Sample records for instrument digital interface

  1. Using MIDI: A Staff Development Program Designed To Increase Teacher Awareness of the Technological Applications of Musical Instrument Digital Interface in the Classroom.

    ERIC Educational Resources Information Center

    Neese, Charles Glen

    This practicum report describes an instructional program designed to increase teacher awareness of the technological applications of musical instrument digital interface (MIDI) in the classroom. The primary goal of the study was to assist music teachers in becoming more informed about MIDI, and to enable them to effectively select the appropriate…

  2. Software for Classroom Music Making.

    ERIC Educational Resources Information Center

    Ely, Mark C.

    1992-01-01

    Describes musical instrument digital interface (MIDI), a communication system that uses digital data to enable MIDI-equipped instruments to communicate with each other. Includes discussion of music editors, sequencers, compositional software, and commonly used computers. Suggests uses for the technology for students and teachers. Urges further…

  3. Design, Simulation and Characteristics Research of the Interface Circuit based on nano-polysilicon thin films pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Zhao, Xiaofeng; Yin, Liang

    2018-03-01

    This paper presents a interface circuit for nano-polysilicon thin films pressure sensor. The interface circuit includes consist of instrument amplifier and Analog-to-Digital converter (ADC). The instrumentation amplifier with a high common mode rejection ratio (CMRR) is implemented by three stages current feedback structure. At the same time, in order to satisfy the high precision requirements of pressure sensor measure system, the 1/f noise corner of 26.5 mHz can be achieved through chopping technology at a noise density of 38.2 nV/sqrt(Hz).Ripple introduced by chopping technology adopt continuous ripple reduce circuit (RRL), which achieves the output ripple level is lower than noise. The ADC achieves 16 bits significant digit by adopting sigma-delta modulator with fourth-order single-bit structure and digital decimation filter, and finally achieves high precision integrated pressure sensor interface circuit.

  4. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of functions. The sensor data is processed in a distributed fashion across the network, providing a large pool of resources in real time to meet stringent latency requirements.

  5. Teaching Music in the Age of MIDI.

    ERIC Educational Resources Information Center

    Jordahl, Gregory

    1988-01-01

    Explores the combination of the microcomputer and a digital synthesizer which use the Musical Instrument Digital Interface (MIDI). Discusses the evolution of MIDI, music classroom applications, and suggestions before purchasing a MIDI. (MVL)

  6. Eight microprocessor-based instrument data systems in the Galileo Orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Barry, R. C.

    1980-01-01

    Instrument data systems consist of a microprocessor, 3K bytes of Read Only Memory and 3K bytes of Random Access Memory. It interfaces with the spacecraft data bus through an isolated user interface with a direct memory access bus adaptor, and/or parallel data from instrument devices such as registers, buffers, analog to digital converters, multiplexers, and solid state sensors. These data systems support the spacecraft hardware and software communication protocol, decode and process instrument commands, generate continuous instrument operating modes, control the instrument mechanisms, acquire, process, format, and output instrument science data.

  7. Digital interface of electronic transformers based on embedded system

    NASA Astrophysics Data System (ADS)

    Shang, Qiufeng; Qi, Yincheng

    2008-10-01

    Benefited from digital interface of electronic transformers, information sharing and system integration in substation can be realized. An embedded system-based digital output scheme of electronic transformers is proposed. The digital interface is designed with S3C44B0X 32bit RISC microprocessor as the hardware platform. The μCLinux operation system (OS) is transplanted on ARM7 (S3C44B0X). Applying Ethernet technology as the communication mode in the substation automation system is a new trend. The network interface chip RTL8019AS is adopted. Data transmission is realized through the in-line TCP/IP protocol of uClinux embedded OS. The application result and character analysis show that the design can meet the real-time and reliability requirements of IEC60044-7/8 electronic voltage/current instrument transformer standards.

  8. Data recording and playback on video tape--a multi-channel analog interface for a digital audio processor system.

    PubMed

    Blaettler, M; Bruegger, A; Forster, I C; Lehareinger, Y

    1988-03-01

    The design of an analog interface to a digital audio signal processor (DASP)-video cassette recorder (VCR) system is described. The complete system represents a low-cost alternative to both FM instrumentation tape recorders and multi-channel chart recorders. The interface or DASP input-output unit described in this paper enables the recording and playback of up to 12 analog channels with a maximum of 12 bit resolution and a bandwidth of 2 kHz per channel. Internal control and timing in the recording component of the interface is performed using ROMs which can be reprogrammed to suit different analog-to-digital converter hardware. Improvement in the bandwidth specifications is possible by connecting channels in parallel. A parallel 16 bit data output port is provided for direct transfer of the digitized data to a computer.

  9. Transformations: Technology and the Music Industry.

    ERIC Educational Resources Information Center

    Peters, G. David

    2001-01-01

    Focuses on the companies and organizations of the Music Industry Conference (MIC). Addresses topics such as: changes in companies due to technology, audio compact discs, the music instrument digital interface (MIDI) , digital sound recording, and the MIC on-line music instruction programs offered. (CMK)

  10. A Microcomputer Interface for External Circuit Control.

    ERIC Educational Resources Information Center

    Gorham, D. A.

    1983-01-01

    Describes an interface designed to meet the requirements of an instrumentation teaching laboratory, particularly to develop computer-controlled digital circuitry while exploiting electrical drive properties of common transistor-transistor logic (TTL) devices, minimizing cost/number of components. Discusses decoding for Pet, switches, lights, and…

  11. Physical Fitness of U.S. Navy Special Forces Team Members and Trainees

    DTIC Science & Technology

    1989-07-07

    Resting Heart Rate and Blood Pressure. At the completion of a 12-lead resting EKG (VS4S, Cambridge Instrument Co., Ossining , NY), heart rate (bpm) of...Cambridge Instrument Co., Ossining , NY). Instruments were interfaced with a MINC-23 computer (Digital Equipment Corp., Marlboro, MA) for on-line

  12. [Evaluation of digital educational student-technology interaction in neonatal nursing].

    PubMed

    Castro, Fernanda Salim Ferreira de; Dias, Danielle Monteiro Vilela; Higarashi, Ieda Harumi; Scochi, Carmen Gracinda Silvan; Fonseca, Luciana Mara Monti

    2015-02-01

    To assess the digital educational technology interface Caring for the sensory environment in the neonatal unit: noise, lighting and handling based on ergonomic criteria. Descriptive study, in which we used the guidelines and ergonomic criteria established by ISO 9241-11 and an online Likert scale instrument to identify problems and interface qualities. The instrument was built based on Ergolist, which follows the criteria of ISO 9141-11. There were 58 undergraduate study participants from the School of Nursing of Ribeirao Preto, University of Sao Paulo, who attended the classes about neonatal nursing content. All items were positively evaluated by more than 70% of the sample. Educational technology is appropriate according to the ergonomic criteria and can be made available for teaching nursing students.

  13. Music, Technology, and an Evolving Curriculum.

    ERIC Educational Resources Information Center

    Moore, Brian

    1992-01-01

    Mechanical examples of musical technology, like the Steinway piano, are well known and accepted. Use of computers and electronic technology is the next logical step in developing art of music. MIDI (Musical Instrument Digital Interface) is explained, along with digital devices (such as synthesizers, sequencers, music notation software, multimedia,…

  14. A Laboratory Application of Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Gehring, Kalle B.; Moore, John W.

    1983-01-01

    A PASCAL graphics and instrument interface program for a Z80/S-100 based microcomputer was developed. The computer interfaces to a stopped-flow spectrophotometer replacing a storage oscilloscope and polaroid camera. Applications of this system are discussed, indicating that graphics and analog-to-digital boards have transformed the computer into…

  15. Interfacing with a DMM.

    ERIC Educational Resources Information Center

    Beatty, Jim

    1985-01-01

    Suggests purchasing a digital multimer (DMM) with an IEEE-488 option to interface an instrument to a microcomputer, indicating that a DMM is well protected from overloads and is easy to connect. An example of its use in an experiment involving hydrolysis of tertiary butyl alcohol (with program listing) is given. (JN)

  16. Instrumentation for laser physics and spectroscopy using 32-bit microcontrollers with an Android tablet interface

    NASA Astrophysics Data System (ADS)

    Eyler, E. E.

    2013-10-01

    Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple interface needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small "daughter boards" for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 in. × 0.8 in. circuit card.

  17. THOR Field and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek

    2016-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.

  18. Development of eHOME, a Mobile Instrument for Reporting, Monitoring, and Consulting Drug-Related Problems in Home Care: Human-Centered Design Study

    PubMed Central

    Sino, Carolina Geertruida Maria; Heerdink, Eibert Rob; Schuurmans, Marieke Joanna

    2018-01-01

    Background Home care patients often use many medications and are prone to drug-related problems (DRPs). For the management of problems related to drug use, home care could add to the multidisciplinary expertise of general practitioners (GPs) and pharmacists. The home care observation of medication-related problems by home care employees (HOME)-instrument is paper-based and assists home care workers in reporting potential DRPs. To facilitate the multiprofessional consultation, a digital report of DRPs from the HOME-instrument and digital monitoring and consulting of DRPs between home care and general practices and pharmacies is desired. Objective The objective of this study was to develop an electronic HOME system (eHOME), a mobile version of the HOME-instrument that includes a monitoring and a consulting system for primary care. Methods The development phase of the Medical Research Council (MRC) framework was followed in which an iterative human-centered design (HCD) approach was applied. The approach involved a Delphi round for the context of use and user requirements analysis of the digital HOME-instrument and the monitoring and consulting system followed by 2 series of pilots for testing the usability and redesign. Results By using an iterative design approach and by involving home care workers, GPs, and pharmacists throughout the process as informants, design partners, and testers, important aspects that were crucial for system realization and user acceptance were revealed. Through the report webpage interface, which includes the adjusted content of the HOME-instrument and added home care practice–based problems, home care workers can digitally report observed DRPs. Furthermore, it was found that the monitoring and consulting webpage interfaces enable digital consultation between home care and general practices and pharmacies. The webpages were considered convenient, clear, easy, and usable. Conclusions By employing an HCD approach, the eHOME-instrument was found to be an easy-to-use system. The systematic approach promises a valuable contribution for the future development of digital mobile systems of paper-based tools. PMID:29514771

  19. Development of eHOME, a Mobile Instrument for Reporting, Monitoring, and Consulting Drug-Related Problems in Home Care: Human-Centered Design Study.

    PubMed

    Dijkstra, Nienke Elske; Sino, Carolina Geertruida Maria; Heerdink, Eibert Rob; Schuurmans, Marieke Joanna

    2018-03-07

    Home care patients often use many medications and are prone to drug-related problems (DRPs). For the management of problems related to drug use, home care could add to the multidisciplinary expertise of general practitioners (GPs) and pharmacists. The home care observation of medication-related problems by home care employees (HOME)-instrument is paper-based and assists home care workers in reporting potential DRPs. To facilitate the multiprofessional consultation, a digital report of DRPs from the HOME-instrument and digital monitoring and consulting of DRPs between home care and general practices and pharmacies is desired. The objective of this study was to develop an electronic HOME system (eHOME), a mobile version of the HOME-instrument that includes a monitoring and a consulting system for primary care. The development phase of the Medical Research Council (MRC) framework was followed in which an iterative human-centered design (HCD) approach was applied. The approach involved a Delphi round for the context of use and user requirements analysis of the digital HOME-instrument and the monitoring and consulting system followed by 2 series of pilots for testing the usability and redesign. By using an iterative design approach and by involving home care workers, GPs, and pharmacists throughout the process as informants, design partners, and testers, important aspects that were crucial for system realization and user acceptance were revealed. Through the report webpage interface, which includes the adjusted content of the HOME-instrument and added home care practice-based problems, home care workers can digitally report observed DRPs. Furthermore, it was found that the monitoring and consulting webpage interfaces enable digital consultation between home care and general practices and pharmacies. The webpages were considered convenient, clear, easy, and usable. By employing an HCD approach, the eHOME-instrument was found to be an easy-to-use system. The systematic approach promises a valuable contribution for the future development of digital mobile systems of paper-based tools. ©Nienke Elske Dijkstra, Carolina Geertruida Maria Sino, Eibert Rob Heerdink, Marieke Joanna Schuurmans. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 07.03.2018.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopwood, J.E.; Affeldt, B.

    An IBM personal computer (PC), a Gerber coordinate digitizer, and a collection of other instruments make up a system known as the Coordinate Digitizer Interactive Processor (CDIP). The PC extracts coordinate data from the digitizer through a special interface, and then, after reformatting, transmits the data to a remote VAX computer, a floppy disk, and a display terminal. This system has improved the efficiency of producing printed circuit-board artwork and extended the useful life of the Gerber GCD-1 Digitizer. 1 ref., 12 figs.

  1. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    NASA Astrophysics Data System (ADS)

    DeSanto, Leonard

    1998-09-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMDTM) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMDTM divorced from the light engine and the interfacing of the DMDTM board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.

  2. Device USB interface and software development for electric parameter measuring instrument

    NASA Astrophysics Data System (ADS)

    Li, Deshi; Chen, Jian; Wu, Yadong

    2003-09-01

    Aimed at general devices development, this paper discussed the development of USB interface and software development. With an example, using PDIUSBD12 which support parallel interface, the paper analyzed its technical characteristics. Designed different interface circuit with 80C52 singlechip microcomputer and TMS320C54 series digital signal processor, analyzed the address allocation, register access. According to USB1.1 standard protocol, designed the device software and application layer protocol. The paper designed the data exchange protocol, and carried out system functions.

  3. Nine Suggestions for Improving Sequences. Technology.

    ERIC Educational Resources Information Center

    Muro, Don

    1995-01-01

    Maintains that many educators are using sequences to create accompaniments and practice tapes geared to student abilities. Describes musical instruction using Musical Instrument Digital Interface (MIDI). Discusses eight suggestions designed to make the process of sequencing more efficient. (CFR)

  4. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, L.

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.« less

  5. High precision silicon piezo resistive SMART pressure sensor

    NASA Astrophysics Data System (ADS)

    Brown, Rod

    2005-01-01

    Instruments for test and calibration require a pressure sensor that is precise and stable. Market forces also dictate a move away from single measurand test equipment and, certainly in the case of pressure, away from single range equipment. A pressure `module' is required which excels in pressure measurement but is interchangble with sensors for other measurands. A communications interface for such a sensor has been specified. Instrument Digital Output Sensor (IDOS) that permits this interchanagability and allows the sensor to be inside or outside the measuring instrument. This paper covers the design and specification of a silicon diaphragm piezo resistive SMART sensor using this interface. A brief history of instrument sensors will be given to establish the background to this development. Design choices of the silicon doping, bridge energisation method, temperature sensing, signal conversion, data processing, compensation method, communications interface will be discussed. The physical format of the `in-instrument' version will be shown and then extended to the packaging design for the external version. Test results will show the accuracy achieved exceeds the target of 0.01%FS over a range of temperatures.

  6. The development of an airborne instrumentation computer system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, G. A.

    1984-01-01

    Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.

  7. Kids with disabilities inspire a musical instrument

    ScienceCinema

    Daily, Dan; Pfeifer, Kent

    2018-02-14

    The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

  8. Kids with disabilities inspire a musical instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Dan; Pfeifer, Kent

    The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

  9. A real time data acquisition system using the MIL-STD-1553B bus. [for transmission of data to host computer for control law processing

    NASA Technical Reports Server (NTRS)

    Peri, Frank, Jr.

    1992-01-01

    A flight digital data acquisition system that uses the MIL-STD-1553B bus for transmission of data to a host computer for control law processing is described. The instrument, the Remote Interface Unit (RIU), can accommodate up to 16 input channels and eight output channels. The RIU employs a digital signal processor to perform local digital filtering before sending data to the host. The system allows flexible sensor and actuator data organization to facilitate quick control law computations on the host computer. The instrument can also run simple control laws autonomously without host intervention. The RIU and host computer together have replaced a similar larger, ground minicomputer system with favorable results.

  10. Telecommunications and MIDI.

    ERIC Educational Resources Information Center

    Beckstead, David

    1996-01-01

    Explores the educational possibilities inherent in combining Musical Instrument Digital Interface (MIDI) with communications technology. A MIDI system (a combination synthesizer and computer) allows students to compose, record, experiment, and correct at one site. A MIDI file can be sent via e-mail to others for comments. (MJP)

  11. The Promise of MIDI Technology: A Reflection on Musical Intelligence.

    ERIC Educational Resources Information Center

    Ohler, Jason

    1998-01-01

    Describes MIDI (Musical Instrument Digital Interface) technology and music education; provides information on conducting a MIDI workshop for all ages; and offers guidelines for creating a MIDI workstation for the classroom. Hardware and software vendor contact information is provided. (PEN)

  12. New hydrologic instrumentation in the U.S. Geological Survey

    USGS Publications Warehouse

    Latkovich, V.J.; Shope, W.G.; ,

    1991-01-01

    New water-level sensing and recording instrumentation is being used by the U.S. Geological Survey for monitoring water levels, stream velocities, and water-quality characteristics. Several of these instruments are briefly described. The Basic Data Recorder (BDR) is an electronic data logger, that interfaces to sensor systems through a serial-digital interface standard (SDI-12), which was proposed by the data-logger industry; the Incremental Shaft Encoder is an intelligent water-level sensor, which interfaces to the BDR through the SDI-12; the Pressure Sensor is an intelligent, nonsubmersible pressure sensor, which interfaces to the BDR through the SDI-12 and monitors water levels from 0 to 50 feet; the Ultrasonic Velocity Meter is an intelligent, water-velocity sensor, which interfaces to the BDR through the SDI-12 and measures the velocity across a stream up to 500 feet in width; the Collapsible Hand Sampler can be collapsed for insertion through holes in the ice and opened under the ice to collect a water sample; the Lighweight Ice Auger, weighing only 32 pounds, can auger 6- and 8-inch holes through approximately 3.5 feet of ice; and the Ice Chisel has a specially hardened steel blade and 6-foot long, hickory D-handle.

  13. MIDI-Assisted Composing in Your Classroom.

    ERIC Educational Resources Information Center

    Reese, Sam

    1995-01-01

    Describes a junior high school course in musical composition using Musical Instrument Digital Interface (MIDI) technology. Discusses course objectives and three composition projects. Includes a list of definitions and asserts that MIDI technology offers students and teachers a powerful method to study how music works. (CFR)

  14. Exploring Music through Technology.

    ERIC Educational Resources Information Center

    Willard, Joanne B.

    1992-01-01

    Describes a high school music technology course that uses a project-oriented approach to teach students about hardware and software tools for sequencing, arranging, multitrack recording, and mixing. Course equipment is listed, and the MIDI (Musical Instrument Digital Interface) is briefly described. Copyright guidelines for educational uses of…

  15. Technology as the Crayon Box.

    ERIC Educational Resources Information Center

    Garcia, Lilia

    2000-01-01

    While arts facilities should be equipped with computers, color scanners, MIDI (Musical Instrument Digital Interface) labs, connective video cameras, and appropriate software, music rooms still need pianos and visual art rooms need traditional art supplies. Dade County (Florida) Schools's pilot teacher assistance projects and arts-centered schools…

  16. New Styles, New Technologies, New Possibilities in Jazz.

    ERIC Educational Resources Information Center

    Kuzmich, John, Jr.

    1989-01-01

    Focuses on the growth of jazz-related ensembles and jazz education. Covers trends that parallel technological developments including electronic keyboards, Musical Instrument Digital Interface (MIDI) systems, the computer, computer assisted instruction, interactive video, and the compact disc. Urges teachers to update their knowledge and experience…

  17. Free-Field Spatialized Aural Cues for Synthetic Environments

    DTIC Science & Technology

    1994-09-01

    any of the references previously listed. B. MIDI Other than electronic musicians and a few hobbyists, the Musical Instrument Digital Interface (MIDI...developed in 1983 and still has a long way to go in improving its capabilities, but the advantages are numerous. An entire musical score can be stored...the same musical file on a computer in one of the various digital sound formats could easily occupy 90 megabytes of disk space. 7 K III. PREVIOUS WORK

  18. Fiber optic interferometry for industrial process monitoring and control applications

    NASA Astrophysics Data System (ADS)

    Marcus, Michael A.

    2002-02-01

    Over the past few years we have been developing applications for a high-resolution (sub-micron accuracy) fiber optic coupled dual Michelson interferometer-based instrument. It is being utilized in a variety of applications including monitoring liquid layer thickness uniformity on coating hoppers, film base thickness uniformity measurement, digital camera focus assessment, optical cell path length assessment and imager and wafer surface profile mapping. The instrument includes both coherent and non-coherent light sources, custom application dependent optical probes and sample interfaces, a Michelson interferometer, custom electronics, a Pentium-based PC with data acquisition cards and LabWindows CVI or LabView based application specific software. This paper describes the development evolution of this instrument platform and applications highlighting robust instrument design, hardware, software, and user interfaces development. The talk concludes with a discussion of a new high-speed instrument configuration, which can be utilized for high speed surface profiling and as an on-line web thickness gauge.

  19. Portable digital lock-in instrument to determine chemical constituents with single-color absorption measurements for Global Health Initiatives

    NASA Astrophysics Data System (ADS)

    Vacas-Jacques, Paulino; Linnes, Jacqueline; Young, Anna; Gerrard, Victoria; Gomez-Marquez, Jose

    2014-03-01

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

  20. MIDI Keyboards: Memory Skills and Building Values toward School.

    ERIC Educational Resources Information Center

    Marcinkiewicz, Henryk R.; And Others

    This document summarizes the results of a study which evaluated whether school instruction with Musical Instrument Digital Interface (MIDI) keyboards improves memory skill and whether school instruction with MIDI keyboards improves sentiments toward school and instructional media. Pupils in early elementary grades at five schools were evaluated…

  1. A HUMAN FACTORS ENGINEERING PROCESS TO SUPPORT HUMAN-SYSTEM INTERFACE DESIGN IN CONTROL ROOM MODERNIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, C.; Joe, J.; Boring, R.

    The primary objective of the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to sustain operation of the existing commercial nuclear power plants (NPPs) through a multi-pathway approach in conducting research and development (R&D). The Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway conducts targeted R&D to address aging and reliability concerns with legacy instrumentation and control (I&C) and other information systems in existing U.S. NPPs. Control room modernization is an important part following this pathway, and human factors experts at Idaho National Laboratory (INL) have been involved in conducting R&D to supportmore » migration of new digital main control room (MCR) technologies from legacy analog and legacy digital I&C. This paper describes a human factors engineering (HFE) process that supports human-system interface (HSI) design in MCR modernization activities, particularly with migration of old digital to new digital I&C. The process described in this work is an expansion from the LWRS Report INL/EXT-16-38576, and is a requirements-driven approach that aligns with NUREG-0711 requirements. The work described builds upon the existing literature by adding more detail around key tasks and decisions to make when transitioning from HSI Design into Verification and Validation (V&V). The overall objective of this process is to inform HSI design and elicit specific, measurable, and achievable human factors criteria for new digital technologies. Upon following this process, utilities should have greater confidence with transitioning from HSI design into V&V.« less

  2. Data acquisition system for chemical kinetic studies

    PubMed Central

    Zhu, Yu-zhen; Zhou, Xin; Zang, Xiang-sheng

    1989-01-01

    A microcomputer-interfaced data acquisition system for chemical kinetics (interfacing with laboratory analogue instruments) has been developed. Analogue signals from instruments used in kinetics experiments are amplifed by a wide-range adjustable high-gain operational amplifier and smoothed by an op-based filter, and then digitized at rates of up to 104 samples per channel by an ADC 0816 digitizer. The ADC data transfer and manipulation routine was written in Assembler code and in high-level language; the graphics package and data treatment package is in Basic. For the various sampling speeds, all of the program can be written using Basic-Assembler or completely in Assembler if a high sampling rate is needed. Several numerical treatment methods for chemical kinetics have been utilized to smooth the data from experiments. The computer-interfaced system for second-order chemical kinetic studies was applied to the determination of the rate constant of the saponification of ethyl acetate at 35°C. For this specific problem, an averaging treatment was used which can be called an interval method. The use of this method avoids the diffcully of measuring the starting time of the reaction. Two groups of experimental data and results were used to evaluate the systems performance. All of the results obtained are in agreement with the reference value. PMID:18925219

  3. Development of Standard Station Interface for Comprehensive Nuclear Test Ban Treaty Organistation Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Dricker, I. G.; Friberg, P.; Hellman, S.

    2001-12-01

    Under the contract with the CTBTO, Instrumental Software Technologies Inc., (ISTI) has designed and developed a Standard Station Interface (SSI) - a set of executable programs and application programming interface libraries for acquisition, authentication, archiving and telemetry of seismic and infrasound data for stations of the CTBTO nuclear monitoring network. SSI (written in C) is fully supported under both the Solaris and Linux operating systems and will be shipped with fully documented source code. SSI consists of several interconnected modules. The Digitizer Interface Module maintains a near-real-time data flow between multiple digitizers and the SSI. The Disk Buffer Module is responsible for local data archival. The Station Key Management Module is a low-level tool for data authentication and verification of incoming signatures. The Data Transmission Module supports packetized near-real-time data transmission from the primary CTBTO stations to the designated Data Center. The AutoDRM module allows transport of seismic and infrasound signed data via electronic mail (auxiliary station mode). The Command Interface Module is used to pass the remote commands to the digitizers and other modules of SSI. A station operator has access to the state-of-health information and waveforms via an the Operator Interface Module. Modular design of SSI will allow painless extension of the software system within and outside the boundaries of CTBTO station requirements. Currently an alpha version of SSI undergoes extensive tests in the lab and onsite.

  4. WTEC panel report on European nuclear instrumentation and controls

    NASA Technical Reports Server (NTRS)

    White, James D.; Lanning, David D.; Beltracchi, Leo; Best, Fred R.; Easter, James R.; Oakes, Lester C.; Sudduth, A. L.

    1991-01-01

    Control and instrumentation systems might be called the 'brain' and 'senses' of a nuclear power plant. As such they become the key elements in the integrated operation of these plants. Recent developments in digital equipment have allowed a dramatic change in the design of these instrument and control (I&C) systems. New designs are evolving with cathode ray tube (CRT)-based control rooms, more automation, and better logical information for the human operators. As these new advanced systems are developed, various decisions must be made about the degree of automation and the human-to-machine interface. Different stages of the development of control automation and of advanced digital systems can be found in various countries. The purpose of this technology assessment is to make a comparative evaluation of the control and instrumentation systems that are being used for commercial nuclear power plants in Europe and the United States. This study is limited to pressurized water reactors (PWR's). Part of the evaluation includes comparisons with a previous similar study assessing Japanese technology.

  5. Vibration condition measure instrument of motor using MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  6. Using MIDI Accompaniments for Music Learning at School and at Home

    ERIC Educational Resources Information Center

    Kersten, Fred

    2004-01-01

    This article discusses how MIDI and other computer technologies can help students build their musical skills in the classroom and at home. MIDI (Musical Instrument Digital Interface) has provided music teachers with increasing opportunity to use quality computer-developed musical accompaniments in teaching music to children. Standard MIDI files…

  7. Integrating Technology into the K-12 Music Curriculum.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    This guide is intended to provide resources for integrating technology into the K-12 music curriculum. The focus of the guide is on computer software and the use of MIDI (Musical Instrument Digital Interface) in the music classroom. The guide gives two examples of commercially available curricula that integrate technology as well as lesson plans…

  8. Constructing a LabVIEW-Controlled High-Performance Liquid Chromatography (HPLC) System: An Undergraduate Instrumental Methods Exercise

    ERIC Educational Resources Information Center

    Smith, Eugene T.; Hill, Marc

    2011-01-01

    In this laboratory exercise, students develop a LabVIEW-controlled high-performance liquid chromatography system utilizing a data acquisition device, two pumps, a detector, and fraction collector. The programming experience involves a variety of methods for interface communication, including serial control, analog-to-digital conversion, and…

  9. A multi-frequency impedance analysing instrument for eddy current testing

    NASA Astrophysics Data System (ADS)

    Yin, W.; Dickinson, S. J.; Peyton, A. J.

    2006-02-01

    This paper presents the design of a high-performance multi-frequency impedance analysing instrument (MFIA) for eddy current testing which has been developed primarily for monitoring a steel production process using an inductive sensor. The system consists of a flexible multi-frequency waveform generator and a voltage/current measurement unit. The impedance of the sensor is obtained by cross-spectral analysis of the current and voltage signals. The system contains high-speed digital-to-analogue, analogue-to-digital converters and dual DSPs with one for control and interface and one dedicated to frequency-spectra analysis using fast Fourier transformation (FFT). The frequency span of the signal that can be analysed ranges from 1 kHz to 8 MHz. The system also employs a high-speed serial port interface (USB) to communicate with a personal computer (PC) and to allow for fast transmission of data and control commands. Overall, the system is capable of delivering over 250 impedance spectra per second. Although the instrument has been developed mainly for use with an inductive sensor, the system is not restricted to inductive measurement. The flexibility of the design architecture is demonstrated with capacitive and resistive measurements by using appropriate input circuitry. Issues relating to optimizing the phase of the spectra components in the excitation waveform are also discussed.

  10. A Spacecraft Housekeeping System-on-Chip in a Radiation Hardened Structured ASIC

    NASA Technical Reports Server (NTRS)

    Suarez, George; DuMonthier, Jeffrey J.; Sheikh, Salman S.; Powell, Wesley A.; King, Robyn L.

    2012-01-01

    Housekeeping systems are essential to health monitoring of spacecraft and instruments. Typically, sensors are distributed across various sub-systems and data is collected using components such as analog-to-digital converters, analog multiplexers and amplifiers. In most cases programmable devices are used to implement the data acquisition control and storage, and the interface to higher level systems. Such discrete implementations require additional size, weight, power and interconnect complexity versus an integrated circuit solution, as well as the qualification of multiple parts. Although commercial devices are readily available, they are not suitable for space applications due the radiation tolerance and qualification requirements. The Housekeeping System-o n-A-Chip (HKSOC) is a low power, radiation hardened integrated solution suitable for spacecraft and instrument control and data collection. A prototype has been designed and includes a wide variety of functions including a 16-channel analog front-end for driving and reading sensors, analog-to-digital and digital-to-analog converters, on-chip temperature sensor, power supply current sense circuits, general purpose comparators and amplifiers, a 32-bit processor, digital I/O, pulse-width modulation (PWM) generators, timers and I2C master and slave serial interfaces. In addition, the device can operate in a bypass mode where the processor is disabled and external logic is used to control the analog and mixed signal functions. The device is suitable for stand-alone or distributed systems where multiple chips can be deployed across different sub-systems as intelligent nodes with computing and processing capabilities.

  11. Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang; Yuknis, William; Haghani, Noosha; Pursley, Scott; Haddad, Omar

    2012-01-01

    A document describes a high-performance, modular, and state-of-the-art Command and Data Handling (C&DH) system developed for use on the Lunar Reconnaissance Orbiter (LRO) mission. This system implements a complete hardware C&DH subsystem in a single chassis enclosure that includes a processor card, 48 Gbytes of solid-state recorder memory, data buses including MIL-STD-1553B, custom RS-422, SpaceWire, analog collection, switched power services, and interfaces to the Ka-Band and S-Band RF communications systems. The C&DH team capitalized on extensive experience with hardware and software with PCI bus design, SpaceWire networking, Actel FPGA design, digital flight design techniques, and the use of VxWorks for the real-time operating system. The resulting hardware architecture was implemented to meet the LRO mission requirements. The C&DH comprises an enclosure, a backplane, a low-voltage power converter, a single-board computer, a communications interface board, four data storage boards, a housekeeping and digital input/output board, and an analog data acquisition board. The interfaces between the C&DH and the instruments and avionics are connected through a SpaceWire network, a MIL-STD-1553 bus, and a combination of synchronous and asynchronous serial data transfers over RS-422 and LVDS (low-voltage differential-signaling) electrical interfaces. The C&DH acts as the spacecraft data system with an instrument data manager providing all software and internal bus scheduling, ingestion of science data, distribution of commands, and performing science operations in real time.

  12. WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities

    NASA Technical Reports Server (NTRS)

    Uhrig, Robert E.; Carter, Richard J.

    1993-01-01

    This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.

  13. An Assessment of a Technology in Music Programme. Technical Report 91-2, Revised Version.

    ERIC Educational Resources Information Center

    Clarkson, Austin E.; Pegley, Karen

    An innovative intermediate music programme was instituted at an elementary school in a middle class suburban area in Canada. The music teacher at the school designed a unique curriculum, the Technology in Music Programme (TIMP), for a classroom equipped with microcomputers, sequencers, drum machines, music instrument digital interface (MIDI)…

  14. "That Was Me!": Applications of the Soundbeam MIDI Controller as a Key to Creative Communication, Learning, Independence and Joy.

    ERIC Educational Resources Information Center

    Swingler, Tim

    This paper describes the "Soundbeam MIDI (Musical Instrument Digital Interface) Controller," which allows even those students who have severe physical disabilities to create interesting aural and musical effects. Soundbeam works by emitting an invisible beam of high frequency sound inaudible to human ears. Even very slight interruptions…

  15. The Cold Dark Matter Search test stand warm electronics card

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, Bruce; /Colorado U., Denver; Hansen, Sten

    A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.

  16. A cross-platform GUI to control instruments compliant with SCPI through VISA

    NASA Astrophysics Data System (ADS)

    Roach, Eric; Liu, Jing

    2015-10-01

    In nuclear physics experiments, it is necessary and important to control instruments from a PC, which automates many tasks that require human operations otherwise. Not only does this make long term measurements possible, but it also makes repetitive operations less error-prone. We created a graphical user interface (GUI) to control instruments connected to a PC through RS232, USB, LAN, etc. The GUI is developed using Qt Creator, a cross-platform integrated development environment, which makes it portable to various operating systems, including those commonly used in mobile devices. NI-VISA library is used in the back end so that the GUI can be used to control instruments connected through various I/O interfaces without any modification. Commonly used SCPI commands can be sent to different instruments using buttons, sliders, knobs, and other various widgets provided by Qt Creator. As an example, we demonstrate how we set and fetch parameters and how to retrieve and display data from an Agilent Digital Storage Oscilloscope X3034A with the GUI. Our GUI can be easily used for other instruments compliant with SCPI and VISA with little or no modification.

  17. THOR Fields and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud

    2017-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the particle instrument data processing unit (PPU) via a dedicated digital link. This information will help particle instruments to optimize energy and angular sweeps and calculate on-board moments. FWP will also coordinate the acquisition of high resolution waveform snapshots with very high time resolution electron data from the TEA instrument. This combined wave/particle measurement will provide the ultimate dataset for investigation of wave-particle interactions on electron scales. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.

  18. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach computer-based research skills. With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less

  19. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to teach computer-based research skills." With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less

  20. Reconfigurable modular computer networks for spacecraft on-board processing

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    The core electronics subsystems on unmanned spacecraft, which have been sent over the last 20 years to investigate the moon, Mars, Venus, and Mercury, have progressed through an evolution from simple fixed controllers and analog computers in the 1960's to general-purpose digital computers in current designs. This evolution is now moving in the direction of distributed computer networks. Current Voyager spacecraft already use three on-board computers. One is used to store commands and provide overall spacecraft management. Another is used for instrument control and telemetry collection, and the third computer is used for attitude control and scientific instrument pointing. An examination of the control logic in the instruments shows that, for many, it is cost-effective to replace the sequencing logic with a microcomputer. The Unified Data System architecture considered consists of a set of standard microcomputers connected by several redundant buses. A typical self-checking computer module will contain 23 RAMs, two microprocessors, one memory interface, three bus interfaces, and one core building block.

  1. IEEE 1451.2 based Smart sensor system using ADuc847

    NASA Astrophysics Data System (ADS)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  2. A REVIEW OF HUMAN-SYSTEM INTERFACE DESIGN ISSUES OBSERVED DURING ANALOG-TO-DIGITAL AND DIGITAL-TO-DIGITAL MIGRATIONS IN U.S. NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, C.; Joe, J.

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is developing a scientific basis through targeted research and development (R&D) to support the U.S. nuclear power plant (NPP) fleet in extending their existing licensing period and ensuring their long-term reliability, productivity, safety, and security. Over the last several years, human factors engineering (HFE) professionals at the Idaho National Laboratory (INL) have supported the LWRS Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway across several U.S. commercial NPPs in analog-to-digital migrations (i.e., turbine control systems) and digital-to-digital migrations (i.e., Safety Parameter Display System). These effortsmore » have included in-depth human factors evaluation of proposed human-system interface (HSI) design concepts against established U.S. Nuclear Regulatory Commission (NRC) design guidelines from NUREG-0700, Rev 2 to inform subsequent HSI design prior to transitioning into Verification and Validation. This paper discusses some of the overarching design issues observed from these past HFE evaluations. In addition, this work presents some observed challenges such as common tradeoffs utilities are likely to face when introducing new HSI technologies into NPP hybrid control rooms. The primary purpose of this work is to distill these observed design issues into general HSI design guidance that industry can use in early stages of HSI design.« less

  3. A Standardized Interface for Obtaining Digital Planetary and Heliophysics Time Series Data

    NASA Astrophysics Data System (ADS)

    Vandegriff, Jon; Weigel, Robert; Faden, Jeremy; King, Todd; Candey, Robert

    2016-10-01

    We describe a low level interface for accessing digital Planetary and Heliophysics data, focusing primarily on time-series data from in-situ instruments. As the volume and variety of planetary data has increased, it has become harder to merge diverse datasets into a common analysis environment. Thus we are building low-level computer-to-computer infrastructure to enable data from different missions or archives to be able to interoperate. The key to enabling interoperability is a simple access interface that standardizes the common capabilities available from any data server: 1. identify the data resources that can be accessed; 2. describe each resource; and 3. get the data from a resource. We have created a standardized way for data servers to perform each of these three activities. We are also developing a standard streaming data format for the actual data content to be returned (i.e., the result of item 3). Our proposed standard access interface is simple enough that it could be implemented on top of or beside existing data services, or it could even be fully implemented by a small data provider as a way to ensure that the provider's holdings can participate in larger data systems or joint analysis with other datasets. We present details of the interface and of the streaming format, including a sample server designed to illustrate the data request and streaming capabilities.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacas-Jacques, Paulino; Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114; Linnes, Jacqueline

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second,more » the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.« less

  5. Time-resolved laser-induced fluorescence system

    NASA Astrophysics Data System (ADS)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  6. A generic readout system for astrophysical detectors

    NASA Astrophysics Data System (ADS)

    Doumayrou, E.; Lortholary, M.

    2012-09-01

    We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.

  7. Aquarius Digital Processing Unit

    NASA Technical Reports Server (NTRS)

    Forgione, Joshua; Winkert, George; Dobson, Norman

    2009-01-01

    Three documents provide information on a digital processing unit (DPU) for the planned Aquarius mission, in which a radiometer aboard a spacecraft orbiting Earth is to measure radiometric temperatures from which data on sea-surface salinity are to be deduced. The DPU is the interface between the radiometer and an instrument-command-and-data system aboard the spacecraft. The DPU cycles the radiometer through a programmable sequence of states, collects and processes all radiometric data, and collects all housekeeping data pertaining to operation of the radiometer. The documents summarize the DPU design, with emphasis on innovative aspects that include mainly the following: a) In the radiometer and the DPU, conversion from analog voltages to digital data is effected by means of asynchronous voltage-to-frequency converters in combination with a frequency-measurement scheme implemented in field-programmable gate arrays (FPGAs). b) A scheme to compensate for aging and changes in the temperature of the DPU in order to provide an overall temperature-measurement accuracy within 0.01 K includes a high-precision, inexpensive DC temperature measurement scheme and a drift-compensation scheme that was used on the Cassini radar system. c) An interface among multiple FPGAs in the DPU guarantees setup and hold times.

  8. Method of recording bioelectrical signals using a capacitive coupling

    NASA Astrophysics Data System (ADS)

    Simon, V. A.; Gerasimov, V. A.; Kostrin, D. K.; Selivanov, L. M.; Uhov, A. A.

    2017-11-01

    In this article a technique for the bioelectrical signals acquisition by means of the capacitive sensors is described. A feedback loop for the ultra-high impedance biasing of the input instrumentation amplifier, which provides receiving of the electrical cardiac signal (ECS) through a capacitive coupling, is proposed. The mains 50/60 Hz noise is suppressed by a narrow-band stop filter with an independent notch frequency and quality factor tuning. Filter output is attached to a ΣΔ analog-to-digital converter (ADC), which acquires the filtered signal with a 24-bit resolution. Signal processing board is connected through universal serial bus interface to a personal computer, where ECS in a digital form is recorded and processed.

  9. Instrumentation System Diagnoses a Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley

    2008-01-01

    An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.

