Dagalakis, Nicholas G.; Yoo, Jae Myung; Oeste, Thomas
2017-01-01
The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels. PMID:28579658
Dagalakis, Nicholas G; Yoo, Jae Myung; Oeste, Thomas
2016-01-01
The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels.
49 CFR 572.103 - Test conditions and instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Test conditions and instrumentation. 572.103... Motion Headform § 572.103 Test conditions and instrumentation. (a) Headform accelerometers shall have... 1988, “Instrumentation for Impact Tests,” Class 1000 (incorporated by reference; see § 572.100). (c...
49 CFR 572.103 - Test conditions and instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Test conditions and instrumentation. 572.103... Motion Headform § 572.103 Test conditions and instrumentation. (a) Headform accelerometers shall have... 1988, “Instrumentation for Impact Tests,” Class 1000 (incorporated by reference; see § 572.100). (c...
49 CFR 572.103 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Test conditions and instrumentation. 572.103... Motion Headform § 572.103 Test conditions and instrumentation. (a) Headform accelerometers shall have... 1988, “Instrumentation for Impact Tests,” Class 1000 (incorporated by reference; see § 572.100). (c...
49 CFR 572.103 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Test conditions and instrumentation. 572.103... Motion Headform § 572.103 Test conditions and instrumentation. (a) Headform accelerometers shall have... 1988, “Instrumentation for Impact Tests,” Class 1000 (incorporated by reference; see § 572.100). (c...
49 CFR 572.103 - Test conditions and instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Test conditions and instrumentation. 572.103... Motion Headform § 572.103 Test conditions and instrumentation. (a) Headform accelerometers shall have... 1988, “Instrumentation for Impact Tests,” Class 1000 (incorporated by reference; see § 572.100). (c...
ERIC Educational Resources Information Center
Martinez, Edwin E.
2012-01-01
This study examines the impact of instrumental music study and group chess lessons on the standardized test scores of suburban elementary public school students (grades three through five) in Levittown, New York. The study divides the students into the following groups and compares the standardized test scores of each: a) instrumental music…
Instrumented impact and residual tensile strength testing of eight-ply carbon eopoxy specimens
NASA Technical Reports Server (NTRS)
Nettles, A. T.
1990-01-01
Instrumented drop weight impact testing was utilized to examine a puncture-type impact on thin carbon-epoxy coupons. Four different material systems with various eight-ply lay-up configurations were tested. Specimens were placed over a 10.3-mm diameter hole and impacted with a smaller tup (4.2-mm diameter) than those used in previous studies. Force-time plots as well as data on absorbed energy and residual tensile strength were gathered and examined. It was found that a critical impact energy level existed for each material tested, at which point tensile strength began to rapidly decrease with increasing impact energy.
49 CFR 572.77 - Instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Instrumentation. 572.77 Section 572.77 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Instrumentation. (a)(1) Test probe. For the head, thorax, and knee impact test, use a test probe that is rigid, of...
49 CFR 572.77 - Instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Instrumentation. 572.77 Section 572.77 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Instrumentation. (a)(1) Test probe. For the head, thorax, and knee impact test, use a test probe that is rigid, of...
49 CFR 572.77 - Instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Instrumentation. 572.77 Section 572.77 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Instrumentation. (a)(1) Test probe. For the head, thorax, and knee impact test, use a test probe that is rigid, of...
49 CFR 572.77 - Instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Instrumentation. 572.77 Section 572.77 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Instrumentation. (a)(1) Test probe. For the head, thorax, and knee impact test, use a test probe that is rigid, of...
16 CFR 1203.3 - Referenced documents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to the draft ISO standard. (2) SAE Recommended Practice SAE J211 OCT88, Instrumentation for Impact..., Instrumentation for Impact Tests, are available from Society of Automotive Engineers, 400 Commonwealth Dr...
16 CFR 1203.3 - Referenced documents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to the draft ISO standard. (2) SAE Recommended Practice SAE J211 OCT88, Instrumentation for Impact..., Instrumentation for Impact Tests, are available from Society of Automotive Engineers, 400 Commonwealth Dr...
16 CFR 1203.3 - Referenced documents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to the draft ISO standard. (2) SAE Recommended Practice SAE J211 OCT88, Instrumentation for Impact..., Instrumentation for Impact Tests, are available from Society of Automotive Engineers, 400 Commonwealth Dr...
Low velocity instrumented impact testing of four new damage tolerant carbon/epoxy composite systems
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1990-01-01
Low velocity drop weight instrumented impact testing was utilized to examine the damage resistance of four recently developed carbon fiber/epoxy resin systems. A fifth material, T300/934, for which a large data base exists, was also tested for comparison purposes. A 16-ply quasi-isotropic lay-up configuration was used for all the specimens. Force/absorbed energy-time plots were generated for each impact test. The specimens were cross-sectionally analyzed to record the damage corresponding to each impact energy level. Maximum force of impact versus impact energy plots were constructed to compare the various systems for impact damage resistance. Results show that the four new damage tolerant fiber/resin systems far outclassed the T300/934 material. The most damage tolerant material tested was the IM7/1962 fiber/resin system.
Craig Merrill Clemons; Anand R. Sanadi
2007-01-01
An instrumented Izod test was used to investigate the effects of fiber content, coupling agent, and temperature on the impact performance of kenaf fiber reinforced polypropylene (PP). Composites containing 0-60% (by weight) kenaf fiber and 0 or 2% maleated polypropylene (MAPP) and PP/wood flour composites were tested at room temperature and between -50 °C and +...
dos Anjos, Daniela Brianne Martins; Rodrigues, Roberta Cunha Matheus; Padilha, Kátia Melissa; Pedrosa, Rafaela Batista dos Santos; Gallani, Maria Cecília Bueno Jayme
2016-01-01
ABSTRACT Objective: evaluate the practicality, acceptability and the floor and ceiling effects, estimate the reliability and verify the convergent construct's validity with the instrument called the Heart Valve Disease Impact on daily life (IDCV) of the valve disease in patients with mitral and or aortic heart valve disease. Method: data was obtained from 86 heart valve disease patients through 3 phases: a face to face interview for a socio-demographic and clinic characterization and then other two done through phone calls of the interviewed patients for application of the instrument (test and repeat test). Results: as for the practicality and acceptability, the instrument was applied with an average time of 9,9 minutes and with 110% of responses, respectively. Ceiling and floor effects observed for all domains, especially floor effect. Reliability was tested using the test - repeating pattern to give evidence of temporal stability of the measurement. Significant negative correlations with moderate to strong magnitude were found between the score of the generic question about the impact of the disease and the scores of IDCV, which points to the validity of the instrument convergent construct. Conclusion: the instrument to measure the impact of valve heart disease on the patient's daily life showed evidence of reliability and validity when applied to patients with heart valve disease. PMID:27992024
Evaluation of an immunosuppressant side effect instrument.
Winsett, Rebecca P; Arheart, Kris; Stratta, Robert J; Alloway, Rita; Wicks, Mona N; Gaber, A Osama; Hathaway, Donna K
2004-09-01
Clinicians continue to be compelled to evaluate the impact of immunosuppressive medication side effects on the quality of life of transplant recipients. We Were asked to develop an instrument to measure side effects in immunosuppressed transplant recipients. To construct an instrument that measures the impact and severity of side effects of immunosuppressive medications used in transplantation and to assess the reliability and validity of the newly developed instrument called the Memphis Survey. The instrument was constructed by a panel of physicians, nurses, and pharmacists with experience in treating transplant recipients. A small group of kidney transplant recipients (n= 13) provided pilot data for refining and testing the instrument. A national sample of kidney, liver, and heart transplant recipients (n = 505) provided data that were used to further develop the instrument. Factor analysis was used to determine the psychological dimensions underlying the instrument and to guide the construction of scales from the survey items. The instrument scales were then computed from the dataset of 505 transplant recipients to quantify the impact of immunosuppressant side effects on the quality of life of transplant recipients. Analyses showed the final instrument scales to be valid and reliable. Exploratory analysis suggests the need for further testing of the instrument to determine gender differences.
Full scale tank car coupler impact tests
DOT National Transportation Integrated Search
2003-11-15
Full scale tests were performed to investigate various : aspects of tank car behavior during coupler impacts. A tank car : was equipped with 37 accelerometers and an instrumented : coupler. Two series of full scale coupler impact tests, : comprising ...
Injury potentials of light-aircraft instrument panels.
DOT National Transportation Integrated Search
1966-04-01
Results of head-impact tests against typical light-aircraft instrument panels to determine their g time-force parameters during deformation of structure are presented for three different velocities of impact. Evaluations of the energy attenuator rece...
NASA Astrophysics Data System (ADS)
Davey, B.
2017-12-01
The impacts of mentoring in education have been well established. Mentors have a large impact on their mentees and have been show to affect mentee attitudes towards learning, interest in subjects, future success, and more. While mentoring has a well-documented impact on the mentees, mentoring also has an impact on the mentors themselves. However, little has been studied empirically about these impacts. When we looked for a validated instrument that measured the impact of mentoring on the scientists working with the teachers, we found many anecdotal reports but no instruments that meet our specific needs. To this end, we developed, tested, and implemented our own instrument for measuring the impacts of mentoring on our scientist mentors. Our instrument contained both quantitative and qualitative items designed to reveal the effects of mentoring in two areas: 1) cognitive domain (mentoring, teaching, understanding K-12) and 2) affective domain (professional, personal, participation). We first shared our survey with experts in survey development and mentoring, gathered their feedback, and incorporated their suggestions into our instrument. We then had a subsection of our mentors complete the survey and then complete it again three to four days later (test-retest). Our survey has a high correlation for the test-retest quantitative items (0.93) and a high correlation (0.90) between the three reviewers of the qualitative items. From our findings, we feel we have a validated instrument (face, content, and contruct validity) that answers our research questions reliably. Our contribution to the study of mentoring of science teachers reveals a broad range of impacts on the mentors themselves including an improved understanding of the challenges of classroom teaching, a recognition of the importance of scientists working with science teachers, an enhanced ability to communicate their research and findings, and an increased interest and excitement for their own work.
Elipe, Paz; Mora-Merchán, Joaquín A; Nacimiento, Lydia
2017-08-01
Cyberbullying is a phenomenon with important adverse consequences on victims. The emotional impact of this phenomenon has been well established. However, there is to date no instrument with good psychometric properties tested to assess such impact. The objective of this study was developing and testing the psychometric properties of an instrument to assess the emotional impact of cyberbullying: the "Cybervictimization Emotional Impact Scale, CVEIS." The sample included 1,016 Compulsory Secondary Education students (52.9 percent female) aged between 12 and 18 (M = 13.86, DT = 1.33) from three schools in southern Spain. The study used Confirmatory Factor Analyses to test the structure of the questionnaire and robustness of the scale. Internal consistency was also tested. The results supported the suitability of a three-factor model: active, depressed, and annoyed. This model showed an optimal adjustment, which was better than its competing models. It also demonstrated strong invariance among cybervictims and non-cybervictims and also among gender. The internal consistency of each factor, and the total scale, was also appropriate. The article concludes by discussing research and practical implications of the scale.
Simple go/no-go test for subcritical damage in body armor panels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Jason; Chimenti, D. E.
2011-06-23
The development of a simple test for subcritical damage in body armor panels using pressure-sensitive dye-indicator film has been performed and demonstrated effective. Measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Impacts from hard blunt impactors instrumented with an accelerometer and embedded force transducer were studied. Reliable correlations between the indicator film and instrumented impact force are shown for a range of impact energies. Force and acceleration waveforms with corresponding indicator film results are presented for impact events onto damaged and undamaged panels. We find that panel damage can occur at impact levels farmore » below the National Institute of Justice acceptance test standard.« less
NASA Astrophysics Data System (ADS)
Austin, D. E.; Ahrens, T. J.; Beauchamp, J. L.
2000-10-01
We have developed and tested a small impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. This mass spectrometer, named Dustbuster, incorporates a large target area and a reflectron, simultaneously optimizing mass resolution, sensitivity, and collection efficiency. Dust particles hitting the 65-cm2 target plate are partially ionized. The resulting ions are accelerated through a modified reflectron that focuses the ions in space and time to produce high-resolution spectra. The instrument, shown below, measures 10 x 10 x 20 cm, has a mass of 500 g, and consumes little power. Laser desorption ionization of metal and mineral samples (embedded in the impact plate) simulates particle impacts for instrument performance tests. Mass resolution in these experiments is near 200, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes. This project was funded by NASA's Planetary Instrument Definition and Development Program.
NASA Technical Reports Server (NTRS)
Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.
2016-01-01
This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.
Single passenger rail car impact test. Volume III, Test procedures, instrumentation and data.
DOT National Transportation Integrated Search
2000-01-12
A full-scale impact test was performed November 16, 1999, at the Federal Railroad Administrations Transportation : Technology Center, Pueblo, Colorado, by Transportation Technology Center, Inc., a subsidiary of the Association of : American Railro...
DOT National Transportation Integrated Search
2000-05-24
A full-scale impact test was performed November 16, 1999, at the Federal Railroad Administration's Transportation Technology Center, Pueblo, Colorado, by Transportation Technology Center, Inc., a subsidiary of the Association of American Railroads. T...
