performance, whereas more general instructions, requiring problem solving, help learning and transfer. Learning from instructions takes cognitive effort, and research suggests that learners typically opt for low effort. However, it is possible to meet both goals of good initial performance and learning with methods such as fading and by combining different types of instructions. How instructions are constructed influences their effectiveness for the goals of good initial performance, learning, and transfer, and it is therefore important for researchers and practitioners alike to define the pedagogical goal of instructions. If the goal is good initial performance, then instructions should highly resemble the task at hand (e.g., in the form of detailed procedural instructions and examples), but if the goal is good learning and transfer, then instructions should be more abstract, inducing learners to expend the necessary cognitive effort for learning.

  9. Cognitive Strategy Instruction for Teaching Word Problems to Primary-Level Struggling Students

    ERIC Educational Resources Information Center

    Pfannenstiel, Kathleen Hughes; Bryant, Diane Pedrotty; Bryant, Brian R.; Porterfield, Jennifer A.

    2015-01-01

    Students with mathematics difficulties and learning disabilities (LD) typically struggle with solving word problems. These students often lack knowledge about efficient, cognitive strategies to utilize when solving word problems. Cognitive strategy instruction has been shown to be effective in teaching struggling students how to solve word…

  10. Cognitive Tutoring based on Intelligent Decision Support in the PENTHA Instructional Design Model

    NASA Astrophysics Data System (ADS)

    dall'Acqua, Luisa

    2010-06-01

    The research finality of this paper is how to support Authors to develop rule driven—subject oriented, adaptable course content, meta-rules—representing the disciplinary epistemology, model of teaching, Learning Path structure, and assessment parameters—for intelligent Tutoring actions in a personalized, adaptive e-Learning environment. The focus is to instruct the student to be a decision manager for himself, able to recognize the elements of a problem, select the necessary information with the perspective of factual choices. In particular, our research intends to provide some fundamental guidelines for the definition of didactical rules and logical relations, that Authors should provide to a cognitive Tutoring system through the use of an Instructional Design method (PENTHA Model) which proposes an educational environment, able to: increase productivity and operability, create conditions for a cooperative dialogue, developing participatory research activities of knowledge, observations and discoveries, customizing the learning design in a complex and holistic vision of the learning / teaching processes.

  11. Problem Solving Model for Science Learning

    NASA Astrophysics Data System (ADS)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  12. Instructional Technology Must Contribute to Productivity

    ERIC Educational Resources Information Center

    Molenda, Michael

    2009-01-01

    Those involved in instructional technology in higher education are urged to view instructional technology as a means of improving academic productivity. Instructional technology has been used for over forty years to analyze instructional problems and design solutions that reduce costs and improve learning outcomes. The Pew Program in Course…

  13. Promoting instructional change in new faculty: An evaluation of the physics and astronomy new faculty workshop

    NASA Astrophysics Data System (ADS)

    Henderson, Charles

    2008-02-01

    An important finding of physics and astronomy education research (PAER) is that traditional, transmission-based instructional approaches are not effective in promoting meaningful student learning. Instead, PAER research suggests that physics and astronomy should be taught using more interactive instructional methods. These ways of teaching require significant changes in the way faculty think about teaching and learning and corresponding changes in their teaching behavior. Although the research base and corresponding pedagogies and strategies are well documented and widely available, widespread changes in physics and astronomy teaching at the college level has yet to occur. The Workshop for New Physics and Astronomy Faculty has been working to address this problem since 1996. This workshop, which is jointly administered by the American Association of Physics Teachers, the American Astronomical Society, and the American Physical Society, has attracted approximately 25% of all new physics and astronomy faculty each year to a four-day workshop designed to introduce new faculty to PAER-based instructional ideas and materials. This paper describes the impact of the Workshop as measured by surveys of Workshop participants and physics and astronomy department chairs. The results indicate that the Workshop is successful in meeting its goals and might be significantly contributing to the spread and acceptance of PAER-based instructional ideas and materials.

  14. Validation of learning style measures: implications for medical education practice.

    PubMed

    Chapman, Dane M; Calhoun, Judith G

    2006-06-01

    It is unclear which learners would most benefit from the more individualised, student-structured, interactive approaches characteristic of problem-based and computer-assisted learning. The validity of learning style measures is uncertain, and there is no unifying learning style construct identified to predict such learners. This study was conducted to validate learning style constructs and to identify the learners most likely to benefit from problem-based and computer-assisted curricula. Using a cross-sectional design, 3 established learning style inventories were administered to 97 post-Year 2 medical students. Cognitive personality was measured by the Group Embedded Figures Test, information processing by the Learning Styles Inventory, and instructional preference by the Learning Preference Inventory. The 11 subscales from the 3 inventories were factor-analysed to identify common learning constructs and to verify construct validity. Concurrent validity was determined by intercorrelations of the 11 subscales. A total of 94 pre-clinical medical students completed all 3 inventories. Five meaningful learning style constructs were derived from the 11 subscales: student- versus teacher-structured learning; concrete versus abstract learning; passive versus active learning; individual versus group learning, and field-dependence versus field-independence. The concurrent validity of 10 of 11 subscales was supported by correlation analysis. Medical students most likely to thrive in a problem-based or computer-assisted learning environment would be expected to score highly on abstract, active and individual learning constructs and would be more field-independent. Learning style measures were validated in a medical student population and learning constructs were established for identifying learners who would most likely benefit from a problem-based or computer-assisted curriculum.

  15. Development and Evaluation of a Multimedia e-Learning Resource for Electrolyte and Acid-Base Disorders

    ERIC Educational Resources Information Center

    Davids, Mogamat Razeen; Chikte, Usuf M. E.; Halperin, Mitchell L.

    2011-01-01

    This article reports on the development and evaluation of a Web-based application that provides instruction and hands-on practice in managing electrolyte and acid-base disorders. Our teaching approach, which focuses on concepts rather than details, encourages quantitative analysis and a logical problem-solving approach. Identifying any dangers to…

  16. Constructive and problem-based learning using blended learning anchored instruction approaches

    NASA Astrophysics Data System (ADS)

    Mayer, M.

    2012-04-01

    Based on an anchored instruction approach, an enriched blended learning lecture course ("Introduction into GNSS positioning") was established in order to enable constructive and problem-based learning. The lecture course "Introduction into GNSS positioning" is a compulsory part of the Bachelor study course "Geodesy and Geoinformatics" and also a supplementary module of the Bachelor study course "Geophysics". Within the lecture course, basic knowledge and basic principles of Global Navigation Satellite Systems, like GPS, are imparted. The presented higher education technique "anchored instruction" uses a real and up-to-date and therefore authentic scientific paper dealing with a recent large-scale geodetic project (Fehmarn Belt Fixed Link) in order to introduce the topic of GNSS-based positioning to the students. In the beginning of the semester, the students have to read the paper individually and carefully. This enables them to realize a lot of not-known GNSS-related facts. Therefore, questions can be formulated focusing on new, unclear or not-understood aspects of the paper. The lecture course deals with these questions, in order to answer them throughout the semester. During the lecture course this paper is referred, e.g., in the middle of the semester, the paper has to be read again in order to check which questions have been answered; in addition, new question arise. At the end of the lecture course, the author of the scientific paper gave a concluding lecture. The framing anchor technique enables the students to anchor their GNSS knowledge. The presented case study uses a teaching resp. learning setting consisting of classroom lectures (given by teachers and learners), practical trainings (e.g., field exercises, students select topics individually), and online lectures (learning management system ILIAS is used as data, result, and asynchronous communication platform). The implementation and the elements of the anchoring technique, which enables student-centered, cooperative, and individual learning, are going to be discussed in detail. A special focus of the presentation is on work assignments, time schedule, and work load. The anchor technique is applied within a blended learning teaching concept, therefore the role of the learning management system ILIAS will be treated as well.

  17. Examining the Influence of Seductive Details in Case-Based Instruction on Pre-Service Teachers' Learning and Learning Perceptions

    ERIC Educational Resources Information Center

    Abercrombie, Sara

    2011-01-01

    The case-based instructional method uses fictionalized or actual narratives as instructional tools to support learning, decision-making, and improved transfer to practical settings. Educational theorists and researchers specializing in case-based instruction have suggested that cases can be made more realistic, engaging, and challenging, thus…

  18. A multimedia adult literacy program: Combining NASA technology, instructional design theory, and authentic literacy concepts

    NASA Technical Reports Server (NTRS)

    Willis, Jerry W.

    1993-01-01

    For a number of years, the Software Technology Branch of the Information Systems Directorate has been involved in the application of cutting edge hardware and software technologies to instructional tasks related to NASA projects. The branch has developed intelligent computer aided training shells, instructional applications of virtual reality and multimedia, and computer-based instructional packages that use fuzzy logic for both instructional and diagnostic decision making. One outcome of the work on space-related technology-supported instruction has been the creation of a significant pool of human talent in the branch with current expertise on the cutting edges of instructional technologies. When the human talent is combined with advanced technologies for graphics, sound, video, CD-ROM, and high speed computing, the result is a powerful research and development group that both contributes to the applied foundations of instructional technology and creates effective instructional packages that take advantage of a range of advanced technologies. Several branch projects are currently underway that combine NASA-developed expertise to significant instructional problems in public education. The branch, for example, has developed intelligent computer aided software to help high school students learn physics and staff are currently working on a project to produce educational software for young children with language deficits. This report deals with another project, the adult literacy tutor. Unfortunately, while there are a number of computer-based instructional packages available for adult literacy instruction, most of them are based on the same instructional models that failed these students when they were in school. The teacher-centered, discrete skill and drill-oriented, instructional strategies, even when they are supported by color computer graphics and animation, that form the foundation for most of the computer-based literacy packages currently on the market may not be the most effective or most desirable way to use computer technology in literacy programs. This project is developing a series of instructional packages that are based on a different instructional model - authentic instruction. The instructional development model used to create these packages is also different. Instead of using the traditional five stage linear, sequential model based on behavioral learning theory, the project uses the recursive, reflective design and development model (R2D2) that is based on cognitive learning theory, particularly the social constructivism of Vygotsky, and an epistemology based on critical theory. Using alternative instructional and instructional development theories, the result of the summer faculty fellowship is LiteraCity, a multimedia adult literacy instructional package that is a simulation of finding and applying for a job. The program, which is about 120 megabytes, is distributed on CD-ROM.

  19. Connecting Effective Instruction and Technology. Intel-elebration: Safari.

    ERIC Educational Resources Information Center

    Burton, Larry D.; Prest, Sharon

    Intel-ebration is an attempt to integrate the following research-based instructional frameworks and strategies: (1) dimensions of learning; (2) multiple intelligences; (3) thematic instruction; (4) cooperative learning; (5) project-based learning; and (6) instructional technology. This paper presents a thematic unit on safari, using the…

  20. Time and Learning Efficiency in Internet-Based Learning: A Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Cook, David A.; Levinson, Anthony J.; Garside, Sarah

    2010-01-01

    Authors have claimed that Internet-based instruction promotes greater learning efficiency than non-computer methods. Objectives Determine, through a systematic synthesis of evidence in health professions education, how Internet-based instruction compares with non-computer instruction in time spent learning, and what features of Internet-based…

  1. Problem-based learning: a strategic learning system design for the education of healthcare professionals in the 21st century.

    PubMed

    Gwee, Matthew Choon-Eng

    2009-05-01

    Problem-based learning (PBL) was first implemented by McMaster University medical school in 1969 as a radical, innovative, and alternative pathway to learning in medical education, thus setting a new educational trend. PBL has now spread widely across the globe and beyond the healthcare disciplines, and has prevailed for almost four decades. PBL is essentially a strategic learning system design, which combines several complementary educational principles for the delivery of instruction. PBL is specifically aimed at enhancing and optimizing the educational outcomes of learner-centered, collaborative, contextual, integrated, self-directed, and reflective learning. The design and delivery of instruction in PBL involve peer teaching and learning in small groups through the social construction of knowledge using a real-life problem case to trigger the learning process. Therefore, PBL represents a major shift in the educational paradigm from the traditional teacher-directed (teacher-centered) instruction to student-centered (learner-centered) learning. PBL is firmly underpinned by several educational theories, but problems are often encountered in practice that can affect learning outcomes. Educators contemplating implementing PBL in their institutions should have a clear understanding of its basic tenets, its practice and its philosophy, as well as the issues, challenges, and opportunities associated with its implementation. Special attention should be paid to the training and selection of PBL tutors who have a critical role in the PBL process. Furthermore, a significant change in the mindsets of both students and teachers are required for the successful implementation of PBL. Thus, effective training programs for students and teachers must precede its implementation. PBL is a highly resource-intensive learning strategy and the returns on investment (i.e. the actual versus expected learning outcomes) should be carefully and critically appraised in the decision-making process. Implementation of PBL can be a daunting task and will require detailed and careful planning, together with a significant commitment on the part of educators given the responsibility to implement PBL in an institution. PBL can offer a more holistic, value-added, and quality education to energize student learning in the healthcare professions in the 21st century. Successful implementation of PBL can therefore help to nurture in students the development of desired "habits of mind, behavior, and action" to become the competent, caring, and ethical healthcare professionals of the 21st century. Thus, PBL can contribute to the improvement of the healthcare of a nation by healthcare professionals, but we need to do it right.

  2. Effect of structure in problem based learning on science teaching efficacy beliefs and science content knowledge of elementary preservice teachers

    NASA Astrophysics Data System (ADS)

    Sasser, Selena Kay

    This study examined the effects of differing amounts of structure within the problem based learning instructional model on elementary preservice teachers' science teaching efficacy beliefs, including personal science teaching efficacy and science teaching outcome expectancy, and content knowledge acquisition. This study involved sixty (60) undergraduate elementary preservice teachers enrolled in three sections of elementary science methods classes at a large Midwestern research university. This study used a quasi-experimental nonequivalent design to collect and analyze both quantitative and qualitative data. Participants completed instruments designed to assess science teaching efficacy beliefs, science background, and demographic data. Quantitative data from pre and posttests was obtained using the science teaching efficacy belief instrument-preservice (STEBI-B) developed by Enochs and Riggs (1990) and modified by Bleicher (2004). Data collection instruments also included a demographic questionnaire, an analytic rubric, and a structured interview; both created by the researcher. Quantitative data was analyzed by conducting ANCOVA, paired samples t-test, and independent samples t-test. Qualitative data was analyzed using coding and themes. Each of the treatment groups received the same problem scenario, one group experienced a more structured PBL setting, and one group experienced a limited structure PBL setting. Research personnel administered pre and posttests to determine the elementary preservice teachers' science teaching efficacy beliefs. The results show elementary preservice teachers'science teaching efficacy beliefs can be influence by the problem based learning instructional model. This study did not find that the amount of structure in the form of core ideas to consider and resources for further research increased science teaching efficacy beliefs in this sample. Results from the science content knowledge rubric indicated that structure can increase science content knowledge in this sample. Qualitative data from the tutor, fidelity raters, and interviews indicated the participants were excited about the problem and were interested in the science content knowledge related to the problem. They also indicated they were motivated to continue informal study in the problem area. Participants indicated, during the interview, their initial frustration with the lack of knowledge gained from the tutor; however, indicated this led to more learning on their part. This study will contribute to the overall knowledge of problem based learning and its structures, science teaching efficacy beliefs of elementary preservice teachers, and to current teaching and learning practices.