  10. Overview of the Multi-Spectral Imager on the NEAR spacecraft

    NASA Astrophysics Data System (ADS)

    Hawkins, S. E., III

    1996-07-01

    The Multi-Spectral Imager on the Near Earth Asteroid Rendezvous (NEAR) spacecraft is a 1 Hz frame rate CCD camera sensitive in the visible and near infrared bands (~400-1100 nm). MSI is the primary instrument on the spacecraft to determine morphology and composition of the surface of asteroid 433 Eros. In addition, the camera will be used to assist in navigation to the asteroid. The instrument uses refractive optics and has an eight position spectral filter wheel to select different wavelength bands. The MSI optical focal length of 168 mm gives a 2.9 ° × 2.25 ° field of view. The CCD is passively cooled and the 537×244 pixel array output is digitized to 12 bits. Electronic shuttering increases the effective dynamic range of the instrument by more than a factor of 100. A one-time deployable cover protects the instrument during ground testing operations and launch. A reduced aperture viewport permits full field of view imaging while the cover is in place. A Data Processing Unit (DPU) provides the digital interface between the spacecraft and the Camera Head and uses an RTX2010 processor. The DPU provides an eight frame image buffer, lossy and lossless data compression routines, and automatic exposure control. An overview of the instrument is presented and design parameters and trade-offs are discussed.

  11. Scalable Multiprocessor for High-Speed Computing in Space

    NASA Technical Reports Server (NTRS)

    Lux, James; Lang, Minh; Nishimoto, Kouji; Clark, Douglas; Stosic, Dorothy; Bachmann, Alex; Wilkinson, William; Steffke, Richard

    2004-01-01

    A report discusses the continuing development of a scalable multiprocessor computing system for hard real-time applications aboard a spacecraft. "Hard realtime applications" signifies applications, like real-time radar signal processing, in which the data to be processed are generated at "hundreds" of pulses per second, each pulse "requiring" millions of arithmetic operations. In these applications, the digital processors must be tightly integrated with analog instrumentation (e.g., radar equipment), and data input/output must be synchronized with analog instrumentation, controlled to within fractions of a microsecond. The scalable multiprocessor is a cluster of identical commercial-off-the-shelf generic DSP (digital-signal-processing) computers plus generic interface circuits, including analog-to-digital converters, all controlled by software. The processors are computers interconnected by high-speed serial links. Performance can be increased by adding hardware modules and correspondingly modifying the software. Work is distributed among the processors in a parallel or pipeline fashion by means of a flexible master/slave control and timing scheme. Each processor operates under its own local clock; synchronization is achieved by broadcasting master time signals to all the processors, which compute offsets between the master clock and their local clocks.

  12. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Hatziminaoglou, Evanthia; Chéreau, Fabien

    2009-03-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility (SAF) developed in the Virtual Observatory Project Office. VirGO enables astronomers to discover and select data easily from millions of observations in a visual and intuitive way. It allows real-time access and the graphical display of a large number of observations by showing instrumental footprints and image previews, as well as their selection and filtering for subsequent download from the ESO SAF web interface. It also permits the loading of external FITS files or VOTables, as well as the superposition of Digitized Sky Survey images to be used as background. All data interfaces are based on Virtual Observatory (VO) standards that allow access to images and spectra from external data centres, and interaction with the ESO SAF web interface or any other VO applications.

  13. General-purpose interface bus for multiuser, multitasking computer system

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1990-01-01

    The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.

  14. Validation of Calculations in a Digital Thermometer Firmware

    NASA Astrophysics Data System (ADS)

    Batagelj, V.; Miklavec, A.; Bojkovski, J.

    2014-04-01

    State-of-the-art digital thermometers are arguably remarkable measurement instruments, measuring outputs from resistance thermometers and/or thermocouples. Not only that they can readily achieve measuring accuracies in the parts-per-million range, but they also incorporate sophisticated algorithms for the transformation calculation of the measured resistance or voltage to temperature. These algorithms often include high-order polynomials, exponentials and logarithms, and must be performed using both standard coefficients and particular calibration coefficients. The numerical accuracy of these calculations and the associated uncertainty component must be much better than the accuracy of the raw measurement in order to be negligible in the total measurement uncertainty. In order for the end-user to gain confidence in these calculations as well as to conform to formal requirements of ISO/IEC 17025 and other standards, a way of validation of these numerical procedures performed in the firmware of the instrument is required. A software architecture which allows a simple validation of internal measuring instrument calculations is suggested. The digital thermometer should be able to expose all its internal calculation functions to the communication interface, so the end-user can compare the results of the internal measuring instrument calculation with reference results. The method can be regarded as a variation of the black-box software validation. Validation results on a thermometer prototype with implemented validation ability show that the calculation error of basic arithmetic operations is within the expected rounding error. For conversion functions, the calculation error is at least ten times smaller than the thermometer effective resolution for the particular probe type.

  15. Synopsis of a computer program designed to interface a personal computer with the fast data acquisition system of a time-of-flight mass spectrometer

    NASA Technical Reports Server (NTRS)

    Bechtel, R. D.; Mateos, M. A.; Lincoln, K. A.

    1988-01-01

    Briefly described are the essential features of a computer program designed to interface a personal computer with the fast, digital data acquisition system of a time-of-flight mass spectrometer. The instrumentation was developed to provide a time-resolved analysis of individual vapor pulses produced by the incidence of a pulsed laser beam on an ablative material. The high repetition rate spectrometer coupled to a fast transient recorder captures complete mass spectra every 20 to 35 microsecs, thereby providing the time resolution needed for the study of this sort of transient event. The program enables the computer to record the large amount of data generated by the system in short time intervals, and it provides the operator the immediate option of presenting the spectral data in several different formats. Furthermore, the system does this with a high degree of automation, including the tasks of mass labeling the spectra and logging pertinent instrumental parameters.

  16. A single-chip event sequencer and related microcontroller instrumentation for atomic physics research.

    PubMed

    Eyler, E E

    2011-01-01

    A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.

  17. The DBBC environment for millimeter radioastronomy

    NASA Astrophysics Data System (ADS)

    Tuccari, Gino; Comoretto, Giovanni; Melis, Andrea; Buttaccio, Salvo

    2012-09-01

    The Digital Base Band Converter project developed in the last decade produced a general architecture and a class of boards, firmware and software, giving the possibility to build a general purpose back-end system for VLBI or single-dish observational activities. Such approach suggests the realization of a digital radio system, i.e. a receiver with conversion not realized with analogue techniques, maintaining only amplification stages in the analogue domain. This solution can be applied until a maximum around 16 GHz, the present limit for the instantaneous input band in the latest version of the DBBC project, while in the millimeter frequency range this maximum limit of 0.5-2 GHz of the previous versions allows the intermediate frequency to be processed in the digital domain. A description of the elements developed in the DBBC project is presented, with their use in different environments. The architecture is composed of a PC controlled mainframe, and of different modules that can be combined in a very flexible way in order to realize different instruments. The instrument can be expanded or retrofitted to meet increasing observational demands. Available modules include ADC converters, processing boards, physical interfaces (VSI and 10G Ethernet). Several applications have already been implemented and used in radioastronomic observations: a DDC (Direct Digital Conversion) for VLBI observations, a Polyphase Digital Filter Bank, and a Multiband Scansion Spectrometer. Other applications are currently studied for additional functionalities like a spectropolarimeter, a linear-to-circular polarization converter, a RFI-mitigation tool, and a phase-reference holographic tool-kit.

  18. Operation Program for the Spatially Phase-Shifted Digital Speckle Pattern Interferometer - SPS-DSPI

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Jones, Joycelyn T.; Hostetter, Carl F.; Greenfield, Perry; Miller, Todd

    2010-01-01

    SPS-DSPI software has been revised so that Goddard optical engineers can operate the instrument, instead of data programmers. The user interface has been improved to view the data collected by the SPS-DSPI, with a real-time mode and a play-back mode. The SPS-DSPI has been developed by NASA/GSFC to measure the temperature distortions of the primary-mirror backplane structure for the James Webb Space Telescope. It requires a team of computer specialists to run successfully, because, at the time of this reporting, it just finished the prototype stage. This software improvement will transition the instrument to become available for use by many programs that measure distortion

  19. Technologies for Achieving Field Ubiquitous Computing

    NASA Astrophysics Data System (ADS)

    Nagashima, Akira

    Although the term “ubiquitous” may sound like jargon used in information appliances, ubiquitous computing is an emerging concept in industrial automation. This paper presents the author's visions of field ubiquitous computing, which is based on the novel Internet Protocol IPv6. IPv6-based instrumentation will realize the next generation manufacturing excellence. This paper focuses on the following five key issues: 1. IPv6 standardization; 2. IPv6 interfaces embedded in field devices; 3. Compatibility with FOUNDATION fieldbus; 4. Network securities for field applications; and 5. Wireless technologies to complement IP instrumentation. Furthermore, the principles of digital plant operations and ubiquitous production to support the above key technologies to achieve field ubiquitous systems are discussed.

  20. Digital Audio Signal Processing and Nde: AN Unlikely but Valuable Partnership

    NASA Astrophysics Data System (ADS)

    Gaydecki, Patrick

    2008-02-01

    In the Digital Signal Processing (DSP) group, within the School of Electrical and Electronic Engineering at The University of Manchester, research is conducted into two seemingly distinct and disparate subjects: instrumentation for nondestructive evaluation, and DSP systems & algorithms for digital audio. We have often found that many of the hardware systems and algorithms employed to recover, extract or enhance audio signals may also be applied to signals provided by ultrasonic or magnetic NDE instruments. Furthermore, modern DSP hardware is so fast (typically performing hundreds of millions of operations per second), that much of the processing and signal reconstruction may be performed in real time. Here, we describe some of the hardware systems we have developed, together with algorithms that can be implemented both in real time and offline. A next generation system has now been designed, which incorporates a processor operating at 0.55 Giga MMACS, six input and eight output analogue channels, digital input/output in the form of S/PDIF, a JTAG and a USB interface. The software allows the user, with no knowledge of filter theory or programming, to design and run standard or arbitrary FIR, IIR and adaptive filters. Using audio as a vehicle, we can demonstrate the remarkable properties of modern reconstruction algorithms when used in conjunction with such hardware; applications in NDE include signal enhancement and recovery in acoustic, ultrasonic, magnetic and eddy current modalities.

  1. Software for biomedical engineering signal processing laboratory experiments.

    PubMed

    Tompkins, Willis J; Wilson, J

    2009-01-01

    In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.

  2. Nads FSK Modem, LEA 74-2248

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.R.

    1976-01-12

    The Nads FSK Modem is a compact unit designed to operate in conjunction with EIA standard interfacing and the data terminal equipment of the 1200 Baud digital communications network of the Nevada Automated Diagnostics System (NADS). The modem is constructed in a Nuclear Instrumentation Module System (NIMS) module for compatability with the NADS system. The modulator section of the modem accepts serial, digital signals at 1200 Baud which may be either standard TTL levels or bipolar signals meeting either the EIA RS-232C or RS-232B standards. The output of the modulator is a Frequency-Shift Keyed (FSK) signal having frequencies of 2.2more » kHz for Mark and 1.2 kHz for Space. The demodulator section accepts the above FSK signal as input, and outputs serial, digital signals at 1200 Baud at either TTL or EIA RS-232C levels. Specifications and operation and calibration instructions are given. (WHK)« less

  3. CMOS based capacitance to digital converter circuit for MEMS sensor

    NASA Astrophysics Data System (ADS)

    Rotake, D. R.; Darji, A. D.

    2018-02-01

    Most of the MEMS cantilever based system required costly instruments for characterization, processing and also has large experimental setups which led to non-portable device. So there is a need of low cost, highly sensitive, high speed and portable digital system. The proposed Capacitance to Digital Converter (CDC) interfacing circuit converts capacitance to digital domain which can be easily processed. Recent demand microcantilever deflection is part per trillion ranges which change the capacitance in 1-10 femto farad (fF) range. The entire CDC circuit is designed using CMOS 250nm technology. Design of CDC circuit consists of a D-latch and two oscillators, namely Sensor controlled oscillator (SCO) and digitally controlled oscillator (DCO). The D-latch is designed using transmission gate based MUX for power optimization. A CDC design of 7-stage, 9-stage and 11-stage tested for 1-18 fF and simulated using mentor graphics Eldo tool with parasitic. Since the proposed design does not use resistance component, the total power dissipation is reduced to 2.3621 mW for CDC designed using 9-stage SCO and DCO.

  4. A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memmi, F.; Falconi, L.; Cappelli, M.

    2012-07-01

    Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by usingmore » CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important aim of this work is the possibility to have a front panel available on a web interface: CompactRio acts as a remote server and it is accessible on a dedicated LAN. This supervisory system has been tested and validated on the basis of the real control console for the 1-MW TRIGA reactor RC-1 at the ENEA, Casaccia Research Center. In this paper we show some results obtained by recording each variable as the reactor reaches its maximum level of power. The choice of a research reactor for testing the developed system relies on its training and didactic importance for the education of plant operators: in this context a digital instrument can offer a better user-friendly tool for learning and training. It is worthwhile to remark that such a system does not interfere with the console instrumentation, the latter continuing to preserve the total control. (authors)« less

  5. Digital Beamforming Scatterometer

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul

    2009-01-01

    This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics

  6. Miniature Six-Axis Load Sensor for Robotic Fingertip

    NASA Technical Reports Server (NTRS)

    Diftler, Myron A.; Martin, Toby B.; Valvo, Michael C.; Rodriguez, Dagoberto; Chu, Mars W.

    2009-01-01

    A miniature load sensor has been developed as a prototype of tactile sensors that could fit within fingertips of anthropomorphic robot hands. The sensor includes a force-and-torque transducer in the form of a spring instrumented with at least six semiconductor strain gauges. The strain-gauge wires are secured to one side of an interface circuit board mounted at the base of the spring. This board protects the strain-gauge wires from damage that could otherwise occur as a result of finger motions. On the opposite side of the interface board, cables routed along the neutral axis of the finger route the strain-gauge output voltages to an analog-to-digital converter (A/D) board. The A/D board is mounted as close as possible to the strain gauges to minimize electromagnetic noise and other interference effects. The outputs of the A/D board are fed to a controller, wherein, by means of a predetermined calibration matrix, the digitized strain-gauge output voltages are converted to three vector components of force and three of torque exerted by or on the fingertip.

  7. The Schultz MIDI Benchmarking Toolbox for MIDI interfaces, percussion pads, and sound cards.

    PubMed

    Schultz, Benjamin G

    2018-04-17

    The Musical Instrument Digital Interface (MIDI) was readily adopted for auditory sensorimotor synchronization experiments. These experiments typically use MIDI percussion pads to collect responses, a MIDI-USB converter (or MIDI-PCI interface) to record responses on a PC and manipulate feedback, and an external MIDI sound module to generate auditory feedback. Previous studies have suggested that auditory feedback latencies can be introduced by these devices. The Schultz MIDI Benchmarking Toolbox (SMIDIBT) is an open-source, Arduino-based package designed to measure the point-to-point latencies incurred by several devices used in the generation of response-triggered auditory feedback. Experiment 1 showed that MIDI messages are sent and received within 1 ms (on average) in the absence of any external MIDI device. Latencies decreased when the baud rate increased above the MIDI protocol default (31,250 bps). Experiment 2 benchmarked the latencies introduced by different MIDI-USB and MIDI-PCI interfaces. MIDI-PCI was superior to MIDI-USB, primarily because MIDI-USB is subject to USB polling. Experiment 3 tested three MIDI percussion pads. Both the audio and MIDI message latencies were significantly greater than 1 ms for all devices, and there were significant differences between percussion pads and instrument patches. Experiment 4 benchmarked four MIDI sound modules. Audio latencies were significantly greater than 1 ms, and there were significant differences between sound modules and instrument patches. These experiments suggest that millisecond accuracy might not be achievable with MIDI devices. The SMIDIBT can be used to benchmark a range of MIDI devices, thus allowing researchers to make informed decisions when choosing testing materials and to arrive at an acceptable latency at their discretion.

  8. Towards an Analogue Neuromorphic VLSI Instrument for the Sensing of Complex Odours

    NASA Astrophysics Data System (ADS)

    Ab Aziz, Muhammad Fazli; Harun, Fauzan Khairi Che; Covington, James A.; Gardner, Julian W.

    2011-09-01

    Almost all electronic nose instruments reported today employ pattern recognition algorithms written in software and run on digital processors, e.g. micro-processors, microcontrollers or FPGAs. Conversely, in this paper we describe the analogue VLSI implementation of an electronic nose through the design of a neuromorphic olfactory chip. The modelling, design and fabrication of the chip have already been reported. Here a smart interface has been designed and characterised for thisneuromorphic chip. Thus we can demonstrate the functionality of the a VLSI neuromorphic chip, producing differing principal neuron firing patterns to real sensor response data. Further work is directed towards integrating 9 separate neuromorphic chips to create a large neuronal network to solve more complex olfactory problems.

  9. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2005-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  10. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor)

    2007-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. In some embodiments, network device interfaces associated with different data channels coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  11. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Winkelmann, Joseph P. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface is a state machine, such as an ASIC, that operates independent of a processor in communicating with the bus controller and data channels.

  12. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor); Grant, Robert L. (Inventor)

    2004-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  13. [Interface interconnection and data integration in implementing of digital operating room].

    PubMed

    Feng, Jingyi; Chen, Hua; Liu, Jiquan

    2011-10-01

    The digital operating-room, with highly integrated clinical information, is very important for rescuing lives of patients and improving quality of operations. Since equipments in domestic operating-rooms have diversified interface and nonstandard communication protocols, designing and implementing an integrated data sharing program for different kinds of diagnosing, monitoring, and treatment equipments become a key point in construction of digital operating room. This paper addresses interface interconnection and data integration for commonly used clinical equipments from aspects of hardware interface, interface connection and communication protocol, and offers a solution for interconnection and integration of clinical equipments in heterogeneous environment. Based on the solution, a case of an optimal digital operating-room is presented in this paper. Comparing with the international solution for digital operating-room, the solution proposed in this paper is more economical and effective. And finally, this paper provides a proposal for the platform construction of digital perating-room as well as a viewpoint for standardization of domestic clinical equipments.

  14. Virtual Instrumentation for a Fiber-Optics-Based Artificial Nerve

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Kyaw, Thet Mon; Griffin, DeVon (Technical Monitor)

    2001-01-01

    A LabView-based computer interface for fiber-optic artificial nerves has been devised as a Masters thesis project. This project involves the use of outputs from wavelength multiplexed optical fiber sensors (artificial nerves), which are capable of producing dense optical data outputs for physical measurements. The potential advantages of using optical fiber sensors for sensory function restoration is the fact that well defined WDM-modulated signals can be transmitted to and from the sensing region allowing networked units to replace low-level nerve functions for persons desirous of "intelligent artificial limbs." Various FO sensors can be designed with high sensitivity and the ability to be interfaced with a wide range of devices including miniature shielded electrical conversion units. Our Virtual Instrument (VI) interface software package was developed using LabView's "Laboratory Virtual Instrument Engineering Workbench" package. The virtual instrument has been configured to arrange and encode the data to develop an intelligent response in the form of encoded digitized signal outputs. The architectural layout of our nervous system is such that different touch stimuli from different artificial fiber-optic nerve points correspond to gratings of a distinct resonant wavelength and physical location along the optical fiber. Thus, when an automated, tunable diode laser sends scans, the wavelength spectrum of the artificial nerve, it triggers responses that are encoded with different touch stimuli by way wavelength shifts in the reflected Bragg resonances. The reflected light is detected and a resulting analog signal is fed into ADC1 board and DAQ card. Finally, the software has been written such that the experimenter is able to set the response range during data acquisition.

  15. Imaging Sensor Flight and Test Equipment Software

    NASA Technical Reports Server (NTRS)

    Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa

    2007-01-01

    The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes at user-selected locations.

  16. Digitally controlled sonars

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1983-01-01

    Sonars are usually designed and constructed as stand alone instruments. That is, all elements or subsystems of the sonar are provided: power conditioning, displays, intercommunications, control, receiver, transmitter, and transducer. The sonars which are a part of the Advanced Ocean Test Development Platform (AOTDP) represent a departure from this manner of implementation and are configured more like an instrumentation system. Only the transducer, transmitter, and receiver which are unique to a particular sonar function; Up, Down, Side Scan, exist as separable subsystems. The remaining functions are reserved to the AOTDP and serve all sonars and other instrumentation in a shared manner. The organization and functions of the common AOTDP elements were described and then the interface with the sonars discussed. The techniques for software control of the sonar parameters were explained followed by the details of the realization of the sonar functions and some discussion of the performance of the side scan sonars.

  17. Effects of Shuttle bay environment on UV sensitive photographic film - Instrumentation for Get-Away-Special

    NASA Technical Reports Server (NTRS)

    Kreplin, R. W.; Dohne, B.; Feldman, U.; Neupert, W. M.

    1984-01-01

    An account is given of a Get-Away-Special experiment flown on Space Shuttles 7 and 8 investigating the effect of the space environment on Shumann emulsions. Shumann emulsions, having low gelatin content and no protective gelatin overcoating, are useful detectors of ultraviolet radiation shorter than 2200 angstroms but are extremely sensitive to environmental conditions and handling. The instrument required no interface with the Shuttle. It was turned on by an aneroid switch at an altitude of 50,000 feet. After that, its operation was controlled completely by a CMOS digital controller. Each hour, two temperatures and one voltage were read and stored in a CMOS programmable read only memory. At intervals, valves were opened and closed to expose SO 652 film strips of three sensitivities to the cargo bay environment for various time periods. The design and operation of the instrument package is described.

  18. Polyplanar optical display electronics

    NASA Astrophysics Data System (ADS)

    DeSanto, Leonard; Biscardi, Cyrus

    1997-07-01

    The polyplanar optical display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid- state laser at 532 nm as its light source. To produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the digital micromirror device (DMD) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD chip is operated remotely from the Texas Instruments circuit board. We discuss the operation of the DMD divorced from the light engine and the interfacing of the DMD board with various video formats including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  19. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    NASA Astrophysics Data System (ADS)

    Tamborini, D.; Portaluppi, D.; Villa, F.; Tisa, S.; Tosi, A.

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  20. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs.

    PubMed

    Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  1. A versatile localization system for microscopic multiparametric analysis of cells.

    PubMed

    Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P

    1983-03-01

    A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.

  2. Implementation of High Speed Distributed Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.

  3. Medusa: A Scalable MR Console Using USB

    PubMed Central

    Stang, Pascal P.; Conolly, Steven M.; Santos, Juan M.; Pauly, John M.; Scott, Greig C.

    2012-01-01

    MRI pulse sequence consoles typically employ closed proprietary hardware, software, and interfaces, making difficult any adaptation for innovative experimental technology. Yet MRI systems research is trending to higher channel count receivers, transmitters, gradient/shims, and unique interfaces for interventional applications. Customized console designs are now feasible for researchers with modern electronic components, but high data rates, synchronization, scalability, and cost present important challenges. Implementing large multi-channel MR systems with efficiency and flexibility requires a scalable modular architecture. With Medusa, we propose an open system architecture using the Universal Serial Bus (USB) for scalability, combined with distributed processing and buffering to address the high data rates and strict synchronization required by multi-channel MRI. Medusa uses a modular design concept based on digital synthesizer, receiver, and gradient blocks, in conjunction with fast programmable logic for sampling and synchronization. Medusa is a form of synthetic instrument, being reconfigurable for a variety of medical/scientific instrumentation needs. The Medusa distributed architecture, scalability, and data bandwidth limits are presented, and its flexibility is demonstrated in a variety of novel MRI applications. PMID:21954200

  4. Development of low cost and accurate homemade sensor system based on Surface Plasmon Resonance (SPR)

    NASA Astrophysics Data System (ADS)

    Laksono, F. D.; Supardianningsih; Arifin, M.; Abraha, K.

    2018-04-01

    In this paper, we developed homemade and computerized sensor system based on Surface Plasmon Resonance (SPR). The developed systems consist of mechanical system instrument, laser power sensor, and user interface. The mechanical system development that uses anti-backlash gear design was successfully able to enhance the angular resolution angle of incidence laser up to 0.01°. In this system, the laser detector acquisition system and stepper motor controller utilizing Arduino Uno which is easy to program, flexible, and low cost, was used. Furthermore, we employed LabView’s user interface as the virtual instrument for facilitating the sample measurement and for transforming the data recording directly into the digital form. The test results using gold-deposited half-cylinder prism showed the Total Internal Reflection (TIR) angle of 41,34°± 0,01° and SPR angle of 44,20°± 0,01°, respectively. The result demonstrated that the developed system managed to reduce the measurement duration and data recording errors caused by human error. Also, the test results also concluded that the system’s measurement is repeatable and accurate.

  5. Instrument interface description for NOAA 2000 instruments with European morning spacecraft and/or NOAA-OPQ spacecraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose is to describe at a high level the common interface provisions and constraints placed on the NOAA-2000 instruments and the interfacing spacecraft elements in the following areas: electrical interface, mechanical interface, thermal interface, magnetic interface, electromagnetic compatibility, structural/mechanical environmental interface, contamination control, and the ionizing radiation environment. The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.

  6. A validated methodology for determination of laboratory instrument computer interface efficacy

    NASA Astrophysics Data System (ADS)

    1984-12-01

    This report is intended to provide a methodology for determining when, and for which instruments, direct interfacing of laboratory instrument and laboratory computers is beneficial. This methodology has been developed to assist the Tri-Service Medical Information Systems Program Office in making future decisions regarding laboratory instrument interfaces. We have calculated the time savings required to reach a break-even point for a range of instrument interface prices and corresponding average annual costs. The break-even analyses used empirical data to estimate the number of data points run per day that are required to meet the break-even point. The results indicate, for example, that at a purchase price of $3,000, an instrument interface will be cost-effective if the instrument is utilized for at least 154 data points per day if operated in the continuous mode, or 216 points per day if operated in the discrete mode. Although this model can help to ensure that instrument interfaces are cost effective, additional information should be considered in making the interface decisions. A reduction in results transcription errors may be a major benefit of instrument interfacing.

  7. Skylab Rescue Space Vehicle OAT No. 1 Plugs in Test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A test is described which demonstrates the compatibility of the Skylab Rescue Space Vehicle systems, the ground support equipment, and off-site support facilities by proceeding through a simulated launch countdown, liftoff, and flight. The functions of propellant loading, umbilical ejection, holddown arm release, service arm retraction, liftoff, and inflight separation are simulated. An external power source supplies transfer power to internal, and instrument unit commands are simulated by the digital command system. The test outline is presented along with a list of references, intercommunications information, radio frequency matrix, and interface control chart.

  8. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.

  9. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor); Konz, Daniel W. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  10. Digitally-bypassed transducers: interfacing digital mockups to real-time medical equipment.

    PubMed

    Sirowy, Scott; Givargis, Tony; Vahid, Frank

    2009-01-01

    Medical device software is sometimes initially developed by using a PC simulation environment that executes models of both the device and a physiological system, and then later by connecting the actual medical device to a physical mockup of the physiological system. An alternative is to connect the medical device to a digital mockup of the physiological system, such that the device believes it is interacting with a physiological system, but in fact all interaction is entirely digital. Developing medical device software by interfacing with a digital mockup enables development without costly or dangerous physical mockups, and enables execution that is faster or slower than real time. We introduce digitally-bypassed transducers, which involve a small amount of hardware and software additions, and which enable interfacing with digital mockups.

  11. Earth Observatory Satellite system definition study. Report 2: Instrument constraints and interfaces

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instrument constraints and interface specifications for the Earth Observatory Satellite (EOS) are discussed. The Land Use Classification Mission using a 7 band Thematic Mapper and a 4 band High Resolution Pointable Imager is stressed. The mission and performance of the instruments were reviewed and expanded to reflect the instrument as a part of the total remote sensing system. A preliminary EOS interface handbook is provided to describe the mission and system, to specify the spacecraft interfaces to potential instrument contractors, and to describe the instrument interface data required by the system integration contractor.

  12. Digital Education Governance: Data Visualization, Predictive Analytics, and "Real-Time" Policy Instruments

    ERIC Educational Resources Information Center

    Williamson, Ben

    2016-01-01

    Educational institutions and governing practices are increasingly augmented with digital database technologies that function as new kinds of policy instruments. This article surveys and maps the landscape of digital policy instrumentation in education and provides two detailed case studies of new digital data systems. The Learning Curve is a…

  13. Implementation of a digital evaluation platform to analyze bifurcation based nonlinear amplifiers

    NASA Astrophysics Data System (ADS)

    Feldkord, Sven; Reit, Marco; Mathis, Wolfgang

    2016-09-01

    Recently, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have become a focus of attention, especially in the modeling of the mammalian hearing organ. In general, to gain deeper insights in the input-output behavior, the analysis of bifurcation based amplifiers requires a flexible framework to exchange equations and adjust certain parameters. A DSP implementation is presented which is capable to analyze various amplifier systems. Amplifiers based on the Andronov-Hopf and Neimark-Sacker bifurcations are implemented and compared exemplarily. It is shown that the Neimark-Sacker system remarkably outperforms the Andronov-Hopf amplifier regarding the CPU usage. Nevertheless, both show a similar input-output behavior over a wide parameter range. Combined with an USB-based control interface connected to a PC, the digital framework provides a powerful instrument to analyze bifurcation based amplifiers.

  14. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamborini, D., E-mail: davide.tamborini@polimi.it; Portaluppi, D.; Villa, F.

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically usefulmore » for time-correlated single-photon counting application) through an independent serial link.« less

  15. 47 CFR 79.107 - User interfaces provided by digital apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.107 User interfaces provided by digital... States and designed to receive or play back video programming transmitted in digital format simultaneously with sound, including apparatus designed to receive or display video programming transmitted in...

  16. Toward High-Performance Communications Interfaces for Science Problem Solving

    NASA Astrophysics Data System (ADS)

    Oviatt, Sharon L.; Cohen, Adrienne O.

    2010-12-01

    From a theoretical viewpoint, educational interfaces that facilitate communicative actions involving representations central to a domain can maximize students' effort associated with constructing new schemas. In addition, interfaces that minimize working memory demands due to the interface per se, for example by mimicking existing non-digital work practice, can preserve students' attentional focus on their learning task. In this research, we asked the question: What type of interface input capabilities provide best support for science problem solving in both low- and high- performing students? High school students' ability to solve a diverse range of biology problems was compared over longitudinal sessions while they used: (1) hardcopy paper and pencil (2) a digital paper and pen interface (3) pen tablet interface, and (4) graphical tablet interface. Post-test evaluations revealed that time to solve problems, meta-cognitive control, solution correctness, and memory all were significantly enhanced when using the digital pen and paper interface, compared with tablet interfaces. The tangible pen and paper interface also was the only alternative that significantly facilitated skill acquisition in low-performing students. Paradoxically, all students nonetheless believed that the tablet interfaces provided best support for their performance, revealing a lack of self-awareness about how to use computational tools to best advantage. Implications are discussed for how pen interfaces can be optimized for future educational purposes, and for establishing technology fluency curricula to improve students' awareness of the impact of digital tools on their performance.

  17. Stand-alone digital data storage control system including user control interface

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)

    1994-01-01

    A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.

  18. Design Dimensions Enabling Divergent Behaviour across Physical, Digital, and Social Library Interfaces

    NASA Astrophysics Data System (ADS)

    Björneborn, Lennart

    What design dimensions across physical, digital, and social library interfaces may enable and trigger users to find more information resources than planned or known in advance? The paper outlines a conceptual framework with libraries as integrative interfaces across physical, digital, and social affordances and users that mix convergent (goal-directed) and divergent (exploratory) information behaviour. Ten design dimensions that enable and trigger divergent behaviour are outlined. Implications for persuasive design are discussed.

  19. Update Of The ACR-NEMA Standard Committee

    NASA Astrophysics Data System (ADS)

    Wang, Yen; Best, D. E.; Morse, R. R.; Horii, S. C.; Lehr, J. L.; Lodwick, G. S.; Fuscoe, C.; Nelson, O. L.; Perry, J. R.; Thompson, B. G.; Wessell, W. R.

    1988-06-01

    In January, 1984, the American College of Radiology (ACR) representing the users of imaging equipment and the National Electrical Manufacturers Association (NEMA) representing the manufacturers of imaging equipment joined forces to create a committee that could solve the compatibility issues surrounding the exchange of digital medical images. This committee, the ACR-NEMA Digital Imaging and Communication Standards Committee was composed of radiologists and experts from industry who addressed the problems involved in interfacing different digital imaging modalities. In just two years, the committee and three of its working groups created an industry standard interface, ACR-NEMA Digital Imaging and Communications Standard, Publication No. 300-1985. The ACR-NEMA interface allows digital medical images and related information to be communicated between different imaging devices, regardless of manufacturer or use of differing image formats. The interface is modeled on the International Standards Organization's Open Systems Interconnection sever-layer reference model. It is believed that the development of the Interface was the first step in the development of standards for Medical Picture Archiving and Communications Systems (PACS). Developing the interface Standard has required intensive technical analysis and examination of the future trends for digital imaging in order to design a model which would not be quickly outmoded. To continue the enhancement and future development of image management systems, various working groups have been created under the direction of the ACR-NEMA Committee.

  20. Mapping crystal defects with a digital scanning ultramicroscope

    NASA Astrophysics Data System (ADS)

    Springer, John M., Jr.; Silberman, Enrique; Kroes, Roger L.; Reiss, Don

    1991-12-01

    A computer controlled scanning ultramicroscope has been built to assist in the characterization of transparent crystals. The device measures the scattering of a focused He-Ne laser beam by crystalline defects. As an XYZ translation table moves the crystal under the ultramicroscope, the scattered light is measured by a photodetector whose output is digitized and recorded. From this data, contour maps or 3-D perspective plots of the scattering regions of the crystal can be generated to assist in finding patterns of defects which might be correlated with perturbations in the growth process. The verified resolution of the present instrument is about 1 micrometers , which is limited by the minimum step of the stepper-motor driven translation stages, optical diffraction effects, and the sensitivity of the detector at the laser light frequency. The instrument was used to build a database of defects patterns in commercial laboratory grown triglycine sulphate (TGS) crystals, and to map defects in a TGS crystal grown from aqueous solution during the flight of Spacelab 3. This crystal shows indications of a reduction both in the generation of defects at the seed-new growth interface and in their propagation into the new crystal.

  1. Mapping crystal defects with a digital scanning ultramicroscope

    NASA Astrophysics Data System (ADS)

    Springer, J. M.; Silberman, E.; Kroes, Roger; Reiss, D.

    A computer controlled scanning ultramicroscope has been built to assist in the characterization of transparent crystals. The device measures the scattering of a focused He-Ne laser beam by crystalline defects. As an XYZ translation table moves the crystal under the ultramicroscope, the scattered light is measured by a photodetector whose output is digitized and recorded. From this data, contour maps or three dimensional perspective plots of the scattering regions of the crystal can be generated to assist in finding patterns of defects which might be correlated with perturbations in the growth process. The verified resolution of the present instrument is about 1 micrometer, which is limited by the minimum step of the stepper-motor driven translation stages, optical diffraction effects and the sensitivity of the detector at the laser light frequency. The instrument was used to build a database of defects patterns in commercial laboratory grown triglycine sulphate (TGS) crystals, and to map defects in a TGS crystal grown from aqueous solution during the flight of Spacelab 3. This crystal shows indications of a reduction both in the generation of defects at the seed-new growth interface and in their propagation into the new crystal.

  2. Delivering Microwave Spectroscopy to the Masses: a Design of a Low-Cost Microwave Spectrometer Operating in the 18-26 GHZ Frequency Range

    NASA Astrophysics Data System (ADS)

    Steber, Amanda; Pate, Brooks

    2014-06-01

    Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.

  3. Mapping crystal defects with a digital scanning ultramicroscope

    NASA Technical Reports Server (NTRS)

    Springer, J. M.; Silberman, E.; Kroes, Roger; Reiss, D.

    1991-01-01

    A computer controlled scanning ultramicroscope has been built to assist in the characterization of transparent crystals. The device measures the scattering of a focused He-Ne laser beam by crystalline defects. As an XYZ translation table moves the crystal under the ultramicroscope, the scattered light is measured by a photodetector whose output is digitized and recorded. From this data, contour maps or three dimensional perspective plots of the scattering regions of the crystal can be generated to assist in finding patterns of defects which might be correlated with perturbations in the growth process. The verified resolution of the present instrument is about 1 micrometer, which is limited by the minimum step of the stepper-motor driven translation stages, optical diffraction effects and the sensitivity of the detector at the laser light frequency. The instrument was used to build a database of defects patterns in commercial laboratory grown triglycine sulphate (TGS) crystals, and to map defects in a TGS crystal grown from aqueous solution during the flight of Spacelab 3. This crystal shows indications of a reduction both in the generation of defects at the seed-new growth interface and in their propagation into the new crystal.

  4. Network device interface for digitally interfacing data channels to a controller a via network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. In one embodiment, the bus controller transmits messages to the network device interface containing a plurality of bits having a value defined by a transition between first and second states in the bits. The network device interface determines timing of the data sequence of the message and uses the determined timing to communicate with the bus controller.

  5. Both Sides of the Interface: Building an Education Interface for a Digital Video Archive with an Interprofessional Group

    ERIC Educational Resources Information Center

    Thompson, Ella Belzberg

    2014-01-01

    In 1999, it was necessary to build an interface for the Shoah Foundation's Visual History Archive (the world's largest digital video archive at the time) that constituted over 120,000 hours of video of over 52,000 video testimonies of Holocaust survivors, rescuers and witnesses. In order to build this educational research interface, an…

  6. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D Dudenhoeffer; Burce P Hallbert

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less

  7. Measurements of cross-sectional instantaneous phase distribution in gas-liquid pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roitberg, E.; Shemer, L.; Barnea, D.

    Two novel complementing methods that enable experimental study of gas and liquid phases distribution in two-phase pipe flow are considered. The first measuring technique uses a wire-mesh sensor that, in addition to providing data on instantaneous phase distribution in the pipe cross-section, also allows measuring instantaneous propagation velocities of the phase interface. A novel algorithm for processing the wire-mesh sensor data is suggested to determine the instantaneous boundaries of gas-liquid interface. The second method applied here takes advantage of the existence of sharp visible boundaries between the two phases. This optical instrument is based on a borescope that is connectedmore » to a digital video camera. Laser light sheet illumination makes it possible to obtain images in the illuminated pipe cross-section only. It is demonstrated that the wire-mesh-derived results based on application of the new algorithm improve the effective spatial resolution of the instrument and are in agreement with those obtained using the borescope. Advantages and limitations of both measuring techniques for the investigations of cross-sectional instantaneous phase distribution in two-phase pipe flows are discussed. (author)« less

  8. The IMUTUS interactive music tuition system

    NASA Astrophysics Data System (ADS)

    Tambouratzis, George; Bakamidis, Stelios; Dologlou, Ioannis; Carayannis, George; Dendrinos, Markos

    2002-05-01

    This presentation focuses on the IMUTUS project, which concerns the creation of an innovative method for training users on traditional musical instruments with no MIDI (Musical Instrument Digital Interface) output. The entities collaborating in IMUTUS are ILSP (coordinator), EXODUS, SYSTEMA, DSI, SMF, GRAME, and KTH. The IMUTUS effectiveness is enhanced via an advanced user interface incorporating multimedia techniques. Internet plays a pivotal role during training, the student receiving guidance over the net from a specially created teacher group. Interactiveness is emphasized via automatic-scoring tools, which provide fast yet accurate feedback to the user, while virtual reality methods assist the student in perfecting his technique. IMUTUS incorporates specialized recognition technology for the transformation of acoustic signals and music scores to MIDI format and incorporation in the training process. This process is enhanced by periodically enriching the score database, while customization to each user's requirements is supported. This work is partially supported by European Community under the Information Society Technology (IST) RTD programme. The authors are solely responsible for the content of this communication. It does not represent the opinion of the European Community, and the European Community is not responsible for any use that might be made of data appearing therein.

  9. Software Graphical User Interface For Analysis Of Images

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.; Nolf, Scott R.; Avis, Elizabeth L.; Stacy, Kathryn

    1992-01-01

    CAMTOOL software provides graphical interface between Sun Microsystems workstation and Eikonix Model 1412 digitizing camera system. Camera scans and digitizes images, halftones, reflectives, transmissives, rigid or flexible flat material, or three-dimensional objects. Users digitize images and select from three destinations: work-station display screen, magnetic-tape drive, or hard disk. Written in C.

  10. Advances in Digital Calibration Techniques Enabling Real-Time Beamforming SweepSAR Architectures

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Perkovic, Dragana; Ghaemi, Hirad; Horst, Stephen; Shaffer, Scott; Veilleux, Louise

    2013-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures, which promise significant increases in instrument capability for solid earth and biomass remote sensing. These new instrument concepts require new methods for calibrating the multiple channels, which are combined on-board, in real-time. The benefit of this effort is that it enables a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for reduced mass and cost. This paper will review the on-going development of the digital calibration architecture for digital beamforming radar instrument, such as the proposed Earth Radar Mission's DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) instrument. This proposed instrument's baseline design employs SweepSAR digital beamforming and requires digital calibration. We will review the overall concepts and status of the system architecture, algorithm development, and the digital calibration testbed currently being developed. We will present results from a preliminary hardware demonstration. We will also discuss the challenges and opportunities specific to this novel architecture.