A damage tolerance comparison of IM7/8551 and IM8G/8553 carbon/epoxy composites
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1991-01-01
A damage tolerance study of two new toughened carbon fiber/epoxy resin systems was undertaken as a continuation of ongoing work into screening new opposites for resistance to foreign object impact. This report is intended to be a supplement to NASA TP 3029 in which four new fiber/resin systems were tested for damage tolerance. Instrumented drop weight impact testing was used to inflict damage to 16-ply quasi-isotropic specimens. Instrumented output data and cross-sectional examinations of the damage zone were utilized to quantify the damage. It was found that the two fiber/resin systems tested in this study were much more impact resistant than an untoughened composite such as T300/934, but were not as impact resistant as other materials previously studied.
Light airplane crash tests at impact velocities of 13 and 27 m/sec
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.; Vaughan, V. L., Jr.
1977-01-01
Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.
Wylde, Vikki; Livesey, Christine; Learmonth, Ian D; Blom, Ashley W; Hewlett, Sarah
2010-06-01
Measuring facts about disability may not reflect their personal impact. An individualized values instrument has been used to weight difficulty in performing activities of daily living in rheumatoid arthritis, and calculate personal impact (Personal Impact Health Assessment Questionnaire; PI HAQ). This study aimed to evaluate the PI HAQ in osteoarthritis (OA). Study 1: 51 people with OA completed short and long versions of the value instrument at 0 and 1 week. Study 2: 116 people with OA completed the short value instrument, disability and psychological measures at 0 and 4 weeks. Study 1: The eight-category and 20-item value instruments correlated well (r = 0.85) and scores differed by just 2.7%. The eight-category instrument showed good internal consistency reliability (Cronbach's alpha = 0.85) and moderate one-week test-retest reliability (r = 0.68, Wilcoxon signed-rank test p = 0.16, intra-class correlation coefficient [ICC] 0.62). Study 2: Values for disability were not associated with disability severity or clinical status. After weighting disability by value, the resulting PI HAQ scores were significantly associated with dissatisfaction with disability, perceived increase in disability, poor clinical status and life dissatisfaction, and differed significantly between people with high and low clinical status (convergent and discriminant construct validity). There was moderate association with the disease repercussion profile disability subscale (r = 0.511; p < 0.001) (criterion validity). The PI HAQ was stable over four weeks (ICC 0.81). These studies provide an initial evaluation of an instrument to measure the personal impact of disability in people with OA, setting disability within a personal context. Further studies, including sensitivity to change, are required.
Arrow, P; Klobas, E
2015-09-01
Early childhood caries has significant impacts on children and their families. The Early Childhood Oral Health Impact Scale (ECOHIS) is an instrument for capturing the complex dimensions of preschool children's oral health. This study aimed to evaluate the reliability and validity of the instrument among Australian preschool children. Parents/children dyads (n = 286) participating in a treatment trial on early childhood caries completed the scale at baseline, and 33 parents repeated the questionnaire 2-3 weeks later. The validity and reliability of the ECOHIS was determined using tests for convergent and discriminant validity, internal reliability of the instrument and test-retest reliability. Scale impacts were strongly correlated with global oral health ratings (Spearman's correlations; r = 0.51, total score; r = 0.43, child impact; and r = 0.49, family impact; p < 0.001). The scale was significantly associated with children's caries experience, p < 0.001. Cronbach's alpha values were 0.87, 0.89 and 0.74 for the total, the child and the family domains, respectively. Test-retest reliability was 0.92, 0.89 and 0.78 for the total, child and family domains, respectively. The scale demonstrated acceptable validity and reliability for assessing the impact of early childhood caries among Australian preschool children. © 2015 Australian Dental Association.
Pereira, Gabriel Kalil Rocha; Lançanova, Mateus; Wandscher, Vinicius Felipe; Kaizer, Osvaldo Bazzan; Limberger, Inácio; Özcan, Mutlu; Valandro, Luiz Felipe
2015-08-01
Several rotary instruments have been daily employed on clinic to promote cut aiming to adjust the length of fiber posts to the radicular conduct, but there is no information on the literature about the effects of the different rotary instruments and its impact on the micromorphology of surface and mechanical properties of the glass fiber post. This study aimed the impact of rotary instruments upon fiber-matrix integrity, micromorphology and flexural-strength of glass-fiber posts (GFP). GFP (N=110) were divided into 5 groups: Ctrl: as-received posts, DBc: coarse diamond-bur, DBff: extra-fine diamond-bur, CB: carbide-bur, DD: diamond-disc. Cutting procedures were performed under abundant irrigation. Posts exposed to rotary instruments were then subjected to 2-point inclined loading test (compression 45°) (n=10/group) and 3-point flexural-strength test (n=10/group). Fiber-matrix integrity and micromorphology at the cut surface were analyzed using a SEM (n=2/group). Cutting procedures did not significantly affect the 2-point (51.7±4.3-56.7±5.1 MPa) (p=0.0233) and 3-point flexural-strength (671.5±35.3-709.1±33.1 MPa) (p=0.0968) of the posts (One-way ANOVA and Tukey׳s test). Fiber detachment was observed only at the end point of the cut at the margins of the post. Cut surfaces of the CB group were smoother than those of the other groups. After 3-point flexural strength test, fiber-matrix separation was evident at the tensile side of the post. Rotary instruments tested with simultaneous water-cooling did not affect the resistance of the tested fiber posts but caused disintegration of the fibers from the matrix at the end of the cut, located at the margins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.
Hypervelocity Impact (HVI). Volume 7; WLE High Fidelity Specimen RCC16R
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target RCC16R was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
49 CFR 572.116 - Instrumentation and test conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... probe for lateral thoracic and pelvis impact tests are the same as those specified in § 572.44(a). (b... pelvis is the same as specified in § 572.44(c). (d) Head accelerometer mounting is the same as specified... Impact Tests.” (g) The mountings for the spine, rib and pelvis accelerometers shall have no resonance...
Hypervelocity Impact (HVI). Volume 6; WLE High Fidelity Specimen Fg(RCC)-2
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-2 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
Hypervelocity Impact (HVI). Volume 4; WLE Small-Scale Fiberglass Panel Flat Target C-2
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-2 was to study impacts through the reinforced carboncarbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
Hypervelocity Impact (HVI). Volume 5; WLE High Fidelity Specimen Fg(RCC)-1
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-1 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
Hypervelocity Impact (HVI). Volume 3; WLE Small-Scale Fiberglass Panel Flat Target C-1
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-1 was to study hypervelocity impacts on the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
NASA Technical Reports Server (NTRS)
Adoue, J. A.
1984-01-01
In support of preflight design loads definition, preliminary water impact scale model are being conducted of space shuttle rocket boosters. The model to be used as well as the instrumentation, test facilities, and test procedures are described for water impact tests being conducted at test conditions to simulate full-scale initial impact at vertical velocities from 65 to 85 ft/sec. zero horizontal velocity, and angles of 0,5, and 10 degrees.
Informal caregiving in COPD: A systematic review of instruments and their measurement properties.
Cruz, Joana; Marques, Alda; Machado, Ana; O'Hoski, Sachi; Goldstein, Roger; Brooks, Dina
2017-07-01
Increasing symptoms and activity restriction associated with COPD progression greatly impact on the lives of their informal caregivers, who play a vital role in maintaining their health. An understanding of this impact is important for clinicians to support caregivers and maintain a viable patient environment at home. This systematic review aimed to identify the instruments commonly used to assess informal caregiving in COPD and describe their measurement properties in this population. Searches were conducted in PubMed, Scopus, Web of Science, CINAHL and PsycINFO and in references of key articles, until November 2016 (PROSPERO: CRD42016041401). Instruments used to assess the impact of COPD on caregivers were identified and their properties described. Quality of studies was rated using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Quality of the measurement properties of instruments was rated as 'positive', 'negative' or 'indeterminate'. Patients cared for, had moderate to very severe COPD and the sample of caregivers ranged from 24 to 406. Thirty-five instruments were used in fifty studies to assess caregivers' psychological status and mood (9 instruments), burden/distress (12 instruments), quality of life (5 instruments) or other (9 instruments). Eighteen studies assessed the measurement properties of 21 instruments, most commonly hypothesis testing (known validity) and internal consistency. Study quality varied from 'poor' to 'fair' and with many properties rated as 'indeterminate'. Although several instruments have been used to assess the impact of COPD on caregivers, an increased understanding of their properties is needed before their widespread implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hand, D. H.
1981-01-01
The test vehicles were impacted tested for compliance with FMVSS 212/219/301-75. As a parallel nonconflicting effort, the test vehicles were instrumented with accelerometers to measure vehicle accelerator resultants.
49 CFR 572.200 - Instrumentation and test conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... mass moment of inertia of 3646 kg-cm2. (b) The test probe for the lateral abdomen impact test is the... a minimum mass moment of inertia of 3646 kg-cm2. (c) The test probe for the pelvis-iliac impact... surface 50.8 × 88.9 mm for a depth of at least 76 mm and a minimum mass moment of inertia of 5000 kg-cm2...
49 CFR 572.200 - Instrumentation and test conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... mass moment of inertia of 3646 kg-cm2. (b) The test probe for the lateral abdomen impact test is the... a minimum mass moment of inertia of 3646 kg-cm2. (c) The test probe for the pelvis-iliac impact... surface 50.8 × 88.9 mm for a depth of at least 76 mm and a minimum mass moment of inertia of 5000 kg-cm2...
49 CFR 572.200 - Instrumentation and test conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... mass moment of inertia of 3646 kg-cm2. (b) The test probe for the lateral abdomen impact test is the... a minimum mass moment of inertia of 3646 kg-cm2. (c) The test probe for the pelvis-iliac impact... surface 50.8 × 88.9 mm for a depth of at least 76 mm and a minimum mass moment of inertia of 5000 kg-cm2...
Impact of preceptor and orientee learning styles on satisfaction: a pilot study.
Brunt, Barbara A; Kopp, Denise J
2007-01-01
This descriptive pilot study assessed the impact of learning style on satisfaction with orientation. Three learning style instruments were sent to all preceptors on inpatient units in two hospitals, and newly hired registered nurses and licensed practical nurses completed the same learning style instruments. Level of satisfaction with the orientation was used as the posttest measure. Matched t tests were compared to see whether the two groups had significant differences. Knowledge of the impact of learning styles on satisfaction can enhance the preceptor experience and perhaps increase retention.
The cross-cultural equivalence of participation instruments: a systematic review.
Stevelink, S A M; van Brakel, W H
2013-07-01
Concepts such as health-related quality of life, disability and participation may differ across cultures. Consequently, when assessing such a concept using a measure developed elsewhere, it is important to test its cultural equivalence. Previous research suggested a lack of cultural equivalence testing in several areas of measurement. This paper reviews the process of cross-cultural equivalence testing of instruments to measure participation in society. An existing cultural equivalence framework was adapted and used to assess participation instruments on five categories of equivalence: conceptual, item, semantic, measurement and operational equivalence. For each category, several aspects were rated, resulting in an overall category rating of 'minimal/none', 'partial' or 'extensive'. The best possible overall study rating was five 'extensive' ratings. Articles were included if the instruments focussed explicitly on measuring 'participation' and were theoretically grounded in the ICIDH(-2) or ICF. Cross-validation articles were only included if it concerned an adaptation of an instrument developed in a high or middle-income country to a low-income country or vice versa. Eight cross-cultural validation studies were included in which five participation instruments were tested (Impact on Participation and Autonomy, London Handicap Scale, Perceived Impact and Problem Profile, Craig Handicap Assessment Reporting Technique, Participation Scale). Of these eight studies, only three received at least two 'extensive' ratings for the different categories of equivalence. The majority of the cultural equivalence ratings given were 'partial' and 'minimal/none'. The majority of the 'none/minimal' ratings were given for item and measurement equivalence. The cross-cultural equivalence testing of the participation instruments included leaves much to be desired. A detailed checklist is proposed for designing a cross-validation study. Once a study has been conducted, the checklist can be used to ensure comprehensive reporting of the validation (equivalence) testing process and its results. • Participation instruments are often used in a different cultural setting than initial developed for. • The conceptualization of participation may vary across cultures. Therefore, cultural equivalence – the extent to which an instrument is equally suitable for use in two or more cultures – is an important concept to address. • This review showed that the process of cultural equivalence testing of the included participation instruments was often addressed insufficiently. • Clinicians should be aware that application of participations instruments in a different culture than initially developed for needs prior testing of cultural validity in the next context.
Instrumentation and data acquisition for full-scale aircraft crash testing
NASA Technical Reports Server (NTRS)
Jones, Lisa E.; Fasanella, Edwin L.
1993-01-01
The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.
49 CFR 572.200 - Instrumentation and test conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... a minimum mass moment of inertia of 3646 kg-cm2. (b) The test probe for the lateral abdomen impact... and it has a minimum mass moment of inertia of 3646 kg-cm2. (c) The test probe for the pelvis-iliac... impact surface 50.8 × 88.9 mm for a depth of at least 76 mm and a minimum mass moment of inertia of 5000...
49 CFR 572.200 - Instrumentation and test conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... a minimum mass moment of inertia of 3646 kg-cm2. (b) The test probe for the lateral abdomen impact... and it has a minimum mass moment of inertia of 3646 kg-cm2. (c) The test probe for the pelvis-iliac... impact surface 50.8 × 88.9 mm for a depth of at least 76 mm and a minimum mass moment of inertia of 5000...
