Sample records for instrumentation mri program

  1. 75 FR 63517 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... days a year (including Federal holidays). SUPPLEMENTARY INFORMATION: Title: Major Research... applicable. Abstract The Major Research Instrumentation Program (MRI) catalyzes new knowledge and discoveries by providing the Nation's scientists and engineers with state-of-the-art research instrumentation...

  2. Aircraft data summaries for the SURE intensives. Final report. [Sampling done July 1978 near Duncan Falls, Ohio and Scranton, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keifer, W.S.; Blumenthal, D.L.; Tommerdahl, J.B.

    1981-09-01

    As part of the EPRI sulfate regional experiment (SURE), Meteorology Research, Inc., (MRI) and Research Triangle Institute (RTI) conducted six air quality sampling programs in the eastern United States using instrumented aircraft. This volume includes the air quality and meteorological data obtained during the July 1978 Intensive when MRI sampled near the Duncan Falls, Ohio, SURE Station and RTI sampled near the Scranton, Pennsylvania, SURE Station. During the last part of the July 1978 sampling period, both MRI and RTI aircraft participated in a large regional-scale sampling program with Brookhaven National Laboratory (BNL) and Pacific Northwest Laboratory (PNL). Only themore » data obtained by the MRI and RTI aircraft during this regional-scale sapling program are included in this volume.« less

  3. Aircraft data summaries for the SURE intensives. Final report. [Sampling done August 1977 near Rockport, Indiana and Duncan Falls, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumenthal, D.L.; Tommerdahl, J.B.; McDonald, J.A.

    1981-09-01

    As part of the EPRI sulfate regional experiment (SURE), Meteorology Research, Inc., (MRI) and Research Triangle Institute (RTI) conducted six air quality sampling programs in the eastern United States using instrumented aircraft. This volume includes the air quality and meteorological data obtained during the August 1977 Intensive when MRI sampled near the Rockport, Indiana, SURE Station and RTI sampled near the Duncan Falls, Ohio, SURE Station. Sampling data are presented for all measured parameters.

  4. A Training Program in Breast Cancer Research Using NMR Techniques

    DTIC Science & Technology

    2004-07-01

    student from Biochemistry) and three postdoctoral fellows. The new students have been introduced to the Biomedical NMR Laboratory and the Howard ... University Cancer Center. The trainees have continued to learn the theories and instrumentation behind nuclear MRI. The trainees have rotated through the

  5. Aircraft data summaries for the SURE intensives. Final report. [Data obtained during January/February 1978 near Duncan Falls, Ohio and Lewisburg, Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keifer, W.S.; Blumenthal, D.L.; Tommerdahl, J.B.

    1981-09-01

    As part of the EPRI sulfate regional experiment (SURE), Meteorology Research, Inc., (MRI) and Research Triangle Institute (RTI) conducted six air quality sampling programs in the eastern United States using instrumented aircraft. This volume includes the air quality and meteorological data obtained during the January/February 1978 Intensive when MRI sampled near the Duncan Falls, Ohio, SURE Station and RTI sampled near the Lewisburg, Virginia, SURE Station. Sampling data are presented for all measured parameters.

  6. Aircraft data summaries for the SURE intensives. Final report. [Sampling done October, 1978 near Duncan Falls, Ohio and Giles County, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keifer, W.S.; Blumenthal, D.L.; Tommerdahl, J.B.

    1981-09-01

    As part of the EPRI sulfate regional experiment (SURE), Meteorology Research, Inc., (MRI) and Research Triangle Institute (RTI) conducted six air quality sampling programs in the eastern United States using instrumented aircraft. This volume includes the air quality and meteorological data obtained during the October 1978 intensive when MRI sampled near the Giles County, Tennessee, SURE Station and RTI sampled near the Duncan Falls, Ohio, SURE Station. Sampling data are presented for all measured parameters.

  7. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  8. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  9. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agraz, Jose, E-mail: joseagraz@ucla.edu; Grunfeld, Alexander; Li, Debiao

    2014-04-15

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ({sup 13}C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B{sub o}), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures.more » Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of {sup 13}C based endogenous contrast agents used in molecular imaging.« less

  10. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  11. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRImore » are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.« less

  12. Platform for Automated Real-Time High Performance Analytics on Medical Image Data.

    PubMed

    Allen, William J; Gabr, Refaat E; Tefera, Getaneh B; Pednekar, Amol S; Vaughn, Matthew W; Narayana, Ponnada A

    2018-03-01

    Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.

  13. ChickScope: An Interactive MRI Classroom Curriculum Innovation for K-12.

    ERIC Educational Resources Information Center

    Bruce, B. C.; Carragher, B. O.; Damon, B. M.; Dawson, M. J.; Eurell, J. A.; Gregory, C. D.; Lauterbur, P. C.; Marjanovic, M. M.; Mason-Fossum, B.; Morris, H. D.; Potter, C. S.; Thakkar, U.

    1997-01-01

    Describes ChickScope, a 21-day chick embryonic development project, to demonstrate the remote control of a magnetic resonance imaging (MRI) instrument through the World Wide Web. Topics include remote instrumentation and the Web, teacher-based implementation, impact in elementary and secondary school classrooms, and future directions. (Author/LRW)

  14. WE-EF-BRD-00: New Developments in Hybrid MR-Treatment: Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less

  15. Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report.

    PubMed

    Steinmeier, R; Fahlbusch, R; Ganslandt, O; Nimsky, C; Buchfelder, M; Kaus, M; Heigl, T; Lenz, G; Kuth, R; Huk, W

    1998-10-01

    Intraoperative magnetic resonance imaging (MRI) is now available with the General Electric MRI system for dedicated intraoperative use. Alternatively, non-dedicated MRI systems require fewer specific adaptations of instrumentation and surgical techniques. In this report, clinical experiences with such a system are presented. All patients were surgically treated in a "twin operating theater," consisting of a conventional operating theater with complete neuronavigation equipment (StealthStation and MKM), which allowed surgery with magnetically incompatible instruments, conventional instrumentation and operating microscope, and a radiofrequency-shielded operating room designed for use with an intraoperative MRI scanner (Magnetom Open; Siemens AG, Erlangen, Germany). The Magnetom Open is a 0.2-T MRI scanner with a resistive magnet and specific adaptations that are necessary to integrate the scanner into the surgical environment. The operating theaters lie close together, and patients can be intraoperatively transported from one room to the other. This retrospective analysis includes 55 patients with cerebral lesions, all of whom were surgically treated between March 1996 and September 1997. Thirty-one patients with supratentorial tumors were surgically treated (with navigational guidance) in the conventional operating room, with intraoperative MRI for resection control. For 5 of these 31 patients, intraoperative resection control revealed significant tumor remnants, which led to further tumor resection guided by the information provided by intraoperative MRI. Intraoperative MRI resection control was performed in 18 transsphenoidal operations. In cases with suspected tumor remnants, the surgeon reexplored the sellar region; additional tumor tissue was removed in three of five cases. Follow-up scans were obtained for all patients 1 week and 2 to 3 months after surgery. For 14 of the 18 patients, the images obtained intraoperatively were comparable to those obtained after 2 to 3 months. Intraoperative MRI was also used for six patients undergoing temporal lobe resections for treatment of pharmacoresistant seizures. For these patients, the extent of neocortical and mesial resection was tailored to fit the preoperative findings of morphological and electrophysiological alterations, as well as intraoperative electrocorticographic findings. Intraoperative MRI with the Magnetom Open provides considerable additional information to optimize resection during surgical treatment of supratentorial tumors, pituitary adenomas, and epilepsy. The twin operating theater is a true alternative to a dedicated MRI system. Additional efforts are necessary to improve patient transportation time and instrument guidance within the scanner.

  16. WE-EF-BRD-04: MR in the OR: The Growth and Applications of MRI for Interventional Radiology and Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahrig, R.

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less

  17. WE-EF-BRD-02: Battling Maxwell’s Equations: Physics Challenges and Solutions for Hybrid MRI Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keall, P.

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less

  18. WE-EF-BRD-01: Past, Present and Future: MRI-Guided Radiotherapy From 2005 to 2025

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagendijk, J.

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less

  19. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  20. WE-EF-BRD-03: I Want It Now!: Advances in MRI Acquisition, Reconstruction and the Use of Priors to Enable Fast Anatomic and Physiologic Imaging to Inform Guidance and Adaptation Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Y.

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less

  1. Implant positioning in TKA: comparison between conventional and patient-specific instrumentation.

    PubMed

    Ferrara, Ferdinando; Cipriani, Antonio; Magarelli, Nicola; Rapisarda, Santi; De Santis, Vincenzo; Burrofato, Aaron; Leone, Antonio; Bonomo, Lorenzo

    2015-04-01

    The number of total knee arthroplasty (TKA) procedures continuously increases, with good to excellent results. In the last few years, new surgical techniques have been developed to improve prosthesis positioning. In this context, patient-specific instrumentation is included. The goal of this study was to compare the perioperative parameters and the spatial positioning of prosthetic components in TKA procedures performed with patient-specific instrumentation vs traditional TKA. In this prospective comparative randomized study, 15 patients underwent TKA with 3-dimensional magnetic resonance imaging (MRI) preoperative planning (patient-specific instrumentation group) and 15 patients underwent traditional TKA (non-patient-specific instrumentation group). All patients underwent postoperative computed tomography (CT) examination. In the patient-specific instrumentation group, preoperative data planning regarding femoral and tibial bone resection was correlated with intraoperative measurements. Surgical time, length of hospitalization, and intraoperative and postoperative bleeding were compared between the 2 groups. Positioning of implants on postoperative CT was assessed for both groups. Data planned with 3-dimensional MRI regarding the depth of bone cuts showed good to excellent correlation with intraoperative measurements. The patient-specific instrumentation group showed better perioperative outcomes and good correlation between the spatial positioning of prosthetic components planned preoperatively and that seen on postoperative CT. Less variability was found in the patient-specific instrumentation group than in the non-patient-specific instrumentation group in spatial orientation of prosthetic components. Preoperative planning with 3-dimensional MRI in TKA has a better perioperative outcome compared with the traditional method. Use of patient-specific instrumentation can also improve the spatial positioning of both prosthetic components. Copyright 2015, SLACK Incorporated.

  2. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor)

    2013-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  3. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2014-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  4. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2011-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  5. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)

    2010-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  6. Human brain MRI at 500 MHz, scientific perspectives and technological challenges

    NASA Astrophysics Data System (ADS)

    Le Bihan, Denis; Schild, Thierry

    2017-03-01

    The understanding of the human brain is one of the main scientific challenges of the 21st century. In the early 2000s the French Alternative Energies and Atomic Energy Commission launched a program to conceive and build a ‘human brain explorer’, the first human MRI scanner operating at 11.7 T. This scanner was envisioned to be part of the ambitious French-German project Iseult, bridging together industrial and academic partners to push the limits of molecular neuroimaging, from mouse to man, using ultra-high field MRI. In this article we provide a summary of the main neuroscience and medical targets of the Iseult project, mainly to acquire within timescales compatible with human tolerances images at a scale of 100 μm at which everything remains to discover, and to create new approaches to develop new imaging biomarkers for specific neurological and psychiatric disorders. The system specifications, the technological challenges, in terms of magnet design, winding technology, cryogenics, quench protection, stability control, and the solutions which have been chosen to overcome them and build this outstanding instrument are provided. Lines of the research and development which will be necessary to fully exploit the potential of this and other UHF MRI scanners are also outlined.

  7. Presurgical language fMRI: Clinical practices and patient outcomes in epilepsy surgical planning.

    PubMed

    Benjamin, Christopher F A; Li, Alexa X; Blumenfeld, Hal; Constable, R Todd; Alkawadri, Rafeed; Bickel, Stephan; Helmstaedter, Christoph; Meletti, Stefano; Bronen, Richard; Warfield, Simon K; Peters, Jurriaan M; Reutens, David; Połczyńska, Monika; Spencer, Dennis D; Hirsch, Lawrence J

    2018-03-12

    The goal of this study was to document current clinical practice and report patient outcomes in presurgical language functional MRI (fMRI) for epilepsy surgery. Epilepsy surgical programs worldwide were surveyed as to the utility, implementation, and efficacy of language fMRI in the clinic; 82 programs responded. Respondents were predominantly US (61%) academic programs (85%), and evaluated adults (44%), adults and children (40%), or children only (16%). Nearly all (96%) reported using language fMRI. Surprisingly, fMRI is used to guide surgical margins (44% of programs) as well as lateralize language (100%). Sites using fMRI for localization most often use a distance margin around activation of 10mm. While considered useful, 56% of programs reported at least one instance of disagreement with other measures. Direct brain stimulation typically confirmed fMRI findings (74%) when guiding margins, but instances of unpredicted decline were reported by 17% of programs and 54% reported unexpected preservation of function. Programs reporting unexpected decline did not clearly differ from those which did not. Clinicians using fMRI to guide surgical margins do not typically map known language-critical areas beyond Broca's and Wernicke's. This initial data shows many clinical teams are confident using fMRI not only for language lateralization but also to guide surgical margins. Reported cases of unexpected language preservation when fMRI activation is resected, and cases of language decline when it is not, emphasize a critical need for further validation. Comprehensive studies comparing commonly-used fMRI paradigms to predict stimulation mapping and post-surgical language decline remain of high importance. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  8. Low-field MRI of laser polarized noble gas

    NASA Technical Reports Server (NTRS)

    Tseng, C. H.; Wong, G. P.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.

    1998-01-01

    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems.

  9. Advances in PET/MR instrumentation and image reconstruction.

    PubMed

    Cabello, Jorge; Ziegler, Sibylle I

    2018-01-01

    The combination of positron emission tomography (PET) and MRI has attracted the attention of researchers in the past approximately 20 years in small-animal imaging and more recently in clinical research. The combination of PET/MRI allows researchers to explore clinical and research questions in a wide number of fields, some of which are briefly mentioned here. An important number of groups have developed different concepts to tackle the problems that PET instrumentation poses to the exposition of electromagnetic fields. We have described most of these research developments in preclinical and clinical experiments, including the few commercial scanners available. From the software perspective, an important number of algorithms have been developed to address the attenuation correction issue and to exploit the possibility that MRI provides for motion correction and quantitative image reconstruction, especially parametric modelling of radiopharmaceutical kinetics. In this work, we give an overview of some exemplar applications of simultaneous PET/MRI, together with technological hardware and software developments.

  10. Magnetic resonance imaging in multiple sclerosis--patients' experiences, information interests and responses to an education programme.

    PubMed

    Brand, Judith; Köpke, Sascha; Kasper, Jürgen; Rahn, Anne; Backhus, Imke; Poettgen, Jana; Stellmann, Jan-Patrick; Siemonsen, Susanne; Heesen, Christoph

    2014-01-01

    Magnetic resonance imaging (MRI) is a key diagnostic and monitoring tool in multiple sclerosis (MS) management. However, many scientific uncertainties, especially concerning correlates to impairment and prognosis remain. Little is known about MS patients' experiences, knowledge, attitudes, and unmet information needs concerning MRI. We performed qualitative interviews (n = 5) and a survey (n = 104) with MS patients regarding MRI patient information, and basic MRI knowledge. Based on these findings an interactive training program of 2 hours was developed and piloted in n = 26 patients. Interview analyses showed that patients often feel lost in the MRI scanner and left alone with MRI results and images while 90% of patients in the survey expressed a high interest in MRI education. Knowledge on MRI issues was fair with some important knowledge gaps. Major information interests were relevance of lesions as well as the prognostic and diagnostic value of MRI results. The education program was highly appreciated and resulted in a substantial knowledge increase. Patients reported that, based on the program, they felt more competent to engage in encounters with their physicians. This work strongly supports the further development of an evidence-based MRI education program for MS patients to enhance participation in health-care.

  11. Fundamentals of Filament Interaction

    DTIC Science & Technology

    2017-05-19

    MRI was very specific. Based in on our other studies we focused this MRI program in two very important areas –filament interaction with gases, and...shown in the figure adjacent. The focus of this MRI was very specific. Based in on our other studies we focused this MRI program in two very important...PROJECT. 2.0.0 Program on Interaction with Gases 2.1.0 Molecular alignment studies Following the observations by Béjot et al. [Optics Express 16

  12. Assessment of EchoMRI-AH versus dual-energy X-ray absorptiometry to measure human body composition.

    PubMed

    Galgani, J E; Smith, S R; Ravussin, E

    2011-09-01

    The sensitivity to detect small changes in body composition (fat mass and fat-free mass) largely depends on the precision of the instrument. We compared EchoMRI-AH and dual-energy X-ray absorptiometry (DXA) (Hologic QDR-4500A) for estimating fat mass in 301 volunteers. Body composition was evaluated in 136 males and 165 females with a large range of body mass index (BMI) (19-49 kg m(-2)) and age (19-91 years old) using DXA and EchoMRI-AH. In a subsample of 13 lean (BMI=19-25 kg m(-2)) and 21 overweight/obese (BMI>25 kg m(-2)) individuals, within-subject precision was evaluated from repeated measurements taken within 1 h (n=3) and 1 week apart (mean of three measurements taken on each day). Using Bland-Altman analysis, we compared the mean of the fat mass measurements versus the difference in fat mass measured by both instruments. We found that EchoMRI-AH quantified larger amount of fat versus DXA in non-obese (BMI<30 kg m(-2) (1.1 kg, 95% confidence interval (CI(95)):-3.7 to 6.0)) and obese (BMI ≥ 30 kg m(-2) (4.2 kg, CI(95):-1.4 to 9.8)) participants. Within-subject precision (coefficient of variation, %) in fat mass measured within 1 h was remarkably better when measured by EchoMRI-AH than DXA (<0.5 versus <1.5%, respectively; P<0.001). However, 1-week apart within-subject variability showed similar values for both instruments (<2.2%; P=0.15). EchoMRI-AH yielded greater fat mass values when compared with DXA (Hologic QDR-4500A), particularly in fatter subjects. EchoMRI-AH and DXA showed similar 1-week apart precision when fat mass was measured both in lean and overweight/obese individuals.

  13. Advancements in Magnetic Resonance–Guided Robotic Interventions in the Prostate

    PubMed Central

    Macura, Katarzyna J.; Stoianovici, Dan

    2011-01-01

    Magnetic resonance imaging (MRI) provides more detailed anatomical images of the prostate compared with the transrectal ultrasound imaging. Therefore, for the purpose of intervention in the prostate gland, diagnostic or therapeutic, MRI guidance offers a possibility of more precise targeting that may be crucial to the success of prostate interventions. However, access within the scanner is limited for manual instrument handling and the MR environment is most demanding among all imaging equipment with respect to the instrumentation used. A solution to this problem is the use of MR-compatible robots purposely designed to operate in the space and environmental restrictions inside the MR scanner allowing real-time interventions. Building an MRI-compatible robot is a very challenging engineering task because, in addition to the material restrictions that MRI instruments have, the robot requires actuators and sensors that limit the type of energies that can be used. Several important design problems have to be overcome before a successful MR-compatible robot application can be built. A number of MR-compatible robots, ranging from a simple manipulator to a fully automated system, have been developed, proposing ingenious solutions to the design challenge. Several systems have been already tested clinically for prostate biopsy and brachytherapy. As technology matures, precise image guidance for prostate interventions performed or assisted by specialized MR-compatible robotic devices may provide a uniquely accurate solution for guiding the intervention directly based on MR findings and feedback. Such an instrument would become a valuable clinical tool for biopsies directly targeting imaged tumor foci and delivering tumor-centered focal therapy. PMID:19512852

  14. PET/MRI for neurologic applications.

    PubMed

    Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R

    2012-12-01

    PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MRI data acquisition allows the spatial and temporal correlation of the measured signals, creating opportunities impossible to realize using stand-alone instruments. This paper reviews the methodologic improvements and potential neurologic and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MRI data to improve the PET data quantification. On the MRI side, we present how improved PET quantification can be used to validate several MRI techniques. Finally, we describe promising research, translational, and clinical applications that can benefit from these advanced tools.

  15. Finite Difference Time Domain Modeling at USA Instruments, Inc.

    NASA Astrophysics Data System (ADS)

    Curtis, Richard

    2003-10-01

    Due to the competitive nature of the commercial MRI industry, it is essential for the financial health of a participating company to innovate new coil designs and bring product to market rapidly in response to ever-changing market conditions. However, the technology of MRI coil design is still early in its stage of development and its principles are yet evolving. As a result, it is not always possible to know the relevant electromagnetic effects of a given design since the interaction of coil elements is complex and often counter-intuitive. Even if the effects are known qualitatively, the quantitative results are difficult to obtain. At USA Instruments, Inc., the acquisition of the XFDTDâ electromagnetic simulation tool from REMCOM, Inc., has been helpful in determining the electromagnetic performance characteristics of existing coil designs in the prototype stage before the coils are released for production. In the ideal case, a coil design would be modeled earlier at the conceptual stage, so that only good designs will make it to the prototyping stage and the electromagnetic characteristics better understood very early in the design process and before the testing stage has begun. This paper is a brief overview of using FDTD modeling for MRI coil design at USA Instruments, Inc., and shows some of the highlights of recent FDTD modeling efforts on Birdcage coils, a staple of the MRI coil design portfolio.

  16. Reliability of the echoMRI infant system for water and fat measurements in newborns

    USDA-ARS?s Scientific Manuscript database

    The precision and accuracy of a quantitative magnetic resonance (EchoMRI Infants) system in newborns were determined. Canola oil and drinking water phantoms (increments of 10 g to 1.9 kg) were scanned four times. Instrument reproducibility was assessed from three scans (within 10 minutes) in 42 heal...

  17. Medusa: A Scalable MR Console Using USB

    PubMed Central

    Stang, Pascal P.; Conolly, Steven M.; Santos, Juan M.; Pauly, John M.; Scott, Greig C.

    2012-01-01

    MRI pulse sequence consoles typically employ closed proprietary hardware, software, and interfaces, making difficult any adaptation for innovative experimental technology. Yet MRI systems research is trending to higher channel count receivers, transmitters, gradient/shims, and unique interfaces for interventional applications. Customized console designs are now feasible for researchers with modern electronic components, but high data rates, synchronization, scalability, and cost present important challenges. Implementing large multi-channel MR systems with efficiency and flexibility requires a scalable modular architecture. With Medusa, we propose an open system architecture using the Universal Serial Bus (USB) for scalability, combined with distributed processing and buffering to address the high data rates and strict synchronization required by multi-channel MRI. Medusa uses a modular design concept based on digital synthesizer, receiver, and gradient blocks, in conjunction with fast programmable logic for sampling and synchronization. Medusa is a form of synthetic instrument, being reconfigurable for a variety of medical/scientific instrumentation needs. The Medusa distributed architecture, scalability, and data bandwidth limits are presented, and its flexibility is demonstrated in a variety of novel MRI applications. PMID:21954200

  18. Ubiquitous remote operation collaborative interface for MRI scanners

    NASA Astrophysics Data System (ADS)

    Morris, H. Douglas

    2001-05-01

    We have developed a remote control interface for research class magnetic resonance imaging (MRI) spectrometers. The goal of the interface is to provide a better collaborative environment for geographically dispersed researchers and a tool that can teach students of medical imaging in a network-based laboratory using state-of-the-art MR instrumentation that would not otherwise be available. The interface for the remote operator(s) is now ubiquitous web browser, which was chosen for the ease of controlling the operator interface, the display of both image and text information, and the wide availability on many computer platforms. The remote operator is presented with an active display in which they may select and control most of the parameters in the MRI experiment. The MR parameters are relayed via web browser to a CGI program running in a standard web server, which passes said parameters to the MRI manufacturers control software. The data returned to the operator(s) consists of the parameters used in acquiring that image, a flat 8-bit grayscale GIF representation of the image, and a 16-bit grayscale image that can be viewed by an appropriate application. It is obvious that the utility of this interface would be helpful for researchers of regional and national facilities to more closely collaborate with colleagues across their region, the nation, or the world. And medical imaging students can put much of their classroom discussions into practice on machinery that would not normally be available to them.

  19. Latest advances in molecular imaging instrumentation.

    PubMed

    Pichler, Bernd J; Wehrl, Hans F; Judenhofer, Martin S

    2008-06-01

    This review concentrates on the latest advances in molecular imaging technology, including PET, MRI, and optical imaging. In PET, significant improvements in tumor detection and image resolution have been achieved by introducing new scintillation materials, iterative image reconstruction, and correction methods. These advances enabled the first clinical scanners capable of time-of-flight detection and incorporating point-spread-function reconstruction to compensate for depth-of-interaction effects. In the field of MRI, the most important developments in recent years have mainly been MRI systems with higher field strengths and improved radiofrequency coil technology. Hyperpolarized imaging, functional MRI, and MR spectroscopy provide molecular information in vivo. A special focus of this review article is multimodality imaging and, in particular, the emerging field of combined PET/MRI.

  20. "MRI Stealth" robot for prostate interventions.

    PubMed

    Stoianovici, Dan; Song, Danny; Petrisor, Doru; Ursu, Daniel; Mazilu, Dumitru; Muntener, Michael; Mutener, Michael; Schar, Michael; Patriciu, Alexandru

    2007-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep 1, designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the "MRI stealth" robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager's room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low-dose radiation seed brachytherapy. This paper gives an introduction to the challenges of MRI robot compatibility and presents the solutions adopted in making the MrBot. Its multi-imager compatibility and other preclinical tests are included. The robot shows the technical feasibility of MRI-guided prostate interventions, yet its clinical utility is still to be determined.

  1. “MRI Stealth” robot for prostate interventions

    PubMed Central

    STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU

    2011-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low-dose radiation seed brachytherapy. This paper gives an introduction to the challenges of MRI robot compatibility and presents the solutions adopted in making the MrBot. Its multi-imager compatibility and other preclinical tests are included. The robot shows the technical feasibility of MRI-guided prostate interventions, yet its clinical utility is still to be determined. PMID:17763098

  2. Real-time Magnetic Resonance Imaging Guidance for Cardiovascular Procedures

    PubMed Central

    Horvath, Keith A.; Li, Ming; Mazilu, Dumitru; Guttman, Michael A.; McVeigh, Elliot R.

    2008-01-01

    Magnetic resonance imaging (MRI) of the cardiovascular system has proven to be an invaluable diagnostic tool. Given the ability to allow for real-time imaging, MRI guidance of intraoperative procedures can provide superb visualization which can facilitate a variety of interventions and minimize the trauma of the operations as well. In addition to the anatomic detail, MRI can provide intraoperative assessment of organ and device function. Instruments and devices can be marked to enhance visualization and tracking. All of which is an advance over standard x-ray or ultrasonic imaging. PMID:18395633

  3. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph

    NASA Astrophysics Data System (ADS)

    Woody, C.; Schlyer, D.; Vaska, P.; Tomasi, D.; Solis-Najera, S.; Rooney, W.; Pratte, J.-F.; Junnarkar, S.; Stoll, S.; Master, Z.; Purschke, M.; Park, S.-J.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; O'Connor, P.; Radeka, V.

    2007-02-01

    We are developing a scanner that will allow simultaneous acquisition of high resolution anatomical data using magnetic resonance imaging (MRI) and quantitative physiological data using positron emission tomography (PET). The approach is based on the technology used for the RatCAP conscious small animal PET tomograph which utilizes block detectors consisting of pixelated arrays of LSO crystals read out with matching arrays of avalanche photodiodes and a custom-designed ASIC. The version of this detector used for simultaneous PET/MRI imaging will be constructed out of all nonmagnetic materials and will be situated inside the MRI field. We have demonstrated that the PET detector and its electronics can be operated inside the MRI, and have obtained MRI images with various detector components located inside the MRI field. The MRI images show minimal distortion in this configuration even where some components still contain traces of certain magnetic materials. We plan to improve on the image quality in the future using completely non-magnetic components and by tuning the MRI pulse sequences. The combined result will be a highly compact, low mass PET scanner that can operate inside an MRI magnet without distorting the MRI image, and can be retrofitted into existing MRI instruments.

  4. Functional neuroimaging for addiction medicine: From mechanisms to practical considerations.

    PubMed

    Ekhtiari, Hamed; Faghiri, Ashkan; Oghabian, Mohammad-Ali; Paulus, Martin P

    2016-01-01

    During last 20 years, neuroimaging with functional magnetic resonance imaging (fMRI) in people with drug addictions has introduced a wide range of quantitative biomarkers from brain's regional or network level activities during different cognitive functions. These quantitative biomarkers could be potentially used for assessment, planning, prediction, and monitoring for "addiction medicine" during screening, acute intoxication, admission to a program, completion of an acute program, admission to a long-term program, and postgraduation follow-up. In this chapter, we have briefly reviewed main neurocognitive targets for fMRI studies associated with addictive behaviors, main study types using fMRI among drug dependents, and potential applications for fMRI in addiction medicine. Main challenges and limitations for extending fMRI studies and evidences aiming at clinical applications in addiction medicine are also discussed. There is still a significant gap between available evidences from group-based fMRI studies and personalized decisions during daily practices in addiction medicine. It will be important to fill this gap with large-scale clinical trials and longitudinal studies using fMRI measures with a well-defined strategic plan for the future. © 2016 Elsevier B.V. All rights reserved.

  5. [Fusion of MRI, fMRI and intraoperative MRI data. Methods and clinical significance exemplified by neurosurgical interventions].

    PubMed

    Moche, M; Busse, H; Dannenberg, C; Schulz, T; Schmitgen, A; Trantakis, C; Winkler, D; Schmidt, F; Kahn, T

    2001-11-01

    The aim of this work was to realize and clinically evaluate an image fusion platform for the integration of preoperative MRI and fMRI data into the intraoperative images of an interventional MRI system with a focus on neurosurgical procedures. A vertically open 0.5 T MRI scanner was equipped with a dedicated navigation system enabling the registration of additional imaging modalities (MRI, fMRI, CT) with the intraoperatively acquired data sets. These merged image data served as the basis for interventional planning and multimodal navigation. So far, the system has been used in 70 neurosurgical interventions (13 of which involved image data fusion--requiring 15 minutes extra time). The augmented navigation system is characterized by a higher frame rate and a higher image quality as compared to the system-integrated navigation based on continuously acquired (near) real time images. Patient movement and tissue shifts can be immediately detected by monitoring the morphological differences between both navigation scenes. The multimodal image fusion allowed a refined navigation planning especially for the resection of deeply seated brain lesions or pathologies close to eloquent areas. Augmented intraoperative orientation and instrument guidance improve the safety and accuracy of neurosurgical interventions.

  6. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) Safety Electromagnetic Modeling Related ... Resonance Imaging Equipment in Clinical Use (March 2015) FDA/CDER: Information on Gadolinium-Based Contrast Agents Safety ...

  7. Real time standoff gas detection and environmental monitoring with LWIR hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Lavoie, Hugo; Bouffard, François; Thériault, Jean-Marc; Vallieres, Christian; Roy, Claude; Dubé, Denis

    2012-10-01

    MR-i is a dual band Hyperspectral Imaging Spectro-radiometer. This field instrument generates spectral datacubes in the MWIR and LWIR. MR-i is modular and can be configured in different ways. One of its configurations is optimized for the standoff measurements of gases in differential mode. In this mode, the instrument is equipped with a dual-input telescope to perform optical background subtraction. The resulting signal is the differential between the spectral radiance entering each input port. With that method, the signal from the background is automatically removed from the signal of the target of interest. The spectral range of this configuration extends in the VLWIR (cut-off near 14 μm) to take full advantage of the LW atmospheric window.

  8. [Optimization of diagnosis indicator selection and inspection plan by 3.0T MRI in breast cancer].

    PubMed

    Jiang, Zhongbiao; Wang, Yunhua; He, Zhong; Zhang, Lejun; Zheng, Kai

    2013-08-01

    To optimize 3.0T MRI diagnosis indicator in breast cancer and to select the best MRI scan program. Totally 45 patients with breast cancers were collected, and another 35 patients with benign breast tumor served as the control group. All patients underwent 3.0T MRI, including T1- weighted imaging (T1WI), fat suppression of the T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), 1H magnetic resonance spectroscopy (1H-MRS) and dynamic contrast enhanced (DCE) sequence. With operation pathology results as the gold standard in the diagnosis of breast diseases, the pathological results of benign and malignant served as dependent variables, and the diagnostic indicators of MRI were taken as independent variables. We put all the indicators of MRI examination under Logistic regression analysis, established the Logistic model, and optimized the diagnosis indicators of MRI examination to further improve MRI scan of breast cancer. By Logistic regression analysis, some indicators were selected in the equation, including the edge feature of the tumor, the time-signal intensity curve (TIC) type and the apparent diffusion coefficient (ADC) value when b=500 s/mm2. The regression equation was Logit (P)=-21.936+20.478X6+3.267X7+ 21.488X3. Valuable indicators in the diagnosis of breast cancer are the edge feature of the tumor, the TIC type and the ADC value when b=500 s/mm2. Combining conventional MRI scan, DWI and dynamic enhanced MRI is a better examination program, while MRS is the complementary program when diagnosis is difficult.

  9. Simultaneous PET/MRI in assessing the response to chemo/radiotherapy in head and neck carcinoma: initial experience.

    PubMed

    Romeo, Valeria; Iorio, Brigida; Mesolella, Massimo; Ugga, Lorenzo; Verde, Francesco; Nicolai, Emanuele; Covello, Mario

    2018-06-19

    The purpose of the study was to assess by simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) the response to chemotherapy (CHT) and/or radiotherapy (RT) in patients with head and neck squamous cell carcinoma (HNSCC). Five patients with HNSCC underwent simultaneous PET/MRI examination before and after CHT and/or RT. Standard uptake volume (SUV), apparent diffusion coefficient (ADC), Ktrans, Kep, Ve, and iAUC pre- and post-treatment values were extracted and compared. The response to treatment was assessed according to RECIST criteria and classified as complete response (CR), partial response (PR), stable disease (SD), and progression disease (PD). In patient 1, PR was observed with increased ADC, Ktrans, and Ve values and reduction of SUV, iAUC, and Kep values; during clinical and instrumental follow-up, the patient experienced disease progression. Patient 2, classified as PR, showed increased ADC values and reduction of SUV and all perfusion parameters; follow-up demonstrated disease stability. Patient 3, considered as SD, showed increase of ADC and all perfusion values with a mild decrease of SUV; PD was observed during clinical and instrumental follow-up. Patients 4 and 5 showed a CR with no detectable tumor lesions at post-treatment PET/MRI examination, confirmed by 1-year follow-up. Multiparametric evaluation with simultaneous PET/MRI could be a useful tool to assess and predict the response to CHT and/or RT in patients with HNSCC.

  10. Triaxial fiber optic magnetic field sensor for MRI applications

    NASA Astrophysics Data System (ADS)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  11. WE-B-BRD-00: MRI for Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptivemore » QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.« less

  12. Modern Instrumental Methods to Investigate the Mechanism of Biological Decay in Wood Plastic Composites

    Treesearch

    Grace Sun; Rebecca Ibach; Marek Gnatowski; Jessie Glaeser; Mathew Leung; John Haight

    2014-01-01

    Various instrumental techniques were used to study the fungal decay process in wood plastic composite (WPC) boards. Commercial boards exposed near Hilo, Hawaii (HI) for eight years in both sun and shadow locations were inspected and tested periodically. After eight years of exposure, both boards were evaluated using magnetic resonance imaging (MRI), while a selected...

  13. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  14. Higher landing accuracy in expert pilots is associated with lower activity in the caudate nucleus.

    PubMed

    Adamson, Maheen M; Taylor, Joy L; Heraldez, Daniel; Khorasani, Allen; Noda, Art; Hernandez, Beatriz; Yesavage, Jerome A

    2014-01-01

    The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20-66) were asked to "fly" a series of simulated "cockpit view" instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog-legally unsafe to land) or low risk (medium fog-legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a "land" versus "do not land" decision (CFII: d' = 3.62 ± 2.52; IFR: d' = 0.98 ± 1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a "land" versus "do not land" decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97 ± 0.80) compared to Moderate Expertise pilots (1.91 ± 1.16) (p<.05). These findings provide evidence for increased "neural efficiency" in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the "expertise" effect was observed. These data provide evidence that performing "real world" aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it.

  15. Cortical thickness maturation and duration of music training: health-promoting activities shape brain development.

    PubMed

    Hudziak, James J; Albaugh, Matthew D; Ducharme, Simon; Karama, Sherif; Spottswood, Margaret; Crehan, Eileen; Evans, Alan C; Botteron, Kelly N

    2014-11-01

    To assess the extent to which playing a musical instrument is associated with cortical thickness development among healthy youths. Participants were part of the National Institutes of Health (NIH) Magnetic Resonance Imaging (MRI) Study of Normal Brain Development. This study followed a longitudinal design such that participants underwent MRI scanning and behavioral testing on up to 3 separate visits, occurring at 2-year intervals. MRI, IQ, and music training data were available for 232 youths (334 scans), ranging from 6 to 18 years of age. Cortical thickness was regressed against the number of years that each youth had played a musical instrument. Next, thickness was regressed against an "Age × Years of Playing" interaction term. Age, gender, total brain volume, and scanner were controlled for in analyses. Participant ID was entered as a random effect to account for within-person dependence. False discovery rate correction was applied (p ≤ .05). There was no association between thickness and years playing a musical instrument. The "Age × Years of Playing" interaction was associated with thickness in motor, premotor, and supplementary motor cortices, as well as prefrontal and parietal cortices. Follow-up analysis revealed that music training was associated with an increased rate of thickness maturation. Results were largely unchanged when IQ and handedness were included as covariates. Playing a musical instrument was associated with more rapid cortical thickness maturation within areas implicated in motor planning and coordination, visuospatial ability, and emotion and impulse regulation. However, given the quasi-experimental nature of this study, we cannot rule out the influence of confounding variables. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging.

    PubMed

    Yu, Ningbo; Gassert, Roger; Riener, Robert

    2011-07-01

    Robotic and mechatronic devices that work compatibly with magnetic resonance imaging (MRI) are applied in diagnostic MRI, image-guided surgery, neurorehabilitation and neuroscience. MRI-compatible mechatronic systems must address the challenges imposed by the scanner's electromagnetic fields. We have developed objective quantitative evaluation criteria for device characteristics needed to formulate design guidelines that ensure MRI-compatibility based on safety, device functionality and image quality. The mutual interferences between an MRI system and mechatronic devices working in its vicinity are modeled and tested. For each interference, the involved components are listed, and a numerical measure for "MRI-compatibility" is proposed. These interferences are categorized into an MRI-compatibility matrix, with each element representing possible interactions between one part of the mechatronic system and one component of the electromagnetic fields. Based on this formulation, design principles for MRI-compatible mechatronic systems are proposed. Furthermore, test methods are developed to examine whether a mechatronic device indeed works without interferences within an MRI system. Finally, the proposed MRI-compatibility criteria and design guidelines have been applied to an actual design process that has been validated by the test procedures. Objective and quantitative MRI-compatibility measures for mechatronic and robotic devices have been established. Applying the proposed design principles, potential problems in safety, device functionality and image quality can be considered in the design phase to ensure that the mechatronic system will fulfill the MRI-compatibility criteria. New guidelines and test procedures for MRI instrument compatibility provide a rational basis for design and evaluation of mechatronic devices in various MRI applications. Designers can apply these criteria and use the tests, so that MRI-compatibility results can accrue to build an experiential database.

  17. Computerised tomography vs magnetic resonance imaging for modeling of patient-specific instrumentation in total knee arthroplasty.

    PubMed

    Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan

    2015-03-18

    To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery.

  18. Magnetic resonance imaging volume of the angular gyri predicts financial skill deficits in people with amnestic mild cognitive impairment.

    PubMed

    Griffith, H Randall; Stewart, Christopher C; Stoeckel, Luke E; Okonkwo, Ozioma C; den Hollander, Jan A; Martin, Roy C; Belue, Katherine; Copeland, Jacquelynn N; Harrell, Lindy E; Brockington, John C; Clark, David G; Marson, Daniel C

    2010-02-01

    To better understand how brain atrophy in amnestic mild cognitive impairment (MCI) as measured using magnetic resonance imaging (MRI) volumetrics could affect instrumental activities of daily living (IADLs) such as financial abilities. Controlled, matched-sample, cross-sectional analysis regressing MRI volumetrics with financial performance measures. University medical and research center. Thirty-eight people with MCI and 28 older adult controls. MRI volumetric measurement of the hippocampi, angular gyri, precunei, and medial frontal lobes. Participants also completed neuropsychological tests and the Financial Capacity Instrument (FCI). Correlations were performed between FCI scores and MRI volumes in the group with MCI. People with MCI performed significantly below controls on the FCI and had significantly smaller hippocampi. Among people with MCI, performance on the FCI was moderately correlated with angular gyri and precunei volumes. Regression models demonstrated that angular gyrus volumes were predictive of FCI scores. Tests of mediation showed that measures of arithmetic and possibly attention partially mediated the relationship between angular gyrus volume and FCI score. Impaired financial abilities in amnestic MCI correspond with volume of the angular gyri as mediated by arithmetic knowledge. The findings suggest that early neuropathology within the lateral parietal region in MCI leads to a breakdown of cognitive abilities that affect everyday financial skills. The findings have implications for diagnosis and clinical care of people with MCI and AD.

  19. Computerised tomography vs magnetic resonance imaging for modeling of patient-specific instrumentation in total knee arthroplasty

    PubMed Central

    Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan

    2015-01-01

    AIM: To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. METHODS: The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). RESULTS: Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. CONCLUSION: Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery. PMID:25793170

  20. Neurolinguistic programming used to reduce the need for anaesthesia in claustrophobic patients undergoing MRI.

    PubMed

    Bigley, J; Griffiths, P D; Prydderch, A; Romanowski, C A J; Miles, L; Lidiard, H; Hoggard, N

    2010-02-01

    The purpose of this study was to assess the success of neurolinguistic programming in reducing the need for general anaesthesia in claustrophobic patients who require MRI and to consider the financial implications for health providers. This was a prospective study performed in 2006 and 2007 at a teaching hospital in England and comprised 50 adults who had unsuccessful MR examinations because of claustrophobia. The main outcome measures were the ability to tolerate a successful MR examination after neurolinguistic programming, the reduction of median anxiety scores produced by neurolinguistic programming, and models of costs for various imaging pathways. Neurolinguistic programming allowed 38/50 people (76%) to complete the MR examination successfully. Overall, the median anxiety score was significantly reduced following the session of neurolinguistic programming. In conclusion, neurolinguistic programming reduced anxiety and subsequently allowed MRI to be performed without resorting to general anaesthesia in a high proportion of claustrophobic adults. If these results are reproducible, there will be major advantages in terms of patient safety and costs.

  1. Neurolinguistic programming used to reduce the need for anaesthesia in claustrophobic patients undergoing MRI

    PubMed Central

    Bigley, J; Griffiths, P D; Prydderch, A; Romanowski, C A J; Miles, L; Lidiard, H; Hoggard, N

    2010-01-01

    The purpose of this study was to assess the success of neurolinguistic programming in reducing the need for general anaesthesia in claustrophobic patients who require MRI and to consider the financial implications for health providers. This was a prospective study performed in 2006 and 2007 at a teaching hospital in England and comprised 50 adults who had unsuccessful MR examinations because of claustrophobia. The main outcome measures were the ability to tolerate a successful MR examination after neurolinguistic programming, the reduction of median anxiety scores produced by neurolinguistic programming, and models of costs for various imaging pathways. Neurolinguistic programming allowed 38/50 people (76%) to complete the MR examination successfully. Overall, the median anxiety score was significantly reduced following the session of neurolinguistic programming. In conclusion, neurolinguistic programming reduced anxiety and subsequently allowed MRI to be performed without resorting to general anaesthesia in a high proportion of claustrophobic adults. If these results are reproducible, there will be major advantages in terms of patient safety and costs. PMID:19505969

  2. Image-guided laparoscopic surgery in an open MRI operating theater.

    PubMed

    Tsutsumi, Norifumi; Tomikawa, Morimasa; Uemura, Munenori; Akahoshi, Tomohiko; Nagao, Yoshihiro; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Maehara, Yoshihiko; Hashizume, Makoto

    2013-06-01

    The recent development of open magnetic resonance imaging (MRI) has provided an opportunity for the next stage of image-guided surgical and interventional procedures. The purpose of this study was to evaluate the feasibility of laparoscopic surgery under the pneumoperitoneum with the system of an open MRI operating theater. Five patients underwent laparoscopic surgery with a real-time augmented reality navigation system that we previously developed in a horizontal-type 0.4-T open MRI operating theater. All procedures were performed in an open MRI operating theater. During the operations, the laparoscopic monitor clearly showed the augmented reality models of the intraperitoneal structures, such as the common bile ducts and the urinary bladder, as well as the proper positions of the prosthesis. The navigation frame rate was 8 frames per min. The mean fiducial registration error was 6.88 ± 6.18 mm in navigated cases. We were able to use magnetic resonance-incompatible surgical instruments out of the 5-Gs restriction area, as well as conventional laparoscopic surgery, and we developed a real-time augmented reality navigation system using open MRI. Laparoscopic surgery with our real-time augmented reality navigation system in the open MRI operating theater is a feasible option.

  3. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2001-01-01

    We are developing laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI) (e.g., of lung ventilation) as well as studies of tissue perfusion. In addition, laser-polarized noble gases (He-3 and Xe-129) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We are pursuing two specific aims in this research. The first aim is to develop a low-field (< 0.01 T) instrument for noble gas MRI of humans, and the second aim is to develop functional MRI of the lung using laser-polarized Xe-129 and related techniques.

  4. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoo, Eric L.H., E-mail: eric.khoo@roq.net.au; Schick, Karlissa; Plank, Ashley W.

    Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across setsmore » of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.« less

  6. SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison

    PubMed Central

    Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.

    2011-01-01

    Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638

  7. Solid-state 27Al MRI and NMR thermometry for catalytic applications with conventional (liquids) MRI instrumentation and techniques.

    PubMed

    Koptyug, Igor V; Sagdeev, Dmitry R; Gerkema, Edo; Van As, Henk; Sagdeev, Renad Z

    2005-07-01

    Multidimensional images of Al2O3 pellets, cordierite monolith, glass tube, polycrystalline V2O5 and other materials have been detected by 27Al, 51V, and 23Na NMR imaging using techniques and instrumentation conventionally employed for imaging of liquids. These results demonstrate that, contrary to the widely accepted opinion, imaging of "rigid" solids does not necessarily require utilization of solid state NMR imaging approaches, pulse sequences and hardware even for quadrupolar nuclei which exhibit line widths in excess of 100 kHz, such as 51V in polycrystalline V2O5. It is further demonstrated that both 27Al NMR signal intensity and spin-lattice relaxation time decrease with increasing temperature and thus can potentially serve as temperature sensitive parameters for spatially resolved NMR thermometry.

  8. Technical Note: Error metrics for estimating the accuracy of needle/instrument placement during transperineal magnetic resonance/ultrasound-guided prostate interventions.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Villarini, Barbara; Rodell, Rachael; Martin, Paul; Han, Lianghao; Donaldson, Ian; Ahmed, Hashim U; Moore, Caroline M; Emberton, Mark; Barratt, Dean C

    2018-04-01

    Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult. A set of nine measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach. Using the SmartTarget fusion system, an MRI-US image alignment error was determined to be 2.0 ± 1.0 mm (mean ± SD), and an overall system instrument targeting error of 3.0 ± 1.2 mm. Three needle deployments for each target phantom lesion was found to result in a 100% lesion hit rate and a median predicted cancer core length of 5.2 mm. The application of a comprehensive, unbiased validation assessment for MR/US guided systems can provide useful information on system performance for quality assurance and system comparison. Furthermore, such an analysis can be helpful in identifying relationships between these errors, providing insight into the technical behavior of these systems. © 2018 American Association of Physicists in Medicine.

  9. Analytic programming with FMRI data: a quick-start guide for statisticians using R.

    PubMed

    Eloyan, Ani; Li, Shanshan; Muschelli, John; Pekar, Jim J; Mostofsky, Stewart H; Caffo, Brian S

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a thriving field that plays an important role in medical imaging analysis, biological and neuroscience research and practice. This manuscript gives a didactic introduction to the statistical analysis of fMRI data using the R project, along with the relevant R code. The goal is to give statisticians who would like to pursue research in this area a quick tutorial for programming with fMRI data. References of relevant packages and papers are provided for those interested in more advanced analysis.

  10. Non-Invasive Evaluation of the GABAergic/Glutamatergic System in Autistic Patients Observed by MEGA-Editing Proton MR Spectroscopy Using a Clinical 3 Tesla Instrument

    ERIC Educational Resources Information Center

    Harada, Masafumi; Taki, Masako M.; Nose, Ayumi; Kubo, Hitoshi; Mori, Kenji; Nishitani, Hiromu; Matsuda, Tsuyoshi

    2011-01-01

    Amino acids related to neurotransmitters and the GABAergic/glutamatergic system were measured using a 3 T-MRI instrument in 12 patients with autism and 10 normal controls. All measurements were performed in the frontal lobe (FL) and lenticular nuclei (LN) using a conventional sequence for n-acetyl aspartate (NAA) and glutamate (Glu), and the…

  11. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  12. Multiple-mouse MRI with multiple arrays of receive coils.

    PubMed

    Ramirez, Marc S; Esparza-Coss, Emilio; Bankson, James A

    2010-03-01

    Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a 3-fold acceleration was achieved with signal-to-noise ratio in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. (c) 2010 Wiley-Liss, Inc.

  13. Multi-disciplinary Orthopaedics Rehabilitation Empowerment (MORE) program: A new standard of care for injured workers in Hong Kong.

    PubMed

    Law, S W; Szeto, G P Y; Chau, W W; Chan, Carol; Kwok, Anthony W L; Lai, H S; Lee, Ryan K L; Griffith, James F; Hung, L K; Cheng, J C Y

    2016-08-10

    The objective of this study is to evaluate the effects of the Multi-disciplinary Orthopaedics Rehabilitation Empowerment (MORE) Program on reducing chronic disability among injured workers and improving efficiency of work rehabilitation process. A cohort of patients with workplace injuries in the lower back were recruited from orthopaedics clinics and assigned to either MORE group (n= 139) or control group (n= 106). Patients in MORE group received an early MRI screening and a coordinated multi-disciplinary management, while patients in the control group received conventional care. Outcome variables are time to return-to-work (RTW) from date of injury, waiting time for MRI screening and time to medical assessment board (MAB). Patients in the MORE Program had significantly shorter duration for RTW (MORE: 6.1 months, 12.8 months, p< 0.01), and more RTW cases (n= 64, 46.0%) compared to CONTROL group (n= 29, 27.4%). The MORE group also had much shorter waiting time for MRI scans (91.85 vs. 309.2 days, p< 0.001) and MAB referral after MRI scans (97.2 vs. 178.9 days, p= 0.001) compared to CONTROL group. The MORE Program which emphasizes early intervention and early MRI screening, is shown to be effective in shortening sick leave and improving RTW outcomes of injured workers.

  14. A composite measure to explore visual disability in primary progressive multiple sclerosis.

    PubMed

    Poretto, Valentina; Petracca, Maria; Saiote, Catarina; Mormina, Enricomaria; Howard, Jonathan; Miller, Aaron; Lublin, Fred D; Inglese, Matilde

    2017-01-01

    Optical coherence tomography (OCT) and magnetic resonance imaging (MRI) can provide complementary information on visual system damage in multiple sclerosis (MS). The objective of this paper is to determine whether a composite OCT/MRI score, reflecting cumulative damage along the entire visual pathway, can predict visual deficits in primary progressive multiple sclerosis (PPMS). Twenty-five PPMS patients and 20 age-matched controls underwent neuro-ophthalmologic evaluation, spectral-domain OCT, and 3T brain MRI. Differences between groups were assessed by univariate general linear model and principal component analysis (PCA) grouped instrumental variables into main components. Linear regression analysis was used to assess the relationship between low-contrast visual acuity (LCVA), OCT/MRI-derived metrics and PCA-derived composite scores. PCA identified four main components explaining 80.69% of data variance. Considering each variable independently, LCVA 1.25% was significantly predicted by ganglion cell-inner plexiform layer (GCIPL) thickness, thalamic volume and optic radiation (OR) lesion volume (adjusted R 2 0.328, p  = 0.00004; adjusted R 2 0.187, p  = 0.002 and adjusted R 2 0.180, p  = 0.002). The PCA composite score of global visual pathway damage independently predicted both LCVA 1.25% (adjusted R 2 value 0.361, p  = 0.00001) and LCVA 2.50% (adjusted R 2 value 0.323, p  = 0.00003). A multiparametric score represents a more comprehensive and effective tool to explain visual disability than a single instrumental metric in PPMS.