  11. Designing Interactions for Learning: Physicality, Interactivity, and Interface Effects in Digital Environments

    ERIC Educational Resources Information Center

    Hoffman, Daniel L.

    2013-01-01

    The purpose of the study is to better understand the role of physicality, interactivity, and interface effects in learning with digital content. Drawing on work in cognitive science, human-computer interaction, and multimedia learning, the study argues that interfaces that promote physical interaction can provide "conceptual leverage"…

  12. Disposable world-to-chip interface for digital microfluidics

    DOEpatents

    Van Dam, R. Michael; Shah, Gaurav; Keng, Pei-Yuin

    2017-05-16

    The present disclosure sets forth incorporating microfluidic chips interfaces for use with digital microfluidic processes. Methods and devices according to the present disclosure utilize compact, integrated platforms that interface with a chip upstream and downstream of the reaction, as well as between intermediate reaction steps if needed. In some embodiments these interfaces are automated, including automation of a multiple reagent process. Various reagent delivery systems and methods are also disclosed.

  13. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices

    PubMed Central

    Selck, David A.

    2016-01-01

    Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our fundamental understanding of single-molecule reactions and providing advancements in practical applications such as medical diagnostics, forensics and environmental sampling. PMID:27760148

  14. Applying emerging digital video interface standards to airborne avionics sensor and digital map integrations: benefits outweigh the initial costs

    NASA Astrophysics Data System (ADS)

    Kuehl, C. Stephen

    1996-06-01

    Video signal system performance can be compromised in a military aircraft cockpit management system (CMS) with the tailoring of vintage Electronics Industries Association (EIA) RS170 and RS343A video interface standards. Video analog interfaces degrade when induced system noise is present. Further signal degradation has been traditionally associated with signal data conversions between avionics sensor outputs and the cockpit display system. If the CMS engineering process is not carefully applied during the avionics video and computing architecture development, extensive and costly redesign will occur when visual sensor technology upgrades are incorporated. Close monitoring and technical involvement in video standards groups provides the knowledge-base necessary for avionic systems engineering organizations to architect adaptable and extendible cockpit management systems. With the Federal Communications Commission (FCC) in the process of adopting the Digital HDTV Grand Alliance System standard proposed by the Advanced Television Systems Committee (ATSC), the entertainment and telecommunications industries are adopting and supporting the emergence of new serial/parallel digital video interfaces and data compression standards that will drastically alter present NTSC-M video processing architectures. The re-engineering of the U.S. Broadcasting system must initially preserve the electronic equipment wiring networks within broadcast facilities to make the transition to HDTV affordable. International committee activities in technical forums like ITU-R (former CCIR), ANSI/SMPTE, IEEE, and ISO/IEC are establishing global consensus on video signal parameterizations that support a smooth transition from existing analog based broadcasting facilities to fully digital computerized systems. An opportunity exists for implementing these new video interface standards over existing video coax/triax cabling in military aircraft cockpit management systems. Reductions in signal conversion processing steps, major improvement in video noise reduction, and an added capability to pass audio/embedded digital data within the digital video signal stream are the significant performance increases associated with the incorporation of digital video interface standards. By analyzing the historical progression of military CMS developments, establishing a systems engineering process for CMS design, tracing the commercial evolution of video signal standardization, adopting commercial video signal terminology/definitions, and comparing/contrasting CMS architecture modifications using digital video interfaces; this paper provides a technical explanation on how a systems engineering process approach to video interface standardization can result in extendible and affordable cockpit management systems.

  15. Ultra-wide Range Gamma Detector System for Search and Locate Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.

    2005-10-26

    Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local andmore » remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.« less

  16. Architecture of a mixed-mode electrophysiological signal acquisition interface.

    PubMed

    Shen, Ding-Lan; Chen, Jyun-Min

    2012-01-01

    This paper proposes mixed-mode architecture for the acquisition interface of electrophysiological signals. The architecture advances the analog-to-digital converter (ADC) from the second chopper signal in the conventional approach and performs the second chopper operation in the digital domain. The demanded low-pass filter (LPF) is realized with a digital type. The analog LPF in feedback path is substituted with a digital one accompanying with a digital-to-analog converter (DAC). The analog variation is decreased due to the digitization of these operations. The entire architecture is simulated with the ECG input in a behavior model of Simulink.

  17. 75 FR 30077 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Subcommittee On Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Control (DI&C) Systems... the area of Digital Instrumentation and Control (DI&C) Probabilistic Risk Assessment (PRA). Topics... software reliability methods (QSRMs), NUREG/CR--6997, ``Modeling a Digital Feedwater Control System Using...

  18. Analysis and design of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1976-01-01

    A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance, cost, and sampling requirements. The most promising scheme, a digital effector with optical feedback of the fuel metering valve position, was designed.

  19. Improving the Usability of the User Interface for a Digital Textbook Platform for Elementary-School Students

    ERIC Educational Resources Information Center

    Lim, Cheolil; Song, Hae-Deok; Lee, Yekyung

    2012-01-01

    Usability is critical to the development of a user-friendly digital textbook platform interface, yet thorough research on interface development based on usability principles is in short supply. This study addresses that need by looking at usability attributes and corresponding design elements from a learning perspective. The researchers used a…

  20. PPP/nonreal-time trajectory program interface requirements and capabilities

    NASA Technical Reports Server (NTRS)

    Mcgavern, J. L.; Arbet, J. D.

    1975-01-01

    The selection process for interfacing a nonreal time trajectory program with the procedures and performance program is outlined; the interface provides summary data timelines for any desired trajectory profile. Consideration was given to two separate digital programs for satisfying capabilities. One was the CDC 6400 digital program BANDITO, and the second was the UNIVAC 1110 SVDS program.

  1. 77 FR 43405 - Final Standard Review Plan, Branch Technical Position 7-19 on Guidance for Evaluation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Digital Computer-Based Instrumentation and Control Systems.'' This BTP is to be cited as the acceptance criteria for Diversity and Defense-in-Depth in Digital Computer-Based Instrumentation and Control Systems... Evaluation of Diversity and Defense-in-Depth in Digital Computer-Based Instrumentation and Control Systems...

  2. A SiGe Quadrature Pulse Modulator for Superconducting Qubit State Manipulation

    NASA Astrophysics Data System (ADS)

    Kwende, Randy; Bardin, Joseph

    Manipulation of the quantum states of microwave superconducting qubits typically requires the generation of coherent modulated microwave pulses. While many off-the-shelf instruments are capable of generating such pulses, a more integrated approach is likely required if fault-tolerant quantum computing architectures are to be implemented. In this work, we present progress towards a pulse generator specifically designed to drive superconducing qubits. The device is implemented in a commercial silicon process and has been designed with energy-efficiency and scalability in mind. Pulse generation is carried out using a unique approach in which modulation is applied directly to the in-phase and quadrature components of a carrier signal in the 1-10 GHz frequency range through a unique digital-analog conversion process designed specifically for this application. The prototype pulse generator can be digitally programmed and supports sequencing of pulses with independent amplitude and phase waveforms. These amplitude and phase waveforms can be digitally programmed through a serial programming interface. Detailed performance of the pulse generator at room temperature and 4 K will be presented.

  3. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-10-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer.

  4. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed Central

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-01-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer. PMID:3676444

  5. Characterization of Vegetation using the UC Davis Remote Sensing Testbed

    NASA Astrophysics Data System (ADS)

    Falk, M.; Hart, Q. J.; Bowen, K. S.; Ustin, S. L.

    2006-12-01

    Remote sensing provides information about the dynamics of the terrestrial biosphere with continuous spatial and temporal coverage on many different scales. We present the design and construction of a suite of instrument modules and network infrastructure with size, weight and power constraints suitable for small scale vehicles, anticipating vigorous growth in unmanned aerial vehicles (UAV) and other mobile platforms. Our approach provides the rapid deployment and low cost acquisition of high aerial imagery for applications requiring high spatial resolution and revisits. The testbed supports a wide range of applications, encourages remote sensing solutions in new disciplines and demonstrates the complete range of engineering knowledge required for the successful deployment of remote sensing instruments. The initial testbed is deployed on a Sig Kadet Senior remote controlled plane. It includes an onboard computer with wireless radio, GPS, inertia measurement unit, 3-axis electronic compass and digital cameras. The onboard camera is either a RGB digital camera or a modified digital camera with red and NIR channels. Cameras were calibrated using selective light sources, an integrating spheres and a spectrometer, allowing for the computation of vegetation indices such as the NDVI. Field tests to date have investigated technical challenges in wireless communication bandwidth limits, automated image geolocation, and user interfaces; as well as image applications such as environmental landscape mapping focusing on Sudden Oak Death and invasive species detection, studies on the impact of bird colonies on tree canopies, and precision agriculture.

  6. Digital data acquisition and preliminary instrumentation study for the F-16 laminar flow control vehicle

    NASA Technical Reports Server (NTRS)

    Ostowari, Cyrus

    1992-01-01

    Preliminary studies have shown that maintenance of laminar flow through active boundary-layer control is viable. Current research activity at NASA Langley and NASA Dryden is utilizing the F-16XL-1 research vehicle fitted with a laminar-flow suction glove that is connected to a vacuum manifold in order to create and control laminar flow at supersonic flight speeds. This experimental program has been designed to establish the feasibility of obtaining laminar flow at supersonic speeds with highly swept wing and to provide data for computational fluid dynamics (CFD) code calibration. Flight experiments conducted as supersonic speeds have indicated that it is possible to achieve laminar flow under controlled suction at flight Mach numbers greater than 1. Currently this glove is fitted with a series of pressure belts and flush mounted hot film sensors for the purpose of determining the pressure distributions and the extent of laminar flow region past the stagnation point. The present mode of data acquisition relies on out-dated on board multi-channel FM analogue tape recorder system. At the end of each flight, the analogue data is digitized through a long laborious process and then analyzed. It is proposed to replace this outdated system with an on board state-of-the-art digital data acquisition system capable of a through put rate of up to 1 MegaHertz. The purpose of this study was three-fold: (1) to develop a simple algorithm for acquiring data via 2 analogue-to-digital convertor boards simultaneously (total of 32 channels); (2) to interface hot-film/wire anemometry instrumentation with a PCAT type computer; and (3) to characterize the frequency response of a flush mounted film sensor. A brief description of each of the above tasks along with recommendations are given.

  7. BacNet and Analog/Digital Interfaces of the Building Controls Virtual Testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouidui, Thierry Stephane; Wetter, Michael; Li, Zhengwei

    2011-11-01

    This paper gives an overview of recent developments in the Building Controls Virtual Test Bed (BCVTB), a framework for co-simulation and hardware-in-the-loop. First, a general overview of the BCVTB is presented. Second, we describe the BACnet interface, a link which has been implemented to couple BACnet devices to the BCVTB. We present a case study where the interface was used to couple a whole building simulation program to a building control system to assess in real-time the performance of a real building. Third, we present the ADInterfaceMCC, an analog/digital interface that allows a USB-based analog/digital converter to be linked tomore » the BCVTB. In a case study, we show how the link was used to couple the analog/digital converter to a building simulation model for local loop control.« less

  8. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Chéreau, Fabien

    2012-04-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system.

  9. The Influence of Gender Difference on the Information-Seeking Behaviors for the Graphical Interface of Children's Digital Library

    ERIC Educational Resources Information Center

    Hsieh, Tsia-ying; Wu, Ko-chiu

    2015-01-01

    Children conducting searches using the interfaces of library websites often encounter obstacles due to typographical errors, digital divides, or a failure to grasp keywords. Satisfaction with a given interface may also vary according to the gender of the user, making it a variable in information seeking behavior. Children benefit more from…

  10. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  11. ACR/NEMA Digital Image Interface Standard (An Illustrated Protocol Overview)

    NASA Astrophysics Data System (ADS)

    Lawrence, G. Robert

    1985-09-01

    The American College of Radiologists (ACR) and the National Electrical Manufacturers Association (NEMA) have sponsored a joint standards committee mandated to develop a universal interface standard for the transfer of radiology images among a variety of PACS imaging devicesl. The resulting standard interface conforms to the ISO/OSI standard reference model for network protocol layering. The standard interface specifies the lower layers of the reference model (Physical, Data Link, Transport and Session) and implies a requirement of the Network Layer should a requirement for a network exist. The message content has been considered and a flexible message and image format specified. The following Imaging Equipment modalities are supported by the standard interface... CT Computed Tomograpy DS Digital Subtraction NM Nuclear Medicine US Ultrasound MR Magnetic Resonance DR Digital Radiology The following data types are standardized over the transmission interface media.... IMAGE DATA DIGITIZED VOICE HEADER DATA RAW DATA TEXT REPORTS GRAPHICS OTHERS This paper consists of text supporting the illustrated protocol data flow. Each layer will be individually treated. Particular emphasis will be given to the Data Link layer (Frames) and the Transport layer (Packets). The discussion utilizes a finite state sequential machine model for the protocol layers.

  12. Polyplanar optical display electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, L.; Biscardi, C.

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.« less

  13. Computer Controlled Magnetotransport Setup for the Characterization of Semiconductor Thin Films

    NASA Technical Reports Server (NTRS)

    Ducoudray, G. O.; Collazo, R.; Martinez, A.

    1997-01-01

    We have considered a computer controlled magnetotransport setup using LabWindows environment. It allows for measurements of resistivity, Hall resistance, carrier concentration and charge mobility in semiconductor thin films using a van der Pauw configuration. The setup features an electromagnet (B = 0.7 Tesla) a 80486-DX 33 computer with a National Instrument AT-MIO 16 AD/DA and a GPIB interface board. A Keithely 224 current source and a Keithley 196 digital voltmeter were also used in the setup. Plans for the addition of capabilities to allow for magnetic field sweeping and the performance of measurements as a function of temperature will be presented.

  14. Human factor engineering based design and modernization of control rooms with new I and C systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larraz, J.; Rejas, L.; Ortega, F.

    2012-07-01

    Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementationmore » of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)« less

  15. An optical/digital processor - Hardware and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Sterling, W. M.

    1975-01-01

    A real-time two-dimensional hybrid processor consisting of a coherent optical system, an optical/digital interface, and a PDP-11/15 control minicomputer is described. The input electrical-to-optical transducer is an electron-beam addressed potassium dideuterium phosphate (KD2PO4) light valve. The requirements and hardware for the output optical-to-digital interface, which is constructed from modular computer building blocks, are presented. Initial experimental results demonstrating the operation of this hybrid processor in phased-array radar data processing, synthetic-aperture image correlation, and text correlation are included. The applications chosen emphasize the role of the interface in the analysis of data from an optical processor and possible extensions to the digital feedback control of an optical processor.

  16. NASA Tech Briefs, September 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: Brazing SiC/SiC Composites to Metals; Composite-Material Tanks with Chemically Resistant Liners; Thermally Conductive Metal-Tube/Carbon-Composite Joints; Improved BN Coatings on SiC Fibers in SiC Matrices; Iterative Demodulation and Decoding of Non-Square QAM; Measuring Radiation Patterns of Reconfigurable Patch Antennas on Wafers; Low-Cutoff, High-Pass Digital Filtering of Neural Signals; Further Improvement in 3DGRAPE; Ground Support Software for Spaceborne Instrumentation; MER SPICE Interface; Simulating Operation of a Planetary Rover; Analyzing Contents of a Computer Cache; Discrepancy Reporting Management System; Silicone-Rubber Microvalves Actuated by Paraffin; Hydraulic Apparatus for Mechanical Testing of Nuts; Heat Control via Torque Control in Friction Stir Welding; Manufacturing High-Quality Carbon Nanotubes at Lower Cost; Setup for Visual Observation of Carbon-Nanotube Arc Process; Solution Preserves Nucleic Acids in Body-Fluid Specimens; Oligodeoxynucleotide Probes for Detecting Intact Cells; Microwave-Spectral Signatures Would Reveal Concealed Objects; Digital Averaging Phasemeter for Heterodyne Interferometry; Optoelectronic Instrument Monitors pH in a Culture Medium; Imaging of gamma-Irradiated Regions of a Crystal; Photodiode-Based, Passive Ultraviolet Dosimeters; Discrete Wavelength-Locked External Cavity Laser; Flexible Shields for Protecting Spacecraft Against Debris; Part 2 of a Computational Study of a Drop-Laden Mixing Layer; Controllable Curved Mirrors Made from Single-Layer EAP Films; and Demonstration of a Pyrotechnic Bolt-Retractor System.

  17. Microcontroller interface for diode array spectrometry

    NASA Astrophysics Data System (ADS)

    Aguo, L.; Williams, R. R.

    An alternative to bus-based computer interfacing is presented using diode array spectrometry as a typical application. The new interface consists of an embedded single-chip microcomputer, known as a microcontroller, which provides all necessary digital I/O and analog-to-digital conversion (ADC) along with an unprecedented amount of intelligence. Communication with a host computer system is accomplished by a standard serial interface so this type of interfacing is applicable to a wide range of personal and minicomputers and can be easily networked. Data are acquired asynchronousty and sent to the host on command. New operating modes which have no traditional counterparts are presented.

  18. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  19. Launching GUPPI: the Green Bank Ultimate Pulsar Processing Instrument

    NASA Astrophysics Data System (ADS)

    DuPlain, Ron; Ransom, Scott; Demorest, Paul; Brandt, Patrick; Ford, John; Shelton, Amy L.

    2008-08-01

    The National Radio Astronomy Observatory (NRAO) is launching the Green Bank Ultimate Pulsar Processing Instrument (GUPPI), a prototype flexible digital signal processor designed for pulsar observations with the Robert C. Byrd Green Bank Telescope (GBT). GUPPI uses field programmable gate array (FPGA) hardware and design tools developed by the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California, Berkeley. The NRAO has been concurrently developing GUPPI software and hardware using minimal software resources. The software handles instrument monitor and control, data acquisition, and hardware interfacing. GUPPI is currently an expert-only spectrometer, but supports future integration with the full GBT production system. The NRAO was able to take advantage of the unique flexibility of the CASPER FPGA hardware platform, develop hardware and software in parallel, and build a suite of software tools for monitoring, controlling, and acquiring data with a new instrument over a short timeline of just a few months. The NRAO interacts regularly with CASPER and its users, and GUPPI stands as an example of what reconfigurable computing and open-source development can do for radio astronomy. GUPPI is modular for portability, and the NRAO provides the results of development as an open-source resource.

  20. Speech Recognition for A Digital Video Library.

    ERIC Educational Resources Information Center

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Production of the meta-data supporting the Informedia Digital Video Library interface is automated using techniques derived from artificial intelligence research. Speech recognition and natural-language processing, information retrieval, and image analysis are applied to produce an interface that helps users locate information and navigate more…

  1. High-Performance Satellite/Terrestrial-Network Gateway

    NASA Technical Reports Server (NTRS)

    Beering, David R.

    2005-01-01

    A gateway has been developed to enable digital communication between (1) the high-rate receiving equipment at NASA's White Sands complex and (2) a standard terrestrial digital communication network at data rates up to 622 Mb/s. The design of this gateway can also be adapted for use in commercial Earth/satellite and digital communication networks, and in terrestrial digital communication networks that include wireless subnetworks. Gateway as used here signifies an electronic circuit that serves as an interface between two electronic communication networks so that a computer (or other terminal) on one network can communicate with a terminal on the other network. The connection between this gateway and the high-rate receiving equipment is made via a synchronous serial data interface at the emitter-coupled-logic (ECL) level. The connection between this gateway and a standard asynchronous transfer mode (ATM) terrestrial communication network is made via a standard user network interface with a synchronous optical network (SONET) connector. The gateway contains circuitry that performs the conversion between the ECL and SONET interfaces. The data rate of the SONET interface can be either 155.52 or 622.08 Mb/s. The gateway derives its clock signal from a satellite modem in the high-rate receiving equipment and, hence, is agile in the sense that it adapts to the data rate of the serial interface.

  2. Software for Testing Electroactive Structural Components

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Fox, Robert L.; Dimery, Archie D.; Bryant, Robert G.; Shams, Qamar

    2003-01-01

    A computer program generates a graphical user interface that, in combination with its other features, facilitates the acquisition and preprocessing of experimental data on the strain response, hysteresis, and power consumption of a multilayer composite-material structural component containing one or more built-in sensor(s) and/or actuator(s) based on piezoelectric materials. This program runs in conjunction with Lab-VIEW software in a computer-controlled instrumentation system. For a test, a specimen is instrumented with appliedvoltage and current sensors and with strain gauges. Once the computational connection to the test setup has been made via the LabVIEW software, this program causes the test instrumentation to step through specified configurations. If the user is satisfied with the test results as displayed by the software, the user activates an icon on a front-panel display, causing the raw current, voltage, and strain data to be digitized and saved. The data are also put into a spreadsheet and can be plotted on a graph. Graphical displays are saved in an image file for future reference. The program also computes and displays the power and the phase angle between voltage and current.

  3. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup--The hardware, firmware, and software implementation.

    PubMed

    Antony, Joby; Mathuria, D S; Datta, T S; Maity, Tanmoy

    2015-12-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW(®). This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.

  4. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    NASA Astrophysics Data System (ADS)

    Antony, Joby; Mathuria, D. S.; Datta, T. S.; Maity, Tanmoy

    2015-12-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW®. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.

  5. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antony, Joby; Mathuria, D. S.; Datta, T. S.

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similarmore » control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as “CADS,” which stands for “Complete Automation of Distribution System.” CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW{sup ®}. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.« less

  6. Digital lock-in amplifier based on soundcard interface for physics laboratory

    NASA Astrophysics Data System (ADS)

    Sinlapanuntakul, J.; Kijamnajsuk, P.; Jetjamnong, C.; Chotikaprakhan, S.

    2017-09-01

    The purpose of this paper is to develop a digital lock-in amplifier based on soundcard interface for undergraduate physics laboratory. Both series and parallel RLC circuit laboratory are tested because of its well-known, easy to understand and simple confirm. The sinusoidal signal at the frequency of 10 Hz - 15 kHz is generated to the circuits. The amplitude and phase of the voltage drop across the resistor, R are measured in 10 step decade. The signals from soundcard interface and lock-in amplifier are compared. The results give a good correlation. It indicates that the design digital lock-in amplifier is promising for undergraduate physic laboratory.

  7. Virtual Character Animation Based on Affordable Motion Capture and Reconfigurable Tangible Interfaces.

    PubMed

    Lamberti, Fabrizio; Paravati, Gianluca; Gatteschi, Valentina; Cannavo, Alberto; Montuschi, Paolo

    2018-05-01

    Software for computer animation is generally characterized by a steep learning curve, due to the entanglement of both sophisticated techniques and interaction methods required to control 3D geometries. This paper proposes a tool designed to support computer animation production processes by leveraging the affordances offered by articulated tangible user interfaces and motion capture retargeting solutions. To this aim, orientations of an instrumented prop are recorded together with animator's motion in the 3D space and used to quickly pose characters in the virtual environment. High-level functionalities of the animation software are made accessible via a speech interface, thus letting the user control the animation pipeline via voice commands while focusing on his or her hands and body motion. The proposed solution exploits both off-the-shelf hardware components (like the Lego Mindstorms EV3 bricks and the Microsoft Kinect, used for building the tangible device and tracking animator's skeleton) and free open-source software (like the Blender animation tool), thus representing an interesting solution also for beginners approaching the world of digital animation for the first time. Experimental results in different usage scenarios show the benefits offered by the designed interaction strategy with respect to a mouse & keyboard-based interface both for expert and non-expert users.

  8. Digital signal conditioning for flight test instrumentation

    NASA Technical Reports Server (NTRS)

    Bever, Glenn A.

    1991-01-01

    An introduction to digital measurement processes on aircraft is provided. Flight test instrumentation systems are rapidly evolving from analog-intensive to digital intensive systems, including the use of onboard digital computers. The topics include measurements that are digital in origin, as well as sampling, encoding, transmitting, and storing data. Particular emphasis is placed on modern avionic data bus architectures and what to be aware of when extracting data from them. Examples of data extraction techniques are given. Tradeoffs between digital logic families, trends in digital development, and design testing techniques are discussed. An introduction to digital filtering is also covered.

  9. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Fink, D. Hill, J. O'Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  10. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  11. Microprocessor-based interface for oceanography

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1979-01-01

    Ocean floor imaging system incorporates five identical microprocessor-based interface units each assigned to specific sonar instrument to simplify system. Central control module based on same microprocessor eliminates need for custom tailoring hardware interfaces for each instrument.

  12. Improvements in speech understanding with wireless binaural broadband digital hearing instruments in adults with sensorineural hearing loss.

    PubMed

    Kreisman, Brian M; Mazevski, Annette G; Schum, Donald J; Sockalingam, Ravichandran

    2010-03-01

    This investigation examined whether speech intelligibility in noise can be improved using a new, binaural broadband hearing instrument system. Participants were 36 adults with symmetrical, sensorineural hearing loss (18 experienced hearing instrument users and 18 without prior experience). Participants were fit binaurally in a planned comparison, randomized crossover design study with binaural broadband hearing instruments and advanced digital hearing instruments. Following an adjustment period with each device, participants underwent two speech-in-noise tests: the QuickSIN and the Hearing in Noise Test (HINT). Results suggested significantly better performance on the QuickSIN and the HINT measures with the binaural broadband hearing instruments, when compared with the advanced digital hearing instruments and unaided, across and within all noise conditions.

  13. Method and apparatus for data decoding and processing

    DOEpatents

    Hunter, Timothy M.; Levy, Arthur J.

    1992-01-01

    A system and technique is disclosed for automatically controlling the decoding and digitizaiton of an analog tape. The system includes the use of a tape data format which includes a plurality of digital codes recorded on the analog tape in a predetermined proximity to a period of recorded analog data. The codes associated with each period of analog data include digital identification codes prior to the analog data, a start of data code coincident with the analog data recording, and an end of data code subsequent to the associated period of recorded analog data. The formatted tape is decoded in a processing and digitization system which includes an analog tape player coupled to a digitizer to transmit analog information from the recorded tape over at least one channel to the digitizer. At the same time, the tape player is coupled to a decoder and interface system which detects and decodes the digital codes on the tape corresponding to each period of recorded analog data and controls tape movement and digitizer initiation in response to preprogramed modes. A host computer is also coupled to the decoder and interface system and the digitizer and programmed to initiate specific modes of data decoding through the decoder and interface system including the automatic compilation and storage of digital identification information and digitized data for the period of recorded analog data corresponding to the digital identification data, compilation and storage of selected digitized data representing periods of recorded analog data, and compilation of digital identification information related to each of the periods of recorded analog data.

  14. Video image processor on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/

    NASA Technical Reports Server (NTRS)

    Lindgren, R. W.; Tarbell, T. D.

    1981-01-01

    The SOUP instrument is designed to obtain diffraction-limited digital images of the sun with high photometric accuracy. The Video Processor originated from the requirement to provide onboard real-time image processing, both to reduce the telemetry rate and to provide meaningful video displays of scientific data to the payload crew. This original concept has evolved into a versatile digital processing system with a multitude of other uses in the SOUP program. The central element in the Video Processor design is a 16-bit central processing unit based on 2900 family bipolar bit-slice devices. All arithmetic, logical and I/O operations are under control of microprograms, stored in programmable read-only memory and initiated by commands from the LSI-11. Several functions of the Video Processor are described, including interface to the High Rate Multiplexer downlink, cosmetic and scientific data processing, scan conversion for crew displays, focus and exposure testing, and use as ground support equipment.

  15. Digital fluxgate magnetometer: design notes

    NASA Astrophysics Data System (ADS)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2015-12-01

    We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed.

  16. A simulator investigation of the use of digital data link for pilot/ATC communications in a single pilot operation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Lohr, Gary W.

    1988-01-01

    Studies have shown that radio communications between pilots and air traffic control contribute to high pilot workload and are subject to various errors. These errors result from congestion on the voice radio channel, and missed and misunderstood messages. The use of digital data link has been proposed as a means of reducing this workload and error rate. A critical factor, however, in determining the potential benefit of data link will be the interface between future data link systems and the operator of those systems, both in the air and on the ground. The purpose of this effort was to evaluate the pilot interface with various levels of data link capability, in simulated general aviation, single-pilot instrument flight rule operations. Results show that the data link reduced demands on pilots' short-term memory, reduced the number of communication transmissions, and permitted the pilots to more easily allocate time to critical cockpit tasks while receiving air traffic control messages. The pilots who participated unanimously indicated a preference for data link communications over voice-only communications. There were, however, situations in which the pilot preferred the use of voice communications, and the ability for pilots to delay processing the data link messages, during high workload events, caused delays in the acknowledgement of messages to air traffic control.

  17. mzStudio: A Dynamic Digital Canvas for User-Driven Interrogation of Mass Spectrometry Data.

    PubMed

    Ficarro, Scott B; Alexander, William M; Marto, Jarrod A

    2017-08-01

    Although not yet truly 'comprehensive', modern mass spectrometry-based experiments can generate quantitative data for a meaningful fraction of the human proteome. Importantly for large-scale protein expression analysis, robust data pipelines are in place for identification of un-modified peptide sequences and aggregation of these data to protein-level quantification. However, interoperable software tools that enable scientists to computationally explore and document novel hypotheses for peptide sequence, modification status, or fragmentation behavior are not well-developed. Here, we introduce mzStudio, an open-source Python module built on our multiplierz project. This desktop application provides a highly-interactive graphical user interface (GUI) through which scientists can examine and annotate spectral features, re-search existing PSMs to test different modifications or new spectral matching algorithms, share results with colleagues, integrate other domain-specific software tools, and finally create publication-quality graphics. mzStudio leverages our common application programming interface (mzAPI) for access to native data files from multiple instrument platforms, including ion trap, quadrupole time-of-flight, Orbitrap, matrix-assisted laser desorption ionization, and triple quadrupole mass spectrometers and is compatible with several popular search engines including Mascot, Proteome Discoverer, X!Tandem, and Comet. The mzStudio toolkit enables researchers to create a digital provenance of data analytics and other evidence that support specific peptide sequence assignments.

  18. Noncoherent sampling technique for communications parameter estimations

    NASA Technical Reports Server (NTRS)

    Su, Y. T.; Choi, H. J.

    1985-01-01

    This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.

  19. 76 FR 9835 - Advisory Committee on Reactor Safeguards; Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards; Meeting of the ACRS Subcommittee on Digital Instrumentation & Control (DI&C); Revision to February 23, 2011, ACRS Meeting Federal Register Notice The Federal Register Notice for the ACRS Subcommittee Meeting on Digital Instrumentation...

  20. A CMOS frontend chip for implantable neural recording with wide voltage supply range

    NASA Astrophysics Data System (ADS)

    Jialin, Liu; Xu, Zhang; Xiaohui, Hu; Yatao, Guo; Peng, Li; Ming, Liu; Bin, Li; Hongda, Chen

    2015-10-01

    A design for a CMOS frontend integrated circuit (chip) for neural signal acquisition working at wide voltage supply range is presented in this paper. The chip consists of a preamplifier, a serial instrumental amplifier (IA) and a cyclic analog-to-digital converter (CADC). The capacitive-coupled and capacitive-feedback topology combined with MOS-bipolar pseudo-resistor element is adopted in the preamplifier to create a -3 dB upper cut-off frequency less than 1 Hz without using a ponderous discrete device. A dual-amplifier instrumental amplifier is used to provide a low output impedance interface for ADC as well as to boost the gain. The preamplifier and the serial instrumental amplifier together provide a midband gain of 45.8 dB and have an input-referred noise of 6.7 μVrms integrated from 1 Hz to 5 kHz. The ADC digitizes the amplified signal at 12-bits precision with a highest sampling rate of 130 kS/s. The measured effective number of bits (ENOB) of the ADC is 8.7 bits. The entire circuit draws 165 to 216 μA current from the supply voltage varied from 1.34 to 3.3 V. The prototype chip is fabricated in the 0.18-μm CMOS process and occupies an area of 1.23 mm2 (including pads). In-vitro recording was successfully carried out by the proposed frontend chip. Project supported by the National Natural Science Foundation of China (Nos. 61474107, 61372060, 61335010, 61275200, 61178051) and the Key Program of the Chinese Academy of Sciences (No. KJZD-EW-L11-01).

  1. A Comprehensive Review of Sensors and Instrumentation Methods in Devices for Musical Expression

    PubMed Central

    Medeiros, Carolina Brum; Wanderley, Marcelo M.

    2014-01-01

    Digital Musical Instruments (DMIs) are musical instruments typically composed of a control surface where user interaction is measured by sensors whose values are mapped to sound synthesis algorithms. These instruments have gained interest among skilled musicians and performers in the last decades leading to artistic practices including musical performance, interactive installations and dance. The creation of DMIs typically involves several areas, among them: arts, design and engineering. The balance between these areas is an essential task in DMI design so that the resulting instruments are aesthetically appealing, robust, and allow responsive, accurate and repeatable sensing. In this paper, we review the use of sensors in the DMI community as manifested in the proceedings of the International Conference on New Interfaces for Musical Expression (NIME 2009–2013). Focusing on the sensor technologies and signal conditioning techniques used by the NIME community. Although it has been claimed that specifications for artistic tools are harder than those for military applications, this study raises a paradox showing that in most of the cases, DMIs are based on a few basic sensors types and unsophisticated engineering solutions, not taking advantage of more advanced sensing, instrumentation and signal processing techniques that could dramatically improve their response. We aim to raise awareness of limitations of any engineering solution and to assert the benefits of advanced electronics instrumentation design in DMIs. For this, we propose the use of specialized sensors such as strain gages, advanced conditioning circuits and signal processing tools such as sensor fusion. We believe that careful electronic instrumentation design may lead to more responsive instruments. PMID:25068865

  2. A comprehensive review of sensors and instrumentation methods in devices for musical expression.

    PubMed

    Medeiros, Carolina Brum; Wanderley, Marcelo M

    2014-07-25

    Digital Musical Instruments (DMIs) are musical instruments typically composed of a control surface where user interaction is measured by sensors whose values are mapped to sound synthesis algorithms. These instruments have gained interest among skilled musicians and performers in the last decades leading to artistic practices including musical performance, interactive installations and dance. The creation of DMIs typically involves several areas, among them: arts, design and engineering. The balance between these areas is an essential task in DMI design so that the resulting instruments are aesthetically appealing, robust, and allow responsive, accurate and repeatable sensing. In this paper, we review the use of sensors in the DMI community as manifested in the proceedings of the International Conference on New Interfaces for Musical Expression (NIME 2009-2013). Focusing on the sensor technologies and signal conditioning techniques used by the NIME community. Although it has been claimed that specifications for artistic tools are harder than those for military applications, this study raises a paradox showing that in most of the cases, DMIs are based on a few basic sensors types and unsophisticated engineering solutions, not taking advantage of more advanced sensing, instrumentation and signal processing techniques that could dramatically improve their response. We aim to raise awareness of limitations of any engineering solution and to assert the benefits of advanced electronics instrumentation design in DMIs. For this, we propose the use of specialized sensors such as strain gages, advanced conditioning circuits and signal processing tools such as sensor fusion. We believe that careful electronic instrumentation design may lead to more responsive instruments.

  3. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Chéreau, F.

    2008-08-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system. The main website for VirGO is at http://archive.eso.org/cms/virgo.

  4. Toward User Interfaces and Data Visualization Criteria for Learning Design of Digital Textbooks

    ERIC Educational Resources Information Center

    Railean, Elena

    2014-01-01

    User interface and data visualisation criteria are central issues in digital textbooks design. However, when applying mathematical modelling of learning process to the analysis of the possible solutions, it could be observed that results differ. Mathematical learning views cognition in on the base on statistics and probability theory, graph…

  5. Interfacing the Digital.

    ERIC Educational Resources Information Center

    Dietz, Steve

    In the last 5 years, there has been at times heated debate not only about how best to present digital and specifically networked art in an institutional context but also whether to do so at all. Not all of the discussion revolves around issues of physical interfaces to such works, but their onsite presentation is a critical concern for both…

  6. A Closed-Loop Proportional-Integral (PI) Control Software for Fully Mechanically Controlled Automated Electron Microscopic Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REN, GANG; LIU, JINXIN; LI, HONGCHANG

    A closed-loop proportional-integral (PI) control software is provided for fully mechanically controlled automated electron microscopic tomography. The software is developed based on Gatan DigitalMicrograph, and is compatible with Zeiss LIBRA 120 transmission electron microscope. However, it can be expanded to other TEM instrument with modification. The software consists of a graphical user interface, a digital PI controller, an image analyzing unit, and other drive units (i.e.: image acquire unit and goniometer drive unit). During a tomography data collection process, the image analyzing unit analyzes both the accumulated shift and defocus value of the latest acquired image, and provides the resultsmore » to the digital PI controller. The digital PI control compares the results with the preset values and determines the optimum adjustments of the goniometer. The goniometer drive unit adjusts the spatial position of the specimen according to the instructions given by the digital PI controller for the next tilt angle and image acquisition. The goniometer drive unit achieves high precision positioning by using a backlash elimination method. The major benefits of the software are: 1) the goniometer drive unit keeps pre-aligned/optimized beam conditions unchanged and achieves position tracking solely through mechanical control; 2) the image analyzing unit relies on only historical data and therefore does not require additional images/exposures; 3) the PI controller enables the system to dynamically track the imaging target with extremely low system error.« less

  7. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.

    PubMed

    Wu, Chueh-Yu; Lu, Jau-Ching; Liu, Man-Chi; Tung, Yi-Chung

    2012-10-21

    Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.

  8. DESDynI Quad First Stage Processor - A Four Channel Digitizer and Digital Beam Forming Processor

    NASA Technical Reports Server (NTRS)

    Chuang, Chung-Lun; Shaffer, Scott; Smythe, Robert; Niamsuwan, Noppasin; Li, Samuel; Liao, Eric; Lim, Chester; Morfopolous, Arin; Veilleux, Louise

    2013-01-01

    The proposed Deformation, Eco-Systems, and Dynamics of Ice Radar (DESDynI-R) L-band SAR instrument employs multiple digital channels to optimize resolution while keeping a large swath on a single pass. High-speed digitization with very fine synchronization and digital beam forming are necessary in order to facilitate this new technique. The Quad First Stage Processor (qFSP) was developed to achieve both the processing performance as well as the digitizing fidelity in order to accomplish this sweeping SAR technique. The qFSP utilizes high precision and high-speed analog to digital converters (ADCs), each with a finely adjustable clock distribution network to digitize the channels at the fidelity necessary to allow for digital beam forming. The Xilinx produced FX130T Virtex 5 part handles the processing to digitally calibrate each channel as well as filter and beam form the receive signals. Demonstrating the digital processing required for digital beam forming and digital calibration is instrumental to the viability of the proposed DESDynI instrument. The qFSP development brings this implementation to Technology Readiness Level (TRL) 6. This paper will detail the design and development of the prototype qFSP as well as the preliminary results from hardware tests.

  9. How to Kill a Journalism School: The Digital Sublime in the Discourse of Discontinuance

    ERIC Educational Resources Information Center

    McDevitt, Michael; Sindorf, Shannon

    2012-01-01

    The authors argue that journalism's uncertain identity in academia has made it vulnerable to unreflective instrumentalism in the digital era. They show how instrumentalism intertwined with the digital sublime constitutes a rhetorically resonate rationale for closing a journalism school. Evidence comes from documents and testimony associated with…

  10. DHMI: dynamic holographic microscopy interface

    NASA Astrophysics Data System (ADS)

    He, Xuefei; Zheng, Yujie; Lee, Woei Ming

    2016-12-01

    Digital holographic microscopy (DHM) is a powerful in-vitro biological imaging tool. In this paper, we report a fully automated off-axis digital holographic microscopy system completed with a graphical user interface in the Matlab environment. The interface primarily includes Fourier domain processing, phase reconstruction, aberration compensation and autofocusing. A variety of imaging operations such as region of interest selection, de-noising mode (filtering and averaging), low frame rate imaging for immediate reconstruction and high frame rate imaging routine ( 27 fps) are implemented to facilitate ease of use.

  11. Interface For Fault-Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Shaver, Charles; Williamson, Michael

    1989-01-01

    Interface unit and controller emulator developed for research on electronic helicopter-flight-control systems equipped with artificial intelligence. Interface unit interrupt-driven system designed to link microprocessor-based, quadruply-redundant, asynchronous, ultra-reliable, fault-tolerant control system (controller) with electronic servocontrol unit that controls set of hydraulic actuators. Receives digital feedforward messages from, and transmits digital feedback messages to, controller through differential signal lines or fiber-optic cables (thus far only differential signal lines have been used). Analog signals transmitted to and from servocontrol unit via coaxial cables.

  12. AVIRIS onboard data handling and control

    NASA Technical Reports Server (NTRS)

    Steinkraus, Ronald E.; Hickok, Roger W.