Hypervelocity Impact (HVI). Volume 8; Tile Small Targets A-1, Ag-1, B-1, and Bg-1
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
NASA Technical Reports Server (NTRS)
Gorman, Michael R.; Ziola, Steven M.
2007-01-01
During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
Impact design methods for ceramic components in gas turbine engines
NASA Technical Reports Server (NTRS)
Song, J.; Cuccio, J.; Kington, H.
1991-01-01
Methods currently under development to design ceramic turbine components with improved impact resistance are presented. Two different modes of impact damage are identified and characterized, i.e., structural damage and local damage. The entire computation is incorporated into the EPIC computer code. Model capability is demonstrated by simulating instrumented plate impact and particle impact tests.
NASA Technical Reports Server (NTRS)
1982-01-01
A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.
Crashworthiness requirements for commuter rail passenger seats
DOT National Transportation Integrated Search
2005-11-05
Occupant experiments using instrumented crash test dummies seated in commuter rail seats have been conducted on board full-scale impact tests of rail cars. The tests have been conducted using both conventional cars and cars modified to incorporate cr...
ERIC Educational Resources Information Center
Romine, William L.; Schaffer, Dane L.; Barrow, Lloyd
2015-01-01
We describe the development and validation of a three-tiered diagnostic test of the water cycle (DTWC) and use it to evaluate the impact of prior learning experiences on undergraduates' misconceptions. While most approaches to instrument validation take a positivist perspective using singular criteria such as reliability and fit with a measurement…
Impact of syncope on quality of life: validation of a measure in patients undergoing tilt testing.
Nave-Leal, Elisabete; Oliveira, Mário; Pais-Ribeiro, José; Santos, Sofia; Oliveira, Eunice; Alves, Teresa; Cruz Ferreira, Rui
2015-03-01
Recurrent syncope has a significant impact on quality of life. The development of measurement scales to assess this impact that are easy to use in clinical settings is crucial. The objective of the present study is a preliminary validation of the Impact of Syncope on Quality of Life questionnaire for the Portuguese population. The instrument underwent a process of translation, validation, analysis of cultural appropriateness and cognitive debriefing. A population of 39 patients with a history of recurrent syncope (>1 year) who underwent tilt testing, aged 52.1 ± 16.4 years (21-83), 43.5% male, most in active employment (n=18) or retired (n=13), constituted a convenience sample. The resulting Portuguese version is similar to the original, with 12 items in a single aggregate score, and underwent statistical validation, with assessment of reliability, validity and stability over time. With regard to reliability, the internal consistency of the scale is 0.9. Assessment of convergent and discriminant validity showed statistically significant results (p<0.01). Regarding stability over time, a test-retest of this instrument at six months after tilt testing with 22 patients of the sample who had not undergone any clinical intervention found no statistically significant changes in quality of life. The results indicate that this instrument is of value for assessing quality of life in patients with recurrent syncope in Portugal. Copyright © 2014 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Use of the Real Time xCelligence System for Purposes of Medical Microbiology.
Junka, Adam Feliks; Janczura, Adriana; Smutnicka, Danuta; Mączyńska, Beata; Anna, Secewicz; Nowicka, Joanna; Bartoszewicz, Marzenna; Gościniak, Grażyna
2012-09-28
Roche's xCelligence impedance-measuring instrument is one of a few commercially available systems of such type. According to the best knowledge of authors, instrument was tested so far only for eukaryotic cell research. The aim of this work was to estimate xCELLigence suitability for the microbiological tests, including (i) measurement of morphological changes in eukaryotic cells as a result of bacterial toxin activity, (ii) measurement of bacterial biofilm formation and (iii) impact of antiseptics on the biofilm structure. To test the infuence of bacterial LT enterotoxin on eukaryotic cell lines, Chinese Hamster Ovary (CHO) cell line and reference strain Escherichia coli ATTC 35401 were used. To investigate Roche's instrument ability to measure biofilm formation and impact of antiseptics on its development, Staphylococcus aureus ATTC6538 reference strain was used. The data generated during the experiments indicate excellent ability of xCelligence instrument to detect cytopathic effect caused by bacterial LT endotoxin and to detect staphylococcal biofilm formation. However, interpretation of the results obtained during real-time measurement of antiseptic's bactericidal activity against staphylococcal biofilm, caused many difficulties. xCelligence instrument can be used for real-time monitoring of morphological changes in CHO cells treated with bacterial LT enterotoxin and for real-time measurement of staphylococcal biofilm formation in vitro. Further investigation is necessary to confirm suitability of system to analyze antiseptic's antimicrobial activity against biofilm in vitro.
Quasi-Uniform High Speed Foam Crush Testing Using a Guided Drop Mass Impact
NASA Technical Reports Server (NTRS)
Jones, Lisa E. (Technical Monitor); Kellas, Sotiris
2004-01-01
A relatively simple method for measuring the dynamic crush response of foam materials at various loading rates is described. The method utilizes a drop mass impact configuration with mass and impact velocity selected such that the crush speed remains approximately uniform during the entire sample crushing event. Instrumentation, data acquisition, and data processing techniques are presented, and limitations of the test method are discussed. The objective of the test method is to produce input data for dynamic finite element modeling involving crash and energy absorption characteristics of foam materials.
Evaluation of various padding materials for crash protection.
DOT National Transportation Integrated Search
1966-12-01
Thirty-seven different materials and combinations of materials were impacted with an instrumented dummy head at 15 ft/sec and at 30 ft/sec. Peak g forces, rise times, and deceleration durations were determined for both impact velocities on each test ...
Instrumenting Beliefs in Threshold Public Goods
2016-01-01
Understanding the causal impact of beliefs on contributions in Threshold Public Goods (TPGs) is particularly important since the social optimum can be supported as a Nash Equilibrium and best-response contributions are a function of beliefs. Unfortunately, investigations of the impact of beliefs on behavior are plagued with endogeneity concerns. We create a set of instruments by cleanly and exogenously manipulating beliefs without deception. Tests indicate that the instruments are valid and relevant. Perhaps surprisingly, we fail to find evidence that beliefs are endogenous in either the one-shot or repeated-decision settings. TPG allocations are determined by a base contribution and beliefs in a one shot-setting. In the repeated-decision environment, once we instrument for first-round allocations, we find that second-round allocations are driven equally by beliefs and history. Moreover, we find that failing to instrument prior decisions overstates their importance. PMID:26859492
Development of an electronic nose for environmental odour monitoring.
Dentoni, Licinia; Capelli, Laura; Sironi, Selena; Del Rosso, Renato; Zanetti, Sonia; Della Torre, Matteo
2012-10-25
Exhaustive odour impact assessment should involve the evaluation of the impact of odours directly on citizens. For this purpose it might be useful to have an instrument capable of continuously monitoring ambient air quality, detecting the presence of odours and also recognizing their provenance. This paper discusses the laboratory and field tests conducted in order to evaluate the performance of a new electronic nose, specifically developed for monitoring environmental odours. The laboratory tests proved the instrument was able to discriminate between the different pure substances being tested, and to estimate the odour concentrations giving correlation indexes (R2) of 0.99 and errors below 15%. Finally, the experimental monitoring tests conducted in the field, allowed us to verify the effectiveness of this electronic nose for the continuous detection of odours in ambient air, proving its stability to variable atmospheric conditions and its capability to detect odour peaks.
Portable nitrous oxide sensor for understanding agricultural and soil emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanton, Alan; Zondlo, Mark; Gomez, Anthony
Nitrous oxide (N2O) is the third most important greenhouse gas (GHG,) with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of carbon dioxide. The main cause of nitrous oxide’s atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate but also for designing crop systems with lower GHG emissions. Such assessments are currently hampered by the lackmore » of instrumentation and methodologies to measure ecosystem-level fluxes at appropriate spatial and temporal scales. Southwest Sciences and Princeton University are developing and testing new open-path eddy covariance instrumentation for continuous and fast (10 Hz) measurement of nitrous oxide emissions. An important advance, now being implemented, is the use of new mid-infrared laser sources that enable the development of exceptionally low power (<10 W) compact instrumentation that can be used even in remote sites lacking in power. The instrumentation will transform the ability to measure and understand ecosystem-level nitrous oxide fluxes. The Phase II results included successful extended field testing of prototype flux instruments, based on quantum cascade lasers, in collaboration with Michigan State University. Results of these tests demonstrated a flux detection limit of 5 µg m-2 s-1 and showed excellent agreement and correlation with measurements using chamber techniques. Initial tests of an instrument using an interband cascade laser (ICL) were performed, verifying that an order of magnitude reduction in instrument power requirements can be realized. These results point toward future improvements and testing leading to introduction of a commercial open path instrument for N2O flux measurements that is truly portable and cost-effective. The technology developed on this project is especially groundbreaking as it could be widely applied across FLUXNET and AmeriFlux sites (>1200 worldwide) for direct measurements of N2O exchange. The technology can be more broadly applied to gas monitoring requirements in industry, environmental monitoring, health and safety, etc.« less
Oberdhan, Dorothee; Cole, Jason C; Krasa, Holly B; Cheng, Rebecca; Czerwiec, Frank S; Hays, Ron D; Chapman, Arlene B; Perrone, Ronald D
2018-02-01
The impact of autosomal dominant polycystic kidney disease (ADPKD) on health-related quality of life (HRQoL) is not well understood due to a lack of instruments specific to the condition. Content for a new self-administered patient-reported outcome (PRO) questionnaire to assess ADPKD-related HRQoL was developed through clinical expert and patient focus group discussions. The new PRO instrument was administered to study patients with ADPKD to evaluate its reliability and validity. 1,674 adult patients with ADPKD participated in this research: 285 patients in focus groups to generate questionnaire content, 15 patients in debriefing interviews to refine the PRO questionnaire, and 1,374 patients to assess the performance and measurement properties of the PRO questionnaire. A new PRO questionnaire. The ADPKD Impact Scale (ADPKD-IS), consisting of 14 items representing 3 conceptual domains (physical, emotional, and fatigue) plus 4 additional questions, was developed. The instrument's reliability (regarding internal consistency and test-retest consistency) and validity (content and construct) were supported. Need for more responsiveness testing when more data from clinical use become available over time. Complex concepts such as ADPKD-related pain and impact on a patient's HRQoL need further evaluation. The ADPKD-IS is a new patient-centric tool that reliably and validly provides a standardized method for assessing HRQoL and overall disease burden in patients with ADPKD. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Moore, Brent; Verdelis, Konstantinos; Kishen, Anil; Dao, Thuan; Friedman, Shimon
2016-12-01
Recently, we reported that in mandibular molars contracted endodontic cavities (CECs) improved fracture strength compared with traditional endodontic cavities (TECs) but compromised instrumentation efficacy in distal canals. This study assessed the impacts of CECs on instrumentation efficacy and axial strain responses in maxillary molars. Eighteen extracted intact maxillary molars were imaged with micro-computed tomographic imaging (12-μm voxel), assigned to CEC or TEC groups (n = 9/group), and accessed accordingly. Canals were instrumented (V-Taper2H; SSWhite Dental, Lakewood, NJ) with 2.5% sodium hypochlorite irrigation, reimaged, and the proportion of the modified canal wall determined. Cavities were restored with bonded composite resin (TPH-Spectra-LV; Dentsply International, York, PA). Another 28 similar molars (n = 14/group) with linear strain gauges (Showa Measuring Instruments, Tokyo, Japan) attached to mesiobuccal and palatal roots were subjected to load cycles (50-150 N) in the Instron Universal Testing machine (Instron, Canton, MA), and the axial microstrain was recorded before access and after restoration. These 28 molars and additional 11 intact molars (control) were cyclically fatigued (1 million cycles, 5-50 N, 15 Hz) and subsequently loaded to failure. Data were analyzed by the Wilcoxon rank sum and Kruskal-Wallis tests (α = 0.05). The overall mean proportion of the modified canal wall did not differ significantly between CECs (49.7% ± 12.0%) and TECs (44.7% ± 9.0%). Relative changes in axial microstrain responses to load varied in both groups. The mean load at failure for CECs (1703 ± 558 N) did not differ significantly from TECs (1384 ± 377 N) and was significantly lower (P < .005) for both groups compared with intact molars (2457 ± 941 N). In maxillary molars tested in vitro, CECs did not impact instrumentation efficacy and biomechanical responses compared with TECs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Calloway, Raymond S.; Knight, Vernie H., Jr.
NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.
Instrument to collect fogwater for chemical analysis
NASA Astrophysics Data System (ADS)
Jacob, Daniel J.; Waldman, Jed M.; Haghi, Mehrdad; Hoffmann, Michael R.; Flagan, Richard C.
1985-06-01
An instrument is presented which collects large samples of ambient fogwater by impaction of droplets on a screen. The collection efficiency of the instrument is determined as a function of droplet size, and it is shown that fog droplets in the range 3-100-μm diameter are efficiently collected. No significant evaporation or condensation occurs at any stage of the collection process. Field testing indicates that samples collected are representative of the ambient fogwater. The instrument may easily be automated, and is suitable for use in routine air quality monitoring programs.
Qualifying Spirit and Opportunity to Martian Landing Loads with Centrifuge Testing
NASA Technical Reports Server (NTRS)
Coleman, Michelle R.; Davis, Greg
2004-01-01
This viewgraph presentation reviews the drop test used to test the Mars lander. The objective of the test was to demonstrate the structural and functional integrity of the development test Model (DTM). Rover Basepetal when subjected to the landing event. The test module was instrumented with accelerometers to measure the kinematic response of the test article during impact.