  15. Automated detection of breast cancer in false-negative screening MRI studies from women at increased risk.

    PubMed

    Gubern-Mérida, Albert; Vreemann, Suzan; Martí, Robert; Melendez, Jaime; Lardenoije, Susanne; Mann, Ritse M; Karssemeijer, Nico; Platel, Bram

    2016-02-01

    To evaluate the performance of an automated computer-aided detection (CAD) system to detect breast cancers that were overlooked or misinterpreted in a breast MRI screening program for women at increased risk. We identified 40 patients that were diagnosed with breast cancer in MRI and had a prior MRI examination reported as negative available. In these prior examinations, 24 lesions could retrospectively be identified by two breast radiologists in consensus: 11 were scored as visible and 13 as minimally visible. Additionally, 120 normal scans were collected from 120 women without history of breast cancer or breast surgery participating in the same MRI screening program. A fully automated CAD system was applied to this dataset to detect malignant lesions. At 4 false-positives per normal case, the sensitivity for the detection of cancer lesions that were visible or minimally visible in retrospect in prior-negative examinations was 0.71 (95% CI=0.38-1.00) and 0.31 (0.07-0.59), respectively. A substantial proportion of cancers that were misinterpreted or overlooked in an MRI screening program was detected by a CAD system in prior-negative examinations. It has to be clarified with further studies if such a CAD system has an influence on the number of misinterpreted and overlooked cancers in clinical practice when results are given to a radiologist. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Predictive values of BI-RADS(®) magnetic resonance imaging (MRI) in the detection of breast ductal carcinoma in situ (DCIS).

    PubMed

    Badan, Gustavo Machado; Piato, Sebastião; Roveda, Décio; de Faria Castro Fleury, Eduardo

    2016-10-01

    The purpose of this study was to evaluate BI-RADS indicators in the detection of DCIS by MRI. Prospective observational study that started in 2014 and lasted 24 months. A total of 110 consecutive patients were evaluated, who presented with suspicious or highly suspicious microcalcifications on screening mammography (BI-RADS categories 4 and 5) and underwent stereotactic-guided breast biopsy, having had an MRI scan performed prior to biopsy. Altogether, 38 cases were characterized as positive for malignancy, of which 25 were DCIS and 13 were invasive ductal carcinoma cases. MRI had a sensitivity of 96%; specificity of 75.67%; positive predictive value (PPV) for DCIS detection of 57.14%; negative predictive value (NPV) in the detection of DCIS of 98.24%; and an accuracy of 80.80%. BI-RADS as a tool for the detection of DCIS by MRI is a powerful instrument whose sensitivity was higher when compared to that observed for mammography in the literature. Likewise, the PPV obtained by MRI was higher than that observed in the present study for mammography, and the high NPV obtained on MRI scans can provide early evidence to discourage breast biopsy in selected cases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Numerical study on simultaneous emission and transmission tomography in the MRI framework

    NASA Astrophysics Data System (ADS)

    Gjesteby, Lars; Cong, Wenxiang; Wang, Ge

    2017-09-01

    Multi-modality imaging methods are instrumental for advanced diagnosis and therapy. Specifically, a hybrid system that combines computed tomography (CT), nuclear imaging, and magnetic resonance imaging (MRI) will be a Holy Grail of medical imaging, delivering complementary structural/morphological, functional, and molecular information for precision medicine. A novel imaging method was recently demonstrated that takes advantage of radiotracer polarization to combine MRI principles with nuclear imaging. This approach allows the concentration of a polarized Υ-ray emitting radioisotope to be imaged with MRI resolution potentially outperforming the standard nuclear imaging mode at a sensitivity significantly higher than that of MRI. In our work, we propose to acquire MRI-modulated nuclear data for simultaneous image reconstruction of both emission and transmission parameters, suggesting the potential for simultaneous CT-SPECT-MRI. The synchronized diverse datasets allow excellent spatiotemporal registration and unique insight into physiological and pathological features. Here we describe the methodology involving the system design with emphasis on the formulation for tomographic images, even when significant radiotracer signals are limited to a region of interest (ROI). Initial numerical results demonstrate the feasibility of our approach for reconstructing concentration and attenuation images through a head phantom with various radio-labeled ROIs. Additional considerations regarding the radioisotope characteristics are also discussed.

  18. TU-F-CAMPUS-I-05: Semi-Automated, Open Source MRI Quality Assurance and Quality Control Program for Multi-Unit Institution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, J; Stefan, W; Reeve, D

    2015-06-15

    Purpose: Phantom measurements allow for the performance of magnetic resonance (MR) systems to be evaluated. Association of Physicists in Medicine (AAPM) Report No. 100 Acceptance Testing and Quality Assurance Procedures for MR Imaging Facilities, American College of Radiology (ACR) MR Accreditation Program MR phantom testing, and ACR MRI quality control (QC) program documents help to outline specific tests for establishing system performance baselines as well as system stability over time. Analyzing and processing tests from multiple systems can be time-consuming for medical physicists. Besides determining whether tests are within predetermined limits or criteria, monitoring longitudinal trends can also help preventmore » costly downtime of systems during clinical operation. In this work, a semi-automated QC program was developed to analyze and record measurements in a database that allowed for easy access to historical data. Methods: Image analysis was performed on 27 different MR systems of 1.5T and 3.0T field strengths from GE and Siemens manufacturers. Recommended measurements involved the ACR MRI Accreditation Phantom, spherical homogenous phantoms, and a phantom with an uniform hole pattern. Measurements assessed geometric accuracy and linearity, position accuracy, image uniformity, signal, noise, ghosting, transmit gain, center frequency, and magnetic field drift. The program was designed with open source tools, employing Linux, Apache, MySQL database and Python programming language for the front and backend. Results: Processing time for each image is <2 seconds. Figures are produced to show regions of interests (ROIs) for analysis. Historical data can be reviewed to compare previous year data and to inspect for trends. Conclusion: A MRI quality assurance and QC program is necessary for maintaining high quality, ACR MRI Accredited MR programs. A reviewable database of phantom measurements assists medical physicists with processing and monitoring of large datasets. Longitudinal data can reveal trends that although are within passing criteria indicate underlying system issues.« less

  19. Quantitative [Fe]MRI of PSMA-targeted SPIONs specifically discriminates among prostate tumor cell types based on their PSMA expression levels.

    PubMed

    Sillerud, Laurel O

    2016-01-01

    We report the development, experimental verification, and application of a general theory called [Fe]MRI (pronounced fem-ree) for the non-invasive, quantitative molecular magnetic resonance imaging (MRI) of added magnetic nanoparticles or other magnetic contrast agents in biological tissues and other sites. [Fe]MRI can easily be implemented on any MRI instrument, requiring only measurements of the background nuclear magnetic relaxation times (T1, T2) of the tissue of interest, injection of the magnetic particles, and the subsequent acquisition of a pair of T1-weighted and T2-weighted images. These images, converted into contrast images, are subtracted to yield a contrast difference image proportional to the absolute nanoparticle, iron concentration, ([Fe]) image. [Fe]MRI was validated with the samples of superparamagnetic iron oxide nanoparticles (SPIONs) both in agarose gels and bound to human prostate tumor cells. The [Fe]MRI measurement of the binding of anti-prostate specific membrane antigen (PSMA) conjugated SPIONs to PSMA-positive LNCaP and PSMA-negative DU145 cells in vitro allowed a facile discrimination among prostate tumor cell types based on their PSMA expression level. The low [Fe] detection limit of ~2 μM for SPIONs allows sensitive MRI of added iron at concentrations considerably below the US Food and Drug Administration's human iron dosage guidelines (<90 μM, 5 mg/kg).

  20. Body Imaging

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Magnetic Resonance Imaging (MRI) and Computer-aided Tomography (CT) images are often complementary. In most cases, MRI is good for viewing soft tissue but not bone, while CT images are good for bone but not always good for soft tissue discrimination. Physicians and engineers in the Department of Radiology at the University of Michigan Hospitals are developing a technique for combining the best features of MRI and CT scans to increase the accuracy of discriminating one type of body tissue from another. One of their research tools is a computer program called HICAP. The program can be used to distinguish between healthy and diseased tissue in body images.

  1. Magnetic resonance and computed tomography image fusion technology in patients with Parkinson's disease after deep brain stimulation.

    PubMed

    Xia, Jun; He, Pin; Cai, Xiaodong; Zhang, Doudou; Xie, Ni

    2017-10-15

    Electrode position after deep brain stimulation (DBS) for Parkinson's disease (PD) needs to be confirmed, but there are concerns about the risk of postoperative magnetic resonance imaging (MRI) after DBS. These issues could be avoided by fusion images obtained from preoperative MRI and postoperative computed tomography (CT). This study aimed to investigate image fusion technology for displaying the position of the electrodes compared with postoperative MRI. This was a retrospective study of 32 patients with PD treated with bilateral subthalamic nucleus (STN) DBS between April 2015 and March 2016. The postoperative (same day) CT and preoperative MRI were fused using the Elekta Leksell 10.1 planning workstation (Elekta Instruments, Stockholm, Sweden). The position of the electrodes was compared between the fusion images and postoperative 1-2-week MRI. The position of the electrodes was highly correlated between the fusion and postoperative MRI (all r between 0.865 and 0.996; all P<0.001). The differences of the left electrode position in the lateral and vertical planes was significantly different between the two methods (0.30 and 0.24mm, respectively, both P<0.05), but there were no significant differences for the other electrode and planes (all P>0.05). The position of the electrodes was highly correlated between the fusion and postoperative MRI. The CT-MRI fusion images could be used to avoid the potential risks of MRI after DBS in patients with PD. Copyright © 2017. Published by Elsevier B.V.

  2. Pulse sequence programming in a dynamic visual environment: SequenceTree.

    PubMed

    Magland, Jeremy F; Li, Cheng; Langham, Michael C; Wehrli, Felix W

    2016-01-01

    To describe SequenceTree, an open source, integrated software environment for implementing MRI pulse sequences and, ideally, exporting them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for programmers and nonprogrammers alike. The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically, allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally, other types of scanners will be supported in the future. SequenceTree has been used for 8 years in our laboratory and elsewhere and has contributed to more than 50 peer-reviewed publications in areas such as cardiovascular imaging, solid state and nonproton NMR, MR elastography, and high-resolution structural imaging. SequenceTree is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal both for advanced users and users with limited programming experience. © 2015 Wiley Periodicals, Inc.

  3. Magnetic Resonance Imaging in Nondependent Pacemaker Patients with Pacemakers and Defibrillators with a Nearly Depleted Battery.

    PubMed

    Okamura, Hideo; Padmanabhan, Deepak; Watson, Robert E; Dalzell, Connie; Acker, Nancy; Jondal, Mary; Romme, Abby L; Cha, Yong-Mei; Asirvatham, Samuel J; Felmlee, Joel P; Friedman, Paul A

    2017-05-01

    Magnetic resonance imaging (MRI) in patients with non-MRI-conditional cardiac implantable electronic devices (CIEDs) has been shown to be safe when performed under closely monitored protocols. However, the safety of MRI in patients with devices with a nearly depleted battery has not been reported. Prospective data were collected between January 2008 and May 2015 in patients with non-MRI-conditional CIEDs undergoing clinically indicated MRI under institutional protocol. Patients who were pacemaker dependent were excluded. Patients whose devices were at elective replacement indicator (ERI) at the time of MRI or close to ERI (ERI or replacement for battery depletion within 3 months of scan) were identified through database review and analyzed for clinical events. MRI scans (n = 569) were performed in 442 patients. Of these, we identified 13 scans performed with a nearly depleted battery in nine patients. All scans with implantable cardioverter defibrillators (ICDs, n = 9) were uneventful. However, two scans with pacemakers close to ERI resulted in a power-on-reset (PoR) event. One scan with a pacemaker close to ERI that was programmed to DOO mode reached ERI during MRI and automatically changed to VVI mode. Additionally, one scan with a pacemaker at ERI did not allow programming. All pacemakers with events were implanted before 2005. Patients with pacemakers and ICDs with a nearly depleted battery can safely undergo MRI when patients are not pacemaker dependent. Attention should be paid because old devices can result in PoR or ERI during MRI, which may lead to oversensing and inhibition of pacing. © 2017 Wiley Periodicals, Inc.

  4. Higher Landing Accuracy in Expert Pilots is Associated with Lower Activity in the Caudate Nucleus

    PubMed Central

    Adamson, Maheen M.; Taylor, Joy L.; Heraldez, Daniel; Khorasani, Allen; Noda, Art; Hernandez, Beatriz; Yesavage, Jerome A.

    2014-01-01

    The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20–66) were asked to “fly” a series of simulated “cockpit view” instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog–legally unsafe to land) or low risk (medium fog–legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a “land” versus “do not land” decision (CFII: d′ = 3.62±2.52; IFR: d′ = 0.98±1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a “land” versus “do not land” decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97±0.80) compared to Moderate Expertise pilots (1.91±1.16) (p<.05). These findings provide evidence for increased “neural efficiency” in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the “expertise” effect was observed. These data provide evidence that performing “real world” aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it. PMID:25426935

  5. The Gulf of Mexico Research Initiative: A Funding Model for Science, Engineering, and Technology

    NASA Astrophysics Data System (ADS)

    Colwell, R. R.

    2016-12-01

    The Deepwater Horizon oil spill, a massive ecological event, resulted in the tragic loss of 11 lives, and an environmental release of more than 130 million gallons of crude oil. Approximately 1.8 million gallons of dispersants were used in remediation efforts. An immediate response by BP was to establish a ten-year research program, with funding of 500 million. The funding was to determine the impact and long-term ecological and public health effects of oil spills and to develop improved preparation in the event of future oil or gas release into the environment. This Gulf of Mexico Research Initiative (GoMRI), established by BP, provided independent leadership for both the program and administration of the 500 million funding, and the Research Board provides oversight, assisted by excellent staff. The Research Board of the GoMRI comprises twenty scientists, many of whom have prior scientific research administrative expertise. The Research Board, in accordance with its charge, develops research programs and carries out their evaluation and oversight, employing the peer review and operational principles of the National Science Foundation and the National Academies of Science. With these guiding principles, the Research Board established procedures for conflict of interest oversight and requesting and evaluating research programs. It has also focused on communicating the research findings accurately and responsibly. The GoMRI Research Board operates with transparency and ensures availability of all scientific results and data. GoMRI, currently midway through its 10-year mandate, has funded more than 3,000 scientists, representing 278 institutions in 42 states and 17 countries, who have produced more than 1,000 peer-reviewed publications to date. The Research Board is exploring mechanisms by which the GoMRI science findings can be communicated to the broader community and the public and to continue availability of data when the program has ended. A major contribution of the GoMRI program is that it provides an excellent model for how industry, without conflict of interest, can play a significant role in supporting independent, open scientific research, to address challenges and work to solve societal problems, as well as inform decision-making related to the environment and public health.

  6. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2016-01-01

    The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.

  7. Intra-opeartive OCT imaging and sensing devices for clinical translation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Yu

    2017-02-01

    Stereotactic procedures that require insertion of needle-based instruments into the brain serve important roles in a variety of neurosurgical interventions, such as biopsy, catheterization, and electrode placement. A fundamental limitation of these stereotactic procedures is that they are blind procedures in that the operator does not have real-time feedback as to what lies immediately ahead of the advancing needle. Therefore, there is a great clinical need to navigate the instrument safely and accurately to the targets. Towards that end, we developed a forwarding-imaging needle-type optical coherence tomography (OCT) probe for avoiding the hemorrhage and guiding neurosurgical interventions. The needle probe has a thin diameter of 0.7 mm. The feasibility of vessel detection and neurosurgical guidance were demonstrated on sheep brain in vivo and human brain ex vivo. In addition, we further reduced the probe size to 0.3 mm using an optical Doppler sensing (ODS) fiber probe that can integrate with microelectrode recording (MER) to detect the blood vessels lying ahead to improve the safety of this procedure. Furthermore, to overcome the field-of-view limitation of OCT probe, we developed an MRI-compatible OCT imaging probe for neurosurgery. MRI/OCT multi-scale imaging integrates micro-resolution optical imaging with wide-field MRI imaging, and has potential to further improve the targeting accuracy.

  8. Magnetic resonance imaging of tablet dissolution.

    PubMed

    Nott, Kevin P

    2010-01-01

    Magnetic resonance imaging (MRI) is the technique of choice for measuring hydration, and its effects, during dissolution of tablets since it non-invasively maps (1)H nuclei associated with 'mobile' water. Although most studies have used MRI systems with high-field superconducting magnets, low-field laboratory-based instruments based on permanent magnet technology are being developed that provide key data for the formulation scientist. Incorporation of dissolution hardware, in particular the United States Pharmacopeia (USP) apparatus 4 flow-through cell, allows measurements under controlled conditions for comparison against other dissolution methods. Furthermore, simultaneous image acquisition and measurement of drug concentration allow direct comparison of the drug release throughout the hydration process. The combination of low-field MRI with USP-4 apparatus provides another tool to aid tablet formulation. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Open-MRI measures of cam intrusion for hips in an anterior impingement position relate to acetabular contact force.

    PubMed

    Buchan, Lawrence L; Zhang, Honglin; Konan, Sujith; Heaslip, Ingrid; Ratzlaff, Charles R; Wilson, David R

    2016-02-01

    Open MRI in functional positions has potential to directly and non-invasively assess cam femoroacetabular impingement (FAI). Our objective was to investigate whether open MRI can depict intrusion of the cam deformity into the intra-articular joint space, and whether intrusion is associated with elevated acetabular contact force. Cadaver hips (9 cam; 3 controls) were positioned in an anterior impingement posture and imaged using open MRI with multi-planar reformatting. The β-angle (describing clearance between the femoral neck and acetabulum) was measured around the entire circumference of the femoral neck. We defined a binary "MRI cam-intrusion sign" (positive if β < 0°). We then instrumented each hip with a piezoresistive sensor and conducted six repeated positioning trials, measuring acetabular contact force (F). We defined a binary "contact-force sign" (positive if F > 20N). Cam hips were more likely than controls to have both a positive MRI cam-intrusion sign (p = 0.0182, Fisher's exact test) and positive contact-force sign (p = 0.0083), which represents direct experimental evidence for cam intrusion. There was also a relationship between the MRI cam-intrusion sign and contact-force sign (p = 0.033), representing a link between imaging and mechanics. Our findings indicate that open MRI has significant potential for in vivo investigation of the cam FAI mechanism. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2014-10-01

    death and disability in children. Recent advances in pediatric magnetic resonance imaging ( MRI ) techniques are revolutionizing our understanding of... MRI , brain injury. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...principles of pediatric brain injury and recovery following injury, as well as the clinical application of sophisticated MRI techniques that are

  11. Development and Assessment of a New 3D Neuroanatomy Teaching Tool for MRI Training

    ERIC Educational Resources Information Center

    Drapkin, Zachary A.; Lindgren, Kristen A.; Lopez, Michael J.; Stabio, Maureen E.

    2015-01-01

    A computerized three-dimensional (3D) neuroanatomy teaching tool was developed for training medical students to identify subcortical structures on a magnetic resonance imaging (MRI) series of the human brain. This program allows the user to transition rapidly between two-dimensional (2D) MRI slices, 3D object composites, and a combined model in…

  12. Reliability of the EchoMRI-Infant System for Water and Fat Measurements in Newborns

    PubMed Central

    Toro-Ramos, Tatiana; Paley, Charles; Wong, William W.; Pi-Sunyer, F. Xavier; Yu, W.; Thornton, John; Gallagher, Dympna

    2017-01-01

    Objective The precision and accuracy of a quantitative magnetic resonance (EchoMRI-Infants™) system in newborn was determined. Methods: Canola oil and drinking water phantoms (increments of 10g to 1.9kg) were scanned four times. Instrument reproducibility was assessed from 3 scans (within 10-minutes) in 42 healthy term newborns (12–70 hours post-birth). Instrument precision was determined from the coefficient of variation (CV) of repeated scans for total water, lean, and fat measures for newborns and the mean difference between weight and measurement for phantoms. In newborns, the system accuracy for total body water (TBW) was tested against deuterium dilution (D2O). Results In phantoms, the repeatability and accuracy of fat and water measurements increased as the weight of oil and water increased. TBW was overestimated in amounts >200g. In newborns weighing 3.14kg, fat, lean and TBW were 0.52kg (16.48%), 2.28kg and 2.40kg, respectively. EchoMRI’s reproducibility (CV) was 3.27%, 1.83% and 1.34% for total body fat, lean, and TBW, respectively. EchoMRI-TBW values did not differ from D2O; mean difference − 1.95±6.76%, p=0.387; mean bias (limits of agreement) 0.046 kg (−0.30 to 0.39 kg). Conclusions EchoMRI infant system’s precision and accuracy for total body fat and lean are better than established techniques and equivalent to D2O for TBW in phantoms and newborns. PMID:28712143

  13. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: A glymphatic magnetic resonance imaging study.

    PubMed

    Eide, Per K; Ringstad, Geir

    2018-01-01

    The glymphatic system plays a key role for clearance of waste solutes from the rodent brain. We recently found evidence of glymphatic circulation in the human brain when using magnetic resonance imaging (MRI) contrast agent as cerebrospinal fluid (CSF) tracer in conjunction with multiple MRI acquisitions (gMRI). The present study explored the hypothesis that reduced glymphatic clearance in entorhinal cortex (ERC) may be instrumental in idiopathic normal pressure hydrocephalus (iNPH) dementia. gMRI acquisitions were obtained over a 24-48 h time span in cognitively affected iNPH patients and non-cognitively affected patients with suspected CSF leaks. The CSF tracer enrichment was determined as changes in normalized MRI T1 signal units. The study included 30 patients with iNPH and 8 individuals with suspected CSF leaks (i.e. reference individuals). Compared to reference individuals, iNPH patients presented with higher medial temporal lobe atrophy score and Evan's index and inferior ERC thickness. We found delayed clearance of the intrathecal CSF tracer gadobutrol from CSF, the ERC and adjacent white matter, suggesting impaired glymphatic circulation. Reduced clearance and accumulation of toxic waste product such as amyloid-β may be a mechanism behind dementia in iNPH. Glymphatic MRI (gMRI) may become a tool for assessment of early dementia.

  14. 75 FR 28821 - Advisory Panel for Integrative Activities, #1373; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... Foundation announces the following meeting. Name: Major Research Infrastructure (MRI) Committee of Visitors... Session Welcome and introduction of COV Members and present the overview of the MRI Program to the members...

  15. Muscle MRI in female carriers of dystrophinopathy.

    PubMed

    Tasca, G; Monforte, M; Iannaccone, E; Laschena, F; Ottaviani, P; Silvestri, G; Masciullo, M; Mirabella, M; Servidei, S; Ricci, E

    2012-09-01

    Duchenne muscular dystrophy carriers represent a rare condition that needs to be recognized because of the possible implications for prenatal diagnosis. Muscle biopsy is currently the diagnostic instrument of choice in sporadic patients. We wanted to verify whether muscle magnetic resonance imaging (MRI) could identify a pattern of involvement suggestive of this condition and whether it was similar to that reported in Duchenne and Becker muscular dystrophy. Evaluation of pelvic and lower limb MRI scans of 12 dystrophinopathy carriers was performed. We found a frequent involvement of the quadratus femoris, gluteus maximus and medius, biceps femoris long head, adductor magnus, vasti and paraspinal muscles, whilst the popliteus, iliopsoas, recti abdominis, sartorius, and gracilis were relatively spared. Asymmetry was a major feature on MRI; it could be detected significantly more often than with sole clinical examination and even in patients without weakness. The pattern we describe here is similar to that reported in Duchenne and Becker muscular dystrophy, although asymmetry represents a major distinctive feature. Muscle MRI was more sensitive than clinical examination for detecting single muscle involvement and asymmetry. Further studies are needed to verify the consistency of this pattern in larger cohorts and to assess whether muscle MRI can improve diagnostic accuracy in carriers with normal dystrophin staining on muscle biopsy. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  16. Pulse Sequence Programming in a Dynamic Visual Environment: SequenceTree

    PubMed Central

    Magland, Jeremy F.; Li, Cheng; Langham, Michael C.; Wehrli, Felix W.

    2015-01-01

    Purpose To describe SequenceTree (ST), an open source. integrated software environment for implementing MRI pulse sequences, and ideally exported them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for non-programmers and programmers alike. Methods The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally other types of scanners will be supported in the future. Results The software has been used for eight years in the authors’ laboratory and elsewhere and has been utilized in more than fifty peer-reviewed publications in areas such as cardiovascular imaging, solid state and non-proton NMR, MR elastography, and high resolution structural imaging. Conclusion ST is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal for both advanced users and those with limited programming experience. PMID:25754837

  17. Earth Viewing Applications Laboratory (EVAL). Instrument catalog

    NASA Technical Reports Server (NTRS)

    1976-01-01

    There were 87 instruments described that are used in earth observation, with an additional 51 instruments containing references to programs and their major functions. These instruments were selected from such sources as: (1) earth observation flight program, (2) operational satellite improvement programs, (3) advanced application flight experiment program, (4) shuttle experiment definition program, and (5) earth observation aircraft program.

  18. Quantitative and Qualitative Assessment of Pulmonary Emphysema with T2-Weighted PROPELLER MRI in a High-Risk Population Compared to Low-Dose CT.

    PubMed

    Meier-Schroers, Michael; Sprinkart, Alois Martin; Becker, Manuel; Homsi, Rami; Thomas, Daniel

    2018-03-07

     To determine the suitability of T2-weighted PROPELLER MRI for the assessment of pulmonary emphysema.  60 participants in a lung cancer screening program (30 subjects with pulmonary emphysema, and 30 control subjects without emphysema) were included for this retrospective study. All subjects were examined with low-dose CT (LDCT) and MRI within the screening program. The use of a T2-weighted PROPELLER sequence for the assessment of emphysema was analyzed and correlated with the results of LDCT. The presence and the extent of pulmonary emphysema were first assessed qualitatively using a three-point score, and then quantitatively with a semi-automated software program to obtain emphysema indices.  All 30 cases with pulmonary emphysema were accurately detected by MRI. There were 3 cases with emphysema according to MRI without emphysematous changes on LDCT (false-positive results). The qualitative scores as well as the emphysema indices were significantly higher in the emphysema group compared to the control group for MRI and LDCT (p < 0.001). Both the scores and the indices correlated significantly between MRI and LDCT (qualitative score of severity: r = 0.912/p < 0.001 in the emphysema group and r = 0.668/p < 0.001 in the control group; emphysema index: r = 0.960/p < 0.001 in the emphysema group and r = 0.746/p < 0.001 in the control group).  The presence and the extent of pulmonary emphysema may be assessed qualitatively and quantitatively by T2-weighted PROPELLER MRI with very good correlation to LDCT.   · T2-weighted PROPELLER MRI may be suitable for the assessment of pulmonary emphysema.. · There was significant correlation between MRI and LDCT regarding qualitative scores and quantitative emphysema indices in our study with correlation coefficients for different subgroups ranging from r = 0.668 to r = 0.960.. · T2-weighted PROPELLER MRI may have the potential to be used for follow-up examinations in patients with severe emphysema to avoid radiation exposure of repeated CTs.. · Meier-Schroers M, Sprinkart AM, Becker M et al. Quantitative and Qualitative Assessment of Pulmonary Emphysema with T2-Weighted PROPELLER MRI in a High-Risk Population Compared to Low-Dose CT. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0577-5619. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Constrained versus Unconstrained Intensive Language Therapy in Two Individuals with Chronic, Moderate-to-Severe Aphasia and Apraxia of Speech: Behavioral and fMRI Outcomes

    ERIC Educational Resources Information Center

    Kurland, Jacquie; Pulvermuller, Friedemann; Silva, Nicole; Burke, Katherine; Andrianopoulos, Mary

    2012-01-01

    Purpose: This Phase I study investigated behavioral and functional MRI (fMRI) outcomes of 2 intensive treatment programs to improve naming in 2 participants with chronic moderate-to-severe aphasia with comorbid apraxia of speech (AOS). Constraint-induced aphasia therapy (CIAT; Pulvermuller et al., 2001) has demonstrated positive outcomes in some…

  20. Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD Using Real-Time fMRI and EEG-Assisted Neurofeedback

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-12-1-0607 TITLE: "Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD Using Real-Time fMRI and...Related PTSD Using Real-Time fMRI and EEG-Assisted Neurofeedback" 5a. CONTRACT NUMBER W81XWH-12-1-0607 5b. GRANT NUMBER PT110256 5c. PROGRAM ELEMENT...neurofeedback training protocol to evaluate FEA EEG-nf training feasibility in combat-related PTSD. 15. SUBJECT TERMS PTSD; amygdala; fMRI ; EEG

  1. Benchtop-NMR and MRI--a new analytical tool in drug delivery research.

    PubMed

    Metz, Hendrik; Mäder, Karsten

    2008-12-08

    During the last years, NMR spectroscopy and NMR imaging (magnetic resonance imaging, MRI) have been increasingly used to monitor drug delivery systems in vitro and in vivo. However, high installation and running costs of the commonly used superconducting magnet technology limits the application range and prevents the further spread of this non-invasive technology. Benchtop-NMR (BT-NMR) relaxometry uses permanent magnets and is much less cost intensive. BT-NMR relaxometry is commonly used in the food and chemical industry, but so far scarcely used in the pharmaceutical field. The paper shows on several examples that the application field of BT-NMR relaxometry can be extended into the field of drug delivery, including the characterisation of emulsions and lipid ingredients (e.g. the amount and physicochemical state of the lipid) and the monitoring of adsorption characteristics (e.g. oil binding of porous ingredients). The most exciting possibilities of BT-NMR technology are linked with the new development of BT-instruments with imaging capability. BT-MRI examples on the monitoring of hydration and swelling of HPMC-based monolayer and double-layer tablets are shown. BT-MRI opens new MRI opportunities for the non-invasive monitoring of drug delivery processes.

  2. MR imaging guidance for minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Wong, Terence Z.; Kettenbach, Joachim; Silverman, Stuart G.; Schwartz, Richard B.; Morrison, Paul R.; Kacher, Daniel F.; Jolesz, Ferenc A.

    1998-04-01

    Image guidance is one of the major challenges common to all minimally invasive procedures including biopsy, thermal ablation, endoscopy, and laparoscopy. This is essential for (1) identifying the target lesion, (2) planning the minimally invasive approach, and (3) monitoring the therapy as it progresses. MRI is an ideal imaging modality for this purpose, providing high soft tissue contrast and multiplanar imaging, capability with no ionizing radiation. An interventional/surgical MRI suite has been developed at Brigham and Women's Hospital which provides multiplanar imaging guidance during surgery, biopsy, and thermal ablation procedures. The 0.5T MRI system (General Electric Signa SP) features open vertical access, allowing intraoperative imaging to be performed. An integrated navigational system permits near real-time control of imaging planes, and provides interactive guidance for positioning various diagnostic and therapeutic probes. MR imaging can also be used to monitor cryotherapy as well as high temperature thermal ablation procedures sing RF, laser, microwave, or focused ultrasound. Design features of the interventional MRI system will be discussed, and techniques will be described for interactive image acquisition and tracking of interventional instruments. Applications for interactive and near-real-time imaging will be presented as well as examples of specific procedures performed using MRI guidance.

  3. The dynamic programming high-order Dynamic Bayesian Networks learning for identifying effective connectivity in human brain from fMRI.

    PubMed

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun Kumar

    2017-06-15

    Determination of effective connectivity (EC) among brain regions using fMRI is helpful in understanding the underlying neural mechanisms. Dynamic Bayesian Networks (DBNs) are an appropriate class of probabilistic graphical temporal-models that have been used in past to model EC from fMRI, specifically order-one. High-order DBNs (HO-DBNs) have still not been explored for fMRI data. A fundamental problem faced in the structure-learning of HO-DBN is high computational-burden and low accuracy by the existing heuristic search techniques used for EC detection from fMRI. In this paper, we propose using dynamic programming (DP) principle along with integration of properties of scoring-function in a way to reduce search space for structure-learning of HO-DBNs and finally, for identifying EC from fMRI which has not been done yet to the best of our knowledge. The proposed exact search-&-score learning approach HO-DBN-DP is an extension of the technique which was originally devised for learning a BN's structure from static data (Singh and Moore, 2005). The effectiveness in structure-learning is shown on synthetic fMRI dataset. The algorithm reaches globally-optimal solution in appreciably reduced time-complexity than the static counterpart due to integration of properties. The proof of optimality is provided. The results demonstrate that HO-DBN-DP is comparably more accurate and faster than currently used structure-learning algorithms used for identifying EC from fMRI. The real data EC from HO-DBN-DP shows consistency with previous literature than the classical Granger Causality method. Hence, the DP algorithm can be employed for reliable EC estimates from experimental fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Stress matters! Psychophysiological and emotional loadings of pregnant women undergoing fetal magnetic resonance imaging.

    PubMed

    Derntl, Birgit; Krajnik, Jacqueline; Kollndorfer, Kathrin; Bijak, Manfred; Nemec, Ursula; Leithner, Katharina; Prayer, Daniela; Schöpf, Veronika

    2015-02-13

    While the application of fetal MRI in high-risk pregnant women is steadily rising, little is known about the psychological consequences of this procedure. The aim of the present study was to investigate emotional and psychophysiological reactions of females undergoing fetal MRI. Sixty women (17-44 ys), assigned for fetal MRI, were included. Affective state was assessed by standardized measures of anxiety, emotional states and depressive symptoms. Stress coping strategies were assessed using a self-report questionnaire. Stress responses were determined using skin conductance levels (SCL) during fetal MRI as well as measurement of salivary cortisol levels immediately before and after fetal MRI. Analysis of fast and slow physiological stress measures revealed significant differences between women with and without a supporting person accompanying them to the examination. For SCLs, lower levels of stress during MRI emerged in accompanied women. Women with well-marked stress-coping-strategies experienced lower levels of stress during the examination. Although fast and slow stress measures before and after MRI did not show significant correlations, a significant difference of SCLs pre and post examination was clearly detectable, as well as a trend of decreased cortisol levels for both time points. The results imply that the elevation of SCLs is an accurate instrument to assess fast stress alterations in patients during fetal MRI. Stress coping strategies and whether women are accompanied or not play an important role in the experience of anxiety and depressive symptoms. These factors should be considered especially in patients with high-risk-pregnancies to improve patient care.

  5. Understanding Patient Preference in Female Pelvic Imaging: Transvaginal Ultrasound and MRI.

    PubMed

    Sakala, Michelle D; Carlos, Ruth C; Mendiratta-Lala, Mishal; Quint, Elisabeth H; Maturen, Katherine E

    2018-04-01

    Women with pelvic pain or abnormal uterine bleeding may undergo diagnostic imaging. This study evaluates patient experience in transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI) and explores correlations between preference and symptom severity. Institutional review board approval was obtained for this Health Insurance Portability and Accountability Act-compliant prospective study. Fifty premenopausal women with pelvic symptoms evaluated by recent TVUS and MRI and without history of gynecologic cancer or hysterectomy were included. A phone questionnaire used validated survey instruments including Uterine Fibroid Symptoms Quality of Life index, Testing Morbidities Index, and Wait Trade Off for TVUS and MRI examinations. Using Wait Trade Off, patients preferred TVUS over MRI (3.58 vs 2.80 weeks, 95% confidence interval [CI] -1.63, 0.12; P = .08). Summary test utility of Testing Morbidities Index for MRI was worse than for TVUS (81.64 vs 87.42, 95%CI 0.41, 11.15; P = .03). Patients reported greater embarrassment during TVUS than during MRI (P <.0001), but greater fear and anxiety both before (P <.0001) and during (P <.001) MRI, and greater mental (P = .02) and physical (P = .02) problems after MRI versus TVUS. Subscale correlations showed physically inactive women rated TVUS more negatively (R = -0.32, P = .03), whereas women with more severe symptoms of loss of control of health (R = -0.28, P = .04) and sexual dysfunction (R = -0.30, P = .03) rated MRI more negatively. Women with pelvic symptoms had a slight but significant preference for TVUS over MRI. Identifying specific distressing aspects of each test and patient factors contributing to negative perceptions can direct improvement in both test environment and patient preparation. Improved patient experience may increase imaging value. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality.

    PubMed

    Iagaru, Andrei; Mittra, Erik; Minamimoto, Ryogo; Jamali, Mehran; Levin, Craig; Quon, Andrew; Gold, Garry; Herfkens, Robert; Vasanawala, Shreyas; Gambhir, Sanjiv Sam; Zaharchuk, Greg

    2015-01-01

    The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF. We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality. Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed. The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.

  7. Robotic System for MRI-Guided Stereotactic Neurosurgery

    PubMed Central

    Li, Gang; Cole, Gregory A.; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Pilitsis, Julie G.; Fischer, Gregory S.

    2015-01-01

    Stereotaxy is a neurosurgical technique that can take several hours to reach a specific target, typically utilizing a mechanical frame and guided by preoperative imaging. An error in any one of the numerous steps or deviations of the target anatomy from the preoperative plan such as brain shift (up to 20 mm), may affect the targeting accuracy and thus the treatment effectiveness. Moreover, because the procedure is typically performed through a small burr hole opening in the skull that prevents tissue visualization, the intervention is basically “blind” for the operator with limited means of intraoperative confirmation that may result in reduced accuracy and safety. The presented system is intended to address the clinical needs for enhanced efficiency, accuracy, and safety of image-guided stereotactic neurosurgery for Deep Brain Stimulation (DBS) lead placement. The work describes a magnetic resonance imaging (MRI)-guided, robotically actuated stereotactic neural intervention system for deep brain stimulation procedure, which offers the potential of reducing procedure duration while improving targeting accuracy and enhancing safety. This is achieved through simultaneous robotic manipulation of the instrument and interactively updated in situ MRI guidance that enables visualization of the anatomy and interventional instrument. During simultaneous actuation and imaging, the system has demonstrated less than 15% signal-to-noise ratio (SNR) variation and less than 0.20% geometric distortion artifact without affecting the imaging usability to visualize and guide the procedure. Optical tracking and MRI phantom experiments streamline the clinical workflow of the prototype system, corroborating targeting accuracy with 3-axis root mean square error 1.38 ± 0.45 mm in tip position and 2.03 ± 0.58° in insertion angle. PMID:25376035

  8. Dissociable corticostriatal circuits underlie goal-directed vs. cue-elicited habitual food seeking after satiation: evidence from a multimodal MRI study.

    PubMed

    van Steenbergen, Henk; Watson, Poppy; Wiers, Reinout W; Hommel, Bernhard; de Wit, Sanne

    2017-07-01

    The present multimodal MRI study advances our understanding of the corticostriatal circuits underlying goal-directed vs. cue-driven, habitual food seeking. To this end, we employed a computerized Pavlovian-instrumental transfer paradigm. During the test phase, participants were free to perform learned instrumental responses (left and right key presses) for popcorn and Smarties outcomes. Importantly, prior to this test half of the participants had been sated on popcorn and the other half on Smarties - resulting in a reduced desirability of those outcomes. Furthermore, during a proportion of the test trials, food-associated Pavlovian cues were presented in the background. In line with previous studies, we found that participants were able to perform in a goal-directed manner in the absence of Pavlovian cues, meaning that specific satiation selectively reduced responding for that food. However, presentation of Pavlovian cues biased choice toward the associated food reward regardless of satiation. Functional MRI analyses revealed that, in the absence of Pavlovian cues, posterior ventromedial prefrontal cortex tracked outcome value. In contrast, during cued trials, the BOLD signal in the posterior putamen differentiated between responses compatible and incompatible with the cue-associated outcome. Furthermore, we identified a region in ventral amygdala showing relatively strong functional connectivity with posterior putamen during the cued trials. Structural MRI analyses provided converging evidence for the involvement of corticostriatal circuits: diffusion tensor imaging data revealed that connectivity of caudate-seeded white-matter tracts to the ventromedial prefrontal cortex predicted responding for still-valuable outcomes; and gray matter integrity in the premotor cortex predicted individual Pavlovian cueing effects. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Development of Personalized Cancer Therapy for Men with AdvancedProstate Cancer

    DTIC Science & Technology

    2016-10-01

    propose to study the mechanism of pharmacologic inhibition of the MLL complex in prostate cancer cells 3) we will assess the in vivo efficacy of the...Project Goals: 1) Enroll patients with known or suspicious for prostate cancer in the NIH MRI /metabolic imaging program, 2) Whole exome and...Henderson 02/11/2014-01/31/2017 Project Goals: 1) Enroll patients with known or suspicious for prostate cancer in the NIH MRI /metabolic imaging program

  10. Magnetic Resonance Medical Imaging (MRI)-from the inside

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul

    There are about 36,000 magnetic resonance imaging (MRI) scanners in the world, with annual sales of 2500. In the USA about 34 million MRI studies are done annually, and 60-70% of all scanners operate at 1.5 Tesla (T). In 1982 there were none. How MRI got to be-and how it got to1.5T is the subject of this talk. Its an insider's view-mine-as a physics PhD student at Nottingham University when MRI (almost) began, through to the invention of the 1.5T clinical MRI scanner at GE's research center in Schenectady NY.Before 1977 all MRI was done on laboratory nuclear magnetic resonance instruments used for analyzing small specimens via chemical shift spectroscopy (MRS). It began with Lauterbur's 1973 observation that turning up the spectrometer's linear gradient magnetic field, generated a spectrum that was a 1D projection of the sample in the direction of the gradient. What followed in the 70's was the development of 3 key methods of 3D spatial localization that remain fundamental to MRI today.As the 1980's began, the once unimaginable prospect of upscaling from 2cm test-tubes to human body-sized magnets, gradient and RF transmit/receive systems, was well underway, evolving from arm-sized, to whole-body electromagnet-based systems operating at <0.2T. I moved to Johns Hopkins University to apply MRI methods to localized MRS and study cardiac metabolism, and then to GE to build a whole-body MRS machine. The largest uniform magnet possible-then, a 1.5T superconducting system-was required. Body MRI was first thought impossible above 0.35T due to RF penetration, detector coil and signal-to-noise ratio (SNR) issues. When GE finally did take on MRI, their plan was to drop the field to 0.3T. We opted to make MRI work at 1.5T instead. The result was a scanner that could study both anatomy and metabolism with a SNR way beyond its lower field rivals. MRI's success truly reflects the team efforts of many: from the NMR physics to the engineering of magnets, gradient and RF systems.

  11. Favourable rotational alignment outcomes in PSI knee arthroplasty: A Level 1 systematic review and meta-analysis.

    PubMed

    Mannan, A; Smith, T O

    2016-03-01

    Implant malposition in total knee arthroplasty (TKA) often results in unsatisfactory outcomes. Rotational malalignment leads to impaired patellar tracking, stability and joint biomechanics. Patient-specific instrumentation aims to improve three-dimensional implant positioning while reducing overall costs of instrumentation. A PRISMA compliant search of all relevant literature between 2000 and 2014 was performed. The primary outcome of interest was deviation from a neutral femoral and tibial axial alignment of patient-specific instrumentation (PSI) vs conventional instrumentation. Femoral rotation was measured with reference to the transepicondylar axis. Tibial rotation was reported with reference to the anterior tibial tuberosity and a "best fit" with the anterior tibial cortex. Six randomised studies met the inclusion criteria reporting on a total of 444 knees. Computed tomography (CT) based PSI systems were used exclusively in three studies, and two further studies in association with magnetic resonance imaging (MRI). MRI was used exclusively in one study. Mean femoral rotation in the conventional group was: -1.7 to 1.6° (vs -1.7 to 1° in the PSI group). Meta-analysis demonstrated a significant treatment effect favouring PSI with increased accuracy in "three-degree outliers" with femoral rotation: Z=2.07, P=0.04. A single study reported tibial rotational outcomes with no significant difference demonstrated in conventional instrumentation vs PSI. This Level 1 meta-analysis demonstrates favourable femoral rotational alignment outcomes in PSI knee arthroplasty. Only limited data is available for tibial rotational outcomes. Further studies with standardised "gold-standard" measurement criteria are required to clarify tibial rotational outcomes in PSI TKA. 1. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Long-distance longitudinal prostate MRI quality assurance: from startup to 12 months.

    PubMed

    Curci, Nicole E; Gartland, Patrick; Shankar, Prasad R; Montgomery, Jeffrey S; Miller, David C; George, Arvin K; Davenport, Matthew S

    2018-02-22

    To evaluate a 12-month long-distance prostate MRI quality assurance (QA) program. The need for IRB approval was waived for this prospective longitudinal QA effort. One academic institution experienced with prostate MRI [~ 1000 examinations/year (Site 2)] partnered with a private institution 240 miles away that was starting a new prostate MRI program (Site 1). Site 1 performed all examinations (N = 249). Four radiologists at Site 1 created finalized reports, then sent images and reports to Site 2 for review on a rolling basis. One radiologist at Site 2 reviewed findings and exam quality and discussed results by phone (~ 2-10 minutes/MRI). In months 1-6 all examinations were reviewed. In months 7-12 only PI-RADS ≤ 2 and 'difficult' cases were reviewed. Repeatability was assessed with intra-class correlation (ICC). 'Clinically significant cancer' was Gleason ≥ 7. Image quality significantly (p < 0.001) improved after the first three months. Inter-rater agreement also improved in months 3-4 [ICC: 0.849 (95% CI 0.744-0.913)] and 5-6 [ICC: 0.768 (95% CI 0.619-0.864)] compared to months 1-2 [ICC: 0.621 (95% CI 0.436-0.756)]. PI-RADS ≤ 2 examinations were reclassified PI-RADS ≥ 3 in 19% (30/162); of these, 23 had post-MRI histology and 57% (13/23) had clinically significant cancer (5.2% of 249). False-negative examinations [N = 18 (PI-RADS ≤ 2 and Gleason ≥ 7)] were more common at Site 1 during months 1-6 [9% (14/160) vs. 4% (4/89)]. Positive predictive values for PI-RADS ≥ 3 were similar. Remote quality assurance of prostate MRI is feasible and useful, enabling new programs to gain durable skills with minimal risk to patients.

  13. Open MR imaging in spine surgery: experimental investigations and first clinical experiences.

    PubMed

    Verheyden, P; Katscher, S; Schulz, T; Schmidt, F; Josten, C

    1999-01-01

    The latest open MRI technology allows to perform open and closed surgical procedures under real-time imaging. Before performing spinal trauma surgery preclinical examinations had to be done to evaluate the artifacts caused by the implants. The MRT presented is a prototype developed by GE. Two vertically positioned magnetic coils are installed in an operation theater. By that means two surgeons are able to access the patient between the two coils. Numerous tests regarding the material of instruments and implants were necessary in advance. The specific size of the artifact depending on the pulse sequence and the positioning within the magnetic field had to be examined. The magnifying factors of the artifact in the spin echo sequence regarding titanium are between 1.7 and 3.2, depending on the direction of the magnetic vector. Regarding stainless steel they are between 8.4 and 8.5. In the gradient echo sequence the factors are between 7.5 and 7.7 for titanium and between 16.9 and 18.0 for stainless steel. The tip of an implant is imaged with an accuracy of 0 to 2 mm. Since September 1997 16 patients with unstable fractures of the thoracic and lumbar spine have been treated by dorsal instrumentation in the open MRI. Percutaneous insertion of the internal fixator has proven a successful minimally invasive procedure. The positioning of the screws in the pedicle is secure, the degree of indirect reduction of the posterior wall of the vertebral body can be imaged immediately. The diameter of the spinal canal can be determined in any plane. The open MRI has proven useful in orthopedic and trauma surgery. The size and configuration of the artifacts caused by instruments and implants is predictable. Therefore exact positioning of the implants is achieved more easily. Dorsal instrumentation of unstable thoracolumbar fractures with a percutaneous technique has turned out safe and less traumatic under MR-imaging. Real-time imaging of soft tissue and bone in any plane improves security for the patient and allows the surgeon to work less invasively and more precisely.

  14. Brain activation patterns elicited by the 'Faces Symbol Test' -- a pilot fMRI study.

    PubMed

    Grabner, Rh; Popotnig, F; Ropele, S; Neuper, C; Gorani, F; Petrovic, K; Ebner, F; Strasser-Fuchs, S; Fazekas, F; Enzinger, C

    2008-04-01

    The Faces Symbol Test (FST) has recently been proposed as a brief and patient-friendly screening instrument for the assessment of cognitive dysfunction in patients with multiple sclerosis (MS). However, in contrast to well-established MS screening tests such as the Paced Auditory Serial Addition Test, the neural correlates of the FST have not been investigated so far. In the present study, we developed a functional MRI (fMRI) version of the FST to provide first data on brain regions and networks involved in this test. A sample of 19 healthy participants completed a version of the FST adapted for fMRI, requiring matching of faces and symbols in a multiple choice test and two further experimental conditions drawing on cognitive subcomponents (face matching and symbol matching). Imaging data showed a differential involvement of a fronto-parieto-occipital network in the three conditions. The most demanding FST condition elicited brain activation patterns related with sustained attention and executive control. These results suggest that the FST recruits brain networks critical for higher-order cognitive functions often impaired in MS patients.

  15. Usage of CT data in biomechanical research

    NASA Astrophysics Data System (ADS)

    Safonov, Roman A.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Kossovich, Leonid Y.

    2017-02-01

    Object of study: The investigation is focused on development of personalized medicine. The determination of mechanical properties of bone tissues based on in vivo data was considered. Methods: CT, MRI, natural experiments on versatile test machine Instron 5944, numerical experiments using Python programs. Results: The medical diagnostics methods, which allows determination of mechanical properties of bone tissues based on in vivo data. The series of experiments to define the values of mechanical parameters of bone tissues. For one and the same sample, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonic investigations and mechanical experiments on single-column test machine Instron 5944 were carried out. The computer program for comparison of CT and MRI images was created. The grayscale values in the same points of the samples were determined on both CT and MRI images. The Haunsfield grayscale values were used to determine rigidity (Young module) and tensile strength of the samples. The obtained data was compared to natural experiments results for verification.

  16. TOPEM: A PET-TOF endorectal probe, compatible with MRI for diagnosis and follow up of prostate cancer

    NASA Astrophysics Data System (ADS)

    Garibaldi, F.; Capuani, S.; Colilli, S.; Cosentino, L.; Cusanno, F.; De Leo, R.; Finocchiaro, P.; Foresta, M.; Giove, F.; Giuliani, F.; Gricia, M.; Loddo, F.; Lucentini, M.; Maraviglia, B.; Meddi, F.; Monno, E.; Musico, P.; Pappalardo, A.; Perrino, R.; Ranieri, A.; Rivetti, A.; Santavenere, F.; Tamma, C.

    2013-02-01

    Prostate cancer is the most common disease in men and the second leading cause of cancer death. Generic large instruments for diagnosis have sensitivity, spatial resolution, and contrast inferior with respect to dedicated prostate imagers. Multimodality imaging can play a significant role merging anatomical and functional details coming from simultaneous PET and MRI. The TOPEM project has the goal of designing, building, and testing an endorectal PET-TOF MRI probe. The performance is dominated by the detector close to the source. Results from simulation show spatial resolution of ∼1.5 mm for source distances up to 80 mm. The efficiency is significantly improved with respect to the external PET. Mini-detectors have been built and tested. We obtained, for the first time, to our best knowledge, timing resolution of <400 ps and at the same time Depth Of Interaction (DOI) resolution of 1 mm or less.

  17. Physics and instrumentation for imaging in-vivo drug distribution.

    PubMed

    Singh, M; Waluch, V

    2000-03-15

    Several imaging methods are currently available to measure drugs noninvasively. Of these, two techniques are today central to such measurements: nuclear imaging and magnetic resonance imaging/spectroscopy (MRI and MRS). While other methods, such as optical techniques, are rapidly gaining in interest, they have not yet attained the degree of development that makes them effective in measuring drugs in living systems, except in a small number of examples. The following introduction provides some basic elements of the potential and the limitations of both nuclear imaging and MRI/MRS techniques, methods that will be used in the studies described in the articles in this issue. However, and for those desiring to gain a better understanding of both methods, the reader is advised to consult much more extensive reviews and books describing such methods. A suggested list of books and articles on Nuclear Imaging and MRI/MRS is given.

  18. Instrumentation in molecular imaging.

    PubMed

    Wells, R Glenn

    2016-12-01

    In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.

  19. Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device.

    PubMed

    Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D

    2011-01-01

    We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.

  20. Disease activity in longstanding ankylosing spondylitis: a correlation of clinical and magnetic resonance imaging findings.