    1987-01-01

    The timing and flow of detector and ancillary data for the Airborne Visible/Infrared imaging spectrometer (AVIRIS) are controlled within the instrument by its digital electronics assembly. In addition to providing detector and signal chain timing, the digital electronics receives, formats, and rate-buffers digitized science data; collects and formats ancillary (calibration and engineering) data; and merges both into a single tape record. Overall AVIRIS data handling is effected by a combination of dedicated digital electronics to control instrument timing, image data flow, and data rate buffering and a microcomputer programmed to handle real-time control of instrument mechanisms and the coordinated preparation of ancillary data.

  13. A Macintosh-Based Scientific Images Video Analysis System

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Friedland, Peter (Technical Monitor)

    1994-01-01

    A set of experiments was designed at MIT's Man-Vehicle Laboratory in order to evaluate the effects of zero gravity on the human orientation system. During many of these experiments, the movements of the eyes are recorded on high quality video cassettes. The images must be analyzed off-line to calculate the position of the eyes at every moment in time. To this aim, I have implemented a simple inexpensive computerized system which measures the angle of rotation of the eye from digitized video images. The system is implemented on a desktop Macintosh computer, processes one play-back frame per second and exhibits adequate levels of accuracy and precision. The system uses LabVIEW, a digital output board, and a video input board to control a VCR, digitize video images, analyze them, and provide a user friendly interface for the various phases of the process. The system uses the Concept Vi LabVIEW library (Graftek's Image, Meudon la Foret, France) for image grabbing and displaying as well as translation to and from LabVIEW arrays. Graftek's software layer drives an Image Grabber board from Neotech (Eastleigh, United Kingdom). A Colour Adapter box from Neotech provides adequate video signal synchronization. The system also requires a LabVIEW driven digital output board (MacADIOS II from GW Instruments, Cambridge, MA) controlling a slightly modified VCR remote control used mainly to advance the video tape frame by frame.

  14. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    NASA Astrophysics Data System (ADS)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  15. Task-Based Navigation of a Taxonomy Interface to a Digital Repository

    ERIC Educational Resources Information Center

    Khoo, Christopher S. G.; Wang, Zhonghong; Chaudhry, Abdus Sattar

    2012-01-01

    Introduction: This is a study of hierarchical navigation; how users browse a taxonomy-based interface to an organizational repository to locate information resources. The study is part of a project to develop a taxonomy for an library and information science department to organize resources and support user browsing in a digital repository.…

  16. ELITE-3 active vibration isolation workstation

    NASA Astrophysics Data System (ADS)

    Anderson, Eric H.; Houghton, Bowie

    2001-06-01

    This paper describes the development and capabilities of ELITE-3, a product that incorporates piezoelectric actuators to provide ultrastable work surfaces for very high resolution wafer production, metrology, microscopy, and other applications. The electromechanical, electronic, and software/firmware parts of the ELITE-3 active workstation are described, with an emphasis on considerations relating to the piezoelectric transducers. Performance of the system and its relation to the smart materials is discussed. As the floor beneath a vibration-sensitive instrument supported by ELITE-3 moves, piezoelectrics are controlled to minimize the motion of the instrument. A digital signal processor (DSP) determines the appropriate signals to apply to the actuators. A PC-based interface allows reprogramming of control algorithms and resetting of other parameters within the firmware. The modular product allows incorporation of vibration isolator, actuator and sensor modules into original equipment manufacturer (OEM) products. Alternatively, a workstation can be integrated as an integrated standalone system. The paper describes the system architecture, overall approach to vibration isolation, and various system components, and summarizes motivations for key design approaches.

  17. Sensory trick phenomenon improves motor control in pianists with dystonia: prognostic value of glove-effect

    PubMed Central

    Paulig, Jakobine; Jabusch, Hans-Christian; Großbach, Michael; Boullet, Laurent; Altenmüller, Eckart

    2014-01-01

    Musician’s dystonia (MD) is a task-specific movement disorder that causes loss of voluntary motor control while playing the instrument. A subgroup of patients displays the so-called sensory trick: alteration of somatosensory input, e.g., by wearing a latex glove, may result in short-term improvement of motor control. In this study, the glove-effect in pianists with MD was quantified and its potential association with MD-severity and outcome after treatment was investigated. Thirty affected pianists were included in the study. Music instrument digital interface-based scale analysis was used for assessment of fine motor control. Therapeutic options included botulinum toxin, pedagogical retraining and anticholinergic medication (trihexyphenidyl). 19% of patients showed significant improvement of fine motor control through wearing a glove. After treatment, outcome was significantly better in patients with a significant pre-treatment sensory trick. We conclude that the sensory trick may have a prognostic value for the outcome after treatment in pianists with MD. PMID:25295014

  18. Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Johansson, Erik M.; Goodrich, Bret

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) is a 4-meter solar observatory under construction at Haleakala, Hawaii. The simultaneous use of multiple instruments is one of the unique capabilities that makes the ATST a premier ground based solar observatory. Control of the instrument suite is accomplished by the Instrument Control System (ICS), a layer of software between the Observatory Control System (OCS) and the instruments. The ICS presents a single narrow interface to the OCS and provides a standard interface for the instruments to be controlled. It is built upon the ATST Common Services Framework (CSF), an infrastructure for the implementation of a distributed control system. The ICS responds to OCS commands and events, coordinating and distributing them to the various instruments while monitoring their progress and reporting the status back to the OCS. The ICS requires no specific knowledge about the instruments. All information about the instruments used in an experiment is passed by the OCS to the ICS, which extracts and forwards the parameters to the appropriate instrument controllers. The instruments participating in an experiment define the active instrument set. A subset of those instruments must complete their observing activities in order for the experiment to be considered complete and are referred to as the must-complete instrument set. In addition, instruments may participate in eavesdrop mode, outside of the control of the ICS. All instrument controllers use the same standard narrow interface, which allows new instruments to be added without having to modify the interface or any existing instrument controllers.

  19. Interoperability, Scaling, and the Digital Libraries Research Agenda.

    ERIC Educational Resources Information Center

    Lynch, Clifford; Garcia-Molina, Hector

    1996-01-01

    Summarizes reports and activities at the Information Infrastructure Technology and Applications workshop on digital libraries (Reston, Virginia, August 22, 1995). Defines digital library roles and identifies areas of needed research, including: interoperability; protocols for digital objects; collection management; interface design; human-computer…

  20. Earth Observatory Satellite system definition study. Report no. 2: Instrument constraints and interface specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The instruments to be flown on the Earth Observatory Satellite (EOS) system are defined. The instruments will be used to support the Land Resources Management (LRM) mission of the EOS. Program planning information and suggested acquisition activities for obtaining the instruments are presented. The subjects considered are as follows: (1) the performance and interface of the Thematic Mapper (TM) and the High Resolution Pointing Imager (HRPI), (2) procedure for interfacing the TM and HRPI with the EOS satellite, (3) a space vehicle integration plan suggesting the steps and sequence of events required to carry out the interface activities, and (4) suggested agreements between the contractors for providing timely and equitable solution of problems at minimum cost.

  1. 76 FR 52715 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on September 7, 2011, Room T-2B1, 11545 Rockville...

  2. 76 FR 32240 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on June 7, 2011, Room T-2B1, 11545 Rockville Pike...

  3. 77 FR 60480 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on October 30, 2012, Room T-2B1, 11545 Rockville...

  4. Advanced aerosense display interfaces

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.

    1998-09-01

    High-resolution display technologies are being developed to meet the ever-increasing demand for realistic detail. The requirement for evermore visual information exceeds the capacity of fielded aerospace display interfaces. In this paper we begin an exploration of display interfaces and evolving aerospace requirements. Current and evolving standards for avionics, commercial, and flat panel displays are summarized and compared to near term goals for military and aerospace applications. Aerospace and military applications prior to 2005 up to UXGA and digital HDTV resolution can be met by using commercial interface standard developments. Advanced aerospace requirements require yet higher resolutions (2560 X 2048 color pixels, 5120 X 4096 color pixels at 85 Hz, etc.) and necessitate the initiation of discussion herein of an 'ultra digital interface standard (UDIS)' which includes 'smart interface' features such as large memory and blazingly fast resizing microcomputer. Interface capacity, IT, increased about 105 from 1973 to 1998; 102 more is needed for UDIS.

  5. Digital Interface Board to Control Phase and Amplitude of Four Channels

    NASA Technical Reports Server (NTRS)

    Smith, Amy E.; Cook, Brian M.; Khan, Abdur R.; Lux, James P.

    2011-01-01

    An increasing number of parts are designed with digital control interfaces, including phase shifters and variable attenuators. When designing an antenna array in which each antenna has independent amplitude and phase control, the number of digital control lines that must be set simultaneously can grow very large. Use of a parallel interface would require separate line drivers, more parts, and thus additional failure points. A convenient form of control where single-phase shifters or attenuators could be set or the whole set could be programmed with an update rate of 100 Hz is needed to solve this problem. A digital interface board with a field-programmable gate array (FPGA) can simultaneously control an essentially arbitrary number of digital control lines with a serial command interface requiring only three wires. A small set of short, high-level commands provides a simple programming interface for an external controller. Parity bits are used to validate the control commands. Output timing is controlled within the FPGA to allow for rapid update rates of the phase shifters and attenuators. This technology has been used to set and monitor eight 5-bit control signals via a serial UART (universal asynchronous receiver/transmitter) interface. The digital interface board controls the phase and amplitude of the signals for each element in the array. A host computer running Agilent VEE sends commands via serial UART connection to a Xilinx VirtexII FPGA. The commands are decoded, and either outputs are set or telemetry data is sent back to the host computer describing the status and the current phase and amplitude settings. This technology is an integral part of a closed-loop system in which the angle of arrival of an X-band uplink signal is detected and the appropriate phase shifts are applied to the Ka-band downlink signal to electronically steer the array back in the direction of the uplink signal. It will also be used in the non-beam-steering case to compensate for phase shift variations through power amplifiers. The digital interface board can be used to set four 5-bit phase shifters and four 5-bit attenuators and monitor their current settings. Additionally, it is useful outside of the closed-loop system for beamsteering alone. When the VEE program is started, it prompts the user to initialize variables (to zero) or skip initialization. After that, the program enters into a continuous loop waiting for the telemetry period to elapse or a button to be pushed. A telemetry request is sent when the telemetry period is elapsed (every five seconds). Pushing one of the set or reset buttons will send the appropriate command. When a command is sent, the interface status is returned, and the user will be notified by a pop-up window if any error has occurred. The program runs until the End Program button is depressed.

  6. Dynamic modal characterization of musical instruments using digital holography

    NASA Astrophysics Data System (ADS)

    Demoli, Nazif; Demoli, Ivan

    2005-06-01

    This study shows that a dynamic modal characterization of musical instruments with membrane can be carried out using a low-cost device and that the obtained very informative results can be presented as a movie. The proposed device is based on a digital holography technique using the quasi-Fourier configuration and time-average principle. Its practical realization with a commercial digital camera and large plane mirrors allows relatively simple analyzing of big vibration surfaces. The experimental measurements given for a percussion instrument are supported by the mathematical formulation of the problem.

  7. Performance analysis of a proposed tightly-coupled medical instrument network based on CAN protocol.

    PubMed

    Mujumdar, Shantanu; Thongpithoonrat, Pongnarin; Gurkan, D; McKneely, Paul K; Chapman, Frank M; Merchant, Fatima

    2010-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN™ technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. The instruments are in turn becoming more sophisticated; however, the operation of an instrument is still expected to be locally done by authorized medical personnel. Unfortunately, each medical instrument has its unique proprietary API (application programming interface - if any) to provide automated and electronic access to monitoring data. Integration of these APIs requires an agreement with the manufacturers towards realization of interoperable health care networking. As long as the interoperability of instruments with a network is not possible, ubiquitous access to patient status is limited only to manual entry based systems. This paper demonstrates an attempt to realize an interoperable medical instrument interface for networking using MediCAN technology suite as an open standard.

  8. 12-bit 32 channel 500 MS/s low-latency ADC for particle accelerators real-time control

    NASA Astrophysics Data System (ADS)

    Karnitski, Anton; Baranauskas, Dalius; Zelenin, Denis; Baranauskas, Gytis; Zhankevich, Alexander; Gill, Chris

    2017-09-01

    Particle beam control systems require real-time low latency digital feedback with high linearity and dynamic range. Densely packed electronic systems employ high performance multichannel digitizers causing excessive heat dissipation. Therefore, low power dissipation is another critical requirement for these digitizers. A described 12-bit 500 MS/s ADC employs a sub-ranging architecture based on a merged sample & hold circuit, a residue C-DAC and a shared 6-bit flash core ADC. The core ADC provides a sequential coarse and fine digitization featuring a latency of two clock cycles. The ADC is implemented in a 28 nm CMOS process and consumes 4 mW of power per channel from a 0.9 V supply (interfacing and peripheral circuits are excluded). Reduced power consumption and small on-chip area permits the implementation of 32 ADC channels on a 10.7 mm2 chip. The ADC includes a JESD204B standard compliant output data interface operated at the 7.5 Gbps/ch rate. To minimize the data interface related time latency, a special feature permitting to bypass the JESD204B interface is built in. DoE Phase I Award Number: DE-SC0017213.

  9. Smart Antenna UKM Testbed for Digital Beamforming System

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin

    2009-12-01

    A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  10. Optical encryption interface

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J. (Inventor)

    1998-01-01

    An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.

  11. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  12. An overview of measurement solutions for digital systems

    NASA Astrophysics Data System (ADS)

    Lemke, D.

    An overview of digital measurement solutions is presented. A summary of the digital instrumentation that is currently available on the commercial market is given. The technology trends that are driving commercial instrumentation suppliers to provide newer and more advanced features and better measurement solutions for the future is reviewed. The implications of developments in design automation for electrical engineers is discussed.

  13. Modular and Adaptive Control of Sound Processing

    NASA Astrophysics Data System (ADS)

    van Nort, Douglas

    This dissertation presents research into the creation of systems for the control of sound synthesis and processing. The focus differs from much of the work related to digital musical instrument design, which has rightly concentrated on the physicality of the instrument and interface: sensor design, choice of controller, feedback to performer and so on. Often times a particular choice of sound processing is made, and the resultant parameters from the physical interface are conditioned and mapped to the available sound parameters in an exploratory fashion. The main goal of the work presented here is to demonstrate the importance of the space that lies between physical interface design and the choice of sound manipulation algorithm, and to present a new framework for instrument design that strongly considers this essential part of the design process. In particular, this research takes the viewpoint that instrument designs should be considered in a musical control context, and that both control and sound dynamics must be considered in tandem. In order to achieve this holistic approach, the work presented in this dissertation assumes complementary points of view. Instrument design is first seen as a function of musical context, focusing on electroacoustic music and leading to a view on gesture that relates perceived musical intent to the dynamics of an instrumental system. The important design concept of mapping is then discussed from a theoretical and conceptual point of view, relating perceptual, systems and mathematically-oriented ways of examining the subject. This theoretical framework gives rise to a mapping design space, functional analysis of pertinent existing literature, implementations of mapping tools, instrumental control designs and several perceptual studies that explore the influence of mapping structure. Each of these reflect a high-level approach in which control structures are imposed on top of a high-dimensional space of control and sound synthesis parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.

  14. Analog-to-digital conversion to accommodate the dynamics of live music in hearing instruments.

    PubMed

    Hockley, Neil S; Bahlmann, Frauke; Fulton, Bernadette

    2012-09-01

    Hearing instrument design focuses on the amplification of speech to reduce the negative effects of hearing loss. Many amateur and professional musicians, along with music enthusiasts, also require their hearing instruments to perform well when listening to the frequent, high amplitude peaks of live music. One limitation, in most current digital hearing instruments with 16-bit analog-to-digital (A/D) converters, is that the compressor before the A/D conversion is limited to 95 dB (SPL) or less at the input. This is more than adequate for the dynamic range of speech; however, this does not accommodate the amplitude peaks present in live music. The hearing instrument input compression system can be adjusted to accommodate for the amplitudes present in music that would otherwise be compressed before the A/D converter in the hearing instrument. The methodology behind this technological approach will be presented along with measurements to demonstrate its effectiveness.

  15. Digital instrumentation and management of dead time: first results on a NaI well-type detector setup.

    PubMed

    Censier, B; Bobin, C; Bouchard, J; Aubineau-Lanièce, I

    2010-01-01

    The LNE-LNHB is engaged in a development program on digital instrumentation, the first step being the instrumentation of a NaI well-type detector set-up. The prototype acquisition card and its technical specifications are presented together with the first comparison with the classical NIM-based acquisition chain, for counting rates up to 100 kcps. The digital instrumentation is shown to be counting-loss free in this range. This validates the main option adopted in this project, namely the implementation of an extending dead time with live-time measurement already successfully used in the MTR2 NIM module developed at LNE-LNHB. Copyright 2010. Published by Elsevier Ltd.

  16. ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    YENG,YHOFF,L.

    2003-10-13

    Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which canmore » complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.« less

  17. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    NASA Astrophysics Data System (ADS)

    Lasker, Joseph M.

    Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system and previously implemented reconstruction scheme, I have performed initial dynamic imaging case studies on healthy volunteers and patients diagnosed with RA. These studies support our hypothesis that differences in the vascular and metabolic reactivity exist between affected and unaffected joints and can be used for diagnostic purposes.

  18. Feasibility of an ultra-low power digital signal processor platform as a basis for a fully implantable brain-computer interface system.

    PubMed

    Wang, Po T; Gandasetiawan, Keulanna; McCrimmon, Colin M; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    A fully implantable brain-computer interface (BCI) can be a practical tool to restore independence to those affected by spinal cord injury. We envision that such a BCI system will invasively acquire brain signals (e.g. electrocorticogram) and translate them into control commands for external prostheses. The feasibility of such a system was tested by implementing its benchtop analogue, centered around a commercial, ultra-low power (ULP) digital signal processor (DSP, TMS320C5517, Texas Instruments). A suite of signal processing and BCI algorithms, including (de)multiplexing, Fast Fourier Transform, power spectral density, principal component analysis, linear discriminant analysis, Bayes rule, and finite state machine was implemented and tested in the DSP. The system's signal acquisition fidelity was tested and characterized by acquiring harmonic signals from a function generator. In addition, the BCI decoding performance was tested, first with signals from a function generator, and subsequently using human electroencephalogram (EEG) during eyes opening and closing task. On average, the system spent 322 ms to process and analyze 2 s of data. Crosstalk (<;-65 dB) and harmonic distortion (~1%) were minimal. Timing jitter averaged 49 μs per 1000 ms. The online BCI decoding accuracies were 100% for both function generator and EEG data. These results show that a complex BCI algorithm can be executed on an ULP DSP without compromising performance. This suggests that the proposed hardware platform may be used as a basis for future, fully implantable BCI systems.

  19. Discrete-time modelling of musical instruments

    NASA Astrophysics Data System (ADS)

    Välimäki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti

    2006-01-01

    This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.

  20. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    ERIC Educational Resources Information Center

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  1. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  2. Representation-based user interfaces for the audiovisual library of the year 2000

    NASA Astrophysics Data System (ADS)

    Aigrain, Philippe; Joly, Philippe; Lepain, Philippe; Longueville, Veronique

    1995-03-01

    The audiovisual library of the future will be based on computerized access to digitized documents. In this communication, we address the user interface issues which will arise from this new situation. One cannot simply transfer a user interface designed for the piece by piece production of some audiovisual presentation and make it a tool for accessing full-length movies in an electronic library. One cannot take a digital sound editing tool and propose it as a means to listen to a musical recording. In our opinion, when computers are used as mediations to existing contents, document representation-based user interfaces are needed. With such user interfaces, a structured visual representation of the document contents is presented to the user, who can then manipulate it to control perception and analysis of these contents. In order to build such manipulable visual representations of audiovisual documents, one needs to automatically extract structural information from the documents contents. In this communication, we describe possible visual interfaces for various temporal media, and we propose methods for the economically feasible large scale processing of documents. The work presented is sponsored by the Bibliotheque Nationale de France: it is part of the program aiming at developing for image and sound documents an experimental counterpart to the digitized text reading workstation of this library.

  3. Toward High-Performance Communications Interfaces for Science Problem Solving

    ERIC Educational Resources Information Center

    Oviatt, Sharon L.; Cohen, Adrienne O.

    2010-01-01

    From a theoretical viewpoint, educational interfaces that facilitate communicative actions involving representations central to a domain can maximize students' effort associated with constructing new schemas. In addition, interfaces that minimize working memory demands due to the interface per se, for example by mimicking existing non-digital work…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of researchmore » reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)« less

  5. Communications and control for electric power systems

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    1992-01-01

    A long-term strategy for the integration of new control technologies for power generation and delivery is proposed: the industry would benefit from an evolutionary approach that would adapt to its needs future technologies as well as those that it has so far not heeded. The integrated operation of the entire system, including the distribution system, was proposed as a future goal. The AbNET communication protocols are reviewed, and additions that were made in 1991 are described. In the original network, traffic was controlled by polling at the master station, located at the substation, and routed by a flooding algorithm. In a revised version, the polling and flooding are modified. The question of interfacing low-energy measurement transducers or instrument transformers is considered. There is presently little or no agreement on what the output of optical current transducers (CT's) should be. Appendices deal with the calibration of current transducers; with Delta modulation, a simple means of serially encoding the output of an OCT; and with noise shaping, a method of digital signal processing that trades off the number of bits in a digital sample for a higher number of samples.

  6. Atmospheric, Magnetospheric and Plasmas in Space (AMPS) spacelab payload definition study. Volume 3: Interface control documents. Part 3: AMPS payload to instruments ICD

    NASA Technical Reports Server (NTRS)

    1976-01-01

    General physical, functional, and operational interface control requirements for instruments on the first AMPS payload are presented. Interface specifications are included to satisfy ground handling, prelaunch, launch, stowage, operation, and landing activities. Applicable supporting documentation to implement the information is also given.

  7. A novel microcontroller-based digital instrument for measurement of electrical quantities under non-sinusoidal condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anaya, O.; Moreno, G.E.L.; Madrigal, M.M.

    1999-11-01

    In the last years, several definitions of power have been proposed for more accurate measurement of electrical quantities in presence of harmonics pollution on power lines. Nevertheless, only few instruments have been constructed considering these definitions. This paper describes a new microcontroller-based digital instrument, which include definitions based on Harley Transform. The algorithms are fully processed using Fast Hartley Transform (FHT) and 16 bit-microcontroller platform. The constructed prototype was compared with commercial harmonics analyzer instrument.

  8. Digital Soldering-Iron Tester

    NASA Technical Reports Server (NTRS)

    Buggle, R. N.; Metka, W. H., Jr

    1984-01-01

    Instrument reads tip temperature and contact potential in seconds. Tinned soldering tip touched to temperature sensitive button for 4 seconds and to voltage probe for 1 to 3 seconds. Tip temperature and voltage appear on digital displays. Instrument quickly gives assurance conditions are correct for reliable soldering.

  9. HYMOSS signal processing for pushbroom spectral imaging

    NASA Technical Reports Server (NTRS)

    Ludwig, David E.

    1991-01-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  10. HYMOSS signal processing for pushbroom spectral imaging

    NASA Astrophysics Data System (ADS)

    Ludwig, David E.

    1991-06-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  11. Independent Orbiter Assessment (IOA): Analysis of the instrumentation subsystem

    NASA Technical Reports Server (NTRS)

    Howard, B. S.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Instrumentation Subsystem are documented. The Instrumentation Subsystem (SS) consists of transducers, signal conditioning equipment, pulse code modulation (PCM) encoding equipment, tape recorders, frequency division multiplexers, and timing equipment. For this analysis, the SS is broken into two major groupings: Operational Instrumentation (OI) equipment and Modular Auxiliary Data System (MADS) equipment. The OI equipment is required to acquire, condition, scale, digitize, interleave/multiplex, format, and distribute operational Orbiter and payload data and voice for display, recording, telemetry, and checkout. It also must provide accurate timing for time critical functions for crew and payload specialist use. The MADS provides additional instrumentation to measure and record selected pressure, temperature, strain, vibration, and event data for post-flight playback and analysis. MADS data is used to assess vehicle responses to the flight environment and to permit correlation of such data from flight to flight. The IOA analysis utilized available SS hardware drawings and schematics for identifying hardware assemblies and components and their interfaces. Criticality for each item was assigned on the basis of the worst-case effect of the failure modes identified.

  12. Digital combined instrument transformer for automated electric power supply control systems of mining companies

    NASA Astrophysics Data System (ADS)

    Topolsky, D. V.; Gonenko, T. V.; Khatsevskiy, V. F.

    2017-10-01

    The present paper discusses ways to solve the problem of enhancing operating efficiency of automated electric power supply control systems of mining companies. According to the authors, one of the ways to solve this problem is intellectualization of the electric power supply control system equipment. To enhance efficiency of electric power supply control and electricity metering, it is proposed to use specially designed digital combined instrument current and voltage transformers. This equipment conforms to IEC 61850 international standard and is adapted for integration into the digital substation structure. Tests were performed to check conformity of an experimental prototype of the digital combined instrument current and voltage transformer with IEC 61850 standard. The test results have shown that the considered equipment meets the requirements of the standard.

  13. Analog-to-Digital Conversion to Accommodate the Dynamics of Live Music in Hearing Instruments

    PubMed Central

    Bahlmann, Frauke; Fulton, Bernadette

    2012-01-01

    Hearing instrument design focuses on the amplification of speech to reduce the negative effects of hearing loss. Many amateur and professional musicians, along with music enthusiasts, also require their hearing instruments to perform well when listening to the frequent, high amplitude peaks of live music. One limitation, in most current digital hearing instruments with 16-bit analog-to-digital (A/D) converters, is that the compressor before the A/D conversion is limited to 95 dB (SPL) or less at the input. This is more than adequate for the dynamic range of speech; however, this does not accommodate the amplitude peaks present in live music. The hearing instrument input compression system can be adjusted to accommodate for the amplitudes present in music that would otherwise be compressed before the A/D converter in the hearing instrument. The methodology behind this technological approach will be presented along with measurements to demonstrate its effectiveness. PMID:23258618

  14. Transitioning from analog to digital communications: An information security perspective

    NASA Technical Reports Server (NTRS)

    Dean, Richard A.

    1990-01-01

    A summary is given of the government's perspective on evolving digital communications as they affect secure voice users and approaches for operating during a transition period to an all digital world. An integrated architecture and a mobile satellite interface are discussed.

  15. The Microcomputer as an Educational Laboratory Workstation.

    ERIC Educational Resources Information Center

    Ciociolo, James M.

    1983-01-01

    Describes laboratory workstations which provide direct connection for monitoring and control of analytical instruments such as pH meters, spectrophotometers, temperature, and chromatographic instruments. This is accomplished through analog/digital and digital/analog converters for analog signals and input/output devices for on/off signals.…

  16. Digital Sensor Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. Anmore » example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).« less

  17. Systematic Refinement of a Health Information Technology Time and Motion Workflow Instrument for Inpatient Nursing Care using a Standardized Interface Terminology

    PubMed Central

    Zhang, Yi; Monsen, Karen A; Adam, Terrence J; Pieczkiewicz, David S; Daman, Megan; Melton, Genevieve B

    2011-01-01

    Time and motion (T&M) studies provide an objective method to measure the expenditure of time by clinicians. While some instruments for T&M studies have been designed to evaluate health information technology (HIT), these instruments have not been designed for nursing workflow. We took an existing open source HIT T&M study application designed to evaluate physicians in the ambulatory setting and rationally adapted it through empiric observations to record nursing activities in the inpatient setting and linked this instrument to an existing interface terminology, the Omaha System. Nursing activities involved several dimensions and could include multiple activities occurring simultaneously, requiring significant instrument redesign. 94% of the activities from the study instrument mapped adequately to the Omaha System. T&M study instruments require customization in design optimize them for different environments, such as inpatient nursing, to enable optimal data collection. Interface terminologies show promise as a framework for recording and analyzing T&M study data. PMID:22195228

  18. An Open Hardware seismic data recorder - a solid basis for citizen science

    NASA Astrophysics Data System (ADS)

    Mertl, Stefan

    2015-04-01

    "Ruwai" is a 24-Bit Open Hardware seismic data recorder. It is built up of four stackable printed circuit boards fitting the Arduino Mega 2560 microcontroller prototyping platform. An interface to the BeagleBone Black single-board computer enables extensive data storage, -processing and networking capabilities. The four printed circuit boards provide a uBlox Lea-6T GPS module and real-time clock (GPS Timing shield), an Texas Instruments ADS1274 24-Bit analog to digital converter (ADC main shield), an analog input section with a Texas Instruments PGA281 programmable gain amplifier and an analog anti-aliasing filter (ADC analog interface pga) and the power conditioning based on 9-36V DC input (power supply shield). The Arduino Mega 2560 is used for controlling the hardware components, timestamping sampled data using the GPS timing information and transmitting the data to the BeagleBone Black single-board computer. The BeagleBone Black provides local data storage, wireless mesh networking using the optimized link state routing daemon and differential GNSS positioning using the RTKLIB software. The complete hardware and software is published under free software - or open hardware licenses and only free software (e.g. KiCad) was used for the development to facilitate the reusability of the design and increases the sustainability of the project. "Ruwai" was developed within the framework of the "Community Environmental Observation Network (CEON)" (http://www.mertl-research.at/ceon/) which was supported by the Internet Foundation Austria (IPA) within the NetIdee 2013 call.

  19. Technology insertion of a COTS RAID server as an image buffer in the image chain of the Defense Mapping Agency's Digital Production System

    NASA Astrophysics Data System (ADS)

    Mehring, James W.; Thomas, Scott D.

    1995-11-01

    The Data Services Segment of the Defense Mapping Agency's Digital Production System provides a digital archive of imagery source data for use by DMA's cartographic user's. This system was developed in the mid-1980's and is currently undergoing modernization. This paper addresses the modernization of the imagery buffer function that was performed by custom hardware in the baseline system and is being replaced by a RAID Server based on commercial off the shelf (COTS) hardware. The paper briefly describes the baseline DMA image system and the modernization program, that is currently under way. Throughput benchmark measurements were made to make design configuration decisions for a commercial off the shelf (COTS) RAID Server to perform as system image buffer. The test program began with performance measurements of the RAID read and write operations between the RAID arrays and the server CPU for RAID levels 0, 5 and 0+1. Interface throughput measurements were made for the HiPPI interface between the RAID Server and the image archive and processing system as well as the client side interface between a custom interface board that provides the interface between the internal bus of the RAID Server and the Input- Output Processor (IOP) external wideband network currently in place in the DMA system to service client workstations. End to end measurements were taken from the HiPPI interface through the RAID write and read operations to the IOP output interface.

  20. A Tool for Assessing the Text Legibility of Digital Human Machine Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2015-08-01

    A tool intended to aid qualified professionals in the assessment of the legibility of text presented on a digital display is described. The assessment of legibility is primarily for the purposes of designing and analyzing human machine interfaces in accordance with NUREG-0700 and MIL-STD 1472G. The tool addresses shortcomings of existing guidelines by providing more accurate metrics of text legibility with greater sensitivity to design alternatives.

  1. Advanced Military Pay System Concepts. Evaluation of Opportunities through Information Technology.

    DTIC Science & Technology

    1980-07-01

    trans- mdtter (UART) to interface with a modem . The main processor was then responsible for input and output between main memory and the UART...digital, "run-length" encoding scheme which is very effective in reducing the amount of data to be transmitted. Machines of this type include a modem ...Output control as well as data compression will be combined with appropriate modems or interfaces to digital transmission channels and microprocessor

  2. Performance of Trellis Coded 256 QAM super-multicarrier modem VLSI's for SDH interface outage-free digital microwave radio

    NASA Astrophysics Data System (ADS)

    Aikawa, Satoru; Nakamura, Yasuhisa; Takanashi, Hitoshi

    1994-02-01

    This paper describes the performance of an outage free SXH (Synchronous Digital Hierarchy) interface 256 QAM modem. An outage free DMR (Digital Microwave Radio) is achieved by a high coding gain trellis coded SPORT QAM and Super Multicarrier modem. A new frame format and its associated circuits connect the outage free modem to the SDH interface. The newly designed VLSI's are key devices for developing the modem. As an overall modem performance, BER (bit error rate) characteristics and equipment signatures are presented. A coding gain of 4.7 dB (at a BER of 10(exp -4)) is obtained using SPORT 256 QAM and Viterbi decoding. This coding gain is realized by trellis coding as well as by increasing of transmission rate. Roll-off factor is decreased to maintain the same frequency occupation and modulation level as ordinary SDH 256 QAM modern.

  3. Serious game e-Baby: nursing students' perception on learning about preterm newborn clinical assessment.

    PubMed

    Fonseca, Luciana Mara Monti; Aredes, Natália Del' Angelo; Dias, Danielle Monteiro Vilela; Scochi, Carmen Gracinda Silvan; Martins, José Carlos Amado; Rodrigues, Manuel Alves

    2015-01-01

    To evaluate students opinion regarding e-Baby educational technology. Exploratory descriptive study in which participated a sample composed of 14 nursing Portuguese students that used e-Baby digital educational technology in an extracurricular course. To achieve the aim of the study, the data collection was realized through an opinion instrument in Likert scale including the possibility of commentaries by students. Is was also collected data of participants' characterization. Students made very satisfactory evaluations regarding the game e-Baby, varying since usability acceptation through suggestions of expansion of the game to other nursing themes. Serious game e-Baby can be considered a didactic innovation and motivator tool of learning. Besides, it demonstrates have adequate interface in design and educative function aspects, evocating intense interaction between user and computational tool.

  4. A generic FPGA-based detector readout and real-time image processing board

    NASA Astrophysics Data System (ADS)

    Sarpotdar, Mayuresh; Mathew, Joice; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    For space-based astronomical observations, it is important to have a mechanism to capture the digital output from the standard detector for further on-board analysis and storage. We have developed a generic (application- wise) field-programmable gate array (FPGA) board to interface with an image sensor, a method to generate the clocks required to read the image data from the sensor, and a real-time image processor system (on-chip) which can be used for various image processing tasks. The FPGA board is applied as the image processor board in the Lunar Ultraviolet Cosmic Imager (LUCI) and a star sensor (StarSense) - instruments developed by our group. In this paper, we discuss the various design considerations for this board and its applications in the future balloon and possible space flights.

  5. Innovation & evaluation of tangible direct manipulation digital drawing pens for children.

    PubMed

    Lee, Tai-Hua; Wu, Fong-Gong; Chen, Huei-Tsz

    2017-04-01

    Focusing on the theme of direct manipulation, in this study, we proposed a new and innovative tangible user interface (TUI) design concept for a manipulative digital drawing pen. Based on interviews with focus groups brainstorming and experts and the results of a field survey, we selected the most suitable tangible user interface for children between 4 and 7 years of age. Using the new tangible user interface, children could choose between the brush tools after touching and feeling the various patterns. The thickness of the brush could be adjusted by changing the tilt angle. In a subsequent experimental process we compared the differences in performance and subjective user satisfaction. A total of sixteen children, aged 4-7 years participated in the experiment. Two operating system experiments (the new designed tangible digital drawing pen and traditional visual interface-icon-clicking digital drawing pens) were performed at random and in turns. We assessed their manipulation performance, accuracy, brush stroke richness and subjective evaluations. During the experimental process we found that operating functions using the direct manipulation method, and adding shapes and semantic models to explain the purpose of each function, enabled the children to perform stroke switches relatively smoothly. By using direct manipulation digital pens, the children could improve their stroke-switching performance for digital drawing. Additionally, by using various patterns to represent different brushes or tools, the children were able to make selections using their sense of touch, thereby reducing the time required to move along the drawing pens and select icons (The significant differences (p = 0.000, p < 0.01) existed in the manipulation times for drawing thick lines using the crayon function of the two (new and old) drawing pens (new 5.8750 < old 10.7500)). The addition of direct manipulation movements to drawing operations enhanced the drawing results, thereby increasing the children's enjoyment of drawing with tangible digital drawing pens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Interformat reliability of digital psychiatric self-report questionnaires: a systematic review.

    PubMed

    Alfonsson, Sven; Maathz, Pernilla; Hursti, Timo

    2014-12-03

    Research on Internet-based interventions typically use digital versions of pen and paper self-report symptom scales. However, adaptation into the digital format could affect the psychometric properties of established self-report scales. Several studies have investigated differences between digital and pen and paper versions of instruments, but no systematic review of the results has yet been done. This review aims to assess the interformat reliability of self-report symptom scales used in digital or online psychotherapy research. Three databases (MEDLINE, Embase, and PsycINFO) were systematically reviewed for studies investigating the reliability between digital and pen and paper versions of psychiatric symptom scales. From a total of 1504 publications, 33 were included in the review, and interformat reliability of 40 different symptom scales was assessed. Significant differences in mean total scores between formats were found in 10 of 62 analyses. These differences were found in just a few studies, which indicates that the results were due to study effects and sample effects rather than unreliable instruments. The interformat reliability ranged from r=.35 to r=.99; however, the majority of instruments showed a strong correlation between format scores. The quality of the included studies varied, and several studies had insufficient power to detect small differences between formats. When digital versions of self-report symptom scales are compared to pen and paper versions, most scales show high interformat reliability. This supports the reliability of results obtained in psychotherapy research on the Internet and the comparability of the results to traditional psychotherapy research. There are, however, some instruments that consistently show low interformat reliability, suggesting that these conclusions cannot be generalized to all questionnaires. Most studies had at least some methodological issues with insufficient statistical power being the most common issue. Future studies should preferably provide information about the transformation of the instrument into digital format and the procedure for data collection in more detail.

  7. Ubiquitous computing to support co-located clinical teams: using the semiotics of physical objects in system design.

    PubMed

    Bang, Magnus; Timpka, Toomas

    2007-06-01

    Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.

  8. Investigation of force, contact area, and dwell time in finger-tapping tasks on membrane touch interface.

    PubMed

    Liu, Na; Yu, Ruifeng

    2018-06-01

    This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.

  9. Digital Image Correlation Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Dan; Crozier, Paul; Reu, Phil

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full-field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classesmore » or through a graphical user interface.« less

  10. Chronic swine instrumentation techniques utilizing the GOR-REX peritoneal catheter

    NASA Astrophysics Data System (ADS)

    Gray, C. C.; White, F. C.; Crisman, R. P.; Wisniewski, J.; McKirnan, D.

    1985-05-01

    The GORE-TEX peritoneal catheter interface is an effective skin interface device for many types of instrumentation in the swine. When properly utilized, the interface allows the development of a stable and effective biological seal which will reduce or eliminate sinus tract formation and resultant systemic infection. The interface is suitable for running any wire or catheter (up to about 2.5mm diameter) through the integument of the animal, thus increasing the possibilities for chronic instrumentation while maintaining a healthy animal. The lack of evidence of any growth phenomenon acting to extrude the interface segment, similar to that observed using other synthetic materials, and the superior biological seal which the interface develops, may allow many chronic studies which were previously not feasible. Using special catheter adapter stubs and an intermittent infusion plug, a sterile, sealed catheter system has decreased the possibilities for introducing pathogens while allowing ready access to the blood stream. Detailed descriptions of surgical implantation techniques and catheter set up and maintenance techniques are included.

  11. Next Generation Space Telescope Integrated Science Module Data System

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  12. 76 FR 34276 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital... briefing on the results and status of new NRC nuclear power plant digital system research activities which deal with Inventory and Certification of digital systems, operating experience for digital systems, and...

  13. Make Your Own Digital Thermometer!

    ERIC Educational Resources Information Center

    Sorey, Timothy; Willard, Teri; Kim, Bom

    2010-01-01

    In the hands-on, guided-inquiry lesson presented in this article, high school students create, calibrate, and apply an affordable scientific-grade instrument (Lapp and Cyrus 2000). In just four class periods, they build a homemade integrated circuit (IC) digital thermometer, apply a math model to calibrate their instrument, and ask a researchable…

  14. Interface of the transport systems research vehicle monochrome display system to the digital autonomous terminal access communication data bus

    NASA Technical Reports Server (NTRS)

    Easley, W. C.; Tanguy, J. S.

    1986-01-01

    An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described.

  15. Role of superconducting electronics in advancing science and technology (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Faris, S. M.

    1988-08-01

    The promises of the ultrahigh-performance properties of superconductivity and Josephson junction technologies have been known for quite some time. This presentation describes the first superconducting electronics and measurement system and its important role as a major tool to advance microwave and millimeter wave technologies. This breakthrough tool is a sampling oscilloscope with 5-ps rise time, 50-μV sensitivity, and a time domain reflectometer with 8-ps rise time. In order to achieve these performance goals, several technological hurdles had to be overcome including perfecting a manufacturing process for building Josephson junction IC chips, developing an innovative cooling technique, developing interfaces and interconnections with bandwidths in excess of 70 GHz, and developing the room-temperature hardware and software necessary to make the instruments convenient, easy to use, easy to learn, in addition to making available functions and features users have come to expect from sophisticated digital test instrumentation. These technological developments are stepping stones leading to the realization of more sophisticated and complex electronic systems satisfying the needs of scientists, technologists, and engineers. The unprecedented speed and sensitivity make it possible to attack new frontiers.