NASA Astrophysics Data System (ADS)
Eakins, D. E.; Thadhani, N. N.
2006-10-01
Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.
Effectiveness of headgear in football
Withnall, C; Shewchenko, N; Wonnacott, M; Dvorak, J; Scott, D
2005-01-01
Objectives: Commercial headgear is currently being used by football players of all ages and skill levels to provide protection from heading and direct impact. The clinical and biomechanical effectiveness of the headgear in attenuating these types of impact is not well defined or understood. This study was conducted to determine whether football headgear has an effect on head impact responses. Methods: Controlled laboratory tests were conducted with a human volunteer and surrogate head/neck system. The impact attenuation of three commercial headgears during ball impact speeds of 6–30 m/s and in head to head contact with a closing speed of 2–5 m/s was quantified. The human subject, instrumented to measure linear and angular head accelerations, was exposed to low severity impacts during heading in the unprotected and protected states. High severity heading contact and head to head impacts were studied with a biofidelic surrogate headform instrumented to measure linear and angular head responses. Subject and surrogate responses were compared with published injury assessment functions associated with mild traumatic brain injury (MTBI). Results: For ball impacts, none of the headgear provided attenuation over the full range of impact speeds. Head responses with or without headgear were not significantly different (p>0.05) and remained well below levels associated with MTBI. In head to head impact tests the headgear provided an overall 33% reduction in impact response. Conclusion: The football headgear models tested did not provide benefit during ball impact. This is probably because of the large amount of ball deformation relative to headband thickness. However, the headgear provided measurable benefit during head to head impacts. PMID:16046355
Standardized Test Results: An Opportunity for English Program Improvement
ERIC Educational Resources Information Center
Jiménez, Maureyra; Rodríguez, Caroll; Rey Paba, Lourdes
2017-01-01
This case study explores the relationship between the results obtained by a group of Industrial Engineering students on a national standardized English test and the impact these results had on language program improvement. The instruments used were interviews, document analysis, observations, surveys, and test results analysis. Findings indicate…
DOT National Transportation Integrated Search
2000-03-01
On November 16, 1999, at the Transportation Technology Center in Pueblo, Colorado, a test was conducted of a single rail passenger car colliding with a fixed wall at 35 mph. The car was instrumented to measure (1) the deformations of critical structu...
Rail passenger equipment collision tests : analysis of structural measurements
DOT National Transportation Integrated Search
2000-11-01
A two-car full-scale collision test was conducted on April 4, 2000. Two coupled rail passenger cars impacted a rigid wall at 26 mph. The cars were instrumented with strain gauges, accelerometers, and string potentiometers, to measure the deformation ...
NASA Astrophysics Data System (ADS)
Mathivanan, N. Rajesh; Mouli, Chandra
2012-12-01
In this work, a new methodology based on artificial neural networks (ANN) has been developed to study the low-velocity impact characteristics of woven glass epoxy laminates of EP3 grade. To train and test the networks, multiple impact cases have been generated using statistical analysis of variance (ANOVA). Experimental tests were performed using an instrumented falling-weight impact-testing machine. Different impact velocities and impact energies on different thicknesses of laminates were considered as the input parameters of the ANN model. This model is a feed-forward back-propagation neural network. Using the input/output data of the experiments, the model was trained and tested. Further, the effects of the low-velocity impact response of the laminates at different energy levels were investigated by studying the cause-effect relationship among the influential factors using response surface methodology. The most significant parameter is determined from the other input variables through ANOVA.
Impact of lubricant parameters on rotary instrument torque and force.
Boessler, Claudia; Peters, Ove A; Zehnder, Matthias
2007-03-01
In the current study, the impact of lubricant parameters on simulated root canal instrumentation was investigated. Using size 30 ProFile .06 instruments in milled artificial root canals in human dentin, the effects of sodium hypochlorite (1% NaOCl) and a chelator (18% etidronic acid) in aqueous irrigants on maximum torque, full torsional load, and maximum force values were gauged using a torque testing platform. Furthermore, the impact of the time a chelating lubricant was exposed to dentin as well as its galenic form (aqueous vs. gel-type) on the above outcome variables was evaluated. Aqueous lubricants significantly (p < 0.05, ANOVA, Newman-Keuls) reduced all outcome variables compared to dry conditions. The incorporation of a chelator further reduced these values (p < 0.05), whereas hypochlorite behaved similar to water. The chelator effect was immediate and did not increase with time. An aqueous lubricant was more beneficial than a gel-type counterpart.
Temperature Effect of Low Velocity Impact Resistance of Glass/epoxy Laminates
NASA Astrophysics Data System (ADS)
Kang, Ki-Weon; Kim, Heung-Seob; Chung, Tae-Jin; Koh, Seung-Kee
This paper aims to evaluate the effect of temperature on impact damage resistance of glass/epoxy laminates. A series of impact tests were performed using an instrumented impact-testing machine at temperature ranging from -40°C to +80°C. The resulting impact damage was measured using back light method. The impact resistance parameters were employed to understand the damage resistance. It was observed that temperature has a little effect on the impact responses of composite laminates. The damage resistance of glass/epoxy laminates is somewhat deteriorated at two opposite extremes of the studied temperature range and this behavior is likely due to the property change of glass/epoxy laminates under extreme temperatures
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Kramer, Marlene; Brewer, Barbara B; Halfer, Diana; Hnatiuk, Cynthia Nowicki; MacPhee, Maura; Duchscher, Judy Boychuk; Maguire, Pat; Coe, Thomas; Schmalenberg, Claudia
2017-05-01
Increasing patient and healthcare system complexity and the need to accurately measure the engagement of clinical nurses (CNs) in holistic, professional nursing practice indicates that an update to the Essentials of Magnetism instrument is needed. The purposes of this research were to critique and weight items, assess the value and psychometric properties of the newly constructed Essential Professional Nursing Practices (EPNP) instrument, and establish relationships between EPNPs and CN job, practice, and nurse-assessed patient satisfaction.
Design and validation of the Health Professionals' Attitudes Toward the Homeless Inventory (HPATHI).
Buck, David S; Monteiro, F Marconi; Kneuper, Suzanne; Rochon, Donna; Clark, Dana L; Melillo, Allegra; Volk, Robert J
2005-01-10
Recent literature has called for humanistic care of patients and for medical schools to begin incorporating humanism into medical education. To assess the attitudes of health-care professionals toward homeless patients and to demonstrate how those attitudes might impact optimal care, we developed and validated a new survey instrument, the Health Professional Attitudes Toward the Homeless Inventory (HPATHI). An instrument that measures providers' attitudes toward the homeless could offer meaningful information for the design and implementation of educational activities that foster more compassionate homeless health care. Our intention was to describe the process of designing and validating the new instrument and to discuss the usefulness of the instrument for assessing the impact of educational experiences that involve working directly with the homeless on the attitudes, interest, and confidence of medical students and other health-care professionals. The study consisted of three phases: identifying items for the instrument; pilot testing the initial instrument with a group of 72 third-year medical students; and modifying and administering the instrument in its revised form to 160 health-care professionals and third-year medical students. The instrument was analyzed for reliability and validity throughout the process. A 19-item version of the HPATHI had good internal consistency with a Cronbach's alpha of 0.88 and a test-retest reliability coefficient of 0.69. The HPATHI showed good concurrent validity, and respondents with more than one year of experience with homeless patients scored significantly higher than did those with less experience. Factor analysis yielded three subscales: Personal Advocacy, Social Advocacy, and Cynicism. The HPATHI demonstrated strong reliability for the total scale and satisfactory test-retest reliability. Extreme group comparisons suggested that experience with the homeless rather than medical training itself could affect health-care professionals' attitudes toward the homeless. This could have implications for the evaluation of medical school curricula.
DOT National Transportation Integrated Search
2000-03-01
A test in which a single rail passenger car was crashed into a fixed wall at 35 mph was conducted at the Transportation Technology Center on November 16, 1999. The car was instrumented to measure (1) the deformations of critical structural elements, ...
Nonlinear elastic behavior of sub-critically damaged body armor panel
NASA Astrophysics Data System (ADS)
Fisher, Jason T.; Chimenti, D. E.
2012-05-01
A simple go/no-go test for body armor panels using pressure-sensitive, dye-indicator film (PSF) has been shown to be statistically effective in revealing subcritical damage to body armor panels. Previous measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Further impact tests on armor worn by a human resuscitation dummy using instrumented masses with an attached accelerometer and embedded force transducer have been performed and analyzed. New impact tests have shown a reliable correlation between PSF indication (as digitized images) and impact force for a wide range of impactor energies and masses. Numerical evaluation of digital PSF images is presented and correlated with impact parameters. Relationships between impactor mass and energy, and corresponding measured force are shown. We will also report on comparisons between ballistic testing performed on panels damaged under various impact conditions and tests performed on undamaged panels.
Development of an instrument to measure self-efficacy in caregivers of people with advanced cancer.
Ugalde, Anna; Krishnasamy, Meinir; Schofield, Penelope
2013-06-01
Informal caregivers of people with advanced cancer experience many negative impacts as a result of their role. There is a lack of suitable measures specifically designed to assess their experience. This study aimed to develop a new measure to assess self-efficacy in caregivers of people with advanced cancer. The development and testing of the new measure consisted of four separate, sequential phases: generation of issues, development of issues into items, pilot testing and field testing. In the generation of issues, 17 caregivers were interviewed to generate data. These data were analysed to generate codes, which were then systematically developed into items to construct the instrument. The instrument was pilot tested with 14 health professionals and five caregivers. It was then administered to a large sample for field testing to establish the psychometric properties, with established measures including the Brief Cope and the Family Appraisals for Caregiving Questionnaire for Palliative Care. Ninety-four caregivers completed the questionnaire booklet to establish the factor structure, reliability and validity. The factor analysis resulted in a 21-item, four-factor instrument, with the subscales being termed Resilience, Self-Maintenance, Emotional Connectivity and Instrumental Caregiving. The test-retest reliability and internal consistency were both excellent, ranging from 0.73 to 0.85 and 0.81 to 0.94, respectively. Six convergent and divergent hypotheses were made, and five were supported. This study has developed a new instrument to assess self-efficacy in caregivers of people with advanced cancer. The result is a four-factor, 21-item instrument with demonstrated reliability and validity. Copyright © 2012 John Wiley & Sons, Ltd.
Experimental Verification of an Instrument to Test Flooring Materials
NASA Astrophysics Data System (ADS)
Philip, Rony; Löfgren, Hans, Dr
2018-02-01
The focus of this work is to validate the fluid model with different flooring materials and the measurements of an instrument to test flooring materials and its force attenuating capabilities using mathematical models to describe the signature and coefficients of the floor. The main contribution of the present work focus on the development of a mathematical fluid model for floors. The aim of the thesis was to analyze, compare different floor materials and to study the linear dynamics of falling impacts on floors. The impact of the hammer during a fall is captured by an accelerometer and response is collected using a picoscope. The collected data was analyzed using matlab least square method which is coded as per the fluid model. The finding from this thesis showed that the fluid model works with more elastic model but it doesn’t work for rigid materials like wood. The importance of parameters like velocity, mass, energy loss and other coefficients of floor which influences the model during the impact of falling on floors were identified and a standardized testing method was set.
Pancreatitis Quality of Life Instrument: Development of a new instrument
Bova, Carol; Barton, Bruce; Hartigan, Celia
2014-01-01
Objectives: The goal of this project was to develop the first disease-specific instrument for the evaluation of quality of life in chronic pancreatitis. Methods: Focus groups and interview sessions were conducted, with chronic pancreatitis patients, to identify items felt to impact quality of life which were subsequently formatted into a paper-and-pencil instrument. This instrument was used to conduct an online survey by an expert panel of pancreatologists to evaluate its content validity. Finally, the modified instrument was presented to patients during precognitive testing interviews to evaluate its clarity and appropriateness. Results: In total, 10 patients were enrolled in the focus groups and interview sessions where they identified 50 items. Once redundant items were removed, the 40 remaining items were made into a paper-and-pencil instrument referred to as the Pancreatitis Quality of Life Instrument. Through the processes of content validation and precognitive testing, the number of items in the instrument was reduced to 24. Conclusions: This marks the development of the first disease-specific instrument to evaluate quality of life in chronic pancreatitis. It includes unique features not found in generic instruments (economic factors, stigma, and spiritual factors). Although this marks a giant step forward, psychometric evaluation is still needed prior to its clinical use. PMID:26770703
16 CFR § 1203.3 - Referenced documents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... OCT88, Instrumentation for Impact Tests, are available from Society of Automotive Engineers, 400... follows. Copies of the draft ISO/DIS Standard 6220-1983 are available from American National Standards...
Inverted drop testing and neck injury potential.