    PubMed

    Goh, L; Suresh, P; Gafoor, A; Hughes, P; Hickling, P

    2008-04-01

    We evaluated magnetic resonance imaging (MRI) changes in ankylosing spondylitis (AS) patients with longstanding disease and investigated whether there is any relationship between MRI findings and validated methods of disease assessment. A total of 34 AS patients with disease duration greater than 10 years were included in this observational cross-sectional study (26 men, 8 women). The main outcome measures were Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Global assessment (BASG), Bath Ankylosing Spondylitis Metrology Index (BASMI), MRI of the thoracic and lumbar spine (AS spi MRI A) and measurement of serum erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), plasma viscosity (PV) and immunoglobulin A (Ig A). The median scores for the acute lesions based on AS spi MRI A scoring system was 2.5 (0-4.12). The respective mean ESR and CRP were 36 (SD, 24.00) mm/h and 14.19 (SD, 24.00) mg/l with the median PV of 1.8 (1.75-1.87). The median BASG, BASFI and BASDAI were 4.55 (2.37-5.55), 4.40(2.31-5.47) and 4.32 (3.07-6.48), respectively. No significant correlations were found between the acute MRI scores and each of the clinical instruments and laboratory markers of inflammation. In this study, majority of AS patients with longstanding disease had very low AS spi MRI A scores or no evidence of spinal inflammatory lesions. Our study would suggest that MRI should be used along with other measures of disease activity in the assessment of symptomatic AS patients with longstanding disease.

  1. Language comprehension in nonspeaking children with severe cerebral palsy: Neuroanatomical substrate?

    PubMed

    Geytenbeek, Joke J; Oostrom, Kim J; Harlaar, Laurike; Becher, Jules G; Knol, Dirk L; Barkhof, Frederik; Pinto, Pedro S; Vermeulen, R Jeroen

    2015-09-01

    To identify relations between brain abnormalities and spoken language comprehension, MRI characteristics of 80 nonspeaking children with severe CP were examined. MRI scans were analysed for patterns of brain abnormalities and scored for specific MRI measures: white matter (WM) areas; size of lateral ventricles, WM abnormality/reduction, cysts, subarachnoid space, corpus callosum thinning and grey matter (GM) areas; cortical GM abnormalities, thalamus, putamen, globus pallidus and nucleus caudatus and cerebellar abnormalities. Language comprehension was assessed with a new validated instrument (C-BiLLT). MRI scans of 35 children were classified as a basal ganglia necrosis (BGN) pattern, with damage to central GM areas; in 60% of these children damage to WM areas was also found. MRI scans of 13 children were classified as periventricular leukomalacia (PVL) with little concomitant damage to central GM areas, 13 as malformations and 19 as miscellaneous. Language comprehension was best in children with BGN, followed by malformations and miscellaneous, and was poorest in PVL. Linear regression modelling per pattern group (malformations excluded), with MRI measures as independent variables, revealed that corpus callosum thinning in BGN and parieto-occipital WM reduction in PVL were the most important explanatory factors for poor language comprehension. No MRI measures explained outcomes in language comprehension in the miscellaneous group. Comprehension of spoken language differs between MRI patterns of severe CP. In children with BGN and PVL differences in language comprehension performance is attributed to damage in the WM areas. Language comprehension was most affected in children with WM lesions in the subcortical and then periventricular areas, most characteristic for children with PVL. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

    PubMed

    Salamon, Johannes; Hofmann, Martin; Jung, Caroline; Kaul, Michael Gerhard; Werner, Franziska; Them, Kolja; Reimer, Rudolph; Nielsen, Peter; Vom Scheidt, Annika; Adam, Gerhard; Knopp, Tobias; Ittrich, Harald

    2016-01-01

    In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI) / magnetic resonance imaging (MRI) road map approach and an MPI-guided approach using a blood pool tracer. A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4) was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography. Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide. 4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.

  3. Data Transparency in Privately Funded Scientific Research

    NASA Astrophysics Data System (ADS)

    Brewer, P. G.

    2016-12-01

    Research investigations funded by the Gulf of Mexico Research Initiative (GoMRI) have resulted in a large pulse of scientific data produced by studies ranging across the research goals of the program. These studies have produced datasets from laboratory, field, and modeling activities describing phenomenon ranging from microscopic fluid dynamics to large-scale ocean currents, bacteria to marine mammals, and detailed field observations to synoptic mapping. One of GoMRI's central tenets is to ensure that all data are preserved and made publicly available. Thus, GoMRI formed the Gulf of Mexico Research Initiative Data and Information Cooperative (GRIIDC) with the mission to ensure a data and information legacy that promotes continual scientific discovery and public awareness of the Gulf of Mexico ecosystem. The GoMRI Research Board commitment to open data is exemplified in GoMRI's data program policies and management. The Research Board established a policy that research data must be publically available as soon as possible and no later than one year following collection or at the time of publication. GRIIDC's data specialists, and computer system experts along with a team of researchers funded by GOMRI and GoMRI Research Board members developed a data management system and process for storing and distributing all of the scientific data generated by the GoMRI researchers. Researcher compliance with the data policy is a requirement for annual funding increments, No Cost Extensions, and eligibility for future funding. Since data compliance is an important element of grant performance compliance with GOMRI data policies data are actively tracked and reported to the Board. This initiative comprises an essential component of GoMRI's research independence and legacy.

  4. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  5. MRI screening for breast cancer in women at high risk; is the Australian breast MRI screening access program addressing the needs of women at high risk of breast cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenberg, Tess; Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Victoria; Mitchell, Gillian

    Breast magnetic resonance imaging (MRI) screening of women under 50 years old at high familial risk of breast cancer was given interim funding by Medicare in 2009 on the basis that a review would be undertaken. An updated literature review has been undertaken by the Medical Services Advisory Committee but there has been no assessment of the quality of the screening or other screening outcomes. This review examines the evidence basis of breast MRI screening and how this fits within an Australian context with the purpose of informing future modifications to the provision of Medicare-funded breast MRI screening in Australia.more » Issues discussed will include selection of high-risk women, the options for MRI screening frequency and measuring the outcomes of screening.« less

  6. ASQ Program Observation Instrument: A Tool for Assessing School-Age Child Care Quality.

    ERIC Educational Resources Information Center

    O'Connor, Susan; And Others

    ASQ (Assessing School-Aged Child Care Quality) is a system for determining the quality of school-age child care programs. The ASQ Program Observation Instrument is a ten-step, self assessment process to guide program improvement. This instrument does not work well in full-day programs that have a single focus, but works well in programs that offer…

  7. Design of a frequency domain instrument for simultaneous optical tomography and magnetic resonance imaging of small animals

    NASA Astrophysics Data System (ADS)

    Masciotti, James M.; Rahim, Shaheed; Grover, Jarrett; Hielscher, Andreas H.

    2007-02-01

    We present a design for frequency domain instrument that allows for simultaneous gathering of magnetic resonance and diffuse optical tomographic imaging data. This small animal imaging system combines the high anatomical resolution of magnetic resonance imaging (MRI) with the high temporal resolution and physiological information provided by diffuse optical tomography (DOT). The DOT hardware comprises laser diodes and an intensified CCD camera, which are modulated up to 1 GHz by radio frequency (RF) signal generators. An optical imaging head is designed to fit inside the 4 cm inner diameter of a 9.4 T MRI system. Graded index fibers are used to transfer light between the optical hardware and the imaging head within the RF coil. Fiducial markers are integrated into the imaging head to allow the determination of the positions of the source and detector fibers on the MR images and to permit co-registration of MR and optical tomographic images. Detector fibers are arranged compactly and focused through a camera lens onto the photocathode of the intensified CCD camera.

  8. Descent Through Clouds to Surface

    NASA Image and Video Library

    2005-01-18

    This frame from an animation is made up from a sequence of images taken by the Descent Imager/Spectral Radiometer (DISR) instrument on board ESA's Huygens probe, during its successful descent to Titan on Jan. 14, 2005. The animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA07234 It shows what a passenger riding on Huygens would have seen. The sequence starts from an altitude of 152 kilometers (about 95 miles) and initially only shows a hazy view looking into thick cloud. As the probe descends, ground features can be discerned and Huygens emerges from the clouds at around 30 kilometers (about 19 miles) altitude. The ground features seem to rotate as Huygens spins slowly underits parachute. The DISR consists of a downward-looking High Resolution Imager (HRI), a Medium Resolution Imager (MRI), which looks out at an angle, and a Side Looking Imager (SLI). For this animation, most images used were captured by the HRI and MRI. Once on the ground, the final landing scene was captured by the SLI. The Descent Imager/Spectral Radiometer is one of two NASA instruments on the probe.

  9. Novel Diffusion-Weighted MRI for High-Grade Prostate Cancer Detection

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0346 TITLE: Novel Diffusion-Weighted MRI for High -Grade Prostate Cancer Detection PRINCIPAL INVESTIGATOR: Michael Abern...Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of...Diffusion-Weighted MRI for High -Grade Prostate Cancer Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0346 5c. PROGRAM ELEMENT NUMBER 6

  10. MatMRI and MatHIFU: software toolboxes for real-time monitoring and control of MR-guided HIFU

    PubMed Central

    2013-01-01

    Background The availability of open and versatile software tools is a key feature to facilitate pre-clinical research for magnetic resonance imaging (MRI) and magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) and expedite clinical translation of diagnostic and therapeutic medical applications. In the present study, two customizable software tools that were developed at the Thunder Bay Regional Research Institute are presented for use with both MRI and MR-HIFU. Both tools operate in a MATLAB®; environment. The first tool is named MatMRI and enables real-time, dynamic acquisition of MR images with a Philips MRI scanner. The second tool is named MatHIFU and enables the execution and dynamic modification of user-defined treatment protocols with the Philips Sonalleve MR-HIFU therapy system to perform ultrasound exposures in MR-HIFU therapy applications. Methods MatMRI requires four basic steps: initiate communication, subscribe to MRI data, query for new images, and unsubscribe. MatMRI can also pause/resume the imaging and perform real-time updates of the location and orientation of images. MatHIFU requires four basic steps: initiate communication, prepare treatment protocol, and execute treatment protocol. MatHIFU can monitor the state of execution and, if required, modify the protocol in real time. Results Four applications were developed to showcase the capabilities of MatMRI and MatHIFU to perform pre-clinical research. Firstly, MatMRI was integrated with an existing small animal MR-HIFU system (FUS Instruments, Toronto, Ontario, Canada) to provide real-time temperature measurements. Secondly, MatMRI was used to perform T2-based MR thermometry in the bone marrow. Thirdly, MatHIFU was used to automate acoustic hydrophone measurements on a per-element basis of the 256-element transducer of the Sonalleve system. Finally, MatMRI and MatHIFU were combined to produce and image a heating pattern that recreates the word ‘HIFU’ in a tissue-mimicking heating phantom. Conclusions MatMRI and MatHIFU leverage existing MRI and MR-HIFU clinical platforms to facilitate pre-clinical research. MatMRI substantially simplifies the real-time acquisition and processing of MR data. MatHIFU facilitates the testing and characterization of new therapy applications using the Philips Sonalleve clinical MR-HIFU system. Under coordination with Philips Healthcare, both MatMRI and MatHIFU are intended to be freely available as open-source software packages to other research groups. PMID:25512856

  11. Assessing Top-Down and Bottom-Up Contributions to Auditory Stream Segregation and Integration With Polyphonic Music

    PubMed Central

    Disbergen, Niels R.; Valente, Giancarlo; Formisano, Elia; Zatorre, Robert J.

    2018-01-01

    Polyphonic music listening well exemplifies processes typically involved in daily auditory scene analysis situations, relying on an interactive interplay between bottom-up and top-down processes. Most studies investigating scene analysis have used elementary auditory scenes, however real-world scene analysis is far more complex. In particular, music, contrary to most other natural auditory scenes, can be perceived by either integrating or, under attentive control, segregating sound streams, often carried by different instruments. One of the prominent bottom-up cues contributing to multi-instrument music perception is their timbre difference. In this work, we introduce and validate a novel paradigm designed to investigate, within naturalistic musical auditory scenes, attentive modulation as well as its interaction with bottom-up processes. Two psychophysical experiments are described, employing custom-composed two-voice polyphonic music pieces within a framework implementing a behavioral performance metric to validate listener instructions requiring either integration or segregation of scene elements. In Experiment 1, the listeners' locus of attention was switched between individual instruments or the aggregate (i.e., both instruments together), via a task requiring the detection of temporal modulations (i.e., triplets) incorporated within or across instruments. Subjects responded post-stimulus whether triplets were present in the to-be-attended instrument(s). Experiment 2 introduced the bottom-up manipulation by adding a three-level morphing of instrument timbre distance to the attentional framework. The task was designed to be used within neuroimaging paradigms; Experiment 2 was additionally validated behaviorally in the functional Magnetic Resonance Imaging (fMRI) environment. Experiment 1 subjects (N = 29, non-musicians) completed the task at high levels of accuracy, showing no group differences between any experimental conditions. Nineteen listeners also participated in Experiment 2, showing a main effect of instrument timbre distance, even though within attention-condition timbre-distance contrasts did not demonstrate any timbre effect. Correlation of overall scores with morph-distance effects, computed by subtracting the largest from the smallest timbre distance scores, showed an influence of general task difficulty on the timbre distance effect. Comparison of laboratory and fMRI data showed scanner noise had no adverse effect on task performance. These Experimental paradigms enable to study both bottom-up and top-down contributions to auditory stream segregation and integration within psychophysical and neuroimaging experiments. PMID:29563861

  12. A powerful graphical pulse sequence programming tool for magnetic resonance imaging.

    PubMed

    Jie, Shen; Ying, Liu; Jianqi, Li; Gengying, Li

    2005-12-01

    A powerful graphical pulse sequence programming tool has been designed for creating magnetic resonance imaging (MRI) applications. It allows rapid development of pulse sequences in graphical mode (allowing for the visualization of sequences), and consists of three modules which include a graphical sequence editor, a parameter management module and a sequence compiler. Its key features are ease to use, flexibility and hardware independence. When graphic elements are combined with a certain text expressions, the graphical pulse sequence programming is as flexible as text-based programming tool. In addition, a hardware-independent design is implemented by using the strategy of two step compilations. To demonstrate the flexibility and the capability of this graphical sequence programming tool, a multi-slice fast spin echo experiment is performed on our home-made 0.3 T permanent magnet MRI system.

  13. Single slice US-MRI registration for neurosurgical MRI-guided US

    NASA Astrophysics Data System (ADS)

    Pardasani, Utsav; Baxter, John S. H.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Image-based ultrasound to magnetic resonance image (US-MRI) registration can be an invaluable tool in image-guided neuronavigation systems. State-of-the-art commercial and research systems utilize image-based registration to assist in functions such as brain-shift correction, image fusion, and probe calibration. Since traditional US-MRI registration techniques use reconstructed US volumes or a series of tracked US slices, the functionality of this approach can be compromised by the limitations of optical or magnetic tracking systems in the neurosurgical operating room. These drawbacks include ergonomic issues, line-of-sight/magnetic interference, and maintenance of the sterile field. For those seeking a US vendor-agnostic system, these issues are compounded with the challenge of instrumenting the probe without permanent modification and calibrating the probe face to the tracking tool. To address these challenges, this paper explores the feasibility of a real-time US-MRI volume registration in a small virtual craniotomy site using a single slice. We employ the Linear Correlation of Linear Combination (LC2) similarity metric in its patch-based form on data from MNI's Brain Images for Tumour Evaluation (BITE) dataset as a PyCUDA enabled Python module in Slicer. By retaining the original orientation information, we are able to improve on the poses using this approach. To further assist the challenge of US-MRI registration, we also present the BOXLC2 metric which demonstrates a speed improvement to LC2, while retaining a similar accuracy in this context.

  14. The Road to FUNCTIONAL IMAGING and ULTRAHIGH FIELDS

    PubMed Central

    Uğurbil, Kâmil

    2012-01-01

    The Center for Magnetic Resonance (CMRR) at the University of Minnesota was one of laboratories where the work that simultaneously and independently introduced functional magnetic resonance imaging (fMRI) of human brain activity was carried out. However, unlike other laboratories pursuing fMRI at the time, our work was performed at 4 Tesla magnetic field and coincided with the effort to push human magnetic resonance imaging to field strength significantly beyond 1.5 Tesla which was the high-end standard of the time. The human fMRI experiments performed in CMRR were planned between two colleagues who had known each other and had worked together previously in Bell Laboratories, namely Seiji Ogawa and myself, immediately after the Blood Oxygenation Level Dependent (BOLD) contrast was developed by Seiji. We were waiting for our first human system, a 4 Tesla system, to arrive in order to attempt at imaging brain activity in the human brain and these were the first experiments we performed on the 4 Tesla instrument in CMRR when it became marginally operational. This was a prelude to a subsequent systematic push we initiated for exploiting higher magnetic fields to improve the accuracy and sensitivity of fMRI maps, first going to 9.4 Tesla for animal model studies and subsequently developing a 7 Tesla human system for the first time. Steady improvements in high field instrumentation and ever expanding armamentarium of image acquisition and engineering solutions to challenges posed by ultrahigh fields has brought fMRI to submillimeter resolution in the whole brain at 7 Tesla, the scale necessary to reach cortical columns and laminar differentiation in the whole brain. The solutions that emerged in response to technological challenges posed by 7 Tesla also propagated and continues to propagate to lower field clinical systems, a major advantage of the ultrahigh fields effort that is underappreciated. Further improvements at 7T are inevitable. Further translation of these improvements to lower field clinical systems to achieve new capabilities and to magnetic fields significantly higher than 7 Tesla to enable human imaging is inescapable. PMID:22333670

  15. Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC): Developing a Data Sharing Culture in the Wake of the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Showalter, L. M.; Gibeaut, J. C.

    2016-02-01

    Following the 2010 Deepwater Horizon BP Oil Spill in the Gulf of Mexico, BP committed $500 million (USD) for a research program that investigates the impacts of oil, dispersed oil, and dispersant on the environment and to develop strategies for response to future disasters. This research program, the Gulf of Mexico Research Initiative (GoMRI), is mandated to make all the data produced available to the public. To fulfill this goal, GoMRI developed the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC). GRIIDC is the vehicle by which GoMRI is addressing the data and information needs of this large and varied community of more than 3,000 scientists. The mission of GRIIDC is to ensure a data and information legacy that promotes continual scientific discovery and public awareness of the Gulf of Mexico Ecosystem. As part of its effort to encourage data sharing among scientists interested in oil-spill related research in the Gulf of Mexico GRIIDC provides tools to researchers to facilitate all aspects of the data management process, from developing data management plans, to creating robust metadata records, to ensuring the data is made discoverable by the public. GRIIDC also provides a service to ensure that GoMRI funded publications have any associated data linked and available. This cradle to grave approach to data management has been extremely effective in developing data management practices that will ensure better data stewardship and preservation of all the data created in the GoMRI research program.

  16. PET/MR Synchronization by Detection of Switching Gradients

    NASA Astrophysics Data System (ADS)

    Weissler, Bjoern; Gebhardt, Pierre; Lerche, Christoph W.; Soultanidis, Georgios M.; Wehner, Jakob; Heberling, Dirk; Schulz, Volkmar

    2015-06-01

    The full potential of simultaneous Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) acquisition, such as dynamic studies or motion compensation, can only be explored if the data of both modalities is temporally synchronized. As such hybrid imaging systems are commonly realized as custom-made PET inserts for commercially available MRI scanner, a synchronization solution has to be implemented (depending on the vendor of the MRI system). In contrast, we demonstrate a simple method for temporal synchronization, which does not require a connection to the MRI. It uses the normally undesired effect of induced voltages on the PET electronics from switching MRI gradients. The electronic circuit needs very few components and the gradient pick-up coils are made from PCB traces and vias on the PET detector boards. Neither programming the MRI nor any physical connection to the MR scanner is needed, thus avoiding electromagnetic compatibility problems. This method works inherently with most MRI sequences and is a vendor- independent solution. A characterization of the sensors in an MRI scanner showed that the MRI gradients are detected with a precision of 120 μs (with the current implementation). Using different trigger thresholds, it is possible to trigger selectively on certain MRI sequences, depending on their gradient slew rate settings. Timings and pulse diagrams of MRI sequences can be recognized from the generated data. The method was successfully used for temporal alignment between PET and MRI in an MRI-based PET-motion-compensation application.

  17. Trigeminal neuralgia--a coherent cross-specialty management program.

    PubMed

    Heinskou, Tone; Maarbjerg, Stine; Rochat, Per; Wolfram, Frauke; Jensen, Rigmor Højland; Bendtsen, Lars

    2015-01-01

    Optimal management of patients with classical trigeminal neuralgia (TN) requires specific treatment programs and close collaboration between medical, radiological and surgical specialties. Organization of such treatment programs has never been described before. With this paper we aim to describe the implementation and feasibility of an accelerated cross-speciality management program, to describe the collaboration between the involved specialties and to report the patient flow during the first 2 years after implementation. Finally, we aim to stimulate discussions about optimal management of TN. Based on collaboration between neurologists, neuroradiologists and neurosurgeons a standardized program for TN was implemented in May 2012 at the Danish Headache Center (DHC). First out-patient visit and subsequent 3.0 Tesla MRI scan was booked in an accelerated manner. The MRI scan was performed according to a special TN protocol developed for this program. Patients initially referred to neurosurgery were re-directed to DHC for pre-surgical evaluation of diagnosis and optimization of medical treatment. Follow-up was 2 years with fixed visits where medical treatment and indication for neurosurgery was continuously evaluated. Scientific data was collected in a structured and prospective manner. From May 2012 to April 2014, 130 patients entered the accelerated program. Waiting time for the first out-patient visit was 42 days. Ninety-four percent of the patients had a MRI performed according to the special protocol after a mean of 37 days. Within 2 years follow-up 35% of the patients were referred to neurosurgery after a median time of 65 days. Five scientific papers describing demographics, clinical characteristics and neuroanatomical abnormalities were published. The described cross-speciality management program proved to be feasible and to have acceptable waiting times for referral and highly specialized work-up of TN patients in a public tertiary referral centre for headache and facial pain. Early high quality MRI ensured correct diagnosis and that the neurosurgeons had a standardized basis before decision-making on impending surgery. The program ensured that referral of the subgroup of patients in need for surgery was standardized, ensured continuous evaluation of the need for adjustments in pharmacological management and formed the basis for scientific research.

  18. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    PubMed Central

    Panigrahy, Ashok; Wisnowski, Jessica L.; Furtado, Andre; Lepore, Natasha; Paquette, Lisa; Bluml, Stefan

    2013-01-01

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage IVH and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the “connectome” is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental outcomes, instruments to assess the efficacy of neuroprotective agents and maneuvers in the NICU, and as screening instruments to appropriately select infants for longitudinal developmental interventions. PMID:22395719

  19. The development of antisocial behavior: what can we learn from functional neuroimaging studies?

    PubMed

    Crowe, S L; Blair, R J R

    2008-01-01

    The recent development of low-risk imaging technologies, such as functional magnetic resonance imaging (fMRI), have had a significant impact on the investigation of psychopathologies in children and adolescents. This review considers what we can infer from fMRI work regarding the development of conduct disorder (CD) and oppositional defiant disorder (ODD). We make two central assumptions that are grounded in the empirical literature. First, the diagnoses of CD and ODD identify individuals with heterogeneous pathologies; that is, different developmental pathologies can receive a CDD or ODD diagnosis. This is indicated by the comorbidities associated with CD/ODD, some of which appear to be mutually exclusive at the biological level (e.g., posttraumatic stress disorder [PTSD] and psychopathic tendencies). Second, two populations of antisocial individuals can be identified: those that show an increased risk for only reactive aggression and those that show an increased risk for both reactive and instrumental aggression. We review the fMRI data indicating that particular comorbidities of CD/ODD (i.e., mood and anxiety conditions such as childhood bipolar disorder and PTSD) are associated with either increased responsiveness of neural regions implicated in the basic response to threat (e.g., the amygdala) or decreased responsiveness in regions of frontal cortex (e.g., ventromedial frontal cortex) that are implicated in the regulation of the basic threat response. We suggest why such pathology would increase the risk for reactive aggression and, in turn, lead to the association with a CD/ODD diagnosis. We also review the literature on psychopathic tendencies, a condition where the individual is at significantly elevated risk for both reactive and instrumental aggression. We show that in individuals with psychopathic tendencies, the functioning of the amygdala in stimulus-reinforcement learning and of the ventromedial frontal cortex in the representation of reinforcement expectancies is impaired. We suggest why such pathology would increase the risk for reactive and instrumental aggression and thus also lead to the association with a CD/ODD diagnosis.

  20. TU-A-18C-01: ACR Accreditation Updates in CT, Ultrasound, Mammography and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R; Berns, E; Hangiandreou, N

    2014-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, the ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-datemore » as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, mammography, ultrasound, and computed tomography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program. To understand the new requirements of the ACR ultrasound accreditation program, and roles the physicist can play in annual equipment surveys and setting up and supervising the routine QC program. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process.« less

  1. Design and Development of the Aircraft Instrument Comprehension Program.

    ERIC Educational Resources Information Center

    Higgins, Norman C.

    The Aircraft Instrument Comprehension (AIC) Program is a self-instructional program designed to teach undergraduate student pilots to read instruments that indicate the position of the aircraft in flight, based on sequential instructional stages of information, prompted practice, and unprompted practice. The program includes a 36-item multiple…

  2. Graphical programming interface: A development environment for MRI methods.

    PubMed

    Zwart, Nicholas R; Pipe, James G

    2015-11-01

    To introduce a multiplatform, Python language-based, development environment called graphical programming interface for prototyping MRI techniques. The interface allows developers to interact with their scientific algorithm prototypes visually in an event-driven environment making tasks such as parameterization, algorithm testing, data manipulation, and visualization an integrated part of the work-flow. Algorithm developers extend the built-in functionality through simple code interfaces designed to facilitate rapid implementation. This article shows several examples of algorithms developed in graphical programming interface including the non-Cartesian MR reconstruction algorithms for PROPELLER and spiral as well as spin simulation and trajectory visualization of a FLORET example. The graphical programming interface framework is shown to be a versatile prototyping environment for developing numeric algorithms used in the latest MR techniques. © 2014 Wiley Periodicals, Inc.

  3. Medical Imaging Field of Magnetic Resonance Imaging: Identification of Specialties within the Field

    ERIC Educational Resources Information Center

    Grey, Michael L.

    2009-01-01

    This study was conducted to determine if specialty areas are emerging in the magnetic resonance imaging (MRI) profession due to advancements made in the medical sciences, imaging technology, and clinical applications used in MRI that would require new developments in education/training programs and national registry examinations. In this…

  4. Genetic Programming and Frequent Itemset Mining to Identify Feature Selection Patterns of iEEG and fMRI Epilepsy Data

    PubMed Central

    Smart, Otis; Burrell, Lauren

    2014-01-01

    Pattern classification for intracranial electroencephalogram (iEEG) and functional magnetic resonance imaging (fMRI) signals has furthered epilepsy research toward understanding the origin of epileptic seizures and localizing dysfunctional brain tissue for treatment. Prior research has demonstrated that implicitly selecting features with a genetic programming (GP) algorithm more effectively determined the proper features to discern biomarker and non-biomarker interictal iEEG and fMRI activity than conventional feature selection approaches. However for each the iEEG and fMRI modalities, it is still uncertain whether the stochastic properties of indirect feature selection with a GP yield (a) consistent results within a patient data set and (b) features that are specific or universal across multiple patient data sets. We examined the reproducibility of implicitly selecting features to classify interictal activity using a GP algorithm by performing several selection trials and subsequent frequent itemset mining (FIM) for separate iEEG and fMRI epilepsy patient data. We observed within-subject consistency and across-subject variability with some small similarity for selected features, indicating a clear need for patient-specific features and possible need for patient-specific feature selection or/and classification. For the fMRI, using nearest-neighbor classification and 30 GP generations, we obtained over 60% median sensitivity and over 60% median selectivity. For the iEEG, using nearest-neighbor classification and 30 GP generations, we obtained over 65% median sensitivity and over 65% median selectivity except one patient. PMID:25580059

  5. Evaluating a preoperative protocol that includes magnetic resonance imaging for lymph node metastasis in the Cholangiocarcinoma Screening and Care Program (CASCAP) in Thailand.

    PubMed

    Songthamwat, Metha; Chamadol, Nittaya; Khuntikeo, Narong; Thinkhamrop, Jadsada; Koonmee, Supinda; Chaichaya, Nathaphop; Bethony, Jeffrey; Thinkhamrop, Bandit

    2017-09-20

    Treatment planning especially liver resection in cholangiocarcinoma (CCA) depends on the extension of tumor and lymph node metastasis which is included as a key criterion for operability. Magnetic resonance imaging (MRI) offers a rapid and powerful tool for the detection of lymph node metastasis (LNM) and in the current manuscript is assessed as a critical tool in the preoperative protocol for liver resection for treatment of CCA. However, the accuracy of MRI to detect LNM from CCA had yet to be comprehensively evaluated. The accuracy of MRI to detect LNM was assessed in a cohort of individuals with CCA from the Cholangiocarcinoma Screening and Care Program (CASCAP), a screening program designed to reduce CCA in Northeastern Thailand by community-based ultrasound (US) for CCA. CCA-positive individuals are referred to one of the nine tertiary centers in the study to undergo a preoperative protocol that included enhanced imaging by MRI. Additionally, these individuals also underwent lymph node biopsies for histological confirmation of LNM (the "gold standard") to determine the accuracy of the MRI results. MRI accurately detected the presence or absence of LNM in only 29 out of the 51 CCA cases (56.9%, 95% CI 42.2-70.7), resulting in a sensitivity of 57.1% (95% CI 34.0-78.2) and specificity of 56.7% (95% CI 37.4-74.5), with positive and negative predictive values of 48.0% (95% CI 27.8-68.7) and 65.4% (95% CI 44.3-82.8), respectively. The positive likelihood ratio was 1.32 (95% CI 0.76-2.29), and the negative likelihood ratio was 0.76 (95% CI 0.42-1.36). MRI showed limited sensitivity and a poor positive predictive value for the diagnosis of LNM for CCA, which is of particular concern in this resource-limited setting, where simpler detection methods could be utilized that are more cost-effective in this region of Thailand. Therefore, the inclusion of MRI, a costly imaging method, should be reconsidered as part of protocol for treatment planning of CCA, given the number of false positives, especially as it is critical in determining the operability for CCA subjects.

  6. [Microinjection Monitoring System Design Applied to MRI Scanning].

    PubMed

    Xu, Yongfeng

    2017-09-30

    A microinjection monitoring system applied to the MRI scanning was introduced. The micro camera probe was used to stretch into the main magnet for real-time video injection monitoring of injection tube terminal. The programming based on LabVIEW was created to analysis and process the real-time video information. The feedback signal was used for intelligent controlling of the modified injection pump. The real-time monitoring system can make the best use of injection under the condition that the injection device was away from the sample which inside the magnetic room and unvisible. 9.4 T MRI scanning experiment showed that the system in ultra-high field can work stability and doesn't affect the MRI scans.

  7. [Influence of implants on human body during MRI examinations: fundamental experiment using metal balls].

    PubMed

    Muranaka, Hiroyuki; Nakamura, Osamu; Usui, Shuji; Ueda, Yoshitake; Morikawa, Kaoru

    2005-07-20

    It is increasingly the case that patients who have implants feel pain during high-field MRI examinations. A probable reason for the pain is the generation by irradiation of RF pulses and changing of the magnetic field gradient. As a fundamental study on the effect of implants on the human body under MRI procedures, temperature measurements were obtained from metal balls incorporated into gel-filled phantoms by using two kinds of measuring instruments, a copper-constantan thermocouple and a fluorescence fiber thermometer. At first we pursued a correlation between a copper-constantan thermocouple (absolute measurement) and fluoroptic thermometer and confirmed the precision and stability of the fluoroptic thermometer under MRI procedures. When a stainless steel ball with or without a loop antenna was used, only in the former case did the temperature rise during RF pulse irradiation. There was no significant difference between the magnetic field gradient ON and OFF. Furthermore, differences in metal (steel, aluminum, brass, stainless steel, copper) and size (5, 10, 20 mmPhi) were affected according to the increase of temperature. In conclusion, both RF pulse irradiation and a loop antenna are necessary for heat generation on the surface of metals.

  8. Intraoperative Magnetic Resonance Imaging for Cranial and Spinal Cases Using Preexisting "C" Shaped Three Side Open 0.2 Tesla Magnetic Resonance Imaging.

    PubMed

    Tewari, Vinod Kumar; Tripathi, Ravindra; Aggarwal, Subodh; Hussain, Mazhar; Das Gupta, Hari Kishan

    2017-01-01

    The existing Intraoperative MRI (IMRI) of developed countries is too costly to be affordable in any developing country and out of the reach of common and poor people of developing country at remote areas. We have used the pre-existing (refurbished) 3 side open "C" shaped 0.2 Tesla MRI for IMRI in a very remote area. In this technique the 0.2 Tesla MRI and the operating theatre were merged. MRI table was used as an operation table. We have operated 36 cases via IMRI from November 2005 to till date. First case operated was on 13 th nov 2005. Low (0.2) Tesla open setup costs very low (around Rs 40 lakhs) so highly affordable to management and thus to patients, used for diagnostic and therapeutic purposes both, the equipments like Nitrous, oxygen and suction is outside the MRI room so no noise inside operative room, positioning the patient didn't take much time due to manual adjustments, no special training to nurses and technicians required because of low (0.2) Tesla power of magnet and same instruments and techniques, sequencing took only 1.31 mints per sequence and re registration is not required since we always note down the two orthogonal axis in x and y axis in preoperative imaging and we were able to operate on posterior fossa tumors as well because of no head fixation except with leucoplast strap. Moreover the images we got intraoperative are highly acceptable. Three side open 0.2 Tesla MRI system, if used for intraoperative guidance, is highly affordable and overcomes the limitations of western setup of IMRI. Postoperative MRI images were highly acceptable and also highly affordable too.

  9. Clinical and Morphological Changes Following 2 Rehabilitation Programs for Acute Hamstring Strain Injuries: A Randomized Clinical Trial

    PubMed Central

    SILDER, AMY; SHERRY, MARC A.; SANFILIPPO, JENNIFER; TUITE, MICHAEL J.; HETZEL, SCOTT J.; HEIDERSCHEIT, BRYAN C.

    2013-01-01

    STUDY DESIGN Randomized, double-blind, parallel-group clinical trial. OBJECTIVES To assess differences between a progressive agility and trunk stabilization rehabilitation program and a progressive running and eccentric strengthening rehabilitation program in recovery characteristics following an acute hamstring injury, as measured via physical examination and magnetic resonance imaging (MRI). BACKGROUND Determining the type of rehabilitation program that most effectively promotes muscle and functional recovery is essential to minimize reinjury risk and to optimize athlete performance. METHODS Individuals who sustained a recent hamstring strain injury were randomly assigned to 1 of 2 rehabilitation programs: (1) progressive agility and trunk stabilization or (2) progressive running and eccentric strengthening. MRI and physical examinations were conducted before and after completion of rehabilitation. RESULTS Thirty-one subjects were enrolled, 29 began rehabilitation, and 25 completed rehabilitation. There were few differences in clinical or morphological outcome measures between rehabilitation groups across time, and reinjury rates were low for both rehabilitation groups after return to sport (4 of 29 subjects had reinjuries). Greater craniocaudal length of injury, as measured on MRI before the start of rehabilitation, was positively correlated with longer return-to-sport time. At the time of return to sport, although all subjects showed a near-complete resolution of pain and return of muscle strength, no subject showed complete resolution of injury as assessed on MRI. CONCLUSION The 2 rehabilitation programs employed in this study yielded similar results with respect to hamstring muscle recovery and function at the time of return to sport. Evidence of continuing muscular healing is present after completion of rehabilitation, despite the appearance of normal physical strength and function on clinical examination. LEVEL OF EVIDENCE Therapy, level 1b–. J Orthop Sports Phys Ther 2013;43(5):284-299. Epub 13 March 2013. doi:10.2519/jospt.2013.4452 PMID:23485730

  10. MRI breast screening in high-risk women: cancer detection and survival analysis.

    PubMed

    Evans, D Gareth; Gareth, Evans D; Kesavan, Nisha; Nisha, Kesavan; Lim, Yit; Yit, Lim; Gadde, Soujanye; Soujanye, Gadde; Hurley, Emma; Emma, Hurley; Massat, Nathalie J; Maxwell, Anthony J; Ingham, Sarah; Sarah, Ingham; Eeles, Rosalind; Rosalind, Eeles; Leach, Martin O; Howell, Anthony; Anthony, Howell; Duffy, Stephen W; Stephen, Duffy

    2014-06-01

    Women with a genetic predisposition to breast cancer tend to develop the disease at a younger age with denser breasts making mammography screening less effective. The introduction of magnetic resonance imaging (MRI) for familial breast cancer screening programs in recent years was intended to improve outcomes in these women. We aimed to assess whether introduction of MRI surveillance improves 5- and 10-year survival of high-risk women and determine the accuracy of MRI breast cancer detection compared with mammography-only or no enhanced surveillance and compare size and pathology of cancers detected in women screened with MRI + mammography and mammography only. We used data from two prospective studies where asymptomatic women with a very high breast cancer risk were screened by either mammography alone or with MRI also compared with BRCA1/2 carriers with no intensive surveillance. 63 cancers were detected in women receiving MRI + mammography and 76 in women receiving mammography only. Sensitivity of MRI + mammography was 93 % with 63 % specificity. Fewer cancers detected on MRI were lymph node positive compared to mammography/no additional screening. There were no differences in 10-year survival between the MRI + mammography and mammography-only groups, but survival was significantly higher in the MRI-screened group (95.3 %) compared to no intensive screening (73.7 %; p = 0.002). There were no deaths among the 21 BRCA2 carriers receiving MRI. There appears to be benefit from screening with MRI, particularly in BRCA2 carriers. Extended follow-up of larger numbers of high-risk women is required to assess long-term survival.

  11. Emotion Regulation Training for Training Warfighters with Combat Related PTSD Using Real Time fMRI and EEG Assisted Neurofeedback

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-12-1-0607 TITLE: Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD Using Real -Time fMRI...Related PTSD Using Real -Time fMRI and EEG-Assisted Neurofeedback 5a. CONTRACT NUMBER W81XWH-12-1-0607 5b. GRANT NUMBER PT110256 5c. PROGRAM ELEMENT...emphasize dysregulation of the amygdala, which is involved in the regulation of PTSD-relevant emotions. We are utilizing real -time functional magnetic

  12. White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 2: Liver and Other Applications in Oncology.

    PubMed

    Barkhausen, Jörg; Kahn, Thomas; Krombach, Gabriele A; Kuhl, Christiane K; Lotz, Joachim; Maintz, David; Ricke, Jens; Schönberg, Stefan O; Vogl, Thomas J; Wacker, Frank K

    2017-11-01

    Background  MRI is attractive for guiding and monitoring interventional procedures due to its high intrinsic soft tissue contrast and the possibility to measure flow and cardiac function. Methods  Technical solutions have been developed for all procedural steps including imaging guidance, MR-safe catheters and instruments and patient monitoring. This has led to widening of the clinical applications. Interventional MRI is becoming increasingly important for the treatment of patients suffering from malignant diseases. The detectability of masses and consequently their accessibility for biopsy is higher, compared to other modalities, due to the high intrinsic soft tissue contrast of MRI. Temperature-dependent sequences allow for minimally invasive and tissue-sparing ablation (A-0 ablation). Conclusion  Interventional MRI has become established in the clinical routine for a variety of indications, including biopsies and tumor ablation. Since the economic requirement of covering costs by reimbursement is met and interventional MRI decreases the mortality and morbidity of interventional procedures, broader application of interventional MRI can be expected in the clinical routine in the future. Key points   · Particularly for the treatment of oncological patients, interventional MRI is superior to other methods with respect to minimal invasiveness and tissue protection due to the ability to exactly determine tumor borders and to visualize and control the size of the ablation area on the basis of MR temperature measurement.. · Due to the better visualization of targets and the effects of ablation in tissue, interventional MRI can lower the mortality and morbidity associated with these interventions for many indications.. · The complex comparison of costs and reimbursement shows that this application can be performed in a cost-covering manner and broader application can be expected in the future.. Citation Format · Barkhausen J, Kahn T, Krombach GA et al. White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 2: Liver and Other Applications in Oncology. Fortschr Röntgenstr 2017; 189: 1047 - 1054. © Georg Thieme Verlag KG Stuttgart · New York.

  13. The Clinical Utility and Diagnostic Performance of MRI for Identification of Early and Advanced Knee Osteoarthritis: A Systematic Review

    PubMed Central

    Quatman, Carmen E.; Hettrich, Carolyn M.; Schmitt, Laura C.; Spindler, Kurt P.

    2013-01-01

    Background Current diagnostic strategies for detection of structural articular cartilage abnormalities, the earliest structural signs of osteoarthritis, often do not capture the condition until it is too far advanced for the most potential benefit of non-invasive interventions. Purpose Systematically review the literature relative to the following questions: (1) Is MRI a valid, sensitive, specific, accurate and reliable instrument to identify knee articular cartilage abnormalities compared to arthroscopy? (2) Is MRI a sensitive tool that can be utilized to identify early cartilage degeneration? Study Design Systematic Review Methods A systematic search was performed in November 2010 using PubMed MEDLINE (from 1966), CINAHL (from 1982), SPORTDiscus (from 1985), and SCOPUS (from 1996) databases. Results Fourteen level I and 13 level II studies were identified that met inclusion criteria and provided information related to diagnostic performance of MRI compared to arthroscopic evaluation. The diagnostic performance of MRI demonstrated a large range of sensitivities, specificities, and accuracies. The sensitivity for identifying articular cartilage abnormalities in the knee joint was reported between 26–96%. Specificity and accuracy was reported between 50–100% and 49–94%, respectively. The sensitivity, specificity, and accuracy for identifying early osteoarthritis were reported between 0–86%, 48–95%, and 5–94%, respectively. As a result of inconsistencies between imaging techniques and methodological shortcomings of many of the studies, a meta-analysis was not performed and it was difficult to fully synthesize the information to state firm conclusions about the diagnostic performance of MRI. Conclusions There is evidence in some MRI protocols that MRI is a relatively valid, sensitive, specific, accurate, and reliable clinical tool for identifying articular cartilage degeneration. Due to heterogeneity of MRI sequences it is not possible to make definitive conclusions regarding its global clinical utility for guiding diagnosis and treatment strategies. Clinical Relevance Traumatic sports injuries to the knee may be significant precursor events to early onset of posttraumatic osteoarthritis. MRI may aid in early identification of structural injuries to articular cartilage as evidenced by articular cartilage degeneration grading. PMID:21730207

  14. Demonstration of a Conduction Cooled React and Wind MgB2 Coil Segment for MRI Applications

    PubMed Central

    Kim, H. S.; Kovacs, C.; Rindfleisch, M.; Yue, J.; Doll, D.; Tomsic, M.; Sumption, M. D.; Collings, E. W.

    2016-01-01

    This study is a contribution to the development of technology for an MgB2-based, cryogen-free, superconducting magnet for an MRI system. Specifically, we aim to demonstrate that a react and wind coil can be made using high performance in-situ route MgB2 conductor, and that the conductor could be operated in conduction mode with low levels of temperature gradient. In this work, an MgB2 conductor was used for the winding of a sub-size, MRI-like coil segment. The MgB2 coil was wound on a 457 mm ID 101 OFE copper former using a react-and-wind approach. The total length of conductor used was 330 m. The coil was epoxy impregnated and then instrumented for low temperature testing. After the initial cool down (conduction cooling) the coil Ic was measured as a function of temperature (15-30 K), and an Ic of 200 A at 15 K was measured. PMID:27857508

  15. Advantages in functional imaging of the brain.

    PubMed

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  16. Improving equitable access to imaging under universal-access medicine: the ontario wait time information program and its impact on hospital policy and process.

    PubMed

    Kielar, Ania Z; El-Maraghi, Robert H; Schweitzer, Mark E

    2010-08-01

    In Canada, equal access to health care is the goal, but this is associated with wait times. Wait times should be fair rather than uniform, taking into account the urgency of the problem as well as the time an individual has already waited. In November 2004, the Ontario government began addressing this issue. One of the first steps was to institute benchmarks reflecting "acceptable" wait times for CT and MRI. A public Web site was developed indicating wait times at each Local Health Integration Network. Since starting the Wait Time Information Program, there has been a sustained reduction in wait times for Ontarians requiring CT and MRI. The average wait time for a CT scan went from 81 days in September 2005 to 47 days in September 2009. For MRI, the resulting wait time was reduced from 120 to 105 days. Increased patient scans have been achieved by purchasing new CT and MRI scanners, expanding hours of operation, and improving patient throughput using strategies learned from the Lean initiative, based on Toyota's manufacturing philosophy for car production. Institution-specific changes in booking procedures have been implemented. Concurrently, government guidelines have been developed to ensure accountability for monies received. The Ontario Wait Time Information Program is an innovative first step in improving fair and equitable access to publicly funded imaging services. There have been reductions in wait times for both CT and MRI. As various new processes are implemented, further review will be necessary for each step to determine their individual efficacy. Copyright 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, J.

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker willmore » review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.« less

  18. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    PubMed

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  19. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants.

    PubMed

    Ahlawat, Shivani; Stern, Steven E; Belzberg, Allan J; Fritz, Jan

    2017-07-01

    To assess the quality and accuracy of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) for the diagnosis of lumbosacral neuropathies in patients with metallic implants in the pelvis. Twenty-two subjects with lumbosacral neuropathy following pelvic instrumentation underwent 1.5-T MARS MRI including optimized axial intermediate-weighted and STIR turbo spin echo sequences extending from L5 to the ischial tuberosity. Two readers graded the visibility of the lumbosacral trunk, sciatic, femoral, lateral femoral cutaneous, and obturator nerves and the nerve signal intensity of nerve, architecture, caliber, course, continuity, and skeletal muscle denervation. Clinical examination and electrodiagnostic studies were used as the standard of reference. Descriptive, agreement, and diagnostic performance statistics were applied. Lumbosacral plexus visibility on MARS MRI was good (4) or very good (3) in 92% of cases with 81% exact agreement and a Kendall's W coefficient of 0.811. The obturator nerve at the obturator foramen and the sciatic nerve posterior to the acetabulum had the lowest visibility, with good or very good ratings in only 61% and 77% of cases respectively. The reader agreement for nerve abnormalities on MARS MRI was excellent, ranging from 95.5 to 100%. MARS MRI achieved a sensitivity of 86%, specificity of 67%, positive predictive value of 95%, and negative predictive value of 40%, and accuracy of 83% for the detection of neuropathy. MARS MRI yields high image quality and diagnostic accuracy for the assessment of lumbosacral neuropathies in patients with metallic implants of the pelvis and hips.

  20. Magnetic resonance imaging-conditional devices: Luxury or real clinical need?

    PubMed

    Mavrogeni, Sophie I; Poulos, George; Kolovou, Genovefa; Theodorakis, George

    Although the risk of MRI scanning on patients with conventional devices is lower than initially thought, the patient's safety can only be guaranteed when using MRI-conditional devices. The most important modifications in MRI-conditional devices include a) Reduction in ferromagnetic components to reduce magnetic attraction and susceptibility artifacts; b) Replacement of the reed switch by a Hall sensor in order to avoid unpredictable reed switch behavior; c) Lead coil design to minimize lead heating and electrical current induction; d) Filter circuitry to prevent damage to the internal power supply; and e) Dedicated pacemaker programming to prevent inappropriate pacemaker inhibition and competing rhythms. Although many companies claim to have MRI-conditional devices, adoption in clinical practice is limited because a) Not all companies have MRI-conditional devices approved for both 1.5 and 3T; b) Not all companies offer the option of unlimited MRI scanning (without an exclusion zone in the thorax); c) Certain companies allow only a 30-min MRI scanning and only in afebrile patients; and d) Despite having MRI-conditional pacemakers, certain companies do not have MRI-conditional defibrillators and CRT systems. It is clear that this new technology opens the door for MRI to a growing number of patients; however, the widespread adoption of MRI-conditional devices will depend on real-life issues, such as cost, clinical indications for such a device and the permanent education of health care professionals. Copyright © 2017 Hellenic Society of Cardiology. Published by Elsevier B.V. All rights reserved.

  1. [Basic concept in computer assisted surgery].

    PubMed

    Merloz, Philippe; Wu, Hao

    2006-03-01

    To investigate application of medical digital imaging systems and computer technologies in orthopedics. The main computer-assisted surgery systems comprise the four following subcategories. (1) A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localises). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineation of bone contours). (2) In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. (3) A system that provides aid in decision-making, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgical navigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc. ). And (4) A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.

  2. Abnormal rate of intraoperative and postoperative implant positioning outliers using "MRI-based patient-specific" compared to "computer assisted" instrumentation in total knee replacement.

    PubMed

    Ollivier, M; Tribot-Laspiere, Q; Amzallag, J; Boisrenoult, P; Pujol, N; Beaufils, P

    2016-11-01

    The aim of this study was to analyze first intraoperative alignment and reason to abandon the use of patient-specific instrumentation using intraoperative CAS measurement, secondly assess by postoperative CT analysis if CI, based on preoperative 3D-MRI data, improved postoperative component positioning (including femoral rotation) and lower limb alignment as compared with results obtained with CAS. In this randomized controlled trial, 80 consecutive patients scheduled to undergo TKA were enrolled. Eligible knees were randomized to the group of PSI-TKAs (n = 40) or to the group of CAS-TKAs (n = 40). In the CAS group, CAS determined and controlled cutting block positioning in each plane. In the PSI group, CAS allowed to measure adequacy of intraoperative alignment including femoral component rotation. At 3 months after surgery, implants position were measured and analyzed with full-weight bearing plain radiographs and CT scan. Intraoperatively, there was a significant difference concerning Sagittal Femoral mechanical, Frontal tibial mechanical angle and tibial slope between the two groups (respectively p = 0.01, p = 0.02, p = 0.046). Custom instrumentation was abandoned intraoperatively in seven knees (17.5 %). Abnormal tibial cuts were responsible of the abandon in three out of seven cases, femoral cut in 1/7 and dual abnormalities in 3/7. Postoperatively, tibial slope outliers percentage was higher in the patient specific instrumentation group with six patients (18.18 %) versus one patient (2.5 %) in the CAS group (p = 0.041). Patient specific instrumentation was associated with an important number of hazardous cut and a higher rate of outliers in our series and thus should be used with caution as related to. This study is the first to our acknowledgement to compare intra-operative ancillary and implant positioning of PSI-TKA and CAS-TKA. High rate of malposition are sustained by our findings, as such PSI-TKA should be used with caution, by surgeons capable to switch to conventional instrumentation intra-operatively. Randomized control trial, Level I.

  3. Public-private partnerships in translational medicine: concepts and practical examples.

    PubMed

    Luijten, Peter R; van Dongen, Guus A M S; Moonen, Chrit T; Storm, Gert; Crommelin, Daan J A

    2012-07-20

    The way forward in multidisciplinary research according to former NIH's director Elias Zerhouni is to engage in predictive, personalized, preemptive and participatory medicine. For the creation of the optimal innovation climate that would allow for such a strategy, public-private partnerships have been widely proposed as an important instrument. Public-private partnerships have become an important instrument to expedite translational research in medicine. The Netherlands have initiated three large public-private partnerships in the life sciences and health area to facilitate the translation of valuable basic scientific concepts to new products and services in medicine. The focus of these partnerships has been on drug development, improved diagnosis and regenerative medicine. The Dutch model of public-private partnership forms the blueprint of a much larger European initiative called EATRIS. This paper will provide practical examples of public-private partnerships initiated to expedite the translation of new technology for drug development towards the clinic. Three specific technologies are in focus: companion diagnostics using nuclear medicine, the use of ultra high field MRI to generate sensitive surrogate endpoints based on endogenous contrast, and MRI guidance for High Intensity Focused Ultrasound mediated drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Music and the brain - design of an MEG compatible piano.

    PubMed

    Chacon-Castano, Julian; Rathbone, Daniel R; Hoffman, Rachel; Heng Yang; Pantazis, Dimitrios; Yang, Jason; Hornberger, Erik; Hanumara, Nevan C

    2017-07-01

    Magnetoencephalography (MEG) neuroimaging has been used to study subjects' responses when listening to music, but research into the effects of playing music has been limited by the lack of MEG compatible instruments that can operate in a magnetically shielded environment without creating electromagnetic interference. This paper describes the design and preliminary testing of an MEG compatible piano keyboard with 25 full size keys that employs a novel 3-state optical encoder design and electronics to provide realistic velocity-controlled volume modulation. This instrument will allow researchers to study musical performance on a finer timescale than fMRI and enable a range of MEG studies.