  3. Entering the Historical Problem Space: Whole-Class Text-Based Discussion in History Class

    ERIC Educational Resources Information Center

    Reisman, Abby

    2015-01-01

    Background/Context: The Common Core State Standards Initiative reveals how little we understand about the components of effective discussion-based instruction in disciplinary history. Although the case for classroom discussion as a core method for subject matter learning stands on stable theoretical and empirical ground, to date, none of the…

  4. Data-Driven Intervention: Correcting Mathematics Students' Misconceptions, Not Mistakes

    ERIC Educational Resources Information Center

    Holmes, Vicki-Lynn; Miedema, Chelsea; Nieuwkoop, Lindsay; Haugen, Nicholas

    2013-01-01

    In an age when reform is based on standards and instruction is based on research, this article gives practical advice for how mathematics teachers can analyze errors in student problems to create interventions that aid not only the individual's development, but the entire class's as well. By learning how to correct mathematics students'…

  5. Self-Grading: A Simple Strategy for Formative Assessment in Activity-Based Instruction.

    ERIC Educational Resources Information Center

    Ulmer, M. B.

    This paper discusses the author's personal experiences in developing and implementing a problem-based college mathematics course for liberal arts majors. This project was initiated in response to the realization that most students are dependent on "patterning" learning algorithms and have no expectation that self-initiated thinking is a…

  6. Exploring Creativity by Linking Complexity Learning to Futures-Based Research Proposals

    ERIC Educational Resources Information Center

    Bolton, Michael J.

    2009-01-01

    Traditional teaching models based on linear approaches to instruction arguably are of limited value in preparing students to handle complex, dynamic real-world problems. As such, they are undergoing increased scrutiny by scholars in various disciplines. The author argues that nonlinear approaches to higher education such as those founded on…

  7. Evaluating the Effectiveness of the 2000-2001 NASA "Why?" Files Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou; Ashcroft, Scott B.; Williams, Amy C.

    2002-01-01

    NASA 'Why?' Files, a research and standards-based, Emmy-award winning series of 60-minute instructional programs for grades 3-5, introduces students to NASA; integrates mathematics, science, and technology by using Problem-Based Learning (PBL), scientific inquiry, and the scientific method; and motivates students to become critical thinkers and active problem solvers. All four 2000-2001 NASA 'Why?' Files programs include an instructional broadcast, a lesson guide, an interactive web site, plus numerous instructional resources. In March 2001, 1,000 randomly selected program registrants participated in a survey. Of these surveys, 185 (154 usable) met the established cut-off date. Respondents reported that (1) they used the four programs in the 2000-2001 NASA 'Why?' Files series; (2) series goals and objectives were met; (3) programs met national mathematics, science, and technology standards; (4) program content was developmentally appropriate for grade level; and (5) programs enhanced/enriched the teaching of mathematics, science, and technology.

  8. Problems with Science Teaching and Learning for English Language Learners in One Diverse Elementary School

    ERIC Educational Resources Information Center

    Rodriguez, Karen Margaret

    2012-01-01

    This qualitative study centered on science instruction and learning that occurred in a Title I elementary school in a suburban district in southeast Texas. Twelve teachers were interviewed in order to understand their perceptions of their classroom practices in terms of science instruction and learning for English Language Learners (ELL). This…

  9. "An adjective is a word hanging down from a noun": learning to write and students with learning disabilities.

    PubMed

    Harris, Karen R; Graham, Steve

    2013-04-01

    By the upper elementary grades, writing becomes an essential tool both for learning and for showing what you know. Students who struggle significantly with writing are at a terrible disadvantage. Data from the National Assessment of Educational Progress indicate that only 25% of students can be classified as competent writers; students with learning disabilities (LD) have even greater problems with writing than their normally achieving peers and frequently demonstrate a deteriorating attitude toward writing after the primary grades. In this article, we focus on composing and the writing process, and examine the knowledge base about writing development and instruction among students with LD. We address what research tells us about skilled writers and the development of writing knowledge, strategies, skill, and the will to write, and how this relates to students with LD. Next, we summarize what has been learned from research on writing development, effective instruction, and the writing abilities of students with LD in terms of effective instruction for these students. Finally, we indicate critical areas for future research.

  10. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p  = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p  < 0.005). Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.

  11. Improvement of Faculty's Qualities in Medical Colleges and the Construction of a "Five-in-One" Cultivation System under the Pattern of PBL

    ERIC Educational Resources Information Center

    Chen, Qin; Li, Hang; Zeng, Fancai; Zeng, Xiaorong; Zheng, Lige; Li, Xiang

    2009-01-01

    The instructional pattern of Problem-based Learning, which requires teachers to be "organizers, guides and cooperators" of their students' learning, is now becoming a trend in the development of medical education around the world. In order to be competent in all the above mentioned roles, teachers need to be equipped with corresponding…

  12. Student reactions to problem-based learning in photonics technician education

    NASA Astrophysics Data System (ADS)

    Massa, Nicholas M.; Donnelly, Judith; Hanes, Fenna

    2014-07-01

    Problem-based learning (PBL) is an instructional approach in which students learn problem-solving and teamwork skills by collaboratively solving complex real-world problems. Research shows that PBL improves student knowledge and retention, motivation, problem-solving skills, and the ability to skillfully apply knowledge in new and novel situations. One of the challenges faced by students accustomed to traditional didactic methods, however, is acclimating to the PBL process in which problem parameters are often ill-defined and ambiguous, often leading to frustration and disengagement with the learning process. To address this problem, the New England Board of Higher Education (NEBHE), funded by the National Science Foundation Advanced Technological Education (NSF-ATE) program, has created and field tested a comprehensive series of industry-based multimedia PBL "Challenges" designed to scaffold the development of students' problem solving and critical thinking skills. In this paper, we present the results of a pilot study conducted to examine student reactions to the PBL Challenges in photonics technician education. During the fall 2012 semester, students (n=12) in two associate degree level photonics courses engaged in PBL using the PBL Challenges. Qualitative and quantitative methods were used to assess student motivation, self-efficacy, critical thinking, metacognitive self-regulation, and peer learning using selected scales from the Motivated Strategies for Learning Questionnaire (MSLQ). Results showed positive gains in all variables. Follow-up focus group interviews yielded positive themes supporting the effectiveness of PBL in developing the knowledge, skills and attitudes of photonics technicians.

  13. Developing an NGSS Pedagogy for Climate Literacy and Energy Awareness Using the CLEAN Collection

    NASA Astrophysics Data System (ADS)

    Manning, C. L. B.; Taylor, J.; Oonk, D.; Sullivan, S. M.; Kirk, K.; Niepold, F., III

    2017-12-01

    The Next Generation Science Standards and A Framework for K-12 Science Education have introduced us to 3-dimensional science instruction. Together, these provide infinite opportunities to generate interesting problems inspiring instruction and motivating student learning. Finding good resources to support 3-dimensional learning is challenging. The Climate Literacy and Energy Awareness Network (CLEAN) as a comprehensive source of high-quality, NGSS-aligned resources that can be quickly and easily searched. Furthermore, teachers new to NGSS are asked to do the following: synthesize high quality, scientifically vetted resources to engage students in relevant phenomena, problems and projects develop place-awareness for where students live and learn encourage data analysis, modeling, and argumentation skills energize students to participate in finding possible solutions to the problems we face. These challenges are intensified when teaching climate science and energy technology, some of the most rapidly changing science and engineering fields. Educators can turn to CLEAN to find scientifically and pedagogically vetted resources to integrate into their lessons. In this presentation, we will introduce the newly developed Harmonics Planning Template, Guidance Videos and Flowchart that guide the development of instructionally-sound, NGSS-style units using the CLEAN collection of resources. To illustrate the process, three example units will be presented: Phenology - a place-based investigation, Debating the Grid - a deliberation on optimal energy grid solutions, and History of Earth's Atmosphere and Oceans - a data-rich collaborative investigation.

  14. The PBL projects: where we've been and where we are going

    NASA Astrophysics Data System (ADS)

    Donnelly, Judith F.; Massa, Nicholas M.

    2015-10-01

    Problem-based learning (PBL) is an instructional approach in which students learn course content by using a structured approach to collaboratively solving complex real-world problems. PBL addresses widespread industry concern that graduates of technician and engineering programs often have difficulty applying their technical knowledge to novel situations and working effectively in teams. Over the past 9 years, the PBL Projects of the New England Board of Higher Education (Boston, MA) have developed instructional strategies and materials that research shows address industry concerns by improving student learning, retention, critical thinking and problem-solving skills as well as the transfer of knowledge to new situations. In this paper we present a retrospective of the PBL Projects, three National Science Foundation Advanced Technology Education (NSF-ATE) projects that developed twenty interdisciplinary multi-media PBL case studies called "Challenges" in the topic areas of optics/photonics, sustainable technology and advanced manufacturing, provided faculty professional development in the use of PBL in the classroom to teachers across the U.S. and abroad, and conducted research on the efficacy of the PBL method. We will describe the resources built into the Challenges to scaffold the development of students' problem solving and critical thinking skills and the support provided to instructors who wish to create a student-centered classroom by incorporating PBL. Finally, we will discuss plans for next steps and examine strategies for taking PBL to the next level through actual industry-based problem solving experiences.

  15. Using Jigsaw-Style Spectroscopy Problem-Solving to Elucidate Molecular Structure through Online Cooperative Learning

    ERIC Educational Resources Information Center

    Winschel, Grace A.; Everett, Renata K.; Coppola, Brian P.; Shultz, Ginger V.

    2015-01-01

    Cooperative learning was employed as an instructional approach to facilitate student development of spectroscopy problem solving skills. An interactive online environment was used as a framework to structure weekly discussions around spectroscopy problems outside of class. Weekly discussions consisted of modified jigsaw-style problem solving…

  16. Schema-Based Instruction on Learning English Polysemous Words: Effects of Instruction and Learners' Perceptions

    ERIC Educational Resources Information Center

    Mitsugi, Makoto

    2017-01-01

    The purpose of this study is to investigate the effectiveness of two instruction methods for teaching polysemous English prepositions ("at, in, on") and to explore learners' perception on learning tools used in the instruction when learning polysemous words. The first study investigated the effectiveness of schema-based instruction…

  17. Flipped Classroom Instruction for Inclusive Learning

    ERIC Educational Resources Information Center

    Altemueller, Lisa; Lindquist, Cynthia

    2017-01-01

    The flipped classroom is a teaching methodology that has gained recognition in primary, secondary and higher education settings. The flipped classroom inverts traditional teaching methods, delivering lecture instruction outside class, and devoting class time to problem solving, with the teacher's role becoming that of a learning coach and…

  18. The implementation of an elementary STEM learning team and the effect on teacher self-efficacy: An action research study

    NASA Astrophysics Data System (ADS)

    Hernandez, Jennifer F.

    Science, technology, engineering, and math (STEM) education is part of a national movement to prepare students for the demands of a 21st century workforce. STEM uses an integrated, real-world problem solving approach to increase the levels of collaboration, communication, critical, and creative thinking in students. If expectations for students have increased to stay competitive in a global market, teachers must be equipped to meet the needs of the new 21st century learners in their classrooms. To that end, professional learning for educators is essential to ensure they are equipped with the tools necessary for success. While there are many approaches to teacher development, professional learning teams, based on the work of Garmston and Wellman, focus on teachers' instructional delivery, targeted student learning needs, planning, implementing new strategies, collaboration, and reflective dialogue. The purpose of the study is to improve instructional practice providing quality STEM instruction to students and increase teacher self-efficacy---a teachers' perception of his or her ability to instruct students in the STEM disciplines. Theoretical implications of a study on an elementary STEM learning team could affect the way schools deliver STEM professional learning opportunities to teachers and the way students are delivered a quality STEM education. Research has shown that Model I behavior would limit the change process of professional learning through a surface inspection of the issues; however model II behaviors would benefit the teachers, students and organization because teachers would be collaborating on specific objectives to develop a knowledge base and skill set to meet students' needs. Extending professional development by engaging stakeholders in a collaborative process to build model II behaviors will create an organizational structure that facilitates learning.

  19. Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration

    NASA Astrophysics Data System (ADS)

    Rehmat, Abeera Parvaiz

    As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.

  20. Buoyed by a Rising Tide: Information Literacy Sails into the Curriculum on the Currents of Evidence-Based Medicine and Professional Competency Objectives.

    ERIC Educational Resources Information Center

    Kaplan, Richard B.; Whelan, Julia S.

    2002-01-01

    Discusses how information literacy efforts at the Massachusetts College of Pharmacy and Health Sciences have been supported by national trends within health science education to incorporate evidence-based medicine and problem-based learning into the curriculum. Describes effects on librarians, including requests for more instruction, creating…

  1. Example-based learning: comparing the effects of additionally providing three different integrative learning activities on physiotherapy intervention knowledge.

    PubMed

    Dyer, Joseph-Omer; Hudon, Anne; Montpetit-Tourangeau, Katherine; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara

    2015-03-07

    Example-based learning using worked examples can foster clinical reasoning. Worked examples are instructional tools that learners can use to study the steps needed to solve a problem. Studying worked examples paired with completion examples promotes acquisition of problem-solving skills more than studying worked examples alone. Completion examples are worked examples in which some of the solution steps remain unsolved for learners to complete. Providing learners engaged in example-based learning with self-explanation prompts has been shown to foster increased meaningful learning compared to providing no self-explanation prompts. Concept mapping and concept map study are other instructional activities known to promote meaningful learning. This study compares the effects of self-explaining, completing a concept map and studying a concept map on conceptual knowledge and problem-solving skills among novice learners engaged in example-based learning. Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps. Pre-test performance did not differ among conditions. Post-test conceptual knowledge was higher (P < .001) in the concept map study condition (68.8 ± 21.8%) compared to the concept map completion (52.8 ± 17.0%) and self-explanation (52.2 ± 21.7%) conditions. Post-test problem-solving performance was higher (P < .05) in the self-explanation (63.2 ± 16.0%) condition compared to the concept map study (53.3 ± 16.4%) and concept map completion (51.0 ± 13.6%) conditions. Students in the self-explanation condition also invested less mental effort in the post-test. Studying model concept maps led to greater conceptual knowledge, whereas self-explanation led to higher transfer performance. Self-explanation and concept map study can be combined with worked example and completion example strategies to foster intervention selection.

  2. Replacing textbook problems with lab experiences

    NASA Astrophysics Data System (ADS)

    Register, Trevor

    2017-10-01

    End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.