Forrest, Stephen; Herbst, Brian; Meyer, Steve; Sances, Anthony; Kumaresan, Srirangam
2003-01-01
Inverted drop testing of vehicles is a methodology that has long been used by the automotive industry and researchers to test roof integrity and is currently being considered by the National Highway Traffic Safety Administration as a roof strength test. In 1990 a study was reported which involved 8 dolly rollover tests and 5 inverted drop tests. These studies were conducted with restrained Hybrid III instrumented Anthropometric Test Devices (ATD) in production and rollcaged vehicles to investigate the relationship between roof strength and occupant injury potential. The 5 inverted drop tests included in the study provided a methodology producing "repeatable roof impacts" exposing the ATDs to the similar impact environment as those seen in the dolly rollover tests. Authors have conducted two inverted drop test sets as part of an investigation of two real world rollover accidents. Hybrid-III ATD's were used in each test with instrumented head and necks. Both test sets confirm that reduction of roof intrusion and increased headroom can significantly enhance occupant protection. In both test pairs, the neck force of the dummy in the vehicle with less crush and more survival space was significantly lower. Reduced roof crush and dynamic preservation of the occupant survival space resulted in only minor occupant contact and minimal occupant loading, establishing a clear causal relationship between roof crush and neck injuries.
Laibhen-Parkes, Natasha; Kimble, Laura P; Melnyk, Bernadette Mazurek; Sudia, Tanya; Codone, Susan
2018-06-01
Instruments used to assess evidence-based practice (EBP) competence in nurses have been subjective, unreliable, or invalid. The Fresno test was identified as the only instrument to measure all the steps of EBP with supportive reliability and validity data. However, the items and psychometric properties of the original Fresno test are only relevant to measure EBP with medical residents. Therefore, the purpose of this paper is to describe the development of the adapted Fresno test for pediatric nurses, and provide preliminary validity and reliability data for its use with Bachelor of Science in Nursing-prepared pediatric bedside nurses. General adaptations were made to the original instrument's case studies, item content, wording, and format to meet the needs of a pediatric nursing sample. The scoring rubric was also modified to complement changes made to the instrument. Content and face validity, and intrarater reliability of the adapted Fresno test were assessed during a mixed-methods pilot study conducted from October to December 2013 with 29 Bachelor of Science in Nursing-prepared pediatric nurses. Validity data provided evidence for good content and face validity. Intrarater reliability estimates were high. The adapted Fresno test presented here appears to be a valid and reliable assessment of EBP competence in Bachelor of Science in Nursing-prepared pediatric nurses. However, further testing of this instrument is warranted using a larger sample of pediatric nurses in diverse settings. This instrument can be a starting point for evaluating the impact of EBP competence on patient outcomes. © 2018 Sigma Theta Tau International.
Chen, Ruoqing; Hao, Yuantao; Feng, Lifen; Zhang, Yingfen; Huang, Zhuoyan
2011-03-23
A pediatric chronic health condition not only influences a child's life, but also has impacts on parent health-related quality of life (HRQOL) and family functioning. To provide care and social support to these families, a psychometrically well-developed instrument for measuring these impacts is of great importance. The present study is aimed to evaluate the psychometric properties of the Chinese version of the PedsQL™ Family Impact Module. The cross-cultural adaptation of the PedsQL™ Family Impact Module was performed following the PedsQL™ Measurement Model Translation Methodology. The Chinese version of the PedsQL™ Family Impact Module was administered to 136 parents of children with asthma and 264 parents of children with heart disease from four Triple A hospitals. The psychometric properties such as feasibility, internal consistency reliability, item-subscale correlations and construct validity were evaluated. The percentage of missing item responses was less than 0.1% for both asthma and heart disease sample groups. The Chinese version of the PedsQL™ Family Impact Module showed ceiling effects but had acceptable reliability (Cronbach's Alpha Coefficients were higher than 0.7 in all the subscales except "Daily Activities" in the asthma sample group). There were higher correlation coefficients between items and their hypothesized subscales than those with other subscales. The asthma sample group reported higher parent HRQOL and family functioning than the heart disease sample group. In the heart disease sample group, parents of outpatients reported higher parent HRQOL and family functioning than parents of inpatients. Confirmatory factor analysis showed that the instrument had marginally acceptable construct validity with some Goodness-of-Fit indices not reaching the standard indicating acceptable model fit. The Chinese version of the PedsQL™ Family Impact Module has adequate psychometric properties and could be used to assess the impacts of pediatric asthma or pediatric heart disease on parent HRQOL and family functioning in China. This instrument should be field tested on parents of children with other chronic medical conditions in other areas. Construct validity tested by confirmatory factor analysis and test-retest reliability should be further assessed.
CRISP-Psychometric Assessment of Postdivorce Stress/Adjustment in Children.
ERIC Educational Resources Information Center
Aronson, David M.; Baum, Steven K.
A new psychometric instrument for measuring the impact of divorce on elementary school age children was developed: the Child's Report of the Impact of Separation by Parents (CRISP). This structured projective test was specifically designed to assess children's postdivorce stress/adjustment. An initial version of the CRISP was administered to 99…
Moorhouse, Kevin; Donnelly, Bruce; Kang, Yun-Seok; Bolte, John H; Herriott, Rodney
2012-10-01
The goal of this study is to evaluate both the internal and external biofidelity of existing rear impact anthropomorphic test devices (BioRID II, RID3D, Hybrid III 50th) in two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) by quantitatively comparing the ATD responses to biomechanical response targets developed from PMHS testing in a corresponding study. The ATDs and PMHS were tested in an experimental seat system that is capable of simulating the dynamic seat back rotation response of production seats. The experimental seat contains a total of fourteen load cells installed such that external loads from the ATDs and PMHS can be measured to evaluate external biofidelity. The PMHS were instrumented to correspond to the instrumentation contained in the ATDs so that direct comparison between ATDs and PMHS could be made to evaluate internal biofidelity. The NHTSA Biofidelity Ranking system was used to quantitatively evaluate the biofidelity of the ATDs and an additional tool was introduced and utilized which allows for the biofidelity score to be partitioned into components of amplitude, phase, and shape. For internal biofidelity, the BioRID II and RID3D were more biofidelic than the Hybrid III in the 17 km/h test, and the BioRID II was most biofidelic in the 24 km/h test. For external biofidelity, the BioRID II was most biofidelic in the 17 km/h test, while both the BioRID II and the RID3D were more biofidelic than the Hybrid III in the 24 km/h test. Overall, the BioRID II demonstrated the best biofidelity in both the 17 km/h and 24 km/h tests.
Boston, Raymond C.; Coyne, James C.; Farrar, John T.
2010-01-01
Objective To develop and psychometrically test an owner self-administered questionnaire designed to assess severity and impact of chronic pain in dogs with osteoarthritis. Sample Population 70 owners of dogs with osteoarthritis and 50 owners of clinically normal dogs. Procedures Standard methods for the stepwise development and testing of instruments designed to assess subjective states were used. Items were generated through focus groups and an expert panel. Items were tested for readability and ambiguity, and poorly performing items were removed. The reduced set of items was subjected to factor analysis, reliability testing, and validity testing. Results Severity of pain and interference with function were 2 factors identified and named on the basis of the items contained in them. Cronbach’s α was 0.93 and 0.89, respectively, suggesting that the items in each factor could be assessed as a group to compute factor scores (ie, severity score and interference score). The test-retest analysis revealed κ values of 0.75 for the severity score and 0.81 for the interference score. Scores correlated moderately well (r = 0.51 and 0.50, respectively) with the overall quality-of-life (QOL) question, such that as severity and interference scores increased, QOL decreased. Clinically normal dogs had significantly lower severity and interference scores than dogs with osteoarthritis. Conclusions and Clinical Relevance A psychometrically sound instrument was developed. Responsiveness testing must be conducted to determine whether the questionnaire will be useful in reliably obtaining quantifiable assessments from owners regarding the severity and impact of chronic pain and its treatment on dogs with osteoarthritis. PMID:17542696
NASA Astrophysics Data System (ADS)
Paul, R.; Redlich, D.; Richter, L.; Zuknik, K.-H.; Muhlbauer, Q.; Thiel, M.; Fowler, L.; Tattusch, T.; Weisz, H.; Musso, F.; Durrant, S.
2015-09-01
This paper presents the development and testing by the OHB System AG of the Powdered Sample Handling Mechanism (PSHS) that is part of the rover of the European Space Agency 2018 ExoMars Mission, a cooperative mission with Roscosmos including a scientific instrument contribution from NASA. The task of this mechanism is to flatten and position powdered Martian soil samples allowing subsequent investigation of selected grains by different optical instruments thus providing combined science in an ultra-clean environment.The exceptional sensitivity of these instruments causes extremely challenging requirements with respect to positioning performance as well as cleanliness and contamination control. The impact of these design drivers is highlighted focusing on specific mechanism features such as the pre-torque device to minimize the backlash and the dynamic feed-through, allowing a gas-tight encapsulation of an ultra-clean zone free of drive-train components.Subsequently the results of the test campaign of an elegant breadboard under Mars-like conditions, as well as first QM test results are described. Furthermore the outcomes of combined tests with an optical instrument are reported.
Effects of coupler height mismatch on the structural integrity of railroad tank car stub sills.
DOT National Transportation Integrated Search
2001-12-01
This project evaluated the safety implications of coupler height mismatches on the integrity of railroad tank car stub sills, through a series of static and impact tests. The test car was a loaded tank car instrumented with strain gages at critical l...
Techniques for determination of impact forces during walking and running in a zero-G environment
NASA Technical Reports Server (NTRS)
Greenisen, Michael; Walton, Marlei; Bishop, Phillip; Squires, William
1992-01-01
One of the deleterious adaptations to the microgravity conditions of space flight is the loss of bone mineral content. This loss appears to be at least partially attributable to the minimal skeletal axial loading concomitant with microgravity. The purpose of this study was to develop and fabricate the instruments and hardware necessary to quantify the vertical impact forces (Fz) imparted to users of the space shuttle passive treadmill during human locomotion in a three-dimensional zero-gravity environment. The shuttle treadmill was instrumented using a Kistler forceplate to measure vertical impact forces. To verify that the instruments and hardware were functional, they were tested both in the one-G environment and aboard the KC-135 reduced gravity aircraft. The magnitude of the impact loads generated in one-G on the shuttle treadmill for walking at 0.9 m/sec and running at 1.6 and 2.2 m/sec were 1.1, 1.7, and 1.7 G, respectively, compared with loads of 0.95, 1.2, and 1.5 G in the zero-G environment.
Cross-cultural French adaptation and validation of the Impact On Family Scale (IOFS).
Boudas, Raphaël; Jégu, Jérémie; Grollemund, Bruno; Quentel, Elvire; Danion-Grilliat, Anne; Velten, Michel
2013-04-23
The IOFS (Impact On Family Scale) questionnaire is a useful instrument to assess the impact of chronic childhood conditions on general family quality of life. As this instrument was not validated in French, we proposed to translate, adapt and validate the IOFS questionnaire for clinical and research use in French-speaking populations. The sample studied comprised French-speaking parents with a child presenting a cleft lip or cleft lip and palate, aged 6 to 12 years and treated in the University Hospital of Strasbourg, France. The 15-item version of the IOFS was translated into French and then sent to the parents by post. The structure of the measure was studied using Exploratory Factor Analysis (EFA), internal consistency was assessed using Cronbach's alpha coefficient and test-retest reliability was studied by calculating the Intraclass Correlation Coefficient (ICC). The French version of the IOFS questionnaire exhibited very good psychometric properties. For practitioners, this instrument will facilitate the assessment of the impact of chronic childhood conditions on quality of life among French-speaking families.
Seeing the Invisible: Embedding Tests in Code That Cannot be Modified
NASA Technical Reports Server (NTRS)
O'Malley, Owen; Mansouri-Samani, Masoud; Mehlitz, Peter; Penix, John
2005-01-01
The difficulty of characterizing and observing valid software behavior during testing can be very difficult in flight systems. To address this issue, we evaluated several approaches to increasing test observability on the Shuttle Abort Flight Management (SAFM) system. To increase test observability, we added probes into the running system to evaluate the internal state and analyze test data. To minimize the impact of the instrumentation and reduce manual effort, we used Aspect-Oriented Programming (AOP) tools to instrument the source code. We developed and elicited a spectrum of properties, from generic to application specific properties, to be monitored via the instrumentation. To evaluate additional approaches, SAFM was ported to Linux, enabling the use of gcov for measuring test coverage, Valgrind for looking for memory usage errors, and libraries for finding non-normal floating point values. An in-house C++ source code scanning tool was also used to identify violations of SAFM coding standards, and other potentially problematic C++ constructs. Using these approaches with the existing test data sets, we were able to verify several important properties, confirm several problems and identify some previously unidentified issues.
Augusto, Fabiana da Silva; Blanes, Leila; Nicodemo, Denise; Ferreira, Lydia Masako
2017-05-01
To translate into Brazilian Portuguese and cross-culturally adapt the Cardiff Wound Impact Schedule, a specific measure of health-related quality of life (HRQoL) for patients with chronic wounds. Chronic wounds have a relevant impact on the HRQoL of patients. However, there are few instruments cross-culturally adapted and validated in Brazil to assess HRQoL in patients with wounds. A descriptive cross-sectional study was conducted following six steps: (1) translation of the original instrument into Brazilian-Portuguese by two independent translators; (2) construction of a consensus version based on both translations; (3) two independent back-translations into English of the consensus version; (4) review by an expert committee and construction of the pre-final version; (5) testing of the pre-final version on patients with chronic wounds; and (6) construction of the final version. The psychometric properties of the instrument were tested on 30 patients with chronic wounds of the lower limb; 76.7% were men, 70.0% had traumatic wounds, and 43.3% had the wound for more than 1 year. Participants were recruited from an outpatient wound care clinic in São Paulo, Brazil. The final version approved by the expert committee was well understood by all patients who participate in the study and had satisfactory face validity, content validity, and internal consistency, with Cronbach's alpha coefficients ranging from 0.681 to 0.920. The cross-culturally adapted Brazilian-Portuguese version of the instrument showed satisfactory face and content validity, good internal consistency, and was named Cardiff Wound Impact Schedule-Federal University of São Paulo School of Medicine or CWIS-UNIFESP/EPM. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
The psychosocial burden of human papillomavirus related disease and screening interventions.