  5. Implementation of compressive sensing for preclinical cine-MRI

    NASA Astrophysics Data System (ADS)

    Tan, Elliot; Yang, Ming; Ma, Lixin; Zheng, Yahong Rosa

    2014-03-01

    This paper presents a practical implementation of Compressive Sensing (CS) for a preclinical MRI machine to acquire randomly undersampled k-space data in cardiac function imaging applications. First, random undersampling masks were generated based on Gaussian, Cauchy, wrapped Cauchy and von Mises probability distribution functions by the inverse transform method. The best masks for undersampling ratios of 0.3, 0.4 and 0.5 were chosen for animal experimentation, and were programmed into a Bruker Avance III BioSpec 7.0T MRI system through method programming in ParaVision. Three undersampled mouse heart datasets were obtained using a fast low angle shot (FLASH) sequence, along with a control undersampled phantom dataset. ECG and respiratory gating was used to obtain high quality images. After CS reconstructions were applied to all acquired data, resulting images were quantitatively analyzed using the performance metrics of reconstruction error and Structural Similarity Index (SSIM). The comparative analysis indicated that CS reconstructed images from MRI machine undersampled data were indeed comparable to CS reconstructed images from retrospective undersampled data, and that CS techniques are practical in a preclinical setting. The implementation achieved 2 to 4 times acceleration for image acquisition and satisfactory quality of image reconstruction.

  6. Counselor Competence, Performance Assessment, and Program Evaluation: Using Psychometric Instruments

    ERIC Educational Resources Information Center

    Tate, Kevin A.; Bloom, Margaret L.; Tassara, Marcel H.; Caperton, William

    2014-01-01

    Psychometric instruments have been underutilized by counselor educators in performance assessment and program evaluation efforts. As such, we conducted a review of the literature that revealed 41 instruments fit for such efforts. We described and critiqued these instruments along four dimensions--"Target Domain," "Format,"…

  7. Increased brain connectivity and activation after cognitive rehabilitation in Parkinson's disease: a randomized controlled trial.

    PubMed

    Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Lucas-Jiménez, Olaia; Gómez-Esteban, Juan Carlos; Gómez-Beldarrain, Maria Ángeles; Ibarretxe-Bilbao, Naroa

    2017-12-01

    Cognitive rehabilitation programs have demonstrated efficacy in improving cognitive functions in Parkinson's disease (PD), but little is known about cerebral changes associated with an integrative cognitive rehabilitation in PD. To assess structural and functional cerebral changes in PD patients, after attending a three-month integrative cognitive rehabilitation program (REHACOP). Forty-four PD patients were randomly divided into REHACOP group (cognitive rehabilitation) and a control group (occupational therapy). T1-weighted, diffusion weighted and functional magnetic resonance images (fMRI) during resting-state and during a memory paradigm (with learning and recognition tasks) were acquired at pre-treatment and post-treatment. Cerebral changes were assessed with repeated measures ANOVA 2 × 2 for group x time interaction. During resting-state fMRI, the REHACOP group showed significantly increased brain connectivity between the left inferior temporal lobe and the bilateral dorsolateral prefrontal cortex compared to the control group. Moreover, during the recognition fMRI task, the REHACOP group showed significantly increased brain activation in the left middle temporal area compared to the control group. During the learning fMRI task, the REHACOP group showed increased brain activation in the left inferior frontal lobe at post-treatment compared to pre-treatment. No significant structural changes were found between pre- and post-treatment. Finally, the REHACOP group showed significant and positive correlations between the brain connectivity and activation and the cognitive performance at post-treatment. This randomized controlled trial suggests that an integrative cognitive rehabilitation program can produce significant functional cerebral changes in PD patients and adds evidence to the efficacy of cognitive rehabilitation programs in the therapeutic approach for PD.

  8. Function Biomedical Informatics Research Network Recommendations for Prospective Multi-Center Functional Magnetic Resonance Imaging Studies

    PubMed Central

    Glover, Gary H.; Mueller, Bryon A.; Turner, Jessica A.; van Erp, Theo G.M.; Liu, Thomas T.; Greve, Douglas N.; Voyvodic, James T.; Rasmussen, Jerod; Brown, Gregory G.; Keator, David B.; Calhoun, Vince D.; Lee, Hyo Jong; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Gadde, Syam; Preda, Adrian; Lim, Kelvin O.; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.

    2011-01-01

    This report provides practical recommendations for the design and execution of Multi-Center functional Magnetic Resonance Imaging (MC-fMRI) studies based on the collective experience of the Function Biomedical Informatics Research Network (FBIRN). The paper was inspired by many requests from the fMRI community to FBIRN group members for advice on how to conduct MC-fMRI studies. The introduction briefly discusses the advantages and complexities of MC-fMRI studies. Prerequisites for MC-fMRI studies are addressed before delving into the practical aspects of carefully and efficiently setting up a MC-fMRI study. Practical multi-site aspects include: (1) establishing and verifying scan parameters including scanner types and magnetic fields, (2) establishing and monitoring of a scanner quality program, (3) developing task paradigms and scan session documentation, (4) establishing clinical and scanner training to ensure consistency over time, (5) developing means for uploading, storing, and monitoring of imaging and other data, (6) the use of a traveling fMRI expert and (7) collectively analyzing imaging data and disseminating results. We conclude that when MC-fMRI studies are organized well with careful attention to unification of hardware, software and procedural aspects, the process can be a highly effective means for accessing a desired participant demographics while accelerating scientific discovery. PMID:22314879

  9. Extrinsic Motivators Affecting Fourth-Grade Students' Interest and Enrollment in an Instrumental Music Program

    ERIC Educational Resources Information Center

    Vasil, Martina

    2013-01-01

    The purpose of this study was to investigate fourth-grade students' extrinsic motivators for joining and continuing in a school instrumental music program. Three research questions were investigated: (a) What extrinsic motivators have influenced fourth-grade students' initial interest and continuing participation in an instrumental music program?…

  10. Navigation concepts for magnetic resonance imaging-guided musculoskeletal interventions.

    PubMed

    Busse, Harald; Kahn, Thomas; Moche, Michael

    2011-08-01

    Image-guided musculoskeletal (MSK) interventions are a widely used alternative to open surgical procedures for various pathological findings in different body regions. They traditionally involve one of the established x-ray imaging techniques (radiography, fluoroscopy, computed tomography) or ultrasound scanning. Over the last decades, magnetic resonance imaging (MRI) has evolved into one of the most powerful diagnostic tools for nearly the whole body and has therefore been increasingly considered for interventional guidance as well.The strength of MRI for MSK applications is a combination of well-known general advantages, such as multiplanar and functional imaging capabilities, wide choice of tissue contrasts, and absence of ionizing radiation, as well as a number of MSK-specific factors, for example, the excellent depiction of soft-tissue tumors, nonosteolytic bone changes, and bone marrow lesions. On the downside, the magnetic resonance-compatible equipment needed, restricted space in the magnet, longer imaging times, and the more complex workflow have so far limited the number of MSK procedures under MRI guidance.Navigation solutions are generally a natural extension of any interventional imaging system, in particular, because powerful hardware and software for image processing have become routinely available. They help to identify proper access paths, provide accurate feedback on the instrument positions, facilitate the workflow in an MRI environment, and ultimately contribute to procedural safety and success.The purposes of this work were to describe some basic concepts and devices for MRI guidance of MSK procedures and to discuss technical and clinical achievements and challenges for some selected implementations.

  11. Application of a Compact Magnetic Resonance Imaging System with 1.5 T Permanent Magnets to Visualize Release from and the Disintegration of Capsule Formulations in Vitro and in Vivo.

    PubMed

    Takeshita, Keizo; Okazaki, Shoko; Shinada, Kyosuke; Shibamoto, Yuma

    2017-01-01

    Although magnetic resonance imaging (MRI) has potential in assessments of formulations, few studies have been conducted because of the size and expense of the instrument. In the present study, the processes of in vitro and in vivo release in a gelatin capsule formulation model were visualized using a compact MRI system with 1.5 T permanent magnets, which is more convenient than the superconducting MRI systems typically used for clinical and experimental purposes. A Gd-chelate of diethylenetriamine-N,N,N',N″,N″-pentaacetic acid, a contrast agent that markedly enhances proton signals via close contact with water, was incorporated into capsule formulations as a marker compound. In vitro experiments could clearly demonstrate the preparation-dependent differences in the release/disintegration of the formulations. In some preparations, the penetration of water into the formulation and generation of bubbles in the capsule were also observed prior to the disintegration of the formulation. When capsule formulations were orally administered to rats, the release of the marker into the stomach and its transit to the duodenum were visualized. These results strongly indicate that the compact MRI system is a powerful tool for pharmaceutical studies.

  12. Quantitative imaging of the human upper airway: instrument design and clinical studies

    NASA Astrophysics Data System (ADS)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  13. Measuring Program Quality, Part 2: Addressing Potential Cultural Bias in a Rater Reliability Exam

    ERIC Educational Resources Information Center

    Richer, Amanda; Charmaraman, Linda; Ceder, Ineke

    2018-01-01

    Like instruments used in afterschool programs to assess children's social and emotional growth or to evaluate staff members' performance, instruments used to evaluate program quality should be free from bias. Practitioners and researchers alike want to know that assessment instruments, whatever their type or intent, treat all people fairly and do…

  14. The Effects of Participation in School Instrumental Music Programs on Student Academic Achievement and School Attendance

    ERIC Educational Resources Information Center

    Davenport, Kevin O.

    2010-01-01

    This study examined whether or not students that participated in a school sponsored instrumental music program had higher academic achievement and attendance than students that did not participate in a school sponsor instrumental music program. Units of measurement included standardized test scores and attendance, without taking into consideration…

  15. The neural basis of parallel saccade programming: an fMRI study.

    PubMed

    Hu, Yanbo; Walker, Robin

    2011-11-01

    The neural basis of parallel saccade programming was examined in an event-related fMRI study using a variation of the double-step saccade paradigm. Two double-step conditions were used: one enabled the second saccade to be partially programmed in parallel with the first saccade while in a second condition both saccades had to be prepared serially. The intersaccadic interval, observed in the parallel programming (PP) condition, was significantly reduced compared with latency in the serial programming (SP) condition and also to the latency of single saccades in control conditions. The fMRI analysis revealed greater activity (BOLD response) in the frontal and parietal eye fields for the PP condition compared with the SP double-step condition and when compared with the single-saccade control conditions. By contrast, activity in the supplementary eye fields was greater for the double-step condition than the single-step condition but did not distinguish between the PP and SP requirements. The role of the frontal eye fields in PP may be related to the advanced temporal preparation and increased salience of the second saccade goal that may mediate activity in other downstream structures, such as the superior colliculus. The parietal lobes may be involved in the preparation for spatial remapping, which is required in double-step conditions. The supplementary eye fields appear to have a more general role in planning saccade sequences that may be related to error monitoring and the control over the execution of the correct sequence of responses.

  16. Multiparametric Magnetic-Resonance to Confirm Eligibility to an Active Surveillance Program for Low-Risk Prostate Cancer: Intermediate Time Results of a Third Referral High Volume Centre Active Surveillance Protocol.

    PubMed

    Luzzago, Stefano; Musi, Gennaro; Catellani, Michele; Russo, Andrea; Di Trapani, Ettore; Mistretta, Francesco Alessandro; Bianchi, Roberto; Cozzi, Gabriele; Conti, Andrea; Pricolo, Paola; Ferro, Matteo; Matei, Deliu-Victor; Mirone, Vincenzo; Petralia, Giuseppe; de Cobelli, Ottavio

    2018-05-07

    To evaluate the role of confirmatory multiparametric magnetic resonance imaging (mpMRI) of the prostate at the time of Active Surveillance (AS) enrollment to reduce disease misclassification. From 2012 to 2016, 383 patients with low-risk disease respecting Prostate Cancer Research International AS criteria underwent confirmatory 1.5-T mpMRI. AS was proposed to patients with Prostate Imaging and Report and Data System (PI-RADS) score ≤3 and no extraprostatic extension (EPE), whereas patients with PI-RADS score ≥4 and/or EPE were treated actively. Kaplan-Meier analyses quantified progression-free survival (PFS) in patients enrolled in the AS program. Logistic regression analyses tested the association between confirmatory mpMRI and clinically significant prostate cancer (csPCa) at radical prostatectomy (RP). Diagnostic performance of mpMRI was calculated in patients submitted to immediate RP. PFS rate was 99, 90 and 86% at 1, 2 and 3 years respectively. At multivariable analysis, PI-RADS 3, PI-RADS 4, PI-RADS 5 and EPE increased the probability of having csPCa at immediate RP (PI-RADS 3 [OR] 1.2, p = 0.26; PI-RADS 4 [OR] 5.1, p = 0.02; PI-RADS 5 [OR] 6.7; p = 0.009; EPE [OR] 11.8, p < 0.001). Confirmatory mpMRI showed sensibility, specificity, positive predictive value and negative predictive value of 85, 55, 68 and 76% respectively. MpMRI at the time of AS enrollment reduces the misclassification rate of csPCa. We suggest to perform target biopsies in patients with PI-RADS score 3 and 4 lesions. © 2018 S. Karger AG, Basel.

  17. Advanced Imaging Utilization and Cost Savings Among Medicare Shared Savings Program Accountable Care Organizations: An Initial Exploratory Analysis.

    PubMed

    Rosenkrantz, Andrew B; Duszak, Richard

    2018-03-01

    The purpose of this study was to explore associations between CT and MRI utilization and cost savings achieved by Medicare Shared Savings Program (MSSP)-participating accountable care organizations (ACOs). Summary data were obtained for all MSSP-participating ACOs (n = 214 in 2013; n = 333 in 2014). Multivariable regressions were performed to assess associations of CT and MRI utilization with ACOs' total savings and reaching minimum savings rates to share in Medicare savings. In 2014, 54.4% of ACOs achieved savings, meeting minimum rates to share in savings in 27.6%. Independent positive predictors of total savings included beneficiary risk scores (β = +20,265,720, P = .003) and MRI events (β = +19,964, P = .018) but not CT events (β = +2,084, P = .635). Independent positive predictors of meeting minimum savings rates included beneficiary risk scores (odds ratio = 2108, P = .001) and MRI events (odds ratio = 1.008, P = .002), but not CT events (odds ratio = 1.002, P = .289). Measures not independently associated with savings were total beneficiaries; beneficiaries' gender, age, race or ethnicity; and Medicare enrollment type (P > .05). For ACOs with 2013 and 2014 data, neither increases nor decreases in CT and MRI events between years were associated with 2014 total savings or meeting savings thresholds (P ≥ .466). Higher MRI utilization rates were independently associated with small but significant MSSP ACO savings. The value of MRI might relate to the favorable impact of appropriate advanced imaging utilization on downstream outcomes and other resource utilization. Because MSSP ACOs represent a highly select group of sophisticated organizations subject to rigorous quality and care coordination standards, further research will be necessary to determine if these associations are generalizable to other health care settings. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  18. Detection of prostate cancer with multiparametric MRI (mpMRI): effect of dedicated reader education on accuracy and confidence of index and anterior cancer diagnosis

    PubMed Central

    Garcia-Reyes, Kirema; Passoni, Niccolò M.; Palmeri, Mark L.; Kauffman, Christopher R.; Choudhury, Kingshuk Roy; Polascik, Thomas J.; Gupta, Rajan T.

    2015-01-01

    Purpose To evaluate the impact of dedicated reader education on accuracy/confidence of peripheral zone index cancer and anterior prostate cancer (PCa) diagnosis with mpMRI; secondary aim was to assess the ability of readers to differentiate low-grade cancer (Gleason 6 or below) from high-grade cancer (Gleason 7+). Materials and methods Five blinded radiology fellows evaluated 31 total prostate mpMRIs in this IRB-approved, HIPAA-compliant, retrospective study for index lesion detection, confidence in lesion diagnosis (1–5 scale), and Gleason grade (Gleason 6 or lower vs. Gleason 7+). Following a dedicated education program, readers reinterpreted cases after a memory extinction period, blinded to initial reads. Reference standard was established combining whole mount histopathology with mpMRI findings by a board-certified radiologist with 5 years of prostate mpMRI experience. Results Index cancer detection: pre-education accuracy 74.2%; post-education accuracy 87.7% (p = 0.003). Confidence in index lesion diagnosis: pre-education 4.22 ± 1.04; post-education 3.75 ± 1.41 (p = 0.0004). Anterior PCa detection: pre-education accuracy 54.3%; post-education accuracy 94.3% (p = 0.001). Confidence in anterior PCa diagnosis: pre-education 3.22 ± 1.54; post-education 4.29 ± 0.83 (p = 0.0003). Gleason score accuracy: pre-education 54.8%; post-education 73.5% (p = 0.0005). Conclusions A dedicated reader education program on PCa detection with mpMRI was associated with a statistically significant increase in diagnostic accuracy of index cancer and anterior cancer detection as well as Gleason grade identification as compared to pre-education values. This was also associated with a significant increase in reader diagnostic confidence. This suggests that substantial interobserver variability in mpMRI interpretation can potentially be reduced with a focus on education and that this can occur over a fellowship training year. PMID:25034558

  19. Assessing the Risks Associated with MRI in Patients with a Pacemaker or Defibrillator.

    PubMed

    Russo, Robert J; Costa, Heather S; Silva, Patricia D; Anderson, Jeffrey L; Arshad, Aysha; Biederman, Robert W W; Boyle, Noel G; Frabizzio, Jennifer V; Birgersdotter-Green, Ulrika; Higgins, Steven L; Lampert, Rachel; Machado, Christian E; Martin, Edward T; Rivard, Andrew L; Rubenstein, Jason C; Schaerf, Raymond H M; Schwartz, Jennifer D; Shah, Dipan J; Tomassoni, Gery F; Tominaga, Gail T; Tonkin, Allison E; Uretsky, Seth; Wolff, Steven D

    2017-02-23

    The presence of a cardiovascular implantable electronic device has long been a contraindication for the performance of magnetic resonance imaging (MRI). We established a prospective registry to determine the risks associated with MRI at a magnetic field strength of 1.5 tesla for patients who had a pacemaker or implantable cardioverter-defibrillator (ICD) that was "non-MRI-conditional" (i.e., not approved by the Food and Drug Administration for MRI scanning). Patients in the registry were referred for clinically indicated nonthoracic MRI at a field strength of 1.5 tesla. Devices were interrogated before and after MRI with the use of a standardized protocol and were appropriately reprogrammed before the scanning. The primary end points were death, generator or lead failure, induced arrhythmia, loss of capture, or electrical reset during the scanning. The secondary end points were changes in device settings. MRI was performed in 1000 cases in which patients had a pacemaker and in 500 cases in which patients had an ICD. No deaths, lead failures, losses of capture, or ventricular arrhythmias occurred during MRI. One ICD generator could not be interrogated after MRI and required immediate replacement; the device had not been appropriately programmed per protocol before the MRI. We observed six cases of self-terminating atrial fibrillation or flutter and six cases of partial electrical reset. Changes in lead impedance, pacing threshold, battery voltage, and P-wave and R-wave amplitude exceeded prespecified thresholds in a small number of cases. Repeat MRI was not associated with an increase in adverse events. In this study, device or lead failure did not occur in any patient with a non-MRI-conditional pacemaker or ICD who underwent clinically indicated nonthoracic MRI at 1.5 tesla, was appropriately screened, and had the device reprogrammed in accordance with the prespecified protocol. (Funded by St. Jude Medical and others; MagnaSafe ClinicalTrials.gov number, NCT00907361 .).

  20. An Automatic Image Processing Workflow for Daily Magnetic Resonance Imaging Quality Assurance.

    PubMed

    Peltonen, Juha I; Mäkelä, Teemu; Sofiev, Alexey; Salli, Eero

    2017-04-01

    The performance of magnetic resonance imaging (MRI) equipment is typically monitored with a quality assurance (QA) program. The QA program includes various tests performed at regular intervals. Users may execute specific tests, e.g., daily, weekly, or monthly. The exact interval of these measurements varies according to the department policies, machine setup and usage, manufacturer's recommendations, and available resources. In our experience, a single image acquired before the first patient of the day offers a low effort and effective system check. When this daily QA check is repeated with identical imaging parameters and phantom setup, the data can be used to derive various time series of the scanner performance. However, daily QA with manual processing can quickly become laborious in a multi-scanner environment. Fully automated image analysis and results output can positively impact the QA process by decreasing reaction time, improving repeatability, and by offering novel performance evaluation methods. In this study, we have developed a daily MRI QA workflow that can measure multiple scanner performance parameters with minimal manual labor required. The daily QA system is built around a phantom image taken by the radiographers at the beginning of day. The image is acquired with a consistent phantom setup and standardized imaging parameters. Recorded parameters are processed into graphs available to everyone involved in the MRI QA process via a web-based interface. The presented automatic MRI QA system provides an efficient tool for following the short- and long-term stability of MRI scanners.

  1. Open versus percutaneous instrumentation in thoracolumbar fractures: magnetic resonance imaging comparison of paravertebral muscles after implant removal.

    PubMed

    Ntilikina, Yves; Bahlau, David; Garnon, Julien; Schuller, Sébastien; Walter, Axel; Schaeffer, Mickaël; Steib, Jean-Paul; Charles, Yann Philippe

    2017-08-01

    OBJECTIVE Percutaneous instrumentation in thoracolumbar fractures is intended to decrease paravertebral muscle damage by avoiding dissection. The aim of this study was to compare muscles at instrumented levels in patients who were treated by open or percutaneous surgery. METHODS Twenty-seven patients underwent open instrumentation, and 65 were treated percutaneously. A standardized MRI protocol using axial T1-weighted sequences was performed at a minimum 1-year follow-up after implant removal. Two independent observers measured cross-sectional areas (CSAs, in cm 2 ) and region of interest (ROI) signal intensity (in pixels) of paravertebral muscles by using OsiriX at the fracture level, and at cranial and caudal instrumented pedicle levels. An interobserver comparison was made using the Bland-Altman method. Reference ROI muscle was assessed in the psoas and ROI fat subcutaneously. The ratio ROI-CSA/ROI-fat was compared for patients treated with open versus percutaneous procedures by using a linear mixed model. A linear regression analyzed additional factors: age, sex, body mass index (BMI), Pfirrmann grade of adjacent discs, and duration of instrumentation in situ. RESULTS The interobserver agreement was good for all CSAs. The average CSA for the entire spine was 15.7 cm 2 in the open surgery group and 18.5 cm 2 in the percutaneous group (p = 0.0234). The average ROI-fat and ROI-muscle signal intensities were comparable: 497.1 versus 483.9 pixels for ROI-fat and 120.4 versus 111.7 pixels for ROI-muscle in open versus percutaneous groups. The ROI-CSA varied between 154 and 226 for open, and between 154 and 195 for percutaneous procedures, depending on instrumented levels. A significant difference of the ROI-CSA/ROI-fat ratio (0.4 vs 0.3) was present at fracture levels T12-L1 (p = 0.0329) and at adjacent cranial (p = 0.0139) and caudal (p = 0.0100) instrumented levels. Differences were not significant at thoracic levels. When adjusting based on age, BMI, and Pfirrmann grade, a significant difference between open and percutaneous procedures regarding the ROI-CSA/ROI-fat ratio was present in the lumbar spine (p < 0.01). Sex and duration of instrumentation had no significant influence. CONCLUSIONS Percutaneous instrumentation decreased muscle atrophy compared with open surgery. The MRI signal differences for T-12 and L-1 fractures indicated less fat infiltration within CSAs in patients who received percutaneous treatment. Differences were not evidenced at thoracic levels, where CSAs were smaller. Fat infiltration was not significantly different at lumbar levels with either procedure in elderly patients with associated discopathy and higher BMI. In younger patients, there was less fat infiltration of lumbar paravertebral muscles with percutaneous procedures.

  2. The SE role in establishing, verifying and controlling top-level program requirements

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.

    1993-01-01

    The program objectives and requirements described in the preceding paragraphs emphasize mission demonstrations. Obtaining desired science or applications information is another type of program objective. The program requirements then state the need for specific data, usually specifying a particular instrument or instrument set; the operating conditions under which the data is to be obtained (e.g., orbit altitude, field of view, and pointing accuracy); and the data handling and use. Conversely, a new instrument may be conceived or created with the program objective to establish its use potential. The Multispectral Scanner employed in the Landsat program is an example.

  3. TH-B-207B-00: Pediatric Image Quality Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker willmore » review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.« less

  4. TH-B-207B-01: Optimizing Pediatric CT in the Emergency Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, C.

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker willmore » review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.« less

  5. PET/MRI for Neurological Applications

    PubMed Central

    Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R.

    2013-01-01

    PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MR data acquisition allows the spatial and temporal correlation of the measured signals, opening up opportunities impossible to realize using stand-alone instruments. This paper reviews the methodological improvements and potential neurological and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MR data to improve the PET data quantification. On the MR side, we present how improved PET quantification could be used to validate a number of MR techniques. Finally, we describe promising research, translational and clinical applications that could benefit from these advanced tools. PMID:23143086

  6. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.

    PubMed

    Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P

    2014-01-15

    Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available. Copyright © 2013. Published by Elsevier Inc.

  7. Risk factors for supplementary posterior instrumentation after anterolateral decompression and instrumentation in thoracolumbar burst fractures.

    PubMed

    Hitchon, Patrick W; He, Wenzhuan; Dahdaleh, Nader S; Moritani, Toshio

    2014-11-01

    In spite of the established benefits of anterolateral decompression and instrumentation (ALDI) for thoracolumbar burst fractures (TLBF), the indications for supplementary posterior instrumentation remain unclear. A retrospective review of clinical and radiographic data of a prospective cohort of 73 patients who underwent ALDI for TLBF from T12 to L4. The mean age of the cohort was 42 ± 15 years, with 49 males and 24 females. Forty-six patients had neurological deficit, and 27 were intact. Owing to symptomatic settling, supplemental posterior instrumentation was performed in 7 out of 73 patients. The age of patients requiring supplemental posterior instrumentation (59 ± 14 years) exceeded that of patients who did not (41 ± 16, p=0.004). Otherwise, the patients who required posterior instrumentation were comparable to those treated with ALDI in terms of body mass index (BMI), American Spinal Injury Association (ASIA) scores on admission and follow-up, residual spinal canal, and local kyphosis on admission and follow-up. The posterior ligamentous complex (PLC) integrity was assessed in 38 patients in whom the MRI scans were retrievable, 31 successfully treated with ALDI, and all 7 undergoing supplementary posterior instrumentation. Subgroup analysis demonstrated that there was no difference in the incidence of PLC disruption between the 2 groups (p=0.257). Secondary supplemental posterior instrumentation was deemed necessary in 10% of cases following ALDI. Age was the only significant risk factor predicating supplemental posterior instrumentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. New trend of MRI diagnosis based on the function and metabolism in the central nervous system.

    PubMed

    Harada, Masafumi

    2006-08-01

    The movement of a subject is a major problem in MRI experiments and diagnosis. At first, this review introduces a new technology named the "Propeller Technique" which can improve the motion artifact by changing the data sampling method in the K trajectory. Our experience of a case who underwent measurement by Propeller technique is reported and the effect of this technique is explained. One of the recent hot topics is the appearance of the clinical 3T MR instrument, with its characteristic differences from that at 1.5T. The advantage of 3T is that it facilitates the evaluation of functional and metabolic information using MR spectroscopy (MRS) and functional MRI. The application of proton MRS in clinical cases is shown and the standard method to use proton MRS in a clinical setting is demonstrated. Furthermore, the new techniques, which can measure important metabolites in small amount such as neurotransmitters, was developed using a high signal to noise ratio and frequency resolution, which are advantages of 3T.

  9. Unusual MRI findings in an immunocompetent patient with EBV encephalitis: a case report

    PubMed Central

    2011-01-01

    Blackground It is well-known that Epstein-Barr virus (EBV) can affect the central nervous system (CNS). Case presentation Herein the authors report unusual timely Magnetic Resonance Imaging (MRI) brain scan findings in an immunocompetent patient with EBV encephalitis. Diffusion weighted MRI sequence performed during the acute phase of the disease was normal, whereas the Fast Relaxation Fast Spin Echo T2 image showed diffuse signal intensity changes in white matter. The enhancement pattern suggested an inflammatory response restricted to the brain microcirculation. Acyclovir and corticosteroid therapy was administered. After three weeks, all signal intensities returned to normal and the patient showed clinical recovery. Conclusion This report demonstrates that EBV in an immunocompetent adult can present with diffuse, reversible brain white matter involvement in the acute phase of mononucleosis. Moreover, our case suggests that a negative DWI sequence is associated with a favorable improvement in severe EBV CNS infection. More extensive studies are needed to assess what other instrumental data can help to distinguish viral lesions from other causes in the acute phase of disease. PMID:21435249

  10. Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design

    NASA Astrophysics Data System (ADS)

    Lai, Xiaochun; Meng, Ling-Jian

    2018-02-01

    In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.

  11. Comparison of magnetic resonance imaging-compatible optical detectors for in-magnet tissue spectroscopy: photodiodes versus silicon photomultipliers

    PubMed Central

    El-Ghussein, Fadi; Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.

    2014-01-01

    Abstract. Tissue spectroscopy inside the magnetic resonance imaging (MRI) system adds a significant value by measuring fast vascular hemoglobin responses or completing spectroscopic identification of diagnostically relevant molecules. Advances in this type of spectroscopy instrumentation have largely focused on fiber coupling into and out of the MRI; however, nonmagnetic detectors can now be placed inside the scanner with signal amplification performed remotely to the high field environment for optimized light detection. In this study, the two possible detector options, such as silicon photodiodes (PD) and silicon photomultipliers (SiPM), were systematically examined for dynamic range and wavelength performance. Results show that PDs offer 108 (160 dB) dynamic range with sensitivity down to 1 pW, whereas SiPMs have 107 (140 dB) dynamic range and sensitivity down to 10 pW. A second major difference is the spectral sensitivity of the two detectors. Here, wavelengths in the 940 nm range are efficiently captured by PDs (but not SiPMs), likely making them the superior choice for broadband spectroscopy guided by MRI. PMID:25006986

  12. Ischemic stroke assessment with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Li, Pengcheng; Zeng, Shaoqun; Luo, Qingming; Hu, Bo

    1999-09-01

    Many authors have elucidated the theory about oxygenated hemoglobin, deoxygenated hemoglobin absorption in near-infrared spectrum. And the theory has opened a window to measure the hemodynamic changes caused by stroke. However, no proper animal model still has established to confirm the theory. The aim of this study was to validate near-infrared cerebral topography (NCT) as a practical tool and to try to trace the focal hemodynamic changes of ischemic stroke. In the present study, middle cerebral artery occlusion model and the photosensitizer induced intracranial infarct model had been established. NCT and functional magnetic resonance image (fMRI) were obtained during pre- and post-operation. The geometric shape and infarct area of NCT image was compared with the fMRI images and anatomical samples of each rat. The results of two occlusion models in different intervene factors showed the NCT for infarct focus matched well with fMRI and anatomic sample of each rats. The instrument might become a practical tool for short-term prediction of stroke and predicting the rehabilitation after stroke in real time.

  13. Determining the risks of clinically indicated nonthoracic magnetic resonance imaging at 1.5 T for patients with pacemakers and implantable cardioverter-defibrillators: rationale and design of the MagnaSafe Registry.

    PubMed

    Russo, Robert J

    2013-03-01

    Until recently, the presence of a permanent pacemaker or an implantable cardioverter-defibrillator has been a relative contraindication for the performance of magnetic resonance imaging (MRI). A number of small studies have shown that MRI can be performed with minimal risk when patients are properly monitored and device programming is modified appropriately for the procedure. However, the risk of performing MRI for patients with implanted cardiac devices has not been sufficiently evaluated to advocate routine clinical use. The aim of the present protocol is to prospectively determine the rate of adverse clinical events and device parameter changes in patients with implanted non-MRI-conditional cardiac devices undergoing clinically indicated nonthoracic MRI at 1.5 T. The MagnaSafe Registry is a multicenter, prospective cohort study of up to 1500 MRI examinations in patients with pacemakers or implantable cardioverter-defibrillators implanted after 2001 who undergo clinically indicated nonthoracic MRI following a specific protocol to ensure that preventable potential adverse events are mitigated. Adverse events and changes in device parameter measurements that may be associated with the imaging procedure will be documented. Through August 2012, 701 MRI studies have been performed, representing 47% of the total target enrollment. The results of this registry will provide additional documentation of the risk of MRI and will further validate a clinical protocol for screening and the performance of clinically indicated MRI for patients with implanted cardiac devices. Copyright © 2013 Mosby, Inc. All rights reserved.

  14. Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis.

    PubMed

    Zhang, Li; Tang, Min; Min, Zhiqian; Lu, Jun; Lei, Xiaoyan; Zhang, Xiaoling

    2016-06-01

    Magnetic resonance imaging (MRI) is increasingly being used to examine patients with suspected breast cancer. To determine the diagnostic performance of combined dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) for breast cancer detection. A comprehensive search of the PUBMED, EMBASE, Web of Science, and Cochrane Library databases was performed up to September 2014. Statistical analysis included pooling of sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and diagnostic accuracy using the summary receiver operating characteristic (SROC). All analyses were conducted using STATA (version 12.0), RevMan (version 5.2), and Meta-Disc 1.4 software programs. Fourteen studies were analyzed, which included a total of 1140 patients with 1276 breast lesions. The pooled sensitivity and specificity of combined DCE-MRI and DWI were 91.6% and 85.5%, respectively. The pooled sensitivity and specificity of DWI-MRI were 86.0% and 75.6%, respectively. The pooled sensitivity and specificity of DCE-MRI were 93.2% and 71.1%. The area under the SROC curve (AUC-SROC) of combined DCE-MRI and DWI was 0.94, the DCE-MRI of 0.85. Deeks testing confirmed no significant publication bias in all studies. Combined DCE-MRI and DWI had superior diagnostic accuracy than either DCE-MRI or DWI alone for the diagnosis of breast cancer. © The Foundation Acta Radiologica 2015.

  15. Human amygdala activation by the sound produced during dental treatment: A fMRI study.

    PubMed

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli.

  16. Human amygdala activation by the sound produced during dental treatment: A fMRI study

    PubMed Central

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli. PMID:26356376

  17. Real-time MRI comparisons of brass players: A methodological pilot study.

    PubMed

    Iltis, Peter W; Schoonderwaldt, Erwin; Zhang, Shuo; Frahm, Jens; Altenmüller, Eckart

    2015-08-01

    This paper describes the use of real-time MRI at 30 frames/s in studying motor function within the oropharyngeal cavity of a trumpet, horn, trombone, and tuba player. Using Image J and customized MB-Ruler Pro software, analyses of discrete 33.3 ms snapshots of motion extracted from real-time MRI films obtained during an ascending five note sequence performed on a plastic practice device (B.E.R.P.) revealed inter-instrument differences in oropharyngeal cavity size and tongue conformation when moving from lower to higher notes. Tuba and trombone show a progressive decrease in oropharyngeal area featuring an upward and forward displacement of the tongue. Trumpet showed progressive increases in oropharyngeal area, with the posterior compartment showing the largest change, while horn essentially showed no change. A novel dynamic quantitative analysis method is also described utilizing Matlab. This method employs user-specified line profiles, aligned to the direction of the movement of interest. It takes advantage of time-varying pixel luminescence to derive spatial and temporal gradients. These gradients make possible the acquisition of kinematic data to describe movement in terms of slower position changes (spatial gradient) as well as fast, articulatory movements (temporal gradient). Spatial gradient analysis for the trumpet player demonstrates a progressive raising of the tongue during the ascending five note exercise. Temporal gradient analysis of double-tonguing revealed similarities in range of motion, anti-phase behavior, and frequency across instruments with respect to movements of the tongue tip and back of tongue. The paper concludes by making recommendations for extending these methods to studying musician's dystonia. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Comparison of ferromagnetic induction and bipolar electrosurgery and suction in corticotomies in pig cerebrum.

    PubMed

    Bowers, Christian A; Burns, Greg; Salzman, Karen; McGill, Lawrence; MacDonald, Joel D

    2015-04-01

    The effects of newer energy-based surgical dissection and coagulation modalities on cerebral tissue have not been investigated. Several instruments have been developed to address the limitations of traditional electrosurgical instruments in the nervous system. We compared the effects of standard bipolar electrocautery and suction (BPS) with those of a new ferromagnetic induction (FMI) device in corticotomies of pig cerebral tissue as assessed by magnetic resonance imaging (MRI) and histological analysis. Three adult pigs underwent bilateral corticotomies (3 cm long×1 cm deep) using both FMI and BPS. The acute cerebral tissue edema created by each method was measured on coronal volumetric T2-weighted MRI sequences immediately after surgery. A lateral thermal "damage index" was calculated by dividing the width of the visible T2 tissue edema by the measured depth. The radiographic damage indices with each method were compared statistically. Histological analysis of each incision was conducted to compare the extent of tissue damage. MRI showed that the mean radiographic damage index of each corticotomy was significantly lower with the FMI (0.30 ± 0.02 (0.28-0.32)) than with the BPS method (0.54 ± 0.11 (0.42-0.64)) (p = 0.02). Histological analysis suggested a correlation with the radiographic findings as the FMI tissue samples demonstrated less adjacent tissue damage than BPS. FMI appeared to cause less adjacent tissue damage than the BPS method in pig cerebral tissue based on quantitative radiographic and qualitative histological analysis. Future studies are needed to investigate the clinical implications of energy-based surgical dissection on cerebral tissue. Copyright © 2015 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Behavior, neuropsychology and fMRI.

    PubMed

    Bennett, Maxwell R; Hatton, Sean; Hermens, Daniel F; Lagopoulos, Jim

    Cognitive neuroscientists in the late 20th century began the task of identifying the part(s) of the brain concerned with normal behavior as manifest in the psychological capacities as affective powers, reasoning, behaving purposively and the pursuit of goals, following introduction of the 'functional magnetic resonance imaging' (fMRI) method for identifying brain activity. For this research program to be successful two questions require satisfactory answers. First, as the fMRI method can currently only be used on stationary subjects, to what extent can neuropsychological tests applicable to such stationary subjects be correlated with normal behavior. Second, to what extent can correlations between the various neuropsychological tests on the one hand, and sites of brain activity determined with fMRI on the other, be regarded as established. The extent to which these questions have yet received satisfactory answers is reviewed, and suggestions made both for improving correlations of neuropsychological tests with behavior as well as with the results of fMRI-based observations. Copyright © 2016. Published by Elsevier Ltd.

  20. ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies.

    PubMed

    Barnes, Samuel R; Ng, Thomas S C; Santa-Maria, Naomi; Montagne, Axel; Zlokovic, Berislav V; Jacobs, Russell E

    2015-06-16

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis. ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model. A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI. A public release of ROCKETSHIP is available at https://github.com/petmri/ROCKETSHIP .

  1. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  2. Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals.

    PubMed

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.

  3. Multi-Task Linear Programming Discriminant Analysis for the Identification of Progressive MCI Individuals

    PubMed Central

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method. PMID:24820966

  4. The correlation of background parenchymal enhancement in the contralateral breast with patient and tumor characteristics of MRI-screen detected breast cancers.

    PubMed

    Vreemann, Suzan; Gubern-Mérida, Albert; Borelli, Cristina; Bult, Peter; Karssemeijer, Nico; Mann, Ritse M

    2018-01-01

    Higher background parenchymal enhancement (BPE) could be used for stratification of MRI screening programs since it might be related to a higher breast cancer risk. Therefore, the purpose of this study is to correlate BPE to patient and tumor characteristics in women with unilateral MRI-screen detected breast cancer who participated in an intermediate and high risk screening program. As BPE in the affected breast may be difficult to discern from enhancing cancer, we assumed that BPE in the contralateral breast is a representative measure for BPE in women with unilateral breast cancer. This retrospective study was approved by our local institutional board and a waiver for consent was granted. MR-examinations of women with unilateral breast cancers screen-detected on breast MRI were evaluated by two readers. BPE in the contralateral breast was rated according to BI-RADS. Univariate analyses were performed to study associations. Observer variability was computed. Analysis included 77 breast cancers in 76 patients (age: 48±9.8 years), including 62 invasive and 15 pure ductal carcinoma in-situ cases. A negative association between BPE and tumor grade (p≤0.016) and a positive association with progesterone status (p≤0.021) was found. The correlation was stronger when only considering invasive disease. Inter-reader agreement was substantial. Lower BPE in the contralateral breast in women with unilateral breast cancer might be associated to higher tumor grade and progesterone receptor negativity. Great care should be taken using BPE for stratification of patients to tailored screening programs.

  5. "Power-on resets" in cardiac implantable electronic devices during magnetic resonance imaging.

    PubMed

    Higgins, John V; Sheldon, Seth H; Watson, Robert E; Dalzell, Connie; Acker, Nancy; Cha, Yong-Mei; Asirvatham, Samuel J; Kapa, Suraj; Felmlee, Joel P; Friedman, Paul A

    2015-03-01

    Magnetic resonance imaging (MRI) has been safely performed in some patients with cardiac implantable electronic devices (CIEDs) under careful monitoring and prespecified conditions. Pacemaker-dependent patients are often excluded, partly because of the potential for "power-on reset" (PoR), which can lead to a change from asynchronous to inhibited pacing with consequent inhibition of pacing due to electromagnetic interference during MRI. The purpose of this study was to review risk factors for PoR during MRI. A prospective study was performed between January 2008 and May 2013 in patients with CIEDs undergoing clinically indicated MRI. Eligible patients were not pacemaker dependent. Devices were interrogated before and after MRI, programmed to an asynchronous mode or an inhibition mode with tachyarrhythmia therapies turned off, and reprogrammed to their original settings after MRI. MRI scans (n = 256) were performed in 198 patients with non-MRI-conditional CIEDs between 2008 and 2013 (median age 66 years; interquartile range 57-77 years; 59% men). PoR occurred during 9 MRI scans (3.5%) in 8 patients. PoR was more frequent with Medtronic devices than with other generator brands (n = 9/139 vs 0/117 [6% vs 0%]; P = .005). Devices with PoR were all released before 2002 and were implanted from 1999 to 2004. Effects of PoR included a decrease in heart rate during MRI (n = 4) and transient anomalous battery life indication (n = 1). All devices functioned normally after MRI. PoR occurs infrequently but can cause deleterious changes in pacing mode and heart rate. MRI should not be performed in pacemaker-dependent patients with older at-risk generators. Continuous monitoring during MRI is essential because unrecognized PoR may inhibit pacing or accelerate battery depletion due to high pacing output. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, Eric S., E-mail: epaulson@mcw.edu; Erickson, Beth; Schultz, Chris

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP ofmore » brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In their experience, these strategies provide robust, high fidelity, high contrast MR images suitable for external beam RTP.« less

  7. Local ablation therapy with contrast-enhanced ultrasonography for hepatocellular carcinoma: a practical review

    PubMed Central

    Kim, Tae Kyoung; Khalili, Korosh; Jang, Hyun-Jung

    2015-01-01

    A successful program for local ablation therapy for hepatocellular carcinoma (HCC) requires extensive imaging support for diagnosis and localization of HCC, imaging guidance for the ablation procedures, and post-treatment monitoring. Contrast-enhanced ultrasonography (CEUS) has several advantages over computed tomography/magnetic resonance imaging (CT/MRI), including real-time imaging capability, sensitive detection of arterial-phase hypervascularity and washout, no renal excretion, no ionizing radiation, repeatability, excellent patient compliance, and relatively low cost. CEUS is useful for image guidance for isoechoic lesions. While contrast-enhanced CT/MRI is the standard method for the diagnosis of HCC and post-ablation monitoring, CEUS is useful when CT/MRI findings are indeterminate or CT/MRI is contraindicated. This article provides a practical review of the role of CEUS in imaging algorithms for pre- and post-ablation therapy for HCC. PMID:26169081

  8. Research and realization of signal simulation on virtual instrument

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; He, Wenting; Guan, Xiumei

    2010-02-01

    In the engineering project, arbitrary waveform generator controlled by software interface is needed by simulation and test. This article discussed the program using the SCPI (Standard Commands For Programmable Instruments) protocol and the VISA (Virtual Instrument System Architecture) library to control the Agilent signal generator (Agilent N5182A) by instrument communication over the LAN interface. The program can conduct several signal generations such as CW (continuous wave), AM (amplitude modulation), FM (frequency modulation), ΦM (phase modulation), Sweep. As the result, the program system has good operability and portability.

  9. A Program to Improve Social Studies Instruction in the Ottumwa Community Schools. Surveys, Grades 3-12, Measurement Instruments, Project #1009.

    ERIC Educational Resources Information Center

    Ahrens, Willis

    As part of a social studies instruction improvement program, measurement instruments were developed to measure attitudes of and evaluate courses for teachers and students in grades 3-12. The measurement instruments presented are surveys used in the social studies program. The purposes of the improvement project are to use the multimedia approach…

  10. Using a graphical programming language to write CAMAC/GPIB instrument drivers

    NASA Technical Reports Server (NTRS)

    Zambrana, Horacio; Johanson, William

    1991-01-01

    To reduce the complexities of conventional programming, graphical software was used in the development of instrumentation drivers. The graphical software provides a standard set of tools (graphical subroutines) which are sufficient to program the most sophisticated CAMAC/GPIB drivers. These tools were used and instrumentation drivers were successfully developed for operating CAMAC/GPIB hardware from two different manufacturers: LeCroy and DSP. The use of these tools is presented for programming a LeCroy A/D Waveform Analyzer.

  11. Music Program of Study: Educational Program Definition.

    ERIC Educational Resources Information Center

    West Virginia State Dept. of Education, Charleston.

    The West Virginia music study program is a public school K-12 curriculum sequence. This program is divided into the four principal areas of: (1) general classroom music; (2) string instrumental music; (3) wind and percussion instrumental music; and (4) choral music. The general classroom music program is an early and middle childhood sequence of…

  12. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review.

    PubMed

    Quatman, Carmen E; Hettrich, Carolyn M; Schmitt, Laura C; Spindler, Kurt P

    2011-07-01

    Current diagnostic strategies for detection of structural articular cartilage abnormalities, the earliest structural signs of osteoarthritis, often do not capture the condition until it is too far advanced for the most potential benefit of noninvasive interventions. To systematically review the literature relative to the following questions: (1) Is magnetic resonance imaging (MRI) a valid, sensitive, specific, accurate, and reliable instrument to identify knee articular cartilage abnormalities compared with arthroscopy? (2) Is MRI a sensitive tool that can be utilized to identify early cartilage degeneration? Systematic review. A systematic search was performed in November 2010 using PubMed MEDLINE (from 1966), CINAHL (from 1982), SPORTDiscus (from 1985), SCOPUS (from 1996), and EMBASE (from 1974) databases. Fourteen level I and 13 level II studies were identified that met inclusion criteria and provided information related to diagnostic performance of MRI compared with arthroscopic evaluation. The diagnostic performance of MRI demonstrated a large range of sensitivities, specificities, and accuracies. The sensitivity for identifying articular cartilage abnormalities in the knee joint was reported between 26% and 96%. Specificity and accuracy were reported between 50% and 100% and between 49% and 94%, respectively. The sensitivity, specificity, and accuracy for identifying early osteoarthritis were reported between 0% and 86%, 48% and 95%, and 5% and 94%, respectively. As a result of inconsistencies between imaging techniques and methodological shortcomings of many of the studies, a meta-analysis was not performed, and it was difficult to fully synthesize the information to state firm conclusions about the diagnostic performance of MRI. There is evidence in some MRI protocols that MRI is a relatively valid, sensitive, specific, accurate, and reliable clinical tool for identifying articular cartilage degeneration. Because of heterogeneity of MRI sequences, it is not possible to make definitive conclusions regarding its global clinical utility for guiding diagnosis and treatment strategies. Traumatic sports injuries to the knee may be significant precursor events to early onset of posttraumatic osteoarthritis. Magnetic resonance imaging may aid in early identification of structural injuries to articular cartilage as evidenced by articular cartilage degeneration grading.

  13. Development and Reliability Evaluation of the Movement Rating Instrument for Virtual Reality Video Game Play.

    PubMed

    Levac, Danielle; Nawrotek, Joanna; Deschenes, Emilie; Giguere, Tia; Serafin, Julie; Bilodeau, Martin; Sveistrup, Heidi

    2016-06-01

    Virtual reality active video games are increasingly popular physical therapy interventions for children with cerebral palsy. However, physical therapists require educational resources to support decision making about game selection to match individual patient goals. Quantifying the movements elicited during virtual reality active video game play can inform individualized game selection in pediatric rehabilitation. The objectives of this study were to develop and evaluate the feasibility and reliability of the Movement Rating Instrument for Virtual Reality Game Play (MRI-VRGP). Item generation occurred through an iterative process of literature review and sample videotape viewing. The MRI-VRGP includes 25 items quantifying upper extremity, lower extremity, and total body movements. A total of 176 videotaped 90-second game play sessions involving 7 typically developing children and 4 children with cerebral palsy were rated by 3 raters trained in MRI-VRGP use. Children played 8 games on 2 virtual reality and active video game systems. Intraclass correlation coefficients (ICCs) determined intra-rater and interrater reliability. Excellent intrarater reliability was evidenced by ICCs of >0.75 for 17 of the 25 items across the 3 raters. Interrater reliability estimates were less precise. Excellent interrater reliability was achieved for far reach upper extremity movements (ICC=0.92 [for right and ICC=0.90 for left) and for squat (ICC=0.80) and jump items (ICC=0.99), with 9 items achieving ICCs of >0.70, 12 items achieving ICCs of between 0.40 and 0.70, and 4 items achieving poor reliability (close-reach upper extremity-ICC=0.14 for right and ICC=0.07 for left) and single-leg stance (ICC=0.55 for right and ICC=0.27 for left). Poor video quality, differing item interpretations between raters, and difficulty quantifying the high-speed movements involved in game play affected reliability. With item definition clarification and further psychometric property evaluation, the MRI-VRGP could inform the content of educational resources for therapists by ranking games according to frequency and type of elicited body movements.

  14. Development and Reliability Evaluation of the Movement Rating Instrument for Virtual Reality Video Game Play

    PubMed Central

    Nawrotek, Joanna; Deschenes, Emilie; Giguere, Tia; Serafin, Julie; Bilodeau, Martin; Sveistrup, Heidi

    2016-01-01

    Background Virtual reality active video games are increasingly popular physical therapy interventions for children with cerebral palsy. However, physical therapists require educational resources to support decision making about game selection to match individual patient goals. Quantifying the movements elicited during virtual reality active video game play can inform individualized game selection in pediatric rehabilitation. Objective The objectives of this study were to develop and evaluate the feasibility and reliability of the Movement Rating Instrument for Virtual Reality Game Play (MRI-VRGP). Methods Item generation occurred through an iterative process of literature review and sample videotape viewing. The MRI-VRGP includes 25 items quantifying upper extremity, lower extremity, and total body movements. A total of 176 videotaped 90-second game play sessions involving 7 typically developing children and 4 children with cerebral palsy were rated by 3 raters trained in MRI-VRGP use. Children played 8 games on 2 virtual reality and active video game systems. Intraclass correlation coefficients (ICCs) determined intra-rater and interrater reliability. Results Excellent intrarater reliability was evidenced by ICCs of >0.75 for 17 of the 25 items across the 3 raters. Interrater reliability estimates were less precise. Excellent interrater reliability was achieved for far reach upper extremity movements (ICC=0.92 [for right and ICC=0.90 for left) and for squat (ICC=0.80) and jump items (ICC=0.99), with 9 items achieving ICCs of >0.70, 12 items achieving ICCs of between 0.40 and 0.70, and 4 items achieving poor reliability (close-reach upper extremity-ICC=0.14 for right and ICC=0.07 for left) and single-leg stance (ICC=0.55 for right and ICC=0.27 for left). Conclusions Poor video quality, differing item interpretations between raters, and difficulty quantifying the high-speed movements involved in game play affected reliability. With item definition clarification and further psychometric property evaluation, the MRI-VRGP could inform the content of educational resources for therapists by ranking games according to frequency and type of elicited body movements. PMID:27251029

  15. Stress-induced changes in human decision-making are reversible.

    PubMed

    Soares, J M; Sampaio, A; Ferreira, L M; Santos, N C; Marques, F; Palha, J A; Cerqueira, J J; Sousa, N

    2012-07-03

    Appropriate decision-making relies on the ability to shift between different behavioral strategies according to the context in which decisions are made. A cohort of subjects exposed to prolonged stress, and respective gender- and age-matched controls, performed an instrumental behavioral task to assess their decision-making strategies. The stressed cohort was reevaluated after a 6-week stress-free period. The behavioral analysis was complemented by a functional magnetic resonance imaging (fMRI) study to detect the patterns of activation in corticostriatal networks ruling goal-directed and habitual actions. Using structural MRI, the volumes of the main cortical and subcortical regions implicated in instrumental behavior were determined. Here we show that chronic stress biases decision-making strategies in humans toward habits, as choices of stressed subjects become insensitive to changes in outcome value. Using functional imaging techniques, we demonstrate that prolonged exposure to stress in humans causes an imbalanced activation of the networks that govern decision processes, shifting activation from the associative to the sensorimotor circuits. These functional changes are paralleled by atrophy of the medial prefrontal cortex and the caudate, and by an increase in the volume of the putamina. Importantly, a longitudinal assessment of the stressed individuals showed that both the structural and functional changes triggered by stress are reversible and that decisions become again goal-directed.