  3. Learning biology through connecting mathematics to scientific mechanisms: Student outcomes and teacher supports

    NASA Astrophysics Data System (ADS)

    Schuchardt, Anita

    Integrating mathematics into science classrooms has been part of the conversation in science education for a long time. However, studies on student learning after incorporating mathematics in to the science classroom have shown mixed results. Understanding the mixed effects of including mathematics in science has been hindered by a historical focus on characteristics of integration tangential to student learning (e.g., shared elements, extent of integration). A new framework is presented emphasizing the epistemic role of mathematics in science. An epistemic role of mathematics missing from the current literature is identified: use of mathematics to represent scientific mechanisms, Mechanism Connected Mathematics (MCM). Building on prior theoretical work, it is proposed that having students develop mathematical equations that represent scientific mechanisms could elevate their conceptual understanding and quantitative problem solving. Following design and implementation of an MCM unit in inheritance, a large-scale quantitative analysis of pre and post implementation test results showed MCM students, compared to traditionally instructed students) had significantly greater gains in conceptual understanding of mathematically modeled scientific mechanisms, and their ability to solve complex quantitative problems. To gain insight into the mechanism behind the gain in quantitative problem solving, a small-scale qualitative study was conducted of two contrasting groups: 1) within-MCM instruction: competent versus struggling problem solvers, and 2) within-competent problem solvers: MCM instructed versus traditionally instructed. Competent MCM students tended to connect their mathematical inscriptions to the scientific phenomenon and to switch between mathematical and scientifically productive approaches during problem solving in potentially productive ways. The other two groups did not. To address concerns about teacher capacity presenting barriers to scalability of MCM approaches, the types and amount of teacher support needed to achieve these types of student learning gains were investigated. In the context of providing teachers with access to educative materials, students achieved learning gains in both areas in the absence of face-to-face teacher professional development. However, maximal student learning gains required the investment of face-to-face professional development. This finding can govern distribution of scarce resources, but does not preclude implementation of MCM instruction even where resource availability does not allow for face-to-face professional development.

  4. Faded-example as a Tool to Acquire and Automate Mathematics Knowledge

    NASA Astrophysics Data System (ADS)

    Retnowati, E.

    2017-04-01

    Students themselves accomplish Knowledge acquisition and automation. The teacher plays a role as the facilitator by creating mathematics tasks that assist students in building knowledge efficiently and effectively. Cognitive load caused by learning material presented by teachers should be considered as a critical factor. While the intrinsic cognitive load is related to the degree of complexity of the material learning ones can handle, the extraneous cognitive load is directly caused by how the material is presented. Strategies to present a learning material in computational learning domains like mathematics are a namely worked example (fully-guided task) or problem-solving (discovery task with no guidance). According to the empirical evidence, learning based on problem-solving may cause high-extraneous cognitive load for students who have limited prior knowledge, conversely learn based on worked example may cause high-extraneous cognitive load for students who have mastered the knowledge base. An alternative is a faded example consisting of the partly-completed task. Learning from faded-example can facilitate students who already acquire some knowledge about the to-be-learned material but still need more practice to automate the knowledge further. This instructional strategy provides a smooth transition from a fully-guided into an independent problem solver. Designs of faded examples for learning trigonometry are discussed.

  5. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  6. Partners in Learning: Teacher Leaders Drive Instructional Excellence

    ERIC Educational Resources Information Center

    Duff, Victoria; Islas, M. René

    2013-01-01

    New educator evaluation systems demand a focus on effective teaching and learning while promoting the professional growth of all teachers. By identifying and leveraging the contributions of high-performing teachers as instructional leaders, problem solvers, and decision-makers to lead improvement at the classroom level, the system builds capacity…

  7. Instructional Strategies for Enhancing Learning Disabled Students' Reading Comprehension and Comprehension Test Performance.

    ERIC Educational Resources Information Center

    Wong, Bernice Y. L.

    1986-01-01

    Successful instructional strategies for enhancing the reading comprehension and comprehension test performance of learning disabled students are described. Students are taught to self-monitor their comprehension of expository materials and stories through recognition and analysis of recurrent elements and problem passages, content summarization,…

  8. A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students.

    ERIC Educational Resources Information Center

    Dios, R.; Geller, J.

    1998-01-01

    Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…

  9. Using High-Probability Instructional Sequences and Explicit Instruction to Teach Multiplication Facts

    ERIC Educational Resources Information Center

    Leach, Debra

    2016-01-01

    Students with learning disabilities often struggle with math fact fluency and require specialized interventions to recall basic facts. Deficits in math fact fluency can result in later difficulties when learning higher-level mathematical computation, concepts, and problem solving. The response-to-intervention (RTI) and…

  10. The efficiency of multimedia learning into old age.

    PubMed

    Van Gerven, Pascal W M; Paas, Fred; Van Merriënboer, Jeroen J G; Hendriks, Maaike; Schmidt, Henk G

    2003-12-01

    On the basis of a multimodal model of working memory, cognitive load theory predicts that a multimedia-based instructional format leads to a better acquisition of complex subject matter than a purely visual instructional format. This study investigated the extent to which age and instructional format had an impact on training efficiency among both young and old adults. It was hypothesised that studying worked examples that are presented as a narrated animation (multimedia condition) is a more efficient means of complex skill training than studying visually presented worked examples (unimodal condition) and solving conventional problems. Furthermore, it was hypothesised that multimedia-based worked examples are especially helpful for elderly learners, who have to deal with a general decline of working-memory resources, because they address both mode-specific working-memory stores. The sample consisted of 60 young (mean age = 15.98 years) and 60 old adults (mean age = 64.48 years). Participants of both age groups were trained in either a conventional, a unimodal, or a multimedia condition. Subsequently, they had to solve a series of test problems. Dependent variables were perceived cognitive load during the training, performance on the test, and efficiency in terms of the ratio between these two variables. Results showed that for both age groups multimedia-based worked examples were more efficient than the other training formats in that less cognitive load led to at least an equal performance level. Although no difference in the beneficial effect of multimedia learning was found between the age groups, multimedia-based instructions seem promising for the elderly.

  11. Orienting Student Using a Case-Based Instructional Approach: A Case Study

    ERIC Educational Resources Information Center

    Agbor-Baiyee, W.

    2009-01-01

    Purpose: Orientation facilitates the transition to a new academic program to meet the need of new students to know programmatic items such as academic expectations, courses, policies and procedures. We used a problem based learning (PBL) approach to introduce our students to the expectations of our intensive 10-week Medical College Admission Test…

  12. The Feasibility of Applying PBL Teaching Method to Surgery Teaching of Chinese Medicine

    ERIC Educational Resources Information Center

    Tang, Qianli; Yu, Yuan; Jiang, Qiuyan; Zhang, Li; Wang, Qingjian; Huang, Mingwei

    2008-01-01

    The traditional classroom teaching mode is based on the content of the subject, takes the teacher as the center and gives priority to classroom instruction. While PBL (Problem Based Learning) teaching method breaches the traditional mode, combining the basic science with clinical practice and covering the process from discussion to self-study to…

  13. Facilitating Pre-Service Teachers to Develop Regulation of Cognition with Learning Management System

    ERIC Educational Resources Information Center

    Gutman, Mary

    2017-01-01

    The object of the present study is to propose a technologically based method for developing Regulation of Cognition (RC) among pre-service teachers in a pedagogical problem context. The research intervention was carried out by two groups during a Teaching Training Workshop, based on the IMPROVE instructional method, which was implemented in the…

  14. Graduate Teaching Assistants' Epistemological and Metacognitive Development

    ERIC Educational Resources Information Center

    Sandi-Urena, Santiago; Cooper, Melanie M.; Gatlin, Todd A.

    2011-01-01

    Research in general chemistry laboratory instruction has rarely focused on the impact of the learning environment on the graduate teaching assistants (GTAs). We decided to investigate the effect that facilitating a well established cooperative problem-based chemistry laboratory has on GTAs' epistemological and metacognitive development, and how…

  15. Returning "Region" to World Regional Geography

    ERIC Educational Resources Information Center

    Rees, Peter W.; Legates, Margaret

    2013-01-01

    World regional geography textbooks rarely focus on the process of region formation, despite frequent calls to reincorporate a regional approach to teaching global geography. An instructional strategy using problem-based learning in a small honors section of a large world regional geography course is described. Using a hypothetical scenario…

  16. Specifications for an Advanced Instructional Design Advisor (AIDA) for Computer-Based Training

    DTIC Science & Technology

    1991-05-01

    student time under instruction o increased student comprehension and learning transfer o establishment of instruction standards o...strategies. 6. The nature of the cognitive task determines the learning objective. 7. Learning is internal; instruction is external. 12 Major...AIDAs and to its instructional products. Halff argued that cognitive structures have a role to play in instructional design. He maintained that learning

  17. Using Technology and Assessment to Personalize Instruction: Preventing Reading Problems.

    PubMed

    Connor, Carol McDonald

    2017-09-15

    Children who fail to learn to read proficiently are at serious risk of referral to special education, grade retention, dropping out of high school, and entering the juvenile justice system. Accumulating research suggests that instruction regimes that rely on assessment to inform instruction are effective in improving the implementation of personalized instruction and, in turn, student learning. However, teachers find it difficult to interpret assessment results in a way that optimizes learning opportunities for all of the students in their classrooms. This article focuses on the use of language, decoding, and comprehension assessments to develop personalized plans of literacy instruction for students from kindergarten through third grade, and A2i technology designed to support teachers' use of assessment to guide instruction. Results of seven randomized controlled trials demonstrate that personalized literacy instruction is more effective than traditional instruction, and that sustained implementation of personalized literacy instruction first through third grade may prevent the development of serious reading problems. We found effect sizes from .2 to .4 per school year, which translates into about a 2-month advantage. These effects accumulated from first through third grade with a large effect size (d = .7) equivalent to a full grade-equivalent advantage on standardize tests of literacy. These results demonstrate the efficacy of technology-supported personalized data-driven literacy instruction to prevent serious reading difficulties. Implications for translational prevention research in education and healthcare are discussed.

  18. It's Not a Math Lesson--We're Learning to Draw! Teachers' Use of Visual Representations in Instructing Word Problem Solving in Sixth Grade of Elementary School

    ERIC Educational Resources Information Center

    Boonen, Anton J. H.; Reed, Helen C.; Schoonenboom, Judith; Jolles, Jelle

    2016-01-01

    Non-routine word problem solving is an essential feature of the mathematical development of elementary school students worldwide. Many students experience difficulties in solving these problems due to erroneous problem comprehension. These difficulties could be alleviated by instructing students how to use visual representations that clarify the…

  19. The Effects of Segmentation and Personalization on Superficial and Comprehensive Strategy Instruction in Multimedia Learning Environments

    ERIC Educational Resources Information Center

    Doolittle, Peter

    2010-01-01

    Short, cause-and-effect instructional multimedia tutorials that provide learner control of instructional pace (segmentation) and verbal representations of content in a conversational tone (personalization) have been demonstrated to benefit problem solving transfer. How might a more comprehensive multimedia instructional environment focused on…

  20. Effects of problem-based learning vs. traditional lecture on Korean nursing students' critical thinking, problem-solving, and self-directed learning.

    PubMed

    Choi, Eunyoung; Lindquist, Ruth; Song, Yeoungsuk

    2014-01-01

    Problem-based learning (PBL) is a method widely used in nursing education to develop students' critical thinking skills to solve practice problems independently. Although PBL has been used in nursing education in Korea for nearly a decade, few studies have examined its effects on Korean nursing students' learning outcomes, and few Korean studies have examined relationships among these outcomes. The objectives of this study are to examine outcome abilities including critical thinking, problem-solving, and self-directed learning of nursing students receiving PBL vs. traditional lecture, and to examine correlations among these outcome abilities. A quasi-experimental non-equivalent group pretest-posttest design was used. First-year nursing students (N=90) were recruited from two different junior colleges in two cities (GY and GJ) in South Korea. In two selected educational programs, one used traditional lecture methods, while the other used PBL methods. Standardized self-administered questionnaires of critical thinking, problem-solving, and self-directed learning abilities were administered before and at 16weeks (after instruction). Learning outcomes were significantly positively correlated, however outcomes were not statistically different between groups. Students in the PBL group improved across all abilities measured, while student scores in the traditional lecture group decreased in problem-solving and self-directed learning. Critical thinking was positively associated with problem-solving and self-directed learning (r=.71, and r=.50, respectively, p<.001); problem-solving was positively associated with self-directed learning (r=.75, p<.001). Learning outcomes of PBL were not significantly different from traditional lecture in this small underpowered study, despite positive trends. Larger studies are recommended to study effects of PBL on critical student abilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. School-Based Instructional Rounds: Improving Teaching and Learning across Classrooms

    ERIC Educational Resources Information Center

    Teitel, Lee

    2013-01-01

    In "School-Based Instructional Rounds," Teitel offers detailed case studies of five different models of school-based rounds and investigates critical learning from each. Instructional rounds--one of the most innovative and powerful approaches to improving teaching and learning--has been taken up by districts across the country and around…

  2. Transformational Teaching: Theoretical Underpinnings, Basic Principles, and Core Methods

    PubMed Central

    Slavich, George M.; Zimbardo, Philip G.

    2012-01-01

    Approaches to classroom instruction have evolved considerably over the past 50 years. This progress has been spurred by the development of several learning principles and methods of instruction, including active learning, student-centered learning, collaborative learning, experiential learning, and problem-based learning. In the present paper, we suggest that these seemingly different strategies share important underlying characteristics and can be viewed as complimentary components of a broader approach to classroom instruction called transformational teaching. Transformational teaching involves creating dynamic relationships between teachers, students, and a shared body of knowledge to promote student learning and personal growth. From this perspective, instructors are intellectual coaches who create teams of students who collaborate with each other and with their teacher to master bodies of information. Teachers assume the traditional role of facilitating students’ acquisition of key course concepts, but do so while enhancing students’ personal development and attitudes toward learning. They accomplish these goals by establishing a shared vision for a course, providing modeling and mastery experiences, challenging and encouraging students, personalizing attention and feedback, creating experiential lessons that transcend the boundaries of the classroom, and promoting ample opportunities for preflection and reflection. We propose that these methods are synergistically related and, when used together, maximize students’ potential for intellectual and personal growth. PMID:23162369

  3. Effects of Computer-Assisted Instruction on Students' Knowledge of the Self-Determined Learning Model of Instruction and Disruptive Behavior

    ERIC Educational Resources Information Center

    Mazzotti, Valerie L.; Wood, Charles L.; Test, David W.; Fowler, Catherine H.

    2012-01-01

    Instruction about goal setting can increase students' self-determination and reduce problem behavior. Computer-assisted instruction could offer teachers another format for teaching goal setting and self-determination. This study used a multiple probes across participants design to examine the effects of computer-assisted instruction on students'…

  4. Testing the effectiveness of problem-based learning with learning-disabled students in biology

    NASA Astrophysics Data System (ADS)

    Guerrera, Claudia Patrizia

    The purpose of the present study was to investigate the effects of problem-based learning (PBL) with learning-disabled (LD) students. Twenty-four students (12 dyads) classified as LD and attending a school for the learning-disabled participated in the study. Students engaged in either a computer-based environment involving BioWorld, a hospital simulation designed to teach biology students problem-solving skills, or a paper-and-pencil version based on the computer program. A hybrid model of learning was adopted whereby students were provided with direct instruction on the digestive system prior to participating in a problem-solving activity. Students worked in dyads and solved three problems involving the digestive system in either a computerized or a paper-and-pencil condition. The experimenter acted as a coach to assist students throughout the problem-solving process. A follow-up study was conducted, one month later, to measure the long-term learning gains. Quantitative and qualitative methods were used to analyze three types of data: process data, outcome data, and follow-up data. Results from the process data showed that all students engaged in effective collaboration and became more systematic in their problem solving over time. Findings from the outcome and follow-up data showed that students in both treatment conditions, made both learning and motivational gains and that these benefits were still evident one month later. Overall, results demonstrated that the computer facilitated students' problem solving and scientific reasoning skills. Some differences were noted in students' collaboration and the amount of assistance required from the coach in both conditions. Thus, PBL is an effective learning approach with LD students in science, regardless of the type of learning environment. These results have implications for teaching science to LD students, as well as for future designs of educational software for this population.