  16. Digitized Archival Primary Sources in STEM: A Selected Webliography

    ERIC Educational Resources Information Center

    Jankowski, Amy

    2017-01-01

    Accessibility and findability of digitized archival resources can be a challenge, particularly for students or researchers not familiar with archival formats and digital interfaces, which adhere to different descriptive standards than more widely familiar library resources. Numerous aggregate archival collection databases exist, which provide a…

  17. Microcomputer-Based Digital Signal Processing Laboratory Experiments.

    ERIC Educational Resources Information Center

    Tinari, Jr., Rocco; Rao, S. Sathyanarayan

    1985-01-01

    Describes a system (Apple II microcomputer interfaced to flexible, custom-designed digital hardware) which can provide: (1) Fast Fourier Transform (FFT) computation on real-time data with a video display of spectrum; (2) frequency synthesis experiments using the inverse FFT; and (3) real-time digital filtering experiments. (JN)

  18. 78 FR 36478 - Accessibility of User Interfaces, and Video Programming Guides and Menus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... equipment: ``digital apparatus'' and ``navigation devices.'' Specifically, section 204 applies to ``digital... apparatus, including equipment purchased at retail by a consumer to access video programming, would be..., and video programming guides, and menus provided by digital apparatus and navigation devices are...

  19. Proceedings of the Annual Seminar (First), ’The Art of Communications Interfaces’, Held at Fort Monmouth, New Jersey on 22 April 1976,

    DTIC Science & Technology

    Both the oldest and the newest problem areas in communications electronics interfaces are discussed in conjunction with the currently critical...digital communication system evolution. The oldest interface problem, still the most essential is the man machine communications interfaces. The newest is

  20. Digital image analysis of a turbulent flame

    NASA Astrophysics Data System (ADS)

    Zucherman, L.; Kawall, J. G.; Keffer, J. F.

    1988-01-01

    Digital image analysis of cine pictures of an unconfined rich premixed turbulent flame has been used to determine structural characteristics of the turbulent/non-turbulent interface of the flame. The results, comprising various moments of the interface position, probability density functions and correlation functions, establish that the instantaneous flame-interface position is essentially a Gaussian random variable with a superimposed quasi-periodical component. The latter is ascribable to a pulsation caused by the convection and the stretching of ring vortices present within the flame. To a first approximation, the flame can be considered similar to a three-dimensional axisymmetric turbulent jet, with superimposed ring vortices, in which combustion occurs.

  1. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  2. The research of laser marking control technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qiue; Zhang, Rong

    2009-08-01

    In the area of Laser marking, the general control method is insert control card to computer's mother board, it can not support hot swap, it is difficult to assemble or it. Moreover, the one marking system must to equip one computer. In the system marking, the computer can not to do the other things except to transmit marking digital information. Otherwise it can affect marking precision. Based on traditional control methods existed some problems, introduced marking graphic editing and digital processing by the computer finish, high-speed digital signal processor (DSP) control marking the whole process. The laser marking controller is mainly contain DSP2812, digital memorizer, DAC (digital analog converting) transform unit circuit, USB interface control circuit, man-machine interface circuit, and other logic control circuit. Download the marking information which is processed by computer to U disk, DSP read the information by USB interface on time, then processing it, adopt the DSP inter timer control the marking time sequence, output the scanner control signal by D/A parts. Apply the technology can realize marking offline, thereby reduce the product cost, increase the product efficiency. The system have good effect in actual unit markings, the marking speed is more quickly than PCI control card to 20 percent. It has application value in practicality.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, J.M.; W. Gunther, G. Martinez-Guridi

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less

  4. Unique digital imagery interface between a silicon graphics computer and the kinetic kill vehicle hardware-in-the-loop simulator (KHILS) wideband infrared scene projector (WISP)

    NASA Astrophysics Data System (ADS)

    Erickson, Ricky A.; Moren, Stephen E.; Skalka, Marion S.

    1998-07-01

    Providing a flexible and reliable source of IR target imagery is absolutely essential for operation of an IR Scene Projector in a hardware-in-the-loop simulation environment. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) at Eglin AFB provides the capability, and requisite interfaces, to supply target IR imagery to its Wideband IR Scene Projector (WISP) from three separate sources at frame rates ranging from 30 - 120 Hz. Video can be input from a VCR source at the conventional 30 Hz frame rate. Pre-canned digital imagery and test patterns can be downloaded into stored memory from the host processor and played back as individual still frames or movie sequences up to a 120 Hz frame rate. Dynamic real-time imagery to the KHILS WISP projector system, at a 120 Hz frame rate, can be provided from a Silicon Graphics Onyx computer system normally used for generation of digital IR imagery through a custom CSA-built interface which is available for either the SGI/DVP or SGI/DD02 interface port. The primary focus of this paper is to describe our technical approach and experience in the development of this unique SGI computer and WISP projector interface.

  5. Geologic Communications | Alaska Division of Geological & Geophysical

    Science.gov Websites

    improves a database for the Division's digital and map-based geological, geophysical, and geochemical data interfaces DGGS metadata and digital data distribution - Geospatial datasets published by DGGS are designed to be compatible with a broad variety of digital mapping software, to present DGGS's geospatial data

  6. DocML: A Digital Library of University Data.

    ERIC Educational Resources Information Center

    Papadakis, Ioannis; Karakoidas, Vassileios; Chrissikopoulos, Vassileios

    2002-01-01

    Describes DocML, a Web-based digital library of university data that is used to build a system capable of preserving and managing student assignments. Topics include requirements for a digital library of university data; metadata and XML; three-tier architecture; user interface; searching; browsing; content delivery; and administrative issues.…

  7. Community Stories and Institutional Stewardship: Digital Curation's Dual Roles of Story Creation and Resource Preservation

    ERIC Educational Resources Information Center

    Kunda, Sue; Anderson-Wilk, Mark

    2011-01-01

    Our institutions of record are facing a new digital knowledge management challenge: stakeholder communities are now expecting customized Web interfaces to institutional knowledge repositories, online environments where community members can contribute content and see themselves represented, as well as access archived resources. Digital curation…

  8. Development of hermetic electrical connectors for SSC spool pieces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kountanis, B.; Kalny, L.

    1993-05-01

    The Superconducting Super Collider ring is about 54 miles (87 km circumference) and primarily includes a series of magnets. Spool piece assemblies are interspaced in the ring at predetermined intervals to provide specific functions such as cryogenic interfaces, vacuum interface, magnet power, magnet power dump, quench heater power, and special instrumentation. Electrical connectors serve as interfaces for instrumentation and quench heater circuits. These connectors have to meet stringent requirements.

  9. Online, On Demand Access to Coastal Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Long, J.; Bristol, S.; Long, D.; Thompson, S.

    2014-12-01

    Process-based numerical models for coastal waves, water levels, and sediment transport are initialized with digital elevation models (DEM) constructed by interpolating and merging bathymetric and topographic elevation data. These gridded surfaces must seamlessly span the land-water interface and may cover large regions where the individual raw data sources are collected at widely different spatial and temporal resolutions. In addition, the datasets are collected from different instrument platforms with varying accuracy and may or may not overlap in coverage. The lack of available tools and difficulties in constructing these DEMs lead scientists to 1) rely on previously merged, outdated, or over-smoothed DEMs; 2) discard more recent data that covers only a portion of the DEM domain; and 3) use inconsistent methodologies to generate DEMs. The objective of this work is to address the immediate need of integrating land and water-based elevation data sources and streamline the generation of a seamless data surface that spans the terrestrial-marine boundary. To achieve this, the U.S. Geological Survey (USGS) is developing a web processing service to format and initialize geoprocessing tasks designed to create coastal DEMs. The web processing service is maintained within the USGS ScienceBase data management system and has an associated user interface. Through the map-based interface, users define a geographic region that identifies the bounds of the desired DEM and a time period of interest. This initiates a query for elevation datasets within federal science agency data repositories. A geoprocessing service is then triggered to interpolate, merge, and smooth the data sources creating a DEM based on user-defined configuration parameters. Uncertainty and error estimates for the DEM are also returned by the geoprocessing service. Upon completion, the information management platform provides access to the final gridded data derivative and saves the configuration parameters for future reference. The resulting products and tools developed here could be adapted to future data sources and projects beyond the coastal environment.

  10. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  11. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.

  12. A Braille Interface to the Texas Instruments SR-52 Programmable Calculator.

    DTIC Science & Technology

    1976-09-21

    F / _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ AD—A039 US PENNSYLVANIA STATE UNIV JNIVtRSITY PARK APPLIED RESE——ETc F/G 9/2 * BRAILLE INTERFACE to PC TEXAS...UNCLASSiFIED A BRAILLE INTERFACE TO THE TEXAS INSTRUMENTS SR-52 PR0CRA)*~ABLE CALCULATOR C. P~ JANOTA Technical Memorandum D D C File No. TM 76-244 i...SUPPLEMENTARY NOTES ~~~~ ~ 15. KEY WORDS (ConUnti. on ,.v.ra• .Id. If nøc....ry and td~n t tf y by block ntanb.r) AIDS TO HANDICAPPED BRAILLE INTERFACE

  13. Smart Objects, Dumb Archives: A User-Centric, Layered Digital Library Framework

    NASA Technical Reports Server (NTRS)

    Maly, Kurt; Nelson, Michael L.; Zubair, Mohammad

    1999-01-01

    Currently, there exist a large number of superb digital libraries, all of which are, unfortunately, vertically integrated and all presenting a monolithic interface to their users. Ideally, a user would want to locate resources from a variety of digital libraries dealing only with one interface. A number of approaches exist to this interoperability issue exist including: defining a universal protocol for all libraries to adhere to; or developing mechanisms to translate between protocols. The approach we illustrate in this paper is to push down the level of universal protocols to one for digital object communication and for communication for simple archives. This approach creates the opportunity for digital library service providers to create digital libraries tailored to the needs of user communities drawing from available archives and individual publishers who adhere to this standard. We have created a reference implementation based on the hyper text transfer protocol (http) with the protocols being derived from the Dienst protocol. We have created a special class of digital objects called buckets and a number of archives based on a NASA collection and NSF funded projects. Starting from NCSTRL we have developed a set of digital library services called NCSTRL+ and have created digital libraries for researchers, educators and students that can each draw on all the archives and individually created buckets.

  14. The South African Astronomical Observatory instrumentation software architecture and the SHOC instruments

    NASA Astrophysics Data System (ADS)

    van Gend, Carel; Lombaard, Briehan; Sickafoose, Amanda; Whittal, Hamish

    2016-07-01

    Until recently, software for instruments on the smaller telescopes at the South African Astronomical Observatory (SAAO) has not been designed for remote accessibility and frequently has not been developed using modern software best-practice. We describe a software architecture we have implemented for use with new and upgraded instruments at the SAAO. The architecture was designed to allow for multiple components and to be fast, reliable, remotely- operable, support different user interfaces, employ as much non-proprietary software as possible, and to take future-proofing into consideration. Individual component drivers exist as standalone processes, communicating over a network. A controller layer coordinates the various components, and allows a variety of user interfaces to be used. The Sutherland High-speed Optical Cameras (SHOC) instruments incorporate an Andor electron-multiplying CCD camera, a GPS unit for accurate timing and a pair of filter wheels. We have applied the new architecture to the SHOC instruments, with the camera driver developed using Andor's software development kit. We have used this to develop an innovative web-based user-interface to the instrument.

  15. Development of RESTful services and map-based user interface tools for access and delivery of data and metadata from the Marine-Geo Digital Library

    NASA Astrophysics Data System (ADS)

    Morton, J. J.; Ferrini, V. L.

    2015-12-01

    The Marine Geoscience Data System (MGDS, www.marine-geo.org) operates an interactive digital data repository and metadata catalog that provides access to a variety of marine geology and geophysical data from throughout the global oceans. Its Marine-Geo Digital Library includes common marine geophysical data types and supporting data and metadata, as well as complementary long-tail data. The Digital Library also includes community data collections and custom data portals for the GeoPRISMS, MARGINS and Ridge2000 programs, for active source reflection data (Academic Seismic Portal), and for marine data acquired by the US Antarctic Program (Antarctic and Southern Ocean Data Portal). Ensuring that these data are discoverable not only through our own interfaces but also through standards-compliant web services is critical for enabling investigators to find data of interest.Over the past two years, MGDS has developed several new RESTful web services that enable programmatic access to metadata and data holdings. These web services are compliant with the EarthCube GeoWS Building Blocks specifications and are currently used to drive our own user interfaces. New web applications have also been deployed to provide a more intuitive user experience for searching, accessing and browsing metadata and data. Our new map-based search interface combines components of the Google Maps API with our web services for dynamic searching and exploration of geospatially constrained data sets. Direct introspection of nearly all data formats for hundreds of thousands of data files curated in the Marine-Geo Digital Library has allowed for precise geographic bounds, which allow geographic searches to an extent not previously possible. All MGDS map interfaces utilize the web services of the Global Multi-Resolution Topography (GMRT) synthesis for displaying global basemap imagery and for dynamically provide depth values at the cursor location.

  16. Background instrumental music and serial recall.

    PubMed

    Nittono, H

    1997-06-01

    Although speech and vocal music are consistently shown to impair serial recall for visually presented items, instrumental music does not always produce a significant disruption. This study investigated the features of instrumental music that would modulate the disruption in serial recall. 24 students were presented sequences of nine digits and required to recall the digits in order of presentation. Instrumental music as played either forward or backward during the task. Forward music caused significantly more disruption than did silence, whereas the reversed music did not. Some higher-order factor may be at work in the effect of background music on serial recall.

  17. Software Acquisition Manager’s Workstation (SAM/WS) System Design.

    DTIC Science & Technology

    1984-04-30

    3. Tactical Digital System Requirements ..................... 31General...pspc t14 3. Tactical Digital System Requirements pspc-tiS 3.1 General pspc-t16 3.2 Program Description pspc-t17 3.2.1 General...pspc-t22 3.3.2 Digital Processor Input/Output Utilization Table pspc t23 3.3.3 Digital Processor Interface Block Diagram pspc-t24 3.3.4 Program

  18. Digital hand-held temperature monitor

    NASA Astrophysics Data System (ADS)

    Allin, L. V.; Ferrari, I.

    1980-09-01

    A hand-held non-invasive monitoring instrument has been designed, constructed and tested to allow core temperature measurements to be obtained from human subjects who have swallowed a temperature-sensing radio transmitter (radio pill). This instrument uses a simple AM radio for a receiver, digital circuitry to decode the received signal and a four-digit LED module to display the temperature. The unit, which is battery-powered, can be held in one hand while an antenna probe is swept over the abdomen of the subject until a continuously audible signal is generated by a piezoelectric sound source, indicating reception. The digital display then presents the body core temperature in tenths of a degree Celsius.

  19. A Simple Instrument Designed to Provide Consistent Digital Facial Images in Dermatology

    PubMed Central

    Nirmal, Balakrishnan; Pai, Sathish B; Sripathi, Handattu

    2013-01-01

    Photography has proven to be a valuable tool in the field of dermatology. The major reason for poor photographs is the inability to produce comparable images in the subsequent follow ups. Combining digital photography with image processing software analysis brings consistency in tracking serial images. Digital photographs were taken with the aid of an instrument which we designed in our workshop to ensure that photographs were taken with identical patient positioning, camera angles and distance. It is of paramount importance in aesthetic dermatology to appreciate even subtle changes after each treatment session which can be achieved by taking consistent digital images. PMID:23723469

  20. A simple instrument designed to provide consistent digital facial images in dermatology.

    PubMed

    Nirmal, Balakrishnan; Pai, Sathish B; Sripathi, Handattu

    2013-05-01

    Photography has proven to be a valuable tool in the field of dermatology. The major reason for poor photographs is the inability to produce comparable images in the subsequent follow ups. Combining digital photography with image processing software analysis brings consistency in tracking serial images. Digital photographs were taken with the aid of an instrument which we designed in our workshop to ensure that photographs were taken with identical patient positioning, camera angles and distance. It is of paramount importance in aesthetic dermatology to appreciate even subtle changes after each treatment session which can be achieved by taking consistent digital images.

  1. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.

  2. A serial digital data communications device. [for real time flight simulation

    NASA Technical Reports Server (NTRS)

    Fetter, J. L.

    1977-01-01

    A general purpose computer peripheral device which is used to provide a full-duplex, serial, digital data transmission link between a Xerox Sigma computer and a wide variety of external equipment, including computers, terminals, and special purpose devices is reported. The interface has an extensive set of user defined options to assist the user in establishing the necessary data links. This report describes those options and other features of the serial communications interface and its performance by discussing its application to a particular problem.

  3. Lyceum: A Multi-Protocol Digital Library Gateway

    NASA Technical Reports Server (NTRS)

    Maa, Ming-Hokng; Nelson, Michael L.; Esler, Sandra L.

    1997-01-01

    Lyceum is a prototype scalable query gateway that provides a logically central interface to multi-protocol and physically distributed, digital libraries of scientific and technical information. Lyceum processes queries to multiple syntactically distinct search engines used by various distributed information servers from a single logically central interface without modification of the remote search engines. A working prototype (http://www.larc.nasa.gov/lyceum/) demonstrates the capabilities, potentials, and advantages of this type of meta-search engine by providing access to over 50 servers covering over 20 disciplines.

  4. A Temperature-Hardened Sensor Interface with a 12-Bit Digital Output Using a Novel Pulse Width Modulation Technique

    PubMed Central

    Badets, Franck; Nouet, Pascal; Masmoudi, Mohamed

    2018-01-01

    A fully integrated sensor interface for a wide operational temperature range is presented. It translates the sensor signal into a pulse width modulated (PWM) signal that is then converted into a 12-bit digital output. The sensor interface is based on a pair of injection locked oscillators used to implement a differential time-domain architecture with low sensitivity to temperature variations. A prototype has been fabricated using a 180 nm partially depleted silicon-on-insulator (SOI) technology. Experimental results demonstrate a thermal stability as low as 65 ppm/°C over a large temperature range from −20 °C up to 220 °C. PMID:29621171

  5. The instrument control unit of SPICA SAFARI: a macro-unit to host all the digital control functionalities of the spectrometer

    NASA Astrophysics Data System (ADS)

    Di Giorgio, Anna Maria; Biondi, David; Saggin, Bortolino; Shatalina, Irina; Viterbini, Maurizio; Giusi, Giovanni; Liu, Scige J.; Cerulli-Irelli, Paquale; Van Loon, Dennis; Cara, Christophe

    2012-09-01

    We present the preliminary design of the Instrument Control Unit (ICU) of the SpicA FAR infrared Instrument (SAFARI), an imaging Fourier Transform Spectrometer (FTS) designed to give continuous wavelength coverage in both photometric and spectroscopic modes from around 34 to 210 µm. Due to the stringent requirements in terms of mass and volume, the overall SAFARI warm electronics will be composed by only two main units: Detector Control Unit and ICU. ICU is therefore a macro-unit incorporating the four digital sub-units dedicated to the control of the overall instrument functionalities: the Cooler Control Unit, the Mechanism Control Unit, the Digital processing Unit and the Power Supply Unit. Both the mechanical solution adopted to host the four sub-units and the internal electrical architecture are presented as well as the adopted redundancy approach.

  6. Education in the Digital Age

    ERIC Educational Resources Information Center

    Thierstein, Joel

    2009-01-01

    Education is moving into the digital age. Pedagogies have changed to engage the latest digital technologies. The methods of distribution are now a blend between face-to-face and some other combination of virtual interfaces. The content is moving from traditional text-based learning to text-plus-multimedia. The community is now involved in the…

  7. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  8. Digital Intermediate Frequency Receiver Module For Use In Airborne Sar Applications

    DOEpatents

    Tise, Bertice L.; Dubbert, Dale F.

    2005-03-08

    A digital IF receiver (DRX) module directly compatible with advanced radar systems such as synthetic aperture radar (SAR) systems. The DRX can combine a 1 G-Sample/sec 8-bit ADC with high-speed digital signal processor, such as high gate-count FPGA technology or ASICs to realize a wideband IF receiver. DSP operations implemented in the DRX can include quadrature demodulation and multi-rate, variable-bandwidth IF filtering. Pulse-to-pulse (Doppler domain) filtering can also be implemented in the form of a presummer (accumulator) and an azimuth prefilter. An out of band noise source can be employed to provide a dither signal to the ADC, and later be removed by digital signal processing. Both the range and Doppler domain filtering operations can be implemented using a unique pane architecture which allows on-the-fly selection of the filter decimation factor, and hence, the filter bandwidth. The DRX module can include a standard VME-64 interface for control, status, and programming. An interface can provide phase history data to the real-time image formation processors. A third front-panel data port (FPDP) interface can send wide bandwidth, raw phase histories to a real-time phase history recorder for ground processing.

  9. Research and realization of signal simulation on virtual instrument

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; He, Wenting; Guan, Xiumei

    2010-02-01

    In the engineering project, arbitrary waveform generator controlled by software interface is needed by simulation and test. This article discussed the program using the SCPI (Standard Commands For Programmable Instruments) protocol and the VISA (Virtual Instrument System Architecture) library to control the Agilent signal generator (Agilent N5182A) by instrument communication over the LAN interface. The program can conduct several signal generations such as CW (continuous wave), AM (amplitude modulation), FM (frequency modulation), ΦM (phase modulation), Sweep. As the result, the program system has good operability and portability.

  10. Stroboscope Controller for Imaging Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Jensen, Scott; Marmie, John; Mai, Nghia

    2004-01-01

    A versatile electronic timing-and-control unit, denoted a rotorcraft strobe controller, has been developed for use in controlling stroboscopes, lasers, video cameras, and other instruments for capturing still images of rotating machine parts especially helicopter rotors. This unit is designed to be compatible with a variety of sources of input shaftangle or timing signals and to be capable of generating a variety of output signals suitable for triggering instruments characterized by different input-signal specifications. It is also designed to be flexible and reconfigurable in that it can be modified and updated through changes in its control software, without need to change its hardware. Figure 1 is a block diagram of the rotorcraft strobe controller. The control processor is a high-density complementary metal oxide semiconductor, singlechip 8-bit microcontroller. It is connected to a 32K x 8 nonvolatile static random-access memory (RAM) module. Also connected to the control processor is a 32K 8 electrically programmable read-only-memory (EPROM) module, which is used to store the control software. Digital logic support circuitry is implemented in a field-programmable gate array (FPGA). A 240 x 128-dot, 40- character 16-line liquid-crystal display (LCD) module serves as a graphical user interface; the user provides input through a 16-key keypad mounted next to the LCD. A 12-bit digital-to-analog converter (DAC) generates a 0-to-10-V ramp output signal used as part of a rotor-blade monitoring system, while the control processor generates all the appropriate strobing signals. Optocouplers are used to isolate all input and output digital signals, and optoisolators are used to isolate all analog signals. The unit is designed to fit inside a 19-in. (.48-cm) rack-mount enclosure. Electronic components are mounted on a custom printed-circuit board (see Figure 2). Two power-conversion modules on the printedcircuit board convert AC power to +5 VDC and 15 VDC, respectively.

  11. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1996

    1996-01-01

    Includes abstracts of special interest group (SIG) sessions. Highlights include digital imagery; text summarization; browsing; digital libraries; icons and the Web; information management; curricula planning; interfaces; information systems; theories; scholarly and scientific communication; global development; archives; document delivery;…

  12. Applications of Digital Micromirror Devices to Astronomical Instrumentation

    NASA Astrophysics Data System (ADS)

    Robberto, M.

    MEMS devices are among the major technological breakthroughs of the last two decades. Besides finding widespread use in high-tech and consumer market electronics, MEMS enable new types of astronomical instruments. I concentrate on Digital Micromirror Devices, which have been already adopted in astronomy and can enable scientific investigations that would otherwise remain beyond our technical capabilities.

  13. A Comparative Study of the Precision of Carstens and Northern Digital Instruments Electromagnetic Articulographs

    ERIC Educational Resources Information Center

    Savariaux, Christophe; Badin, Pierre; Samson, Adeline; Gerber, Silvain

    2017-01-01

    Purpose: This study compares the precision of the electromagnetic articulographs used in speech research: Northern Digital Instruments' Wave and Carstens' AG200, AG500, and AG501 systems. Method: The fluctuation of distances between 3 pairs of sensors attached to a manually rotated device that can position them inside the measurement volumes was…

  14. Challenge '89: Interfacing of Chemical Instruments to Computers.

    ERIC Educational Resources Information Center

    Lyons, Jim; Lamarre, Colin

    This project involved interfacing of microcomputers with three chemical instruments--Nuclear Magnetic Resonance (NMR), Infrared Spectroscopy (IR), and the spectrophotometer. A Pascal program called "Spectrum" allows data from the NMR to be read and graphed, a specific area of the graph zoomed, ratios of specified areas of the graph…

  15. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  16. The Ocean Observatories Initiative: Unprecedented access to real-time data streaming from the Cabled Array through OOI Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Knuth, F.; Vardaro, M.; Belabbassi, L.; Smith, M. J.; Garzio, L. M.; Crowley, M. F.; Kerfoot, J.; Kawka, O. E.

    2016-02-01

    The National Science Foundation's Ocean Observatories Initiative (OOI), is a broad-scale, multidisciplinary facility that will transform oceanographic research by providing users with unprecedented access to long-term datasets from a variety of deployed physical, chemical, biological, and geological sensors. The Cabled Array component of the OOI, installed and operated by the University of Washington, is located on the Juan de Fuca tectonic plate off the coast of Oregon. It is a unique network of >100 cabled instruments and instrumented moorings transmitting data to shore in real-time via fiber optic technology. Instruments now installed include HD video and digital still cameras, mass spectrometers, a resistivity-temperature probe inside the orifice of a high-temperature hydrothermal vent, upward-looking ADCP's, pH and pC02 sensors, Horizontal Electrometer Pressure Inverted Echosounders and many others. Here, we present the technical aspects of data streaming from the Cabled Array through the OOI Cyberinfrastructure. We illustrate the types of instruments and data products available, data volume and density, processing levels and algorithms used, data delivery methods, file formats and access methods through the graphical user interface. Our goal is to facilitate the use and access to these unprecedented, co-registered oceanographic datasets. We encourage researchers to collaborate through the use of these simultaneous, interdisciplinary measurements, in the exploration of short-lived events (tectonic, volcanic, biological, severe storms), as well as long-term trends in ocean systems (circulation patterns, climate change, ocean acidity, ecosystem shifts).

  17. The Vocal Tract Organ: A New Musical Instrument Using 3-D Printed Vocal Tracts.

    PubMed

    Howard, David M

    2017-10-27

    The advent and now increasingly widespread availability of 3-D printers is transforming our understanding of the natural world by enabling observations to be made in a tangible manner. This paper describes the use of 3-D printed models of the vocal tract for different vowels that are used to create an acoustic output when stimulated with an appropriate sound source in a new musical instrument: the Vocal Tract Organ. The shape of each printed vocal tract is recovered from magnetic resonance imaging. It sits atop a loudspeaker to which is provided an acoustic L-F model larynx input signal that is controlled by the notes played on a musical instrument digital interface device such as a keyboard. The larynx input is subject to vibrato with extent and frequency adjustable as desired within the ranges usually found for human singing. Polyphonic inputs for choral singing textures can be applied via a single loudspeaker and vocal tract, invoking the approximation of linearity in the voice production system, thereby making multiple vowel stops a possibility while keeping the complexity of the instrument in reasonable check. The Vocal Tract Organ offers a much more human and natural sounding result than the traditional Vox Humana stops found in larger pipe organs, offering the possibility of enhancing pipe organs of the future as well as becoming the basis for a "multi-vowel" chamber organ in its own right. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. The Mars mapper science and mission planning tool

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.

    1993-01-01

    The Mars Mapper Program (MOm) is an interactive tool for science and mission design developed for the Mars Observer Mission (MO). MOm is a function of the Planning and Sequencing Element of the MO Ground Data System. The primary users of MOm are members of the science and mission planning teams. Using MOm, the user can display digital maps of Mars in various projections and resolutions ranging from 1 to 256 pixels per degree squared. The user can overlay the maps with ground tracks of the MO spacecraft (S/C) and footprints and swaths of the various instruments on-board the S/C. Orbital and instrument geometric parameters can be computed on demand and displayed on the digital map or plotted in XY-plots. The parameter data can also be saved into files for other uses. MOm is divided into 3 major processes: Generator, Mapper, Plotter. The Generator Process is the main control which spawns all other processes. The processes communicate via sockets. At any one time, only 1 copy of MOm may operate on the system. However, up to 5 copies of each of the major processes may be invoked from the Generator. MOm is developed on the Sun SPARCStation 2GX with menu driven graphical user interface (GUI). The map window and its overlays are mouse-sensitized to permit on-demand calculations of various parameters along an orbit. The program is currently under testing and will be delivered to the MO Mission System Configuration Management for distribution to the MO community in 3/93.

  19. EnergyPlus Graphical User Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2011-01-04

    LBNL, Infosys Technologies and Digital Alchemy are developing a free, comprehensive graphical user interface (GUI) that will enable EnergyPlus to be used more easily and effectively by building designers and other professionals, facilitating its widespread adoption. User requirements have been defined through a series of practitioner workshops. A new schematic editor for HVAC systems will be combined with different building envelope geometry generation tools and IFC-based BIM import and export. LBNL and Digital Alchemy have generated a detailed function requirements specification, which is being implemented in software by Infosys, LBNL and and Digital Alchemy. LBNL and practitioner subcontractors will developmore » a comprehensive set of templates and libraries and will perform extensive testing of the GUI before it is released in Q3 2011. It is planned to use an Open Platfom approach, in which a comprehensive set of well documented Application Programming Interfaces (API's) would be provided to facilitate both the development of third party contributions to the official, standard GUI and the development of derivative works.« less

  20. The interactive digital video interface

    NASA Technical Reports Server (NTRS)

    Doyle, Michael D.

    1989-01-01

    A frequent complaint in the computer oriented trade journals is that current hardware technology is progressing so quickly that software developers cannot keep up. A example of this phenomenon can be seen in the field of microcomputer graphics. To exploit the advantages of new mechanisms of information storage and retrieval, new approaches must be made towards incorporating existing programs as well as developing entirely new applications. A particular area of need is the correlation of discrete image elements to textural information. The interactive digital video (IDV) interface embodies a new concept in software design which addresses these needs. The IDV interface is a patented device and language independent process for identifying image features on a digital video display and which allows a number of different processes to be keyed to that identification. Its capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. Sophisticated interrelationships can be set up between images, text, and program control mechanisms.

  1. SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Primiani, Rurik A.; Young, Kenneth H.; Young, André; Patel, Nimesh; Wilson, Robert W.; Vertatschitsch, Laura; Chitwood, Billie B.; Srinivasan, Ranjani; MacMahon, David; Weintroub, Jonathan

    2016-03-01

    A 32GHz bandwidth VLBI capable correlator and phased array has been designed and deployeda at the Smithsonian Astrophysical Observatory’s Submillimeter Array (SMA). The SMA Wideband Astronomical ROACH2 Machine (SWARM) integrates two instruments: a correlator with 140kHz spectral resolution across its full 32GHz band, used for connected interferometric observations, and a phased array summer used when the SMA participates as a station in the Event Horizon Telescope (EHT) very long baseline interferometry (VLBI) array. For each SWARM quadrant, Reconfigurable Open Architecture Computing Hardware (ROACH2) units shared under open-source from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) are equipped with a pair of ultra-fast analog-to-digital converters (ADCs), a field programmable gate array (FPGA) processor, and eight 10 Gigabit Ethernet (GbE) ports. A VLBI data recorder interface designated the SWARM digital back end, or SDBE, is implemented with a ninth ROACH2 per quadrant, feeding four Mark6 VLBI recorders with an aggregate recording rate of 64 Gbps. This paper describes the design and implementation of SWARM, as well as its deployment at SMA with reference to verification and science data.

  2. Do Gestural Interfaces Promote Thinking? Embodied Interaction: Congruent Gestures and Direct Touch Promote Performance in Math

    ERIC Educational Resources Information Center

    Segal, Ayelet

    2011-01-01

    Can action support cognition? Can direct touch support performance? Embodied interaction involving digital devices is based on the theory of grounded cognition. Embodied interaction with gestural interfaces involves more of our senses than traditional (mouse-based) interfaces, and in particular includes direct touch and physical movement, which…

  3. Annotations and the Collaborative Digital Library: Effects of an Aligned Annotation Interface on Student Argumentation and Reading Strategies

    ERIC Educational Resources Information Center

    Wolfe, Joanna

    2008-01-01

    Recent research on annotation interfaces provides provocative evidence that anchored, annotation-based discussion environments may lead to better conversations about a text. However, annotation interfaces raise complicated tradeoffs regarding screen real estate and positioning. It is argued that solving this screen real estate problem requires…

  4. A computer program for obtaining airplane configuration plots from digital Datcom input data

    NASA Technical Reports Server (NTRS)

    Roy, M. L.; Sliwa, S. M.

    1983-01-01

    A computer program is described which reads the input file for the Stability and Control Digital Datcom program and generates plots from the aircraft configuration data. These plots can be used to verify the geometric input data to the Digital Datcom program. The program described interfaces with utilities available for plotting aircraft configurations by creating a file from the Digital Datcom input data.

  5. Overview of GSE as a multifunctional GUI

    NASA Astrophysics Data System (ADS)

    Kurtovich, Boyan; Malangone, Fabio; Voss, David L.; Carssow, Douglas B.; Fritz, Theodore A.; Mavretic, Anton

    2009-08-01

    Ground Support Equipment (GSE) [1] is a versatile and multifunctional graphical user interface (GUI) and a software/hardware platform. It is a custom-designed system executed in the LabVIEW programming language to serve as an instrument health monitor for the Loss Cone Imager (LCI) satellite project. GSE mimics the behavior of the onboard Experiment Computer System (ECS). Its functions comprise the measurement of voltage, current, and power, as well as acting as a safety mechanism in case of any anomalous condition (e.g., over-current and/or over-voltage situation). Individual log files record the sessions during which data is gathered and analyzed. Safety/warning alarm flags shall be 'visible' from any individual window/tab. Analog-to-Digital Conversion (ADC) particle group measurements will be displayed on six individual panels. GSE will be supplemented with a comprehensive user's manual for added clarity.

  6. Polyplanar optical display

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard

    1997-07-01

    The polyplanar optical display (POD) is a unique display screen which can be use with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser as its optical source. In order to produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the electronic interfacing to the DLP chip, the opto-mechanical design and viewing angle characteristics.

  7. Design of an Intelligent Front-End Signal Conditioning Circuit for IR Sensors

    NASA Astrophysics Data System (ADS)

    de Arcas, G.; Ruiz, M.; Lopez, J. M.; Gutierrez, R.; Villamayor, V.; Gomez, L.; Montojo, Mª. T.

    2008-02-01

    This paper presents the design of an intelligent front-end signal conditioning system for IR sensors. The system has been developed as an interface between a PbSe IR sensor matrix and a TMS320C67x digital signal processor. The system architecture ensures its scalability so it can be used for sensors with different matrix sizes. It includes an integrator based signal conditioning circuit, a data acquisition converter block, and a FPGA based advanced control block that permits including high level image preprocessing routines such as faulty pixel detection and sensor calibration in the signal conditioning front-end. During the design phase virtual instrumentation technologies proved to be a very valuable tool for prototyping when choosing the best A/D converter type for the application. Development time was significantly reduced due to the use of this technology.

  8. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in south kalimantan, indonesia

    NASA Astrophysics Data System (ADS)

    Sugriwan, I.; Soesanto, O.

    2017-05-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm3. TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation VRL = 0.561 ln n - 2.2641 volt, with n is a various concentrations and VRL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the measurement. The result of data acquisition saved on excels and database format.

  9. Telescience Testbed Program: A study of software for SIRTF instrument control

    NASA Technical Reports Server (NTRS)

    Young, Erick T.

    1992-01-01

    As a continued element in the Telescience Testbed Program (TTP), the University of Arizona Steward Observatory and the Electrical and Computer Engineering Department (ECE) jointly developed a testbed to evaluate the Operations and Science Instrument System (OASIS) software package for remote control of an instrument for the Space Infrared Telescope Facility (SIRTF). SIRTF is a cryogenically-cooled telescope with three focal plane instruments that will be the infrared element of NASA's Great Observatory series. The anticipated launch date for SIRTF is currently 2001. Because of the complexity of the SIRTF mission, it was not expected that the OASIS package would be suitable for instrument control in the flight situation, however, its possible use as a common interface during the early development and ground test phases of the project was considered. The OASIS package, developed at the University of Colorado for control of the Solar Mesosphere Explorer (SME) satellite, serves as an interface between the operator and the remote instrument which is connected via a network. OASIS provides a rudimentary windowing system as well as support for standard spacecraft communications protocols. The experiment performed all of the functions required of the MIPS simulation program. Remote control of the instrument was demonstrated but found to be inappropriate for SIRTF at this time for the following reasons: (1) programming interface is too difficult; (2) significant computer resources were required to run OASIS; (3) the communications interface is too complicated; (4) response time was slow; and (5) quicklook of image data was not possible.

  10. Arc-An OAI Service Provider for Digital Library Federation; Kepler-An OAI Data/Service Provider for the Individual; Information Objects and Rights Management: A Mediation-Based Approach to DRM Interoperability; Automated Name Authority Control and Enhanced Searching in the Levy Collection; Renardus Project Developments and the Wider Digital Library Context.

    ERIC Educational Resources Information Center

    Liu, Xiaoming; Maly, Kurt; Zubair, Mohammad; Nelson, Michael L.; Erickson, John S.; DiLauro, Tim; Choudhury, G. Sayeed; Patton, Mark; Warner, James W.; Brown, Elizabeth W.; Heery, Rachel; Carpenter, Leona; Day, Michael

    2001-01-01

    Includes five articles that discuss the OAI (Open Archive Initiative), an interface between data providers and service providers; information objects and digital rights management interoperability; digitizing library collections, including automated name authority control, metadata, and text searching engines; and building digital library services…

  11. Development of a Digital-Based Instrument to Assess Perceived Motor Competence in Children: Face Validity, Test-Retest Reliability, and Internal Consistency

    PubMed Central

    Palmer, Kara K.

    2017-01-01

    Assessing children’s perceptions of their movement abilities (i.e., perceived competence) is traditionally done using picture scales—Pictorial Scale of Perceived Competence and Acceptance for Young Children or Pictorial Scale of Perceived Movement Skill Competence. Pictures fail to capture the temporal components of movement. To address this limitation, we created a digital-based instrument to assess perceived motor competence: the Digital Scale of Perceived Motor Competence. The purpose of this study was to determine the validity, reliability, and internal consistency of the Digital-based Scale of Perceived Motor Skill Competence. The Digital-based Scale of Perceived Motor Skill Competence is based on the twelve fundamental motor skills from the Test of Gross Motor Development-2nd Edition with a similar layout and item structure as the Pictorial Scale of Perceived Movement Skill Competence. Face Validity of the instrument was examined in Phase I (n = 56; Mage = 8.6 ± 0.7 years, 26 girls). Test-retest reliability and internal consistency were assessed in Phase II (n = 54, Mage = 8.7 years ± 0.5 years, 26 girls). Intra-class correlations (ICC) and Cronbach’s alpha were conducted to determine test-retest reliability and internal consistency for all twelve skills along with locomotor and object control subscales. The Digital Scale of Perceived Motor Competence demonstrates excellent test-retest reliability (ICC = 0.83, total; ICC = 0.77, locomotor; ICC = 0.79, object control) and acceptable/good internal consistency (α = 0.62, total; α = 0.57, locomotor; α = 0.49, object control). Findings provide evidence of the reliability of the three level digital-based instrument of perceived motor competence for older children. PMID:29910408

  12. Remotely accessible laboratory for MEMS testing

    NASA Astrophysics Data System (ADS)

    Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.

    2010-02-01

    We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.