Pirotta, M; Ung, L; Stein, A; Conway, E L; Mast, T C; Fairley, C K; Garland, S
2009-12-01
(i) To assess the psychosocial burden of testing for human papillomavirus (HPV) related genital disease or of a HPV-related diagnosis; (ii) to compare an instrument specifically designed to measure HPV-related psychosocial burden with other generic quality of life (QoL) instruments. A cross-sectional design. Researchers recruited women from outpatient clinics at a major tertiary women's hospital and a sexual health centre who completed surveys within 3 months of receiving 331 women, 18-45 years, who had experienced a normal cervical Papanicolaou (Pap) result, an abnormal Pap result, biopsy confirmed cervical intraepithelial neoplasia (CIN) or external genital warts (EGW). The HPV impact profile (HIP) designed to assess the psychosocial impact of HPV; two general health-related QoL surveys-the EuroQoL VAS and the Sheehan disability scale; and a HPV knowledge survey. Response rate was 78%. Significant psychosocial impacts were found for women screened for, or having a diagnosis of, HPV-related genital disease. The largest impact was in women with CIN 2/3 and EGW. This HPV-related psychosocial impact was most sensitively detected with the HIP. Relative to generic measures of QoL, the HIP provided insight into the full range of psychosocial impacts of HPV testing and diagnoses. Clinicians need to be aware of the potential psychosocial impact of testing for or diagnosing HPV-related genital disease, in particular CIN 2/3 and EGW. The HIP survey is a more sensitive measure of the psychosocial impact of HPV-related genital disease than generic QoL surveys.
Galileo battery testing and the impact of test automation
NASA Technical Reports Server (NTRS)
Pertuch, W. T.; Dils, C. T.
1985-01-01
Test complexity, changes of test specifications, and the demand for tight control of tests led to the development of automated testing used for Galileo and other projects. The use of standardized interfacing, i.e., IEEE-488, with desktop computers and test instruments, resulted in greater reliability, repeatability, and accuracy of both control and data reporting. Increased flexibility of test programming has reduced costs by permitting a wide spectrum of test requirements at one station rather than many stations.
Ogden, C A; Akobeng, A K; Abbott, J; Aggett, P; Sood, M R; Thomas, A G
2011-09-01
To validate IMPACT-III (UK), a health-related quality of life (HRQoL) instrument, in British children with inflammatory bowel disease (IBD). One hundred six children and parents were invited to participate. IMPACT-III (UK) was validated by inspection by health professionals and children to assess face and content validity, factor analysis to determine optimum domain structure, use of Cronbach alpha coefficients to test internal reliability, ANOVA to assess discriminant validity, correlation with the Child Health Questionnaire to assess concurrent validity, and use of intraclass correlation coefficients to assess test-retest reliability. The independent samples t test was used to measure differences between sexes and age groups, and between paper and computerised versions of IMPACT-III (UK). IMPACT-III (UK) had good face and content validity. The most robust factor solution was a 5-domain structure: body image, embarrassment, energy, IBD symptoms, and worries/concerns about IBD, all of which demonstrated good internal reliability (α = 0.74-0.88). Discriminant validity was demonstrated by significant (P < 0.05, P < 0.01) differences in HRQoL scores between the severe, moderate, and inactive/mild symptom severity groups for the embarrassment scale (63.7 vs 81.0 vs 81.2), IBD symptom scale (45.0 vs 64.2 vs 80.6), and the energy scale (46.4 vs 62.1 vs 77.7). Concurrent validity of IMPACT-III (UK) with comparable domains of the Child Health Questionnaire was confirmed. Test-retest reliability was confirmed with good intraclass correlation coefficients of 0.66 to 0.84. Paper and computer versions of IMPACT-III (UK) collected comparable scores, and there were no differences between the sexes and age groups. IMPACT-III (UK) appears to be a useful tool to measure HRQoL in British children with IBD.
Collision forces for compliant projectiles
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
1990-01-01
Force histories resulting from the impact of compliant projectiles were determined experimentally. A long instrumented rod was used as the target, and the impact force was calculated directly from the measured strain response. Results from a series of tests on several different sized impactors were used to define four dimensionless parameters that determine, for a specified impactor velocity and size, the amplitude, duration, shape, and impulse of the impact force history.
McCollister, Deborah; Shaffer, Shannon; Badesch, David B; Filusch, Arthur; Hunsche, Elke; Schüler, René; Wiklund, Ingela; Peacock, Andrew
2016-06-14
Regulators and clinical experts increasingly recognize the importance of incorporating patient-reported outcomes (PROs) in clinical studies of therapies for pulmonary arterial hypertension (PAH). No PAH-specific instruments have been developed to date in accordance with the 2009 FDA guidance for the development of PROs as endpoints in clinical trials. A qualitative research study was conducted to develop a new instrument assessing PAH symptoms and their impacts following the FDA PRO guidance. A cross-sectional study was conducted at 5 centers in the US in symptomatic PAH patients aged 18-80 years. Concept elicitation was based on 5 focus group discussions, after which saturation of emergent concepts was reached. A PRO instrument for PAH symptoms and their impacts was drafted. To assess the appropriateness of items, instructions, response options, and recall periods, 2 rounds of one-on-one cognitive interviews were conducted, with instrument revisions following each round. Additional interviews tested the usability of an electronic version (ePRO). PRO development considered input from an international Steering Committee, and translatability and lexibility assessments. Focus groups comprised 25 patients (5 per group); 20 additional patients participated in cognitive interviews (10 per round); and 10 participated in usability interviews. Participants had a mean ± SD age of 53.1 ± 15.8 years, were predominantly female (93 %), and were diverse in race/ethnicity, WHO functional class (FC I/II: 56 %, III/IV: 44 %), and PAH etiology (idiopathic: 56 %, familial: 2 %, associated: 42 %). The draft PRO instrument (PAH-SYMPACT®) was found to be clear, comprehensive, and relevant to PAH patients in cognitive interviews. Items were organized in a draft conceptual framework with 16 symptom items in 4 domains (respiratory symptoms, tiredness, cardiovascular symptoms, other symptoms) and 25 impact items in 5 domains (physical activities, daily activities, social impact, cognition, emotional impact). The recall period is the past 24 h for symptoms, and the past 7 days for impacts. The PAH-SYMPACT® was shown to capture symptoms and their impacts relevant to PAH patients, demonstrating content saturation, concept validity, and ePRO usability. Final content and psychometric validation of the instrument will be based on the results of an ongoing Phase IIIb clinical trial in PAH patients.
Contact force history and dynamic response due to the impact of a soft projectile
NASA Technical Reports Server (NTRS)
Grady, J. E.
1988-01-01
A series of ballistic impact tests on several different instrumented targets was performed to characterize the dynamic contact force history resulting from the impact of a compliant projectile. The results show that the variation of contact force history with impact velocity does not follow the trends predicted by classical impact models. An empirical model was therefore developed to describe this behavior. This model was then used in a finite-element analysis to estimate the force history and calculate the resulting dynamic strain response in a transversely impacted composite laminate.
Career Cruising Impact on the Self Efficacy of Deciding Majors
ERIC Educational Resources Information Center
Smother, Anthony William
2012-01-01
The purpose of this study was to analyze the impact of "Career Cruising"© on self-efficacy of deciding majors in a university setting. The use of the self-assessment instrument, "Career Cruising"©, was used with measuring the career-decision making self-efficacy in a pre and post-test with deciding majors. The independent…
Merrill, Rebecca D.; Shamim, Abu Ahmed; Ali, Hasmot; Schulze, Kerry; Rashid, Mahbubur; Christian, Parul; West, Jr., Keith P.
2009-01-01
Iron is ubiquitous in natural water sources used around the world for drinking and cooking. The health impact of chronic exposure to iron through water, which in groundwater sources can reach well above the World Health Organization's defined aesthetic limit of 0.3 mg/L, is not currently understood. To quantify the impact of consumption of iron in groundwater on nutritional status, it is important to accurately assess naturally-occurring exposure levels among populations. In this study, the validity of iron quantification in water was evaluated using two portable instruments: the HACH DR/890 portable colorimeter (colorimeter) and HACH Iron test-kit, Model IR-18B (test-kit), by comparing field-based iron estimates for 25 tubewells located in northwestern Bangladesh with gold standard atomic absorption spectrophotometry analysis. Results of the study suggest that the HACH test-kit delivers more accurate point-of-use results across a wide range of iron concentrations under challenging field conditions. PMID:19507757
Merrill, Rebecca D; Shamim, Abu Ahmed; Labrique, Alain B; Ali, Hasmot; Schulze, Kerry; Rashid, Mahbubur; Christian, Parul; West, Keith P
2009-06-01
Iron is ubiquitous in natural water sources used around the world for drinking and cooking. The health impact of chronic exposure to iron through water, which in groundwater sources can reach well above the World Health Organization's defined aesthetic limit of 0.3 mg/L, is not currently understood. To quantify the impact of consumption of iron in groundwater on nutritional status, it is important to accurately assess naturally-occurring exposure levels among populations. In this study, the validity of iron quantification in water was evaluated using two portable instruments: the HACH DR/890 portable colorimeter (colorimeter) and HACH Iron test-kit, Model IR-18B (test-kit), by comparing field-based iron estimates for 25 tubewells located in northwestern Bangladesh with gold standard atomic absorption spectrophotometry analysis. Results of the study suggest that the HACH test-kit delivers more accurate point-of-use results across a wide range of iron concentrations under challenging field conditions.
Miniature, Single Channel, Memory-Based, High-G Acceleration Recorder (Millipen)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohwer, Tedd A.
1999-06-02
The Instrumentation and Telemetry Departments at Sandia National Laboratories have been instrumenting earth penetrators for over thirty years. Recorded acceleration data is used to quantify penetrator performance. Penetrator testing has become more difficult as desired impact velocities have increased. This results in the need for small-scale test vehicles and miniature instrumentation. A miniature recorder will allow penetrator diameters to significantly decrease, opening the window of testable parameters. Full-scale test vehicles will also benefit from miniature recorders by using a less intrusive system to instrument internal arming, fusing, and firing components. This single channel concept is the latest design in anmore » ongoing effort to miniaturize the size and reduce the power requirement of acceleration instrumentation. A micro-controller/memory based system provides the data acquisition, signal conditioning, power regulation, and data storage. This architecture allows the recorder, including both sensor and electronics, to occupy a volume of less than 1.5 cubic inches, draw less than 200mW of power, and record 15kHz data up to 40,000 gs. This paper will describe the development and operation of this miniature acceleration recorder.« less
Extinction Can Reduce the Impact of Reward Cues on Reward-Seeking Behavior.
Lovibond, Peter F; Satkunarajah, Michelle; Colagiuri, Ben
2015-07-01
Reward-associated cues are thought to promote relapse after treatment of appetitive disorders such as drug-taking, binge eating, and gambling. This process has been modelled in the laboratory using a Pavlovian-instrumental transfer (PIT) design in which Pavlovian cues facilitate instrumental reward-directed action. Attempts to reduce facilitation by cue exposure (extinction) have produced mixed results. We tested the effect of extinction in a recently developed PIT procedure using a natural reward, chocolate, in human participants. Facilitation of instrumental responding was only observed in participants who were aware of the Pavlovian contingencies. Pavlovian extinction successfully reduced, but did not completely eliminate, expectancy of reward and facilitation of instrumental responding. The results indicate that exposure can reduce the ability of cues to promote reward-directed behavior in the laboratory. However, the residual potency of extinguished cues means that additional active strategies may be needed in clinical practice to train patients to resist the impact of these cues in their environment. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
DiGregorio, A.; Wilson, E. L.; Palmer, P. I.; Mao, J.; Feng, L.
2017-12-01
We present the simulated impact of a small (50 instrument) ground network of NASA Goddard Space Flight Center's miniaturized laser heterodyne radiometer (mini-LHR), a small, low cost ( 50k), portable, and high precision CH4 and CO2 measuring instrument. Partnered with AERONET as a non-intrusive accessory, the mini-LHR is able to leverage the 500+ instrument AERONET network for rapid network deployment and testing, and simultaneously retrieve co-located aerosol data, an important input for sattelite measurements. This observing systems simulation experiment (OSSE) uses the 3-D GEOS-Chem chemistry transport model and 50 strategically selected sites to model flux estimate uncertainty reduction of both TCCON and mini-LHR instruments. We found that 50 mini-LHR sites are capable of improving global uncertainty by up to 70%, with local improvements in the Southern Hemisphere reaching to 90%. Our studies show that addition of the mini-LHR to current ground networks will play a major role in reduction of global carbon flux uncertainty.