  5. Authentic Teachers: Student Criteria Perceiving Authenticity of Teachers

    ERIC Educational Resources Information Center

    De Bruyckere, Pedro; Kirschner, Paul A.

    2016-01-01

    Authenticity is seen by many as a key for good learning and education. There is talk of authentic instruction, authentic learning, authentic problems, authentic assessment, authentic tools and authentic teachers. The problem is that while authenticity is an often-used adjective describing almost all aspects of teaching and learning, the concept…

  6. Programmed Instruction Revisited.

    ERIC Educational Resources Information Center

    Skinner, B. F.

    1986-01-01

    Discusses the history and development of teaching machines, invented to restore the important features of personalized instruction as public school class size increased. Examines teaching and learning problems over the past 50 years, including motivation, attention, appreciation, discovery, and creativity in relation to programmed instruction.…

  7. Cognitive state monitoring and the design of adaptive instruction in digital environments: lessons learned from cognitive workload assessment using a passive brain-computer interface approach

    PubMed Central

    Gerjets, Peter; Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Zander, Thorsten O.

    2014-01-01

    According to Cognitive Load Theory (CLT), one of the crucial factors for successful learning is the type and amount of working-memory load (WML) learners experience while studying instructional materials. Optimal learning conditions are characterized by providing challenges for learners without inducing cognitive over- or underload. Thus, presenting instruction in a way that WML is constantly held within an optimal range with regard to learners' working-memory capacity might be a good method to provide these optimal conditions. The current paper elaborates how digital learning environments, which achieve this goal can be developed by combining approaches from Cognitive Psychology, Neuroscience, and Computer Science. One of the biggest obstacles that needs to be overcome is the lack of an unobtrusive method of continuously assessing learners' WML in real-time. We propose to solve this problem by applying passive Brain-Computer Interface (BCI) approaches to realistic learning scenarios in digital environments. In this paper we discuss the methodological and theoretical prospects and pitfalls of this approach based on results from the literature and from our own research. We present a strategy on how several inherent challenges of applying BCIs to WML and learning can be met by refining the psychological constructs behind WML, by exploring their neural signatures, by using these insights for sophisticated task designs, and by optimizing algorithms for analyzing electroencephalography (EEG) data. Based on this strategy we applied machine-learning algorithms for cross-task classifications of different levels of WML to tasks that involve studying realistic instructional materials. We obtained very promising results that yield several recommendations for future work. PMID:25538544

  8. Computer Aided Self-Instruction Training with Impulsive Deaf Students and Learning Disabled Students: A Study on Teaching Reflective Thought. Education and Technology Series.

    ERIC Educational Resources Information Center

    Campbell, Donald S.; And Others

    Two studies examined the effectiveness of self-instruction training via a specially developed computer program to modify the impulsive problem-solving behavior of 16 deaf and 10 learning disabled (aphasic) adolescents attending two special residential schools in Canada. In the control condition, students learned the Apple LOGO computing language…

  9. Designing worked examples for learning tangent lines to circles

    NASA Astrophysics Data System (ADS)

    Retnowati, E.; Marissa

    2018-03-01

    Geometry is a branch of mathematics that deals with shape and space, including the circle. A difficult topic in the circle may be the tangent line to circle. This is considered a complex material since students have to simultaneously apply several principles to solve the problems, these are the property of circle, definition of the tangent, measurement and Pythagorean theorem. This paper discusses designs of worked examples for learning tangent line to circles and how to apply this design to an effective and efficient instructional activity. When students do not have sufficient prior knowledge, solving tangent problems might be clumsy, and as a consequence, the problem-solving activity hinders learning. According to a Cognitive Load Theory, learning occurs when students can construct new knowledge based on the relevant knowledge previously learned. When the relevant knowledge is unavailable, providing students with the worked example is suggested. Worked example may reduce unproductive process during learning that causes extraneous cognitive load. Nevertheless, worked examples must be created in such a way facilitate learning.

  10. Vocabulary Instruction: Software Flashcards vs. Word Clouds

    ERIC Educational Resources Information Center

    Mansouri, Vahid

    2015-01-01

    When it comes to language learning, vocabulary learning is the main activity focused on. Vocabulary learning is the main problem and also the goal of new language learners. It is one of the major problems that language learners encounter during learning a new language. Krashen (1989) (cited in Tokac, 2005) points out the role of vocabulary in a…

  11. The Effects of Schema-Broadening Instruction on Second Graders’ Word-Problem Performance and Their Ability to Represent Word Problems with Algebraic Equations: A Randomized Control Study

    PubMed Central

    Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas

    2010-01-01

    The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders’ word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students’ word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students’ emerging algebraic reasoning. PMID:20539822

  12. Design of a Blended Learning Environment Based on Merrill’s Principles

    NASA Astrophysics Data System (ADS)

    Simarmata, Janner; Djohar, Asari; Purba, Janulis; Juanda, Enjang A.

    2018-01-01

    Designing blended learning courses requires a systematic approach, in instructional design decisions and implementations, instructional principles help educators not only to specify the elements of the course, but also to provide a solid base from which to build the technology. The blended learning course was designed based on Merrill’s First Principles of Instruction with five phases. This paper helps inform educators about how to develop appropriate learning styles and preferences according to students’ learning needs.

  13. Learning Geometry Problem Solving by Studying Worked Examples: Effects of Learner Guidance and Expertise

    ERIC Educational Resources Information Center

    Bokosmaty, Sahar; Sweller, John; Kalyuga, Slava

    2015-01-01

    Research has demonstrated that instruction that relies heavily on studying worked examples is more effective for less experienced learners compared to instruction emphasizing problem solving. However, the guidance associated with studying some worked examples may reduce the performance of more experienced learners. This study investigated…

  14. Design and Implementation of a Simulation-Based Learning System for International Trade

    ERIC Educational Resources Information Center

    Luo, Guo-Heng; Liu, Eric Zhi-Feng; Kuo, Hung-Wei; Yuan, Shyan-Ming

    2014-01-01

    In the traditional instructional method used in international trade, teachers provide knowledge to learners by lecturing using slides and setting assignments; however, these methods merely deliver international trade knowledge rather than facilitating student development of relevant skills. To solve these problems, we proposed a simulation-based…

  15. Constraints of Motor Skill Acquisition: Implications for Teaching and Learning.

    ERIC Educational Resources Information Center

    Hamilton, Michelle L.; Pankey, Robert; Kinnunen, David

    This article presents various solutions to possible problems associated with providing skill-based instruction in physical education. It explores and applies Newell's (1986) constraints model to the analysis and teaching of motor skills in physical education, describing the role of individual, task, and environmental constraints in physical…

  16. Using Microcomputers for Assessment and Error Analysis. Monograph #23.

    ERIC Educational Resources Information Center

    Hasselbring, Ted S.; And Others

    This monograph provides an overview of computer-based assessment and error analysis in the instruction of elementary students with complex medical, learning, and/or behavioral problems. Information on generating and scoring tests using the microcomputer is offered, as are ideas for using computers in the analysis of mathematical strategies and…

  17. An Environmental Unit for the Social Studies.

    ERIC Educational Resources Information Center

    Kroll, Claudia J.

    Based on the inquiry method of learning, this instructional unit attempts to encourage students to discover for themselves the facts, problems, values, conflicts, and potential solutions of an environmental issue. Specifically, it deals with surface mining in the United States, with special focus on surface mining in Illinois. Materials and…

  18. Indian River County Environmental Education Instructional Guide. Social Studies, Grade Nine.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    The teaching guide presents social studies activities to help ninth graders learn about environmental concepts, problems, and responsibilities. Based on the Indian River County environment in Florida, it is part of a series for teachers, students, and community members. The introduction describes the county's geography, natural resources,…

  19. Indian River County Environmental Education Instructional Guide. Social Studies, Eighth Grade.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    The teaching guide presents social studies activities for eighth graders to learn about environmental concepts, problems, and responsibilities. Part of a series for teachers, students, and community members, it is based on the Indian River County environment in Florida. The introduction identifies the county's natural resources, wildlife, and…

  20. Practical Problem-Based Learning in Computing Education

    ERIC Educational Resources Information Center

    O'Grady, Michael J.

    2012-01-01

    Computer Science (CS) is a relatively new disciple and how best to introduce it to new students remains an open question. Likewise, the identification of appropriate instructional strategies for the diverse topics that constitute the average curriculum remains open to debate. One approach considered by a number of practitioners in CS education…

  1. enVisionMATH. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    "enVisionMATH," published by Pearson Education, Inc., is a core curriculum for students in kindergarten through grade 6. The program seeks to help students develop an understanding of math concepts through problem-based instruction, small-group interaction, and visual learning with a focus on reasoning and modeling. Differentiated…

  2. Computer Based Collaborative Problem Solving for Introductory Courses in Physics

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina; Lee, Kevin

    2010-03-01

    We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.

  3. Blending problem-based learning with Web technology positively impacts student learning outcomes in acid-base physiology.

    PubMed

    Taradi, Suncana Kukolja; Taradi, Milan; Radic, Kresimir; Pokrajac, Niksa

    2005-03-01

    World Wide Web (Web)-based learning (WBL), problem-based learning (PBL), and collaborative learning are at present the most powerful educational options in higher education. A blended (hybrid) course combines traditional face-to-face and WBL approaches in an educational environment that is nonspecific as to time and place. To provide educational services for an undergraduate second-year elective course in acid-base physiology, a rich, student-centered educational Web-environment designed to support PBL was created by using Web Course Tools courseware. The course is designed to require students to work in small collaborative groups using problem solving activities to develop topic understanding. The aim of the study was to identify the impact of the blended WBL-PBL-collaborative learning environment on student learning outcomes. Student test scores and satisfaction survey results from a blended WBL-PBL-based test group (n = 37) were compared with a control group whose instructional opportunities were from a traditional in-class PBL model (n = 84). WBL students scored significantly (t = 3.3952; P = 0.0009) better on the final acid-base physiology examination and expressed a positive attitude to the new learning environment in the satisfaction survey. Expressed in terms of a difference effect, the mean of the treated group (WBL) is at the 76th percentile of the untreated (face-to-face) group, which stands for a "medium" effect size. Thus student progress in the blended WBL-PBL collaborative environment was positively affected by the use of technology.

  4. Adapting Instruction to Individual Learner Differences: A Research Paradigm for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Mills, Steven C.; Ragan, Tillman J.

    This paper examines a research paradigm that is particularly suited to experimentation-related computer-based instruction and integrated learning systems. The main assumption of the model is that one of the most powerful capabilities of computer-based instruction, and specifically of integrated learning systems, is the capacity to adapt…

  5. The impact of computer-based versus "traditional" textbook science instruction on selected student learning outcomes

    NASA Astrophysics Data System (ADS)

    Rothman, Alan H.

    This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking-inquiry skills. These conclusions support the value of a non-traditional, computer-based approach to instruction, such as exemplified by The Voyage of the Mimi curriculum, and a recommendation for reform in science teaching that has recommended the use of computer technology to enhance learning outcomes from science instruction to assist in reversing the trend toward what has been perceived to be relatively poor science performance by American students, as documented by the 1996 Third International Mathematics and Science Study (TIMSS).

  6. Instruction-First and Problem-Solving-First Approaches: Alternative Pathways to Learning Complex Tasks

    ERIC Educational Resources Information Center

    Likourezos, Vicki; Kalyuga, Slava

    2017-01-01

    According to cognitive load theory, using worked examples is an effective and efficient instructional strategy for initial cognitive skill acquisition for novice learners, as it reduces cognitive load and frees up cognitive resources to build task competence. Contrary to this, productive failure (as well as invention learning, desirable…

  7. How Can Organizational and Sociocultural Learning Theories Shed Light on District Instructional Reform?

    ERIC Educational Resources Information Center

    Knapp, Michael S.

    2008-01-01

    This article explores how organizational and sociocultural learning theories can help us to understand the problem of system-wide instructional reform in school districts. After briefly summarizing the central challenges facing leaders in such districts, the article reviews key ideas associated with each theoretical lens and considers how each…

  8. Teachers' Use of a Verbally Governed Algorithm and Student Learning

    ERIC Educational Resources Information Center

    Keohane, Dolleen-Day; Greer, R. Douglas

    2005-01-01

    The effects of instructing teachers in the use of a verbally governed algorithm to solve students' learning problems were measured. The teachers were taught to analyze students' responses to instruction using a strategic protocol, which included a series of verbally governed questions. The study was designed to determine whether the instructional…

  9. The Search for Methods of Group Instruction as Effective as One-to-One Tutoring.

    ERIC Educational Resources Information Center

    Bloom, Benjamin S.

    1984-01-01

    Summarizes research exploring six solutions to the "2 sigma problem" of devising teaching-learning conditions that will enable the majority of students under group instruction to achieve at levels now possible only when students are tutored. Recommendations include using mastery learning, improving the home environment, and emphasizing higher…

  10. Perceptions of Educators Regarding Direct Social Skills Instruction for Students with Disabilities

    ERIC Educational Resources Information Center

    Kok, Amor

    2014-01-01

    As mandated by state and federal laws, students with disabilities have been mainstreamed into a general educational setting. The problem was these students exhibited behavior that interfered with their learning or the learning of other students. The perception of educators and administrators regarding social skills instruction for students with…

  11. The Effective Utilization of an Instructional Film in a Learning Sequence

    ERIC Educational Resources Information Center

    Thomas, Ian D.