  13. SAFARI digital processing unit: performance analysis of the SpaceWire links in case of a LEON3-FT based CPU

    NASA Astrophysics Data System (ADS)

    Giusi, Giovanni; Liu, Scige J.; Di Giorgio, Anna M.; Galli, Emanuele; Pezzuto, Stefano; Farina, Maria; Spinoglio, Luigi

    2014-08-01

    SAFARI (SpicA FAR infrared Instrument) is a far-infrared imaging Fourier Transform Spectrometer for the SPICA mission. The Digital Processing Unit (DPU) of the instrument implements the functions of controlling the overall instrument and implementing the science data compression and packing. The DPU design is based on the use of a LEON family processor. In SAFARI, all instrument components are connected to the central DPU via SpaceWire links. On these links science data, housekeeping and commands flows are in some cases multiplexed, therefore the interface control shall be able to cope with variable throughput needs. The effective data transfer workload can be an issue for the overall system performances and becomes a critical parameter for the on-board software design, both at application layer level and at lower, and more HW related, levels. To analyze the system behavior in presence of the expected SAFARI demanding science data flow, we carried out a series of performance tests using the standard GR-CPCI-UT699 LEON3-FT Development Board, provided by Aeroflex/Gaisler, connected to the emulator of the SAFARI science data links, in a point-to-point topology. Two different communication protocols have been used in the tests, the ECSS-E-ST-50-52C RMAP protocol and an internally defined one, the SAFARI internal data handling protocol. An incremental approach has been adopted to measure the system performances at different levels of the communication protocol complexity. In all cases the performance has been evaluated by measuring the CPU workload and the bus latencies. The tests have been executed initially in a custom low level execution environment and finally using the Real- Time Executive for Multiprocessor Systems (RTEMS), which has been selected as the operating system to be used onboard SAFARI. The preliminary results of the carried out performance analysis confirmed the possibility of using a LEON3 CPU processor in the SAFARI DPU, but pointed out, in agreement with previous similar studies, the need of carefully designing the overall architecture to implement some of the DPU functionalities on additional processing devices.

  14. Binocular optical axis parallelism detection precision analysis based on Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Ying, Jiaju; Liu, Bingqi

    2018-02-01

    According to the working principle of the binocular photoelectric instrument optical axis parallelism digital calibration instrument, and in view of all components of the instrument, the various factors affect the system precision is analyzed, and then precision analysis model is established. Based on the error distribution, Monte Carlo method is used to analyze the relationship between the comprehensive error and the change of the center coordinate of the circle target image. The method can further guide the error distribution, optimize control the factors which have greater influence on the comprehensive error, and improve the measurement accuracy of the optical axis parallelism digital calibration instrument.

  15. Three common faults in current practice that influence the validity of data obtained from electronic air pollution instrumentation.

    PubMed

    Dowd, G; Thomas, R S; Monkman, J L

    1975-01-01

    Instrumental development is now entering a more logical era, where the former artistic character of electronics is being replaced by cold technology. Because of this, one should be expect more reliability; however, there still exist many weak links in practical application. Digital readout systems and computer processing induce a false sense of security. In reality, it is the sample-measurement relationship that determines an instrument's credibility and not the number of digits on its meter. In describing three faulty practices that greatly influence an instrument's performance, it is hoped that measurement may be more closely related to the sample!

  16. PATRON: Using a Multimedia Digital Library for Learning and Teaching in the Performing Arts.

    ERIC Educational Resources Information Center

    Lyon, Elizabeth

    The creation and application of a multimedia digital library to support learning and teaching in the performing arts is described. PATRON (Performing Arts Teaching Resources Online) delivers audio, video, music scores, dance notation, and theater scripts to the desktop via an innovative Web-based interface. Digital objects are linked subjectively…

  17. Friction characteristics of trocars in laparoscopic surgery.

    PubMed

    Alazmani, Ali; Roshan, Rupesh; Jayne, David G; Neville, Anne; Culmer, Peter

    2015-04-01

    This article investigates the friction characteristics of the instrument-trocar interface in laparoscopic surgery for varying linear instrument velocities, trocar seal design and material, and trocar tilt. Furthermore, the effect of applying lubrication at the instrument-trocar seal interface on friction was studied. A friction testing apparatus was designed and built to characterise the resistance force at the instrument-trocar interface as a function of the instrument's linear movement in the 12-mm trocar (at constant velocity) for different design, seal material, and angle of tilt. The resistance force depended on the trocar seal design and material properties, specifically surface roughness, elasticity, hardness, the direction of movement, and the instrument linear velocity, and varied between 0.25 and 8 N. Lubricating the shaft with silicone oil reduced the peak resistance force by 75% for all trocars and eliminated the stick-slip phenomenon evident in non-lubricated cases. The magnitude of fluctuation in resistance force depends on the trocar design and is attributed to stick-slip of the sealing mechanism and is generally higher during retraction in comparison to insertion. Trocars that have an inlet seal made of rubber/polyurethane showed higher resistance forces during retraction. Use of a lubricant significantly reduced frictional effects. Comparisons of the investigated trocars indicate that a low friction port, providing the surgeon with improved haptic feedback, can be designed by improving the tribological properties of the trocar seal interface. © IMechE 2015.

  18. Medical instrument data exchange.

    PubMed

    Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M

    2008-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.

  19. Common modeling system for digital simulation

    NASA Technical Reports Server (NTRS)

    Painter, Rick

    1994-01-01

    The Joint Modeling and Simulation System is a tri-service investigation into a common modeling framework for the development digital models. The basis for the success of this framework is an X-window-based, open systems architecture, object-based/oriented methodology, standard interface approach to digital model construction, configuration, execution, and post processing. For years Department of Defense (DOD) agencies have produced various weapon systems/technologies and typically digital representations of the systems/technologies. These digital representations (models) have also been developed for other reasons such as studies and analysis, Cost Effectiveness Analysis (COEA) tradeoffs, etc. Unfortunately, there have been no Modeling and Simulation (M&S) standards, guidelines, or efforts towards commonality in DOD M&S. The typical scenario is an organization hires a contractor to build hardware and in doing so an digital model may be constructed. Until recently, this model was not even obtained by the organization. Even if it was procured, it was on a unique platform, in a unique language, with unique interfaces, and, with the result being UNIQUE maintenance required. Additionally, the constructors of the model expended more effort in writing the 'infrastructure' of the model/simulation (e.g. user interface, database/database management system, data journalizing/archiving, graphical presentations, environment characteristics, other components in the simulation, etc.) than in producing the model of the desired system. Other side effects include: duplication of efforts; varying assumptions; lack of credibility/validation; and decentralization in policy and execution. J-MASS provides the infrastructure, standards, toolset, and architecture to permit M&S developers and analysts to concentrate on the their area of interest.

  20. Analysis on detection accuracy of binocular photoelectric instrument optical axis parallelism digital calibration instrument

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Yin, Jian-ling; Wu, Dong-sheng; Liu, Jie; Chen, Yu-dan

    2017-11-01

    Low-light level night vision device and thermal infrared imaging binocular photoelectric instrument are used widely. The maladjustment of binocular instrument ocular axises parallelism will cause the observer the symptom such as dizziness, nausea, when use for a long time. Binocular photoelectric equipment digital calibration instrument is developed for detecting ocular axises parallelism. And the quantitative value of optical axis deviation can be quantitatively measured. As a testing instrument, the precision must be much higher than the standard of test instrument. Analyzes the factors that influence the accuracy of detection. Factors exist in each testing process link which affect the precision of the detecting instrument. They can be divided into two categories, one category is factors which directly affect the position of reticle image, the other category is factors which affect the calculation the center of reticle image. And the Synthesize error is calculated out. And further distribute the errors reasonably to ensure the accuracy of calibration instruments.

  1. YF-12 cooperative airframe/propulsion control system program, volume 1

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Connolly, G. F.; Mauro, F. M.; Reukauf, P. J.; Marks, R. (Editor)

    1980-01-01

    Several YF-12C airplane analog control systems were converted to a digital system. Included were the air data computer, autopilot, inlet control system, and autothrottle systems. This conversion was performed to allow assessment of digital technology applications to supersonic cruise aircraft. The digital system was composed of a digital computer and specialized interface unit. A large scale mathematical simulation of the airplane was used for integration testing and software checkout.

  2. Digital Sensor Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Quinn; Jerry Mauck; Richard Bockhorst

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  3. In situ measurements of thunderstorm electrical properties

    NASA Technical Reports Server (NTRS)

    Marshall, T. C.

    1982-01-01

    An airplane sensor to measure the charge, size and two dimensional shape of precipitation particles and large cloud particles was developed. The basic design of the instrument includes: the transducers and analog electronics, the analog to digital conversion electronics and a microprocessor based system to run the electronics and load the digital data onto magnetic tape. Prototype instrumentation for the proposed lightning mapper satellite was tested by flying it in a U-2 aircraft over severe storms in Oklahoma. Flight data are compared to data from ground based instruments.

  4. 47 CFR 76.1903 - Interfaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interfaces. 76.1903 Section 76.1903 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... through any analog or digital output authorized or permitted under license, law or regulation governing...

  5. Demonstrating DREAM: A Digital Resource Exchange about Music

    ERIC Educational Resources Information Center

    Upitis, Rena; Boese, Karen; Abrami, Philip C.

    2015-01-01

    The Digital Resource Exchange About Music (DREAM) is an online tool for exchanging information about digital learning tools for music education. DREAM was designed by our team to encourage music teachers to learn about digital resources related to learning to play a musical instrument, both in classroom and independent music studio settings. In…

  6. Engaging Violent Words: Prophetic Ministry in Digital Discourses

    ERIC Educational Resources Information Center

    Zsupan-Jerome, Daniella

    2017-01-01

    Faith-based engagement with digital culture calls communities of faith beyond an instrumental use of apps, gadgets, and platforms. Rather, engaging in digital culture calls for prophetic engagement that seeks to communicate truth and offer hope in and through digital communication. One salient area for such prophetic engagement is the reality of…

  7. Acquisition de donnees a haute resolution et faible latence dediee aux capteurs avioniques de position

    NASA Astrophysics Data System (ADS)

    Koubaa, Zied

    The communication network and the detection mechanisms are two critical systems in a plane. Their performance has a direct impact on aircrafts. This is of particular interest for avionics designers, who have increasingly invested more and more in the development of these elements. As a part of a project in this domain, we introduce the design and the development of a smart interface for position sensors dedicated to flights (Smart Sensor Interface - SSI). This interface will serve to connect sensors of different technologies (electromagnetic, optical and MEMS) to the new communication network, AFDX. The role of this interface is to generate an appropriate excitation signal for certain types of sensors (R/LVDT), and to treat, demodulate, and digitize their output signals. The proposed interface is thus composed of a Signal Acquisition Path (SAP) and an Excitation Signal Generation (ESG). By adopting the Integrated Modular Avionics architecture (IMA), we can minimize the size of the classic interface, reduce its energy consumption and improve its reliability and its performance. The focus of our design is particularly on the Data Acquisition Path (DAP). An Architecture characterized by a high resolution (14 bits) and a low latency (1.2 ms) of this module is introduced and developed in this prestigious work. This architecture was developed after a wellconducted study of existing solutions found in literature work and a detailed analysis of the problems arise in the design and implementation of this system (DAP). The conversion of the sensor signal into a digital signal is the most important step in acquiring data, as it sets the resolution of the acquired information and generates the majority of its latency. This module can also affect the reliability and stability of the system. Among different models and architectures, the Delta-Sigma analog-to-digital converter (ADC) is preferred for this application (for better resolution). This converter is formed by an analog circuit (modulator) followed by digital filters. The complexity of the implementation, the processing delay and the output resolution are all susceptible to change depending on the architecture of these filters. Thus, the main problem while designing such a system arises in the opposing evolution of the resolution and latency parameters; the improvement or evolution of one, results in the destruction of the other. Therefore, our work aims to provide one or more method to optimize the latency caused by the CAN while maintaining the same resolution of the desired data (14 bits). This optimization takes into account the objective of integrating the DAP in modules of small size and low power consumption. This proposed solution was implemented in order to validate the design of the conception of the interface. We are also interested to achieve the proposed solution and validate our design. The obtained results will be evaluated after following the manufacturing strategy. The data acquisition unit is made up of two electronic components. The first component is an integrated circuit, which uses CMOS 0.13mum IBM technology and contains the analog part of CAN (SigmaDelta modulator). The second component is a Virtex-6 FPGA, which allows one to acquire the necessary digital processing required for the acquisition and conversion of the sensor signal. In the final version of the interface, our analog portion will be integrated with the analog portion of GSE in the same chip. The integrated digital logic in the (FPGA) role will thus provide digital data to the ESG module in order to generate the excitation signal.

  8. A programmable microsystem using system-on-chip for real-time biotelemetry.

    PubMed

    Wang, Lei; Johannessen, Erik A; Hammond, Paul A; Cui, Li; Reid, Stuart W J; Cooper, Jonathan M; Cumming, David R S

    2005-07-01

    A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm x 5 mm silicon chip using a 0.6 microm, 3.3 V CMOS process. Undesirable signal coupling between circuit components has been investigated and current injection into sensitive instrumentation nodes was minimized by careful floor-planning. The chip, the sensors, a magnetic induction-based transmitter and two silver oxide cells were packaged into a 36 mm x 12 mm capsule format. A base station was built in order to retrieve the data from the microsystem in real-time. The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10(-3) using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power.

  9. Instruments and methods acoustic televiewer logging in glacier boreholes

    USGS Publications Warehouse

    Morin, R.H.; Descamps, G.E.; Cecil, L.D.

    2000-01-01

    The acoustic televiewer is a geophysical logging instrument that is deployed in a water-filled borehole and operated while trolling. It generates a digital, magnetically oriented image of the borehole wall that is developed from the amplitudes and transit times of acoustic waves emitted from the tool and reflected at the water-wall interface. The transit-time data are also converted to radial distances, from which cross-sectional views of the borehole shape can be constructed. Because the televiewer is equipped with both a three-component magnetometer and a two-component inclinometer, the borehole's trajectory in space is continuously recorded as well. This instrument is routinely used in mining and hydrogeologic applications, but in this investigation it was deployed in two boreholes drilled into Upper Fremont Glacier, Wyoming, U.S.A. The acoustic images recorded in this glacial setting are not as clear as those typically obtained in rocks, due to a lower reflection coefficient for water and ice than for water and rock. Results indicate that the depth and orientation of features intersecting the boreholes can be determined, but that interpreting their physical nature is problematic and requires corroborating information from inspection of cores. Nevertheless, these data can provide some insight into englacial structural characteristics. Additional information derived from the cross-sectional geometry of the borehole, as well as from its trajectory, may also be useful in studies concerned with stress patterns and deformation processes.

  10. Detector Control and Data Acquisition for the Wide-Field Infrared Survey Telescope (WFIRST) with a Custom ASIC

    NASA Technical Reports Server (NTRS)

    Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; hide

    2016-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  11. Interface Provides Standard-Bus Communication

    NASA Technical Reports Server (NTRS)

    Culliton, William G.

    1995-01-01

    Microprocessor-controlled interface (IEEE-488/LVABI) incorporates service-request and direct-memory-access features. Is circuit card enabling digital communication between system called "laser auto-covariance buffer interface" (LVABI) and compatible personal computer via general-purpose interface bus (GPIB) conforming to Institute for Electrical and Electronics Engineers (IEEE) Standard 488. Interface serves as second interface enabling first interface to exploit advantages of GPIB, via utility software written specifically for GPIB. Advantages include compatibility with multitasking and support of communication among multiple computers. Basic concept also applied in designing interfaces for circuits other than LVABI for unidirectional or bidirectional handling of parallel data up to 16 bits wide.

  12. Development of an imaging method for quantifying a large digital PCR droplet

    NASA Astrophysics Data System (ADS)

    Huang, Jen-Yu; Lee, Shu-Sheng; Hsu, Yu-Hsiang

    2017-02-01

    Portable devices have been recognized as the future linkage between end-users and lab-on-a-chip devices. It has a user friendly interface and provides apps to interface headphones, cameras, and communication duct, etc. In particular, the digital resolution of cameras installed in smartphones or pads already has a high imaging resolution with a high number of pixels. This unique feature has triggered researches to integrate optical fixtures with smartphone to provide microscopic imaging capabilities. In this paper, we report our study on developing a portable diagnostic tool based on the imaging system of a smartphone and a digital PCR biochip. A computational algorithm is developed to processing optical images taken from a digital PCR biochip with a smartphone in a black box. Each reaction droplet is recorded in pixels and is analyzed in a sRGB (red, green, and blue) color space. Multistep filtering algorithm and auto-threshold algorithm are adopted to minimize background noise contributed from ccd cameras and rule out false positive droplets, respectively. Finally, a size-filtering method is applied to identify the number of positive droplets to quantify target's concentration. Statistical analysis is then performed for diagnostic purpose. This process can be integrated in an app and can provide a user friendly interface without professional training.

  13. Artifacts Of Spectral Analysis Of Instrument Readings

    NASA Technical Reports Server (NTRS)

    Wise, James H.

    1995-01-01

    Report presents experimental and theoretical study of some of artifacts introduced by processing outputs of two nominally identical low-frequency-reading instruments; high-sensitivity servo-accelerometers mounted together and operating, in conjunction with signal-conditioning circuits, as seismometers. Processing involved analog-to-digital conversion with anti-aliasing filtering, followed by digital processing including frequency weighting and computation of different measures of power spectral density (PSD).

  14. Project SUN (Students Understanding Nature)

    NASA Technical Reports Server (NTRS)

    Curley, T.; Yanow, G.

    1995-01-01

    Project SUN is part of NASA's 'Mission to Planet Earth' education outreach effort. It is based on development of low cost, scientifi- cally accurate instrumentation and computer interfacing, coupled with Apple II computers as dedicated data loggers. The project is com- prised of: instruments, interfacing, software, curriculum, a detailed operating manual, and a system of training at the school sites.

  15. Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere

    NASA Astrophysics Data System (ADS)

    Davis, Tim; McClurg, Bryce; Sohl, John

    2008-10-01

    We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.

  16. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    PubMed

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  17. An optical relay approach to very low cost hybrid polymer-complementary metal-oxide semiconductor electrophoresis instrumentation.

    PubMed

    Hall, Gordon H; Sloan, David L; Ma, Tianchi; Couse, Madeline H; Martel, Stephane; Elliott, Duncan G; Glerum, D Moira; Backhouse, Christopher J

    2014-07-04

    Electrophoresis is an integral part of many molecular diagnostics protocols and an inexpensive implementation would greatly facilitate point-of-care (POC) applications. However, the high instrumentation cost presents a substantial barrier, much of it associated with fluorescence detection. The cost of such systems could be substantially reduced by placing the fluidic channel and photodiode directly above the detector in order to collect a larger portion of the fluorescent light. In future, this could be achieved through the integration and monolithic fabrication of photoresist microchannels on complementary metal-oxide semiconductor microelectronics (CMOS). However, the development of such a device is expensive due to high non-recurring engineering costs. To facilitate that development, we present a system that utilises an optical relay to integrate low-cost polymeric microfluidics with a CMOS chip that provides a photodiode, analog-digital conversion and a standard serial communication interface. This system embodies an intermediate level of microelectronic integration, and significantly decreases development costs. With a limit of detection of 1.3±0.4nM of fluorescently end-labeled deoxyribonucleic acid (DNA), it is suitable for diagnostic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Data acquisition instrument for EEG based on embedded system

    NASA Astrophysics Data System (ADS)

    Toresano, La Ode Husein Z.; Wijaya, Sastra Kusuma; Prawito, Sudarmaji, Arief; Syakura, Abdan; Badri, Cholid

    2017-02-01

    An electroencephalogram (EEG) is a device for measuring and recording the electrical activity of brain. The EEG data of signal can be used as a source of analysis for human brain function. The purpose of this study was to design a portable multichannel EEG based on embedded system and ADS1299. The ADS1299 is an analog front-end to be used as an Analog to Digital Converter (ADC) to convert analog signal of electrical activity of brain, a filter of electrical signal to reduce the noise on low-frequency band and a data communication to the microcontroller. The system has been tested to capture brain signal within a range of 1-20 Hz using the NETECH EEG simulator 330. The developed system was relatively high accuracy of more than 82.5%. The EEG Instrument has been successfully implemented to acquire the brain signal activity using a PC (Personal Computer) connection for displaying the recorded data. The final result of data acquisition has been processed using OpenBCI GUI (Graphical User Interface) based through real-time process for 8-channel signal acquisition, brain-mapping and power spectral decomposition signal using the standard FFT (Fast Fourier Transform) algorithm.

  19. A Bidirectional Neural Interface IC with Chopper Stabilized BioADC Array and Charge Balanced Stimulator

    PubMed Central

    Greenwald, Elliot; So, Ernest; Wang, Qihong; Mollazadeh, Mohsen; Maier, Christoph; Etienne-Cummings, Ralph; Cauwenberghs, Gert; Thakor, Nitish

    2016-01-01

    We present a bidirectional neural interface with a 4-channel biopotential analog-to-digital converter (bioADC) and a 4-channel current-mode stimulator in 180nm CMOS. The bioADC directly transduces microvolt biopotentials into a digital representation without a voltage-amplification stage. Each bioADC channel comprises a continuous-time first-order ΔΣ modulator with a chopper-stabilized OTA input and current feedback, followed by a second-order comb-filter decimator with programmable oversampling ratio. Each stimulator channel contains two independent digital-to-analog converters for anodic and cathodic current generation. A shared calibration circuit matches the amplitude of the anodic and cathodic currents for charge balancing. Powered from a 1.5V supply, the analog and digital circuits in each recording channel draw on average 1.54 μA and 2.13 μA of supply current, respectively. The bioADCs achieve an SNR of 58 dB and a SFDR of >70 dB, for better than 9-b ENOB. Intracranial EEG recordings from an anesthetized rat are shown and compared to simultaneous recordings from a commercial reference system to validate performance in-vivo. Additionally, we demonstrate bidirectional operation by recording cardiac modulation induced through vagus nerve stimulation, and closed-loop control of cardiac rhythm. The micropower operation, direct digital readout, and integration of electrical stimulation circuits make this interface ideally suited for closed-loop neuromodulation applications. PMID:27845676

  20. Nuclear Science Symposium, 25th, and Symposium on Nuclear Power Systems, 10th, Washington, D.C., October 18-20, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detectors of various types are discussed, taking into account drift chambers, calorimetry, multiwire proportional chambers, signal processing, the use of semiconductors, and photo/optical applications. Circuits are considered along with instrumentation for space, nuclear medicine instrumentation, data acquisition and systems, environmental instrumentation, reactor instrumentation, and nuclear power systems. Attention is given to a new approach to high accuracy gaseous detectors, the current status of electron mobility and free-ion yield in high mobility liquids, a digital drift chamber digitizer system, the stability of oxides in high purity germanium, the quadrant photomultiplier, and the theory of imaging with a very limited number of projections.

  1. Miniature Housings for Electronics With Standard Interfaces

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.; Alhorn, Dean C.

    2006-01-01

    A family of general-purpose miniature housings has been designed to contain diverse sensors, actuators, and drive circuits plus associated digital electronic readout and control circuits. The circuits contained in the housings communicate with the external world via standard RS-485 interfaces.

  2. Computer Series, 62: Bits and Pieces, 25.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1985-01-01

    Describes: (1) a FORTH-language, computer-controlled potentiometric titration; (2) coulometric titrations using computer-interfaced potentiometric endpoint detection; (3) interfacing a scanning infrared spectrophotometer to a microcomputer; (4) demonstrations of signal-to-noise enhancement (digital filtering); (5) and an inexpensive Apple…

  3. Tools virtualization for command and control systems

    NASA Astrophysics Data System (ADS)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-10-01

    Information management is an inseparable part of the command process. The result is that the person making decisions at the command post interacts with data providing devices in various ways. Tools virtualization process can introduce a number of significant modifications in the design of solutions for management and command. The general idea involves replacing physical devices user interface with their digital representation (so-called Virtual instruments). A more advanced level of the systems "digitalization" is to use the mixed reality environments. In solutions using Augmented reality (AR) customized HMI is displayed to the operator when he approaches to each device. Identification of device is done by image recognition of photo codes. Visualization is achieved by (optical) see-through head mounted display (HMD). Control can be done for example by means of a handheld touch panel. Using the immersive virtual environment, the command center can be digitally reconstructed. Workstation requires only VR system (HMD) and access to information network. Operator can interact with devices in such a way as it would perform in real world (for example with the virtual hands). Because of their procedures (an analysis of central vision, eye tracking) MR systems offers another useful feature of reducing requirements for system data throughput. Due to the fact that at the moment we focus on the single device. Experiments carried out using Moverio BT-200 and SteamVR systems and the results of experimental application testing clearly indicate the ability to create a fully functional information system with the use of mixed reality technology.

  4. Flexible Peripheral Component Interconnect Input/Output Card

    NASA Technical Reports Server (NTRS)

    Bigelow, Kirk K.; Jerry, Albert L.; Baricio, Alisha G.; Cummings, Jon K.

    2010-01-01

    The Flexible Peripheral Component Interconnect (PCI) Input/Output (I/O) Card is an innovative circuit board that provides functionality to interface between a variety of devices. It supports user-defined interrupts for interface synchronization, tracks system faults and failures, and includes checksum and parity evaluation of interface data. The card supports up to 16 channels of high-speed, half-duplex, low-voltage digital signaling (LVDS) serial data, and can interface combinations of serial and parallel devices. Placement of a processor within the field programmable gate array (FPGA) controls an embedded application with links to host memory over its PCI bus. The FPGA also provides protocol stacking and quick digital signal processor (DSP) functions to improve host performance. Hardware timers, counters, state machines, and other glue logic support interface communications. The Flexible PCI I/O Card provides an interface for a variety of dissimilar computer systems, featuring direct memory access functionality. The card has the following attributes: 8/16/32-bit, 33-MHz PCI r2.2 compliance, Configurable for universal 3.3V/5V interface slots, PCI interface based on PLX Technology's PCI9056 ASIC, General-use 512K 16 SDRAM memory, General-use 1M 16 Flash memory, FPGA with 3K to 56K logical cells with embedded 27K to 198K bits RAM, I/O interface: 32-channel LVDS differential transceivers configured in eight, 4-bit banks; signaling rates to 200 MHz per channel, Common SCSI-3, 68-pin interface connector.

  5. Digital Data Recording System (DDRS) operating and maintenance manual

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Jones, J. I.

    1980-01-01

    The digital data recording system (DDRS) was designed, fabricated, tested, and delivered. This unit is the interface between the synthetic aperture radar (SAR) and the recording system. The SAR data are formatted in the DDRS for data processing on the ground.

  6. Content Management and the Future of Academic Libraries.

    ERIC Educational Resources Information Center

    Wu, Yuhfen Diana; Liu, Mengxiong

    2001-01-01

    Discusses Internet-based electronic content management in digital libraries and considers the future of academic libraries. Topics include digital technologies; content management systems; standards; bandwidth; security and privacy concerns; legal matters, including copyrights and ownership; lifecycle; and multilingual access and interface. (LRW)

  7. A Universal Intelligent System-on-Chip Based Sensor Interface

    PubMed Central

    Mattoli, Virgilio; Mondini, Alessio; Mazzolai, Barbara; Ferri, Gabriele; Dario, Paolo

    2010-01-01

    The need for real-time/reliable/low-maintenance distributed monitoring systems, e.g., wireless sensor networks, has been becoming more and more evident in many applications in the environmental, agro-alimentary, medical, and industrial fields. The growing interest in technologies related to sensors is an important indicator of these new needs. The design and the realization of complex and/or distributed monitoring systems is often difficult due to the multitude of different electronic interfaces presented by the sensors available on the market. To address these issues the authors propose the concept of a Universal Intelligent Sensor Interface (UISI), a new low-cost system based on a single commercial chip able to convert a generic transducer into an intelligent sensor with multiple standardized interfaces. The device presented offers a flexible analog and/or digital front-end, able to interface different transducer typologies (such as conditioned, unconditioned, resistive, current output, capacitive and digital transducers). The device also provides enhanced processing and storage capabilities, as well as a configurable multi-standard output interface (including plug-and-play interface based on IEEE 1451.3). In this work the general concept of UISI and the design of reconfigurable hardware are presented, together with experimental test results validating the proposed device. PMID:22163624

  8. A portable detection instrument based on DSP for beef marbling

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Peng, Yankun

    2014-05-01

    Beef marbling is one of the most important indices to assess beef quality. Beef marbling is graded by the measurement of the fat distribution density in the rib-eye region. However quality grades of beef in most of the beef slaughtering houses and businesses depend on trainees using their visual senses or comparing the beef slice to the Chinese standard sample cards. Manual grading demands not only great labor but it also lacks objectivity and accuracy. Aiming at the necessity of beef slaughtering houses and businesses, a beef marbling detection instrument was designed. The instrument employs Charge-coupled Device (CCD) imaging techniques, digital image processing, Digital Signal Processor (DSP) control and processing techniques and Liquid Crystal Display (LCD) screen display techniques. The TMS320DM642 digital signal processor of Texas Instruments (TI) is the core that combines high-speed data processing capabilities and real-time processing features. All processes such as image acquisition, data transmission, image processing algorithms and display were implemented on this instrument for a quick, efficient, and non-invasive detection of beef marbling. Structure of the system, working principle, hardware and software are introduced in detail. The device is compact and easy to transport. The instrument can determine the grade of beef marbling reliably and correctly.

  9. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  10. Integrated Digital Survey of the "FONTANA RUSTICA" in the Gardens of the Quirinale.

    NASA Astrophysics Data System (ADS)

    Paris, L.; Troiano, W.

    2013-07-01

    The paper illustrates the results of a research on integrated digital survey of the "Fontana Rustica" in the gardens of the Quirinale, artifact somewhat atypical for its particular organical configuration, and whose history is still to be discovered. The activity is performed by Critevat, interdepartmental research center in Rieti, within of the scientific collaboration with the Office for the conservation of artistic heritage of the Quirinale Palace. The integrated digital survey in recent years has had a strong impulse thanks to the technological development of the shape acquisition instruments. The research has analyzed the problems of interaction and integration of digital data obtainable using the latest digital technologies such as 3D laser-scanner and digital photogrammetry. A further level of research has focused on the possibility of management of 3D models in relation to data obtained by instruments and methods of investigation of different scientific culture such as seismic transmission tomography and thermografy.

  11. Controller/Computer Interface with an Air-Ground Data Link

    DOT National Transportation Integrated Search

    1976-06-01

    This report describes the results of an experiment for evaluating the controller/computer interface in an ARTS III/M&S system modified for use with a simulated digital data link and a voice link utilizing a computer-generated voice system. A modified...

  12. Instrumented Glove Measures Positions Of Fingers

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.

  13. Standard interface: Twin-coaxial converter

    NASA Technical Reports Server (NTRS)

    Lushbaugh, W. A.

    1976-01-01

    The network operations control center standard interface has been adopted as a standard computer interface for all future minicomputer based subsystem development for the Deep Space Network. Discussed is an intercomputer communications link using a pair of coaxial cables. This unit is capable of transmitting and receiving digital information at distances up to 600 m with complete ground isolation between the communicating devices. A converter is described that allows a computer equipped with the standard interface to use the twin coaxial link.

  14. Polyplanar optic display for cockpit application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.; Biscardi, C.; Brewster, C.

    1998-04-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments,more » Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less

  15. Polyplanar optic display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.; Biscardi, C.; Brewster, C.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc.more » A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less

  16. Polyplanar optic display for cockpit application

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Freibott, William C.

    1998-09-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, we discuss the electronic interfacing to the DLPTM chip, the opto-mechanical design and viewing angle characteristics.

  17. A survey of the state-of-the-art and focused research in range systems, task 1

    NASA Technical Reports Server (NTRS)

    Omura, J. K.

    1986-01-01

    This final report presents the latest research activity in voice compression. We have designed a non-real time simulation system that is implemented around the IBM-PC where the IBM-PC is used as a speech work station for data acquisition and analysis of voice samples. A real-time implementation is also proposed. This real-time Voice Compression Board (VCB) is built around the Texas Instruments TMS-3220. The voice compression algorithm investigated here was described in an earlier report titled, Low Cost Voice Compression for Mobile Digital Radios, by the author. We will assume the reader is familiar with the voice compression algorithm discussed in this report. The VCB compresses speech waveforms at data rates ranging from 4.8 K bps to 16 K bps. This board interfaces to the IBM-PC 8-bit bus, and plugs into a single expansion slot on the mother board.

  18. Radar/radiometer facilities for precipitation measurements

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.; Taylor, R. C.

    1973-01-01

    The OSU ElectroScience Laboratory Radar/Radiometer Facilities are described. This instrumentation includes a high-resolution radar/radiometer system, a fully automated low-resolution radar system, and a small surveillance radar system. The high-resolution radar/radiometer system operates at 3, 9, and 15 GHz using two 9.1 m and one 4.6 m parabolic antennas, respectively. The low-resolution and surveillance radars operate at 9 and 15 GHz, respectively. Both the high- and low-resolution systems are interfaced to real-time digital processing and recording systems. This capability was developed for the measurement of the temporal and spatial characteristics of precipitation in conjunction with millimeter wavelength propagation studies utilizing the Advanced Technology Satellites. Precipitation characteristics derived from these measurements could also be of direct benefit in such diverse areas as: the atmospheric sciences, meteorology, water resources, flood control and warning, severe storm warning, agricultural crop studies, and urban and regional planning.

  19. High stability lasers for lidar and remote sensing

    NASA Astrophysics Data System (ADS)

    Heine, Frank; Lange, Robert; Seel, Stefan; Smutny, Berry

    2017-11-01

    Tesat-Spacecom is currently building a set flight models of frequency stabilized lasers for the ESA Missions AEOLUS and LTP. Lasers with low intensity noise in the kHz region and analogue tuning capabilities for frequency and output power are developed for the on board metrology of the LTP project, the precursor mission for LISA. This type of laser is internally stabilized by precise temperature control, approaching an ALLAN variance of 10-9 for 100 sec. It can be easily locked to external frequency references with <50kHz bandwidth. The Seed laser for the AEOLUS mission (wind LIDAR) is used as the master frequency reference and is stabilized internally by a optical cavity. It shows a 3* 10-11 Allan variance from time intervals 1 sec - 1000 sec. Furthermore it is step-tunable for calibration of the receiver instrument with a speed of GHz / sec by a digital command interface. Performance and environmental test results will be presented.

  20. Life Testing and Diagnostics of a Planar Out-of-Core Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Thayer, Kevin L.; Ramalingam, Mysore L.; Young, Timothy J.; Lamp, Thomas R.

    1994-07-01

    This paper details the design and performance of an automated computer data acquisition system for a planar, out-of-core thermionic converter with CVD rhenium electrodes. The output characteristics of this converter have been mapped for emitter temperatures ranging from approximately 1700K to 2000K, and life testing of the converter is presently being performed at the design point of operation. An automated data acquisition system has been constructed to facilitate the collection of current density versus output voltage (J-V) and temperature data from the converter throughout the life test. This system minimizes the amount of human interaction necessary during the lifetest to measure and archive the data and present it in a usable form. The task was accomplished using a Macintosh Ilcx computer, two multiple-purpose interface boards, a digital oscilloscope, a sweep generator, and National Instrument's LabVIEW application software package.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wackerbarth, David

    Sandia National Laboratories has developed a computer program to review, reduce and manipulate waveform data. PlotData is designed for post-acquisition waveform data analysis. PlotData is both a post-acquisition and an advanced interactive data analysis environment. PlotData requires unidirectional waveform data with both uniform and discrete time-series measurements. PlotData operates on a National Instruments' LabVIEW™ software platform. Using PlotData, the user can capture waveform data from digitizing oscilloscopes over a GPIB, USB and Ethernet interface from Tektronix, Lecroy or Agilent scopes. PlotData can both import and export several types of binary waveform files including, but not limited to, Tektronix .wmf files,more » Lecroy.trc files and xy pair ASCIIfiles. Waveform manipulation includes numerous math functions, integration, differentiation, smoothing, truncation, and other specialized data reduction routines such as VISAR, POV, PVDF (Bauer) piezoelectric gauges, and piezoresistive gauges such as carbon manganin pressure gauges.« less

  2. Air Force Human Resources Laboratory Annual Report - Fiscal Year 1983.

    DTIC Science & Technology

    1984-08-01

    were performed - digital image-generation visual system and three in the Advanced Simulator for Pilot Training at associated wide-angle windows. The...inputs by the trainee. This arrangement, and survivability in high-threat environments are , with its corresponding analog-to- digital interface... digitized models of various military vehicles and aircraft for continual update/expansion. Utilization: An interactive modeling system will be user

  3. CV 990 interface test and procedure analysis of the monkey restraint, support equipment, and telemetry electronics proposed for Spacelab

    NASA Technical Reports Server (NTRS)

    Newsom, B. D.

    1978-01-01

    A biological system proposed to restrain a monkey in the Spacelab was tested under operational conditions using typical metabolic and telemetered cardiovascular instrumentation. Instrumentation, interfaced with other electronics, and data gathering during a very active operational mission were analyzed for adequacy of procedure and success of data handling by the onboard computer.

  4. Fast Multiclass Segmentation using Diffuse Interface Methods on Graphs

    DTIC Science & Technology

    2013-02-01

    000 28 × 28 images of handwritten digits 0 through 9. Examples of entries can be found in Figure 6. The task is to classify each of the images into the...database of handwritten digits .” [Online]. Available: http://yann.lecun.com/exdb/mnist/ [36] J. Lellmann, J. H. Kappes, J. Yuan, F. Becker, and C...corresponding digit . The images include digits from 0 to 9; thus, this is a 10 class segmentation problem. To construct the weight matrix, we used N

  5. Training system for digital mammographic diagnoses of breast cancer

    NASA Astrophysics Data System (ADS)

    Thomaz, R. L.; Nirschl Crozara, M. G.; Patrocinio, A. C.

    2013-03-01

    As the technology evolves, the analog mammography systems are being replaced by digital systems. The digital system uses video monitors as the display of mammographic images instead of the previously used screen-film and negatoscope for analog images. The change in the way of visualizing mammographic images may require a different approach for training the health care professionals in diagnosing the breast cancer with digital mammography. Thus, this paper presents a computational approach to train the health care professionals providing a smooth transition between analog and digital technology also training to use the advantages of digital image processing tools to diagnose the breast cancer. This computational approach consists of a software where is possible to open, process and diagnose a full mammogram case from a database, which has the digital images of each of the mammographic views. The software communicates with a gold standard digital mammogram cases database. This database contains the digital images in Tagged Image File Format (TIFF) and the respective diagnoses according to BI-RADSTM, these files are read by software and shown to the user as needed. There are also some digital image processing tools that can be used to provide better visualization of each single image. The software was built based on a minimalist and a user-friendly interface concept that might help in the smooth transition. It also has an interface for inputting diagnoses from the professional being trained, providing a result feedback. This system has been already completed, but hasn't been applied to any professional training yet.

  6. Information management advanced development. Volume 3: Digital data bus breadboard

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The design, development, and evaluation of the digital data bus breadboard for the modular space station are discussed. Subjects presented are: (1) requirements summary, (2) parametric data for bus design, (3) redundancy concepts, and (4) data bus breadboard performance and interface requirements.

  7. The Keck keyword layer

    NASA Technical Reports Server (NTRS)

    Conrad, A. R.; Lupton, W. F.

    1992-01-01

    Each Keck instrument presents a consistent software view to the user interface programmer. The view consists of a small library of functions, which are identical for all instruments, and a large set of keywords, that vary from instrument to instrument. All knowledge of the underlying task structure is hidden from the application programmer by the keyword layer. Image capture software uses the same function library to collect data for the image header. Because the image capture software and the instrument control software are built on top of the same keyword layer, a given observation can be 'replayed' by extracting keyword-value pairs from the image header and passing them back to the control system. The keyword layer features non-blocking as well as blocking I/O. A non-blocking keyword write operation (such as setting a filter position) specifies a callback to be invoked when the operation is complete. A non-blocking keyword read operation specifies a callback to be invoked whenever the keyword changes state. The keyword-callback style meshes well with the widget-callback style commonly used in X window programs. The first keyword library was built for the two Keck optical instruments. More recently, keyword libraries have been developed for the infrared instruments and for telescope control. Although the underlying mechanisms used for inter-process communication by each of these systems vary widely (Lick MUSIC, Sun RPC, and direct socket I/O, respectively), a basic user interface has been written that can be used with any of these systems. Since the keyword libraries are bound to user interface programs dynamically at run time, only a single set of user interface executables is needed. For example, the same program, 'xshow', can be used to display continuously the telescope's position, the time left in an instrument's exposure, or both values simultaneously. Less generic tools that operate on specific keywords, for example an X display that controls optical instrument exposures, have also been written using the keyword layer.

  8. Voltage linear transformation circuit design

    NASA Astrophysics Data System (ADS)

    Sanchez, Lucas R. W.; Jin, Moon-Seob; Scott, R. Phillip; Luder, Ryan J.; Hart, Michael

    2017-09-01

    Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides +/-3° optical angular deflection for a +/-10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.

  9. 75 FR 51499 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Controls (I&C) Systems...: Wednesday, September 8, 2010--8:30 a.m. until 12 p.m. The Subcommittee will review Digital I&C Interim Staff...