NASA Astrophysics Data System (ADS)
Astuti, Sri Rejeki Dwi; Suyanta, LFX, Endang Widjajanti; Rohaeti, Eli
2017-05-01
The demanding of assessment in learning process was impact by policy changes. Nowadays, assessment is not only emphasizing knowledge, but also skills and attitudes. However, in reality there are many obstacles in measuring them. This paper aimed to describe how to develop integrated assessment instrument and to verify instruments' validity such as content validity and construct validity. This instrument development used test development model by McIntire. Development process data was acquired based on development test step. Initial product was observed by three peer reviewer and six expert judgments (two subject matter experts, two evaluation experts and two chemistry teachers) to acquire content validity. This research involved 376 first grade students of two Senior High Schools in Bantul Regency to acquire construct validity. Content validity was analyzed used Aiken's formula. The verifying of construct validity was analyzed by exploratory factor analysis using SPSS ver 16.0. The result show that all constructs in integrated assessment instrument are asserted valid according to content validity and construct validity. Therefore, the integrated assessment instrument is suitable for measuring critical thinking abilities and science process skills of senior high school students on electrolyte solution matter.
A distributed data acquisition system for aeronautics test facilities
NASA Technical Reports Server (NTRS)
Fronek, Dennis L.; Setter, Robert N.; Blumenthal, Philip Z.; Smalley, Robert R.
1987-01-01
The NASA Lewis Research Center is in the process of installing a new data acquisition and display system. This new system will provide small and medium sized aeronautics test facilities with a state-of-the-art real-time data acquisition and display system. The new data system will provide for the acquisition of signals from a variety of instrumentation sources. They include analog measurements of temperatures, pressures, and other steady state voltage inputs; frequency inputs to measure speed and flow; discrete I/O for significant events, and modular instrument systems such as multiplexed pressure modules or electronic instrumentation with a IEEE 488 interface. The data system is designed to acquire data, convert it to engineering units, compute test dependent performance calculations, limit check selected channels or calculations, and display the information in alphanumeric or graphical form with a cycle time of one second for the alphanumeric data. This paper describes the system configuration, its salient features, and the expected impact on testing.
2003-10-27
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Bill Prosser (left) and Eric Madaras, NASA-Langley Research Center, conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.
Chen, Xin-Lin; Zhong, Liang-Huan; Wen, Yi; Liu, Tian-Wen; Li, Xiao-Ying; Hou, Zheng-Kun; Hu, Yue; Mo, Chuan-Wei; Liu, Feng-Bin
2017-09-15
This review aims to critically appraise and compare the measurement properties of inflammatory bowel disease (IBD)-specific health-related quality of life instruments. Medline, EMBASE and ISI Web of Knowledge were searched from their inception to May 2016. IBD-specific instruments for patients with Crohn's disease, ulcerative colitis or IBD were enrolled. The basic characteristics and domains of the instruments were collected. The methodological quality of measurement properties and measurement properties of the instruments were assessed. Fifteen IBD-specific instruments were included, which included twelve instruments for adult IBD patients and three for paediatric IBD patients. All of the instruments were developed in North American and European countries. The following common domains were identified: IBD-related symptoms, physical, emotional and social domain. The methodological quality was satisfactory for content validity; fair in internal consistency, reliability, structural validity, hypotheses testing and criterion validity; and poor in measurement error, cross-cultural validity and responsiveness. For adult IBD patients, the IBDQ-32 and its short version (SIBDQ) had good measurement properties and were the most widely used worldwide. For paediatric IBD patients, the IMPACT-III had good measurement properties and had more translated versions. Most methodological quality should be promoted, especially measurement error, cross-cultural validity and responsiveness. The IBDQ-32 was the most widely used instrument with good reliability and validity, followed by the SIBDQ and IMPACT-III. Further validation studies are necessary to support the use of other instruments.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.
1991-01-01
A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.
Impact of an oil-based lubricant on the effectiveness of the sterilization processes .
Rutala, William A; Gergen, Maria F; Weber, David J
2008-01-01
Surgical instruments, including hinged instruments, were inoculated with test microorganisms (ie, methicillin-resistant Staphylococcus aureus, approximately 2 x 10(6) colony-forming units [cfu]; Pseudomonas aeruginosa, approximately 3 x 10(6) cfu; Escherichia coli, approximately 2 x 10(5) cfu; vancomycin-resistant enterococci, 1 x 10(5) cfu; Geobacillus stearothermophilus spores, 2 x 10(5) cfu or more; or Bacillus atrophaeus spores, 9 x 10(4) cfu or more), coated with an oil-based lubricant (hydraulic fluid), subjected to a sterilization process, and then samples from the instruments were cultured. We found that the oil-based lubricant did not alter the effectiveness of the sterilization process because high numbers of clinically relevant bacteria and standard test spores (which are relatively resistant to the sterilization process) were inactivated.
Crash Test of an MD-500 Helicopter with a Deployable Energy Absorber Concept
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Jackson, Karen E.; Kellas, Sotiris
2010-01-01
On December 2, 2009, a full scale crash test was successfully conducted of a MD-500 helicopter at the NASA Langley Research Center Landing and Impact Research Facility . The purpose of this test was to evaluate a novel composite honeycomb deployable energy absorbing (DEA) concept for attenuation of structural and crew loads during helicopter crashes under realistic crash conditions. The DEA concept is an alternative to external airbags, and absorbs impact energy through crushing. In the test, the helicopter impacted the concrete surface with 11.83 m/s (38.8 ft/s) horizontal, 7.80 m/s (25.6 ft/s) vertical and 0.15 m/s (0.5 ft/s) lateral velocities; corresponding to a resultant velocity of 14.2 m/s (46.5 ft/s). The airframe and skid gear were instrumented with accelerometers and strain gages to determine structural integrity and load attenuation, while the skin of the airframe was covered with targets for use by photogrammetry to record gross vehicle motion before, during, and after the impact. Along with the collection of airframe data, one Hybrid III 50th percentile anthropomorphic test device (ATD), two Hybrid II 50th percentile ATDs and a specialized human surrogate torso model (HSTM) occupant were seated in the airframe and instrumented for the collection of occupant loads. Resultant occupant data showed that by using the DEA, the loads on the Hybrid II and Hybrid III ATDs were in the Low Risk regime for the injury criteria, while structural data showed the airframe retained its structural integrity post crash. Preliminary results show that the DEA is a viable concept for the attenuation of impact loads.
Large Area Lunar Dust Flux Measurement Instrument
NASA Technical Reports Server (NTRS)
Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.
2009-01-01
The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (<10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.
Caesium sputter ion source compatible with commercial SIMS instruments
NASA Astrophysics Data System (ADS)
Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M.; Adams, F.
2006-07-01
A simple design for a caesium sputter cluster ion source compatible with commercially available secondary ion mass spectrometers is reported. This source has been tested with the Cameca IMS 4f instrument using the cluster Si n- and Cu n- ions, and will shortly be retrofitted to the floating low energy ion gun (FLIG) of the type used on the Cameca 4500/4550 quadruple instruments. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of analytical capabilities of the SIMS instrument due to the non-additive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ions with the same impact energy.
2014-12-01
Local Economic Impact of UH-72A Manufacture ................42 viii e. EADS’ (Now Airbus Group’s) Suppliers and Subcontractors...Headquarters, Department of the Army IFR instrument flight rules IOTE initial operational test and evaluation IR infrared KO contracting officer kt...instrument flight rules ( IFR ) and visual flight rules (VFR) capabilities, thereby allowing flight at night and under low visibility weather
[Measurements of "Total Water" and Carbon Dioxide from the NASA WB-57 During Crystal-Face
NASA Technical Reports Server (NTRS)
Avallone, Linnea M.
2003-01-01
An existing closed-path tunable diode laser hygrometer (CLH) was employed for the measurements of total water made during CRYSTAL-FACE. This instrument had flown previously on the NASA DC-8 during the SAGE III Ozone Loss and Validation Experiment (SOLVE) and also on the NCAR C-130 during some local flights designed to test the extent of water vapor interference in carbon dioxide measurements. The instrument was largely unchanged from previous studies, but a new inlet appropriate to the WB-57F wingpod was constructed. In order to minimize the impact on the over-subscribed right wingpod and to achieve good thermal control of the inlet temperature, the CLH inlet was made of carbon-fiber/epoxy composite. Considerable effort was spent to design and build the lightest possible mounting hardware and design relatively low-power inlet heaters. As a result, the instrument and mounting hardware came in below the NASA/JSC-imposed weight cap of 35 lbs. Data were obtained on all test flights during May 2002 and during all but one mission flight in July 2002 (the one lost flight was due to an unplugged instrument power cable). Instrument performance during the test flights was good, but the data are not science- quality, as a variety of tests were performed to optimize the inlet configuration and heating. Data on all mission flights is of high quality, despite some difficulties caused by flying through wet low-altitude air masses and dense anvils, which saturated the instrument response.
ERIC Educational Resources Information Center
Blagov, Pavel S.; Bi, Wu; Shedler, Jonathan; Westen, Drew
2012-01-01
The Shedler-Westen Assessment Procedure (SWAP) is a personality assessment instrument designed for use by expert clinical assessors. Critics have raised questions about its psychometrics, most notably its validity across observers and situations, the impact of its fixed score distribution on research findings, and its test-retest reliability. We…
NASA Technical Reports Server (NTRS)
Lance, D. G.; Nettles, A. T.
1991-01-01
Low velocity instrumented impact testing was utilized to examine the effects of an outer lamina of ultra-high molecular weight polyethylene (Spectra) on the damage tolerance of carbon epoxy composites. Four types of 16-ply quasi-isotropic panels (0, +45, 90, -45) were tested. Some panels contained no Spectra, while others had a lamina of Spectra bonded to the top (impacted side), bottom, or both sides of the composite plates. The specimens were impacted with energies up to 8.5 J. Force time plots and maximum force versus impact energy graphs were generated for comparison purposes. Specimens were also subjected to cross-sectional analysis and compression after impact tests. The results show that while the Spectra improved the maximum load that the panels could withstand before fiber breakage, the Spectra seemingly reduced the residual strength of the composites.
A new class of high-G and long-duration shock testing machines
NASA Astrophysics Data System (ADS)
Rastegar, Jahangir
2018-03-01
Currently available methods and systems for testing components for survival and performance under shock loading suffer from several shortcomings for use to simulate high-G acceleration events with relatively long duration. Such events include most munitions firing and target impact, vehicular accidents, drops from relatively high heights, air drops, impact between machine components, and other similar events. In this paper, a new class of shock testing machines are presented that can be used to subject components to be tested to high-G acceleration pulses of prescribed amplitudes and relatively long durations. The machines provide for highly repeatable testing of components. The components are mounted on an open platform for ease of instrumentation and video recording of their dynamic behavior during shock loading tests.
Testing Causal Impacts of a School-Based SEL Intervention Using Instrumental Variable Techniques
ERIC Educational Resources Information Center
Torrente, Catalina; Nathanson, Lori; Rivers, Susan; Brackett, Marc
2015-01-01
Children's social-emotional skills, such as conflict resolution and emotion regulation, have been linked to a number of highly regarded academic and social outcomes. The current study presents preliminary results from a causal test of the theory of change of RULER, a universal school-based approach to social and emotional learning (SEL).…
Apparatus for Hot Impact Testing of Material Specimens
NASA Technical Reports Server (NTRS)
Pawlik, Ralph J.; Choi, Sung R.
2006-01-01
An apparatus for positioning and holding material specimens is a major subsystem of a system for impact testing of the specimens at temperatures up to 1,500 C. This apparatus and the rest of the system are designed especially for hot impact testing of advanced ceramics, composites, and coating materials. The apparatus includes a retaining fixture on a rotating stage on a vertically movable cross support driven by a linear actuator. These components are located below a furnace wherein the hot impact tests are performed (see Figure 1). In preparation for a test, a specimen is mounted on the retaining fixture, then the cross support is moved upward to raise the specimen, through an opening in the bottom of the furnace, to the test position inside the furnace. On one side of the furnace there is another, relatively small opening on a direct line to the specimen. Once the specimen has become heated to the test temperature, the test is performed by using an instrumented external pressurized-gas-driven gun to shoot a projectile through the side opening at the specimen.
The impact resistance of SiC and other mechanical properties of SiC and Si3N4
NASA Technical Reports Server (NTRS)
Bradt, R. C.
1984-01-01
Studies focused on the impact and mechanical behavior of SiC and Si3N4 at high temperatures are summarized. Instrumented Charpy impact testing is analyzed by a compliance method and related to strength; slow crack growth is related to processing, and creep is discussed. The transient nature of flaw populations during oxidation under load is emphasized for both SiC and Si3N4.
NASA Technical Reports Server (NTRS)
Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom
2013-01-01
The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure
First Results from the Test Of Astronomy STandards (TOAST) Assessment Instrument
NASA Astrophysics Data System (ADS)
Slater, Stephanie
2009-01-01
Considerable effort in the astronomy education research over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing astronomy as a sub-discipline of physics education research, allowing researchers to establish the initial knowledge state of students as well as to attempt to measure some of the impacts of innovative instructional interventions. Before now, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. Moving beyond the 10-year old Astronomy Diagnostics Test, we have developed and validated a new assessment instrument that is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. Researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science and Math Teaching Center (UWYO SMTC) designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this multiple-choice instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for undergraduate science survey courses with learning goals tightly aligned to the consensus goals of the astronomy education community.
Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign
NASA Technical Reports Server (NTRS)
Aronstein, David L.; Smith, J. Scott
2016-01-01
Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon critical sampling value, various extended object sizes, and several other impactful effects.