    1973-01-01

    Summarizes some of the main research findings relating to the utilization of instructional films in classroom situations. Reports the confirmation of a number of these findings in a survey conducted to investigate the teaching and learning practices used in acquiring the ability to solve simple problems using Coulomb's Law. (Author/JR)

  12. Authentic Performance of Complex Problem-Solving Tasks with an EPSS.

    ERIC Educational Resources Information Center

    Leighton, Chet; McCabe, Cynthia

    Just-In-Time Learning (JIT Learning) is a semester-long graduate course that teaches corporate trainers and instructional designers how to design performance improvement interventions. This course is part of a Master's program in Instructional Technology at San Francisco State University. The course has been offered three times and has been…

  13. Instructional Design Issues Facing E-Learning: East Meets West.

    ERIC Educational Resources Information Center

    Tsai, Ping-Yeh; Rendon, Betty; Cornell, Richard

    The rapid emergence of e-learning in business and industry has been accompanied by a number of problems when instructional design concerns are incorporated into the overall curriculum development. This paper examines two companies in two distinct geographical extremes of Shin-Ju, Taiwan and Central Florida to see if, when comparisons are made,…

  14. The Effect of Cognitively Guided Instruction on Primary Students' Math Achievement, Problem-Solving Abilities and Teacher Questioning

    ERIC Educational Resources Information Center

    Medrano, Juan

    2012-01-01

    The purpose of this study is to impact the teaching and learning of math of 2nd through 4th grade math students at Porfirio H. Gonzales Elementary School. The Cognitively Guided Instruction (CGI) model serves as the independent variable for this study. Its intent is to promote math instruction that emphasizes problem-solving to a greater degree…

  15. Comparing the cognitive differences resulting from modeling instruction: Using computer microworld and physical object instruction to model real world problems

    NASA Astrophysics Data System (ADS)

    Oursland, Mark David

    This study compared the modeling achievement of students receiving mathematical modeling instruction using the computer microworld, Interactive Physics, and students receiving instruction using physical objects. Modeling instruction included activities where students applied the (a) linear model to a variety of situations, (b) linear model to two-rate situations with a constant rate, (c) quadratic model to familiar geometric figures. Both quantitative and qualitative methods were used to analyze achievement differences between students (a) receiving different methods of modeling instruction, (b) with different levels of beginning modeling ability, or (c) with different levels of computer literacy. Student achievement was analyzed quantitatively through a three-factor analysis of variance where modeling instruction, beginning modeling ability, and computer literacy were used as the three independent factors. The SOLO (Structure of the Observed Learning Outcome) assessment framework was used to design written modeling assessment instruments to measure the students' modeling achievement. The same three independent factors were used to collect and analyze the interviews and observations of student behaviors. Both methods of modeling instruction used the data analysis approach to mathematical modeling. The instructional lessons presented problem situations where students were asked to collect data, analyze the data, write a symbolic mathematical equation, and use equation to solve the problem. The researcher recommends the following practice for modeling instruction based on the conclusions of this study. A variety of activities with a common structure are needed to make explicit the modeling process of applying a standard mathematical model. The modeling process is influenced strongly by prior knowledge of the problem context and previous modeling experiences. The conclusions of this study imply that knowledge of the properties about squares improved the students' ability to model a geometric problem more than instruction in data analysis modeling. The uses of computer microworlds such as Interactive Physics in conjunction with cooperative groups are a viable method of modeling instruction.

  16. Instructable autonomous agents. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Huffman, Scott Bradley

    1994-01-01

    In contrast to current intelligent systems, which must be laboriously programmed for each task they are meant to perform, instructable agents can be taught new tasks and associated knowledge. This thesis presents a general theory of learning from tutorial instruction and its use to produce an instructable agent. Tutorial instruction is a particularly powerful form of instruction, because it allows the instructor to communicate whatever kind of knowledge a student needs at whatever point it is needed. To exploit this broad flexibility, however, a tutorable agent must support a full range of interaction with its instructor to learn a full range of knowledge. Thus, unlike most machine learning tasks, which target deep learning of a single kind of knowledge from a single kind of input, tutorability requires a breadth of learning from a broad range of instructional interactions. The theory of learning from tutorial instruction presented here has two parts. First, a computational model of an intelligent agent, the problem space computational model, indicates the types of knowledge that determine an agent's performance, and thus, that should be acquirable via instruction. Second, a learning technique, called situated explanation specifies how the agent learns general knowledge from instruction. The theory is embodied by an implemented agent, Instructo-Soar, built within the Soar architecture. Instructo-Soar is able to learn hierarchies of completely new tasks, to extend task knowledge to apply in new situations, and in fact to acquire every type of knowledge it uses during task performance - control knowledge, knowledge of operators' effects, state inferences, etc. - from interactive natural language instructions. This variety of learning occurs by applying the situated explanation technique to a variety of instructional interactions involving a variety of types of instructions (commands, statements, conditionals, etc.). By taking seriously the requirements of flexible tutorial instruction, Instructo-Soar demonstrates a breadth of interaction and learning capabilities that goes beyond previous instructable systems, such as learning apprentice systems. Instructo-Soar's techniques could form the basis for future 'instructable technologies' that come equipped with basic capabilities, and can be taught by novice users to perform any number of desired tasks.

  17. Using National Health Care Databases and Problem-Based Practice Analysis to Inform Integrated Curriculum Development.

    PubMed

    Baker, Amy J; Raymond, Mark R; Haist, Steven A; Boulet, John R

    2017-04-01

    One challenge when implementing case-based learning, and other approaches to contextualized learning, is determining which clinical problems to include. This article illustrates how health care utilization data, readily available from the National Center for Health Statistics (NCHS), can be incorporated into an educational needs assessment to identify medical problems physicians are likely to encounter in clinical practice. The NCHS survey data summarize patient demographics, diagnoses, and interventions for tens of thousands of patients seen in various settings, including emergency departments (EDs), clinics, and hospitals.Selected data from the National Hospital Ambulatory Medical Care Survey: Emergency Department illustrate how instructional materials can be derived from the results of such public-use health care data. Using fever as the reason for visit to the ED, the patient management path is depicted in the form of a case drill-down by exploring the most common diagnoses, blood tests, diagnostic studies, procedures, and medications associated with fever.Although these types of data are quite useful, they should not serve as the sole basis for determining which instructional cases to include. Additional sources of information should be considered to ensure the inclusion of cases that represent infrequent but high-impact problems and those that illustrate fundamental principles that generalize to other cases.

  18. Fashions in Instructional Development.

    ERIC Educational Resources Information Center

    Knapper, Christopher K.

    This paper on instructional development notes the trend toward teaching improvement efforts, classifies instructional development centers in terms of their differing philosophies of operation, and identifies some general problems that have been encountered in institutional efforts to improve teaching and learning. Centers in North America, Europe,…

  19. Special Focus: Effective Instruction in Reading. Strategies for Vocabulary Instruction.

    ERIC Educational Resources Information Center

    Peters, Ellen, Ed.; Dixon, Robert

    1987-01-01

    Research based suggestions are presented for effective vocabulary instruction strategies, including: learning new labels; learning concepts; and learning to learn meanings. Regardless of the method chosen, it is crucial that students: demonstrate generalization abilities; be given time to learn new material; periodically review what they learn;…

  20. In search for instructional techniques to maximize the use of germane cognitive resources: A case of teaching complex tasks in physics

    NASA Astrophysics Data System (ADS)

    Sliva, Yekaterina

    The purpose of this study was to introduce an instructional technique for teaching complex tasks in physics, test its effectiveness and efficiency, and understand cognitive processes taking place in learners' minds while they are exposed to this technique. The study was based primarily on cognitive load theory (CLT). CLT determines the amount of total cognitive load imposed on a learner by a learning task as combined intrinsic (invested in comprehending task complexity) and extraneous (wasteful) cognitive load. Working memory resources associated with intrinsic cognitive load are defined as germane resources caused by element interactivity that lead to learning, in contrast to extraneous working memory resources that are devoted to dealing with extraneous cognitive load. However, the amount of learner's working memory resources actually devoted to a task depends on how well the learner is engaged in the learning environment. Since total cognitive load has to stay within limits of working memory capacity, both extraneous and intrinsic cognitive load need to be reduced. In order for effective learning to occur, the use of germane cognitive resources should be maximized. In this study, the use of germane resources was maximized for two experimental groups by providing a learning environment that combined problem-solving procedure with prompts to self-explain with and without completion problems. The study tested three hypotheses and answered two research questions. The first hypothesis predicting that experimental treatments would reduce total cognitive load was not supported. The second hypothesis predicting that experimental treatments would increase performance was supported for the self-explanation group only. The third hypothesis that tested efficiency measure as adopted from Paas and van Merrienboer (1993) was not supported. As for the research question of whether the quality of self-explanations would change with time for the two experimental conditions, it was determined that time had a positive effect on such quality. The research question that investigated learners' attitudes towards the instructions revealed that experimental groups understood the main idea behind the suggested technique and positively reacted to it. The results of the study support the conclusions that (a) prompting learners to self-explain while independently solving problems can increase performance, especially on far transfer questions; (b) better performance is achieved in combination with increased mental effort; (c) self-explanations do not increase time on task; and (d) quality of self-explanations can be improved with time. Results based on the analyses of learners' attitudes further support that learners in the experimental groups understood the main idea behind the suggested techniques and positively reacted to them. The study also raised concern about application of efficiency formula for instructional conditions that increase both performance and mental effort in CLT. As a result, an alternative model was suggested to explain the relationship between performance and mental effort based on Yerkes-Dodson law (1908). Keywords: instructional design, cognitive load, complex tasks, problem-solving, self-explanation.

  1. Cognitive and learning sciences in biomedical and health instructional design: A review with lessons for biomedical informatics education.

    PubMed

    Patel, Vimla L; Yoskowitz, Nicole A; Arocha, Jose F; Shortliffe, Edward H

    2009-02-01

    Theoretical and methodological advances in the cognitive and learning sciences can greatly inform curriculum and instruction in biomedicine and also educational programs in biomedical informatics. It does so by addressing issues such as the processes related to comprehension of medical information, clinical problem-solving and decision-making, and the role of technology. This paper reviews these theories and methods from the cognitive and learning sciences and their role in addressing current and future needs in designing curricula, largely using illustrative examples drawn from medical education. The lessons of this past work are also applicable, however, to biomedical and health professional curricula in general, and to biomedical informatics training, in particular. We summarize empirical studies conducted over two decades on the role of memory, knowledge organization and reasoning as well as studies of problem-solving and decision-making in medical areas that inform curricular design. The results of this research contribute to the design of more informed curricula based on empirical findings about how people learn and think, and more specifically, how expertise is developed. Similarly, the study of practice can also help to shape theories of human performance, technology-based learning, and scientific and professional collaboration that extend beyond the domain of medicine. Just as biomedical science has revolutionized health care practice, research in the cognitive and learning sciences provides a scientific foundation for education in biomedicine, the health professions, and biomedical informatics.

  2. Achieving meaningful mathematics literacy for students with learning disabilities. Cognition and Technology Group at Vanderbilt.

    PubMed

    Goldman, S R; Hasselbring, T S

    1997-01-01

    In this article we consider issues relevant to the future of mathematics instruction and achievement for students with learning disabilities. The starting point for envisioning the future is the changing standards for mathematics learning and basic mathematical literacy. We argue that the shift from behaviorist learning theories to constructivist and social constructivist theories (see Rivera, this series) provides an opportunity to develop and implement a hybrid model of mathematics instruction. The hybrid model we propose embeds, or situates, important skill learning in meaningful contexts. We discuss some examples of instructional approaches to complex mathematical problem solving that make use of meaningful contexts. Evaluation data on these approaches have yielded positive and encouraging results for students with learning disabilities as well as general education students. Finally, we discuss various ways in which technology is important for realizing hybrid instructional models in mathematics.

  3. Understanding Teacher Perceptions in a Professional Development Program for a Middle Grade Science

    NASA Astrophysics Data System (ADS)

    Deloney, Dericka B.

    The standards-based framework requires teachers to evaluate and in some cases change their instructional approach to more student-centered and inquiry-based in an effort to help students meet the standards. The rationale for this study was to determine the skills needed for teachers to be effective in a standard-based, problem-based learning (PBL) constructivist classroom. Traditionally, teachers in this school district transitioning from teacher to student-centered classrooms need new skills when implementing this type of instruction. A qualitative case study design served to highlight the research questions for this project study. The participants in this study participated in data collection activities that include a multiple-choice survey, an interview, and the sharing of their PBL units. Artifacts, professional development teaching resources, from the workshop added credence to the survey and interview responses. The findings from each research question addressed the teachers' perception of their understanding and the obstacles of instructional design, development, and implementation the participants encountered. The results of this study indicated that teachers had problems with designing and implementing this instructional strategy due to lack of time and resources. This data assisted the development of district specific PBL sustainable professional development program that could be adaptable to other curriculums and school systems. Social change resulting from this study could include a framework for developing K-12 professional development as well as instructional programs that incorporates PBL curriculum design to enhance the student's inquiry, problem-solving, and decision-making skills that in turn should change their academic achievement and scores on high stakes test in science.

  4. Project-Based Instruction: A Great Match for Informational Texts

    ERIC Educational Resources Information Center

    Duke, Nell K.

    2016-01-01

    In a project-based learning approach, students work over an extended time period for a purpose beyond satisfying a school requirement--to build something, to create something, to respond to a question they have, to solve a real problem, or to address a real need. For example, students might work to plan, plant, and cultivate a garden to help feed…

  5. Content-oriented Approach to Organization of Theories and Its Utilization

    NASA Astrophysics Data System (ADS)

    Hayashi, Yusuke; Bourdeau, Jacqueline; Mizoguch, Riichiro

    In spite of the fact that the relation between theory and practice is a foundation of scientific and technological development, the trend of increasing the gap between theory and practice accelerates in these years. The gap embraces a risk of distrust of science and technology. Ontological engineering as the content-oriented research is expected to contribute to the resolution of the gap. This paper presents the feasibility of organization of theoretical knowledge on ontological engineering and new-generation intelligent systems based on it through an application of ontological engineering in the area of learning/instruction support. This area also has the problem of the gap between theory and practice, and its resolution is strongly required. So far we proposed OMNIBUS ontology, which is a comprehensive ontology that covers different learning/instructional theories and paradigms, and SMARTIES, which is a theory-aware and standard-compliant authoring system for making learning/instructional scenarios based on OMNIBUS ontology. We believe the theory-awareness and standard-compliance bridge the gap between theory and practice because it links theories to practical use of standard technologies and enables practitioners to easily enjoy theoretical support while using standard technologies in practice. The following goals are set in order to achieve it; computers (1) understand a variety of learning/instructional theories based on the organization of them, (2) utilize the understanding for helping authors' learning/instructional scenario making and (3) make such theoretically sound scenarios interoperable within the framework of standard technologies. This paper suggests an ontological engineering solution to the achievement of these three goals. Although the evaluation is far from complete in terms of practical use, we believe that the results of this study address high-level technical challenges from the viewpoint of the current state of the art in the research area of artificial intelligence not only in education but also in general, and therefore we hope that constitute a substantial contribution for organization of theoretical knowledge in many other areas.

  6. Transfer of Learning Transformed

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2013-01-01

    Instruction is motivated by the assumption that students can transfer their learning, or apply what they have learned in school to another setting. A common problem arises when the expected transfer does not take place, what has been referred to as the inert knowledge problem. More than an academic inconvenience, the failure to transfer is a major…

  7. A Phenomenological Study of Elementary School Instructional Coaches

    ERIC Educational Resources Information Center

    Seid, Carol M.

    2017-01-01

    Problem: Many school districts have implemented instructional coaching as a mechanism to increase professional capacity and student learning (Bean, 2009; Ippolito, 2010; Lia, 2016; Massey, 2012; Pomerantz & Pierce, 2013; Walpole & Blamey, 2008). Instructional coaches have many roles and responsibilities (Bean, 2009; Borman, Feger, &…

  8. How Do We Match Instructional Effectiveness with Learning Curves?

    ERIC Educational Resources Information Center

    Branum-Martin, Lee; Mehta, Paras D.; Taylor, W. Patrick; Carlson, Coleen D.; Lei, Xiaoxuan; Hunter, C. Vincent; Francis, David J.