  10. Future Cyborgs: Human-Machine Interface for Virtual Reality Applications

    DTIC Science & Technology

    2007-04-01

    FUTURE CYBORGS : HUMAN-MACHINE INTERFACE FOR VIRTUAL REALITY APPLICATIONS Robert R. Powell, Major, USAF April 2007 Blue Horizons...SUBTITLE Future Cyborgs : Human-Machine Interface for Virtual Reality Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Nicholas Negroponte, Being Digital (New York: Alfred A Knopf, Inc, 1995), 123. 23 Ibid. 24 Andy Clark, Natural-Born Cyborgs (New York: Oxford

  11. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  12. Emerging digital micromirror device (DMD) applications

    NASA Astrophysics Data System (ADS)

    Dudley, Dana; Duncan, Walter M.; Slaughter, John

    2003-01-01

    For the past six years, Digital Light Processing technology from Texas Instruments has made significant inroads in the projection display market. With products enabling the world"s smallest data and video projectors, HDTVs, and digital cinema, DLP technology is extremely powerful and flexible. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based "light switch" array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator for projector applications, dozens of new applications are now being enabled by general-use DMD products that are recently available to developers. The same light switching speed and "on-off" (contrast) ratio that have resulted in superior projector performance, along with the capability of operation outside the visible spectrum, make the DMD very attractive for many applications, including volumetric display, holographic data storage, lithography, scientific instrumentation, and medical imaging. This paper presents an overview of past and future DMD performance in the context of new DMD applications, cites several examples of emerging products, and describes the DMD components and tools now available to developers.

  13. The Computer Bulletin Board.

    ERIC Educational Resources Information Center

    Batt, Russell H., Ed.

    1989-01-01

    Discussed are some uses of computers in chemistry classrooms. Described are: (1) interactive chromatographic analysis software; (2) computer interface for a digital frequency-period-counter-ratio meter and analog interface based on a voltage-to-frequency converter; and (3) use of spectrometer/microcomputer arrangement for teaching atomic theory.…

  14. 75 FR 70128 - 2011 Changes for Domestic Mailing Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ...LOT, RDI, and Five-Digit ZIP. The Postal Service certifies software meeting its standards until the... Delivery Point Validation (DPV) service in conjunction with CASS-Certified address matching software... interface between address-matching software and the LACS \\Link\\ database service. 1.21.2 Interface...

  15. Template-directed instrumentation in total knee arthroplasty: cost savings analysis.

    PubMed

    Hsu, Andrew R; Gross, Christopher E; Bhatia, Sanjeev; Levine, Brett R

    2012-11-01

    The use of digital radiography and templating software in total knee arthroplasty (TKA) continues to become more prevalent as the number of procedures performed increases every year. Template-directed instrumentation (TDI) is a novel approach to surgical planning that combines digital templating with limited intraoperative instruments. The purpose of this study was to evaluate the financial implications and radiographic outcomes of using TDI to direct instrumentation during primary TKA. Over a 1-year period, 82 consecutive TKAs using TDI were retrospectively reviewed. Patient demographics and preoperative templated sizes of predicted components were recorded, and OrthoView digital planning software (OrthoView LLC, Jacksonville, Florida was used to determine the 2 most likely tibial and femoral component sizes for each case. This sizing information was used to direct component vendors to prepare 3 lightweight instrument trays based on these sizes. The sizes of implanted components and the number of total trays required were documented. A cost savings analysis was performed to compare TDI and non-TDI surgical expenses for TKA. In 80 (97%) of 82 cases, the prepared sizes determined by TDI using 3 instrument trays were sufficient. Preoperative templating correctly predicted the size of the tibial and femoral component sizes in 90% and 83% of cases, respectively. The average number of trays used with TDI was 3.0 (range, 3-5 trays) compared with 7.5 (range, 6-9 trays) used in 82 preceding non-TDI TKAs. Based on standard fees to sterilize and package implant trays (approximately $26 based on a survey of 10 orthopedic hospitals performing TKA), approximately $9612 was saved by using TDI over the 1-year study period. Overall, digital templating and TDI were a simple and cost-effective approach when performing primary TKA. Copyright 2012, SLACK Incorporated.

  16. Digital Systems Validation Handbook. Volume 2. Chapter 19. Pilot - Vehicle Interface

    DTIC Science & Technology

    1993-11-01

    checklists, and other status messages. Voice interactive systems are defi-ed as "the interface between a cooperative human and a machine, which involv -he...Pilot-Vehicle Interface 19-85 5.6.1 Crew Interaction and the Cockpit 19-85 5.6.2 Crew Resource Management and Safety 19-87 5.6.3 Pilot and Crew Training...systems was a "stand-alone" component performing its intended function. Systems and their cockpit interfaces were added as technological advances were

  17. A memory-mapped output interface: Omega navigation output data from the JOLT (TM) microcomputer

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1976-01-01

    A hardware interface which allows both digital and analog data output from the JOLT microcomputer is described in the context of a software-based Omega Navigation receiver. The interface hardware described is designed for output of six (or eight with simple extensions) bits of binary output in response to a memory store command from the microcomputer. The interface was produced in breadboard form and is operational as an evaluation aid for the software Omega receiver.

  18. Visual design for the user interface, Part 1: Design fundamentals.

    PubMed

    Lynch, P J

    1994-01-01

    Digital audiovisual media and computer-based documents will be the dominant forms of professional communication in both clinical medicine and the biomedical sciences. The design of highly interactive multimedia systems will shortly become a major activity for biocommunications professionals. The problems of human-computer interface design are intimately linked with graphic design for multimedia presentations and on-line document systems. This article outlines the history of graphic interface design and the theories that have influenced the development of today's major graphic user interfaces.

  19. Doppler extraction with a digital VCO

    NASA Technical Reports Server (NTRS)

    Starner, E. R.; Nossen, E. J.

    1977-01-01

    Digitally controlled oscillator in phased-locked loop may be useful for data communications systems, or may be modified to serve as information extraction component of microwave or optical system for collision avoidance or automatic braking. Instrument is frequency-synthesizing device with output specified precisely by digital number programmed into frequency register.

  20. An Evaluation of Digital Stories Created for Social Studies Teaching

    ERIC Educational Resources Information Center

    Seker, Burcu Sezginsoy

    2016-01-01

    Digital stories are useful tools for combining technology with education, in terms of the preparation stage, practicality, availability and usability as an evaluation instrument. In this study, digital stories created in a social studies teaching class were evaluated and the opinions of primary school teacher candidates were obtained concerning…

  1. The transition to digital media in biocommunications.

    PubMed

    Lynch, P J

    1996-01-01

    As digital audiovisual media become dominant in biomedical communications, the skills of human interface design and the technology of client-server multimedia data networks will underlie and influence virtually every aspect of biocommunications professional practice. The transition to digital communications media will require financial, organizational, and professional changes in current biomedical communications departments, and will require a multi-disciplinary approach that will blur the boundaries of the current biocommunications professions.

  2. Drawing of STS-34 SSBUV orbiter interface and command and status monitoring

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Line drawing titled SSBUV ORBITER INTERFACE FOR COMMAND AND STATUS MONITORING shows how the shuttle solar backscatter ultraviolet (UV) (SSBUV) will be operated by crewmembers on the aft flight deck using a autonomous payload controller (APC). SSBUV instrument will calibrate ozone measuring space-based instruments on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites NOAA-9 and NOAA-11. During STS-34, SSBUV instruments mounted in get away special (GAS) canisters in Atlantis', Orbiter Vehicle (OV) 104's, payload bay will use the Space Shuttle's orbital flight path to assess instrument performance by directly comparing data from identical instruments aboard the TIROS satellite, as OV-104 and the satellite pass over the same Earth location within a one-hour window. SSBUV is managed by NASA's Goddard Space Flight Center (GSFC).

  3. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  4. The EyeHarp: A Gaze-Controlled Digital Musical Instrument

    PubMed Central

    Vamvakousis, Zacharias; Ramirez, Rafael

    2016-01-01

    We present and evaluate the EyeHarp, a new gaze-controlled Digital Musical Instrument, which aims to enable people with severe motor disabilities to learn, perform, and compose music using only their gaze as control mechanism. It consists of (1) a step-sequencer layer, which serves for constructing chords/arpeggios, and (2) a melody layer, for playing melodies and changing the chords/arpeggios. We have conducted a pilot evaluation of the EyeHarp involving 39 participants with no disabilities from both a performer and an audience perspective. In the first case, eight people with normal vision and no motor disability participated in a music-playing session in which both quantitative and qualitative data were collected. In the second case 31 people qualitatively evaluated the EyeHarp in a concert setting consisting of two parts: a solo performance part, and an ensemble (EyeHarp, two guitars, and flute) performance part. The obtained results indicate that, similarly to traditional music instruments, the proposed digital musical instrument has a steep learning curve, and allows to produce expressive performances both from the performer and audience perspective. PMID:27445885

  5. Terrestrial interface architecture (DSI/DNI)

    NASA Astrophysics Data System (ADS)

    Rieser, J. H.; Onufry, M.

    The 64-kbit/s digital speech interpolation (DSI)/digital noninterpolation (DNI) equipment interfaces the TDMA satellite system with the terrestrial network. This paper provides a functional description of the 64-kbit/s DSI/DNI equipment built at Comsat Laboratories in conformance with the Intelsat TDMA/DSI system specification, and discusses the theoretical and experimental performance of the DSI system. Several DSI-related network and interface issues are discussed, including the interaction between echo-control devices and DSI speech detectors, single and multidestinational DSI operation, location of the DSI equipment relative to the international switching center, and the location and need for Doppler and plesiochronous alignment buffers. The transition from 64-kbit/s DSI to 32-kbit/s low-rate encoding/DSI is expected to begin in 1988. The impact of this transition is discussed as it relates to existing 64-kbit/s DSI/DNI equipment.

  6. An ADC Interface for the Apple II.

    ERIC Educational Resources Information Center

    Leiker, P. Steven

    1990-01-01

    Described is the construction of a simple analog-to-digital convertor circuit to interface an Apple II+ microcomputer to a light sensor used in conjunction with a holographic gear inspector. A list of parts, circuit diagram, and a simple BASIC program for the convertor are provided. (CW)

  7. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  8. Development of XML Schema for Broadband Digital Seismograms and Data Center Portal

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.; Tsuboi, S.; Ishihara, Y.; Nagao, H.; Yamagishi, Y.; Watanabe, T.; Yanaka, H.; Yamaji, H.

    2008-12-01

    There are a number of data centers around the globe, where the digital broadband seismograms are opened to researchers. Those centers use their own user interfaces and there are no standard to access and retrieve seismograms from different data centers using unified interface. One of the emergent technologies to realize unified user interface for different data centers is the concept of WebService and WebService portal. Here we have developed a prototype of data center portal for digital broadband seismograms. This WebService portal uses WSDL (Web Services Description Language) to accommodate differences among the different data centers. By using the WSDL, alteration and addition of data center user interfaces can be easily managed. This portal, called NINJA Portal, assumes three WebServices: (1) database Query service, (2) Seismic event data request service, and (3) Seismic continuous data request service. Current system supports both station search of database Query service and seismic continuous data request service. Data centers supported by this NINJA portal will be OHP data center in ERI and Pacific21 data center in IFREE/JAMSTEC in the beginning. We have developed metadata standard for seismological data based on QuakeML for parametric data, which has been developed by ETH Zurich, and XML-SEED for waveform data, which was developed by IFREE/JAMSTEC. The prototype of NINJA portal is now released through IFREE web page (http://www.jamstec.go.jp/pacific21/).

  9. Usability of digital media in patients with COPD: a pilot study.

    PubMed

    Cheung, Amy; Janssen, Anton; Amft, Oliver; Wouters, Emiel F M; Spruit, Martijn A

    2013-04-01

    Digital media can be integrated in tele-monitoring solutions, serving as the main interface between the patient and the caregiver. Consequently, the selection of the most appropriate digital medium for the specified target group is critical to ensure compliance with the tele-monitoring system. This pilot study aims to gather insights from patients with chronic obstructive pulmonary disease (COPD) on the ease-of-use, efficacy, effectiveness, and satisfaction of different types of digital media. Five off-the-shelf digital media devices were tested on nine patients at CIRO+ in Horn, The Netherlands. Usability was evaluated by asking patients to use each device to answer questions related to their symptoms and health status. Subsequently, patients completed a paper-based device usability questionnaire, which assessed prior experience with digital media, device dimensions, device controllability, response speed, screen readability, ease-of-use, and overall satisfaction. After testing all the devices, patients ranked the devices according to their preference. We identified the netbook as the preferred type of device due to its good controllability, fast response time, and large screen size. The smartphone was the least favorite device as patients found the size of the screen to be too small, which made it difficult to interact with. The pilot study has provided important insights to guide the selection of the most appropriate type of digital medium for implementation in tele-monitoring solutions for patients with COPD. As the digital medium is an important interface to the patient in tele-monitoring solutions, it is essential that patients feel motivated to interact with the digital medium on a regular basis.

  10. The Art of Electronics

    NASA Astrophysics Data System (ADS)

    Horowitz, Paul; Hill, Winfield

    2015-04-01

    1. Foundations; 2. Bipolar transistors; 3. Field effect transistors; 4. Operational amplifiers; 5. Precision circuits; 6. Filters; 7. Oscillators and timers; 8. Low noise techniques and transimpedance; 9. Power regulation; 10. Digital electronics; 11. Programmable logic devices; 12. Logical interfacing; 13. Digital meets analog; 14. Computers, controllers, and data links; 15. Microcontrollers.

  11. Digital conversion of INEL archeological data using ARC/INFO and Oracle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.D.; Brizzee, J.; White, L.

    1993-11-04

    This report documents the procedures used to convert archaeological data for the INEL to digital format, lists the equipment used, and explains the verification and validation steps taken to check data entry. It also details the production of an engineered interface between ARC/INFO and Oracle.

  12. The Digital Daily: How Will Readers React?

    ERIC Educational Resources Information Center

    Thompson, David Russell

    As publishers make the transition from ink-on-paper to digitalized messages, researchers must ask whether the system is the solution. Are there advantages to presenting newspaper content on computers? Or do people prefer to handle paper? A study reported subjects' self-report responses regarding interface between people (experimental subjects) and…

  13. Digital Technology Education and Its Impact on Traditional Academic Roles and Practice

    ERIC Educational Resources Information Center

    Sappey, Jennifer; Relf, Stephen

    2010-01-01

    This paper explores the interface between digital technologies and the teaching labour process in Australian higher education. We develop an adaptation of the seminal Clark (1983, 1994, 2001) and Kozma (1991, 1994) debate about whether technology merely delivers educational content unchanged--technology as the "delivery truck"--or…

  14. The Motif of Meeting in Digital Education

    ERIC Educational Resources Information Center

    Sheail, Philippa

    2015-01-01

    This article draws on theoretical work which considers the composition of meetings, in order to think about the form of the meeting in digital environments for higher education. To explore the motif of meeting, I undertake a "compositional interpretation" (Rose, 2012) of the default interface offered by "Collaborate", an…

  15. New J-STAGE system accelerates digitization and distribution of academic journals from Japan

    NASA Astrophysics Data System (ADS)

    Sato, Ryuichi; Kubota, Soichi; Aoyama, Kota; Tsuchiya, Eri; Miyagawa, Yoshiyuki

    13 years have passed since J-STAGE was launched. At present no one could deny that its user interface and functions were already out of date comparing to foreign established e-journals. So JST has developed a new system called “J-STAGE3” in order to offer better usability and give powerful dissemination of academic papers from Japan. As the result of it, they will be able to enjoy the following things: 1) integration of two databases, Journal@rchive and J-STAGE, 2) new design/interface, 3) introduction of international standard XML format, 4) advanced subscription management, 5) saving cost of publishers, and 6) improving J-STAGE online submission and review system. At the end of March 2011, we conducted a market research on current status of digitization on Japanese society journals. The report told us that digitization ratio of those was 62% in total but it was 34% in humanities/social sciences. Or it was 92% in English journals and 55% in Japanese ones. It means that we need further promotion of digitization. In this paper, we discuss functions and direction of J-STAGE3 as well as our role in promotion of digitization of Japanese society journals.

  16. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  17. Voltammetric analysis of ordnance materials. Part 2: A portable digital voltammeter for use with a silver wire working electrode

    NASA Astrophysics Data System (ADS)

    Fine, D. A.; Reeve, D. A.; Dickus, R. A.

    1984-12-01

    An inexpensive, portable, digital voltammeter has been designed and built at NWC. The instrument is intended for use with a silver wire working electrode. The voltammeter was built in response to a need on the part of Navy facilities for the monitoring of effluent water from the carbon column cleanup process used to remove propyleneglycoldinitrate from Otto fuel waste water. The instrument may also be used for the monitoring of contaminants such as nitroglycerin, dinitrotoluene, trinitrotoluene and nitroguanidine. This report describes in detail the construction, circuitry, software and operational features of the instrument.

  18. SpaceWire Driver Software for Special DSPs

    NASA Technical Reports Server (NTRS)

    Clark, Douglas; Lux, James; Nishimoto, Kouji; Lang, Minh

    2003-01-01

    A computer program provides a high-level C-language interface to electronics circuitry that controls a SpaceWire interface in a system based on a space qualified version of the ADSP-21020 digital signal processor (DSP). SpaceWire is a spacecraft-oriented standard for packet-switching data-communication networks that comprise nodes connected through bidirectional digital serial links that utilize low-voltage differential signaling (LVDS). The software is tailored to the SMCS-332 application-specific integrated circuit (ASIC) (also available as the TSS901E), which provides three highspeed (150 Mbps) serial point-to-point links compliant with the proposed Institute of Electrical and Electronics Engineers (IEEE) Standard 1355.2 and equivalent European Space Agency (ESA) Standard ECSS-E-50-12. In the specific application of this software, the SpaceWire ASIC was combined with the DSP processor, memory, and control logic in a Multi-Chip Module DSP (MCM-DSP). The software is a collection of low-level driver routines that provide a simple message-passing application programming interface (API) for software running on the DSP. Routines are provided for interrupt-driven access to the two styles of interface provided by the SMCS: (1) the "word at a time" conventional host interface (HOCI); and (2) a higher performance "dual port memory" style interface (COMI).

  19. A current-excited triple-time-voltage oversampling method for bio-impedance model for cost-efficient circuit system.

    PubMed

    Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao

    2015-08-01

    This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.

  20. Phonation Quotient in Women: A Measure of Vocal Efficiency Using Three Aerodynamic Instruments.

    PubMed

    Joshi, Ashwini; Watts, Christopher R

    2017-03-01

    The purpose of this study was to examine measures of vital capacity and phonation quotient across three age groups in women using three different aerodynamic instruments representing low-tech and high-tech options. This study has a prospective, repeated measures design. Fifteen women in each age group of 25-39 years, 40-59 years, and 60-79 years were assessed using maximum phonation time and vital capacity obtained from three aerodynamic instruments: a handheld analog windmill type spirometer, a handheld digital spirometer, and the Phonatory Aerodynamic System (PAS), Model 6600. Phonation quotient was calculated using vital capacity from each instrument. Analyses of variance were performed to test for main effects of the instruments and age on vital capacity and derived phonation quotient. Pearson product moment correlation was performed to assess measurement reliability (parallel forms) between the instruments. Regression equations, scatterplots, and coefficients of determination were also calculated. Statistically significant differences were found in vital capacity measures for the digital spirometer compared with the windmill-type spirometer and PAS across age groups. Strong positive correlations were present between all three instruments for both vital capacity and derived phonation quotient measurements. Measurement precision for the digital spirometer was lower than the windmill spirometer compared with the PAS. However, all three instruments had strong measurement reliability. Additionally, age did not have an effect on the measurement across instruments. These results are consistent with previous literature reporting data from male speakers and support the use of low-tech options for measurement of basic aerodynamic variables associated with voice production. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Application of Field System-FS9 and a PC to Antenna Control Unit interface in Radio Astronomy in Peru

    NASA Astrophysics Data System (ADS)

    Vidal, E. V. S.; Ishitsuka, J. I. I.; Koyama, K. Y.

    2006-08-01

    We are in the process to transform a 32m antenna in Peru, used for telecommunications, into a Radio Telescope to perform Radio Astronomy in Peru. The 32m antenna of Peru constructed by NEC was used for telecommunications with communications satellites at 6 GHz for transmission, and 4 GHz for reception. In collaboration of National Institute of Information and Communications Technology (NICT) Japan, and National Observatory of Japan we developed an Antenna Control System for the 32m antenna in Peru. It is based on the Field System FS9, software released by NASA for VLBI station, and an interface to link PC within FS9 software (PC-FS9) and Antenna Control Unit (ACU) of the 32 meters antenna. The PC-FS9 controls the antenna, commands are translated by interface into control signals compatibles with the ACU using: an I/O digital card with two 20bits ports to read azimuth and elevation angles, one 16bits port for reading status of ACU, one 24bits port to send pulses to start or stop operations of antenna, two channels are analogic outputs to drive the azimuth and elevation motors of the antenna, a LCD display to show the status of interface and error messages, and one serial port for communications with PC-FS9,. The first experiment of the control system was made with 11m parabolic antenna of Kashima Space Research Center (NICT), where we tested the right working of the routines implemented for de FS9 software, and simulations was made with looped data between output and input of the interface, both test were done successfully. With this scientific instrument we will be able to contribute with researching of astrophysics. We expect to into a near future to work at 6.7GHz to study Methanol masers, and higher frequencies with some improvements of the surface of the dish.

  2. Digital Signal Processing by Virtual Instrumentation of a MEMS Magnetic Field Sensor for Biomedical Applications

    PubMed Central

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M.; Manjarrez, Elías; Tapia, Jesús A.; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L.

    2013-01-01

    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG). PMID:24196434

  3. Digital signal processing by virtual instrumentation of a MEMS magnetic field sensor for biomedical applications.

    PubMed

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M; Manjarrez, Elías; Tapia, Jesús A; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A; Herrera-May, Agustín L

    2013-11-05

    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG).

  4. A Contextual Model for Identity Management (IdM) Interfaces

    ERIC Educational Resources Information Center

    Fuller, Nathaniel J.

    2014-01-01

    The usability of Identity Management (IdM) systems is highly dependent upon design that simplifies the processes of identification, authentication, and authorization. Recent findings reveal two critical problems that degrade IdM usability: (1) unfeasible techniques for managing various digital identifiers, and (2) ambiguous security interfaces.…

  5. 78 FR 77209 - Accessibility of User Interfaces, and Video Programming Guides and Menus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... user interfaces on digital apparatus and video programming guides and menus on navigation devices for... apparatus and navigation devices used to view video programming. The rules we adopt here will effectuate...--that is, devices and other equipment used by consumers to access multichannel video programming and...

  6. Digital forestry in the wildland urban interface

    Treesearch

    Michael C. Wimberly; Yangjian Zhang; John A. Stanturf

    2006-01-01

    Growing human populations have led to the expansion of the Wildland-Urban interface (WUI) across the southeastern United States. The juxtaposition of buildings, infrastructure, and forests in the WUI creates challenges for natural resource managers. The presence of flammable vegetation, high rates of human-caused ignitions and high building densities combine to...

  7. Digital forestry in the wildland-urban interface

    Treesearch

    Michael C. Wimberly; Yangjian Zhang; John A. Stanturf

    2006-01-01

    Growing human populations have led to the expansion of the Wildland-Urban Interface (WUI) across the southeastern United States. The juxtaposition of buildings, infrastructure. and forests in the WUI creates challenges for natural resource managers. The presence of flammable vegetation. high rates of human-caused ignitions and high building densities combine to...

  8. A Review of Assistive Listening Device and Digital Wireless Technology for Hearing Instruments

    PubMed Central

    Kim, Chun Hyeok

    2014-01-01

    Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment. PMID:25566400

  9. A review of assistive listening device and digital wireless technology for hearing instruments.

    PubMed

    Kim, Jin Sook; Kim, Chun Hyeok

    2014-12-01

    Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment.

  10. On Drift Effects in Velocity and Displacement of Greek Uncorrected Digital Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Skarlatoudis, A.; Margaris, B.

    2005-12-01

    Fifty years after the first installation of analog accelerographs, digital instruments recording the strong-motion came in operation. Their advantages comparing to the analog ones are obvious and they have been described in detail in several works. Nevertheless it has been pointed out that velocity and displacement values derived from several accelerograms, recorded in various strong earthquakes worldwide (e.g. 1999 Chi-Chi, Taiwan, Hector Mine, 2002 Denali) by digital instruments, are plagued by drifts when only a simple baseline correction derived from the pre-event portion of the record is removed. In Greece a significant number of accelerographic networks and arrays have been deployed covering the whole area. Digital accelerographs now constitute a significant part of the National Strong Motion network of the country. Detailed analyses of the data processing of accelerograms recorded by digital instruments exhibited that the same drifts exist in the Greek strong motion database. In this work, a methodology proposed and described in various articles (Boore, 2001; 2003; 2005) for removing the aforementioned drifts of the accelerograms is applied. It is also attempted a careful look of the nature of the drifts for understanding the noise characteristics relative to the signal. The intrinsic behaviour of signal to noise ratio is crucial for the adequacy of baseline corrections applied on digital uncorrected accelerograms. Velocities and displacements of the uncorrected and corrected accelerograms are compared and the drift effects in the Fourier and response spectra are presented.

  11. User's manual for the model interface and plugboard cabinets in the 14- by 22-foot subsonic tunnel

    NASA Technical Reports Server (NTRS)

    Askew, Robert B.; Quinto, P. Frank

    1994-01-01

    The primary method of connection between the wind tunnel model instrumentation and the data acquisition system in the 14- by 22-Foot Subsonic Tunnel is through the Model Interface (MIF) and Plugboard cabinets. The MIF and Plugboard cabinets allow versatility in the connection of the instrumentation to the different data systems in the facility. The User's Manual describes the components inside the MIF cabinet, the input and output of the MIF, and the MIF patchboard, and the Plugboard cabinets. There are examples of standard connections for most of the instrumentation used in the facility.

  12. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A): Instrumentation interface control document

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).

  13. Re-thinking Reading in the Context of a New Wave of Electronic Reading Devices

    NASA Astrophysics Data System (ADS)

    Kratky, Andreas

    We are currently witnessing a new wave of digital reading devices that will probably significantly change the way we read and publish. This is not the first digital revolution of aspects of cultural production and perception. This paper compares the previous digital revolutions of the music, film and publishing industries and attempts a prognosis of coming changes in the way we will work with digital texts. As a conclusion a new notion of interface design for the emerging reading ecology is proposed.

  14. Digital data storage systems, computers, and data verification methods

    DOEpatents

    Groeneveld, Bennett J.; Austad, Wayne E.; Walsh, Stuart C.; Herring, Catherine A.

    2005-12-27

    Digital data storage systems, computers, and data verification methods are provided. According to a first aspect of the invention, a computer includes an interface adapted to couple with a dynamic database; and processing circuitry configured to provide a first hash from digital data stored within a portion of the dynamic database at an initial moment in time, to provide a second hash from digital data stored within the portion of the dynamic database at a subsequent moment in time, and to compare the first hash and the second hash.

  15. 49 CFR 572.189 - Instrumentation and test conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...

  16. 49 CFR 572.189 - Instrumentation and test conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...

  17. 49 CFR 572.189 - Instrumentation and test conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...

  18. Perceptions of Prospective Teachers on Digital Literacy

    ERIC Educational Resources Information Center

    Çam, Emre; Kiyici, Mübin

    2017-01-01

    The aim of the quantitative study is to identify the digital literacy levels of prospective teachers in terms of several variables. The sample consisted of 354 prospective teachers studying in different departments of Sakarya University College of Education. The 30-item instrument used to gather the data was the "Digital Literacy Scale"…

  19. An ergonomics based design research method for the arrangement of helicopter flight instrument panels.

    PubMed

    Alppay, Cem; Bayazit, Nigan

    2015-11-01

    In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. [Development of an ophthalmological clinical information system for inpatient eye clinics].

    PubMed

    Kortüm, K U; Müller, M; Babenko, A; Kampik, A; Kreutzer, T C

    2015-12-01

    In times of increased digitalization in healthcare, departments of ophthalmology are faced with the challenge of introducing electronic clinical health records (EHR); however, specialized software for ophthalmology is not available with most major EHR sytems. The aim of this project was to create specific ophthalmological user interfaces for large inpatient eye care providers within a hospitalwide EHR. Additionally the integration of ophthalmic imaging systems, scheduling and surgical documentation should be achieved. The existing EHR i.s.h.med (Siemens, Germany) was modified using advanced business application programming (ABAP) language to create specific ophthalmological user interfaces for reproduction and moreover optimization of the clinical workflow. A user interface for documentation of ambulatory patients with eight tabs was designed. From June 2013 to October 2014 a total of 61,551 patient contact details were documented. For surgical documentation a separate user interface was set up. Digital clinical orders for documentation of registration and scheduling of operations user interfaces were also set up. A direct integration of ophthalmic imaging modalities could be established. An ophthalmologist-orientated EHR for outpatient and surgical documentation for inpatient clinics was created and successfully implemented. By incorporation of imaging procedures the foundation of future smart/big data analyses was created.

  1. 78 FR 64916 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...., light to heat), crystallization, melting, phase transformations, fracture, and other dynamic events. The... Sciences University, 1120 15th Street, Augusta, GA 30912. Instrument: Imaging System/Digital Microscope... the instrument include fast wavelength change, a dichromotome system, and two different light sources...

  2. Proposal of digital interface for the system of the air conditioner's remote control: analysis of the system of feedback.

    PubMed

    da Silva de Queiroz Pierre, Raisa; Kawada, Tarô Arthur Tavares; Fontes, André Guimarães

    2012-01-01

    Develop a proposal of digital interface for the system of the remote control, that functions as support system during the manipulation of air conditioner adjusted for the users in general, from ergonomic parameters, objectifying the reduction of the problems faced for the user and improving the process. 20 people with questionnaire with both qualitative and quantitative level. Linear Method consists of a sequence of steps in which the input of one of them depends on the output from the previous one, although they are independent. The process of feedback, when necessary, must occur within each step separately.

  3. MIRAGE: The data acquisition, analysis, and display system

    NASA Technical Reports Server (NTRS)

    Rosser, Robert S.; Rahman, Hasan H.

    1993-01-01

    Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements.

  4. User interaction with the LUCIFER control software

    NASA Astrophysics Data System (ADS)

    Knierim, Volker; Jütte, Marcus; Polsterer, Kai; Schimmelmann, Jan

    2006-06-01

    We present the concept and design of the interaction between users and the LUCIFER Control Software Package. The necessary functionality that must be provided to a user depends on and differs greatly for the different user types (i.e., engineers and observers). While engineers want total control over every service provided by the software system, observers are typically only interested in a fault tolerant and efficient user interface that helps them to carry out their observations in the best possible way during the night. To provide the functionality engineers need, direct access to a service is necessary. This may harbor a possible threat to the instrument in the case of a faulty operation by the engineer, but is the only way to test every unit during integration and commissioning of the instrument, and for service time later on. The observer on the other hand should only have indirect access to the instrument, controlled by an instrument manager service that ensures the necessary safety checks so that no harm can be done to the instrument. Our design of the user interaction provides such an approach on a level that is transparent to any interaction component regardless of interface type (i.e., textual or graphical). Using the interface and inheritance concepts of the Java Programming Language and its tools to create graphical user interfaces, it is possible to provide the necessary level of flexibility for the different user types on one side, while ensuring maximum reusability of code on the other side.

  5. Interface contributions to peak broadening in CE-ESI-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udseth, H.R.; Barinaga, C.J.; Smith, R.D.

    1991-06-01

    The applications of capillary electrophoresis (CE) are expanding, and a number of commercial CE instruments are now available. Combining CE with mass spectroscopy (MS), first done with an electrospray ionization (ESI) interface, yields additional advantages. Other interfaces have been proposed, but CE-ESI-MS offers better sensitivity, reduced background, applicability to higher molecular weight (MW) compounds and a better interface design. Our aim has been to exploit the advantages of automated CE coupled to MS for separation of biological materials. Details of our instrument design are provided. Samples used for these studies were a mixture of myoglobin proteins (MW {approximately}17 kilodaltons) andmore » a tryptic digest of tuna cytochrome c. The results show the ESI-MS interface does not broaden bands, and ion dissociation in the mass spectrometer permits the unambiguous identification of fragments in cases where mass alone is insufficient. 2 refs., 2 figs. (MHB)« less

  6. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; hide

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  7. Results and Insights on the Impact of Smoke on Digital Instrumentation and Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, T. J.; Nowlen, S. P.

    2001-01-31

    Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The major effect of smoke has been to increase leakage currents (through circuit bridging across contacts and leads) and tomore » cause momentary upsets and failures in digital systems. This report summarizes two previous reports and presents new results from conformal coating, memory chip, and hard drive tests. The report describes practices for mitigation of smoke damage through digital system design, fire barriers, ventilation, fire suppressants, and post fire procedures.« less

  8. Hand-Held Ultrasonic Instrument for Reading Matrix Symbols

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kula, John P.; Gurney, John W.; Lior, Ephraim D.

    2008-01-01

    A hand-held instrument that would include an ultrasonic camera has been proposed as an efficient means of reading matrix symbols. The proposed instrument could be operated without mechanical raster scanning. All electronic functions from excitation of ultrasonic pulses through final digital processing for decoding matrix symbols would be performed by dedicated circuitry within the single, compact instrument housing.

  9. Digital Imaging

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Digital Imaging is the computer processed numerical representation of physical images. Enhancement of images results in easier interpretation. Quantitative digital image analysis by Perceptive Scientific Instruments, locates objects within an image and measures them to extract quantitative information. Applications are CAT scanners, radiography, microscopy in medicine as well as various industrial and manufacturing uses. The PSICOM 327 performs all digital image analysis functions. It is based on Jet Propulsion Laboratory technology, is accurate and cost efficient.

  10. Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces

    PubMed Central

    Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.

    2010-01-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  11. Design requirements for ubiquitous computing environments for healthcare professionals.

    PubMed

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2004-01-01

    Ubiquitous computing environments can support clinical administrative routines in new ways. The aim of such computing approaches is to enhance routine physical work, thus it is important to identify specific design requirements. We studied healthcare professionals in an emergency room and developed the computer-augmented environment NOSTOS to support teamwork in that setting. NOSTOS uses digital pens and paper-based media as the primary input interface for data capture and as a means of controlling the system. NOSTOS also includes a digital desk, walk-up displays, and sensor technology that allow the system to track documents and activities in the workplace. We propose a set of requirements and discuss the value of tangible user interfaces for healthcare personnel. Our results suggest that the key requirements are flexibility in terms of system usage and seamless integration between digital and physical components. We also discuss how ubiquitous computing approaches like NOSTOS can be beneficial in the medical workplace.

  12. SWARM: A Compact High Resolution Correlator and Wideband VLBI Phased Array Upgrade for SMA

    NASA Astrophysics Data System (ADS)

    Weintroub, Jonathan

    2014-06-01

    A new digital back end (DBE) is being commissioned on Mauna Kea. The “SMA Wideband Astronomical ROACH2 Machine”, or SWARM, processes a 4 GHz usable band in single polarization mode and is flexibly reconfigurable for 2 GHz full Stokes dual polarization. The hardware is based on the open source Reconfigurable Open Architecture Computing Hardware 2 (ROACH2) platform from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). A 5 GSps quad-core analog-to-digital converter board uses a commercial chip from e2v installed on a CASPER-standard printed circuit board designed by Homin Jiang’s group at ASIAA. Two ADC channels are provided per ROACH2, each sampling a 2.3 GHz Nyquist band generated by a custom wideband block downconverter (BDC). The ROACH2 logic includes 16k-channel Polyphase Filterbank (F-engine) per input followed by a 10 GbE switch based corner-turn which feeds into correlator-accumulator logic (X-engines) co-located with the F-engines. This arrangement makes very effective use of a small amount of digital hardware (just 8 ROACH2s in 1U rack mount enclosures). The primary challenge now is to meet timing at full speed for a large and very complex FPGA bit code. Design of the VLBI phased sum and recorder interface logic is also in process. Our poster will describe the instrument design, with the focus on the particular challenges of ultra wideband signal processing. Early connected commissioning and science verification data will be presented.

  13. Low Power, Low Mass, Modular, Multi-band Software-defined Radios

    NASA Technical Reports Server (NTRS)

    Haskins, Christopher B. (Inventor); Millard, Wesley P. (Inventor)

    2013-01-01

    Methods and systems to implement and operate software-defined radios (SDRs). An SDR may be configured to perform a combination of fractional and integer frequency synthesis and direct digital synthesis under control of a digital signal processor, which may provide a set of relatively agile, flexible, low-noise, and low spurious, timing and frequency conversion signals, and which may be used to maintain a transmit path coherent with a receive path. Frequency synthesis may include dithering to provide additional precision. The SDR may include task-specific software-configurable systems to perform tasks in accordance with software-defined parameters or personalities. The SDR may include a hardware interface system to control hardware components, and a host interface system to provide an interface to the SDR with respect to a host system. The SDR may be configured for one or more of communications, navigation, radio science, and sensors.

  14. Wireless Control of Smartphones with Tongue Motion Using Tongue Drive Assistive Technology

    PubMed Central

    Kim, Jeonghee; Huo, Xueliang

    2010-01-01

    Tongue Drive System (TDS) is a noninvasive, wireless and wearable assistive technology that helps people with severe disabilities control their environments using their tongue motion. TDS translates specific tongue gestures to commands by detecting a small permanent magnetic tracer on the users’ tongue. We have linked the TDS to a smartphone (iPhone/iPod Touch) with a customized wireless module, added to the iPhone. We also migrated and ran the TDS sensor signal processing algorithm and graphical user interface on the iPhone in real time. The TDS-iPhone interface was evaluated by four able-bodied subjects for dialing 10-digit phone numbers using the standard telephone keypad and three methods of prompting the numbers: visual, auditory, and cognitive. Preliminary results showed that the interface worked quite reliably at a rate of 15.4 digits per minute, on average, with negligible errors. PMID:21096049

  15. A simulation evaluation of a pilot interface with an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1987-01-01

    The pilot-machine interface with cockpit automation is a critical factor in achieving the benefits of automation and reducing pilot blunders. To improve this interface, an automatic terminal approach system (ATAS) was conceived that can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane radios and control an airplane autopilot and autothrottle. The emphasis in the ATAS concept is a reduction in pilot blunders and work load by improving the pilot-automation interface. A research prototype of an ATAS was developed and installed in the Langley General Aviation Simulator. A piloted simulation study of the ATAS concept showed fewer pilot blunders, but no significant change in work load, when compared with a baseline heading-select autopilot mode. With the baseline autopilot, pilot blunders tended to involve loss of navigational situational awareness or instrument misinterpretation. With the ATAS, pilot blunders tended to involve a lack of awareness of the current ATAS mode state or deficiencies in the pilots' mental model of how the system operated. The ATAS display provided adequate approach status data to maintain situational awareness.

  16. Measuring the Dust Flux and Dust Particle Mass Distribution in the Saturn Rings with HRD Dust Instrument on the Cassini Mission

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Economou, T. E.

    In July 2004, the Cassini spacecraft will go into the Saturn orbit and start a 4 year intensive investigation of the planet itself, its multiple satellites and its rings with a multinational instrument payload. The High Rate Detectors (HRD) instrument provided by the Laboratory of Astrophysics and Space Research of the University of is part of the German Cosmic Dust Analyzer (CDA) and its main scientific objective is to provide quantitative measurements and mass distributions of dust particles in the rings of Saturn in the 10-11 to 10-4 grams mass range. The HRD instrument consists of two dust detectors -- a 20 and a 200 cm2 polyvinylidene fluoride (PVDF) sensors -- and an electronic box that contains all the analog and digital electronics and in addition provides interface between the HRD and CDA instrument. The CDA stores all the HRD data in its memory and transmits the data to Earth. The HRD weighs 1.7 kg and consumes 1.8 W of power [1]. The HRD instrument was fully calibrated through the entire mass range using two dust particle accelerators at Heidelberg and Munich in Germany. The HRD electronics is very fast and it will provide spatial and time distributions of up to 0.1 second. It can handle rates up to 104 counts/sec expected to be encountered during the Saturn ring crossings without any dead time. The HRD instrument operated successfully during all of the time that it was under power and detected many interplanetary dust particles. Almost all of these particles were close to the lowest mass threshold. References 1 A.J. TUZZOLINO, T.E. ECONOMOU, R.B. MCKIBBEN, J.A. SIMPSON, J.A.M. MCDONNELL, M.J. BURCHELL, B.A.M. VAUGHAN, P. TSOU, M.S. HANNER, B.C. CLARK AND D.E. BROWNLEE. THE DUST FLUX MONITOR INSTRUMENT FOR THE STARDUST MISSION TO COMET WILD-2, J. GEOPHYS. RES., 108, DOI:10.1029/2003JE002091, 2003.

  17. Computerized Experiments Using an A/D Converter.

    ERIC Educational Resources Information Center

    Karl, John H.

    The indroduction of on-line data collection and data processing techniques into an intermediate physics laboratory is described. Using a minimum configuration PDP-8L and a Digital Equipment AD01 analog to digital converter, an interface is developed with two existing experiments. These are a microwave apparatus used to simulate Bragg diffraction…

  18. Bringing Text Display Digital Radio to Consumers with Hearing Loss

    ERIC Educational Resources Information Center

    Sheffield, Ellyn G.; Starling, Michael; Schwab, Daniel

    2011-01-01

    Radio is migrating to digital transmission, expanding its offerings to include captioning for individuals with hearing loss. Text display radio requires a large amount of word throughput with minimal screen display area, making good user interface design crucial to its success. In two experiments, we presented hearing, hard-of-hearing, and deaf…

  19. Using a Web OPAC To Deliver Digital Collections.

    ERIC Educational Resources Information Center

    Mathias, Eileen C.