  16. Open Source 3D Multipurpose Measurement System with Submillimetre Fidelity and First Application in Magnetic Resonance.

    PubMed

    Han, Haopeng; Moritz, Raphael; Oberacker, Eva; Waiczies, Helmar; Niendorf, Thoralf; Winter, Lukas

    2017-10-18

    Magnetic resonance imaging (MRI) is the mainstay of diagnostic imaging, a versatile instrument for clinical science and the subject of intense research interest. Advancing clinical science, research and technology of MRI requires high fidelity measurements in quantity, location and time of the given physical property. To meet this goal a broad spectrum of commercial measurement systems has been made available. These instruments frequently share in common that they are costly and typically employ closed proprietary hardware and software. This shortcoming makes any adjustment for a specified application difficult if not prohibitive. Recognizing this limitation this work presents COSI Measure, an automated open source measurement system that provides submillimetre resolution, robust configuration and a large working volume to support a versatile range of applications. The submillimetre fidelity and reproducibility/backlash performance were evaluated experimentally. Magnetic field mapping of a single ring Halbach magnet, a 3.0 T and a 7.0 T MR scanner as well as temperature mapping of a radio frequency coil were successfully conducted. Due to its open source nature and versatile construction, the system can be easily modified for other applications. In a resource limited research setting, COSI Measure makes efficient use of laboratory space, financial resources and collaborative efforts.

  17. Development of a Hybrid EPR/NMR Coimaging System

    PubMed Central

    Samouilov, Alexandre; Caia, George L.; Kesselring, Eric; Petryakov, Sergey; Wasowicz, Tomasz; Zweier, Jay L.

    2010-01-01

    Electron paramagnetic resonance imaging (EPRI) is a powerful technique that enables spatial mapping of free radicals or other paramagnetic compounds; however, it does not in itself provide anatomic visualization of the body. Proton magnetic resonance imaging (MRI) is well suited to provide anatomical visualization. A hybrid EPR/NMR coimaging instrument was constructed that utilizes the complementary capabilities of both techniques, superimposing EPR and proton-MR images to provide the distribution of paramagnetic species in the body. A common magnet and field gradient system is utilized along with a dual EPR and proton-NMR resonator assembly, enabling coimaging without the need to move the sample. EPRI is performed at ~1.2 GHz/~40 mT and proton MRI is performed at 16.18 MHz/~380 mT; hence the method is suitable for whole-body coimaging of living mice. The gradient system used is calibrated and controlled in such a manner that the spatial geometry of the two acquired images is matched, enabling their superposition without additional postprocessing or marker registration. The performance of the system was tested in a series of phantoms and in vivo applications by mapping the location of a paramagnetic probe in the gastrointestinal (GI) tract of mice. This hybrid EPR/NMR coimaging instrument enables imaging of paramagnetic molecules along with their anatomic localization in the body. PMID:17659621

  18. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST &om contamination and the instruments from self-contamination.

  19. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST from contamination and the instruments from self-contamination.

  20. Role of fMRI in the decision-making process: epilepsy surgery for children.

    PubMed

    Liégeois, Frédérique; Cross, J Helen; Gadian, David G; Connelly, Alan

    2006-06-01

    Functional MRI (fMRI) is increasingly being used to evaluate children and adolescents who are candidates for surgical treatment of intractable epilepsy. It has the advantage of being noninvasive and well tolerated by young people. By identifying important functional regions within the brain, including unpredictable patterns of functional reorganization, it can aid in surgical decision-making. Here we illustrate this using a number of case studies from the pediatric epilepsy surgery program at our institution. We describe how fMRI, used in conjunction with conventional investigative methods such as neuropsychological assessment, MRI, and electrophysiology, can 1) help to improve functional outcome by enabling resective surgery that spares functional cortex, 2) guide surgical intervention by revealing when reorganization of function has occurred, and 3) show when abnormal cortex is also functionally active, and hence that surgery may not be the best option. Altogether, these roles have reduced the need for invasive procedures that can be both risky and distressing for young people with epilepsy. In our experience, fMRI has significantly contributed to the decision-making process, and improved the counseling and management of young people with intractable epilepsy. Copyright 2006 Wiley-Liss, Inc.

  1. Causal mapping of emotion networks in the human brain: Framework and initial findings.

    PubMed

    Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph

    2017-11-13

    Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. National Aeronautics and Space Administration's research program in earth remote sensing instrumentation

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.; Sokoloski, Martin M.; Rubin, Bernard

    1991-01-01

    Terrestrial and atmospheric missions of NASA's program to develop remote sensing instrumentation are described along with several of the instruments and related mission. Systems such as lidar and radar, passive coherent sensors, passive noncoherent sensors, as well as cryogenic cooler technology are discussed.

  3. Implementation of a Point-of-Care Radiologist-Technologist Communication Tool in a Quality Assurance Program.

    PubMed

    Ong, Leonard; Elnajjar, Pierre; Nyman, C Gregory; Mair, Thomas; Juluru, Krishna

    2017-07-01

    We implemented an Image Quality Reporting and Tracking Solution (IQuaRTS), directly linked from the PACS, to improve communication between radiologists and technologists. IQuaRTS launched in May 2015. We compared MRI issues filed in the period before IQuaRTS implementation (May-September 2014) using a manual system with MRI issues filed in the IQuaRTS period (May-September 2015). The unpaired t test was used for analysis. For assessment of overall results in the IQuaRTS period alone, all issues filed across all modalities were included. Summary statistics and charts were generated using Excel and Tableau. For MRI issues, the number of issues filed during the IQuaRTS period was 498 (2.5% of overall MRI examination volume) compared with 78 issues filed during the period before IQuaRTS implementation (0.4% of total examination volume) (p = 0.0001), representing a 625% relative increase. Tickets that documented excellent work were 8%. Other issues included images not pushed to PACS (20%), film library issues (19%), and documentation or labeling (8%). Of the issues filed, 55% were MRI-related and 25% were CT-related. The issues were stratified across six sites within our institution. Staff requiring additional training could be readily identified, and 80% of the issues were resolved within 72 hours. IQuaRTS is a cost-effective online issue reporting tool that enables robust data collection and analytics to be incorporated into quality improvement programs. One limitation of the system is that it must be implemented in an environment where staff are receptive to quality improvement.

  4. White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 1: General Application.

    PubMed

    Barkhausen, Jörg; Kahn, Thomas; Krombach, Gabriele A; Kuhl, Christiane K; Lotz, Joachim; Maintz, David; Ricke, Jens; Schönberg, Stefan O; Vogl, Thomas J; Wacker, Frank K

    2017-07-01

    Background  MRI is attractive for the guiding and monitoring of interventional procedures due to its high intrinsic soft tissue contrast and the possibility to measure physiologic parameters like flow and cardiac function. Method  The current status of interventional MRI for the clinical routine was analyzed. Results  The effort needed for the development of MR-safe monitoring systems and instruments initially resulted in the application of interventional MRI only for procedures that could not be performed by other means. Accordingly, biopsy of lesions in the breast, which are not detectable by other modalities, has been performed under MRI guidance for decades. Currently, biopsies of the prostate under MRI guidance are established in a similar fashion. At many sites blind biopsy has already been replaced by MR-guided biopsy or at least by the fusion of MR images with ultrasound. Cardiovascular interventions are performed at several centers for ablation as a treatment for atrial fibrillation. Conclusion  Interventional MRI has been established in the clinical routine for a variety of indications. Broader application can be expected in the clinical routine in the future owing to the multiple advantages compared to other techniques. Key points   · Due to the significant technical effort, MR-guided interventions are only recommended in the long term for regions in which MRI either facilitates or greatly improves the intervention.. · Breast biopsy of otherwise undetectable target lesions has long been established in the clinical routine. Prostate biopsy is currently being introduced in the clinical routine for similar reasons. Other methods such as MR-guided focused ultrasound for the treatment of uterine fibroids or tumor ablation of metastases represent alternative methods and are offered in many places.. · Endovascular MR-guided interventions offer advantages for a number of indications and have already been clinically established for the treatment of children with congenital heart defects and for atrial ablation at individual centers. Greater application can be expected in the future.. Citation format · Barkhausen J, Kahn T, Krombach GA et al. White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 1: General Application. Fortschr Röntgenstr 2017; 189: 611 - 623. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Breast MRI in community practice: equipment and imaging techniques at facilities in the Breast Cancer Surveillance Consortium.

    PubMed

    DeMartini, Wendy B; Ichikawa, Laura; Yankaskas, Bonnie C; Buist, Diana; Kerlikowske, Karla; Geller, Berta; Onega, Tracy; Rosenberg, Robert D; Lehman, Constance D

    2010-11-01

    MRI is increasingly used for the detection of breast carcinoma. Little is known about breast MRI techniques among community practice facilities. The aim of this study was to evaluate equipment and acquisition techniques used by community facilities across the United States, including compliance with minimum standards by the ACRIN® 6667 Trial and the European Society of Breast Imaging. Breast Cancer Surveillance Consortium facilities performing breast MRI were identified and queried by survey regarding breast MRI equipment and technical parameters. Variables included scanner field strength, coil type, acquisition coverage, slice thickness, and the timing of the initial postcontrast sequence. Results were tallied and percentages of facilities meeting ACRIN® and European Society of Breast Imaging standards were calculated. From 23 facilities performing breast MRI, results were obtained from 14 (61%) facilities with 16 MRI scanners reporting 18 imaging parameters. Compliance with equipment recommendations of ≥1.5-T field strength was 94% and of a dedicated breast coil was 100%. Eighty-three percent of acquisitions used bilateral postcontrast techniques, and 78% used slice thickness≤3 mm. The timing of initial postcontrast sequences ranged from 58 seconds to 8 minutes 30 seconds, with 63% meeting recommendations for completion within 4 minutes. Nearly all surveyed facilities met ACRIN and European Society of Breast Imaging standards for breast MRI equipment. The majority met standards for acquisition parameters, although techniques varied, in particular for the timing of initial postcontrast imaging. Further guidelines by the ACR Breast MRI Accreditation Program will be of importance in facilitating standardized and high-quality breast MRI. Copyright © 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  6. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging

    PubMed Central

    2016-01-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313

  7. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-05

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  8. Statistical parametric mapping of stimuli-evoked changes in quantitative blood flow using extended-focus optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo

    2016-03-01

    Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.

  9. Real-time MRI-guided needle intervention for cryoablation: a phantom study

    NASA Astrophysics Data System (ADS)

    Gao, Wenpeng; Jiang, Baichuan; Kacher, Dan F.; Fetics, Barry; Nevo, Erez; Lee, Thomas C.; Jayender, Jagadeesan

    2017-03-01

    MRI-guided needle intervention for cryoablation is a promising way to relieve the pain and treat the cancer. However, the limited size of MRI bore makes it impossible for clinicians to perform the operation in the bore. The patients had to be moved into the bore for scanning to verify the position of the needle's tip and out for adjusting the needle's trajectory. Real-time needle tracking and shown in MR images is of importance for clinicians to perform the operation more efficiently. In this paper, we have instrumented the cryotherapy needle with a MRI-safe electromagnetic (EM) sensor and optical sensor to measure the needle's position and orientation. To overcome the limitation of line-of-sight for optical sensor and the poor dynamic performance of the EM sensor, Kalman filter based data fusion is developed. Further, we developed a navigation system in open-source software, 3D Slicer, to provide accurate visualization of the needle and the surrounding anatomy. Experiment of simulation the needle intervention at the entrance was performed with a realistic spine phantom to quantify the accuracy of the navigation using the retrospective analysis method. Eleven trials of needle insertion were performed independently. The target accuracy with the navigation using only EM sensor, only optical sensor and data fusion are 2.27 +/-1.60 mm, 4.11 +/- 1.77 mm and 1.91 - 1.10 mm, respectively.

  10. Direct Burial Broadband Seismic Instrumentation that are Rugged and Tilt Tolerant for Polar Environments

    NASA Astrophysics Data System (ADS)

    Parker, Tim; Winberry, Paul; Huerta, Audrey; Bainbridge, Geoff; Devanney, Peter

    2016-04-01

    The integrated broadband Meridian Posthole and Compact seismic systems have been engineered and tested for extreme polar environments. Ten percent of the Earth's surface is covered in glacial ice and the dynamics of these environments is a strategic concern for all. The development for these systems was driven by researchers needing to densify observations in ice covered regions with difficult and limited logistics. Funding from an NSF MRI award, GEOICE and investment from the vendor enabled researchers to write the specifications for a hybrid family of instruments that can operate at -55C autonomously with very little power, 1 watt for the Meridian Compact system and 1.5 watts for the Meridian 120PH. Tilt tolerance in unstable ice conditions was a concern and these instruments have a range of up to +/-5 degrees. The form factor, extreme temperature tolerance and power load of the instruments has reduced the bulk of a complete station by 1/2 and simplified installation greatly allowing more instruments to be deployed with limited support and a lighter logistical load. These systems are being tested in the Antarctic at SouthPole Station and McMurdo for the second year and the investment has encouraged other instrument and power system vendors to offer polar rated equipment including telemetry for ancillary support.

  11. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up

    Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less

  12. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.

    PubMed

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  13. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller

    NASA Astrophysics Data System (ADS)

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADμC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62kbytes of flash memory, 8kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100ns and a minimum time delay between successive events of approximately 9μs. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  14. A View of Current Evaluative Practices in Instrumental Music Teacher Education

    ERIC Educational Resources Information Center

    Peterson, Amber Dahlén

    2014-01-01

    The purpose of this study was to examine how instrumental music educator skills are being evaluated in current undergraduate programs. While accrediting organizations mandate certain elements of these programs, they provide limited guidance on what evaluative approaches should be used. Instrumental music teacher educators in the College Music…

  15. Career Assessment: Recently Developed Instruments Useful for School-to-Work Programs.

    ERIC Educational Resources Information Center

    Kapes, Jerome T.; Martinez, Linda

    This document describes 32 recently developed career assessment instruments that have been deemed useful for school-to-work programs. The following instruments are among those profiled: Ability Explorer; Adult Measure of Essential Skills; Aptitude Interest Inventory; Ashland Interest Assessment; Barriers to Employment Success Inventory; Basic…

  16. Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan

    2010-01-01

    In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.

  17. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Britvitch, I.; Johnson, I.; Renker, D.; Stoykov, A.; Lorenz, E.

    2007-02-01

    Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate.

  18. Functional MRI compliance in children with attention deficit hyperactivity disorder

    PubMed Central

    Karakaş, Sirel; Dinçer, Elvin Doğutepe; Ceylan, Arzu Özkan; Tileylioğlu, Emre; Karakaş, Hakkı Muammer; Talı, E. Turgut

    2015-01-01

    PURPOSE We aimed to test the effect of prescan training and orientation in functional magnetic resonance imaging (fMRI) in children with attention deficit hyperactivity disorder (ADHD) and to investigate whether fMRI compliance was modified by state anxiety. METHODS Subjects included 77 males aged 6–12 years; there were 53 patients in the ADHD group and 24 participants in the healthy control group. Exclusion criteria included neurological and/or psychiatric comorbidities (other than ADHD), the use of psychoactive drugs, and an intelligence quotient outside the normal range. Children were individually subjected to prescan orientation and training. Data were acquired using a 1.5 Tesla scanner and an 8-channel head coil. Functional scans were performed using a standard neurocognitive task. RESULTS The neurocognitive task led to reliable fMRI maps. Compliance was not significantly different between ADHD and control groups based on success, failure, and repetition rates of fMRI. Compliance of ADHD patients with extreme levels of anxiety was also not significantly different. CONCLUSION The fMRI compliance of ADHD children is typically lower than that of healthy children. However, compliance can be increased to the level of age-matched healthy control children by addressing concerns about the technical and procedural aspects of fMRI, providing orientation programs, and performing on-task training. In patients thus trained, compliance does not change with the level of state anxiety suggesting that the anxiety hypothesis of fMRI compliance is not supported. PMID:25519454

  19. Infection with spinal instrumentation: Review of pathogenesis, diagnosis, prevention, and management

    PubMed Central

    Kasliwal, Manish K.; Tan, Lee A.; Traynelis, Vincent C.

    2013-01-01

    Background: Instrumentation has become an integral component in the management of various spinal pathologies. The rate of infection varies from 2% to 20% of all instrumented spinal procedures. Every occurrence produces patient morbidity, which may adversely affect long-term outcome and increases health care costs. Methods: A comprehensive review of the literature from 1990 to 2012 was performed utilizing PubMed and several key words: Infection, spine, instrumentation, implant, management, and biofilms. Articles that provided a current review of the pathogenesis, diagnosis, prevention, and management of instrumented spinal infections over the years were reviewed. Results: There are multiple risk factors for postoperative spinal infections. Infections in the setting of instrumentation are more difficult to diagnose and treat due to biofilm. Infections may be early or delayed. C Reactive Protein (CRP) and Magnetic Resonance Imaging (MRI) are important diagnostic tools. Optimal results are obtained with surgical debridement followed by parenteral antibiotics. Removal or replacement of hardware should be considered in delayed infections. Conclusions: An improved understanding of the role of biofilm and the development of newer spinal implants has provided insight in the pathogenesis and management of infected spinal implants. This literature review highlights the mechanism, pathogenesis, prevention, and management of infection after spinal instrumentation. It is important to accurately identify and treat postoperative spinal infections. The treatment is often multimodal and prolonged. PMID:24340238

  20. Human Pulmonary Hyperpolarized 129Xe MRI: a Preliminary Study

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Wang, Ke; Zhang, Hui-Ting; Xie, Jun-Shuai; Wu, Guang-Yao; Zhou, Xin

    2018-05-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 81227902 and 81625011, the National Key Research and Development Program of China under Grant No 2016YFC1304702, and the Key Research Program of Frontier Sciences of CAS (QYZDY-SSW-SLH018).

  1. Diversifying the STEM Pipeline: The Model Replication Institutions Program

    ERIC Educational Resources Information Center

    Cullinane, Jenna

    2009-01-01

    In 2006, the National Science Foundation (NSF) began funding the Model Replication Institutions (MRI) program, which sought to improve the quality, availability, and diversity of science, technology, engineering, and mathematics (STEM) education. Faced with pressing national priorities in the STEM fields and chronic gaps in postsecondary…

  2. Development and exploratory analysis of the Neurorehabilitation Program Styles Survey.

    PubMed

    McCorkel, Beth A; Glueckauf, Robert L; Ecklund-Johnson, Eric P; Tomusk, Allison B; Trexler, Lance E; Diller, Leonard

    2003-01-01

    To develop a survey instrument that assesses implementation of key components of outpatient neurorehabilitation programs and test the capacity of this instrument to differentiate between rehabilitation approaches. The Neurorehabilitation Program Styles Survey (NPSS) was administered to 18 outpatient facilities: 10 specialized and 8 discipline-specific outpatient neurorehabilitation programs. Scores were compared between types of programs using independent samples t tests. The NPSS showed good reliability and contrasted groups validity, significantly differentiating between types of programs. The NPSS holds considerable promise as a tool for distinguishing among different types of brain injury programs, and for assessing the differential effectiveness of specialized versus discipline-specific outpatient brain rehabilitation programs. Future research on the NPSS will assess the stability of the instrument over time, its content validity, and capacity to differentiate the full continuum of neurorehabilitation programs.

  3. ISMRM Raw Data Format: A Proposed Standard for MRI Raw Datasets

    PubMed Central

    Inati, Souheil J.; Naegele, Joseph D.; Zwart, Nicholas R.; Roopchansingh, Vinai; Lizak, Martin J.; Hansen, David C.; Liu, Chia-Ying; Atkinson, David; Kellman, Peter; Kozerke, Sebastian; Xue, Hui; Campbell-Washburn, Adrienne E.; Sørensen, Thomas S.; Hansen, Michael S.

    2015-01-01

    Purpose This work proposes the ISMRM Raw Data (ISMRMRD) format as a common MR raw data format, which promotes algorithm and data sharing. Methods A file format consisting of a flexible header and tagged frames of k-space data was designed. Application Programming Interfaces were implemented in C/C++, MATLAB, and Python. Converters for Bruker, General Electric, Philips, and Siemens proprietary file formats were implemented in C++. Raw data were collected using MRI scanners from four vendors, converted to ISMRMRD format, and reconstructed using software implemented in three programming languages (C++, MATLAB, Python). Results Images were obtained by reconstructing the raw data from all vendors. The source code, raw data, and images comprising this work are shared online, serving as an example of an image reconstruction project following a paradigm of reproducible research. Conclusion The proposed raw data format solves a practical problem for the MRI community. It may serve as a foundation for reproducible research and collaborations. The ISMRMRD format is a completely open and community-driven format, and the scientific community is invited (including commercial vendors) to participate either as users or developers. PMID:26822475

  4. Nimbus-F to carry advanced weather instruments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Meteorological research instruments launched aboard NASA's Nimbus-F spacecraft are briefly described along with the Nimbus satellite program initiated to develop an observatory system capable of meeting the research and development needs of the nation's atmospheric and earth sciences program. The following aspects of the mission are described: spacecraft design, launch operations, sequence of orbital events, and operations control and tracking. The Global Atmospheric Research program is discussed in terms of the Nimbus-F experiments and atmospheric sounding instruments.

  5. The instrumentation program for the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne

    2012-09-01

    An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Science cases and operational concepts as well as their links to the instruments are continually revisited and updated through a series of workshops and conferences. Work on the three first-light instruments (WFOS IRIS, and IRMS) has made significant progress, and many groups in TMT partner communities are developing future instrument concepts. Other instrument-related subsystems are also receiving considerable attention given their importance to the scientific end-to-end performance of the Observatory. As an example, we describe aspects of the facility instrument cooling system that are crucially important to successful diffraction-limited observations on an extremely large telescope.

  6. Research instrumentation for hot section components of turbine engines

    NASA Technical Reports Server (NTRS)

    Englund, D. R.

    1986-01-01

    Programs to develop research instrumentation for use on hot section components of turbine engines are discussed. These programs can be separated into two categories: one category includes instruments which can measure the environment within the combustor and turbine components, the other includes instruments which measure the response of engine components to the imposed environment. Included in the first category are instruments to measure total heat flux and fluctuating gas temperature. High temperature strain measuring systems, thin film sensors (e.g., turbine blade thermocouples) and a system to view the interior of a combustor during engine operation are programs which comprise the second category. The paper will describe the state of development of these sensors and measuring systems and, in some cases, show examples of measurements made with this instrumentation. The discussion will cover work done at NASA Lewis and at various contractor facilities.

  7. Equipment upgrades for the Pu-238 program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.; Stephens, W.D.; Marra, J.E.

    1990-02-14

    Much of the equipment and instrumentation in the Pu-238 production facilities is more than 15 years old. Significant improvements have been made in the available instrumentation, in particular, due to the application of microprocessors and lasers. The Actinide Technology Section of SRL has selected and is in the process of evaluating several state-of-the-art instruments which have potential applications in the Pu-238 program. The ease of operation and the accuracy of the instruments have been improved and, in most cases, the cost of the instruments have decreased. 5 refs.

  8. Diversifying the STEM Pipeline: Recommendations from the Model Replication Institutions Program

    ERIC Educational Resources Information Center

    Institute for Higher Education Policy, 2010

    2010-01-01

    Launched in 2006 to address issues of national competitiveness and equity in science, technology, engineering, and mathematics (STEM) fields, the National Science Foundation-funded Model Replication Institutions (MRI) program sought to improve the quality, availability, and diversity of STEM education. The project offered technical assistance to…

  9. Quantitative 3D Ultrashort Time-to-Echo (UTE) MRI and Micro-CT (μCT) Evaluation of the Temporomandibular Joint (TMJ) Condylar Morphology

    PubMed Central

    Geiger, Daniel; Bae, Won C.; Statum, Sheronda; Du, Jiang; Chung, Christine B.

    2014-01-01

    Objective Temporomandibular dysfunction involves osteoarthritis of the TMJ, including degeneration and morphologic changes of the mandibular condyle. Purpose of this study was to determine accuracy of novel 3D-UTE MRI versus micro-CT (μCT) for quantitative evaluation of mandibular condyle morphology. Material & Methods Nine TMJ condyle specimens were harvested from cadavers (2M, 3F; Age 85 ± 10 yrs., mean±SD). 3D-UTE MRI (TR=50ms, TE=0.05 ms, 104 μm isotropic-voxel) was performed using a 3-T MR scanner and μCT (18 μm isotropic-voxel) was performed. MR datasets were spatially-registered with μCT dataset. Two observers segmented bony contours of the condyles. Fibrocartilage was segmented on MR dataset. Using a custom program, bone and fibrocartilage surface coordinates, Gaussian curvature, volume of segmented regions and fibrocartilage thickness were determined for quantitative evaluation of joint morphology. Agreement between techniques (MRI vs. μCT) and observers (MRI vs. MRI) for Gaussian curvature, mean curvature and segmented volume of the bone were determined using intraclass correlation correlation (ICC) analyses. Results Between MRI and μCT, the average deviation of surface coordinates was 0.19±0.15 mm, slightly higher than spatial resolution of MRI. Average deviation of the Gaussian curvature and volume of segmented regions, from MRI to μCT, was 5.7±6.5% and 6.6±6.2%, respectively. ICC coefficients (MRI vs. μCT) for Gaussian curvature, mean curvature and segmented volumes were respectively 0.892, 0.893 and 0.972. Between observers (MRI vs. MRI), the ICC coefficients were 0.998, 0.999 and 0.997 respectively. Fibrocartilage thickness was 0.55±0.11 mm, as previously described in literature for grossly normal TMJ samples. Conclusion 3D-UTE MR quantitative evaluation of TMJ condyle morphology ex-vivo, including surface, curvature and segmented volume, shows high correlation against μCT and between observers. In addition, UTE MRI allows quantitative evaluation of the fibrocartilaginous condylar component. PMID:24092237

  10. An Investigation of Factors Related to Self-Efficacy for Java Programming among Engineering Students

    ERIC Educational Resources Information Center

    Askar, Petek; Davenport, David

    2009-01-01

    The purpose of this study was to examine the factors related to self-efficacy for Java programming among first year engineering students. An instrument assessing Java programming self-efficacy was developed from the computer programming self-efficacy scale of Ramalingam & Wiedenbeck. The instrument was administered at the beginning of the…

  11. The development and validation of The Inquiry Science Observation Coding Sheet.

    PubMed

    Brandon, P R; Taum, A K H; Young, D B; Pottenger, F M

    2008-08-01

    Evaluation reports increasingly document the degree of program implementation, particularly the extent to which programs adhere to prescribed steps and procedures. Many reports are cursory, however, and few, if any, fully portray the long and winding path taken when developing evaluation instruments, particularly observation instruments. In this article, we describe the development of an observational method for evaluating the degree to which K-12 inquiry science programs are implemented, including the many steps and decisions that occurred during the development, and present evidence for the reliability and validity of the data that we collected with the instrument. The article introduces a method for measuring the adherence of inquiry science implementation and gives evaluators a full picture of what they might expect when developing observation instruments for assessing the degree of program implementation.

  12. Impact of MRI on high grade Ductal Carcinoma Insitu (HG DCIS) management, are we using the full scope of MRI?

    PubMed

    Hajaj, Mohamad; Karim, Ahmed; Pascaline, Sana; Noor, Lubna; Patel, Shivali; Dakka, Mahmoud

    2017-10-01

    Preoperative assessment of pure Ductal Carcinoma Insitu (DCIS) is essential in the surgical planning. The role of Magnetic resonance imaging (MRI) has long been debated. The impact of MRI on the management of High Grade (HG) DCIS was assessed, whether it accurately captures the true size of this entity in comparison to conventional imaging, and, if MRI use would reduce the number of re-excision surgery. Ninety-one consecutive patients with HG DCIS, who were identified from a prospectively collected data at Kettering General Hospital between April 2011 and December 2015. All patients had preoperative MRI scan in addition to the standard breast imaging. This was compared to a control group of consecutive patients (n=52) which was obtained from a period just before 2011. Impact on surgical planning and number of surgeries for each patient was compared. The size of HG DCIS estimated by MRI was compared to the final histological size. Secondary outcomes included change of initial surgical plan and detection of occult contralateral breast cancer. MRI group had 91 patients with median age of 63. Seventy percent of which presented through the screening program. The overall sensitivity of MRI to detect HG DCIS was 77% (70/91) with a false negative rate FNR of 23% (21/91). Therefore, 70 patients only were included in the data analysis. The control group included 52 screening patients with comparable baseline characteristics. Re-excision (or completion mastectomy) rates were higher in the control group 26% compared to 8% in the MRI group (P-value 0.012). MRI use correctly converted the initial plan of breast conservation to mastectomy in 9 patients (13%). Five patients had additional ipsilateral malignant features (7%).Occult contra lateral disease, was diagnosed in 2 patients (3%). This study suggests that MRI could be an important tool in reducing the re-excision rates in the surgical management of HG DCIS. Although still controversial, selective MRI imaging can be useful in the preoperative diagnosis and evaluation of HG DCIS. Case by case discussion at MDT is crucial. Wider adaptation of MRI when indicated in the assessment of breast lesions with proper correlation to histology postoperatively is a key in improving our MRI interpretation skills, helping us to exploit the full scope of this useful tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  14. The Function Biomedical Informatics Research Network Data Repository

    PubMed Central

    Keator, David B.; van Erp, Theo G.M.; Turner, Jessica A.; Glover, Gary H.; Mueller, Bryon A.; Liu, Thomas T.; Voyvodic, James T.; Rasmussen, Jerod; Calhoun, Vince D.; Lee, Hyo Jong; Toga, Arthur W.; McEwen, Sarah; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Bockholt, H. Jeremy; Gadde, Syam; Preda, Adrian; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.

    2015-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN’s multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  15. Continuous wave optical spectroscopic system for use in magnetic resonance imaging scanners for the measurement of changes in hemoglobin oxygenation states in humans

    NASA Astrophysics Data System (ADS)

    Hulvershorn, Justin; Bloy, Luke; Leigh, John S.; Elliott, Mark A.

    2003-09-01

    A continuous wave near infrared three-wavelength laser diode spectroscopic (NIRS) system designed for use in magnetic resonance imaging (MRI) scanners is described. This system measures in vivo changes in the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) in humans. An algorithm is implemented to map changes in light intensity to changes in the concentrations of Hb and HbO. The system's signal to noise ratio is 3.4×103 per wavelength on an intralipid phantom with 10 Hz resolution. To demonstrate the system's performance in vivo, data taken on the human forearm during arterial occlusion, as well as data taken on the forehead during extended breath holds, are presented. The results show that the instrument is an extremely sensitive detector of hemodynamic changes in human tissue at high temporal resolution. NIRS directly measures changes in the concentrations of hemoglobin species. For this reason, NIRS will be useful in determining the sources of MRI signal changes in the body due to hemodynamic causes, while the precise anatomic information provided by MRI will aid in localizing NIRS contrast and improving the accuracy of models of light transport through tissue.

  16. Targeting Accuracy, Procedure Times and User Experience of 240 Experimental MRI Biopsies Guided by a Clinical Add-On Navigation System.

    PubMed

    Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael

    2015-01-01

    MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators - attending (AR) and resident radiologists (RR) as well as medical students (MS) - performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between groups with different expertise there were significant differences in experimental procedure times but not in the number of successful biopsies.

  17. Cutting efficiency of Reciproc and waveOne reciprocating instruments.

    PubMed

    Plotino, Gianluca; Giansiracusa Rubini, Alessio; Grande, Nicola M; Testarelli, Luca; Gambarini, Gianluca

    2014-08-01

    The aim of the present study was to evaluate the cutting efficiency of 2 new reciprocating instruments, Reciproc and WaveOne. Twenty-four new Reciproc R25 and 24 new WaveOne Primary files were activated by using a torque-controlled motor (Silver Reciproc) and divided into 4 groups (n = 12): group 1, Reciproc activated by Reciproc ALL program; group 2, Reciproc activated by WaveOne ALL program; group 3, WaveOne activated by Reciproc ALL program; and group 4, WaveOne activated by WaveOne ALL program. The device used for the cutting test consisted of a main frame to which a mobile plastic support for the handpiece is connected and a stainless steel block containing a Plexiglas block (inPlexiglass, Rome, Italy) against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Means and standard deviations of each group were calculated, and data were statistically analyzed with 1-way analysis of variance and Bonferroni test (P < .05). Reciproc R25 displayed greater cutting efficiency than WaveOne Primary for both the movements used (P < .05); in particular, Reciproc instruments used with their proper reciprocating motion presented a statistically significant higher cutting efficiency than WaveOne instruments used with their proper reciprocating motion (P < .05). There was no statistically significant difference between the 2 movements for both instruments (P > .05). Reciproc instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Designing communication and remote controlling of virtual instrument network system

    NASA Astrophysics Data System (ADS)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  19. An Innovative Instrument Flight Training Program.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    An innovative flight training program, its development, and initial administration are described. The program involves use of a commercially available training device in a twin-engine transition and instrument training course. Principal features of the training include redefinition of the flight instructor's role, and incentive award system,…

  20. Navigated MRI-guided liver biopsies in a closed-bore scanner: experience in 52 patients.

    PubMed

    Moche, Michael; Heinig, Susann; Garnov, Nikita; Fuchs, Jochen; Petersen, Tim-Ole; Seider, Daniel; Brandmaier, Philipp; Kahn, Thomas; Busse, Harald

    2016-08-01

    To evaluate clinical effectiveness and diagnostic efficiency of a navigation device for MR-guided biopsies of focal liver lesions in a closed-bore scanner. In 52 patients, 55 biopsies were performed. An add-on MR navigation system with optical instrument tracking was used for image guidance and biopsy device insertion outside the bore. Fast control imaging allowed visualization of the true needle position at any time. The biopsy workflow and procedure duration were recorded. Histological analysis and clinical course/outcome were used to calculate sensitivity, specificity and diagnostic accuracy. Fifty-four of 55 liver biopsies were performed successfully with the system. No major and four minor complications occurred. Mean tumour size was 23 ± 14 mm and the skin-to-target length ranged from 22 to 177 mm. In 39 cases, access path was double oblique. Sensitivity, specificity and diagnostic accuracy were 88 %, 100 % and 92 %, respectively. The mean procedure time was 51 ± 12 min, whereas the puncture itself lasted 16 ± 6 min. On average, four control scans were taken. Using this navigation device, biopsies of poorly visible and difficult accessible liver lesions could be performed safely and reliably in a closed-bore MRI scanner. The system can be easily implemented in clinical routine workflow. • Targeted liver biopsies could be reliably performed in a closed-bore MRI. • The navigation system allows for image guidance outside of the scanner bore. • Assisted MRI-guided biopsies are helpful for focal lesions with a difficult access. • Successful integration of the method in clinical workflow was shown. • Subsequent system installation in an existing MRI environment is feasible.

  1. Full automatic fiducial marker detection on coil arrays for accurate instrumentation placement during MRI guided breast interventions

    NASA Astrophysics Data System (ADS)

    Filippatos, Konstantinos; Boehler, Tobias; Geisler, Benjamin; Zachmann, Harald; Twellmann, Thorsten

    2010-02-01

    With its high sensitivity, dynamic contrast-enhanced MR imaging (DCE-MRI) of the breast is today one of the first-line tools for early detection and diagnosis of breast cancer, particularly in the dense breast of young women. However, many relevant findings are very small or occult on targeted ultrasound images or mammography, so that MRI guided biopsy is the only option for a precise histological work-up [1]. State-of-the-art software tools for computer-aided diagnosis of breast cancer in DCE-MRI data offer also means for image-based planning of biopsy interventions. One step in the MRI guided biopsy workflow is the alignment of the patient position with the preoperative MR images. In these images, the location and orientation of the coil localization unit can be inferred from a number of fiducial markers, which for this purpose have to be manually or semi-automatically detected by the user. In this study, we propose a method for precise, full-automatic localization of fiducial markers, on which basis a virtual localization unit can be subsequently placed in the image volume for the purpose of determining the parameters for needle navigation. The method is based on adaptive thresholding for separating breast tissue from background followed by rigid registration of marker templates. In an evaluation of 25 clinical cases comprising 4 different commercial coil array models and 3 different MR imaging protocols, the method yielded a sensitivity of 0.96 at a false positive rate of 0.44 markers per case. The mean distance deviation between detected fiducial centers and ground truth information that was appointed from a radiologist was 0.94mm.

  2. Clinical and instrumental assessment of herniated discs after nucleoplasty: a preliminary study.

    PubMed

    Liguori, Alessandro; Galli, Federica; Gurgitano, Martina; Borelli, Anna; Pandolfi, Marco; Caranci, Ferdinando; Magenta Biasina, Alberto M; Pompili, Giovanni G M; Piccolo, Claudia L; Miele, Vittorio; Masciocchi, Carlo; Carrafiello, Giampaolo

    2018-01-19

    The therapy for low back pain boasts different approaches; one of these is nucleoplasty. We wanted to assess the effectiveness of nucleoplasty both by clinical response both by MR imaging evaluation, including even extrusions larger than one third of the spinal canal. Fifty-seven patients were treated with nucleoplasty in our hospital, 11 of these patients accepted both clinical and MRI evaluation after six months from treatment. The clinical evaluation was performed with Visual Analogue Scale (VAS) of pain, scored before and after the procedure. MRI evaluation consisted of analysing some imaging parameters of disc protrusions before and after the treatment. In 10 out of 11 (91%) patients, VAS was reduced and only 1 out of 11 (9%) had the same pain after procedure. The mean of decrease of VAS score was 64%. In our population 8/11 (72%) patients had a herniation larger than 1/3 of the sagittal diameter of spinal canal and 100% of them had an improvement with a mean VAS reduction value of 75%. With MRI evaluation, the mean percentage of expulsion before and after treatment was respectively 40% and 34%. The expulsion decreased in 7/13 discs, remained equal in 4/13, and increased in 2/13 discs. Among the 9 larger protrusions, 3 didn't change, 6 reduced with a decrease mean value of 13%. Other MRI parameters didn't change significantly. Our preliminary experience supports the success of coblation on pain relief, aiming to show progressively that this treatment is suitable even in case of great extrusions, which are generally treated only with surgical approach. It's not clear the usefulness of MRI control yet, even if in most of cases we could have found a certain reduction of expulsion degree.

  3. Development and Field-Test of an Instrument to Assess the Extent to Which a Vocational Educational Program Is Either Competency-Based or Conventional. Final Report from September 1, 1984 to August 31, 1985.

    ERIC Educational Resources Information Center

    University of Central Florida, Orlando. Coll. of Education.

    This report describes the production and pilot test of an assessment instrument for vocational education programs. The instrument was designed to be used following a site visit that includes a 30- to 45-minute interview with the program instructor and a 30-minute interview with one small group of students. Reliability and validity information was…

  4. Lack of magnetic resonance imaging lesion activity as a treatment target in multiple sclerosis: An evaluation using electronically collected outcomes.

    PubMed

    Conway, Devon S; Thompson, Nicolas R; Cohen, Jeffrey A

    2016-09-01

    The appropriate treatment target in multiple sclerosis (MS) is unclear. Lack of magnetic resonance imaging (MRI) lesion activity, a component of the no evidence of disease activity concept, has been proposed as a treatment target in MS. We used our MS database to investigate whether aggressively pursuing MRI stability by changing disease modifying therapy (DMT) when MRI activity is observed leads to better clinical and imaging outcomes. The Knowledge Program (KP) is a database linked to our electronic medical record allowing capture of patient and clinician reported outcomes. Through KP query and chart review, we identified all relapsing-remitting MS patients visiting between 1 January 2008 and 31 December 2014 with active MRIs despite DMT. Propensity modeling based on demographic and disease characteristics was used to match DMT switchers to non-switchers. KP and MRI outcomes were compared 18 months after the active MRI using mixed-effects linear regression models. We identified 417 patients who met criteria for our analysis. After propensity matching, 78 switchers and 91 non-switchers were analyzed. There was no difference in clinical or radiologic outcomes between these groups at 18 months. We did not find a short-term benefit of changing DMT to pursue MRI stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Black blood MRI in suspected large artery primary angiitis of the central nervous system.

    PubMed

    Pfefferkorn, Thomas; Linn, Jennifer; Habs, Maximilian; Opherk, Christina; Cyran, Clemens; Ottomeyer, Caroline; Straube, Andreas; Dichgans, Martin; Nikolaou, Konstantin; Saam, Tobias

    2013-07-01

    Single case reports suggest that black blood MRI (T1-weighted fat and blood suppressed sequences with and without contrast injection; BB-MRI) may visualize intracranial vessel wall contrast enhancement (CE) in primary angiitis of the central nervous system (PACNS). In this single-center observational pilot study we prospectively investigated the value of BB-MRI in the diagnosis of large artery PACNS. Patients with suspected large artery PACNS received a standardized diagnostic program including BB-MRI. Vessel wall CE was graded (grade 0-2) by two experienced readers blinded to clinical data and correlated to the final diagnosis. Four of 12 included patients received a final diagnosis of PACNS. All of them showed moderate (grade 1) to strong (grade 2) vessel wall CE at the sites of stenosis. A moderate (grade 1) vessel wall CE grade was also observed in 6 of the remaining 8 patients in whom alternative diagnoses were made: arteriosclerotic disease (n = 4), intracranial dissection (n = 1), and Moyamoya disease (n = 1). Our pilot study demonstrates that vessel wall CE is a frequent finding in PACNS and its mimics. Larger trials will be necessary to evaluate the utility of BB-MRI in the diagnostic workup of PACNS. Copyright © 2012 by the American Society of Neuroimaging.

  6. Reliability of Classifying Multiple Sclerosis Disease Activity Using Magnetic Resonance Imaging in a Multiple Sclerosis Clinic

    PubMed Central

    Altay, Ebru Erbayat; Fisher, Elizabeth; Jones, Stephen E.; Hara-Cleaver, Claire; Lee, Jar-Chi; Rudick, Richard A.

    2013-01-01

    Objective To assess the reliability of new magnetic resonance imaging (MRI) lesion counts by clinicians in a multiple sclerosis specialty clinic. Design An observational study. Setting A multiple sclerosis specialty clinic. Patients Eighty-five patients with multiple sclerosis participating in a National Institutes of Health–supported longitudinal study were included. Intervention Each patient had a brain MRI scan at entry and 6 months later using a standardized protocol. Main Outcome Measures The number of new T2 lesions, newly enlarging T2 lesions, and gadolinium-enhancing lesions were measured on the 6-month MRI using a computer-based image analysis program for the original study. For this study, images were reanalyzed by an expert neuroradiologist and 3 clinician raters. The neuroradiologist evaluated the original image pairs; the clinicians evaluated image pairs that were modified to simulate clinical practice. New lesion counts were compared across raters, as was classification of patients as MRI active or inactive. Results Agreement on lesion counts was highest for gadolinium-enhancing lesions, intermediate for new T2 lesions, and poor for enlarging T2 lesions. In 18% to 25% of the cases, MRI activity was classified differently by the clinician raters compared with the neuroradiologist or computer program. Variability among the clinical raters for estimates of new T2 lesions was affected most strongly by the image modifications that simulated low image quality and different head position. Conclusions Between-rater variability in new T2 lesion counts may be reduced by improved standardization of image acquisitions, but this approach may not be practical in most clinical environments. Ultimately, more reliable, robust, and accessible image analysis methods are needed for accurate multiple sclerosis disease-modifying drug monitoring and decision making in the routine clinic setting. PMID:23599930

  7. Methods of dental instrument processing, sterilization, and storage--a review.

    PubMed

    Thomas, Lisa P; Bebermeyer, Richard D; Dickinson, Sharon K

    2005-10-01

    A comprehensive instrument processing and sterilization program in the dental office is essential to ensure that the DHCP and the public are protected from disease transmission due to contaminated instruments/ devices. The Centers for Disease Control and Prevention and other organizations have made recommendations to help dental personnel with this aspect of patient care. By following the CDC's latest guidelines, the DHCP can develop an optimal program of dental instrument processing, sterilization and storage.

  8. A Comparison Study of the California Test of Basic Skills between Fourth and Fifth Grade Instrumental Music Pullout Students and Students Not Involved in the Instrumental Music Program.

    ERIC Educational Resources Information Center

    Corral, S. Joseph

    The purpose of this study was to examine the effects of an instrumental music pullout program on student achievement. Two hundred and twenty-three students were divided into 2 groups. The first group consisted of 46 instrumental music students in grades 4 and 5. The second group consisted of 177 students who did not participate in the instrumental…

  9. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest (Technical Monitor); Chance, Kelly; Kurosu, Thomas

    2004-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents h m the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBUV, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  10. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas

    2003-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents from the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBW, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  11. INSTRUMENTATION AND AUTOMATIC CONTROL, SUGGESTED TECHNIQUES FOR DETERMINING COURSES OF STUDY IN VOCATIONAL AND TECHNICAL EDUCATION PROGRAMS.

    ERIC Educational Resources Information Center

    WEINSTEIN, EMANUEL

    THE PURPOSE OF THIS GUIDE IS TO HELP THE STATES ORGANIZE AND OPERATE EDUCATIONAL PROGRAMS FOR OCCUPATIONS IN THE FIELD OF INSTRUMENTATION. CHAPTER TITLES ARE--(1) INSTRUMENTATIONS--PAST, PRESENT, AND FUTURE, (2) THE OCCUPATIONAL FIELD, (3) WORK ACTIVITIES (DESIGN, FABRICATION, MAINTENANCE, REPAIR, AND SERVICE), (4) TRAINING REQUIREMENTS, AND (5)…

  12. The Assessment, Development, Assurance Pharmacist's Tool (ADAPT) for ensuring quality implementation of health promotion programs.

    PubMed

    Truong, Hoai-An; Taylor, Catherine R; DiPietro, Natalie A

    2012-02-10

    To develop and validate the Assessment, Development, Assurance Pharmacist's Tool (ADAPT), an instrument for pharmacists and student pharmacists to use in developing and implementing health promotion programs. The 36-item ADAPT instrument was developed using the framework of public health's 3 core functions (assessment, policy development, and assurance) and 10 essential services. The tool's content and usage was assessed and conducted through peer-review and initial validity testing processes. Over 20 faculty members, preceptors, and student pharmacists at 5 institutions involved in planning and implementing health promotion initiatives reviewed the instrument and conducted validity testing. The instrument took approximately 15 minutes to complete and the findings resulted in changes and improvements to elements of the programs evaluated. The ADAPT instrument fills a need to more effectively plan, develop, implement, and evaluate pharmacist-directed public health programs that are evidence-based, high-quality, and compliant with laws and regulations and facilitates documentation of pharmacists' contributions to public health.

  13. The Neurological Basis and Potential Modification of Emotional Intelligence through Affective/Behavioral Training

    DTIC Science & Technology

    2010-10-01

    facial trustworthiness; facial displays of anger) presented subliminally . Furthermore, the responsiveness of these regions to subliminal stimulation ...develop, or program the computerized stimulation paradigms for use during functional neuroimaging (i.e., MJT; BMAT; EFAT). These paradigms will be...programming began on the computerized functional MRI stimulation paradigms using e-prime software. • Quarter #2: Programming of all computerized functional

  14. Validity for the simplified water displacement instrument to measure arm lymphedema as a result of breast cancer surgery.

    PubMed

    Sagen, Ase; Kåresen, Rolf; Skaane, Per; Risberg, May Arna

    2009-05-01

    To evaluate concurrent and construct validity for the Simplified Water Displacement Instrument (SWDI), an instrument for measuring arm volumes and arm lymphedema as a result of breast cancer surgery. Validity design. Hospital setting. Women (N=23; mean age, 64+/-11y) were examined 6 years after breast cancer surgery with axillary node dissection. Not applicable. The SWDI was included for measuring arm volumes to estimate arm lymphedema as a result of breast cancer surgery. A computed tomography (CT) scan was included to examine the cross-sectional areas (CSAs) in square millimeters for the subcutaneous tissue, for the muscle tissue, and for measuring tissue density in Hounsfield units. Magnetic resonance imaging (MRI) with T2-weighted sequences was included to show increased signal intensity in subcutaneous and muscle tissue areas. The affected arm volume measured by the SWDI was significantly correlated to the total CSA of the affected upper limb (R=.904) and also to the CSA of the subcutaneous tissue and muscles tissue (R=.867 and R=.725), respectively (P<.001). The CSA of the subcutaneous tissue for the upper limb was significantly larger compared with the control limb (11%). Tissue density measured in Hounsfield units did not correlate significantly with arm volume (P>.05). The affected arm volume was significantly larger (5%) than the control arm volume (P<.05). Five (22%) women had arm lymphedema defined as a 10% increase in the affected arm volume compared with the control arm volume, and an increased signal intensity was identified in all 5 women on MRI (T2-weighted, kappa=.777, P<.001). The SWDI showed high concurrent and construct validity as shown with significant correlations between the CSA (CT) of the subcutaneous and muscle areas of the affected limb and the affected arm volume (P>.001). There was a high agreement between those subjects who were diagnosed with arm lymphedema by using the SWDI and the increased signal intensity on MRI, with a kappa value of .777 (P<.001). High construct validity for the SWDI was confirmed for arm lymphedema as a volume increase, but it was not confirmed for lymphedema without an increase in arm volume (swelling). The SWDI is a simple and valid tool for estimating arm volume and arm lymphedema after breast cancer surgery.

  15. Food Sanitation and Safety Self-Assessment Instrument for School Nutrition Programs.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    Like food-service establishments, child nutrition programs are responsible for preserving the quality and wholesomeness of food. Proper food-handling practices prevent contamination and job-related accidents. Application of the evaluation instrument presented in this document to individual programs helps to define proper practices, assess the…

  16. Evaluation Strategies in Financial Education: Evaluation with Imperfect Instruments

    ERIC Educational Resources Information Center

    Robinson, Lauren; Dudensing, Rebekka; Granovsky, Nancy L.

    2016-01-01

    Program evaluation often suffers due to time constraints, imperfect instruments, incomplete data, and the need to report standardized metrics. This article about the evaluation process for the Wi$eUp financial education program showcases the difficulties inherent in evaluation and suggests best practices for assessing program effectiveness. We…

  17. Student Services Program Planning and Evaluation: Responsibility, Procedures, Instrument, and Guidelines.

    ERIC Educational Resources Information Center

    Repp, Charles A.; Brach, Ronald C.

    The manual provides a rationale, procedural guidelines, time-schedules, instruments, and supporting documentation for student services program evaluation at SUNY Agricultural and Technical College, Delhi. Six procedural guidelines include: (1) all programs and services should be evaluated at least once every four years, with provision for annual…

  18. Music 4C, a multi-voiced synthesis program with instruments defined in C

    NASA Astrophysics Data System (ADS)

    Beauchamp, James W.

    2003-04-01

    Music 4C is a program which runs under Unix (including Linux) and provides a means for the synthesis of arbitrary signals as defined by the C code. The program is actually a loose translation of an earlier program, Music 4BF [H. S. Howe, Jr., Electronic Music Synthesis (Norton, 1975)]. A set of instrument definitions are driven by a numerical score which consists of a series of ``events.'' Each event gives an instrument name, start time and duration, and a number of parameters (e.g., pitch) which describe the event. Each instrument definition consists of event parameters, performance variables, initializations, and a synthesis algorithmic code. Thus, the synthetic signal, no matter how complex, is precisely defined. Moreover, the resulting sounds can be overlaid in any arbitrary pattern. The program serves as a mixer of algorithmically produced sounds or recorded sounds taken from sample files or synthesized from spectrum files. A score file can be entered by hand, generated from a program, translated from a MIDI file, or generated from an alpha-numeric score using an auxiliary program, Notepro. Output sample files are in wav, snd, or aiff format. The program is provided in the C source code for download.