    2015-01-01

    In order to examine the effectiveness of instruction, the authors confront formidable statistical problems, including multivariate structure of classroom observations, longitudinal dependence of both classroom observations and student outcomes. As the authors begin to examine instruction, classroom observations involve multiple variables for which…

  9. Moving to Learn: How Guiding the Hands Can Set the Stage for Learning

    ERIC Educational Resources Information Center

    Brooks, Neon; Goldin-Meadow, Susan

    2016-01-01

    Previous work has found that guiding problem-solvers' movements can have an immediate effect on their ability to solve a problem. Here we explore these processes in a learning paradigm. We ask whether guiding a learner's movements can have a delayed effect on learning, setting the stage for change that comes about only after instruction. Children…

  10. Physics faculty beliefs and values about the teaching and learning of problem solving. II. Procedures for measurement and analysis

    NASA Astrophysics Data System (ADS)

    Henderson, Charles; Yerushalmi, Edit; Kuo, Vince H.; Heller, Kenneth; Heller, Patricia

    2007-12-01

    To identify and describe the basis upon which instructors make curricular and pedagogical decisions, we have developed an artifact-based interview and an analysis technique based on multilayered concept maps. The policy capturing technique used in the interview asks instructors to make judgments about concrete instructional artifacts similar to those they likely encounter in their teaching environment. The analysis procedure alternatively employs both an a priori systems view analysis and an emergent categorization to construct a multilayered concept map, which is a hierarchically arranged set of concept maps where child maps include more details than parent maps. Although our goal was to develop a model of physics faculty beliefs about the teaching and learning of problem solving in the context of an introductory calculus-based physics course, the techniques described here are applicable to a variety of situations in which instructors make decisions that influence teaching and learning.

  11. Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction

    ERIC Educational Resources Information Center

    Muller, Orna; Haberman, Bruria

    2008-01-01

    Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…

  12. Use of an Automatic Problem Generator to Teach Basic Skills in a First Course in Assembly Language.

    ERIC Educational Resources Information Center

    Benander, Alan; And Others

    1989-01-01

    Discussion of the use of computer aided instruction (CAI) and instructional software in college level courses highlights an automatic problem generator, AUTOGEN, that was written for computer science students learning assembly language. Design of the software is explained, and student responses are reported. (nine references) (LRW)

  13. Problems with science teaching and learning for English Language Learners in one diverse elementary school

    NASA Astrophysics Data System (ADS)

    Rodriguez, Karen Margaret

    This qualitative study centered on science instruction and learning that occurred in a Title I elementary school in a suburban district in southeast Texas. Twelve teachers were interviewed in order to understand their perceptions of their classroom practices in terms of science instruction and learning for English Language Learners (ELL). This study also analyzed information gathered from teacher lesson plan and classroom observations. The participants’ awareness of the instructional practices necessary for ELL student achievement in science was evident through analysis of interview transcripts. However, after observation of actual classroom instruction, it became apparent that the teaching and learning in most classrooms was not reflective of this awareness. This study proposes that this disconnect may be a result of a lack of quality professional development available to the teachers. The study also outlines and describes the characteristics of quality professional development and its relationship to focused instruction and continuous student improvement.

  14. Using Cognitive Load Theory to Tailor Instruction to Levels of Accounting Students' Expertise

    ERIC Educational Resources Information Center

    Blayney, Paul; Kalyuga, Slava; Sweller, John

    2015-01-01

    Tailoring of instructional methods to learner levels of expertise may reduce extraneous cognitive load and improve learning. Contemporary technology-based learning environments have the potential to substantially enable learner-adapted instruction. This paper investigates the effects of adaptive instruction based on using the isolated-interactive…

  15. Improving Transfer of Learning through Designed Context-Based Instructional Materials

    ERIC Educational Resources Information Center

    Bahtaji, Michael Allan A.

    2015-01-01

    This study investigates the outcome of designed source-text materials in context-based physics learning using validated test questions in mechanics. Two groups of students received context-based instruction (experimental group) and one group received content-based instruction (control group). These three groups of students are only different with…

  16. Comparing problem-based learning and lecture as methods to teach whole-systems design to engineering students

    NASA Astrophysics Data System (ADS)

    Dukes, Michael Dickey

    The objective of this research is to compare problem-based learning and lecture as methods to teach whole-systems design to engineering students. A case study, Appendix A, exemplifying successful whole-systems design was developed and written by the author in partnership with the Rocky Mountain Institute. Concepts to be tested were then determined, and a questionnaire was developed to test students' preconceptions. A control group of students was taught using traditional lecture methods, and a sample group of students was taught using problem-based learning methods. After several weeks, the students were given the same questionnaire as prior to the instruction, and the data was analyzed to determine if the teaching methods were effective in correcting misconceptions. A statistically significant change in the students' preconceptions was observed in both groups on the topic of cost related to the design process. There was no statistically significant change in the students' preconceptions concerning the design process, technical ability within five years, and the possibility of drastic efficiency gains with current technologies. However, the results were inconclusive in determining that problem-based learning is more effective than lecture as a method for teaching the concept of whole-systems design, or vice versa.

  17. Study Sequence Matters for the Inductive Learning of Cognitive Concepts

    ERIC Educational Resources Information Center

    Sana, Faria; Yan, Veronica X.; Kim, Joseph A.

    2017-01-01

    The sequence in which problems of different concepts are studied during instruction impacts concept learning. For example, several problems of a given concept can be studied together (blocking) or several problems of different concepts can be studied together (interleaving). In the current study, we demonstrate that the 2 sequences impact concept…

  18. Designing Opportunities to Learn Mathematics Theory-Building Practices

    ERIC Educational Resources Information Center

    Bass, Hyman

    2017-01-01

    Mathematicians commonly distinguish two modes of work in the discipline: "Problem solving," and "theory building." Mathematics education offers many opportunities to learn problem solving. This paper explores the possibility, and value, of designing instructional activities that provide supported opportunities for students to…

  19. Toward an instructionally oriented theory of example-based learning.

    PubMed

    Renkl, Alexander

    2014-01-01

    Learning from examples is a very effective means of initial cognitive skill acquisition. There is an enormous body of research on the specifics of this learning method. This article presents an instructionally oriented theory of example-based learning that integrates theoretical assumptions and findings from three research areas: learning from worked examples, observational learning, and analogical reasoning. This theory has descriptive and prescriptive elements. The descriptive subtheory deals with (a) the relevance and effectiveness of examples, (b) phases of skill acquisition, and (c) learning processes. The prescriptive subtheory proposes instructional principles that make full exploitation of the potential of example-based learning possible. Copyright © 2013 Cognitive Science Society, Inc.

  20. Literacy Instruction: Practices, Problems, Promises. Proceedings of the Annual Conference and Course on Literacy (37th, Pittsburgh, Pennsylvania, June 1990).

    ERIC Educational Resources Information Center

    King, Caryn M., Comp.; Bean, Rita M., Comp.

    This conference proceedings document contains 18 papers focusing on ideas and strategies for effective literacy instruction. Following opening remarks by Rita M. Bean, are four keynote addresses: "Toward Uncommon Sense Literacy Learning; Integrating Reading and Writing" (John Mayher); "Literacy Learning in At-Risk First…

  1. The Impact of Peer Instruction on College Students' Beliefs about Physics and Conceptual Understanding of Electricity and Magnetism

    ERIC Educational Resources Information Center

    Gok, Tolga

    2012-01-01

    The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…

  2. ABILITIES OF FIRST-GRADE PUPILS TO LEARN MATERIALS IN TERMS OF ALGEBRAIC STRUCTURES BY TEACHING MACHINES.

    ERIC Educational Resources Information Center

    CRAWFORD, ROBERT C.; KEISLAR, EVAN R.

    THE MAJOR PROBLEM OF THIS INVESTIGATION WAS TO DETERMINE TO WHAT EXTENT FIRST-GRADE PUPILS ARE CAPABLE OF LEARNING ALGEBRAIC STRUCTURES THROUGH PROGRAMED INSTRUCTION. IN THE EXPERIMENT APPROXIMATELY 130 FIRST-GRADERS WERE INSTRUCTED THROUGH AUDIOVISUAL TEACHING MACHINES FOR APPROXIMATELY 15 WEEKS. AT THE END OF THE PROGRAM, THE CHILDREN WERE…

  3. As the medical education curriculum is changing, it is still good to train students and physicians in many different patient locations.

    PubMed

    Reynolds, Herbert Y

    2014-12-01

    Medical teaching methods are changing with students now encouraged to be self-learners, accruing more knowledge themselves, receiving less didactic instruction, utilizing more peer group interactions, and using more portable self-accessible technology to get medical information. Medical school curriculums are adapting with more simulated instruction, group analysis of clinical problems (problem-based learning), earlier exposure to patients and their evaluation, volunteer medical missions, and participation in relevant clinical research. But will these changes, especially the use of portable technology for retrieving medical information, enhance learning, and improve devising clinical strategy? To build clinical skills and confidence, it still seems relevant for the students and clinicians to evaluate patients in multiple locations under various circumstances. This is perhaps necessary during all phases of medical study, post-graduate training, research investigation, and in a medical career, including later phases when senior and elder faculty participate in medical teaching and/or provide health care. The emphasis of this perspective is to assess some of these clinical "settings" that reinforce learning skills and flexible clinical approaches.

  4. A study of Web-based instructional strategies in post-secondary sciences

    NASA Astrophysics Data System (ADS)

    Stanley, Scott A.

    There is a large demand for web-based instruction offered by post secondary institutions (U.S. Department of Education, 2003), but only recently have post secondary science faculty begun to develop courses for this medium (Carr, 2000). Research evaluating the effectiveness of this type of instruction suggests that there is no significant difference in the grades between students in traditional and online courses (Russell, 1999; Spooner, Jordan, Agozzine, & Spooner, 1999; Verduin & Clark, 1991; Wideman & Owston, 1999). It is important to note that while grades may be similar in face-to-face (FTF) and web-based science courses, it cannot be implied that student learning is identical in both environments. Experts in web-based instruction claim that teaching practices for web-based instruction are similar to those used in a FTF environment (Bronack & Riedl, 1998; Ragan, 1999). This is troublesome when viewed in context with the data on instructional strategies used in FTF post-secondary science courses. It is well documented that undergraduate students perceive science pedagogy as ineffective (NSF, 1996; Seymour & Hewitt, 1997; Tobias, 1990). This research examined web-based instructional strategies in post secondary science courses. Using a web-based questionnaire, this study collected data in order to examine the frequency of use of previously identified effective FTF instructional strategies, and the difference in use of instructional strategies in the different fields of science. One hundred and thirty respondents completed the web-based questionnaire. Data from faculty (N=122) who teach more than 75% of their course online were analyzed. Data analyses revealed the frequency of use of effective face-to-face instructional strategies is variable. Science faculty do not regularly assess students' conceptual understandings prior to the presentation of new concepts. Faculty frequently made connections to the real-world and incorporated problem solving using real-life problems. Emphasis on discovering things and devising an investigation tended to be conducted individually and not as part of a collaborative group. Instructor-student interaction tended to be asynchronous in nature. Course discussions frequently centered on course concepts and conceptual problems. There was no significant difference in the use of instructional strategies in online science courses for the different fields of science. The results of this study indicate post secondary science faculty utilization of previously identified effective face-to-face instructional strategies in online science courses was variable. Specific recommendations for faculty development and future research are included in the study.

  5. Multiple Representation Instruction First versus Traditional Algorithmic Instruction First: Impact in Middle School Mathematics Classrooms

    ERIC Educational Resources Information Center

    Flores, Raymond; Koontz, Esther; Inan, Fethi A.; Alagic, Mara

    2015-01-01

    This study examined the impact of the order of two teaching approaches on students' abilities and on-task behaviors while learning how to solve percentage problems. Two treatment groups were compared. MR first received multiple representation instruction followed by traditional algorithmic instruction and TA first received these teaching…

  6. The Application of Theoretical Factors in Teaching Problem-Solving by Programed Instruction. 1970.

    ERIC Educational Resources Information Center

    Seidel, Robert J.; Hunter, Harold G.

    1970-01-01

    Research was undertaken to establish guidelines for applying programed instruction to training courses in which rules and principles must be learned. The research vehicle was a portion of a course using automated instruction to teach computer programing. The effects of various factors on helping the students remember and apply the instruction were…

  7. Evidence of Teacher Change after Participating in TRIAD's Learning Trajectories-Based Professional Development and after Implementing Learning Trajectory-Based Mathematics Instruction

    ERIC Educational Resources Information Center

    Sarama, Julie; Clements, Douglas H.; Spitler, Mary Elaine

    2017-01-01

    Increased attention has been given to learning trajectories (LT) as structural frameworks for educational instruction. The purpose of this study was to explore preschool teachers' descriptions of self-change, seven years after the start of their participation in LT-based professional development and instruction. This study was part of a larger…

  8. Leveraging PBL and Game to Redesign an Introductory Course

    ERIC Educational Resources Information Center

    Warren, Scott J.; Dondlinger, Mary Jo; Jones, Greg; Whitworth, Cliff

    2010-01-01

    The purpose of this paper is to discuss one instructional design that leverages problem-based learning and game structures as a means of developing innovative higher education courses for students as responsive, lived experiences. This paper reviews a curricular redesign that stemmed from the evaluation of an introductory course in computer…

  9. Moving the Learning of Teaching Closer to Practice: Teacher Education Implications of School-Based Inquiry Teams

    ERIC Educational Resources Information Center

    Gallimore, Ronald; Ermeling, Bradley A.; Saunders, William M.; Goldenberg, Claude

    2009-01-01

    A 5-year prospective, quasi-experimental investigation demonstrated that grade-level teams in 9 Title 1 schools using an inquiry-focused protocol to solve instructional problems significantly increased achievement. Teachers applying the inquiry protocol shifted attribution of improved student performance to their teaching rather than external…

  10. Whose Voices Will Be Heard? Creating a Vision for the Future.

    ERIC Educational Resources Information Center

    McGuire, Margit E.