    2003-01-01

    Describes a major digital imaging project just completed at the Ewell Sale Steward Library of the Academy of Natural Sciences (Philadelphia, PA). Discusses options that were considered for Web delivery of images and text, and reasons for choosing Innovative Interfaces, Inc.'s image management function. Describes the data entry process and reviews…

  20. Design mobile satellite system architecture as an integral part of the cellular access digital network

    NASA Technical Reports Server (NTRS)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  1. A main path domain map as digital library interface

    NASA Astrophysics Data System (ADS)

    Demaine, Jeffrey

    2009-01-01

    The shift to electronic publishing of scientific journals is an opportunity for the digital library to provide non-traditional ways of accessing the literature. One method is to use citation metadata drawn from a collection of electronic journals to generate maps of science. These maps visualize the communication patterns in the collection, giving the user an easy-tograsp view of the semantic structure underlying the scientific literature. For this visualization to be understandable the complexity of the citation network must be reduced through an algorithm. This paper describes the Citation Pathfinder application and its integration into a prototype digital library. This application generates small-scale citation networks that expand upon the search results of the digital library. These domain maps are linked to the collection, creating an interface that is based on the communication patterns in science. The Main Path Analysis technique is employed to simplify these networks into linear, sequential structures. By identifying patterns that characterize the evolution of the research field, Citation Pathfinder uses citations to give users a deeper understanding of the scientific literature.

  2. Development of a simulated smart pump interface.

    PubMed

    Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus

    2014-01-01

    Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.

  3. Atmosphere, Magnetosphere and Plasmas in Space (AMPS). Spacelab payload definition study. Volume 4, book 2: Labcraft instrument systems general specification

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The interfaces between the scientific instruments and the Spacelab/Labcraft equipment are described. The characteristics of the Spacelab/Labcraft equipment pertinent to the scientific instruments and the requirements placed on the scientific instruments by the Spacelab/Labcraft equipment are described.

  4. CytometryML and other data formats

    NASA Astrophysics Data System (ADS)

    Leif, Robert C.

    2006-02-01

    Cytology automation and research will be enhanced by the creation of a common data format. This data format would provide the pathology and research communities with a uniform way for annotating and exchanging images, flow cytometry, and associated data. This specification and/or standard will include descriptions of the acquisition device, staining, the binary representations of the image and list-mode data, the measurements derived from the image and/or the list-mode data, and descriptors for clinical/pathology and research. An international, vendor-supported, non-proprietary specification will allow pathologists, researchers, and companies to develop and use image capture/analysis software, as well as list-mode analysis software, without worrying about incompatibilities between proprietary vendor formats. Presently, efforts to create specifications and/or descriptions of these formats include the Laboratory Digital Imaging Project (LDIP) Data Exchange Specification; extensions to the Digital Imaging and Communications in Medicine (DICOM); Open Microscopy Environment (OME); Flowcyt, an extension to the present Flow Cytometry Standard (FCS); and CytometryML. The feasibility of creating a common data specification for digital microscopy and flow cytometry in a manner consistent with its use for medical devices and interoperability with both hospital information and picture archiving systems has been demonstrated by the creation of the CytometryML schemas. The feasibility of creating a software system for digital microscopy has been demonstrated by the OME. CytometryML consists of schemas that describe instruments and their measurements. These instruments include digital microscopes and flow cytometers. Optical components including the instruments' excitation and emission parts are described. The description of the measurements made by these instruments includes the tagged molecule, data acquisition subsystem, and the format of the list-mode and/or image data. Many of the CytometryML data-types are based on the Digital Imaging and Communications in Medicine (DICOM). Binary files for images and list-mode data have been created and read.

  5. The Instructional Instrument SL-EDGE Student Library-Educational DiGital Environment.

    ERIC Educational Resources Information Center

    Kyriakopoulou, Antonia; Kalamboukis, Theodore

    An educational digital environment that will provide appropriate methods and techniques for the support and enhancement of the educational and learning process is a valuable tool for both educators and learners. In the context of such a mission, the educational tool SL-EDGE (Student Library-Educational DiGital Environment) has been developed. The…

  6. 76 FR 7882 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation & Control (DI&C) Systems will hold a meeting on February 23, 2011, Room T-2B3, 11545 Rockville Pike, Rockville, Maryland. The...

  7. An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.

    ERIC Educational Resources Information Center

    Caceci, Marco S.

    1984-01-01

    Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…

  8. Research in digital adaptive flight controllers

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  9. Graphical User Interface (GUI) for the Warfighter Physiological Status Monitoring (WPSM) System - U.S. Army Medic Recommendations

    DTIC Science & Technology

    2006-11-01

    WPSM system worn by future Warfighters, the medic will have a personal digital assistant (PDA) equipped with the Battlefield Medical Information...has been hit by a bullet or some other projectile. This information is sent wirelessly to a personal digital assistant (PDA) held by the medic...likely to view this vital sign information on a personal digital assistant (PDA) equipped with the Battlefield Medical Information System – Tactical

  10. Using Commercial Off-the-Shelf Software Tools for Space Shuttle Scientific Software

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Friedland, Peter (Technical Monitor)

    1994-01-01

    In October 1993, the Astronaut Science Advisor (ASA) was on board the STS-58 flight of the space shuttle. ASA is an interactive system providing data acquisition and analysis, experiment step re-scheduling, and various other forms of reasoning. As fielded, the system runs on a single Macintosh PowerBook 170, which hosts the six ASA modules. There is one other piece of hardware, an external (GW Instruments, Sommerville, Massachusetts) analog-to-digital converter connected to the PowerBook's SCSI port. Three main software tools were used: LabVIEW, CLIPS, and HyperCard: First, a module written in LabVIEW (National Instruments, Austin, Texas) controls the A/D conversion and stores the resulting data in appropriate arrays. This module also analyzes the numerical data to produce a small set of characteristic numbers or symbols describing the results of an experiment trial. Second, a forward-chaining inference system written in CLIPS (NASA) uses the symbolic information provided by the first stage with a static rule base to infer decisions about the experiment. This expert system shell is used by the system for diagnosis. The third component of the system is the user interface, written in HyperCard (Claris Inc. and Apple Inc., both in Cupertino, California).

  11. Portable, stand-off spectral imaging camera for detection of effluents and residues

    NASA Astrophysics Data System (ADS)

    Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason

    2015-06-01

    A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.

  12. Focus Your Young Visitors: Kids Innovation--Fundamental Changes in Digital Edutainment.

    ERIC Educational Resources Information Center

    Sauer, Sebastian; Gobel, Stefan

    With regard to the acceptance of human-computer interfaces, immersion represents one of the most important methods for attracting young visitors into museum exhibitions. Exciting and diversely presented content as well as intuitive, natural and human-like interfaces are indispensable to bind users to an interactive system with real and digital…

  13. Controlling suspended samplers by programmable calculator and interface circuitry

    Treesearch

    Rand E. Eads; Mark R. Boolootian

    1985-01-01

    A programmable calculator connected to an interface circuit can control automatic samplers and record streamflow data. The circuit converts a voltage representing water stage to a digital signal. The sampling program logs streamflow data when there is a predefined deviation from a linear trend in the water elevation. The calculator estimates suspended sediment...

  14. Controlling suspended sediment samplers by programmable calculator and interface circuitry

    Treesearch

    Rand E. Eads; Mark R. Boolootian

    1985-01-01

    A programmable calculator connected to an interface circuit can control automatic samplers and record streamflow data. The circuit converts a voltage representing water stage to a digital signal. The sampling program logs streamflow data when there is a predefined deviation from a linear trend in the water elevation. The calculator estimates suspended sediment...

  15. High Speed A/D DSP Interface for Carrier Doppler Tracking

    NASA Technical Reports Server (NTRS)

    Baggett, Timothy

    1998-01-01

    As on-board satellite systems continue to increase in ability to perform self diagnostic checks, it will become more important for satellites to initiate ground communications contact. Currently, the NASA Space Network requires users to pre-arranged times for satellite communications links through the Tracking and Data Relay Satellite (TDRS). One of the challenges in implementing an on-demand access protocol into the Space Network, is the fact that a low Earth orbiting (LEO) satellite's communications will be subject to a doppler shift which is outside the capability of the NASA ground station to lock onto. In a prearranged system, the satellite's doppler is known a priori, and the ground station is able to lock onto the satellite's signal. This paper describes the development of a high speed analog to digital interface into a Digital Signal Processor (DSP). This system will be used for identifying the doppler shift of a LEO satellite through the Space Network, and aiding the ground station equipment in locking onto the signal. Although this interface is specific to one application, it can be used as a basis for interfacing other devices with a DSP.

  16. Spacelab, Spacehab, and Space Station Freedom payload interface projects

    NASA Technical Reports Server (NTRS)

    Smith, Dean Lance

    1992-01-01

    Contributions were made to several projects. Howard Nguyen was assisted in developing the Space Station RPS (Rack Power Supply). The RPS is a computer controlled power supply that helps test equipment used for experiments before the equipment is installed on Space Station Freedom. Ron Bennett of General Electric Government Services was assisted in the design and analysis of the Standard Interface Rack Controller hardware and software. An analysis was made of the GPIB (General Purpose Interface Bus), looking for any potential problems while transmitting data across the bus, such as the interaction of the bus controller with a data talker and its listeners. An analysis was made of GPIB bus communications in general, including any negative impact the bus may have on transmitting data back to Earth. A study was made of transmitting digital data back to Earth over a video channel. A report was written about the study and a revised version of the report will be submitted for publication. Work was started on the design of a PC/AT compatible circuit board that will combine digital data with a video signal. Another PC/AT compatible circuit board is being designed to recover the digital data from the video signal. A proposal was submitted to support the continued development of the interface boards after the author returns to Memphis State University in the fall. A study was also made of storing circuit board design software and data on the hard disk server of a LAN (Local Area Network) that connects several IBM style PCs. A report was written that makes several recommendations. A preliminary design review was started of the AIVS (Automatic Interface Verification System). The summer was over before any significant contribution could be made to this project.

  17. Triaxial digital fluxgate magnetometer for NASA applications explorer mission: Results of tests of critical elements

    NASA Technical Reports Server (NTRS)

    Mcleod, M. G.; Means, J. D.

    1977-01-01

    Tests performed to prove the critical elements of the triaxial digital fluxgate magnetometer design were described. A method for improving the linearity of the analog to digital converter portion of the instrument was studied in detail. A sawtooth waveform was added to the signal being measured before the A/D conversion, and averaging the digital readings over one cycle of the sawtooth. It was intended to reduce bit error nonlinearities present in the A/D converter which could be expected to be as much as 16 gamma if not reduced. No such nonlinearities were detected in the output of the instrument which included the feature designed to reduce these nonlinearities. However, a small scale nonlinearity of plus or minus 2 gamma with a 64 gamma repetition rate was observed in the unit tested. A design improvement intended to eliminate this small scale nonlinearity was examined.

  18. Present status, future prospects of domestic acoustical instruments

    NASA Astrophysics Data System (ADS)

    Guibin, L.

    1984-01-01

    The product lines, specifications, and special features of China's main acoustical instrument products are described. The methods of operation nd the main problems associated with these products are discussed. Examples of the application of acoustical instruments are given. The main features of a digital signal analyzer are enumerated.

  19. A Laboratory-Based System for Managing and Distributing Publically Funded Geochemical Data in a Collaborative Environment

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Brown, A.; Liffers, M.

    2015-12-01

    Publically funded laboratories have a responsibility to generate, archive and disseminate analytical data to the research community. Laboratory managers know however, that a long tail of analytical effort never escapes researchers' thumb drives once they leave the lab. This work reports on a research data management project (Digital Mineralogy Library) where integrated hardware and software systems automatically archive and deliver analytical data and metadata to institutional and community data portals. The scientific objective of the DML project was to quantify the modal abundance of heavy minerals extracted from key lithological units in Western Australia. The selected analytical platform was a TESCAN Integrated Mineral Analyser (TIMA) that uses EDS-based mineral classification software to image and quantify mineral abundance and grain size at micron scale resolution. The analytical workflow used a bespoke laboratory information management system (LIMS) to orchestrate: (1) the preparation of grain mounts with embedded QR codes that serve as enduring links between physical samples and analytical data, (2) the assignment of an International Geo Sample Number (IGSN) and Digital Object Identifier (DOI) to each grain mount via the System for Earth Sample Registry (SESAR), (3) the assignment of a DOI to instrument metadata via Research Data Australia, (4) the delivery of TIMA analytical outputs, including spatially registered mineralogy images and mineral abundance data, to an institutionally-based data management server, and (5) the downstream delivery of a final data product via a Google Maps interface such as the AuScope Discovery Portal. The modular design of the system permits the networking of multiple instruments within a single site or multiple collaborating research institutions. Although sharing analytical data does provide new opportunities for the geochemistry community, the creation of an open data network requires: (1) adopting open data reporting standards and conventions, (2) requiring instrument manufacturers and software developers to deliver and process data in formats compatible with open standards, and (3) public funding agencies to incentivise researchers, laboratories and institutions to make their data open and accessible to consumers.

  20. Installation summary report : GRS instrumentation I-70 over Smith Road.

    DOT National Transportation Integrated Search

    2016-07-04

    This report presents a summary of the I-70 over Smith Road GRS Instrumentation Project (the project) in Aurora, Colorado. The report summarizes the instruments used, installation means and methods, and a discussion on the web-based data interface. CD...

  1. Hybrid Analog/Digital Receiver

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.

    1989-01-01

    Advanced hybrid analog/digital receiver processes intermediate-frequency (IF) signals carrying digital data in form of phase modulation. Uses IF sampling and digital phase-locked loops to track carrier and subcarrier signals and to synchronize data symbols. Consists of three modules: IF assembly, signal-processing assembly, and test-signal assembly. Intended for use in Deep Space Network, but presumably basic design modified for such terrestrial uses as communications or laboratory instrumentation where signals weak and/or noise strong.

  2. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems

    NASA Astrophysics Data System (ADS)

    Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert

    2017-08-01

    Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a computational tool for investigating fundamental questions related to neural dynamics, the sophistication of current neuromorphic systems now allows direct interfaces with large neuronal networks and circuits, resulting in potentially interesting clinical applications for neuroengineering systems, neuroprosthetics and neurorehabilitation.

  3. Update on Common-Cause Failure Experience and Mitigation Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Richard Thomas; Muhlheim, Michael David; Pullum, Laura L

    2014-04-01

    Experience in other industries has shown that digital technology can provide substantial benefits in terms of performance and reliability. However, the U.S. nuclear power industry has been slow to adopt the technology extensively in its instrumentation and control (I&C) applications because of inhibiting factors such as regulatory uncertainty, insufficient technological experience base, implementation complexity, limited availability of nuclear-qualified products and vendors, and inadequate definition of modernization cost recapture. Although there have been examples of digital technology usage in the nuclear power industry, challenges to the qualification of digital technology for high-integrity nuclear power plant (NPP) applications have severely constrained moremore » widespread progress in achieving the benefits that are possible through the transition to digital. The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) established the Advanced Sensors and Instrumentation (ASI) technology area under the Nuclear Energy Enabling Technologies (NEET) Program to coordinate the instrumentation and controls (I&C) research across DOE NE and to identify and lead efforts to address common needs. As part of the NEET ASI research program, the Digital Technology Qualification project was established. Under this project, the Oak Ridge National Laboratory (ORNL) is leading the investigation into mitigation of digital common-cause failure (CCF) vulnerabilities for nuclear-qualified applications. This technical report documents updated and expanded findings from research activities by ORNL. Specifically, the report describes CCF experience in the nuclear and nonnuclear industries, identifies the state of the practice for CCF mitigation through key examples, and presents conclusions from the determination of knowledge gaps.« less

  4. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.

  5. Digitization of medical documents: an X-Windows application for fast scanning.

    PubMed

    Muñoz, A; Salvador, C H; Gonzalez, M A; Dueñas, A

    1992-01-01

    This paper deals with digitization, using a commercial scanner, of medical documents as still images for introduction into a computer-based Information System. Document management involves storing, editing and transmission. This task has usually been approached from the perspective of the difficulties posed by radiologic images because of their indisputable qualitative and quantitative significance. However, healthcare activities require the management of many other types of documents and involve the requirements of numerous users. One key to document management will be the availability of a digitizer to deal with the greatest possible number of different types of documents. This paper describes the relevant aspects of documents and the technical specifications that digitizers must fulfill. The concept of document type is introduced as the ideal set of digitizing parameters for a given document. The use of document type parameters can drastically reduce the time the user spends in scanning sessions. Presentation is made of an application based on Unix, X-Windows and OSF/Motif, with a GPIB interface, implemented around the document type concept. Finally, the results of the evaluation of the application are presented, focusing on the user interface, as well as on the viewing of color images in an X-Windows environment and the use of lossy algorithms in the compression of medical images.

  6. Authentication of digital video evidence

    NASA Astrophysics Data System (ADS)

    Beser, Nicholas D.; Duerr, Thomas E.; Staisiunas, Gregory P.

    2003-11-01

    In response to a requirement from the United States Postal Inspection Service, the Technical Support Working Group tasked The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to develop a technique tha will ensure the authenticity, or integrity, of digital video (DV). Verifiable integrity is needed if DV evidence is to withstand a challenge to its admissibility in court on the grounds that it can be easily edited. Specifically, the verification technique must detect additions, deletions, or modifications to DV and satisfy the two-part criteria pertaining to scientific evidence as articulated in Daubert et al. v. Merrell Dow Pharmaceuticals Inc., 43 F3d (9th Circuit, 1995). JHU/APL has developed a prototype digital video authenticator (DVA) that generates digital signatures based on public key cryptography at the frame level of the DV. Signature generation and recording is accomplished at the same time as DV is recorded by the camcorder. Throughput supports the consumer-grade camcorder data rate of 25 Mbps. The DVA software is implemented on a commercial laptop computer, which is connected to a commercial digital camcorder via the IEEE-1394 serial interface. A security token provides agent identification and the interface to the public key infrastructure (PKI) that is needed for management of the public keys central to DV integrity verification.

  7. [Mechatronic in functional endoscopic sinus surgery. First experiences with the daVinci Telemanipulatory System].

    PubMed

    Strauss, G; Winkler, D; Jacobs, S; Trantakis, C; Dietz, A; Bootz, F; Meixensberger, J; Falk, V

    2005-07-01

    This study examines the advantages and disadvantages of a commercial telemanipulator system (daVinci, Intuitive Surgical, USA) with computer-guided instruments in functional endoscopic sinus surgery (FESS). We performed five different surgical FESS steps on 14 anatomical preparation and compared them with conventional FESS. A total of 140 procedures were examined taking into account the following parameters: degrees of freedom (DOF), duration , learning curve, force feedback, human-machine-interface. Telemanipulatory instruments have more DOF available then conventional instrumentation in FESS. The average time consumed by configuration of the telemanipulator is around 9+/-2 min. Missing force feedback is evaluated mainly as a disadvantage of the telemanipulator. Scaling was evaluated as helpful. The ergonomic concept seems to be better than the conventional solution. Computer guided instruments showed better results for the available DOF of the instruments. The human-machine-interface is more adaptable and variable then in conventional instrumentation. Motion scaling and indexing are characteristics of the telemanipulator concept which are helpful for FESS in our study.

  8. Ultrasonic interface level analyzer shop test procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAEHR, T.W.

    1999-05-24

    The Royce Instrument Corporation Model 2511 Interface Level Analyzer (URSILLA) system uses an ultrasonic ranging technique (SONAR) to measure sludge depths in holding tanks. Three URSILLA instrument assemblies provided by the W-151 project are planned to be used during mixer pump testing to provide data for determining sludge mobilization effectiveness of the mixer pumps and sludge settling rates. The purpose of this test is to provide a documented means of verifying that the functional components of the three URSILLA instruments operate properly. Successful completion of this Shop Test Procedure (STP) is a prerequisite for installation in the AZ-101 tank. Themore » objective of the test is to verify the operation of the URSILLA instruments and to verify data collection using a stand alone software program.« less

  9. Electro-optical processing of phased array data

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1973-01-01

    An on-line spatial light modulator for application as the input transducer for a real-time optical data processing system is described. The use of such a device in the analysis and processing of radar data in real time is reported. An interface from the optical processor to a control digital computer was designed, constructed, and tested. The input transducer, optical system, and computer interface have been operated in real time with real time radar data with the input data returns recorded on the input crystal, processed by the optical system, and the output plane pattern digitized, thresholded, and outputted to a display and storage in the computer memory. The correlation of theoretical and experimental results is discussed.

  10. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    PubMed

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  11. Educational Reports That Scale across Users and Data

    ERIC Educational Resources Information Center

    Rolleston, Rob; Howe, Richard; Sprague, Mary Ann

    2015-01-01

    The field of education is undergoing fundamental change with the growing use of data. Fine-scale data collection at the item-response level is now possible. Xerox has developed a system that bridges the paper-to-digital divide by providing the well-established and easy-to-use paper interface to students, but digitizes the responses for scoring,…

  12. Digital data, composite video multiplexer and demultiplexer boards for an IBM PC/AT compatible computer

    NASA Technical Reports Server (NTRS)

    Smith, Dean Lance

    1993-01-01

    Work continued on the design of two IBM PC/AT compatible computer interface boards. The boards will permit digital data to be transmitted over a composite video channel from the Orbiter. One board combines data with a composite video signal. The other board strips the data from the video signal.

  13. Power to the People: End-User Building of Digital Library Collections.

    ERIC Educational Resources Information Center

    Witten, Ian H.; Bainbridge, David; Boddie, Stefan J.

    Digital library systems focus principally on the reader: the consumer of the material that constitutes the library. In contrast, this paper describes an interface that makes it easy for people to build their own library collections. Collections may be built and served locally from the user's own Web server, or (given appropriate permissions)…

  14. Student Teachers' Discourse about Digital Technologies and Transitions between Formal and Informal Learning Contexts

    ERIC Educational Resources Information Center

    Pöntinen, Susanna; Dillon, Patrick; Väisänen, Pertti

    2017-01-01

    This research is a contribution to issues of digital technology use at the interface of formal and informal learning contexts. The research was conducted in the discourse tradition and investigates Finnish teacher training students' 'manners of speaking' as resources for, and obstacles to, making pedagogical changes in response to the potential of…

  15. Taking a Closer Look.

    ERIC Educational Resources Information Center

    Reynolds, Karen

    1996-01-01

    Outlines benefits of integrating optical instruments in computer-based instructional systems in a science classroom including budget, immediacy, pictorial records, and graphic enhancement. Presents examples of investigative activities involving optical instruments and images digitized for computer-based manipulation. (JRH)

  16. Development and evaluation of a new digital photography visiometer system for automated visibility observation

    NASA Astrophysics Data System (ADS)

    Wang, Jingli; Liu, Xulin; Yang, Xihua; Lei, Ming; Ruan, Shunxian; Nie, Kai; Miao, Yupeng; Liu, Jincheng

    2014-04-01

    Visibility information is fundamental in aviation, navigation, land transportation, air quality and dust storm monitoring, and military activities which often require frequent and accurate real-time observation of visibility. The traditional manual observation, the primary means to obtain visibility information by human eyes, is subjective, inconsistent and costly. Instrumental observation (or traditional optical instrument) has overcome some of these limitations, but it is difficult to obtain correct visibility information in a complicated atmospheric (e.g. rainy and foggy) environment. We developed a new visibility instrument, digital photography visiometer system (DPVS), equipped with advanced digital photographic technology including high-resolution charge-coupled-device camera and computer. The new DPVS imitates the human eye observation and accurately calculates the visibility based on its definition and observational principles. We compared the results of the new DPVS with those from a forward scattering visibility instrument (FD12) and manual visibility observations in various (rainy, non-rainy, foggy) weather conditions. The comparative results show that the new DPVS, FD12, and manual observation have the same trend of change, but the observation from the new DPVS is closer to that from the manual observations in rainy days or complicated weather conditions. Our study demonstrates that the new DVPS is superior to the optical visibility instrument and can be used for automated visibility observations under all weather conditions.

  17. Test method research on weakening interface strength of steel - concrete under cyclic loading

    NASA Astrophysics Data System (ADS)

    Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan

    2018-02-01

    The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.

  18. WinTICS-24 --- A Telescope Control Interface for MS Windows

    NASA Astrophysics Data System (ADS)

    Hawkins, R. Lee

    1995-12-01

    WinTICS-24 is a telescope control system interface and observing assistant written in Visual Basic for MS Windows. It provides the ability to control a telescope and up to 3 other instruments via the serial ports on an IBM-PC compatible computer, all from one consistent user interface. In addition to telescope control, WinTICS contains an observing logbook, trouble log (which can automatically email its entries to a responsible person), lunar phase display, object database (which allows the observer to type in the name of an object and automatically slew to it), a time of minimum calculator for eclipsing binary stars, and an interface to the Guide CD-ROM for bringing up finder charts of the current telescope coordinates. Currently WinTICS supports control of DFM telescopes, but is easily adaptable to other telescopes and instrumentation.

  19. An Experimental Investigation of Acoustic Cavitation in Gaseous Liquids

    DTIC Science & Technology

    1990-11-08

    a time-to-amplitude converter and an analog-to- digital data acquisition system based on a microcomputer. IL B. Acoustic Levitation Apparatus L...reading the RMS -ioltage from a Fluke 8600A digital multimeter to which the pill transducer was connected. This voltage was read via a GPIB interface by...micrometer microscope model M110A was used. The rise-time was measured with a digital timer which was activated by the same push-button switch used to turn

  20. Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System

    DTIC Science & Technology

    2015-03-26

    camera model. Light reflected or projected from objects in the scene of the outside world is taken in by the aperture (or opening) shaped as a double...model’s analog aspects with an analog-to-digital interface converting raw images of the outside world scene into digital information a computer can use to...Figure 2.7. Digital Image Coordinate System. Used with permission [30]. Angular Field of View. The angular field of view is the angle of the world scene

  1. Research study on IPS digital controller design

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Folkerts, C.

    1976-01-01

    The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.

  2. AGARD Flight Test Instrumentation Series. Volume 19. Digital Signal Conditioning for Flight Test. (Le Traitement du Signal Numerique pour les Essais n Vol)

    DTIC Science & Technology

    1991-06-01

    intensive systems, including the use of onboard digital computers. Topics include: measurements that are digital in origin, sampling, encoding, transmitting...Individuals charged with designing aircraft measuring systems to become better acquainted with new solutions to their requirements. This volume Is...concerned with aircraft measuring systems as related to flight test and flight research. Measure - ments that are digital in origin or that must be

  3. Advanced system on a chip microelectronics for spacecraft and science instruments

    NASA Astrophysics Data System (ADS)

    Paschalidis, Nikolaos P.

    2003-01-01

    The explosive growth of the modern microelectronics field opens new horizons for the development of new lightweight, low power, and smart spacecraft and science instrumentation systems in the new millennium explorations. Although this growth is mostly driven by the commercial need for low power, portable and computationally intensive products, the applicability is obvious in the space sector. The additional difficulties needed to be overcome for applicability in space include radiation hardness for total ionizing dose and single event effects (SEE), and reliability. Additionally, this new capability introduces a whole new philosophy of design and R&D, with strong implications in organizational and inter-agency program management. One key component specifically developed towards low power, small size, highly autonomous spacecraft systems, is the smart sensor remote input/output (TRIO) chip. TRIO can interface to 32 transducers with current sources/sinks and voltage sensing. It includes front-end analog signal processing, a 10-bit ADC, memory, and standard serial and parallel I/Os. These functions are very useful for spacecraft and subsystems health and status monitoring, and control actions. The key contributions of the TRIO are feasibility of modular architectures, elimination of several miles of wire harnessing, and power savings by orders of magnitude. TRIO freely operates from a single power supply 2.5- 5.5 V with power dissipation <10 mW. This system on a chip device rapidly becomes a NASA and Commercial Space standard as it is already selected by thousands in several new millennium missions, including Europa Orbiter, Mars Surveyor Program, Solar Probe, Pluto Express, Stereo, Contour, Messenger, etc. In the Science Instrumentation field common instruments that can greatly take advantage of the new technologies are: energetic-particle/plasma and wave instruments, imagers, mass spectrometers, X-ray and UV spectrographs, magnetometers, laser rangefinding instruments, etc. Common measurements that apply to many of these instruments are precise time interval measurement and high resolution read-out of solid state detectors. A precise time interval measurement chip was specially developed that achieves ˜100 ps (×10 improvement) time resolution at a power dissipation ˜20 mW (×50 improvement), dead time ˜1.5 μs (×20 improvement), and chip die size 5 mm×5 mm versus two 20 cm×20 cm doubled sided boards. This device is selected as a key enabling technology for several NASA particle, delay line imaging, and laser range finding instruments onboard (NASA Image, Messenger, etc. missions). Another device with universal application is radiation energy read-out from solid state detectors. Multi-channel low-power and end-to-end sensor input—digital output is key for the new generation instruments. The readout channel comprises of a Charge Sensitive Preamplifier with a target sensitivity of ˜1 KeV FWHM at 20 pf detector capacitance, a Shaper Amplifier with programmable time constant/gain, and an ADC. The read-out chip together with the precise time interval chip comprises the essential elements of a common particle spectroscopy instrument. To mention some more applications fast-signal acquisition—and digitization is a very useful function for a category of instrument such as mass spectroscopy and profile laser rangefinding. The single chip approach includes a high bandwidth preamplifier, fast sampling ˜5 ns, analog memory ˜10K locations, 12-bit ADC and serial/parallel I/Os. The wealth of the applications proves the advanced microelectronics field as a key enabling technology for the new millennium space exploration.

  4. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  5. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  6. A personal digital assistant application (MobilDent) for dental fieldwork data collection, information management and database handling.

    PubMed

    Forsell, M; Häggström, M; Johansson, O; Sjögren, P

    2008-11-08

    To develop a personal digital assistant (PDA) application for oral health assessment fieldwork, including back-office and database systems (MobilDent). System design, construction and implementation of PDA, back-office and database systems. System requirements for MobilDent were collected, analysed and translated into system functions. User interfaces were implemented and system architecture was outlined. MobilDent was based on a platform with. NET (Microsoft) components, using an SQL Server 2005 (Microsoft) for data storage with Windows Mobile (Microsoft) operating system. The PDA devices were Dell Axim. System functions and user interfaces were specified for MobilDent. User interfaces for PDA, back-office and database systems were based on. NET programming. The PDA user interface was based on Windows suitable to a PDA display, whereas the back-office interface was designed for a normal-sized computer screen. A synchronisation module (MS Active Sync, Microsoft) was used to enable download of field data from PDA to the database. MobilDent is a feasible application for oral health assessment fieldwork, and the oral health assessment database may prove a valuable source for care planning, educational and research purposes. Further development of the MobilDent system will include wireless connectivity with download-on-demand technology.

  7. Avatars and virtual agents – relationship interfaces for the elderly

    PubMed Central

    2017-01-01

    In the Digital Era, the authors witness a change in the relationship between the patient and the care-giver or Health Maintenance Organization's providing the health services. Another fact is the use of various technologies to increase the effectiveness and quality of health services across all primary and secondary users. These technologies range from telemedicine systems, decision making tools, online and self-services applications and virtual agents; all providing information and assistance. The common thread between all these digital implementations, is they all require human machine interfaces. These interfaces must be interactive, user friendly and inviting, to create user involvement and cooperation incentives. The challenge is to design interfaces which will best fit the target users and enable smooth interaction especially, for the elderly users. Avatars and Virtual Agents are one of the interfaces used for both home care monitoring and companionship. They are also inherently multimodal in nature and allow an intimate relation between the elderly users and the Avatar. This study discusses the need and nature of these relationship models, the challenges of designing for the elderly. The study proposes key features for the design and evaluation in the area of assistive applications using Avatar and Virtual agents for the elderly users. PMID:28706725

  8. Interfacing the PACS and the HIS: results of a 5-year implementation.

    PubMed

    Kinsey, T V; Horton, M C; Lewis, T E

    2000-01-01

    An interface was created between the Department of Defense's hospital information system (HIS) and its two picture archiving and communication system (PACS)-based radiology information systems (RISs). The HIS is called the Composite Healthcare Computer System (CHCS), and the RISs are called the Medical Diagnostic Imaging System (MDIS) and the Digital Imaging Network (DIN)-PACS. Extensive mapping between dissimilar data protocols was required to translate data from the HIS into both RISs. The CHCS uses a Health Level 7 (HL7) protocol, whereas the MDIS uses the American College of Radiology-National Electrical Manufacturers Association 2.0 protocol and the DIN-PACS uses the Digital Imaging and Communications in Medicine (DICOM) 3.0 protocol. An interface engine was required to change some data formats, as well as to address some nonstandard HL7 data being output from the CHCS. In addition, there are differences in terminology between fields and segments in all three protocols. This interface is in use at 20 military facilities throughout the world. The interface reduces the amount of manual entry into more than one automated system to the smallest level possible. Data mapping during installation saved time, improved productivity, and increased user acceptance during PACS implementation. It also resulted in more standardized database entries in both the HIS (CHCS) and the RIS (PACS).

  9. CARMENES. IV: instrument control software

    NASA Astrophysics Data System (ADS)

    Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Hagen, Hans-Jürgen; Morales, Rafael; Abril, Miguel; Galadí-Enríquez, David; Seifert, Walter; Sánchez Carrasco, Miguel A.; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, Jose A.; Mandel, Holger

    2012-09-01

    The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.

  10. Exploratory Usability Testing of User Interface Options in LibGuides 2

    ERIC Educational Resources Information Center

    Thorngate, Sarah; Hoden, Allison

    2017-01-01

    Online research guides offer librarians a way to provide digital researchers with point-of-need support. If these guides are to support student learning well, it is critical that they provide an effective user experience. This article details the results of an exploratory comparison study that tested three key user interface options in LibGuides…

  11. Superconductive Microwave Single-Flux-Quantum Digital Circuits and Corresponding Opto-Electronic Interfaces: On-Going Studies and First Experimental Results

    DTIC Science & Technology

    2005-07-13

    UHLMANN University of Technology Ilmenau– PO Box 105565 – D-98684 Ilmenau - Germany RESUME : Les circuits numériques supraconducteurs micro-ondes...circuits RSFQ. Ce banc de mesure comporte deux types d’interfaces opto-RSFQ, basées sur des matériaux semiconducteurs et supraconducteurs , respectivement

  12. Interface Electronic Circuitry for an Electronic Tongue

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Buehler, Martin

    2007-01-01

    Electronic circuitry has been developed to serve as an interface between an electronic tongue and digital input/output boards in a laptop computer that is used to control the tongue and process its readings. Electronic tongues can be used for a variety of purposes, including evaluating water quality, analyzing biochemicals, analyzing biofilms, and measuring electrical conductivities of soils.

  13. Replantation of digits - series (image)

    MedlinePlus

    Digital nerves and vessels are repaired with microsurgical instruments. This part of the surgery is most critical to its success. The skin is then closed. A bulky dressing is applied. Young children may have a cast applied to protect the area from injury.

  14. Crystal Phase Quantum Well Emission with Digital Control.

    PubMed

    Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M

    2017-10-11

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

  15. Control Board Digital Interface Input Devices – Touchscreen, Trackpad, or Mouse?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas A. Ulrich; Ronald L. Boring; Roger Lew

    The authors collaborated with a power utility to evaluate input devices for use in the human system interface (HSI) for a new digital Turbine Control System (TCS) at a nuclear power plant (NPP) undergoing a TCS upgrade. A standalone dynamic software simulation of the new digital TCS and a mobile kiosk were developed to conduct an input device study to evaluate operator preference and input device effectiveness. The TCS software presented the anticipated HSI for the TCS and mimicked (i.e., simulated) the turbine systems’ responses to operator commands. Twenty-four licensed operators from the two nuclear power units participated in themore » study. Three input devices were tested: a trackpad, mouse, and touchscreen. The subjective feedback from the survey indicates the operators preferred the touchscreen interface. The operators subjectively rated the touchscreen as the fastest and most comfortable input device given the range of tasks they performed during the study, but also noted a lack of accuracy for selecting small targets. The empirical data suggest the mouse input device provides the most consistent performance for screen navigation and manipulating on screen controls. The trackpad input device was both empirically and subjectively found to be the least effective and least desired input device.« less

  16. Flexible software architecture for user-interface and machine control in laboratory automation.

    PubMed

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  17. A rotor-mounted digital instrumentation system for helicopter blade flight research measurements

    NASA Technical Reports Server (NTRS)

    Knight, V. H., Jr.; Haywood, W. S., Jr.; Williams, M. L.

    1978-01-01

    A rotor mounted flight instrumentation system developed for helicopter rotor blade research is described. The system utilizes high speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested on an AH-1G helicopter. The system employs microelectronic pulse code modulation (PCM) multiplexer digitizer stations located remotely on the blade and in a hub mounted metal canister. As many as 25 sensors can be remotely digitized by a 2.5 mm thick electronics package mounted on the blade near the tip to reduce blade wiring. The electronics contained in the canister digitizes up to 16 sensors, formats these data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data are transmitted over an RF link to the ground for real time monitoring and to the helicopter fuselage for tape recording. The complete system is powered by batteries located in the canister and requires no slip rings on the rotor shaft.

  18. Rescue and Calibration of NIMBUS 1-4 IR Film Products, 1964 TO 1972

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Campbell, G. G.

    2017-12-01

    Digital data exists from the high resolution infrared instruments on Nimbus 1 to 4 for about 1/4 of the possible orbits for parts of 1964, 1966, 1969 and 1970. We are now digitizing and navigating 35 mm film products from those instruments into digital files. Some of those orbits overlap with the digital data so we can "calibrate" the gray scale pictures into temperatures by comparison. Then that calibration can be extended to orbits with no digital data. This greatly improves the coverage of the night time IR view of the earth. Ultimately these data will be inserted into the NASA archive for general use. We will review our progress on this project and discuss an error estimate for the calibration of the HRIR (High Resolution Infrared Radiometer) data from Nimbus 1, 2 and 3 as well as the THIR (Thermal Infrared Radiometer) data on Nimbus 4. These more complete Infrared views of the Earth provide the opportunity to better understand the weather in this period. Comparisons will be made with pre-satellite era reanalysis products.

  19. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  20. The PRo3D View Planner - interactive simulation of Mars rover camera views to optimise capturing parameters

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Ortner, Thomas; Hesina, Gerd; Barnes, Robert; Gupta, Sanjeev; Paar, Gerhard

    2017-04-01

    High resolution Digital Terrain Models (DTM) and Digital Outcrop Models (DOM) are highly useful for geological analysis and mission planning in planetary rover missions. PRo3D, developed as part of the EU-FP7 PRoViDE project, is a 3D viewer in which orbital DTMs and DOMs derived from rover stereo imagery can be rendered in a virtual environment for exploration and analysis. It allows fluent navigation over planetary surface models and provides a variety of measurement and annotation tools to complete an extensive geological interpretation. A key aspect of the image collection during planetary rover missions is determining the optimal viewing positions of rover instruments from different positions ('wide baseline stereo'). For the collection of high quality panoramas and stereo imagery the visibility of regions of interest from those positions, and the amount of common features shared by each stereo-pair, or image bundle is crucial. The creation of a highly accurate and reliable 3D surface, in the form of an Ordered Point Cloud (OPC), of the planetary surface, with a low rate of error and a minimum of artefacts, is greatly enhanced by using images that share a high amount of features and a sufficient overlap for wide baseline stereo or target selection. To support users in the selection of adequate viewpoints an interactive View Planner was integrated into PRo3D. The users choose from a set of different rovers and their respective instruments. PRo3D supports for instance the PanCam instrument of ESA's ExoMars 2020 rover mission or the Mastcam-Z camera of NASA's Mars2020 mission. The View Planner uses a DTM obtained from orbiter imagery, which can also be complemented with rover-derived DOMs as the mission progresses. The selected rover is placed onto a position on the terrain - interactively or using the current rover pose as known from the mission. The rover's base polygon and its local coordinate axes, and the chosen instrument's up- and forward vectors are visualised. The parameters of the instrument's pan and tilt unit (PTU) can be altered via the user interface, or alternatively calculated by selecting a target point on the visualised DTM. In the 3D view, the visible region of the planetary surface, resulting from these settings and the camera field-of-view is visualised by a highlighted region with a red border, representing the instruments footprint. The camera view is simulated and rendered in a separate window and PTU parameters can be interactively adjusted, allowing viewpoints, directions, and the expected image to be visualised in real-time in order to allow users the fine-tuning of these settings. In this way, ideal viewpoints and PTU settings for various rover models and instruments can efficiently be defined, resulting in an optimum imagery of the regions of interest.

Top