  19. Novel use of ViewRay MRI guidance for high-dose-rate brachytherapy in the treatment of cervical cancer.

    PubMed

    Ko, Huaising C; Huang, Jessie Y; Miller, Jessica R; Das, Rupak K; Wallace, Charles R; De Costa, Anna-Maria A; Francis, David M; Straub, Margaret R; Anderson, Bethany M; Bradley, Kristin A

    To characterize image quality and feasibility of using ViewRay MRI (VR)-guided brachytherapy planning for cervical cancer. Cervical cancer patients receiving intracavitary brachytherapy with tandem and ovoids, planned using 0.35T VR MRI at our institution, were included in this series. The high-risk clinical target volume (HR-CTV), visible gross tumor volume, bladder, sigmoid, bowel, and rectum contours for each fraction of brachytherapy were evaluated for dosimetric parameters. Typically, five brachytherapy treatments were planned using the T2 sequence on diagnostic MRI for the first and third fractions, and a noncontrast true fast imaging with steady-state precession sequence on VR or CT scan for the remaining fractions. Most patients received 5.5 Gy × 5 fractions using high-dose-rate Ir-192 following 45 Gy of whole-pelvis radiotherapy. The plan was initiated at 5.5 Gy to point A and subsequently optimized and prescribed to the HR-CTV. The goal equivalent dose in 2 Gy fractions for the combined external beam and brachytherapy dose was 85 Gy. Soft-tissue visualization using contrast-to-noise ratios to distinguish normal tissues from tumor at their interface was compared between diagnostic MRI, CT, and VR. One hundred and forty-two fractions of intracavitary brachytherapy were performed from April 2015 to January 2017 on 29 cervical cancer patients, ranging from stages IB1 to IVA. The median HR-CTV was 27.78 cc, with median D 90 HR-CTV of 6.1 Gy. The median time from instrument placement to start of treatment using VR was 65 min (scan time 2 min), compared to 105 min using diagnostic MRI (scan time 11 min) (t-test, p < 0.01). The contrast-to-noise ratio of tumor to cervix in both diagnostic MRI and VR had significantly higher values compared to CT (ANOVA and t-tests, p < 0.01). We report the first clinical use of VR-guided brachytherapy. Time to treatment using this approach was shorter compared to diagnostic MRI. VR also provided significant advantage in visualizing the tumor and cervix compared to CT. This presents a feasible and reliable manner to image and plan gynecologic brachytherapy. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale

    PubMed Central

    Bird, Mark D.; Frydman, Lucio; Long, Joanna R.; Mareci, Thomas H.; Rooney, William D.; Rosen, Bruce; Schenck, John F.; Schepkin, Victor D.; Sherry, A. Dean; Sodickson, Daniel K.; Springer, Charles S.; Thulborn, Keith R.; Uğurbil, Kamil; Wald, Lawrence L.

    2017-01-01

    An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond. PMID:27194154

  1. Diffuse Optical Tomography for Brain Imaging: Theory

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  2. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale.

    PubMed

    Budinger, Thomas F; Bird, Mark D; Frydman, Lucio; Long, Joanna R; Mareci, Thomas H; Rooney, William D; Rosen, Bruce; Schenck, John F; Schepkin, Victor D; Sherry, A Dean; Sodickson, Daniel K; Springer, Charles S; Thulborn, Keith R; Uğurbil, Kamil; Wald, Lawrence L

    2016-06-01

    An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.

  3. SU-F-BRF-10: Deformable MRI to CT Validation Employing Same Day Planning MRI for Surrogate Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; Stoyanova, R; Johnson, P

    Purpose: To compare rigid and deformable registrations of the prostate in the multi-modality setting (diagnostic-MRI to planning-CT) by utilizing a planning-MRI as a surrogate. The surrogate allows for the direct quantitative analysis which can be difficult in the multi-modality domain where intensity mapping differs. Methods: For ten subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day in which the planning CT was collected (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets.more » The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. The deformed MRI was then rigidly aligned to the planning MRI which was used as the surrogate for the planning-CT. Agreement between the two MRI datasets was scored using intensity based metrics including Pearson correlation and normalized mutual information, NMI. A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb and combined areas. A similar method was used to assess a rigid registration between the diagnostic-MRI and planning-CT. Results: Utilizing the NMI, the deformable registrations were superior to the rigid registrations in 9 of 10 cases demonstrating a 15.94% improvement (p-value < 0.001) within the combined area. The Pearson correlation showed similar results with the deformable registration superior in the same number of cases and demonstrating a 6.97% improvement (p-value <0.011). Conclusion: Validating deformable multi-modality registrations using spatial intensity based metrics is difficult due to the inherent differences in intensity mapping. This population provides an ideal testing ground for MRI to CT deformable registrations by obviating the need for multi-modality comparisons which are inherently more challenging. Deformable registrations generated in this work significantly outperformed rigid alignments. Research reported in this abstract was supported by the NIH National Cancer Institute R21CA153826 “MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer” and Bankhead-Coley Cancer Research Program 10BT-03 “MRI-Guided Radiotherapy and Biomarkers for Prostate Cancer”.« less

  4. Description of a Computer Program Written for Approach and Landing Test Post Flight Data Extraction of Proximity Separation Aerodynamic Coefficients and Aerodynamic Data Base Verification

    NASA Technical Reports Server (NTRS)

    Homan, D. J.

    1977-01-01

    A computer program written to calculate the proximity aerodynamic force and moment coefficients of the Orbiter/Shuttle Carrier Aircraft (SCA) vehicles based on flight instrumentation is described. The ground reduced aerodynamic coefficients and instrumentation errors (GRACIE) program was developed as a tool to aid in flight test verification of the Orbiter/SCA separation aerodynamic data base. The program calculates the force and moment coefficients of each vehicle in proximity to the other, using the load measurement system data, flight instrumentation data and the vehicle mass properties. The uncertainty in each coefficient is determined, based on the quoted instrumentation accuracies. A subroutine manipulates the Orbiter/747 Carrier Separation Aerodynamic Data Book to calculate a comparable set of predicted coefficients for comparison to the calculated flight test data.

  5. Purging sensitive science instruments with nitrogen in the STS environment

    NASA Technical Reports Server (NTRS)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  6. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  7. Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2013-03-01

    We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.

  8. Predictive equations for central obesity via anthropometrics, stereovision imaging, and MRI in adults

    PubMed Central

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2013-01-01

    Objective Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Design and Methods Participants (67 men and 55 women) were measured for anthropometrics, and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. Results The final total abdominal adiposity prediction equation was –470.28+7.10waist circumference–91.01gender+5.74sagittal diameter (R²=89.9%); subcutaneous adiposity was –172.37+8.57waist circumference–62.65gender–450.16stereovision waist-to-hip ratio (R²=90.4%); and visceral adiposity was –96.76+11.48central obesity depth–5.09 central obesity width+204.74stereovision waist-to-hip ratio–18.59gender (R²=71.7%). R² significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. Conclusions SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. PMID:23613161

  9. Predictive equations for central obesity via anthropometrics, stereovision imaging and MRI in adults.

    PubMed

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2014-03-01

    Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Participants (67 men and 55 women) were measured for anthropometrics and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. The final total abdominal adiposity prediction equation was -470.28 + 7.10 waist circumference - 91.01 gender + 5.74 sagittal diameter (R2 = 89.9%), subcutaneous adiposity was -172.37 + 8.57 waist circumference - 62.65 gender - 450.16 stereovision waist-to-hip ratio (R2 =90.4%), and visceral adiposity was -96.76 + 11.48 central obesity depth - 5.09 central obesity width + 204.74 stereovision waist-to-hip ratio - 18.59 gender (R2 = 71.7%). R2 significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. Copyright © 2013 The Obesity Society.

  10. Development of Technology for Image-Guided Proton Therapy

    DTIC Science & Technology

    2012-10-01

    develop data analysis software  Install and test tablet PCs Year 2 ending 9/30/2009  Design PET scanner  Design mechanical gantry...of the PET instrument  Measure positron-emitting isotope production  Use dual-energy CT and MRI to determine the composition of materials Year...forms on tablet PCs Phase 5 Scope of Work Year 1 ending 9/30/2009  Identify a vendor consortium to develop a solution for CBCT on or near

  11. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    PubMed Central

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2014-01-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz) / proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3–carbamoyl–proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease. PMID:22296801

  12. Neuropsychological findings in a patient with Kernohan's notch.

    PubMed

    Clement, V L; Sherer, M

    1996-05-01

    This case report describes the use of neuropsychological testing to Iocalize and diagnose lesions The testing was instrumental in disentangling contradictory symptoms to reveal a Kernohan's notch (later confirmed by MRI), thus ruling out incorrect diagnoses We describe the case of a 36-year-old right-handed man who developed a left epidural hematoma after suffering head trauma from a blunt instrument Sequelae 2 months post-injury included left hemiparesis (ipsilateral to the lesion), dysphonic speech, severe naming/word-finding deficits, and severe memory impairment This patient's symptom pattern presented somewhat of a mystery as his cognitive deficits appeared consistent with left hemisphere damage, while his left motor symptoms suggested right hemisphere damage Medical records were inconsistent Deficits on neuropsychological testing at 3 months post-injury included impairment in verbal and visual memory, confrontation naming, and left-sided motor function Attention, visual-spatial skills, nonverbal problem solving, and right motor speed and coordination were intact A herniation syndrome, Kernohan's notch, was considered to be the most likely explanation This phenomenon occurs when a mass occupying lesion causes significant midline shift of the midbrain, pressing the contralateral cerebral peduncle against the tentorium This pressure produces an ischemic infact in the region of the corticospinal (motor) pathways Subsequent MRI confirmed a lesion in the right cerebral crus The pattern of neuropsychological finding in this patient is discussed.

  13. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    NASA Astrophysics Data System (ADS)

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2012-03-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.

  14. MO-DE-207-04: Imaging educational program on solutions to common pediatric imaging challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, R.

    This imaging educational program will focus on solutions to common pediatric imaging challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. The educational program will begin with a detailed discussion of the optimal configuration of fluoroscopes for general pediatric procedures. Following this introduction will be a focused discussion on the utility of Dual Energy CT for imaging children. The third lecture will address the substantial challenge of obtaining consistent image post -processing in pediatric digital radiography. The fourth and final lecture will address best practices in pediatric MRI includingmore » a discussion of ancillary methods to reduce sedation and anesthesia rates. Learning Objectives: To learn techniques for optimizing radiation dose and image quality in pediatric fluoroscopy To become familiar with the unique challenges and applications of Dual Energy CT in pediatric imaging To learn solutions for consistent post-processing quality in pediatric digital radiography To understand the key components of an effective MRI safety and quality program for the pediatric practice.« less

  15. Standoff aircraft IR characterization with ABB dual-band hyper spectral imager

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Lantagne, Stéphane; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc

    2012-09-01

    Remote sensing infrared characterization of rapidly evolving events generally involves the combination of a spectro-radiometer and infrared camera(s) as separated instruments. Time synchronization, spatial coregistration, consistent radiometric calibration and managing several systems are important challenges to overcome; they complicate the target infrared characterization data processing and increase the sources of errors affecting the final radiometric accuracy. MR-i is a dual-band Hyperspectal imaging spectro-radiometer, that combines two 256 x 256 pixels infrared cameras and an infrared spectro-radiometer into one single instrument. This field instrument generates spectral datacubes in the MWIR and LWIR. It is designed to acquire the spectral signatures of rapidly evolving events. The design is modular. The spectrometer has two output ports configured with two simultaneously operated cameras to either widen the spectral coverage or to increase the dynamic range of the measured amplitudes. Various telescope options are available for the input port. Recent platform developments and field trial measurements performances will be presented for a system configuration dedicated to the characterization of airborne targets.

  16. Evaluating the Implementation of an Olympic Education Program in Greece

    NASA Astrophysics Data System (ADS)

    Grammatikopoulos, Vasilios; Tsigilis, Nikolaos; Koustelios, Athanasios; Theodorakis, Yannis

    2005-11-01

    The aim of this study was to develop an instrument for evaluating how an education program has been implemented. Such evaluation can provide insight into the effectiveness of a program. Examined here was the Olympic Education Program used in Greek schools since 2000. In it, students learn the history of the Olympic games and the importance of exercise for health along with the principles and values of sports and volunteerism. The evaluation instrument underlying this study addressed the following six factors: `facilities', `administration', `educational material', `student-teacher relationships', `educational procedures', and `training'. Results indicate that the instrument, while adequate for assessing effectiveness, should be combined with advanced statistical methods.

  17. Value of quantitative MRI parameters in predicting and evaluating clinical outcome in conservatively treated patients with chronic midportion Achilles tendinopathy: A prospective study.

    PubMed

    Tsehaie, J; Poot, D H J; Oei, E H G; Verhaar, J A N; de Vos, R J

    2017-07-01

    To evaluate whether baseline MRI parameters provide prognostic value for clinical outcome, and to study correlation between MRI parameters and clinical outcome. Observational prospective cohort study. Patients with chronic midportion Achilles tendinopathy were included and performed a 16-week eccentric calf-muscle exercise program. Outcome measurements were the validated Victorian Institute of Sports Assessment-Achilles (VISA-A) questionnaire and MRI parameters at baseline and after 24 weeks. The following MRI parameters were assessed: tendon volume (Volume), tendon maximum cross-sectional area (CSA), tendon maximum anterior-posterior diameter (AP), and signal intensity (SI). Intra-class correlation coefficients (ICCs) and minimum detectable changes (MDCs) for each parameter were established in a reliability analysis. Twenty-five patients were included and complete follow-up was achieved in 20 patients. The average VISA-A scores increased significantly with 12.3 points (27.6%). The reliability was fair-good for all MRI-parameters with ICCs>0.50. Average tendon volume and CSA decreased significantly with 0.28cm 3 (5.2%) and 4.52mm 2 (4.6%) respectively. Other MRI parameters did not change significantly. None of the baseline MRI parameters were univariately associated with VISA-A change after 24 weeks. MRI SI increase over 24 weeks was positively correlated with the VISA-A score improvement (B=0.7, R 2 =0.490, p=0.02). Tendon volume and CSA decreased significantly after 24 weeks of conservative treatment. As these differences were within the MDC limits, they could be a result of a measurement error. Furthermore, MRI parameters at baseline did not predict the change in symptoms, and therefore have no added value in providing a prognosis in daily clinical practice. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. TH-A-17A-01: Innovation in PET Instrumentation and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, M; Miyaoka, R; Shao, Y

    Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality andmore » quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications.« less

  19. Objective assessment of olfactory function using functional magnetic resonance imaging.

    PubMed

    Toledano, Adolfo; Borromeo, Susana; Luna, Guillermo; Molina, Elena; Solana, Ana Beatriz; García-Polo, Pablo; Hernández, Juan Antonio; Álvarez-linera, Juan

    2012-01-01

    To show the results of a device that generates automated olfactory stimuli suitable for functional magnetic resonance imaging (fMRI) experiments. Ten normal volunteers, 5 women and 5 men, were studied. The system allows the programming of several sequences, providing the capability to synchronise the onset of odour presentation with acquisition by a trigger signal of the MRI scanner. The olfactometer is a device that allows selection of the odour, the event paradigm, the time of stimuli and the odour concentration. The paradigm used during fMRI scanning consisted of 15-s blocks. The odorant event took 2s with butanol, mint and coffee. We observed olfactory activity in the olfactory bulb, entorhinal cortex (4%), amygdala (2.5%) and temporo-parietal cortex, especially in the areas related to emotional integration. The device has demonstrated its effectiveness in stimulating olfactory areas and its capacity to adapt to fMRI equipment. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  20. [Application of virtual instrumentation technique in toxicological studies].

    PubMed

    Moczko, Jerzy A

    2005-01-01

    Research investigations require frequently direct connection of measuring equipment to the computer. Virtual instrumentation technique considerably facilitates programming of sophisticated acquisition-and-analysis procedures. In standard approach these two steps are performed subsequently with separate software tools. The acquired data are transfered with export / import procedures of particular program to the another one which executes next step of analysis. The described procedure is cumbersome, time consuming and may be potential source of the errors. In 1987 National Instruments Corporation introduced LabVIEW language based on the concept of graphical programming. Contrary to conventional textual languages it allows the researcher to concentrate on the resolved problem and omit all syntactical rules. Programs developed in LabVIEW are called as virtual instruments (VI) and are portable among different computer platforms as PCs, Macintoshes, Sun SPARCstations, Concurrent PowerMAX stations, HP PA/RISK workstations. This flexibility warrants that the programs prepared for one particular platform would be also appropriate to another one. In presented paper basic principles of connection of research equipment to computer systems were described.

  1. A Qualitative Analysis of Participant Learning and Growth Using a New Outward Bound Outcomes Instrument

    ERIC Educational Resources Information Center

    Bobilya, Andrew J.; Lindley, Betsy R.; Faircloth, W. Brad; Holman, Tom

    2017-01-01

    Evidence-based programming and the importance of research has gained attention among outdoor and adventure-based programs in recent years (Sibthorp, 2009) regardless of the challenges that often accompany this type of investigation (Bialeschki, Henderson, Hickerson, & Browne, 2012). Programs must often develop their own evaluation instruments,…

  2. Including Exceptional Students in Your Instrumental Music Program

    ERIC Educational Resources Information Center

    Mixon, Kevin

    2005-01-01

    This article describes the method and adaptations used by the author in including students with special needs in an instrumental music program. To ensure success in the program, the author shares the method he uses to include exceptional students and enumerates some possible adaptations. There are certainly other methods and modifications that…

  3. A call for change: clinical evaluation of student registered nurse anesthetists.

    PubMed

    Collins, Shawn; Callahan, Margaret Faut

    2014-02-01

    The ability to integrate theory with practice is integral to a student's success. A common reason for attrition from a nurse anesthesia program is clinical issues. To document clinical competence, students are evaluated using various tools. For use of a clinical evaluation tool as possible evidence for a student's dismissal, an important psychometric property to ensure is instrument validity. Clinical evaluation instruments of nurse anesthesia programs are not standardized among programs, which suggests a lack of instrument validity. The lack of established validity of the instruments used to evaluate students' clinical progress brings into question their ability to detect a student who is truly in jeopardy of attrition. Given this possibility, clinical instrument validity warrants research to be fair to students and improve attrition rates based on valid data. This ex post facto study evaluated a 17-item clinical instrument tool to demonstrate the need for validity of clinical evaluation tools. It also compared clinical scores with scores on the National Certification Examination.

  4. Utilizing global data to estimate analytical performance on the Sigma scale: A global comparative analysis of methods, instruments, and manufacturers through external quality assurance and proficiency testing programs.

    PubMed

    Westgard, Sten A

    2016-06-01

    To assess the analytical performance of instruments and methods through external quality assessment and proficiency testing data on the Sigma scale. A representative report from five different EQA/PT programs around the world (2 US, 1 Canadian, 1 UK, and 1 Australasian) was accessed. The instrument group standard deviations were used as surrogate estimates of instrument imprecision. Performance specifications from the US CLIA proficiency testing criteria were used to establish a common quality goal. Then Sigma-metrics were calculated to grade the analytical performance. Different methods have different Sigma-metrics for each analyte reviewed. Summary Sigma-metrics estimate the percentage of the chemistry analytes that are expected to perform above Five Sigma, which is where optimized QC design can be implemented. The range of performance varies from 37% to 88%, exhibiting significant differentiation between instruments and manufacturers. Median Sigmas for the different manufacturers in three analytes (albumin, glucose, sodium) showed significant differentiation. Chemistry tests are not commodities. Quality varies significantly from manufacturer to manufacturer, instrument to instrument, and method to method. The Sigma-assessments from multiple EQA/PT programs provide more insight into the performance of methods and instruments than any single program by itself. It is possible to produce a ranking of performance by manufacturer, instrument and individual method. Laboratories seeking optimal instrumentation would do well to consult this data as part of their decision-making process. To confirm that these assessments are stable and reliable, a longer term study should be conducted that examines more results over a longer time period. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. Flight instrumentation specification for parameter identification: Program user's guide. [instrument errors/error analysis

    NASA Technical Reports Server (NTRS)

    Mohr, R. L.

    1975-01-01

    A set of four digital computer programs is presented which can be used to investigate the effects of instrumentation errors on the accuracy of aircraft and helicopter stability-and-control derivatives identified from flight test data. The programs assume that the differential equations of motion are linear and consist of small perturbations about a quasi-steady flight condition. It is also assumed that a Newton-Raphson optimization technique is used for identifying the estimates of the parameters. Flow charts and printouts are included.

  6. Creating 3D visualizations of MRI data: A brief guide.

    PubMed

    Madan, Christopher R

    2015-01-01

    While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D 'glass brain' rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study's findings.

  7. A distributed computing system for magnetic resonance imaging: Java-based processing and binding of XML.

    PubMed

    de Beer, R; Graveron-Demilly, D; Nastase, S; van Ormondt, D

    2004-03-01

    Recently we have developed a Java-based heterogeneous distributed computing system for the field of magnetic resonance imaging (MRI). It is a software system for embedding the various image reconstruction algorithms that we have created for handling MRI data sets with sparse sampling distributions. Since these data sets may result from multi-dimensional MRI measurements our system has to control the storage and manipulation of large amounts of data. In this paper we describe how we have employed the extensible markup language (XML) to realize this data handling in a highly structured way. To that end we have used Java packages, recently released by Sun Microsystems, to process XML documents and to compile pieces of XML code into Java classes. We have effectuated a flexible storage and manipulation approach for all kinds of data within the MRI system, such as data describing and containing multi-dimensional MRI measurements, data configuring image reconstruction methods and data representing and visualizing the various services of the system. We have found that the object-oriented approach, possible with the Java programming environment, combined with the XML technology is a convenient way of describing and handling various data streams in heterogeneous distributed computing systems.

  8. Creating 3D visualizations of MRI data: A brief guide

    PubMed Central

    Madan, Christopher R.

    2015-01-01

    While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D ‘glass brain’ rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study’s findings. PMID:26594340

  9. MRI-Based Computational Fluid Dynamics in Experimental Vascular Models: Toward the Development of an Approach for Prediction of Cardiovascular Changes During Prolonged Space Missions

    NASA Technical Reports Server (NTRS)

    Spirka, T. A.; Myers, J. G.; Setser, R. M.; Halliburton, S. S.; White, R. D.; Chatzimavroudis, G. P.

    2005-01-01

    A priority of NASA is to identify and study possible risks to astronauts health during prolonged space missions [l]. The goal is to develop a procedure for a preflight evaluation of the cardiovascular system of an astronaut and to forecast how it will be affected during the mission. To predict these changes, a computational cardiovascular model must be constructed. Although physiology data can be used to make a general model, a more desirable subject-specific model requires anatomical, functional, and flow data from the specific astronaut. MRI has the unique advantage of providing images with all of the above information, including three-directional velocity data which can be used as boundary conditions in a computational fluid dynamics (CFD) program [2,3]. MRI-based CFD is very promising for reproduction of the flow patterns of a specific subject and prediction of changes in the absence of gravity. The aim of this study was to test the feasibility of this approach by reconstructing the geometry of MRI-scanned arterial models and reproducing the MRI-measured velocities using CFD simulations on these geometries.

  10. The image of psychology programs: the value of the instrumental-symbolic framework.

    PubMed

    Van Hoye, Greet; Lievens, Filip; De Soete, Britt; Libbrecht, Nele; Schollaert, Eveline; Baligant, Dimphna

    2014-01-01

    As competition for funding and students intensifies, it becomes increasingly important for psychology programs to have an image that is attractive and makes them stand out from other programs. The current study uses the instrumental-symbolic framework from the marketing domain to determine the image of different master's programs in psychology and examines how these image dimensions relate to student attraction and competitor differentiation. The samples consist of both potential students (N = 114) and current students (N = 68) of three psychology programs at a Belgian university: industrial and organizational psychology, clinical psychology, and experimental psychology. The results demonstrate that both instrumental attributes (e.g., interpersonal activities) and symbolic trait inferences (e.g., sincerity) are key components of the image of psychology programs and predict attractiveness as well as differentiation. In addition, symbolic image dimensions seem more important for current students of psychology programs than for potential students.

  11. The History of Radio Astronomy and the National Radio Astronomy Observatory: Evolution Toward Big Science

    NASA Astrophysics Data System (ADS)

    Malphrus, Benjamin Kevin

    1990-01-01

    The purpose of this study is to examine the sequence of events that led to the establishment of the NRAO, the construction and development of instrumentation and the contributions and discovery events and to relate the significance of these events to the evolution of the sciences of radio astronomy and cosmology. After an overview of the resources, a brief discussion of the early days of the science is given to set the stage for an examination of events that led to the establishment of the NRAO. The developmental and construction phases of the major instruments including the 85-foot Tatel telescope, the 300-foot telescope, the 140-foot telescope, and the Green Bank lnterferometer are examined. The technical evolution of these instruments is traced and their relevance to scientific programs and discovery events is discussed. The history is told in narrative format that is interspersed with technical and scientific explanations. Through the use of original data technical and scientific information of historical concern is provided to elucidate major developments and events. An interpretive discussion of selected programs, events and technological developments that epitomize the contributions of the NRAO to the science of radio astronomy is provided. Scientific programs conducted with the NRAO instruments that were significant to galactic and extragalactic astronomy are presented. NRAO research programs presented include continuum and source surveys, mapping, a high precision verification of general relativity, and SETI programs. Cosmic phenomena investigated in these programs include galactic and extragalactic HI and HII, emission nebula, supernova remnants, cosmic masers, giant molecular clouds, radio stars, normal and radio galaxies, and quasars. Modern NRAO instruments including the VLA and VLBA and their scientific programs are presented in the final chapter as well as plans for future NRAO instruments such as the GBT.

  12. Implementation program on high performance concrete: guidelines for instrumentation on bridges

    DOT National Transportation Integrated Search

    1996-08-01

    This report provides an outline for the instrumentation of bridges being constructed under the Federal Highway Administration's (FHWA's) Strategic Highway Research Program (SHRP) implementation effort in High Performance Concrete (HPC). The report de...

  13. The Impact of a School Loaner-Instrument Program on the Attitudes and Achievement of Low-Income Music Students

    ERIC Educational Resources Information Center

    Ester, Don; Turner, Kristin

    2009-01-01

    The purpose of this study was to investigate the impact of a public school loaner-instrument program on the attitudes and achievement of low-income students in an urban environment. Socioeconomic Status (SES) and Instrument Status served as independent variables. Participants (N = 245) completed surveys at the beginning and end of the school year,…

  14. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach computer-based research skills. With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less

  15. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to teach computer-based research skills." With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less

  16. Validation of Radiometric Standards for the Laboratory Calibration of Reflected-Solar Earth Observing Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Rice, Joseph P.; Brown, Steven W.; Barnes, Robert A.

    2007-01-01

    Historically, the traceability of the laboratory calibration of Earth-observing satellite instruments to a primary radiometric reference scale (SI units) is the responsibility of each instrument builder. For the NASA Earth Observing System (EOS), a program has been developed using laboratory transfer radiometers, each with its own traceability to the primary radiance scale of a national metrology laboratory, to independently validate the radiances assigned to the laboratory sources of the instrument builders. The EOS Project Science Office also developed a validation program for the measurement of onboard diffuse reflecting plaques, which are also used as radiometric standards for Earth-observing satellite instruments. Summarized results of these validation campaigns, with an emphasis on the current state-of-the-art uncertainties in laboratory radiometric standards, will be presented. Future mission uncertainty requirements, and possible enhancements to the EOS validation program to ensure that those uncertainties can be met, will be presented.

  17. A Prospective Evaluation of a Protocol for Magnetic Resonance Imaging of Patients With Implanted Cardiac Devices

    PubMed Central

    Nazarian, Saman; Hansford, Rozann; Roguin, Ariel; Goldsher, Dorith; Zviman, Menekhem M.; Lardo, Albert C.; Caffo, Brian S.; Frick, Kevin D.; Kraut, Michael A.; Kamel, Ihab R.; Calkins, Hugh; Berger, Ronald D.; Bluemke, David A.; Halperin, Henry R.

    2015-01-01

    Background Magnetic resonance imaging (MRI) is avoided in most patients with implanted cardiac devices because of safety concerns. Objective To define the safety of a protocol for MRI at the commonly used magnetic strength of 1.5 T in patients with implanted cardiac devices. Design Prospective nonrandomized trial. (ClinicalTrials.gov registration number: NCT01130896) Setting One center in the United States (94% of examinations) and one in Israel. Patients 438 patients with devices (54% with pacemakers and 46% with defibrillators) who underwent 555 MRI studies. Intervention Pacing mode was changed to asynchronous for pacemaker-dependent patients and to demand for others. Tachy-arrhythmia functions were disabled. Blood pressure, electrocardiography, oximetry, and symptoms were monitored by a nurse with experience in cardiac life support and device programming who had immediate backup from an electrophysiologist. Measurements Activation or inhibition of pacing, symptoms, and device variables. Results In 3 patients (0.7% [95% CI, 0% to 1.5%]), the device reverted to a transient back-up programming mode without long-term effects. Right ventricular (RV) sensing (median change, 0 mV [interquartile range {IQR}, −0.7 to 0 V]) and atrial and right and left ventricular lead impedances (median change, −2 Ω[IQR, −13 to 0 Ω], −4 Ω [IQR, −16 to 0 Ω], and −11 Ω [IQR, −40 to 0 Ω], respectively) were reduced immediately after MRI. At long-term follow-up (61% of patients), decreased RV sensing (median, 0 mV, [IQR, −1.1 to 0.3 mV]), decreased RV lead impedance (median, −3 Ω, [IQR, −29 to 15 Ω]), increased RV capture threshold (median, 0 V, IQR, [0 to 0.2 Ω]), and decreased battery voltage (median, −0.01 V, IQR, −0.04 to 0 V) were noted. The observed changes did not require device revision or reprogramming. Limitations Not all available cardiac devices have been tested. Long-term in-person or telephone follow-up was unavailable in 43 patients (10%), and some data were missing. Those with missing long-term capture threshold data had higher baseline right atrial and right ventricular capture thresholds and were more likely to have undergone thoracic imaging. Defibrillation threshold testing and random assignment to a control group were not performed. Conclusion With appropriate precautions, MRI can be done safely in patients with selected cardiac devices. Because changes in device variables and programming may occur, electrophysiologic monitoring during MRI is essential. Primary Funding Source National Institutes of Health. PMID:21969340

  18. Influence of nurse navigation on wait times for breast cancer care in a Canadian regional cancer center.

    PubMed

    Baliski, Christopher; McGahan, Colleen E; Liberto, Caitlyn M; Broughton, Sandra; Ellard, Susan; Taylor, Marianne; Bates, Janet; Lai, Anky

    2014-05-01

    The wait times for breast cancer care in our region do not meet acceptable benchmarks. We implemented the Interior Breast Rapid Access Investigation and Diagnosis (IB-RAPID) nurse navigation program to address this issue. The IB-RAPID prospective database was reviewed for patients entering the program between April 1, 2011 and April 30, 2012 (2011/2012 cohort), and was compared with patients from the same area in 2010. The main end point was the time between the 1st diagnostic imaging test and the surgery. Multiple linear regression was performed to investigate factors influencing the wait times. The wait times decreased with the introduction of IB-RAPID (59 vs 48 days; median). Stage of disease, total number of biopsies, and magnetic resonance imaging (MRI) use influenced wait times. MRI significantly delayed surgical intervention in both groups with those not having an MRI having a shorter wait time to surgery (68.5 vs 57.6 days; mean) in 2011/2012. The implementation of nurse navigation for patients with breast cancer appears to be effective at reducing the wait times for surgical treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner–the Diabetes Research in Children Network (DirecNet) experience

    PubMed Central

    Barnea-Goraly, Naama; Weinzimer, Stuart A.; Mauras, Nelly; Beck, Roy W.; Marzelli, Matt J.; Mazaika, Paul K.; Aye, Tandy; White, Neil H.; Tsalikian, Eva; Fox, Larry; Kollman, Craig; Cheng, Peiyao; Reiss, Allan L.

    2013-01-01

    Background The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. Objective We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. Materials and methods 222 children (4–9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. Results 205 children (92.3%), mean age 7±1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Conclusion Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. PMID:24096802

  20. Mammography and MRI for screening women who underwent chest radiation therapy (lymphoma survivors): recommendations for surveillance from the Italian College of Breast Radiologists by SIRM.

    PubMed

    Mariscotti, Giovanna; Belli, Paolo; Bernardi, Daniela; Brancato, Beniamino; Calabrese, Massimo; Carbonaro, Luca A; Cavallo-Marincola, Beatrice; Caumo, Francesca; Clauser, Paola; Martinchich, Laura; Montemezzi, Stefania; Panizza, Pietro; Pediconi, Federica; Tagliafico, Alberto; Trimboli, Rubina M; Zuiani, Chiara; Sardanelli, Francesco

    2016-11-01

    Women who underwent chest radiation therapy (CRT) during pediatric/young-adult age (typically, lymphoma survivors) have an increased breast cancer risk, in particular for high doses. The cumulative incidence from 40 to 45 years of age is 13-20 %, similar to that of BRCA mutation carriers for whom contrast-enhanced magnetic resonance imaging (MRI) is recommended. However, in women who underwent CRT, MRI sensitivity is lower (63-80 %) and that of mammography higher (67-70 %) than those observed in women with hereditary predisposition, due to a higher incidence of ductal carcinoma in situ with microcalcifications and low neoangiogenesis. A sensitivity close to 95 % can be obtained only using mammography as an adjunct to MRI. Considering the available evidence, women who underwent CRT before 30 receiving a cumulative dose ≥10 Gy should be invited after 25 (or, at least, 8 years after CRT) to attend the following program: 1. interview about individual risk profile and potential of breast imaging; 2. annual MRI using the same protocol recommended for women with hereditary predisposition; 3. annual bilateral two-view full-field digital mammography or digital breast tomosynthesis (DBT) with synthetic 2D reconstructions. Mammography and MRI can be performed at once or alternately every 6 months. In the case of MRI or contrast material contraindications, ultrasound will be performed instead of MRI. Reporting using BI-RADS is recommended. At the age for entering population screening, the individual risk profile will be discussed with the woman about opting for only mammography/DBT screening or for continuing the intensive protocol.

  1. Design and Application of a New Automated Fluidic Visceral Stimulation Device for Human fMRI Studies of Interoception

    PubMed Central

    Gassert, Roger; Wanek, Johann; Michels, Lars; Mehnert, Ulrich; Kollias, Spyros S.

    2016-01-01

    Mapping the brain centers that mediate the sensory-perceptual processing of visceral afferent signals arising from the body (i.e., interoception) is useful both for characterizing normal brain activity and for understanding clinical disorders related to abnormal processing of visceral sensation. Here, we report a novel closed-system, electrohydrostatically driven master–slave device that was designed and constructed for delivering controlled fluidic stimulations of visceral organs and inner cavities of the human body within the confines of a 3T magnetic resonance imaging (MRI) scanner. The design concept and performance of the device in the MRI environment are described. In addition, the device was applied during a functional MRI (fMRI) investigation of visceral stimulation related to detrusor distention in two representative subjects to verify its feasibility in humans. System evaluation tests demonstrate that the device is MR-compatible with negligible impact on imaging quality [static signal-to-noise ratio (SNR) loss <2.5% and temporal SNR loss <3.5%], and has an accuracy of 99.68% for flow rate and 99.27% for volume delivery. A precise synchronization of the stimulus delivery with fMRI slice acquisition was achieved by programming the proposed device to detect the 5 V transistor–transistor logic (TTL) trigger signals generated by the MRI scanner. The fMRI data analysis using the general linear model analysis with the standard hemodynamic response function showed increased activations in the network of brain regions that included the insula, anterior and mid-cingulate and lateral prefrontal cortices, and thalamus in response to increased distension pressure on viscera. The translation from manually operated devices to an MR-compatible and MR-synchronized device under automatic control represents a useful innovation for clinical neuroimaging studies of human interoception. PMID:27551646

  2. The Monterey Ocean Observing System Development Program

    NASA Astrophysics Data System (ADS)

    Chaffey, M.; Graybeal, J. B.; O'Reilly, T.; Ryan, J.

    2004-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) has a major development program underway to design, build, test and apply technology suitable to deep ocean observatories. The Monterey Ocean Observing System (MOOS) program is designed to form a large-scale instrument network that provides generic interfaces, intelligent instrument support, data archiving and near-real-time interaction for observatory experiments. The MOOS mooring system is designed as a portable surface mooring based seafloor observatory that provides data and power connections to both seafloor and ocean surface instruments through a specialty anchor cable. The surface mooring collects solar and wind energy for powering instruments and transmits data to shore-side researchers using a satellite communications modem. The use of a high modulus anchor cable to reach seafloor instrument networks is a high-risk development effort that is critical for the overall success of the portable observatory concept. An aggressive field test program off the California coast is underway to improve anchor cable constructions as well as end-to-end test overall system design. The overall MOOS observatory systems view is presented and the results of our field tests completed to date are summarized.

  3. Creation of an instrument maintenance program at W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Hill, G. M.; Kwok, S. H.; Mader, J. A.; Wirth, G. D.; Dahm, S. E.; Goodrich, R. W.

    2014-08-01

    Until a few years ago, the W. M. Keck Observatory (WMKO) did not have a systematic program of instrument maintenance at a level appropriate for a world-leading observatory. We describe the creation of such a program within the context of WMKO's lean operations model which posed challenges but also guided the design of the system and resulted in some unique and notable capabilities. These capabilities and the flexibility of the system have led to its adoption across the Observatory for virtually all PM's. The success of the Observatory in implementing the program and its impact on instrument reliability are presented. Lessons learned are reviewed and strategic implications discussed.

  4. Instrumentation of the Red River Bridge at Boyce, Louisiana : final report.

    DOT National Transportation Integrated Search

    1991-01-01

    The report describes the instrumentation program of Red River Bridge at Boyce, Louisiana. The objectives of the program were to measure and evaluate time-dependent deformations, deflections, and temperatures of the Red River Bridge superstructure. To...

  5. Instrumentation of the Red River Bridge at Boyce, Louisiana : final report.

    DOT National Transportation Integrated Search

    1988-08-01

    The report describes the instrumentation program of Red River Bridge at Boyce, Louisiana. The objectives of the program were to measure and evaluate time-dependent deformations, deflections, and temperatures of the Red River Bridge superstructure. To...

  6. The TMT instrumentation program

    NASA Astrophysics Data System (ADS)

    Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne

    2010-07-01

    An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Conceptual designs for the three first light instruments (IRIS, WFOS and IRMS) are in progress, as well as feasibility studies of MIRES. Considerable effort is underway to understand the end-to-end performance of the complete telescopeadaptive optics-instrument system under realistic conditions on Mauna Kea. Highly efficient operation is being designed into the TMT system, based on a detailed investigation of the observation workflow to ensure very fast target acquisition and set up of all subsystems. Future TMT instruments will almost certainly involve contributions from institutions in many different locations in North America and partner nations. Coordinating and optimizing the design and construction of the instruments to ensure delivery of the best possible scientific capabilities is an interesting challenge. TMT welcomes involvement from all interested instrument teams.

  7. Strong motion instrumentation of an RC building structure

    USGS Publications Warehouse

    Li, H.-J.; Celebi, M.

    2001-01-01

    The strong-motion instrumentation scheme of a reinforced concrete building observed by California Strong-Motion Instrumentation Program (CSMIP) is introduced in this paper. The instrumented building is also described and the recorded responses during 1994 Northridge earthquake are provided.

  8. Woodwind Instrument Maintenance.

    ERIC Educational Resources Information Center

    Sperl, Gary

    1980-01-01

    The author presents a simple maintenance program for woodwind instruments which includes the care of tendon corks, the need for oiling keys, and methods of preventing cracks in woodwind instruments. (KC)

  9. Measuring conflict management, emotional self-efficacy, and problem solving confidence in an evaluation of outdoor programs for inner-city youth in Baltimore, Maryland.

    PubMed

    Caldas, Stephanie V; Broaddus, Elena T; Winch, Peter J

    2016-08-01

    Substantial evidence supports the value of outdoor education programs for promoting healthy adolescent development, yet measurement of program outcomes often lacks rigor. Accurately assessing the impacts of programs that seek to promote positive youth development is critical for determining whether youth are benefitting as intended, identifying best practices and areas for improvement, and informing decisions about which programs to invest in. We generated brief, customized instruments for measuring three outcomes among youth participants in Baltimore City Outward Bound programs: conflict management, emotional self-efficacy, and problem solving confidence. Measures were validated through exploratory and confirmatory factor analyses of pilot-testing data from two groups of program participants. We describe our process of identifying outcomes for measurement, developing and adapting measurement instruments, and validating these instruments. The finalized measures support evaluations of outdoor education programs serving urban adolescent youth. Such evaluations enhance accountability by determining if youth are benefiting from programs as intended, and strengthen the case for investment in programs with demonstrated success. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cognitive Education with Deaf Adolescents: Effects of Instrumental Enrichment.

    ERIC Educational Resources Information Center

    Haywood, H. Carl; And Others

    1988-01-01

    Twenty-six deaf adolescents received instruction in a structured program of cognitive education called "Instrumental Enrichment." The program addresses, among other processes, comparison, classification, logical progression, spatial orientation, analysis and synthesis, and syllogistic thinking. Following training, the subjects showed…

  11. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    2004-01-01

    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  12. TH-AB-BRA-12: Experimental Results From the First High-Field Inline MRI-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keall, P; Dong, B; Zhang, K

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid MRI-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-Linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-Linac system. This work describes our experimental results from the first high-field inline MRI-Linac. Methods: A 1.5 Tesla magnet (Sonata, Siemens) was located in a purpose built RF cage enabling shielding from and close proximity to a linear accelerator with inline orientation. A portable linear acceleratormore » (Linatron, Varian) was installed together with a multi-leaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-Linac experiments was performed to investigate: (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array and; (3) electron focusing measured using GafChromic film. Results: (1) The macropodine phantom image quality with the beam on was almost identical to that with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background noise when the radiation beam was on. (3) Film measurements demonstrated electron focusing occurring at the center of the radiation field. Conclusion: The first high-field MRI-Linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field in-line MRI-Linac and study a number of the technical challenges and solutions. Supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation and the Health and Hospitals Fund.« less

  13. Technical Note: Experimental results from a prototype high-field inline MRI-linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liney, G. P., E-mail: gary.liney@sswahs.nsw.gov.au

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. Methods: The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enablingmore » shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). Results: (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. Conclusions: A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical challenges and solutions.« less

  14. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    PubMed

    Taylor, Alexander J; Granwehr, Josef; Lesbats, Clémentine; Krupa, James L; Six, Joseph S; Pavlovskaya, Galina E; Thomas, Neil R; Auer, Dorothee P; Meersmann, Thomas; Faas, Henryk M

    2016-01-01

    Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI) using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  15. The Function Biomedical Informatics Research Network Data Repository.

    PubMed

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2016-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Music-supported therapy induces plasticity in the sensorimotor cortex in chronic stroke: a single-case study using multimodal imaging (fMRI-TMS).

    PubMed

    Rojo, Nuria; Amengual, Julian; Juncadella, Montserrat; Rubio, Francisco; Camara, Estela; Marco-Pallares, Josep; Schneider, Sabine; Veciana, Misericordia; Montero, Jordi; Mohammadi, Bahram; Altenmüller, Eckart; Grau, Carles; Münte, Thomas F; Rodriguez-Fornells, Antoni

    2011-01-01

    Music-Supported Therapy (MST) has been developed recently in order to improve the use of the affected upper extremity after stroke. This study investigated the neuroplastic mechanisms underlying effectiveness in a patient with chronic stroke. MST uses musical instruments, a midi piano and an electronic drum set emitting piano sounds, to retrain fine and gross movements of the paretic upper extremity. Data are presented from a patient with a chronic stroke (20 months post-stroke) with residual right-sided hemiparesis who took part in 20 MST sessions over the course of 4 weeks. Post-therapy, a marked improvement of movement quality, assessed by 3D movement analysis, was observed. Moreover, functional magnetic resonance imaging (fMRI) of a sequential hand movement revealed distinct therapy-related changes in the form of a reduction of excess contralateral and ipsilateral activations. This was accompanied by changes in cortical excitability evidenced by transcranial magnetic stimulation (TMS). Functional MRI in a music listening task suggests that one of the effects of MST is the task-dependent coupling of auditory and motor cortical areas. The MST appears to be a useful neurorehabilitation tool in patients with chronic stroke and leads to neural reorganization in the sensorimotor cortex.

  17. Digital fringe projection for hand surface coordinate variation analysis caused by osteoarthritis

    NASA Astrophysics Data System (ADS)

    Nor Haimi, Wan Mokhdzani Wan; Hau Tan, Cheek; Retnasamy, Vithyacharan; Vairavan, Rajendaran; Sauli, Zaliman; Roshidah Yusof, Nor; Hambali, Nor Azura Malini Ahmad; Aziz, Muhammad Hafiz Ab; Bakhit, Ahmad Syahir Ahmad

    2017-11-01

    Hand osteoarthritis is one of the most common forms of arthritis which impact millions of people worldwide. The disabling problem occurs when the protective cartilage on the boundaries of bones wear off over time. Currently, in order to identify hand osteoarthritis, special instruments namely X-ray scanning and MRI are used for the detection but it also has its limitations such as radiation exposure and can be quite costly. In this work, an optical metrology system based on digital fringe projection which comprises of an LCD projector, CCD camera and a personal computer has been developed to anticipate abnormal growth or deformation on the joints of the hand which are common symptoms of osteoarthritis. The main concept of this optical metrology system is to apply structured light as imaging source for surface change detection. The imaging source utilizes fringe patterns generated by C++ programming and is shifted by 3 phase shifts based on the 3 steps 2 shifts method. Phase wrapping technique and analysis were applied in order to detect the deformation of live subjects. The result has demonstrated a successful method of hand deformation detection based on the pixel tracking differences of a normal and deformed state.

  18. Development of the SIT, an Instrument to Evaluate the Transfer Effects of Adult Education Programs for Social Inclusion

    ERIC Educational Resources Information Center

    de Greef, Maurice; Segers, Mien; Verte, Dominique

    2010-01-01

    To date, hardly any evidence is available on the quality of adult education programs for vulnerable adults. Evaluation instruments or models mostly focussed on regular education and less on programs of adult education aiming to enhance social inclusion. This study presents a first exploration of the construct validity of a newly developed…

  19. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging.

    PubMed

    Li, Wei; Abram, François; Pelletier, Jean-Pierre; Raynauld, Jean-Pierre; Dorais, Marc; d'Anjou, Marc-André; Martel-Pelletier, Johanne

    2010-01-01

    Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application.

  20. A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer

    NASA Astrophysics Data System (ADS)

    Garibaldi, F.; Beging, S.; Canese, R.; Carpinelli, G.; Clinthorne, N.; Colilli, S.; Cosentino, L.; Finocchiaro, P.; Giuliani, F.; Gricia, M.; Lucentini, M.; Majewski, S.; Monno, E.; Musico, P.; Santavenere, F.; Tödter, J.; Wegener, H.; Ziemons, K.

    2017-09-01

    Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast which are inadequate for the task of imaging details of a small organ such as the prostate. In addition, multimodality imaging can play a significant role in merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multiparametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics, a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5mm FWHM and efficiency of a factor 2 with respect to what was obtained with the conventional PET scanner. In our experimental studies, we have obtained a timing resolution of ˜ 320 ps FWHM and at the same time a Depth of Interaction (DOI) resolution of under 1mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolution.

  1. Telescience Testbed Program: A study of software for SIRTF instrument control

    NASA Technical Reports Server (NTRS)

    Young, Erick T.

    1992-01-01

    As a continued element in the Telescience Testbed Program (TTP), the University of Arizona Steward Observatory and the Electrical and Computer Engineering Department (ECE) jointly developed a testbed to evaluate the Operations and Science Instrument System (OASIS) software package for remote control of an instrument for the Space Infrared Telescope Facility (SIRTF). SIRTF is a cryogenically-cooled telescope with three focal plane instruments that will be the infrared element of NASA's Great Observatory series. The anticipated launch date for SIRTF is currently 2001. Because of the complexity of the SIRTF mission, it was not expected that the OASIS package would be suitable for instrument control in the flight situation, however, its possible use as a common interface during the early development and ground test phases of the project was considered. The OASIS package, developed at the University of Colorado for control of the Solar Mesosphere Explorer (SME) satellite, serves as an interface between the operator and the remote instrument which is connected via a network. OASIS provides a rudimentary windowing system as well as support for standard spacecraft communications protocols. The experiment performed all of the functions required of the MIPS simulation program. Remote control of the instrument was demonstrated but found to be inappropriate for SIRTF at this time for the following reasons: (1) programming interface is too difficult; (2) significant computer resources were required to run OASIS; (3) the communications interface is too complicated; (4) response time was slow; and (5) quicklook of image data was not possible.

  2. The NASA Thunderstorm Overflight Program (TOP): Research in atmospheric electricity from an instrumented U-2 aircraft platform

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.

    1983-01-01

    An overview of the NASA Thunderstorm Overflight Program (TOP) is presented. The various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used to collect optical and electronic signature from the lightning events, are discussed. Samples of some of the photographic and electronic signatures are presented. Approximately 6400 electronic data samples of optical pulses were collected and are being analyzed.

  3. LBL's Pollution Instrumentation Comparability Program.

    ERIC Educational Resources Information Center

    McLaughlin, R. D.; And Others

    1979-01-01

    Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)

  4. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2013-10-01

    diffusion tensor imaging and perfusion ( arterial spin labeling) MRI data and to relate measures of global and regional brain microstructural organization...AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging...September 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH

  5. YES. The Young-adult Employment Supports Project. School-to-Work Outreach Project 1998 Exemplary Model/Practice/Strategy.

    ERIC Educational Resources Information Center

    Minnesota Univ., Minneapolis. Inst. on Community Integration.

    The Young Adults Employment Supports Project (YES) of Matrix Research Institute (MRI) has been identified as an exemplary school-to-work program that includes students with disabilities. The program serves young persons with serious emotional disorders between the ages of 17-22 throughout Philadelphia who are preparing to exit special education…

  6. Effects of intergenerational Montessori-based activities programming on engagement of nursing home residents with dementia

    PubMed Central

    Lee, Michelle M; Camp, Cameron J; Malone, Megan L

    2007-01-01

    Fourteen nursing home residents on a dementia special care unit at a skilled nursing facility took part in one-to-one intergenerational programming (IGP) with 15 preschool children from the facility’s on-site child care center. Montessori-based activities served as the interface for interactions between dyads. The amount of time residents demonstrated positive and negative forms of engagement during IGP and standard activities programming was assessed through direct observation using a tool developed for this purpose – the Myers Research Institute Engagement Scale (MRI-ES). These residents with dementia displayed the ability to successfully take part in IGP. Most successfully presented “lessons” to the children in their dyads, similar to the way that Montessori teachers present lessons to children, while persons with more severe cognitive impairment took part in IGP through other methods such as parallel play. Taking part in IGP was consistently related with higher levels of positive engagement and lower levels of negative forms of engagement in these residents with dementia than levels seen in standard activities programming on the unit. Implications of using this form of IGP, and directions for future research, are discussed. PMID:18044197

  7. Effects of intergenerational Montessori-based activities programming on engagement of nursing home residents with dementia.

    PubMed

    Lee, Michelle M; Camp, Cameron J; Malone, Megan L

    2007-01-01

    Fourteen nursing home residents on a dementia special care unit at a skilled nursing facility took part in one-to-one intergenerational programming (IGP) with 15 preschool children from the facility's on-site child care center. Montessori-based activities served as the interface for interactions between dyads. The amount of time residents demonstrated positive and negative forms of engagement during IGP and standard activities programming was assessed through direct observation using a tool developed for this purpose--the Myers Research Institute Engagement Scale (MRI-ES). These residents with dementia displayed the ability to successfully take part in IGP. Most successfully presented "lessons" to the children in their dyads, similar to the way that Montessori teachers present lessons to children, while persons with more severe cognitive impairment took part in IGP through other methods such as parallel play. Taking part in IGP was consistently related with higher levels of positive engagement and lower levels of negative forms of engagement in these residents with dementia than levels seen in standard activities programming on the unit. Implications of using this form of IGP, and directions for future research, are discussed.

  8. Price transparency for MRIs increased use of less costly providers and triggered provider competition.

    PubMed

    Wu, Sze-jung; Sylwestrzak, Gosia; Shah, Christiane; DeVries, Andrea

    2014-08-01

    To encourage patients to select high-value providers, an insurer-initiated price transparency program that focused on elective advanced imaging procedures was implemented. Patients having at least one outpatient magnetic resonance imaging (MRI) scan in 2010 or 2012 were divided according to their membership in commercial health plans participating in the program (the intervention group) or in nonparticipating commercial health plans (the reference group) in similar US geographic regions. Patients in the intervention group were informed of price differences among available MRI facilities and given the option of selecting different providers. For those patients, the program resulted in a $220 cost reduction (18.7 percent) per test and a decrease in use of hospital-based facilities from 53 percent in 2010 to 45 percent in 2012. Price variation between hospital and nonhospital facilities for the intervention group was reduced by 30 percent after implementation. Nonparticipating members residing in intervention areas also observed price reductions, which indicates increased price competition among providers. The program significantly reduced imaging costs. This suggests that patients select lower-price facilities when informed about available alternatives. Project HOPE—The People-to-People Health Foundation, Inc.

  9. In vivo nuclear magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Leblanc, A.

    1986-05-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  10. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  11. 76 FR 3914 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... Special Emphasis Panel, Review of Resource for Quantitative Functional MRI. Date: February 23-25, 2011... Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research, 93.306, 93.333...

  12. The role of the left inferior parietal lobule in second language learning: An intensive language training fMRI study.