    1992-01-01

    Discusses society in the future. Expresses concern over social problems and misuse by the media of terms relating to diversity and multiculturalism. Lists themes for effective instruction in social studies as integration of topics and meaningful, challenging, active, and value-based learning. Urges that self-esteem, mutual respect, and cooperative…

  11. Physically Handicapped in Science: Final Project Report.

    ERIC Educational Resources Information Center

    O'Brien, Maureen B.; And Others

    A two-year project was conducted by St. Mary's Junior College to improve the science literacy of visually-impaired students (VIS) through the adaptation of instructional methods and materials. A four-step process was used: (1) learning materials were reviewed to identify problem areas; (2) preliminary adaptations were made based on the review; (3)…

  12. Opening "The Door": An Evaluation of the Efficacy of a Problem-Based Learning Game

    ERIC Educational Resources Information Center

    Warren, Scott J.; Dondlinger, Mary Jo; McLeod, Julie; Bigenho, Chris

    2012-01-01

    As higher education institutions seek to improve undergraduate education, initiatives are underway to target instructional methods, re-examine curricula, and apply innovative technologies to better engage students with content. This article discusses the findings of an exploratory study focused on a course redesign that game elements, PBL methods,…

  13. Anatomy Instruction in Medical Schools: Connecting the Past and the Future

    ERIC Educational Resources Information Center

    Leung, Kai-kuen; Lu, Kuo-Shyan; Huang, Tien-Shang; Hsieh, Bor-Shen

    2006-01-01

    Anatomy curriculum has changed dramatically around the world since the 1960s. These changes include the reduction of course hours, the abandonment of cadaver dissection, the use of problem-based learning, application of other teaching modalities such as prosected specimens, models, radiographic images, computer simulations, and the introduction of…

  14. Distance Learning: A Way of Life-Long Learning

    DTIC Science & Technology

    2005-09-01

    promise of future benefits. 15. SUBJECT TERMS training, educational technology , distributed learning , distance learning , collaboration, online instruction...knowledge." - Aristotle Introduction Modern learning technology assumes various names: distance learning , distributed training, computer-based...training, web-based learning , or advanced distributed learning . No matter the name, the basic concept is using computer technology for instruction with no

  15. Conditions-Based Learning Theory as a Framework for Comparative-Effectiveness Reviews: A Worked Example.

    PubMed

    Rourke, Liam; Leong, Jessica; Chatterly, Patricia

    2018-02-16

    Phenomenon: An evidence-informed era of medical education encourages the generation and use of comparative-effectiveness reviews, yet the reviews often conclude, curiously, that all instructional approaches are equally effective. We used a conditions-based learning theory to structure a review of the comparative-effectiveness literature on electrocardiogram instruction. We searched MEDLINE, EMBASE (Ovid), ERIC (Ovid), PsycINFO (Ovid), and CINAHL (EBSCO) from inception to June 2016. We selected prospective studies that examined the effect of instructional interventions on participants' knowledge and skill with electrocardiogram interpretation. Two reviewers extracted information on the quality of the studies, the effect of instruction on the acquisition of knowledge and skill, and instructional quality. Instructional quality is an index of the extent to which instruction incorporates 4 practices of Gagne's conditions-based learning theory: presenting information, eliciting performance, providing feedback, and assessing learning. Twenty-five studies (3,286 participants) evaluating 47 instructional interventions were synthesized. The methodological quality of most studies was moderate. Instructional quality varied: All interventions presented information and assessed learning, but fewer than half elicited performances or provided feedback. Instructional interventions that incorporated all 4 components improved trainees' abilities considerably more than those that incorporated 3 or fewer; respectively, standardized mean difference (SMD) = 2.80, 95% confidence interval (CI) [2.05, 3.55], versus SMD = 1.44, 95% CI [1.18, 1.69]. Studies that compared "innovative" to "traditional" types of instruction did not yield a significant pooled effect: SMD = 0.18, 95% CI [-0.09, 0.45]. Insights: The use of a conditions-based learning theory to organize the comparative-effectiveness literature reveals differences in the instructional impact of different instructional approaches. It overturns the unlikely, but common, conclusion that all approaches are equally effective.

  16. The Effects of Goal-Oriented Instructions in Digital Game-Based Learning

    ERIC Educational Resources Information Center

    Erhel, Séverine; Jamet, Eric

    2016-01-01

    Few studies have investigated the effects of the instructions provided in educational computer games on cognitive processing and learning outcomes. In our experiment, we sought to compare the effects on learning outcomes of two different types of goal-oriented instructions: "mastery-goal" instructions, which prompt learners to develop…

  17. A Practical Decision Guide for Integrating Digital Applications and Handheld Devices into Advanced Individual Training

    DTIC Science & Technology

    2013-07-01

    the devices increase efficiency and make instruction easier for them. (1) Demonstrate the ability of mobile learning to improve student learning ...predictors of learning , after controlling for the effects of cognitive ability and pre-training knowledge of the subject matter. Equally as...conventional teaching. PBL is an instructional model originally developed in medical schools , in which students are given a complex problem to solve that may

  18. How doctors learn: the role of clinical problems across the medical school-to-practice continuum.

    PubMed

    Slotnick, H B

    1996-01-01

    The author proposes a theory of how physicians learn that uses clinical problem solving as its central feature. His theory, which integrates insights from Maslow, Schön, Norman, and others, claims that physicians-in-training and practicing physicians learn largely by deriving insights from clinical experience. These insights allow the learner to solve future problems and thereby address the learner's basic human needs for security, affiliation, and self-esteem. Ensuring that students gain such insights means that the proper roles of the teacher are (1) to select problems for students to solve and offer guidance on how to solve them, and (2) to serve as a role model of how to reflect on the problem, its solution, and the solution's effectiveness. Three principles guide instruction within its framework for learning: (1) learners, whether physicians-in-training or practicing physicians, seek to solve problems they recognize they have; (2) learners want to be involved in their own learning; and (3) instruction must both be time-efficient and also demonstrate the range of ways in which students can apply what they learn. The author concludes by applying the theory to an aspect of undergraduate education and to the general process of continuing medical education.

  19. Effects of interactive instructional techniques in a web-based peripheral nervous system component for human anatomy.

    PubMed

    Allen, Edwin B; Walls, Richard T; Reilly, Frank D

    2008-02-01

    This study investigated the effects of interactive instructional techniques in a web-based peripheral nervous system (PNS) component of a first year medical school human anatomy course. Existing data from 9 years of instruction involving 856 students were used to determine (1) the effect of web-based interactive instructional techniques on written exam item performance and (2) differences between student opinions of the benefit level of five different types of interactive learning objects used. The interactive learning objects included Patient Case studies, review Games, Simulated Interactive Patients (SIP), Flashcards, and unit Quizzes. Exam item analysis scores were found to be significantly higher (p < 0.05) for students receiving the instructional treatment incorporating the web-based interactive learning objects than for students not receiving this treatment. Questionnaires using a five-point Likert scale were analysed to determine student opinion ratings of the interactive learning objects. Students reported favorably on the benefit level of all learning objects. Students rated the benefit level of the Simulated Interactive Patients (SIP) highest, and this rating was significantly higher (p < 0.05) than all other learning objects. This study suggests that web-based interactive instructional techniques improve student exam performance. Students indicated a strong acceptance of Simulated Interactive Patient learning objects.

  20. Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.

    PubMed

    Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P

    2017-01-01

    Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary virtual patients in basic sciences can be introduced and used for the presentation of integrative clinical case scenarios. Student post-course comments also supported the conclusion that overall the virtual cases increased their motivation for learning veterinary basic sciences.

  1. Effects of Instructional Design with Mental Model Analysis on Learning.

    ERIC Educational Resources Information Center

    Hong, Eunsook

    This paper presents a model for systematic instructional design that includes mental model analysis together with the procedures used in developing computer-based instructional materials in the area of statistical hypothesis testing. The instructional design model is based on the premise that the objective for learning is to achieve expert-like…

  2. Integrating Multiple Intelligences and Learning Styles on Solving Problems, Achievement in, and Attitudes towards Math in Six Graders with Learning Disabilities in Cooperative Groups

    ERIC Educational Resources Information Center

    Eissa, Mourad Ali; Mostafa, Amaal Ahmed

    2013-01-01

    This study investigated the effect of using differentiated instruction by integrating multiple intelligences and learning styles on solving problems, achievement in, and attitudes towards math in six graders with learning disabilities in cooperative groups. A total of 60 students identified with LD were invited to participate. The sample was…

  3. Cooperative Education Guidelines for Administration: How to Comply with Federal and State Laws and Regulations

    ERIC Educational Resources Information Center

    Pennsylvania Department of Education, 2007

    2007-01-01

    Cooperative education is a method of instruction that enables students to combine academic classroom instruction (school-based learning component) with occupational instruction through learning on the job (work-based learning component) in a career area of choice. Emphasis is placed on the students' education and employability skills. Co-op is a…

  4. The Effects of Program Embedded Learning Strategies, Using an Imagery Cue Strategy and an Attention Directing Strategy, to Improve Learning from Micro Computer Based Instruction (MCBI).

    ERIC Educational Resources Information Center

    Taylor, William; And Others

    The effects of the Attention Directing Strategy and Imagery Cue Strategy as program embedded learning strategies for microcomputer-based instruction (MCBI) were examined in this study. Eight learning conditions with identical instructional content on the parts and operation of the human heart were designed: either self-paced or externally-paced,…

  5. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    PubMed

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  6. Graduate Experience in Science Education: The Development of a Science Education Course for Biomedical Science Graduate Students

    PubMed Central

    DuPré, Michael J.

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers. PMID:17785406

  7. Real-Time Evaluation: Exploring Effects on Instructional Quality and Learning Enhancement

    ERIC Educational Resources Information Center

    DeSimone, Charles P.

    2016-01-01

    Evaluation of instruction has typically occurred during development, before implementation, and after course completion. The problem is that evaluation is typically post delivery; courses are not traditionally updated in real time with feedback from students in the classroom. However the potential to evaluate and modify instruction during delivery…

  8. Use of a Behavioral Graphic Organizer to Reduce Disruptive Behavior

    ERIC Educational Resources Information Center

    McDaniel, Sara C.; Flower, Andrea

    2015-01-01

    Students with challenging behavior spend substantial amounts of time away from instruction due to behavioral problems. Time away from instruction reduces their opportunities for learning, which are critical as these students typically demonstrate academic performance below their same-age peers. After removal from instruction due to behavioral…

  9. Creating Shared Instructional Products: An Alternative Approach to Improving Teaching

    ERIC Educational Resources Information Center

    Morris, Anne K.; Hiebert, James

    2011-01-01

    To solve two enduring problems in education--unacceptably large variation in learning opportunities for students across classrooms and little continuing improvement in the quality of instruction--the authors propose a system that centers on the creation of shared instructional products that guide classroom teaching. By examining systems outside…

  10. Hands in the air: using ungrounded iconic gestures to teach children conservation of quantity.

    PubMed

    Ping, Raedy M; Goldin-Meadow, Susan

    2008-09-01

    Including gesture in instruction facilitates learning. Why? One possibility is that gesture points out objects in the immediate context and thus helps ground the words learners hear in the world they see. Previous work on gesture's role in instruction has used gestures that either point to or trace paths on objects, thus providing support for this hypothesis. The experiments described here investigated the possibility that gesture helps children learn even when it is not produced in relation to an object but is instead produced "in the air." Children were given instruction in Piagetian conservation problems with or without gesture and with or without concrete objects. The results indicate that children given instruction with speech and gesture learned more about conservation than children given instruction with speech alone, whether or not objects were present during instruction. Gesture in instruction can thus help learners learn even when those gestures do not direct attention to visible objects, suggesting that gesture can do more for learners than simply ground arbitrary, symbolic language in the physical, observable world.

  11. Effectiveness of Case-Based Learning Instruction on Epistemological Beliefs and Attitudes Toward Chemistry

    NASA Astrophysics Data System (ADS)

    Çam, Aylin; Geban, Ömer

    2011-02-01

    The purpose of the study was to investigate the effectiveness of case-based learning instruction over traditionally designed chemistry instruction on eleventh grade students' epistemological beliefs and their attitudes toward chemistry as a school subject. The subjects of this study consisted of 63 eleventh grade students from two intact classes of an urban high school instructed with same teacher. Each teaching method was randomly assigned to one class. The experimental group received case-based learning and the control group received traditional instruction. At the experimental group, life cases were presented with small group format; at the control group, lecturing and discussion was carried out. The results showed that there was a significant difference between the experimental and control group with respect to their epistemological beliefs and attitudes toward chemistry as a school subject in favor of case-based learning method group. Thus, case base learning is helpful for development of students' epistemological beliefs and attitudes toward chemistry.

  12. Toward an Instructionally Oriented Theory of Example-Based Learning

    ERIC Educational Resources Information Center

    Renkl, Alexander

    2014-01-01

    Learning from examples is a very effective means of initial cognitive skill acquisition. There is an enormous body of research on the specifics of this learning method. This article presents an instructionally oriented theory of example-based learning that integrates theoretical assumptions and findings from three research areas: learning from…

  13. Effects of Prompting in Reflective Learning Tools: Findings from Experimental Field, Lab, and Online Studies.

    PubMed

    Renner, Bettina; Prilla, Michael; Cress, Ulrike; Kimmerle, Joachim

    2016-01-01

    Reflective learning is an important type of learning both in formal and informal situations-in school, higher education, at the workplace, and in everyday life. People may benefit from technical support for reflective learning, in particular when supporting each other by reflecting not only upon their own but also upon other people's problems. We refer to this collective approach where people come together to think about experiences and find solutions to problems as "collaborative reflection." We present three empirical studies about the effects of prompting in reflective learning tools in such situations where people reflect on others' issues. In Study 1 we applied a three-stage within-group design in a field experiment, where 39 participants from two organizations received different types of prompts while they used a reflection app. We found that prompts that invited employees to write down possible solutions led to more comprehensive comments on their colleagues' experiences. In Study 2 we used a three-stage between-group design in a laboratory experiment, where 78 university students were invited to take part in an experiment about the discussion of problems at work or academic studies in online forums. Here we found that short, abstract prompts showed no superiority to a situation without any prompts with respect to quantity or quality of contributions. Finally, Study 3 featured a two-stage between-group design in an online experiment, where 60 participants received either general reflection instructions or detailed instructions about how to reflect on other people's problems. We could show that detailed reflection instructions supported people in producing more comprehensive comments that included more general advice. The results demonstrate that to increase activity and to improve quality of comments with prompting tools require detailed instructions and specific wording of the prompts.

  14. Research on Student Thought Processes during Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Clark, Richard E.

    1984-01-01

    Reviews cognitive research related to computer-based instruction in the areas of motivation; the relationship between computer-assisted instruction and learning; learner control; transfer of learning; hemispheric dominance; and anxiety. Design professionals are urged to consider congitive views. (MBR)

  15. Teaching Mathematics Problem Solving to Students with Limited English Proficiency through Nested Spiral Approach.

    ERIC Educational Resources Information Center

    Chyu, Chi-Oy W.

    The Nested Spiral Approach (NSA) is an integrated instructional approach used to promote the motivated learning of mathematics problem solving in limited-English-proficient (LEP) students. The NSA is described and a trial use is discussed. The approach extends, elaborates, and supplements existing education and instruction theories to help LEP…

  16. Improving Learning Results and Reducing Cognitive Load through 3D Courseware on Color Management and Inspection Instruction

    ERIC Educational Resources Information Center

    Hsiung, Liang-Yuan; Lai, Mu-Hui

    2013-01-01

    This study intends to solve the problem that schools in Taiwan lack of the equipment for color management and inspection instruction and seek ways to improve learning results and reduce cognitive load. The researchers developed 3D courseware for color management and inspection through a research and development process. To further scrutinize the…

  17. Enhancing an Instructional Design Model for Virtual Reality-Based Learning

    ERIC Educational Resources Information Center

    Chen, Chwen Jen; Teh, Chee Siong

    2013-01-01

    In order to effectively utilize the capabilities of virtual reality (VR) in supporting the desired learning outcomes, careful consideration in the design of instruction for VR learning is crucial. In line with this concern, previous work proposed an instructional design model that prescribes instructional methods to guide the design of VR-based…

  18. The Effects of Instructional Implementation on Learning with Interactive Multimedia Case-Based Instruction

    ERIC Educational Resources Information Center

    Mitchem, Katherine; Koury, Kevin; Fitzgerald, Gail; Hollingsead, Candice; Miller, Kevin; Tsai, Hui-Hsien; Zha, Shenghua

    2009-01-01

    Interactive, multimedia cases with technology supports present new ways of teaching and learning in teacher education. In this mixed-methods, naturalistic study, the authors investigate how and what participants learn from multimedia cases and, in particular, how instructional implementation affects learning outcomes from multimedia cases.…

  19. Using Multimedia for E-Learning

    ERIC Educational Resources Information Center

    Mayer, R. E.