    PubMed

    Barbeau, Elise B; Chai, Xiaoqian J; Chen, Jen-Kai; Soles, Jennika; Berken, Jonathan; Baum, Shari; Watkins, Kate E; Klein, Denise

    2017-04-01

    Research to date suggests that second language acquisition results in functional and structural changes in the bilingual brain, however, in what way and how quickly these changes occur remains unclear. To address these questions, we studied fourteen English-speaking monolingual adults enrolled in a 12-week intensive French language-training program in Montreal. Using functional MRI, we investigated the neural changes associated with new language acquisition. The participants were scanned before the start of the immersion program and at the end of the 12 weeks. The fMRI scan aimed to investigate the brain regions recruited in a sentence reading task both in English, their first language (L1), and in French, their second language (L2). For the L1, fMRI patterns did not change from Time 1 to Time 2, while for the L2, the brain response changed between Time 1 and Time 2 in language-related areas. Of note, for the L2, there was higher activation at Time 2 compared to Time 1 in the left inferior parietal lobule (IPL) including the supramarginal gyrus. At Time 2 this higher activation in the IPL correlated with faster L2 reading speed. Moreover, higher activation in the left IPL at Time 1 predicted improvement in L2 reading speed from Time 1 to Time 2. Our results suggest that learning-induced plasticity occurred as early as 12 weeks into immersive second-language training, and that the IPL appears to play a special role in language learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, Douglas L; Bilheux, Hassina Z; Meilleur, Flora

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentationmore » on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.« less

  14. Magnetic resonance imaging in laboratory petrophysical core analysis

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Holland, D. J.; Gladden, L. F.; Fordham, E. J.

    2013-05-01

    Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2) relaxation time-the industry-standard metric in well-logging-at the laboratory-scale. These T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating wettability. The history of MRI in petrophysics is reviewed and future directions considered, including advanced data processing techniques such as compressed sensing reconstruction and Bayesian inference analysis of under-sampled data. Although this review focuses on rock core analysis, the techniques described are applicable in a wider context to porous media in general, such as cements, soils, ceramics, and catalytic materials.

  15. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI can be used to develop unique approaches to studying white matter and gray matter in the brain. Some of the possible applications of hyperpolarized xenon MRI in the brain are clinical diagnosis of white matter diseases, functional MRI (fMRI) and measurement of cerebral blood perfusion.

  16. Targeting Accuracy, Procedure Times and User Experience of 240 Experimental MRI Biopsies Guided by a Clinical Add-On Navigation System

    PubMed Central

    Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael

    2015-01-01

    Objectives MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Methods Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators – attending (AR) and resident radiologists (RR) as well as medical students (MS) – performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Results Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). Conclusions The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between groups with different expertise there were significant differences in experimental procedure times but not in the number of successful biopsies. PMID:26222443

  17. Television camera as a scientific instrument

    NASA Technical Reports Server (NTRS)

    Smokler, M. I.

    1970-01-01

    Rigorous calibration program, coupled with a sophisticated data-processing program that introduced compensation for system response to correct photometry, geometric linearity, and resolution, converted a television camera to a quantitative measuring instrument. The output data are in the forms of both numeric printout records and photographs.

  18. Test-retest reliability of fMRI during nonverbal semantic decisions in moderate-severe nonfluent aphasia patients

    PubMed Central

    Kurland, Jacquie; Naeser, Margaret A.; Baker, Errol H.; Doron, Karl; Martin, Paula I.; Seekins, Heidi E.; Bogdan, Andrew; Renshaw, Perry; Yurgelun-Todd, Deborah

    2005-01-01

    Cortical reorganization in poststroke aphasia is not well understood. Few studies have investigated neural mechanisms underlying language recovery in severe aphasia patients, who are typically viewed as having a poor prognosis for language recovery. Although test-retest reliability is routinely demonstrated during collection of language data in single-subject aphasia research, this is rarely examined in fMRI studies investigating the underlying neural mechanisms in aphasia recovery. The purpose of this study was to acquire fMRI test-retest data examining semantic decisions both within and between two aphasia patients. Functional MRI was utilized to image individuals with chronic, moderate-severe nonfluent aphasia during nonverbal, yes/no button-box semantic judgments of iconic sentences presented in the Computer-assisted Visual Communication (C-ViC) program. We investigated the critical issue of intra-subject reliability by exploring similarities and differences in regions of activation during participants’ performance of identical tasks twice on the same day. Each participant demonstrated high intra-subject reliability, with response decrements typical of task familiarity. Differences between participants included greater left hemisphere perilesional activation in the individual with better response to C-ViC training. This study provides fMRI reliability in chronic nonfluent aphasia, and adds to evidence supporting differences in individual cortical reorganization in aphasia recovery. PMID:15706052

  19. AstroBioLab: A Mobile Biotic and Soil Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Zent, A. P.; Grunthaner, F. J.; Quinn, R. C.; Navarro-Gonzalex, R.; Gonez-Silva, B.; McKay, C. P.

    2003-01-01

    The Jet Propulsion Laboratory, Scripps Institution of Oceanography, and NASA Ames Research Center are currently developing a mobile Astrobiology Laboratory (AstroBioLab) for a series of field campaigns using the Chilean Atacama Desert as a Martian surface analog site. The Astrobiology Science and Technology for Exploring Planets (ASTEP) program funded AstroBioLab is designed around the Mars Organic Detector (MOD) instrument and the Mars Oxidant Instrument (MOI) which provide complementary data sets. Using this suite of Mars Instrument Development Program (MIDP) and Planetary Instrument Definition and Development Program (PIDDP) derived in situ instruments, which provide state-of-the-art organic compound detection (attomolar sensitivity) and depth profiling of oxidation chemistry, we measure and correlate the interplay of organic compounds, inorganic oxidants, UV irradiation and water abundance. This mobile laboratory studies the proposition that intense UV irradiation coupled with low levels of liquid water generates metastable oxidizing species that can consume moderate amounts of seeded organic compounds. Results from the initial spring 2003 field campaign will be presented.

  20. A Case Study of an Instrumental Music Program and Its Influence on the Culture of a School

    ERIC Educational Resources Information Center

    Womack, Anthony Terence

    2017-01-01

    The purpose of this case study was to examine how participation in a school-based instrumental music program contributed to the culture of a suburban high school. The questions guiding the research were: (1) How and why are multiple music programs supported by staff, students, parents and the community at this school? (2) What are the benefits of…

  1. Evaluacion de que consister y por que se lleva acabo? (Evaluation: What Does it Consist of, and for What Purpose?).

    ERIC Educational Resources Information Center

    Austin Independent School District, TX. Office of Research and Evaluation.

    A guide is presented for the evaluation of the bilingual programs in the Austin, Texas, Independent School District. The reasons for an evaluation and a definition of program objectives and evaluation instruments are given. The program components, objectives and evaluation instruments for each grade level (K-4) are listed. The components involved…

  2. 12 CFR 1805.400 - Investment instruments-general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Investment instruments-general. 1805.400... TREASURY COMMUNITY DEVELOPMENT FINANCIAL INSTITUTIONS PROGRAM Investment Instruments § 1805.400 Investment... investment instruments described in § 1805.401, and under such terms and conditions as described in this...

  3. SPION-enhanced magnetic resonance imaging of Alzheimer's disease plaques in AβPP/PS-1 transgenic mouse brain.

    PubMed

    Sillerud, Laurel O; Solberg, Nathan O; Chamberlain, Ryan; Orlando, Robert A; Heidrich, John E; Brown, David C; Brady, Christina I; Vander Jagt, Thomas A; Garwood, Michael; Vander Jagt, David L

    2013-01-01

    In our program to develop non-invasive magnetic resonance imaging (MRI) methods for the diagnosis of Alzheimer's disease (AD), we have synthesized antibody-conjugated, superparamagnetic iron oxide nanoparticles (SPIONs) for use as an in vivo agent for MRI detection of amyloid-β plaques in AD. Here we report studies in AβPP/PS1 transgenic mice, which demonstrate the ability of novel anti-AβPP conjugated SPIONs to penetrate the blood-brain barrier to act as a contrast agent for MR imaging of plaques. The conspicuity of the plaques increased from an average Z-score of 5.1 ± 0.5 to 8.3 ± 0.2 when the plaque contrast to noise ratio was compared in control AD mice with AD mice treated with SPIONs. The number of MRI-visible plaques per brain increased from 347 ± 45 in the control AD mice, to 668 ± 86 in the SPION treated mice. These results indicated that our SPION enhanced amyloid-β detection method delivers an efficacious, non-invasive MRI detection method in transgenic mice.

  4. SPION-Enhanced Magnetic Resonance Imaging of Alzheimer’s Disease Plaques in AβPP/PS-1 Transgenic Mouse Brain

    PubMed Central

    Sillerud, Laurel O.; Solberg, Nathan O.; Chamberlain, Ryan; Orlando, Robert A.; Heidrich, John E.; Brown, David C.; Brady, Christina I.; Vander Jagt, Thomas A.; Garwood, Michael; Vander Jagt, David L.

    2016-01-01

    In our program to develop non-invasive magnetic resonance imaging (MRI) methods for the diagnosis of Alzheimer’s disease (AD), we have synthesized antibody-conjugated, superparamagnetic iron oxide nanoparticles (SPIONs) for use as an in vivo agent for MRI detection of amyloid-β plaques in AD. Here we report studies in AβPP/PS1 transgenic mice, which demonstrate the ability of novel anti-AβPP conjugated SPIONs to penetrate the blood-brain barrier to act as a contrast agent for MR imaging of plaques. The conspicuity of the plaques increased from an average Z-score of 5.1 ± 0.5 to 8.3 ± 0.2 when the plaque contrast to noise ratio was compared in control AD mice with AD mice treated with SPIONs. The number of MRI-visible plaques per brain increased from 347 ± 45 in the control AD mice, to 668 ± 86 in the SPION treated mice. These results indicated that our SPION enhanced amyloid-β detection method delivers an efficacious, non-invasive MRI detection method in transgenic mice. PMID:23229079

  5. Functional MRI using robotic MRI compatible devices for monitoring rehabilitation from chronic stroke in the molecular medicine era (Review)

    PubMed Central

    ASTRAKAS, LOUKAS G.; NAQVI, SYED HASSAN ABBAS; KATEB, BABAK; TZIKA, A. ARIA

    2012-01-01

    The number of individuals suffering from stroke is increasing daily, and its consequences are a major contributor to invalidity in today’s society. Stroke rehabilitation is relatively new, having been hampered from the longstanding view that lost functions were not recoverable. Nowadays, robotic devices, which aid by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain which can be monitored by MRI. Multiparametric magnetic resonance imaging (MRI) of stroke patients participating in a training program with a novel Magnetic Resonance Compatible Hand-Induced Robotic Device (MR_CHIROD) could yield a promising biomarker that, ultimately, will enhance our ability to advance hand motor recovery following chronic stroke. Using state-of-the art MRI in conjunction with MR_CHIROD-assisted therapy can provide novel biomarkers for stroke patient rehabilitation extracted by a meta-analysis of data. Successful completion of such studies may provide a ground breaking method for the future evaluation of stroke rehabilitation therapies. Their results will attest to the effectiveness of using MR-compatible hand devices with MRI to provide accurate monitoring during rehabilitative therapy. Furthermore, such results may identify biomarkers of brain plasticity that can be monitored during stroke patient rehabilitation. The potential benefit for chronic stroke patients is that rehabilitation may become possible for a longer period of time after stroke than previously thought, unveiling motor skill improvements possible even after six months due to retained brain plasticity. PMID:22426741

  6. An implemented MRI program to eliminate radiation from the evaluation of pediatric appendicitis.

    PubMed

    Kulaylat, Afif N; Moore, Michael M; Engbrecht, Brett W; Brian, James M; Khaku, Aliasgher; Hollenbeak, Christopher S; Rocourt, Dorothy V; Hulse, Michael A; Olympia, Robert P; Santos, Mary C; Methratta, Sosamma T; Dillon, Peter W; Cilley, Robert E

    2015-08-01

    Recent efforts have been directed at reducing ionizing radiation delivered by CT scans to children in the evaluation of appendicitis. MRI has emerged as an alternative diagnostic modality. The clinical outcomes associated with MRI in this setting are not well-described. Review of a 30-month institutional experience with MRI as the primary diagnostic evaluation for suspected appendicitis (n=510). No intravenous contrast, oral contrast, or sedation was administered. Radiologic and clinical outcomes were abstracted. MRI diagnostic characteristics were: sensitivity 96.8% (95% CI: 92.1%-99.1%), specificity 97.4% (95% CI: 95.3-98.7), positive predictive value 92.4% (95% CI: 86.5-96.3), and negative predictive value 98.9% (95% CI: 97.3%-99.7%). Radiologic time parameters included: median time from request to scan, 71 minutes (IQR: 51-102), imaging duration, 11 minutes (IQR: 8-17), and request to interpretation, 2.0 hours (IQR: 1.6-2.6). Clinical time parameters included: median time from initial assessment to admit order, 4.1 hours (IQR: 3.1-5.1), assessment to antibiotic administration 4.7 hours (IQR: 3.9-6.7), and assessment to operating room 9.1 hours (IQR: 5.8-12.7). Median length of stay was 1.2 days (range: 0.2-19.5). Given the diagnostic accuracy and favorable clinical outcomes, without the potential risks of ionizing radiation, MRI may supplant the role of CT scans in pediatric appendicitis imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Planning Instruments for School Library/Media Programs.

    ERIC Educational Resources Information Center

    Liesener, James W.

    Four instruments to be used in developing school library and media programs are included in this package. Two questionnaires, addressed to students, teachers, administrators, and library staff, inventory current services and determine service priorities. Seventeen charts for data collection and a 20-page costing matrix are provided. Instructions…

  8. Instrument Development for Examining Student Attrition

    ERIC Educational Resources Information Center

    McRoberts, Timothy J.; Miller, Tess

    2015-01-01

    Instruments designed to track student changes in higher education are essential for monitoring program development in competitive higher education markets. As part of a developmental evaluation, a student questionnaire was developed and piloted to examine attrition rates in college programs. The purpose of the questionnaire was to explore factors…

  9. Policy Instruments Used by States Seeking to Improve School Food Environments

    PubMed Central

    Shroff, Monal R.; Frongillo, Edward A.; Howlett, Michael

    2012-01-01

    US legislatures and program administrators have sought to control the sale of foods offered outside of federally funded meal programs in schools, but little is known about which policies, if any, will prevent obesity in children. We used a theoretical policy science typology to understand the types of policy instruments used by US state governments from 2001 to 2006. We coded 126 enacted bills and observed several types of instruments prescribed by state legislatures to influence the foods sold in schools and improve the school food environment. Our study helps to better understand the various instruments used by policymakers and sets the stage to examine the effectiveness of the policy instruments used to prevent obesity. PMID:22390436

  10. Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18-22 mo of age: an MRI and DTI study.

    PubMed

    Rose, Jessica; Cahill-Rowley, Katelyn; Vassar, Rachel; Yeom, Kristen W; Stecher, Ximena; Stevenson, David K; Hintz, Susan R; Barnea-Goraly, Naama

    2015-12-01

    Near-term brain structure was examined in preterm infants in relation to neurodevelopment. We hypothesized that near-term macrostructural brain abnormalities identified using conventional magnetic resonance imaging (MRI), and white matter (WM) microstructure detected using diffusion tensor imaging (DTI), would correlate with lower cognitive and motor development and slower, less-stable gait at 18-22 mo of age. One hundred and two very-low-birth-weight preterm infants (≤1,500 g birth weight; ≤32 wk gestational age) were recruited prior to routine near-term brain MRI at 36.6 ± 1.8 wk postmenstrual age. Cerebellar and WM macrostructure was assessed on conventional structural MRI. DTI was obtained in 66 out of 102 and WM microstructure was assessed using fractional anisotropy and mean diffusivity (MD) in six subcortical brain regions defined by DiffeoMap neonatal atlas. Neurodevelopment was assessed with Bayley-Scales-of-Infant-Toddler-Development, 3rd-Edition (BSID-III); gait was assessed using an instrumented mat. Neonates with cerebellar abnormalities identified using MRI demonstrated lower mean BSID-III cognitive composite scores (89.0 ± 10.1 vs. 97.8 ± 12.4; P = 0.002) at 18-22 mo. Neonates with higher DTI-derived left posterior limb of internal capsule (PLIC) MD demonstrated lower cognitive and motor composite scores (r = -0.368; P = 0.004; r = -0.354; P = 0.006) at 18-22 mo; neonates with higher genu MD demonstrated slower gait velocity (r = -0.374; P = 0.007). Multivariate linear regression significantly predicted cognitive (adjusted r(2) = 0.247; P = 0.002) and motor score (adjusted r(2) = 0.131; P = 0.017). Near-term cerebellar macrostructure and PLIC and genu microstructure were predictive of early neurodevelopment and gait.

  11. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    PubMed

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage rate constant, and even make it time dependent. Copyright © 2017 John Wiley & Sons, Ltd.

  12. A program and data base for evaluating SMMR algorithms

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A program (PARAM) is described which enables a user to compare the values of meteorological parameters derived from data obtained by the scanning multichannel microwave radiometer (SMMR) instrument on NIMBUS 7 with surface observations made over the ocean. The input to this program is a data base, also described, which contains the surface observations and coincident SMMR data. The evaluation of meteorological parameters using SMMR data is done by a user supplied subroutine. Instruments are given for executing the program and writing the subroutine.

  13. 12 CFR 1805.401 - Forms of investment instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Forms of investment instruments. 1805.401... TREASURY COMMUNITY DEVELOPMENT FINANCIAL INSTITUTIONS PROGRAM Investment Instruments § 1805.401 Forms of investment instruments. (a) Equity. The Fund may make nonvoting equity investments in an Awardee, including...

  14. The Undergraduate Student Instrumentation Projects at the University of Houston

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Talbot, R. W.; Glennie, C. L.; Rodrigues, D.; Jinghong, C.; Alozie, M.; Behrend, C. C.; Bias, C.; Ehteshami, A.; Fenton, A.; Greer, M.; Gunawan, B.; Harrison, W.; Jordan, J.; Lalata, M. C.; Lehnen, J. N.; Martinez, A.; Mathur, S.; Medillin, M.; Nguyen, T.; Nguyen, T. V.; Nowling, M.; Perez, D.; Pham, M.; Pina, M.; Porat, I.; Prince, J.; Thomas, G. C.; Velasquez, B.; Victor, L.

    2016-12-01

    The Undergraduate Student Instrumentation Project (USIP) is a NASA program to engage undergraduate students in rigorous scientific research, for the purposes of innovation and developing the next generation of professionals for an array of fields. The program is student led and executed from initial ideation to research to the design and deployment of scientific payloads. The University of Houston has been selected twice to participate in the USIP programs. The first program (USIP_UH I) ran from 2013 to 2016. USIP_UH II started in January of this year, with funding starting at the end of May. USIP_UH I (USIP_UH II) at the University of Houston was (is) composed of eight (seven) research teams developing six (seven), distinct, balloon-based scientific instruments. These instruments will contribute to a broad range of geophysical sciences from Very Low Frequency recording and Total Electron Content to exobiology and ozone profiling. USIP_UH I had 12 successful launches with 9 recoveries from Fairbanks, AK in March 2015 and 4 piggyback flights with BARREL 3 from Esrange, Kiruna, Sweden in August, 2015. Additional flights with BARREL 4 will take place in August 2016. The great opportunity of this program is capitalizing on the proliferation of electronics miniaturization to create new generations of scientific instruments that are smaller and lighter than ever before. This situation allows experiments to be done more cheaply which ultimately allows many more experiments to be done.

  15. MO-AB-207-02: ACR Update in MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  16. MO-AB-207-04: ACR Update in Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berns, E.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  17. MO-AB-207-01: ACR Update in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNitt-Gray, M.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  18. MO-AB-207-00: ACR Update in MR, CT, Nuclear Medicine, and Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  19. MO-AB-207-03: ACR Update in Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkness, B.

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less

  20. The standard calibration instrument automation system for the atomic absorption spectrophotometer. Part 3: Program documentation

    NASA Astrophysics Data System (ADS)

    Ryan, D. P.; Roth, G. S.

    1982-04-01

    Complete documentation of the 15 programs and 11 data files of the EPA Atomic Absorption Instrument Automation System is presented. The system incorporates the following major features: (1) multipoint calibration using first, second, or third degree regression or linear interpolation, (2) timely quality control assessments for spiked samples, duplicates, laboratory control standards, reagent blanks, and instrument check standards, (3) reagent blank subtraction, and (4) plotting of calibration curves and raw data peaks. The programs of this system are written in Data General Extended BASIC, Revision 4.3, as enhanced for multi-user, real-time data acquisition. They run in a Data General Nova 840 minicomputer under the operating system RDOS, Revision 6.2. There is a functional description, a symbol definitions table, a functional flowchart, a program listing, and a symbol cross reference table for each program. The structure of every data file is also detailed.

  1. Evaluation of Q-band instrumentation requirements for Strategic Satellite System (SSS) program

    NASA Astrophysics Data System (ADS)

    Raponi, D. J.

    1981-12-01

    Q-band instrumentation appropriate for testing the Strategic Satellite System (SSS) satellite terminal is evaluated in terms of current and projected availability; desired and practical measurement capabilities; required development; and schedule/cost impacts to the program. The Air Force is considering several approaches to increasing the strategic communications capability now provided by the recently deployed ultra high frequency (UHF) Air Force Satellite Communications (AFSATCOM) system. The Strategic Satellite System (SSS) was proposed to improve antijam (AJ) characteristics through the use of advanced modulation techniques and higher frequencies (8 and 44 GHz) on links between ground and airborne terminals and the satellites. This report is an assessment of Q-band (44 GHz) test instrumentation requirements, availability, and accuracy as these factors affect cost and schedule for the SSS satellite terminal development program. Though the SSS program has been cancelled, information presented in the report has applicability to the EHF MILSTAR program.

  2. Dipy, a library for the analysis of diffusion MRI data.

    PubMed

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.

  3. Quantitative analysis of skeletal muscle mass in patients with rheumatic diseases under glucocorticoid therapy--comparison among bioelectrical impedance analysis, computed tomography, and magnetic resonance imaging.

    PubMed

    Hosono, Osamu; Yoshikawa, Noritada; Shimizu, Noriaki; Kiryu, Shigeru; Uehara, Masaaki; Kobayashi, Hiroshi; Matsumiya, Ryo; Kuribara, Akiko; Maruyama, Takako; Tanaka, Hirotoshi

    2015-03-01

    To determine the availability of bioelectrical impedance analysis (BIA), computed tomography (CT), and magnetic resonance imaging (MRI) for measurement of skeletal muscle mass in patients with rheumatic diseases and quantitatively assess skeletal muscle loss after glucocorticoid (GC) treatment. The data from 22 patients with rheumatic diseases were retrospectively obtained. The muscle mass of body segments was measured with a BIA device in terms of skeletal muscle mass index (SMI). Cross-sectional area (CSA) was obtained from CT and MRI scans at the mid-thigh level using the image analysis program. We further assessed the data of three different measurements before and after GC treatment in 7 patients with rheumatic diseases. SMI of whole body was significantly correlated with estimated muscle volume and mid-thigh muscle CSA with CT and MRI (p < 0.01). Significant correlations between SMI and mid-thigh muscle CSA of each leg were also found (p < 0.01). All the three measurements were negatively correlated with GC dosage (p < 0.01). Significant decline in mid-thigh muscle CSA with CT and MRI was found after GC treatment in 7 patients (p < 0.02). Those patients showed significant decline in SMI of whole body after GC treatment, but not in SMI of each leg. On the other hand, significant correlations between mid-thigh muscle CSA with CT and MRI were found before and after GC treatment (p < 0.01). GC-related skeletal muscle loss could be quantitatively assessed with BIA, CT, or MRI in patients with rheumatic diseases, and CT and MRI appeared to be more accurate than BIA.

  4. Development and assessment of a new 3D neuroanatomy teaching tool for MRI training.

    PubMed

    Drapkin, Zachary A; Lindgren, Kristen A; Lopez, Michael J; Stabio, Maureen E

    2015-01-01

    A computerized three-dimensional (3D) neuroanatomy teaching tool was developed for training medical students to identify subcortical structures on a magnetic resonance imaging (MRI) series of the human brain. This program allows the user to transition rapidly between two-dimensional (2D) MRI slices, 3D object composites, and a combined model in which 3D objects are overlaid onto the 2D MRI slices, all while rotating the brain in any direction and advancing through coronal, sagittal, or axial planes. The efficacy of this tool was assessed by comparing scores from an MRI identification quiz and survey in two groups of first-year medical students. The first group was taught using this new 3D teaching tool, and the second group was taught the same content for the same amount of time but with traditional methods, including 2D images of brain MRI slices and 3D models from widely used textbooks and online sources. Students from the experimental group performed marginally better than the control group on overall test score (P = 0.07) and significantly better on test scores extracted from questions involving C-shaped internal brain structures (P < 0.01). Experimental participants also expressed higher confidence in their abilities to visualize the 3D structure of the brain (P = 0.02) after using this tool. Furthermore, when surveyed, 100% of the students in the experimental group recommended this tool for future students. These results suggest that this neuroanatomy teaching tool is an effective way to train medical students to read an MRI of the brain and is particularly effective for teaching C-shaped internal brain structures. © 2015 American Association of Anatomists.

  5. Estimation of Error in Maximal Intensity Projection-Based Internal Target Volume of Lung Tumors: A Simulation and Comparison Study Using Dynamic Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Jing; Read, Paul W.; Baisden, Joseph M.

    Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA)more » from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.« less

  6. Evaluation of MRI acquisition workflow with lean six sigma method: case study of liver and knee examinations.

    PubMed

    Roth, Christopher J; Boll, Daniel T; Wall, Lisa K; Merkle, Elmar M

    2010-08-01

    The purpose of this investigation was to assess workflow for medical imaging studies, specifically comparing liver and knee MRI examinations by use of the Lean Six Sigma methodologic framework. The hypothesis tested was that the Lean Six Sigma framework can be used to quantify MRI workflow and to identify sources of inefficiency to target for sequence and protocol improvement. Audio-video interleave streams representing individual acquisitions were obtained with graphic user interface screen capture software in the examinations of 10 outpatients undergoing MRI of the liver and 10 outpatients undergoing MRI of the knee. With Lean Six Sigma methods, the audio-video streams were dissected into value-added time (true image data acquisition periods), business value-added time (time spent that provides no direct patient benefit but is requisite in the current system), and non-value-added time (scanner inactivity while awaiting manual input). For overall MRI table time, value-added time was 43.5% (range, 39.7-48.3%) of the time for liver examinations and 89.9% (range, 87.4-93.6%) for knee examinations. Business value-added time was 16.3% of the table time for the liver and 4.3% of the table time for the knee examinations. Non-value-added time was 40.2% of the overall table time for the liver and 5.8% for the knee examinations. Liver MRI examinations consume statistically significantly more non-value-added and business value-added times than do knee examinations, primarily because of respiratory command management and contrast administration. Workflow analyses and accepted inefficiency reduction frameworks can be applied with use of a graphic user interface screen capture program.

  7. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging.

    PubMed

    Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke

    2007-11-01

    To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.

  8. Dipy, a library for the analysis of diffusion MRI data

    PubMed Central

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing. PMID:24600385

  9. Simultaneous dual modality optical and MR imaging of mouse dorsal skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Salek, Mir Farrokh; Pagel, Mark D.; Gmitro, Arthur F.

    2011-02-01

    Optical imaging and MRI have both been used extensively to study tumor microenvironment. The two imaging modalities are complementary and can be used to cross-validate one another for specific measurements. We have developed a modular platform that is capable of doing optical microscopy inside an MRI instrument. To do this, an optical relay system transfers the image to outside of the MR bore to a commercial grade CCD camera. This enables simultaneous optical and MR imaging of the same tissue and thus creates the ideal situation for comparative or complementary studies using both modalities. Initial experiments have been done using GFP labeled prostate cancer cells implanted in mouse dorsal skin fold window chamber. Vascular hemodynamics and vascular permeability were studied using our imaging system. Towards this goal, we developed a dual MR-Optical contrast agent by labeling BSA with both Gd-DTPA and Alexa Fluor. Overall system design and results of these preliminary vascular studies are presented.

  10. Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions

    PubMed Central

    Park, Yong-Lae; Elayaperumal, Santhi; Daniel, Bruce; Ryu, Seok Chang; Shin, Mihye; Savall, Joan; Black, Richard J.; Moslehi, Behzad; Cutkosky, Mark R.

    2015-01-01

    We describe a MRI-compatible biopsy needle instrumented with optical fiber Bragg gratings for measuring bending deflections of the needle as it is inserted into tissues. During procedures, such as diagnostic biopsies and localized treatments, it is useful to track any tool deviation from the planned trajectory to minimize positioning errors and procedural complications. The goal is to display tool deflections in real time, with greater bandwidth and accuracy than when viewing the tool in MR images. A standard 18 ga × 15 cm inner needle is prepared using a fixture, and 350-μm-deep grooves are created along its length. Optical fibers are embedded in the grooves. Two sets of sensors, located at different points along the needle, provide an estimate of the bent profile, as well as temperature compensation. Tests of the needle in a water bath showed that it produced no adverse imaging artifacts when used with the MR scanner. PMID:26405428

  11. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  12. Evaluation of the impact of a diabetes education curriculum for school personnel on disease knowledge and confidence in caring for students.

    PubMed

    Smith, Cory T; Chen, Aleda M H; Plake, Kimberly S; Nash, Christiane L

    2012-10-01

    School personnel may lack knowledge of diabetes and be unprepared to address the needs of students with type 1 diabetes. This project evaluated the effectiveness of a type 1 diabetes education program for school personnel on increasing knowledge of diabetes and confidence in caring for students with diabetes. Two types of diabetes education programs were created for school personnel. The basic program provided a 60-minute overview of diabetes. The expanded program, intended for volunteer health aides, provided participants with a more in-depth overview of diabetes during a 180-minute session, including demonstrations of how to assist students with insulin injections. Instruments were created to assess changes in diabetes-related knowledge and confidence in caring for students. Separate knowledge instruments were created for the basic and expanded programs. Knowledge instruments were administered before and after delivery of the education programs to both groups. Confidence instruments were administered before and after for persons completing the expanded program. A total of 81 school personnel participated in the basic (N = 44) or expanded programs (N = 37). Overall knowledge regarding diabetes significantly increased in both the basic and expanded programs from baseline (p < .001). Confidence in caring for students with diabetes also increased from pretest to posttest, both for overall confidence and each individual item (p < .001). Educational programs offered for school personnel can lead to increased knowledge and increased confidence in caring for students with diabetes, which may assist school personnel in addressing the needs of students with diabetes. © 2012, American School Health Association.

  13. Development of magnetic resonance technology for noninvasive boron quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.

  14. High ventricular lead impedance of a DDD pacemaker after cranial magnetic resonance imaging.

    PubMed

    Baser, Kazim; Guray, Umit; Durukan, Mine; Demirkan, Burcu

    2012-09-01

    Management of electromagnetic interference in the form of magnetic resonance imaging (MRI) in patients with pacemakers (PMs) may be challenging. Serious consequences, especially in PM-dependent patients, may be encountered. Changes in device programming, asynchronous pacing, heating of the lead tip(s), and increased thresholds or even device dislocation may be experienced. We report of a patient with a DDD PM who underwent an emergent MRI, after which there was an increase in ventricular impedance as well as increased cardiac biomarkers. ©2011, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  15. A Survey of Florida High School Instrumental Music Programs: Rationale for the Inclusion of Jazz Ensemble Experience in Music Teacher Training

    ERIC Educational Resources Information Center

    Hinkle, Jonathan R.

    2011-01-01

    During the past 60 years, jazz music has slowly become recognized as a genre worthy of study in high school music programs throughout the United States. Only a few researchers have analyzed large samples of jazz-related instruction in instrumental music programs, and of these studies no data were collected to investigate the inclusion of jazz in…

  16. MISOE [Management Information System for Occupational Education] Impact Battery.

    ERIC Educational Resources Information Center

    Conroy, William G., Jr.

    The impact battery consists of two instruments used to obtain impact data (descriptions of the experiences of program completors during post-program life) for the Sample Data Systems of the Management Information System for Occupational Education (MISOE). The first, Massachusetts Educational Impact Instrument (MEII), is an 11-page extensive…

  17. DEPENDENCE OF NITRIC OXIDE EMISSIONS ON VEHICLE LOAD: RESULTS FROM THE GTRP INSTRUMENTED VEHICLE PROGRAM

    EPA Science Inventory

    The presentation discussed the dependence of nitric oxide (NO) emissions on vehicle load, bases on results from an instrumented-vehicle program. The accuracy and feasibility of modal emissions models depend on algorithms to allocate vehicle emissions based on a vehicle operation...

  18. Development of an instrumentation plan for the Ohio SPS test pavement (DEL-23-17.48) : final report, October 1994.

    DOT National Transportation Integrated Search

    1994-07-01

    A Specific Pavement Studies (SPS) program, formulated under the Strategic Highway Research Program (SHRP), consists of nine experiments, four of which will be included in this DEL-23 project. Since the basic instrumentation plan proposed by SHRP was ...

  19. Development of an instrumentation plan for the Ohio SPS test pavement (DEL-23-17.48) : executive summary, July 1994.

    DOT National Transportation Integrated Search

    1994-07-01

    A Specific Pavement Studies (SPS) program, formulated under the Strategic Highway Research Program (SHRP), consists of nine experiments, four of which will be included in this DEL-23 project. Since the basic instrumentation plan proposed by SHRP was ...

  20. The Development of Two Self-Assessment Work Value Instruments.

    ERIC Educational Resources Information Center

    Boyle, John R.

    In response to input from the employment and training community, the Department of Labor's Assessment and Research Development Program (ARDP) and its state partners have developed two self-assessment work value instruments to be incorporated into career exploration and counseling programs. Computerized multiple rank-order and paper-and-pencil…

  1. Teacher Evaluations in Leisure Studies Programs: An Old Issue with a New Slant.

    ERIC Educational Resources Information Center

    Butts, Frank B.; Swearingen, Tommy

    1994-01-01

    This paper examines teacher evaluation practices in leisure studies programs, noting the perceived effectiveness of rating instruments. Surveys of leisure studies professors nationwide indicated many institutions used evaluation instruments and processes that were not statistically validated; key decisions were often made on the basis of these…

  2. The Development and Validation of the Inquiry Science Observation Coding Sheet

    ERIC Educational Resources Information Center

    Brandon, P. R.; Taum, A. K. H.; Young, D. B.; Pottenger, F. M., III

    2008-01-01

    Evaluation reports increasingly document the degree of program implementation, particularly the extent to which programs adhere to prescribed steps and procedures. Many reports are cursory, however, and few, if any, fully portray the long and winding path taken when developing evaluation instruments, particularly observation instruments. In this…

  3. Instrumentation, performance visualization, and debugging tools for multiprocessors

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.; Hontalas, Philip J.

    1991-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs.

  4. Gender and Instrument Associations, Stereotypes, and Stratification: A Literature Review

    ERIC Educational Resources Information Center

    Wych, Gina M. F.

    2012-01-01

    This literature review examines and synthesizes 30 years of research into the relationship between gender and musical instruments. Specifically, the review focuses on how this relationship affects instrument selection by grade school students entering a school music program. Topics include the gender typing of musical instruments, instrument…

  5. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallbert, Bruce Perry; Thomas, Kenneth David

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  6. Upper Atmospheric Effects of the HF Active Auroral Research Program Ionospheric Research Instrument (HAARP IRI)

    DTIC Science & Technology

    1993-05-01

    RESEARCH INSTRUMENT ( HAARP IRI) V. Eccles R. Armstrong Mission Research Corporation One Tara Blvd Nashua, NH 03062-2801 May 1993 Scientific Report No...INSTRUMENT ( HAARP IRI) PR 2310 STA G3 WU BM6. AUTHOR(S) V. Eccles and R. Armstrong 7. PERFOR•IlNG ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING...Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible

  7. Semi-automated vectorial analysis of anorectal motion by magnetic resonance defecography in healthy subjects and fecal incontinence.

    PubMed

    Noelting, J; Bharucha, A E; Lake, D S; Manduca, A; Fletcher, J G; Riederer, S J; Joseph Melton, L; Zinsmeister, A R

    2012-10-01

    Inter-observer variability limits the reproducibility of pelvic floor motion measured by magnetic resonance imaging (MRI). Our aim was to develop a semi-automated program measuring pelvic floor motion in a reproducible and refined manner. Pelvic floor anatomy and motion during voluntary contraction (squeeze) and rectal evacuation were assessed by MRI in 64 women with fecal incontinence (FI) and 64 age-matched controls. A radiologist measured anorectal angles and anorectal junction motion. A semi-automated program did the same and also dissected anorectal motion into perpendicular vectors representing the puborectalis and other pelvic floor muscles, assessed the pubococcygeal angle, and evaluated pelvic rotation. Manual and semi-automated measurements of anorectal junction motion (r = 0.70; P < 0.0001) during squeeze and evacuation were correlated, as were anorectal angles at rest, squeeze, and evacuation; angle change during squeeze or evacuation was less so. Semi-automated measurements of anorectal and pelvic bony motion were also reproducible within subjects. During squeeze, puborectalis injury was associated (P ≤ 0.01) with smaller puborectalis but not pelvic floor motion vectors, reflecting impaired puborectalis function. The pubococcygeal angle, reflecting posterior pelvic floor motion, was smaller during squeeze and larger during evacuation. However, pubococcygeal angles and pelvic rotation during squeeze and evacuation did not differ significantly between FI and controls. This semi-automated program provides a reproducible, efficient, and refined analysis of pelvic floor motion by MRI. Puborectalis injury is independently associated with impaired motion of puborectalis, not other pelvic floor muscles in controls and women with FI. © 2012 Blackwell Publishing Ltd.

  8. TU-CD-BRB-09: Prediction of Chemo-Radiation Outcome for Rectal Cancer Based On Radiomics of Tumor Clinical Characteristics and Multi-Parametric MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, K; Yue, N; Shi, L

    2015-06-15

    Purpose: To evaluate the tumor clinical characteristics and quantitative multi-parametric MR imaging features for prediction of response to chemo-radiation treatment (CRT) in locally advanced rectal cancer (LARC). Methods: Forty-three consecutive patients (59.7±6.9 years, from 09/2013 – 06/2014) receiving neoadjuvant CRT followed by surgery were enrolled. All underwent MRI including anatomical T1/T2, Dynamic Contrast Enhanced (DCE)-MRI and Diffusion-Weighted MRI (DWI) prior to the treatment. A total of 151 quantitative features, including morphology/Gray Level Co-occurrence Matrix (GLCM) texture from T1/T2, enhancement kinetics and the voxelized distribution from DCE-MRI, apparent diffusion coefficient (ADC) from DWI, along with clinical information (carcinoembryonic antigen CEA level,more » TNM staging etc.), were extracted for each patient. Response groups were separated based on down-staging, good response and pathological complete response (pCR) status. Logistic regression analysis (LRA) was used to select the best predictors to classify different groups and the predictive performance were calculated using receiver operating characteristic (ROC) analysis. Results: Individual imaging category or clinical charateristics might yield certain level of power in assessing the response. However, the combined model outperformed than any category alone in prediction. With selected features as Volume, GLCM AutoCorrelation (T2), MaxEnhancementProbability (DCE-MRI), and MeanADC (DWI), the down-staging prediciton accuracy (area under the ROC curve, AUC) could be 0.95, better than individual tumor metrics with AUC from 0.53–0.85. While for the pCR prediction, the best set included CEA (clinical charateristics), Homogeneity (DCE-MRI) and MeanADC (DWI) with an AUC of 0.89, more favorable compared to conventional tumor metrics with an AUC ranging from 0.511–0.79. Conclusion: Through a systematic analysis of multi-parametric MR imaging features, we are able to build models with improved predictive value over conventional imaging or clinical metrics. This is encouraging, suggesting the wealth of imaging radiomics should be further explored to help tailor the treatment into the era of personalized medicine. This work is supported by the National Science Foundation of China (NSFC Grant No. 81201091), National High Technology Research and Development Program of China (863 program, Grant No. 2015AA020917), and Fund Project for Excellent Abroad Scholar Personnel in Science and Technology.« less

  9. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    PubMed Central

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836

  10. Magnetic resonance imaging investigation of the bone conduction implant - a pilot study at 1.5 Tesla.

    PubMed

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.

  11. Factors predicting health practitioners' awareness of UNHS program in Malaysian non-public hospitals.

    PubMed

    Ismail, Abdussalaam Iyanda; Abdul Majid, Abdul Halim; Zakaria, Mohd Normani; Abdullah, Nor Azimah Chew; Hamzah, Sulaiman; Mukari, Siti Zamratol-Mai Sarah

    2018-06-01

    The current study aims to examine the effects of human resource (measured with the perception of health workers' perception towards UNHS), screening equipment, program layout and screening techniques on healthcare practitioners' awareness (measured with knowledge) of universal newborn hearing screening (UNHS) in Malaysian non-public hospitals. Via cross sectional approach, the current study collected data using a validated questionnaire to obtain information on the awareness of UNHS program among the health practitioners and to test the formulated hypotheses. 51, representing 81% response rate, out of 63 questionnaires distributed to the health professionals were returned and usable for statistical analysis. The survey instruments involving healthcare practitioners' awareness, human resource, program layout, screening instrument, and screening techniques instruments were adapted and scaled with 7-point Likert scale ranging from 1 (little) to 7 (many). Partial Least Squares (PLS) algorithm and bootstrapping techniques were employed to test the hypotheses of the study. With the result involving beta values, t-values and p-values (i.e. β=0.478, t=1.904, p<0.10; β=0.809, t=3.921, p<0.01; β= -0.436, t=1.870, p<0.10), human resource, measured with training, functional equipment and program layout, are held to be significant predictors of enhanced knowledge of health practitioners. Likewise, program layout, human resource, screening technique and screening instrument explain 71% variance in health practitioners' awareness. Health practitioners' awareness is explained by program layout, human resource, and screening instrument with effect size (f2) of 0.065, 0.621, and 0.211 respectively, indicating that program layout, human resource, and screening instrument have small, large and medium effect size on health practitioners' awareness respectively. However, screening technique has zero effect on health practitioners' awareness, indicating the reason why T-statistics is not significant. Having started the UNHS program in 2003, non-public hospitals have more experienced and well-trained employees dealing with the screening tools and instrument, and the program layout is well structured in the hospitals. Yet, the issue of homogeneity exists. Non-public hospitals charge for the service they render, and, in turn, they would ensure quality service, given that they are profit-driven and/or profit-making establishments, and that they would have no option other than provision of value-added and innovative services. The employees in the non-public hospitals have less screening to carry out, given the low number of babies delivered in the private hospitals. In addition, non-significant relationship between screening techniques and healthcare practitioners' awareness of UNHS program is connected with the fact that the techniques that are practiced among public and non-public hospital are similar and standardized. Limitations and suggestions were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.

    2003-04-01

    Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.

  13. Benefit from NASA

    NASA Image and Video Library

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.

  14. Deep brain stimulation with a pre-existing cochlear implant: Surgical technique and outcome.

    PubMed

    Eddelman, Daniel; Wewel, Joshua; Wiet, R Mark; Metman, Leo V; Sani, Sepehr

    2017-01-01

    Patients with previously implanted cranial devices pose a special challenge in deep brain stimulation (DBS) surgery. We report the implantation of bilateral DBS leads in a patient with a cochlear implant. Technical nuances and long-term interdevice functionality are presented. A 70-year-old patient with advancing Parkinson's disease and a previously placed cochlear implant for sensorineural hearing loss was referred for placement of bilateral DBS in the subthalamic nucleus (STN). Prior to DBS, the patient underwent surgical removal of the subgaleal cochlear magnet, followed by stereotactic MRI, frame placement, stereotactic computed tomography (CT), and merging of imaging studies. This technique allowed for successful computational merging, MRI-guided targeting, and lead implantation with acceptable accuracy. Formal testing and programming of both the devices were successful without electrical interference. Successful DBS implantation with high resolution MRI-guided targeting is technically feasible in patients with previously implanted cochlear implants by following proper precautions.

  15. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    PubMed

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P < .001). However, the transformation behavior of Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Neurobiological differences in mental rotation and instrument interpretation in airline pilots.

    PubMed

    Sladky, Ronald; Stepniczka, Irene; Boland, Edzard; Tik, Martin; Lamm, Claus; Hoffmann, André; Buch, Jan-Philipp; Niedermeier, Dominik; Field, Joris; Windischberger, Christian

    2016-06-21

    Airline pilots and similar professions require reliable spatial cognition abilities, such as mental imagery of static and moving three-dimensional objects in space. A well-known task to investigate these skills is the Shepard and Metzler mental rotation task (SMT), which is also frequently used during pre-assessment of pilot candidates. Despite the intuitive relationship between real-life spatial cognition and SMT, several studies have challenged its predictive value. Here we report on a novel instrument interpretation task (IIT) based on a realistic attitude indicator used in modern aircrafts that was designed to bridge the gap between the abstract SMT and a cockpit environment. We investigated 18 professional airline pilots using fMRI. No significant correlation was found between SMT and IIT task accuracies. Contrasting both tasks revealed higher activation in the fusiform gyrus, angular gyrus, and medial precuneus for IIT, whereas SMT elicited significantly stronger activation in pre- and supplementary motor areas, as well as lateral precuneus and superior parietal lobe. Our results show that SMT skills per se are not sufficient to predict task accuracy during (close to) real-life instrument interpretation. While there is a substantial overlap of activation across the task conditions, we found that there are important differences between instrument interpretation and non-aviation based mental rotation.

  17. Neurobiological differences in mental rotation and instrument interpretation in airline pilots

    PubMed Central

    Sladky, Ronald; Stepniczka, Irene; Boland, Edzard; Tik, Martin; Lamm, Claus; Hoffmann, André; Buch, Jan-Philipp; Niedermeier, Dominik; Field, Joris; Windischberger, Christian

    2016-01-01

    Airline pilots and similar professions require reliable spatial cognition abilities, such as mental imagery of static and moving three-dimensional objects in space. A well-known task to investigate these skills is the Shepard and Metzler mental rotation task (SMT), which is also frequently used during pre-assessment of pilot candidates. Despite the intuitive relationship between real-life spatial cognition and SMT, several studies have challenged its predictive value. Here we report on a novel instrument interpretation task (IIT) based on a realistic attitude indicator used in modern aircrafts that was designed to bridge the gap between the abstract SMT and a cockpit environment. We investigated 18 professional airline pilots using fMRI. No significant correlation was found between SMT and IIT task accuracies. Contrasting both tasks revealed higher activation in the fusiform gyrus, angular gyrus, and medial precuneus for IIT, whereas SMT elicited significantly stronger activation in pre- and supplementary motor areas, as well as lateral precuneus and superior parietal lobe. Our results show that SMT skills per se are not sufficient to predict task accuracy during (close to) real-life instrument interpretation. While there is a substantial overlap of activation across the task conditions, we found that there are important differences between instrument interpretation and non-aviation based mental rotation. PMID:27323913

  18. Functional neural changes associated with acquired amusia across different stages of recovery after stroke.

    PubMed

    Sihvonen, Aleksi J; Särkämö, Teppo; Ripollés, Pablo; Leo, Vera; Saunavaara, Jani; Parkkola, Riitta; Rodríguez-Fornells, Antoni; Soinila, Seppo

    2017-09-12

    Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.

  19. Magnetometer instrument team studies for the definition phase of the outer planets grand tour

    NASA Technical Reports Server (NTRS)

    Coleman, P. J., Jr.

    1972-01-01

    The objectives of magnetic field investigations on missions to the outer planets were defined as well as an instrumentation system, a program of studies and instrument development tasks was proposed for the mission definition phase of the Outer Planets Grand Tour project. A report on the status of this program is given. Requirements were also established for the spacecraft and the mission which would insure their compatibility with the magnetic field investigation proposed for the outer planets missions and developed figures of merit for encounter trajectories. The spacecraft-instrumentation interface and the on-board data handling system were defined in various reports by the Project Team and in the reports by the Science Steering Group. The defining program for exploring the outer planets within the more restrictive constraints of the Mariner Jupiter-Saturn project included defining a limited magnetic field investigation.

  20. Cryo-vacuum testing of the JWST Integrated Science Instrument Module (SPIE)

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie; Birkmann, Stephan M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.; hide

    2016-01-01

    In late 2015/early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST). This test comprised the final cryo-certification and calibration test of the ISIM, after its ambient environmental test program (vibration, acoustics, EMI/EMC), and before its delivery for integration with the rest of the JWST observatory. Over the 108-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. The test verified the health and excellent performance of the instruments and ISIM systems, proving the ISIM element's readiness for integration with the telescope. We report here on the context, goals, setup, execution, and key results for this critical JWST milestone.

  1. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  2. Halogen occultation experiment intergrated test plan

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Butterfield, A. J.

    1986-01-01

    The test program plan is presented for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in-house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This comprehensive test program was developed to demonstrate that the HALOE instrument meets its performance requirements and maintains integrity through UARS flight environments. Each component, subsystem, and system level test is described in sufficient detail to allow development of the necessary test setups and test procedures. Additionally, the management system for implementing this test program is given. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HC1, HF, NO, CH4, H2O, NO2, and CO2.

  3. Measuring the diffusion of innovative health promotion programs.

    PubMed

    Steckler, A; Goodman, R M; McLeroy, K R; Davis, S; Koch, G

    1992-01-01

    Once a health promotion program has proven to be effective in one or two initial settings, attempts may be made to transfer the program to new settings. One way to conceptualize the transference of health promotion programs from one locale to another is by considering the programs to be innovations that are being diffused. In this way, diffusion of innovation theory can be applied to guide the process of program transference. This article reports on the development of six questionnaires to measure the extent to which health promotion programs are successfully disseminated: Organizational Climate, Awareness-Concern, Rogers's Adoption Variables, Level of Use, Level of Success, and Level of Institutionalization. The instruments are being successfully used in a study of the diffusion of health promotion/tobacco prevention curricula to junior high schools in North Carolina. The instruments, which measure the four steps of the diffusion process, have construct validity since they were developed within existing theories and are derived from the work of previous researchers. No previous research has attempted to use instruments like these to measure sequentially the stages of the diffusion process.

  4. Concept of Science Data Management for the Korea Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon

    2016-10-01

    South Korea has a plan to explore the Moon in 2018 or 2019. For the plan, the Korea Aerospace Research Institute which is a government funded research institute kicked off the Korea Lunar Exploration Development Program in January, 2016 in support of Ministry of Science, ICT and Future Planning, South Korea.As the 1st stage mission of the program, named as the Korea Pathfinder Lunar Orbiter(KPLO), will perform acquisition of high resolution images and science data for investigation of lunar environment as well as the core technology demonstration and validation for space explorations. The scientific instruments consists of three Korean domestic developed science instruments except an imaging instrument and several foreign provided instruments. We are developing a science data management plan to encourage scientific activities using science data acquired by the science instruments.I introduce the Korean domestic developed science instruments and present concept of the science data management plan for data delivery, processing, and distribution for the science instruments.

  5. Test and Evaluation Enhancements for Cognitive Radio Technologies

    DTIC Science & Technology

    2015-05-13

    SECURITY CLASSIFICATION OF: This document serves as the final report for the Department of Defense (DoD) Research and Education Program for...report will described the instrumentation and the integration into the academic and research programs . All instrumentation has been procured, delivered...UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU

  6. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Gopalswamy, Nat; Thompson, Barbara

    2009-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  7. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; Gopalswamy, Nathanial; Thompson, Barbara

    2010-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  8. 77 FR 46094 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... that occurs before a program is designed and implemented, or while a program is being conducted and is... behavioral but most often they are cycles of interviews and focus groups designed to inform the development... instruments, (3) methodological research, (4) usability testing of technology-based instruments and materials...

  9. Instrument and Survey Analysis Technical Report: Program Implementation Survey. Technical Report #1112

    ERIC Educational Resources Information Center

    Alonzo, Julie; Tindal, Gerald

    2011-01-01

    This technical document provides guidance to educators on the creation and interpretation of survey instruments, particularly as they relate to an analysis of program implementation. Illustrative examples are drawn from a survey of educators related to the use of the easyCBM learning system. This document includes specific sections on…

  10. The Los Alamos National Laboratory precision double crystal spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, D.V.; Stevens, C.J.; Liefield, R.J.

    1994-03-01

    This report discusses the following topics on the LANL precision double crystal X-ray spectrometer: Motivation for construction of the instrument; a brief history of the instrument; mechanical systems; motion control systems; computer control system; vacuum system; alignment program; scan programs; observations of the copper K{alpha} lines; and characteristics and specifications.

  11. Cognitive Modifiability of Children with Developmental Disabilities: A Multicentre Study Using Feuerstein's Instrumental Enrichment-Basic Program

    ERIC Educational Resources Information Center

    Kozulin, A.; Lebeer, J.; Madella-Noja, A.; Gonzalez, F.; Jeffrey, I.; Rosenthal, N.; Koslowsky, M.

    2010-01-01

    The study aimed at exploring the effectiveness of cognitive intervention with the new "Instrumental Enrichment Basic" program (IE-basic), based on Feuerstein's theory of structural cognitive modifiability that contends that a child's cognitive functioning can be significantly modified through mediated learning intervention. The IE-basic…

  12. An Instrumental Case Study of Administrative Smart Practices for Fully Online Programs and Degrees

    ERIC Educational Resources Information Center

    Gregory, Charles V.

    2017-01-01

    The purpose of this instrumental case study was to explore administrators' responses to significant administrative challenges of fully online programs and degrees. The case was a single public community college located in the Integrated Postsecondary Education Data System Plains Region. In this study Bardach's (1994) method to identify and…

  13. AN EIGHT WEEK SUMMER INSTITUTE TRAINING PROGRAM TO TRAIN INSTRUCTORS OF INSTRUMENTATION TECHNOLOGY.

    ERIC Educational Resources Information Center

    MCKEE, DELBERT A.

    A SUMMER INSTITUTE IN INSTRUMENTATION TECHNOLOGY WAS HELD TO PROVIDE TEACHERS WITH CURRENT KNOWLEDGE ON AUTOMATIC, PROCESS-CONTROL INSTRUMENTATION. A PREVIOUSLY DEVELOPED GUIDE FOR A 2-YEAR, POST-HIGH SCHOOL CURRICULUM PROVIDED THE BASIS FOR INSTRUCTION AND DISCUSSION DURING THE INSTITUTE. THREE COURSES IN MEASUREMENT AND INSTRUMENT SHOP…

  14. Research of advanced techniques for X-ray detectors and telescopes with applications to rockets and the LAMAR facility

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1985-01-01

    A program for the development of high throughput instrumentation for X-ray astronomy based upon focusing optics is being carried out by the Smithsonian Astrophysical Observatory. The instrumentation is applicable to investigations requiring large area focusing optics for direct imaging or dispersive spectroscopy. The long range goals of this program are the development of telescopes and gratings for future major X-ray astronomy facilities, including additions to the LAMAR OSS-2/SHEAL experiment after the initial flights. Tests of the devices and their more immediate utilization in scientific investigations can be carried out with SPARTAN payloads deployed and retrieved by the Space Shuttle. However, the present backlog of approved SPARTAN missions is longer than the three-year duration of the program described in this program. Laboratory studies and breadboarding of instrumentation are discussed.

  15. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of humeral articular cartilage--a histologically controlled study.

    PubMed

    Bittersohl, Bernd; Kircher, Jörn; Miese, Falk R; Dekkers, Christin; Habermeyer, Peter; Fröbel, Julia; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph

    2015-10-01

    Cartilage biochemical imaging modalities that include the magnetic resonance imaging (MRI) techniques of T2* mapping (sensitive to water content and collagen fiber network) and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, sensitive to the glycosaminoglycan content) can be effective instruments for early diagnosis and reliable follow-up of cartilage damage. The purpose of this study was to provide T2* mapping and dGEMRIC values in various histologic grades of cartilage degeneration in humeral articular cartilage. A histologically controlled in vitro study was conducted that included human humeral head cartilage specimens with various histologic grades of cartilage degeneration. High-resolution, 3-dimensional (3D) T2* mapping and dGEMRIC were performed that enabled the correlation of MRI and histology data. Cartilage degeneration was graded according to the Mankin score, which evaluates surface morphology, cellularity, toluidine blue staining, and tidemark integrity. SPSS software was used for statistical analyses. Both MRI mapping values decreased significantly (P < .001) with increasing cartilage degeneration. Spearman rank analysis revealed a significant correlation (correlation coefficients ranging from -0.315 to 0.784; P < .001) between the various histologic parameters and the T2* and T1Gd mapping values. This study demonstrates the feasibility of 3D T2* and dGEMRIC to identify various histologic grades of cartilage damage of humeral articular cartilage. With regard to the advantages of these mapping techniques with high image resolution and the ability to accomplish a 3D biochemically sensitive imaging, we consider that these imaging techniques can make a positive contribution to the currently evolving science and practice of cartilage biochemical imaging. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  17. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging

    PubMed Central

    2010-01-01

    Introduction Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. Methods MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. Results The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). Conclusions The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application. PMID:20846392

  18. Factors affecting knowledge transfer from continuing professional education to clinical practice: Development and psychometric properties of a new instrument.

    PubMed

    Vasli, Parvaneh; Dehghan-Nayeri, Nahid; Khosravi, Laleh

    2018-01-01

    Despite the emphasis placed on the implementation of continuing professional education programs in Iran, researchers or practitioners have not developed an instrument for assessing the factors that affect the knowledge transfer from such programs to clinical practice. The aim of this study was to design and validate such instrument for the Iranian context. The research used a three-stage mix method. In the first stage, in-depth interviews with nurses and content analysis were conducted, after which themes were extracted from the data. In the second stage, the findings of the content analysis and literature review were examined, and preliminary instrument options were developed. In the third stage, qualitative content validity, face validity, content validity ratio, content validity index, and construct validity using exploratory factor analysis was conducted. The reliability of the instrument was measured before and after the determination of construct validity. Primary tool instrument initially comprised 53 items, and its content validity index was 0.86. In the multi-stage factor analysis, eight questions were excluded, thereby reducing 11 factors to five and finally, to four. The final instrument with 43 items consists of the following dimensions: structure and organizational climate, personal characteristics, nature and status of professionals, and nature of educational programs. Managers can use the Iranian instrument to identify factors affecting knowledge transfer of continuing professional education to clinical practice. Copyright © 2017. Published by Elsevier Ltd.

  19. Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI

    PubMed Central

    2013-01-01

    Background Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan. Methods The MACC algorithm first identifies an outer bound for the solution path, forms a high number of iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion analysis ROIs drawn by a single expert operator. Results In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program created ROIs on follow-up scans that were in close agreement to the original expert’s ROIs. Finally, in a post-hoc analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final accepted ROIS had to be created or edited by the expert. Conclusion When used with an expert operator's verification of automatically created ROIs, MACC can be used to improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed in multicenter clinical trials. PMID:24004511

  20. Design analysis of an MPI human functional brain scanner

    PubMed Central

    Mason, Erica E.; Cooley, Clarissa Z.; Cauley, Stephen F.; Griswold, Mark A.; Conolly, Steven M.; Wald, Lawrence L.

    2017-01-01

    MPI’s high sensitivity makes it a promising modality for imaging brain function. Functional contrast is proposed based on blood SPION concentration changes due to Cerebral Blood Volume (CBV) increases during activation, a mechanism utilized in fMRI studies. MPI offers the potential for a direct and more sensitive measure of SPION concentration, and thus CBV, than fMRI. As such, fMPI could surpass fMRI in sensitivity, enhancing the scientific and clinical value of functional imaging. As human-sized MPI systems have not been attempted, we assess the technical challenges of scaling MPI from rodent to human brain. We use a full-system MPI simulator to test arbitrary hardware designs and encoding practices, and we examine tradeoffs imposed by constraints that arise when scaling to human size as well as safety constraints (PNS and central nervous system stimulation) not considered in animal scanners, thereby estimating spatial resolutions and sensitivities achievable with current technology. Using a projection FFL MPI system, we examine coil hardware options and their implications for sensitivity and spatial resolution. We estimate that an fMPI brain scanner is feasible, although with reduced sensitivity (20×) and spatial resolution (5×) compared to existing rodent systems. Nonetheless, it retains sufficient sensitivity and spatial resolution to make it an attractive future instrument for studying the human brain; additional technical innovations can result in further improvements. PMID:28752130

  1. Magnetic resonance imaging in Tietze's syndrome.

    PubMed

    Volterrani, L; Mazzei, M A; Giordano, N; Nuti, R; Galeazzi, M; Fioravanti, A

    2008-01-01

    To evaluate the usefulness of magnetic resonance imaging (MRI) in Tietze's syndrome which, to our knowledge, has not previously been reported in the literature. Twelve consecutive outpatients with clinical features of Tietze's syndrome underwent evaluation, including the anamnesis, clinical general examination, clinical evaluation of costosternal and sternoclavicular joints (SCJ) and biochemical and instrumental investigations. Twenty normal subjects age- and sex-matched to the patients' group were examined in a similar manner. MRI of costosternal and SCJ was performed using a 1.5 Tesla unit (Gyroscan NT 1.5 Philips, The Netherlands and GE Signa Excite HD, GE Healthcare, Milwaukee, Wis., USA). The MRI pattern of primary Tietze's syndrome was characterized as follows: enlargement and thickening of cartilage at the site of complaint (12/12 patients); focal or widespread increased signal intensities of affected cartilage on both TSE T2-weighted and STIR or FAT SAT images (10/12 patients); bone marrow oedema in the subcondral bone (5/12 patients); vivid gadolinium uptake in the areas of thickened cartilage, in the subcondral bone marrow and/or in capsule and ligaments (10/12, 4/12 and 7/12 patients respectively). Magnetic resonance is an excellent technique to evidence both the cartilage and bone abnormalities, therefore it represents the elective method in the investigation of primary Tietze's syndrome, due to its high sensitivity, diagnostic reliability and biological advantages thanks to the lack of ionizing radiation.

  2. Permanent magnet-based MRI

    NASA Astrophysics Data System (ADS)

    Cole, David Mitchell

    1997-10-01

    The principal goal of this project is to design and build a low-cost, imaging quality permanent magnet, together with the requisite shim, gradient, and radiofrequency coils, and to integrate the magnet with an existing imaging station. There are commercial products presently available that are very similar to this imager, but information about these products is proprietary. We present here all of the details concerning the design and the manufacturing process for constructing the permanent magnet, and include suggestions for improvement. Specifically, the prototype has a mass of about 150 kilograms and is therefore portable. It's C-type geometry allows maximum access to the imaging region, which is an oblate sphere about 0.5 inches in diameter centered in a 4.7 inch air gap between two seven-inch diameter polefaces. It is hoped that this imaging magnet will serve as the prototype for a series of larger versions that will be clinically useful and affordable to physicians in developing nations. To this end, scientists in the United States and Mexico have begun to collaborate with the intention to create an MRI institute in Mexico that will train new students in this discipline, and fabricate improved imagers. The prototype resulting from this work will seed the creation of this institute, and is intended to entice students into the study of MRI by enabling hands-on interaction with an otherwise prohibitively expensive instrument.

  3. Eosinophilic fasciitis

    MedlinePlus

    ... include: CBC with differential Gamma globulins (a type of immune system protein) Erythrocyte sedimentation rate ( ESR ) MRI Muscle biopsy ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is ...

  4. Ultrasonic Instrumentation Instruction in Dental Hygiene Programs in the United States.

    PubMed

    Hinchman, Sharon Stemple; Funk, Amy; DeBiase, Christina; Frere, Cathryn

    2016-04-01

    The purpose of this study was to determine the extent of ultrasonic scaling instrumentation instruction in dental hygiene programs in the U.S. Currently, there is no publication available defining a consensus of instruction for ultrasonic instrumentation. Exempt status was received from the West Virginia University Institutional Review Board. A survey was developed with dental hygiene administrators and faculty, based on assumptions and a list of questions to be answered. The survey was tested for validity and revised after feedback from additional faculty. The instrument was 64 questions divided into demographics, curriculum and equipment. Most questions included a text box for additional comments. An email survey was sent to all directors of accredited dental hygiene programs in the U.S. (n=323). The final possible number of respondents was n=301. Results were collected in aggregate through the Secure Online Environment (SOLE). Results were transferred to an Excel spreadsheet for statistical analysis. After 3 emails, the response rate was 45% (n=136). No significant differences in methods of instruction were found between associate and baccalaureate degree granting programs. Eighty-nine percent of programs introduce hand scaling prior to ultrasonic scaling instruction. Students in 96% of the programs were required to administer pre-procedural mouth rinse intended to reduce the amount of bacteria. The magnetostrictive ultrasonic scaler is widely used in dental hygiene instruction. A variety of inserts/ tips were available although a universal or straight insert/tip was most common. Calculus, not inflammation, was the primary criterion for ultrasonic scaler use. The results of this study demonstrate that ultrasonic instrumentation is an integral component of the clinical curriculum and the majority of the dental hygiene programs prescribe to similar teaching methods. Programs could benefit from incorporating current scientific research findings of using site specific inserts to perform periodontal debridement based on thorough biofilm removal measured by resolution of inflammation. Copyright © 2016 The American Dental Hygienists’ Association.

  5. Advanced Technologies and Instrumentation at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  6. Solar and airglow measurements aboard the two suborbital flights NASA 36.098 and 36.107

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.

    1994-01-01

    This suborbital program, involving the University of Colorado (CU), National Center for Atmospheric Research (NCAR), University of California at Berkeley (UCB), and Boston University (BU), has resulted in two rocket flights from the White Sands Missile Range, one in 1992 and one in 1993 as NASA 36.098 and 36.107 respectively. The rocket payload includes five solar instruments and one airglow instrument from CU/NCAR and one solar instrument and two airglow instruments from UCB/BU. This report discusses results on solar radiation measurements and the study of thermospheric airglow, namely the photoelectron excited emissions from N2 and O, for the CU/NCAR program.

  7. Earth remote sensing with NPOESS: instruments and environmental data products

    NASA Astrophysics Data System (ADS)

    Glackin, David L.; Cunningham, John D.; Nelson, Craig S.

    2004-02-01

    The NPOESS (National Polar-orbiting Operational Environmental Satellite System) program represents the merger of the NOAA POES (Polar-orbiting Environmental Satellite) program and the DoD DMSP (Defense Meteorological Satellite Program) satellites. Established by presidential directive in 1994, a tri-agency Integrated Program Office (IPO) in Silver Spring, Maryland, has been managing NPOESS development, and is staffed by representatives of NOAA, DoD, and NASA. NPOESS is being designed to provide 55 atmospheric, oceanographic, terrestrial, and solar-geophysical data products, and will disseminate them to civilian and military users worldwide. The first NPOESS satellite is scheduled to be launched late in this decade, with the other two satellites of the three-satellite constellation due to be launched over the ensuing four years. NPOESS will remain operational for at least ten years. The 55 Environmental Data Records (EDRs) will be provided by a number of instruments, many of which will be briefly described in this paper. The instruments will be hosted in various combinations on three NPOESS platforms in three distinct polar sun-synchronous orbits. The instrument complement represents the combined requirements of the weather, climate, and environmental remote sensing communities. The three critical instruments are VIIRS (Visible/Infrared Imager-Radiometer Suite), CMIS (Conical Microwave Imager/Sounder), and CrIS (Cross-track Infrared Sounder). The other IPO-developed instruments are OMPS (Ozone Mapper/Profiler Suite), GPSOS (Global Positioning System Occultation Sensor), the APS (Aerosol Polarimeter Sensor), and the SESS (Space Environment Sensor Suite). NPOESS will also carry various "leveraged" instruments, i.e., ones that do not require development by the IPO. These include the ATMS (Advanced Technology Microwave Sounder), the TSIS (Total Solar Irradiance Sensor), the ERBS (Earth Radiation Budget Sensor), and the ALT (Radar Altimeter).

  8. Technician Program Uses Advanced Instruments.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1981-01-01

    Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)

  9. Developing an instrument to measure heart failure disease management program intensity and complexity.

    PubMed

    Riegel, Barbara; Lee, Christopher S; Sochalski, Julie

    2010-05-01

    Comparing disease management programs and their effects is difficult because of wide variability in program intensity and complexity. The purpose of this effort was to develop an instrument that can be used to describe the intensity and complexity of heart failure (HF) disease management programs. Specific composition criteria were taken from the American Heart Association (AHA) taxonomy of disease management and hierarchically scored to allow users to describe the intensity and complexity of the domains and subdomains of HF disease management programs. The HF Disease Management Scoring Instrument (HF-DMSI) incorporates 6 of the 8 domains from the taxonomy: recipient, intervention content, delivery personnel, method of communication, intensity/complexity, and environment. The 3 intervention content subdomains (education/counseling, medication management, and peer support) are described separately. In this first test of the HF-DMSI, overall intensity (measured as duration) and complexity were rated using an ordinal scoring system. Possible scores reflect a clinical rationale and differ by category, with zero given only if the element could potentially be missing (eg, surveillance by remote monitoring). Content validity was evident as the instrument matches the existing AHA taxonomy. After revision and refinement, 2 authors obtained an inter-rater reliability intraclass correlation coefficient score of 0.918 (confidence interval, 0.880 to 0.944, P<0.001) in their rating of 12 studies. The areas with most variability among programs were delivery personnel and method of communication. The HF-DMSI is useful for describing the intensity and complexity of HF disease management programs.

  10. Assessing performance outcomes of new graduates utilizing simulation in a military transition program.

    PubMed

    Hughes, Robie V; Smith, Sherrill J; Sheffield, Clair M; Wier, Grady

    2013-01-01

    This multi-site, quasi-experimental study examined the performance outcomes of nurses (n = 152) in a military nurse transition program. A modified-performance instrument was used to assess participants in two high-fidelity simulation scenarios. Although results indicated a significant increase in scores posttraining, only moderate interrater reliability results were found for the new instrument. These findings have implications for nurse educators assessing performance-based outcomes of new nurses completing transition programs.

  11. Earth radiation budget experiment software development

    NASA Technical Reports Server (NTRS)

    Edmonds, W. L.

    1985-01-01

    Computer programming and analysis efforts were carried out in support of the Earth Radiation Budget Experiment (ERBE) at NASA/Langley. The Earth Radiation Budget Experiment is described as well as data acquisition, analysis and modeling support for the testing of ERBE instruments. Also included are descriptions of the programs developed to analyze, format and display data collected during testing of the various ERBE instruments. Listings of the major programs developed under this contract are located in an appendix.

  12. Analysis of spacecraft data

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A software program for the production and analysis of data from the Dynamics Explorer-A (DE-A) satellite was maintained and modified and new software initiated. A capability was developed to process DE-A plasma-wave instrument mission analysis files on the Tektronic 4027 color CRT, for which two programs were written. The algorithm for the calibration lookup table for the plasma-wave instrument data was modified and verified, and a production program to generate color FR-80 spectrograms was written.

  13. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    PubMed Central

    Chaddock-Heyman, Laura; Erickson, Kirk I.; Voss, Michelle W.; Knecht, Anya M.; Pontifex, Matthew B.; Castelli, Darla M.; Hillman, Charles H.; Kramer, Arthur F.

    2013-01-01

    This study used functional magnetic resonance imaging (fMRI) to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ min of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait-list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait-list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex (ACC) for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control. PMID:23487583

  14. The Automated Instrumentation and Monitoring System (AIMS): Design and Architecture. 3.2

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Schmidt, Melisa; Schulbach, Cathy; Bailey, David (Technical Monitor)

    1997-01-01

    Whether a researcher is designing the 'next parallel programming paradigm', another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such information can help computer and software architects to capture, and therefore, exploit behavioral variations among/within various parallel programs to take advantage of specific hardware characteristics. A software tool-set that facilitates performance evaluation of parallel applications on multiprocessors has been put together at NASA Ames Research Center under the sponsorship of NASA's High Performance Computing and Communications Program over the past five years. The Automated Instrumentation and Monitoring Systematic has three major software components: a source code instrumentor which automatically inserts active event recorders into program source code before compilation; a run-time performance monitoring library which collects performance data; and a visualization tool-set which reconstructs program execution based on the data collected. Besides being used as a prototype for developing new techniques for instrumenting, monitoring and presenting parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Currently, the execution of FORTRAN and C programs on the Intel Paragon and PALM workstations can be automatically instrumented and monitored. Performance data thus collected can be displayed graphically on various workstations. The process of performance tuning with AIMS will be illustrated using various NAB Parallel Benchmarks. This report includes a description of the internal architecture of AIMS and a listing of the source code.

  15. 41 CFR 101-26.508 - Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... processing (EDP) tape and instrumentation tape (wide and intermediate band). 101-26.508 Section 101-26.508... Programs § 101-26.508 Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band). Procurement by Federal agencies of EDP tape and instrumentation tape (wide and intermediate band...

  16. 41 CFR 101-26.508 - Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... processing (EDP) tape and instrumentation tape (wide and intermediate band). 101-26.508 Section 101-26.508... Programs § 101-26.508 Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band). Procurement by Federal agencies of EDP tape and instrumentation tape (wide and intermediate band...

  17. 41 CFR 101-26.508 - Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... processing (EDP) tape and instrumentation tape (wide and intermediate band). 101-26.508 Section 101-26.508... Programs § 101-26.508 Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band). Procurement by Federal agencies of EDP tape and instrumentation tape (wide and intermediate band...

  18. 41 CFR 101-26.508 - Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... processing (EDP) tape and instrumentation tape (wide and intermediate band). 101-26.508 Section 101-26.508... Programs § 101-26.508 Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band). Procurement by Federal agencies of EDP tape and instrumentation tape (wide and intermediate band...

  19. 41 CFR 101-26.508 - Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... processing (EDP) tape and instrumentation tape (wide and intermediate band). 101-26.508 Section 101-26.508... Programs § 101-26.508 Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band). Procurement by Federal agencies of EDP tape and instrumentation tape (wide and intermediate band...

  20. Laboratory Instrumentation: An Exploration of the Impact of Instrumentation on Student Learning

    ERIC Educational Resources Information Center

    Warner, Don L.; Brown, Eric C.; Shadle, Susan E.

    2016-01-01

    Academic programs generally work to make their laboratory curriculum both as instrumentation rich and up to date as possible. However, little is known about the relationship between the use of instrumentation in the curriculum and student learning. As part of our department's ongoing assessment efforts, a project was designed to probe this…

  1. A Survey of Modes of Student Response Indicative of Musical Learning in Elementary Instrumental Music.

    ERIC Educational Resources Information Center

    Weaver, Molly A.

    This master's thesis reports on a study of the frequency and modes of student responses that demonstrate musical learning in the elementary instrumental music class. Some advances must be made toward more definitive evaluation practices in elementary school instrumental music if instrumental programs are to be justified in terms of improved…

  2. Final Technical Report for DOE Grant DE-FG02-08CH11515

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Dr. Ira Mark

    2012-12-31

    The year 2008 resulted in 99 scans that were funded through NIH agencies. An additional 43 MRI scans were funded by industry. Over 250 scans were acquired by various investigators as pilot data to be used for future grant applications. While these numbers are modest in comparison to most busy research MRI Centers, they are in line with that of a newly established MRI research facility. The initial 12-18 months of operation were primarily dedicated to establishing new IRB approved research studies, and acquiring pilot data for future grant applications. During the year 2009 the MRI Center continued to showmore » positive growth with respect to funded studies and the number of scan sessions. The number of NIH sponsored scans increased to 242 and the number of industry funded studies climbed to 81. This more than doubled our numbers of funded scans over the previous year. In addition, 398 scans were acquired as pilot data; most of which were fMRI's. The MRI Center continued to expand with additional researchers who were interested in probing the brain's response to chronic pain. Other studies looked at regions of brain activation in patients with impulsivity disorders; including smokers. A large majority of the imaging studies were focused on the brain; however, the MRI Center continued to accommodate the needs of various types of investigators, who studied various types of human pathology. Studies of porcine cardiac function and myocardial perfusion were performed. Another study of ultra-fast acute abdominal MRI in children was underway; eventually leading to publication in AJR. These non-neuro type research projects allowed the MRI Center to expand upon the depth and breadth of service that has now become available to researchers at UVM. The UVM MRI Center became the first clinical/research site in North America to install dual radio frequency (RF) amplifiers on a 3T MRI system. The use of dual RF amplifiers helps to eliminate standing wave artifacts that are prevalent at 3T. Standing wave artifacts often rendered spine or abdominal 3T MR images to be poor quality or unreadable prior to the availability of multi-transmit. A research collaboration agreement with Philips Healthcare, Best, Netherlands allowed our site to have first use of the technology; while at the same time giving us the opportunity to provide critical feedback to Philips Healthcare about our experiences with multi-transmit. This dramatically improved image quality for 3T MRI sites across the US and the world. Philips has stationed an onsite MRI physicist at UVM to work collaboratively with researchers at the University of Vermont on various MRI related projects. He has worked collaboratively with UVM investigators toward the design and publication of several journal articles and abstracts during his time at UVM. As the MRI Center advanced through the year 2010, an additional MRI technologist and a MRI physicist were hired to accommodate the increased demand for MRI scanning and data processing expertise. This enabled us to not only expand our hours of operation; it also helped to augment our MRI pulse programming and data processing capabilities. Studies that used state-of-the-art MRI techniques like pseudo continuous arterial spin labeling (pCASL) allowed researchers from the Department of Obstetrics and Reproductive Services to obtain non-contrast brain perfusion values of women to help them to better understand the effects of preeclampsia. At year-end 2010 the MRI Center completed 303 NIH funded and 198 industry funded scans. The number of no charge pilot scans decreased to 189.« less

  3. Online Student Evaluation Improves Course Experience Questionnaire Results in a Physiotherapy Program

    ERIC Educational Resources Information Center

    Tucker, Beatrice; Jones, Sue; Straker, Leon

    2008-01-01

    This paper reports the use of an online student evaluation system, Course Experience on the Web (CEW), in a physiotherapy program to improve their Course Experience Questionnaire (CEQ) results. CEW comprises a course survey instrument modeled on the CEQ and a tailored unit survey instrument. Closure of the feedback loop is integral in the CEW…

  4. Research on Synthetic Training: Device Evaluation and Training Program Development.

    ERIC Educational Resources Information Center

    Caro, Paul W.; And Others

    Two studies were conducted to evaluate a fixed-wing instrument procedures training device and to develop a training program for use with it. In the first, a group of trainees who received synthetic instrument flight training with the new device were compared with a control group who did not. Men trained with the device performed more…

  5. Benefits of a Classroom Based Instrumental Music Program on Verbal Memory of Primary School Children: A Longitudinal Study

    ERIC Educational Resources Information Center

    Rickard, Nikki S.; Vasquez, Jorge T.; Murphy, Fintan; Gill, Anneliese; Toukhsati, Samia R.

    2010-01-01

    Previous research has demonstrated a benefit of music training on a number of cognitive functions including verbal memory performance. The impact of school-based music programs on memory processes is however relatively unknown. The current study explored the effect of increasing frequency and intensity of classroom-based instrumental training…

  6. Microelectronics bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1977-01-01

    Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.

  7. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    NASA Technical Reports Server (NTRS)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  8. Laser Metalworking Technology Transfer.

    DTIC Science & Technology

    1986-01-01

    TI 59 programmable calculator /printer...the .4 one-dimensional heat flow model and should not be used for low processing speed. The program is written for use on a Texas Instrument TI 59 programmable calculator with...speed range, and a three-dimensional model for the low speed ranges. The program is written for use on a Texas Instrument TI 59 . * programmable calculator

  9. An Investigation of the Relationships between Mathematics and Music Skills of Students Participating in Successful High School Instrumental Music Programs

    ERIC Educational Resources Information Center

    Deppe, Scott

    2012-01-01

    This exploratory phenomenological study was designed to investigate the relationships between mathematics and music skills of students participating in successful high school instrumental music programs. The participants of this study were purposefully selected and included one math educator or math department chairperson and the band or orchestra…

  10. An Assessment Instrument for Families: Evaluating Community-Based Residential Programs for Individuals with Deaf-Blindness.

    ERIC Educational Resources Information Center

    Helen Keller National Center - Technical Assistance Center, Sands Point, NY.

    This community living assessment tool for parents of children with deaf-blindness was developed to help parents identify the strengths and weaknesses of their child's residential program using a user-friendly instrument. Three areas of assessment are covered: physical attributes of the home, available resources for promoting capabilities, and…

  11. Dynamic half Fourier acquisition, single shot turbo spin-echo magnetic resonance imaging for evaluating the female pelvis.

    PubMed

    Gousse, A E; Barbaric, Z L; Safir, M H; Madjar, S; Marumoto, A K; Raz, S

    2000-11-01

    We assessed the merit of dynamic half Fourier acquisition, single shot turbo spin-echo sequence T2-weighted magnetic resonance imaging (MRI) for evaluating pelvic organ prolapse and all other female pelvic pathology by prospectively correlating clinical with imaging findings. From September 1997 to April 1998, 100 consecutive women 23 to 88 years old with (65) and without (35) pelvic organ prolapse underwent half Fourier acquisition, single shot turbo spin-echo sequence dynamic pelvic T2-weighted MRI at our institution using a 1.5 Tesla magnet with phased array coils. Mid sagittal and parasagittal views with the patient supine, relaxed and straining were obtained using no pre-examination preparation or instrumentation. We evaluated the anterior vaginal wall, bladder, urethra, posterior vaginal wall, rectum, pelvic floor musculature, perineum, uterus, vaginal cuff, ovaries, ureters and intraperitoneal organs for all pathological conditions, including pelvic prolapse. Patients underwent a prospective physical examination performed by a female urologist, and an experienced radiologist blinded to pre-imaging clinical findings interpreted all studies. Physical examination, MRI and intraoperative findings were statistically correlated. Total image acquisition time was 2.5 minutes, room time 10 minutes and cost American $540. Half Fourier acquisition, single shot turbo spin-echo T2-weighted MRI revealed pathological entities other than pelvic prolapse in 55 cases, including uterine fibroids in 11, ovarian cysts in 9, bilateral ureteronephrosis in 3, nabothian cyst in 7, Bartholin's gland cyst in 4, urethral diverticulum in 3, polytetrafluoroethylene graft abscess in 3, bladder diverticulum in 2, sacral spinal abnormalities in 2, bladder tumor in 1, sigmoid diverticulosis in 1 and other in 9. Intraoperative findings were considered the gold standard against which physical examination and MRI were compared. Using these criteria the sensitivity, specificity and positive predictive value of MRI were 100%, 83% and 97% for cystocele; 100%, 75% and 94% for urethrocele; 100%, 54% and 33% for vaginal vault prolapse; 83%, 100% and 100% for uterine prolapse; 87%, 80% and 91% for enterocele; and 76%, 50% and 96% for rectocele. Dynamic half Fourier acquisition, single shot turbo spin-echo MRI appears to be an important adjunct in the comprehensive evaluation of the female pelvis. Except for rectocele, pelvic floor prolapse is accurately staged and pelvic organ pathology reliably detected. The technique is rapid, noninvasive and cost-effective, and it allows the clinician to visualize the whole pelvis using a single dynamic study that provides superb anatomical detail.

  12. Age-specific MRI templates for pediatric neuroimaging

    PubMed Central

    Sanchez, Carmen E.; Richards, John E.; Almli, C. Robert

    2012-01-01

    This study created a database of pediatric age-specific MRI brain templates for normalization and segmentation. Participants included children from 4.5 through 19.5 years, totaling 823 scans from 494 subjects. Open-source processing programs (FSL, SPM, ANTS) constructed head, brain and segmentation templates in 6 month intervals. The tissue classification (WM, GM, CSF) showed changes over age similar to previous reports. A volumetric analysis of age-related changes in WM and GM based on these templates showed expected increase/decrease pattern in GM and an increase in WM over the sampled ages. This database is available for use for neuroimaging studies (blindedforreview). PMID:22799759

  13. Radiation and Health Technology Laboratory Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.

    2005-07-09

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less

  14. The 1990 Reference Handbook: Earth Observing System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the Earth Observing System (EOS) including goals and requirements is given. Its role in the U.S. Global Change Research Program and the International--Biosphere Program is addressed. The EOS mission requirements, science, fellowship program, data and information systems architecture, data policy, space measurement, and mission elements are presented along with the management of EOS. Descriptions of the facility instruments, instrument investigations, and interdisciplinary investigations are also present. The role of the National Oceanic and Atmospheric Administration in the mission is mentioned.

  15. Acoustic Source Bearing Estimation (ASBE) computer program development

    NASA Technical Reports Server (NTRS)

    Wiese, Michael R.

    1987-01-01

    A new bearing estimation algorithm (Acoustic Source Analysis Technique - ASAT) and an acoustic analysis computer program (Acoustic Source Bearing Estimation - ASBE) are described, which were developed by Computer Sciences Corporation for NASA Langley Research Center. The ASBE program is used by the Acoustics Division/Applied Acoustics Branch and the Instrument Research Division/Electro-Mechanical Instrumentation Branch to analyze acoustic data and estimate the azimuths from which the source signals radiated. Included are the input and output from a benchmark test case.

  16. Automatic voxel-based morphometry of structural MRI by SPM8 plus diffeomorphic anatomic registration through exponentiated lie algebra improves the diagnosis of probable Alzheimer Disease.

    PubMed

    Matsuda, H; Mizumura, S; Nemoto, K; Yamashita, F; Imabayashi, E; Sato, N; Asada, T

    2012-06-01

    The necessity for structural MRI is greater than ever to both diagnose AD in its early stage and objectively evaluate its progression. We propose a new VBM-based software program for automatic detection of early specific atrophy in AD. A target VOI was determined by group comparison of 30 patients with very mild AD and 40 age-matched healthy controls by using SPM. Then this target VOI was incorporated into a newly developed automated software program independently running on a Windows PC for VBM by using SPM8 plus DARTEL. ROC analysis was performed for discrimination of 116 other patients with AD with very mild stage (n = 45), mild stage (n = 30) and moderate-to-advanced stages (n = 41) from 40 other age-matched healthy controls by using a z score map in the target VOI. Medial temporal structures involving the entire region of the entorhinal cortex, hippocampus, and amygdala showed significant atrophy in the patients with very mild AD and were determined as a target VOI. When we used the severity score of atrophy in this target VOI, 91.6%, 95.8%, and 98.2% accuracies were obtained in the very mild AD, mild AD, and moderate-to-severe AD groups, respectively. In the very mild AD group, a high specificity of 97.5% with a sensitivity of 86.4% was obtained, and age at onset of AD did not influence this accuracy. This software program with application of SPM8 plus DARTEL to VBM provides a high performance for AD diagnosis by using MRI.

  17. Astronomy and astrophysics for the 1980's, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  18. Overview of the Novel Intelligent JAXA Active Rotor Program

    NASA Technical Reports Server (NTRS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  19. Astronomy and astrophysics for the 1980's, volume 1

    NASA Astrophysics Data System (ADS)

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  20. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.

  1. Building a strong geoscience department by emphasizing curriculum and pedagogy

    NASA Astrophysics Data System (ADS)

    Lea, P. D.; Beane, R. J.; Laine, E. P.

    2005-12-01

    About a decade ago the Bowdoin College Geology Department recognized a need for a new curriculum that more fully engaged majors and non-majors as active learners. To accomplish this curricular change the faculty have adopted differing pedagogies that all engage students in real projects. Research project-based learning, community-based learning, and problem-based service-learning form the core of our teaching efforts. The emphasis on problem-solving and inquiry in our courses has greatly strengthened our department's contributions to research, education, and service at the college. These courses have an added benefit of acquainting students with various aspects of their local and global environment. Geology majors leave Bowdoin equipped with tools and experiences they need for employment or graduate school as well life-long learners. To support the integration of research into our teaching we have successfully sought funding from NSF's CCLI and MRI programs. As a consequence, even first year students work with an SEM/EDAX/EBSD, with instrumented watersheds, and soon with an ocean observatory adjacent to our Coastal Studies Center, as well as taking greater advantage of local field opportunities. Our intense focus on improving curriculum and pedagogy organized and energized us within the department and helped us to present ourselves and our goals to the college.

  2. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  3. University of Houston Undergraduate Student Instrumentation Projects

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Talbot, R. W.; Hampton, D. L.; Molders, N.; Millan, R. M.; Halford, A. J.; Dunbar, B.; Morris, G. A.; Prince, J.; Gamblin, R.; Ehteshami, A.; Lehnen, J. N.; Greer, M.; Porat, I.; Alozie, M.; Behrend, C. C.; Bias, C.; Fenton, A.; Gunawan, B.; Harrison, W.; Martinez, A.; Mathur, S.; Medillin, M.; Nguyen, T.; Nguyen, T. V.; Nowling, M.; Perez, D.; Pham, M.; Pina, M.; Thomas, G.; Velasquez, B.; Victor, L.

    2017-12-01

    The Undergraduate Student Instrumentation Project (USIP) is a NASA program to engage undergraduate students in rigorous scientific research, for the purposes of innovation and developing the next generation of professionals for an array of fields. The program is student led and executed from initial ideation to research to the design and deployment of scientific payloads. The University of Houston has been selected twice to participate in the USIP programs. The first program (USIP_UH I) ran from 2013 to 2016. USIP_UH II started in January of 2016, with funding starting at the end of May. USIP_UH I (USIP_UH II) at the University of Houston was (is) composed of eight (seven) research teams developing six (seven), distinct, balloon-based scientific instruments. These instruments will contribute to a broad range of geophysical sciences from Very Low Frequency recording and Total Electron Content to exobiology and ozone profiling. USIP_UH I had 12 successful launches with 9 recoveries from Fairbanks, AK in March 2015, and 4 piggyback flights with BARREL 3 from Esrange, Kiruna, Sweden in August, 2015. USIP_UH II had 8 successful launches with 5 recoveries from Fairbanks, AK in March 2017, 3 piggyback flights with BARREL 4 from Esrange, Kiruna, Sweden in August, 2016, and 1 flight each from CSBF and UH. The great opportunity of this program is capitalizing on the proliferation of electronics miniaturization to create new generations of scientific instruments that are smaller and lighter than ever before. This situation allows experiments to be done more cheaply which ultimately allows many more experiments to be done.

  4. Students' Attitudes towards Individual Musical Instrument Courses in Music Education Graduate Programs in Turkey

    ERIC Educational Resources Information Center

    Önder, Gülten Cüceoglu

    2015-01-01

    The Individual Musical Instrument course is a compulsory part of the curriculum, in the Music Education Departments of universities in Turkey. The main purpose of the course is to ensure that each student is able to play a musical instrument and, use the instrument once they become music teachers. This study aims to determine the attitudes of…

  5. ATR NSUF Instrumentation Enhancement Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joy L. Rempe; Mitchell K. Meyer; Darrell L. Knudson

    A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to expand instrumentation available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing real-time measurements of key irradiation parameters is emphasized because of their potential to increase data fidelity and reduce posttest examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users ofmore » the ATR NSUF. In addition, progress is reported on current research efforts to provide improved in-pile instrumentation to users.« less

  6. Soft Particle Spectrometer, Langmuir Probe, and Data Analysis for Aerospace Magnetospheric/Thermospheric Coupling Rocket Program

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Frahm, R. A.; Scherrer, J. R.

    1997-01-01

    Under this grant two instruments, a soft particle spectrometer and a Langmuir probe, were refurbished and calibrated, and flown on three instrumented rocket payloads as part of the Magnetosphere/Thermosphere Coupling program. The flights took place at the Poker Flat Research Range on February 12, 1994 (T(sub o) = 1316:00 UT), February 2, 1995 (T(sub o) = 1527:20 UT), and November 27, 1995 (T(sub o) = 0807:24 UT). In this report the observations of the particle instrumentation flown on all three of the flights are described, and brief descriptions of relevant geophysical activity for each flight are provided. Calibrations of the particle instrumentation for all ARIA flights are also provided.

  7. Aeropropulsion 1987. Session 4: Instrumentation and Controls Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Lewis Research Center has had a long history of research directed toward advancing the national capability in the areas of propulsion research instrumentation and propulsion controls. Some of the major advances from this research that are currently in use are highlighted as well as some of the ongoing and planned research that will strongly impact the future capabilities. The presentations will cover the efforts on research instrumentation and controls as well as the research on high temperature electronics. This introductory section will focus on the major drivers or needs of the aeropropulsion industry that have shaped the instrumentation and controls research programs. Also covered will be the technological opportunities that have greatly impacted the program and that permitted break-throughs in several areas.

  8. Thirty Years Supporting Portable Arrays: The IRIS Passcal Instrument Center

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. C.; Anderson, K. R.; Bilek, S. L.; Woodward, R.

    2014-12-01

    Thirty years have passed since establishment of the IRIS Program for the Array Seismic Studies of the Continental Lithosphere (PASSCAL). PASSCAL was part of a coordinated plan proposed to the National Science Foundation (NSF) defining the instrumentation, data collection and management structure to support a wide range of research in seismology. The PASSCAL program has surpassed the early goal of 6000 data acquisition channels with a current inventory of instrumentation capable of imaging from the near surface to the inner core. Here we present the evolution of the PASSCAL program from instrument depot to full service community resource. PASSCAL has supported close to 1100 PI driven seismic experiments since its inception. Instruments from PASSCAL have covered the globe and have contributed over 7400 SEED stations and 242 assembled data sets to the IRIS Data Management Center in Seattle. Since the combination in 1998 of the Stanford and Lamont instrument centers into the single PASSCAL Instrument Center (PIC) at New Mexico Tech, the facility has grown in scope by adding the EarthScope Array Operations Facility in 2005, the incorporation of the EarthScope Flexible Array, and a Polar support group in 2006. The polar support group enhances portable seismic experiments in extremely harsh polar environments and also extends to special projects such as the Greenland Ice Sheet Monitoring Network (GLISN) and the recent development effort for Geophysical Earth Observatory for Ice Covered Environments (GEOICE). Through these support efforts the PIC has established itself as a resource for field practices, engineered solutions for autonomous seismic stations, and a pioneer in successful seismic recording in polar environments. We are on the cusp of a new generation of instrumentation driven in part by the academic community's desire to record unaliased wavefields in multiple frequency bands and industry's interest in utilizing lower frequency data. As part of the recently funded IRIS proposal to NSF for support of Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE), IRIS is developing plans for this new instrumentation that will ensure that the PASSCAL program continues to provide state-of-the-art observing capabilities into the coming decades.

  9. Instrumental Relationships: A Potential Relational Model for Inner-City Youth Programs

    ERIC Educational Resources Information Center

    Halpern, Robert

    2005-01-01

    In this article, a distinct type of adult-youth relationship found in some youth programs and characterized as instrumental is discussed. Such relationships focus primarily on joint work on a task or project, or in a discipline, with the adult having expertise and a strong identity in the substantive domain involved, rather than in youth work per…

  10. Monitoring student attendance, participation, and performance improvement: an instrument and forms.

    PubMed

    Kosta, Joanne

    2012-01-01

    When students receive consistent and fair feedback about their behavior, program liability decreases. To help students to have a clearer understanding of minimum program standards and the consequences of substandard performance, the author developed attendance and participation monitoring and performance improvement instruments. The author discusses the tools that address absenteeism, tardiness, unprofessional, and unsafe clinical behaviors among students.

  11. Earth observing system. Output data products and input requirements, version 2.0. Volume 1: Instrument data product characteristics

    NASA Technical Reports Server (NTRS)

    Lu, Yun-Chi; Chang, Hyo Duck; Krupp, Brian; Kumar, Ravindra; Swaroop, Anand

    1992-01-01

    Information on Earth Observing System (EOS) output data products and input data requirements that has been compiled by the Science Processing Support Office (SPSO) at GSFC is presented. Since Version 1.0 of the SPSO Report was released in August 1991, there have been significant changes in the EOS program. In anticipation of a likely budget cut for the EOS Project, NASA HQ restructured the EOS program. An initial program consisting of two large platforms was replaced by plans for multiple, smaller platforms, and some EOS instruments were either deselected or descoped. Updated payload information reflecting the restructured EOS program superseding the August 1991 version of the SPSO report is included. This report has been expanded to cover information on non-EOS data products, and consists of three volumes (Volumes 1, 2, and 3). Volume 1 provides information on instrument outputs and input requirements. Volume 2 is devoted to Interdisciplinary Science (IDS) outputs and input requirements, including the 'best' and 'alternative' match analysis. Volume 3 provides information about retrieval algorithms, non-EOS input requirements of instrument teams and IDS investigators, and availability of non-EOS data products at seven primary Distributed Active Archive Centers (DAAC's).

  12. 77 FR 71104 - Determination of Reasonable Rates and Terms for Noncommercial Broadcasting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... full-time students 2013 2014 2015 2016 2017 Level 1 =20% Feature Music programming: Population count..., Composers and Publishers (``ASCAP''); SESAC, Inc.; Broadcast Music, Inc. (``BMI''); Educational Media Foundation (``EMF''); Music Reports, Inc. (``MRI''); National Public Radio, the Public Broadcasting Service...

  13. Perspective on the National Aero-Space Plane Program instrumentation development

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Erbland, Peter

    1993-01-01

    A review of the requirement for, and development of, advanced measurement technology for the National Aerospace Plane program is presented. The objective is to discuss the technical need and the program commitment required to ensure that adequate and timely measurement capabilities are provided for ground and flight testing in the NASP program. The scope of the measurement problem is presented, the measurement process is described, how instrumentation technology development has been affected by NASP program evolution is examined, the national effort to define measurement requirements and assess the adequacy of current technology to support the NASP program is discussed, and the measurement requirements are summarized. The unique features of the NASP program that complicate the understanding of requirements and the development of viable solutions are illustrated.

  14. Cost-effectiveness of screening women with familial risk for breast cancer with magnetic resonance imaging.

    PubMed

    Saadatmand, Sepideh; Tilanus-Linthorst, Madeleine M A; Rutgers, Emiel J T; Hoogerbrugge, Nicoline; Oosterwijk, Jan C; Tollenaar, Rob A E M; Hooning, Maartje; Loo, Claudette E; Obdeijn, Inge-Marie; Heijnsdijk, Eveline A M; de Koning, Harry J

    2013-09-04

    To reduce mortality, women with a family history of breast cancer are often screened with mammography before age 50 years. Additional magnetic resonance imaging (MRI) improves sensitivity and is cost-effective for BRCA1/2 mutation carriers. However, for women with a family history without a proven mutation, cost-effectiveness is unclear. We evaluated data of the largest prospective MRI screening study (MRISC). Between 1999 and 2007, 1597 women (8370 woman-years at risk) aged 25 to 70 years with an estimated cumulative lifetime risk of 15% to 50% for breast cancer were screened with clinical breast examination every 6 months and with annual mammography and MRI. We calculated the cost per detected and treated breast cancer. After incorporating MRISC data into a microsimulation screening analysis model (MISCAN), different schemes were evaluated, and cost per life-year gained (LYG) was estimated in comparison with the Dutch nationwide breast cancer screening program (biennial mammography from age 50 to 75 years). All statistical tests were two-sided. Forty-seven breast cancers (9 ductal carcinoma in situ) were detected. Screening with additional MRI costs $123 672 (€93 639) per detected breast cancer. In increasing age-cohorts, costs per detected and treated breast cancer decreased, but, unexpectedly, the percentage of MRI-only detected cancers increased. Screening under the MRISC-scheme from age 35 to 50 years was estimated to reduce breast cancer mortality by 25% at $134 932 (€102 164) per LYG (3.5% discounting) compared with 17% mortality reduction at $54 665 (€41 390) per LYG with mammography only. Screening with MRI may improve survival for women with familial risk for breast cancer but is expensive, especially in the youngest age categories.

  15. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI.

    PubMed

    Lau, Brian C; Thuillier, Daniel U; Pedoia, Valentina; Chen, Ellison Y; Zhang, Zhihong; Feeley, Brian T; Souza, Richard B

    2016-01-01

    Patellar maltracking is a leading cause of patellofemoral pain syndrome (PFPS). The aim of this study was to determine the inter- and intra-rater reliability of a semi-automated program for magnetic resonance imaging (MRI) based patellofemoral kinematics. Sixteen subjects (10 with PFPS [mean age 32.3; SD 5.2; eight females] and six controls without PFPS 19 [mean age 28.6; SD 2.8; three females]) participated in the study. One set of T2-weighted, fat-saturated fast spin-echo (FSE) MRIs were acquired from each subject in full extension and 30° of knee flexion. MRI including axial T1ρ relaxation time mapping sequences was also performed on each knee. Following image acquisitions, regions of interest for kinematic MRI, and patellar and trochlear cartilage were segmented and quantified with in-house designed spline- based MATLAB semi-automated software. Intraclass Correlations Coefficients (ICC) of calculated kinematic parameters were good to excellent, ICC > 0.8 in patellar flexion, rotation, tilt, and translation (anterior -posterior, medial -lateral, and superior -inferior), and contact area translation. Only patellar tilt in the flexed position and motion from extended to flexed state was significantly different between PFPS and control patients (p=0.002 and p=0.006, respectively). No significant correlations were identified between patellofemoral kinematics and contact area with T1ρ relaxation times. A semi-automated, spline-based kinematic MRI technique for patellofemoral kinematic and contact area quantification is highly reproducible with the potential to help better understand the role of patellofemoral maltracking in PFPS and other knee disorders. Level IV. Published by Elsevier B.V.

  16. Computed inverse MRI for magnetic susceptibility map reconstruction

    PubMed Central

    Chen, Zikuan; Calhoun, Vince

    2015-01-01

    Objective This paper reports on a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a two-step computational approach. Methods The forward T2*-weighted MRI (T2*MRI) process is decomposed into two steps: 1) from magnetic susceptibility source to fieldmap establishment via magnetization in a main field, and 2) from fieldmap to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes two inverse steps to reverse the T2*MRI procedure: fieldmap calculation from MR phase image and susceptibility source calculation from the fieldmap. The inverse step from fieldmap to susceptibility map is a 3D ill-posed deconvolution problem, which can be solved by three kinds of approaches: Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Results Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from a MR phase image with high fidelity (spatial correlation≈0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. Conclusions The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by two computational steps: calculating the fieldmap from the phase image and reconstructing the susceptibility map from the fieldmap. The crux of CIMRI lies in an ill-posed 3D deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm. PMID:22446372

  17. Magnetic Resonance Imaging-DRAGON score: 3-month outcome prediction after intravenous thrombolysis for anterior circulation stroke.

    PubMed

    Turc, Guillaume; Apoil, Marion; Naggara, Olivier; Calvet, David; Lamy, Catherine; Tataru, Alina M; Méder, Jean-François; Mas, Jean-Louis; Baron, Jean-Claude; Oppenheim, Catherine; Touzé, Emmanuel

    2013-05-01

    The DRAGON score, which includes clinical and computed tomographic scan parameters, showed a high specificity to predict 3-month outcome in patients with acute ischemic stroke treated by intravenous tissue plasminogen activator. We adapted the score for patients undergoing MRI as the first-line diagnostic tool. We reviewed patients with consecutive anterior circulation ischemic stroke treated ≤ 4.5 hour by intravenous tissue plasminogen activator between 2003 and 2012 in our center, where MRI is systematically implemented as first-line diagnostic work-up. We derived the MRI-DRAGON score keeping all clinical parameters of computed tomography-DRAGON (age, initial National Institutes of Health Stroke Scale and glucose level, prestroke handicap, onset to treatment time), and considering the following radiological variables: proximal middle cerebral artery occlusion on MR angiography instead of hyperdense middle cerebral artery sign, and diffusion-weighted imaging Alberta Stroke Program Early Computed Tomography Score (DWI ASPECTS) ≤ 5 instead of early infarct signs on computed tomography. Poor 3-month outcome was defined as modified Rankin scale >2. We calculated c-statistics as a measure of predictive ability and performed an internal cross-validation. Two hundred twenty-eight patients were included. Poor outcome was observed in 98 (43%) patients and was significantly associated with all parameters of the MRI-DRAGON score in multivariate analysis, except for onset to treatment time (nonsignificant trend). The c-statistic was 0.83 (95% confidence interval, 0.78-0.88) for poor outcome prediction. All patients with a MRI-DRAGON score ≤ 2 (n=22) had a good outcome, whereas all patients with a score ≥ 8 (n=11) had a poor outcome. The MRI-DRAGON score is a simple tool to predict 3-month outcome in acute stroke patients screened by MRI then treated by intravenous tissue plasminogen activator and may help for therapeutic decision.

  18. MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

    PubMed Central

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [−2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is highly recommended at every site, especially in multicenter and longitudinal studies. PMID:24489711

  19. Project Developmental Continuity Evaluation: Implementation Rating Instrument.

    ERIC Educational Resources Information Center

    High/Scope Educational Research Foundation, Ypsilanti, MI.

    This instrument is part of a series of documents on the evaluation of Project Developmental Continuity (PDC), a Head Start demonstration program aimed at providing educational and developmental continuity between children's Head Start and primary school experiences. The Implementation Rating Instrument (IRI) was developed to provide a quantitative…

  20. Specification and Error Pattern Based Program Monitoring

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Johnson, Scott; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2001-01-01

    We briefly present Java PathExplorer (JPAX), a tool developed at NASA Ames for monitoring the execution of Java programs. JPAX can be used not only during program testing to reveal subtle errors, but also can be applied during operation to survey safety critical systems. The tool facilitates automated instrumentation of a program in order to properly observe its execution. The instrumentation can be either at the bytecode level or at the source level when the source code is available. JPaX is an instance of a more general project, called PathExplorer (PAX), which is a basis for experiments rather than a fixed system, capable of monitoring various programming languages and experimenting with other logics and analysis techniques

Top