    2017-01-01

    This paper reviews 12 research-based principles for how to design computer-based multimedia instructional materials to promote academic learning, starting with the multimedia principle (yielding a median effect size of d = 1.67 based on five experimental comparisons), which holds that people learn better from computer-based instruction containing…

  20. Empirical evidence of the effectiveness of concept mapping as a learning intervention for nuclear medicine technology students in a distance learning radiation protection and biology course.

    PubMed

    Passmore, Gregory G; Owen, Mary Anne; Prabakaran, Krishnan

    2011-12-01

    Metacognitive learning strategies are based on instructional learning theory, which promotes deep, meaningful learning. Educators in a baccalaureate-level nuclear medicine technology program demonstrated that students enrolled in an online, distance learning section of an introductory radiation protection and radiobiology course performed better when traditional instruction was supplemented with nontraditional metacognitive learning strategies. The metacognitive learning strategy that was used is best known as concept mapping. The concept map, in addition to the standard homework problem assignment and opportunity for question-answer sessions, became the template for misconception identification and remediation interactions between the instructor and the student. The control group relied on traditional homework problems and question-answer sessions alone. Because students in both the "treatment" groups (i.e., students who used concept mapping) and the control group were distance learning students, all personal communications were conducted via e-mail or telephone. The final examination of the course was used to facilitate a quantitative comparison of the performance of students who used concept mapping and the performance of students who did not use concept mapping. The results demonstrated a significantly higher median final examination score for the concept mapping group than for the non-concept mapping group (z = -2.0381, P = 0.0415), with an appropriately large effect size (2.65). Concept mapping is a cognitive learning intervention that effectively enables meaningful learning and is suitable for use in the independent learner-oriented distance learning environments used by some nuclear medicine technology programs.

  1. Bridges to Swaziland: Using Task-Based Learning and Computer-Mediated Instruction to Improve English Language Teaching and Learning

    ERIC Educational Resources Information Center

    Pierson, Susan Jacques

    2015-01-01

    One way to provide high quality instruction for underserved English Language Learners around the world is to combine Task-Based English Language Learning with Computer- Assisted Instruction. As part of an ongoing project, "Bridges to Swaziland," these approaches have been implemented in a determined effort to improve the ESL program for…

  2. Cognitive Style Factors and Learning from Micro-Computer Based and Programmed Instructional Materials: A Preliminary Analysis.

    ERIC Educational Resources Information Center

    Canelos, James; And Others

    This study examined the effects of two cognitive styles--field dependents-independents and reflectivity-impulsivity--on learning from microcomputer-based instruction. In the first of three experimental designs, a programmed instruction text on the human heart was used which contained both visual and verbal information in an instructional display,…

  3. Inquiry-Based Science Instruction in High School Biology Courses: A Multiple Case Study

    ERIC Educational Resources Information Center

    Aso, Eze

    2014-01-01

    A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's…

  4. Supplemental instruction in chemistry

    NASA Astrophysics Data System (ADS)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  5. Active Learning and Teaching: Improving Postsecondary Library Instruction.

    ERIC Educational Resources Information Center

    Allen, Eileen E.

    1995-01-01

    Discusses ways to improve postsecondary library instruction based on theories of active learning. Topics include a historical background of active learning; student achievement and attitudes; cognitive development; risks; active teaching; and instructional techniques, including modified lectures, brainstorming, small group work, cooperative…

  6. [Digital learning object for diagnostic reasoning in nursing applied to the integumentary system].

    PubMed

    da Costa, Cecília Passos Vaz; Luz, Maria Helena Barros Araújo

    2015-12-01

    To describe the creation of a digital learning object for diagnostic reasoning in nursing applied to the integumentary system at a public university of Piaui. A methodological study applied to technological production based on the pedagogical framework of problem-based learning. The methodology for creating the learning object observed the stages of analysis, design, development, implementation and evaluation recommended for contextualized instructional design. The revised taxonomy of Bloom was used to list the educational goals. The four modules of the developed learning object were inserted into the educational platform Moodle. The theoretical assumptions allowed the design of an important online resource that promotes effective learning in the scope of nursing education. This study should add value to nursing teaching practices through the use of digital learning objects for teaching diagnostic reasoning applied to skin and skin appendages.

  7. Battling the challenges of training nurses to use information systems through theory-based training material design.

    PubMed

    Galani, Malatsi; Yu, Ping; Paas, Fred; Chandler, Paul

    2014-01-01

    The attempts to train nurses to effectively use information systems have had mixed results. One problem is that training materials are not adequately designed to guide trainees to gradually learn to use a system without experiencing a heavy cognitive load. This is because training design often does not take into consideration a learner's cognitive ability to absorb new information in a short training period. Given the high cost and difficulty of organising training in healthcare organisations, there is an urgent need for information system trainers to be aware of how cognitive overload or information overload affect a trainee's capability to acquire new knowledge and skills, and what instructional techniques can be used to facilitate effective learning. This paper introduces the concept of cognitive load and how it affects nurses when learning to use a new health information system. This is followed by the relevant strategies for instructional design, underpinned by the principles of cognitive load theory, which may be helpful for the development of effective instructional materials and activities for training nurses to use information systems.

  8. Instruction in high schools: the evidence and the challenge.

    PubMed

    Corcoran, Tom; Silander, Megan

    2009-01-01

    The combined effects of standards-based reforms and accountability demands arising from recent technological and economic changes, say Tom Corcoran and Megan Silander, are requiring high schools to accomplish something they have never been required to do-ensure that substantially all students achieve at a relatively high level. Meeting that challenge, say the authors, will require high schools to improve the effectiveness of their core technology-instruction. The authors first examine how organizational structures affect instruction. Most high schools, they say, organize instruction by subject or discipline, thus encouraging an isolated and independent approach to teaching rather than one in which teachers are guided by a shared vision or goals. Many schools have focused on increasing teacher collaboration, often through teaming, interdisciplinary teaching, or professional learning communities. Citing limited evidence that these reforms improve instruction and learning, Corcoran and Silander urge researchers to examine whether the changes help schools implement specific instructional reforms and support sustained efforts to improve instruction. Next the authors explore the effects on student learning of instructional strategies such as interdisciplinary teaching, cooperative learning, project-based learning, adaptive instruction, inquiry, and dialogic teaching. The evidence suggests the power of well-designed student grouping strategies, of allowing students to express their ideas and questions, and of offering students challenging tasks. But, the authors say, less than half of American high school students report working in groups, and little class time is devoted to student-centered discussions. The authors conclude that schools should promote the use of proven instructional practices. In addition, teachers should systematically monitor how students vary in what they are learning and adapt their instruction in response to students' progress and needs, in the process learning more about what variations in instruction respond most effectively to common variations in students' learning. The authors argue that such "adaptive instruction" has the greatest potential for success in today's standards-based policy environment with its twin values of equity and excellence.

  9. Training tomorrow's clinicians today--managed care essentials: a process for curriculum development.

    PubMed

    Colenda, C C; Wadland, W; Hayes, O; Anderson, W; Priester, F; Pearson, R; Keefe, C; Fleck, L

    2000-05-01

    To develop a managed care curriculum for primary care residents. This article outlines a 4-stage curriculum development process focusing on concepts of managed care organization and finance. The stages consist of: (1) identifying the curriculum development work group and framing the scope of the curriculum, (2) identifying stakeholder buy-in and expectations, (3) choosing curricular topics and delivery mechanisms, and (4) outlining the evaluation process. Key elements of building a curriculum development team, content objectives of the curriculum, the rationale for using problem-based learning, and finally, lessons learned from the partnership among the stakeholders are reviewed. The curriculum was delivered to an entering group of postgraduate-year 1 primary care residents. Attitudes among residents toward managed care remained relatively negative and stable over the yearlong curriculum, especially over issues relating to finance, quality of care, control and autonomy of practitioners, time spent with patients, and managed care's impact on the doctor-patient relationship. Residents' baseline knowledge of core concepts about managed care organization and finance improved during the year that the curriculum was delivered. Satisfaction with a problem-based learning approach was high. Problem-based learning, using real-life clinical examples, is a successful approach to resident instruction about managed care.

  10. STEP--a System for Teaching Experimental Psychology using E-Prime.

    PubMed

    MacWhinney, B; St James, J; Schunn, C; Li, P; Schneider, W

    2001-05-01

    Students in psychology need to learn to design and analyze their own experiments. However, software that allows students to build experiments on their own has been limited in a variety of ways. The shipping of the first full release of the E-Prime system later this year will open up a new opportunity for addressing this problem. Because E-Prime promises to become the standard for building experiments in psychology, it is now possible to construct a Web-based resource that uses E-Prime as the delivery engine for a wide variety of instructional materials. This new system, funded by the National Science Foundation, is called STEP (System for the Teaching of Experimental Psychology). The goal of the STEP Project is to provide instructional materials that will facilitate the use of E-Prime in various learning contexts. We are now compiling a large set of classic experiments implemented in E-Prime and available over the Internet from http://step.psy.cmu.edu. The Web site also distributes instructional materials for building courses in experimental psychology based on E-Prime.

  11. Perceived affordances and constraints regarding instructors' use of Peer Instruction: Implications for Promoting Instructional Change

    NASA Astrophysics Data System (ADS)

    Turpen, Chandra

    2016-03-01

    Research has documented that physics faculty are generally aware of research-based instructional strategies and are interested in using them. However, the use of research-based instructional strategies is not widespread. A large, unsolved problem in our field is how to effectively spread and sustain the use of research-based instructional strategies in undergraduate physics education. In this research study, we conducted extensive interviews with faculty from across the country regarding their current and past instructional practices as well as their experiences, knowledge and use of Peer Instruction (PI). In this talk I will discuss how faculty come to know about PI, how PI is often used by faculty, and the reasons faculty give for taking up or not taking up aspects of PI. Through this work, we established that 1) faculty commonly modify and adapt PI, 2) most faculty readily acknowledge the shortcomings of lecture, and 3) faculty are concerned that PI use will be taxing on their time, limit their coverage of content, and be a struggle to implement. With a better understanding of faculty's reasoning and struggles, change agents can learn to better partner with faculty in working towards effective instructional change. This work was supported, in part, by the National Science Foundation, Grant No. DUE-0715698.

  12. P3: a practice focused learning environment

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  13. Promoting Students' Problem Solving Skills and Knowledge of STEM Concepts in a Data-Rich Learning Environment: Using Online Data as a Tool for Teaching about Renewable Energy Technologies

    NASA Astrophysics Data System (ADS)

    Thurmond, Brandi

    This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related to renewable energy technologies and students' problem solving skills. Two purposefully selected Advanced Placement (AP) Environmental Science teachers were included in the study. Each teacher taught one class about RET in a lecture-based environment (control) and another class in a DRL environment (treatment), for a total of four classes of students (n=128). This study utilized a quasi-experimental, pretest/posttest, control-group design. The initial hypothesis that the treatment group would have a significant gain in knowledge of STEM concepts related to RET and be better able to solve problems when compared to the control group was not supported by the data. Although students in the DRL environment had a significant gain in knowledge after instruction, posttest score comparisons of the control and treatment groups revealed no significant differences between the groups. Further, no significant differences were noted in students' problem solving abilities as measured by scores on a problem-based activity and self-reported abilities on a reflective questionnaire. This suggests that the DRL environment is at least as effective as the lecture-based learning environment in teaching AP Environmental Science students about RET and fostering the development of problem solving skills. As this was a small scale study, further research is needed to provide information about effectiveness of DRL environments in promoting students' knowledge of STEM concepts and problem-solving skills.

  14. Learning and Teaching Problems in Part-Time Higher Education.

    ERIC Educational Resources Information Center

    Trotman-Dickenson, D. I.

    1988-01-01

    Results of a British survey of the administrations of six universities and six public colleges, employers, and employees who were part-time students are reported and discussed. The survey assessed the perceptions of those groups concerning problems in the instruction and learning of part-time students. (MSE)

  15. Using Analogies to Facilitate Conceptual Change in Mathematics Learning

    ERIC Educational Resources Information Center

    Vamvakoussi, Xenia

    2017-01-01

    The problem of adverse effects of prior knowledge in mathematics learning has been amply documented and theorized by mathematics educators as well as cognitive/developmental psychologists. This problem emerges when students' prior knowledge about a mathematical notion comes in contrast with new information coming from instruction, giving rise to…

  16. Role of Enhancing Visual Effects Education Delivery to Encounter Career Challenges in Malaysia

    ERIC Educational Resources Information Center

    Ng, Lynn-Sze

    2017-01-01

    Problem-based Learning (PBL) is one of the most effective methods of instruction that helps Visual Effects (VFX) students to be more adaptable at encountering career challenges in Malaysia. These challenges are; lack of several important requirements such as, the basic and fundamental knowledge of VFX concepts, the ability to understand real-world…

  17. Promoting Awareness of Learner Diversity in Prospective Teachers: Signaling Individual and Group Differences within Virtual Classroom Cases

    ERIC Educational Resources Information Center

    Moreno, Roxana; Abercrombie, Sara

    2010-01-01

    We investigated two methods to promote prospective teachers' awareness of learner diversity and application of teaching principles using a problem-based learning environment. In Experiment 1, we examined the effects of presenting a conceptual framework about learners' individual and group differences either before or after instruction on teaching…

  18. In the Midst of a Shift: Undergraduate STEM Education and "PBL" Enactment

    ERIC Educational Resources Information Center

    Wallace, Maria F. G.; Webb, Angela W.

    2016-01-01

    In the engineering field, problem- and project-based learning, both of which are often referred to as PBL, are the dominant instructional models called for by accreditation agencies. The aim of this qualitative case study is to analyze and capture a holistic perspective of PBL course design and its implementation in two communication-intensive…

  19. How to Optimize Learning from Animated Models: A Review of Guidelines Based on Cognitive Load

    ERIC Educational Resources Information Center

    Wouters, Pieter; Paas, Fred; van Merrienboer, Jeroen J. G.

    2008-01-01

    Animated models explicate the procedure to solve a problem, as well as the rationale behind this procedure. For abstract cognitive processes, animations might be beneficial, especially when a supportive pedagogical agent provides explanations. This article argues that animated models can be an effective instructional method, provided that they are…

  20. Problem Based Instruction: Getting at the Big Ideas and Developing Learners

    ERIC Educational Resources Information Center

    Inglis, Laura; Miller, Nicole

    2011-01-01

    Written collaboratively by two former teaching partners, this paper details the journey taken by a team of teachers from a large southern Ontario school board as they completed an action research project during the 2008-2009 school year, in conjunction with ETFO and their Teachers Learning Together: A Math Journey initiative. This paper will…

Top