A Point Spread Function for the EPOXI Mission
NASA Technical Reports Server (NTRS)
Barry, Richard K.
2010-01-01
The Extrasolar Planet Observation Characterization and the Deep Impact Extended Investigation missions (EPOXI) are currently observing the transits of exoplanets, two comet nuclei at short range, and the Earth and Mars using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope on the Deep Impact probe. The HRI is in a permanently defocused state with the instrument pOint of focus about 0.6 cm before the focal plane due to the use of a reference flat mirror that took a power during ground thermal-vacuum testing. Consequently, the point spread function (PSF) covers approximately nine pixels FWHM and is characterized by a patch with three-fold symmetry due to the three-point support structures of the primary and secondary mirrors. The PSF is also strongly color dependent varying in shape and size with change in filtration and target color. While defocus is highly desirable for exoplanet transit observations to limit sensitivity to intra-pixel variation, it is suboptimal for observations of spatially resolved targets. Consequently, all images used in our analysis of such objects were deconvolved with an instrument PSF. The instrument PSF is also being used to optimize transit analysis. We discuss development and usage of an instrument PSF for these observations.
Evaluation of seismic spatial interaction effects through an impact testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, B.D.; Driesen, G.E.
The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous ``sources`` and ``targets`` requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to ``calibrate`` the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less
Evaluation of seismic spatial interaction effects through an impact testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, B.D.; Driesen, G.E.
The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous sources'' and targets'' requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to calibrate'' the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less
NASA Astrophysics Data System (ADS)
Austin, Daniel E.; Shen, Andy H. T.; Beauchamp, J. L.; Ahrens, Thomas J.
2012-04-01
We have developed an orthogonal-acceleration time-of-flight mass spectrometer to study the volatiles produced when a mineral's shock-compressed state is isentropically released, as occurs when a shock wave, driven into the mineral by an impact, reflects upon reaching a free surface. The instrument is designed to use a gun or explosive-launched projectile as the source of the shock wave, impact onto a flange separating a poor vacuum and the high vacuum (10-7 Torr) interior of the mass spectrometer, and transmission of the shock wave through the flange to a mineral sample mounted on the high-vacuum side of the flange. The device extracts and analyzes the neutrals and ions produced from the shocked mineral prior to the possible occurrence of collateral instrument damage from the shock-inducing impact. The instrument has been tested using laser ablation of various mineral surfaces, and the resulting spectra are presented. Mass spectra are compared with theoretical distributions of molecular species, and with expected distributions from laser desorption.
Saltovic, Ema; Lajnert, Vlatka; Saltovic, Sabina; Kovacevic Pavicic, Daniela; Pavlic, Andrej; Spalj, Stjepan
2018-03-01
Orofacial esthetics raises psychosocial issues. The purpose was to create and validate new short instrument for psychosocial impacts of altered smile esthetics. A team of an orthodontist, two prosthodontists, psychologist, and a dental student generated items that could draw up specific hypothetical psychosocial dimensions (69 items initially, 39 in final analysis). The sample consisted of 261 Caucasian subjects attending local high schools and university (26% male) aged 14 to 28 years that have self-administrated the designed questionnaire. Factorial analysis, Cronbach's alpha, Pearson correlation, paired samples t-test and analysis of variance were used for analyses of internal consistency, construct validity, responsiveness, and test-retest. Three dimensions of psychosocial impacts of altered smile esthetics were identified: dental self-consciousness, dental self-confidence and social contacts that can be best fitted by 12 items, 4 items in each dimension. Internal consistency was good (α in range 0.85-0.89). Good stability in test-retest was confirmed. In responsiveness testing, tooth whitening induced increase in dental self-confidence (P = 0.002), but no significant changes in other dimensions. The new instrument, Smile Esthetics-Related Quality of Life (SERQoL), is short and has proven to be a good indicator of psychosocial dimensions related to perception of smile esthetics. Smile Esthetics-Related Quality of Life questionnaire might have practical validity when applied in esthetic dental clinical procedures. © 2017 Wiley Periodicals, Inc.
Size Effects in Impact Damage of Composite Sandwich Panels
NASA Technical Reports Server (NTRS)
Dobyns, Alan; Jackson, Wade
2003-01-01
Panel size has a large effect on the impact response and resultant damage level of honeycomb sandwich panels. It has been observed during impact testing that panels of the same design but different panel sizes will show large differences in damage when impacted with the same impact energy. To study this effect, a test program was conducted with instrumented impact testing of three different sizes of sandwich panels to obtain data on panel response and residual damage. In concert with the test program. a closed form analysis method was developed that incorporates the effects of damage on the impact response. This analysis method will predict both the impact response and the residual damage of a simply-supported sandwich panel impacted at any position on the panel. The damage is incorporated by the use of an experimental load-indentation curve obtained for the face-sheet/honeycomb and indentor combination under study. This curve inherently includes the damage response and can be obtained quasi-statically from a rigidly-backed specimen or a specimen with any support conditions. Good correlation has been obtained between the test data and the analysis results for the maximum force and residual indentation. The predictions can be improved by using a dynamic indentation curve. Analyses have also been done using the MSC/DYTRAN finite element code.
Lincoln R. Larson; Gary T. Green; Steven B. Castleberry
2009-01-01
The environmental education (EE) of America's youth is a high priority, but the effect of EE on children's environmental attitudes and awareness remains uncertain. This study used a pretest, post-test approach to investigate the impact of a 1-week EE summer program on children from different age groups and ethnic backgrounds. A survey instrument designed to...
Materials Database Development for Ballistic Impact Modeling
NASA Technical Reports Server (NTRS)
Pereira, J. Michael
2007-01-01
A set of experimental data is being generated under the Fundamental Aeronautics Program Supersonics project to help create and validate accurate computational impact models of jet engine impact events. The data generated will include material property data generated at a range of different strain rates, from 1x10(exp -4)/sec to 5x10(exp 4)/sec, over a range of temperatures. In addition, carefully instrumented ballistic impact tests will be conducted on flat plates and curved structures to provide material and structural response information to help validate the computational models. The material property data and the ballistic impact data will be generated using materials from the same lot, as far as possible. It was found in preliminary testing that the surface finish of test specimens has an effect on measured high strain rate tension response of AL2024. Both the maximum stress and maximum elongation are greater on specimens with a smoother finish. This report gives an overview of the testing that is being conducted and presents results of preliminary testing of the surface finish study.
Railroad Car Coupling Shock, Vertical Motion, and Roller Bearing Temperature
DOT National Transportation Integrated Search
1981-01-01
Data were collected in a study of railroad car operating environment. Measurements were made on wheel bearing operating temperatures, coupling impact shock, and vertical motion of the car due to rail travel. Tests were conducted using an instrumented...
Miller, Logan E; Kuo, Calvin; Wu, Lyndia C; Urban, Jillian E; Camarillo, David B; Stitzel, Joel D
2018-05-01
Head impact exposure in popular contact sports is not well understood, especially in the youth population, despite recent advances in impact-sensing technology which has allowed widespread collection of real-time head impact data. Previous studies indicate that a custom-instrumented mouthpiece is a superior method for collecting accurate head acceleration data. The objective of this study was to evaluate the efficacy of mounting a sensor device inside an acrylic retainer form factor to measure six-degrees-of-freedom (6DOF) head kinematic response. This study compares 6DOF mouthpiece kinematics at the head center of gravity (CG) to kinematics measured by an anthropomorphic test device (ATD). This study found that when instrumentation is mounted in the rigid retainer form factor, there is good coupling with the upper dentition and highly accurate kinematic results compared to the ATD. Peak head kinematics were correlated with r2 > 0.98 for both rotational velocity and linear acceleration and r2 = 0.93 for rotational acceleration. These results indicate that a rigid retainer-based form factor is an accurate and promising method of collecting head impact data. This device can be used to study head impacts in helmeted contact sports such as football, hockey, and lacrosse as well as nonhelmeted sports such as soccer and basketball. Understanding the magnitude and frequency of impacts sustained in various sports using an accurate head impact sensor, such as the one presented in this study, will improve our understanding of head impact exposure and sports-related concussion.
A Comparative Analysis of Two Full-Scale MD-500 Helicopter Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2011-01-01
Two full scale crash tests were conducted on a small MD-500 helicopter at NASA Langley Research Center fs Landing and Impact Research Facility. One of the objectives of this test series was to compare airframe impact response and occupant injury data between a test which outfitted the airframe with an external composite passive energy absorbing honeycomb and a test which had no energy absorbing features. In both tests, the nominal impact velocity conditions were 7.92 m/sec (26 ft/sec) vertical and 12.2 m/sec (40 ft/sec) horizontal, and the test article weighed approximately 1315 kg (2900 lbs). Airframe instrumentation included accelerometers and strain gages. Four Anthropomorphic Test Devices were also onboard; three of which were standard Hybrid II and III, while the fourth was a specialized torso. The test which contained the energy absorbing honeycomb showed vertical impact acceleration loads of approximately 15 g, low risk for occupant injury probability, and minimal airframe damage. These results were contrasted with the test conducted without the energy absorbing honeycomb. The test results showed airframe accelerations of approximately 40 g in the vertical direction, high risk for injury probability in the occupants, and substantial airframe damage.
Biomechanical investigation of head impacts in football
Withnall, C; Shewchenko, N; Gittens, R; Dvorak, J
2005-01-01
Objectives: This study sought to measure the head accelerations induced from upper extremity to head and head to head impact during the game of football and relate this to the risk of mild traumatic brain injury using the Head Impact Power (HIP) index. Furthermore, measurement of upper neck forces and torques will indicate the potential for serious neck injury. More stringent rules or punitive sanctions may be warranted for intentional impact by the upper extremity or head during game play. Methods: Game video of 62 cases of head impact (38% caused by the upper extremity and 30% by the head of the opposing player) was provided by F-MARC. Video analysis revealed the typical impact configurations and representative impact speeds. Upper extremity impacts of elbow strike and lateral hand strike were re-enacted in the laboratory by five volunteer football players striking an instrumented Hybrid III pedestrian model crash test manikin. Head to head impacts were re-enacted using two instrumented test manikins. Results: Elbow to head impacts (1.7–4.6 m/s) and lateral hand strikes (5.2–9.3 m/s) resulted in low risk of concussion (<5%) and severe neck injury (<5%). Head to head impacts (1.5–3.0 m/s) resulted in high concussion risk (up to 67%) but low risk of severe neck injury (<5%). Conclusion: The laboratory simulations suggest little risk of concussion based on head accelerations and maximum HIP. There is no biomechanical justification for harsher penalties in this regard. However, deliberate use of the head to impact another player's head poses a high risk of concussion, and justifies a harsher position by regulatory bodies. In either case the risk of serious neck injury is very low. PMID:16046356
Development of self and peer performance assessment on iodometric titration experiment
NASA Astrophysics Data System (ADS)
Nahadi; Siswaningsih, W.; Kusumaningtyas, H.
2018-05-01
This study aims to describe the process in developing of reliable and valid assessment to measure students’ performance on iodometric titration and the effect of the self and peer assessment on students’ performance. The self and peer-instrument provides valuable feedback for the student performance improvement. The developed assessment contains rubric and task for facilitating self and peer assessment. The participants are 24 students at the second-grade student in certain vocational high school in Bandung. The participants divided into two groups. The first 12 students involved in the validity test of the developed assessment, while the remain 12 students participated for the reliability test. The content validity was evaluated based on the judgment experts. Test result of content validity based on judgment expert show that the developed performance assessment instrument categorized as valid on each task with the realibity classified as very good. Analysis of the impact of the self and peer assessment implementation showed that the peer instrument supported the self assessment.
Kandel, Himal; Khadka, Jyoti; Goggin, Michael; Pesudovs, Konrad
2017-12-01
This review has identified the best existing patient-reported outcome (PRO) instruments in refractive error. The article highlights the limitations of the existing instruments and discusses the way forward. A systematic review was conducted to identify the types of PROs used in refractive error, to determine the quality of the existing PRO instruments in terms of their psychometric properties, and to determine the limitations in the content of the existing PRO instruments. Articles describing a PRO instrument measuring 1 or more domains of quality of life in people with refractive error were identified by electronic searches on the MEDLINE, PubMed, Scopus, Web of Science, and Cochrane databases. The information on content development, psychometric properties, validity, reliability, and responsiveness of those PRO instruments was extracted from the selected articles. The analysis was done based on a comprehensive set of assessment criteria. One hundred forty-eight articles describing 47 PRO instruments in refractive error were included in the review. Most of the articles (99 [66.9%]) used refractive error-specific PRO instruments. The PRO instruments comprised 19 refractive, 12 vision but nonrefractive, and 16 generic PRO instruments. Only 17 PRO instruments were validated in refractive error populations; six of them were developed using Rasch analysis. None of the PRO instruments has items across all domains of quality of life. The Quality of Life Impact of Refractive Correction, the Quality of Vision, and the Contact Lens Impact on Quality of Life have comparatively better quality with some limitations, compared with the other PRO instruments. This review describes the PRO instruments and informs the choice of an appropriate measure in refractive error. We identified need of a comprehensive and scientifically robust refractive error-specific PRO instrument. Item banking and computer-adaptive testing system can be the way to provide such an instrument.
NASA Astrophysics Data System (ADS)
Gomez, A.; Silver, J.; Massick, S.; Ochoa, E.; Stanton, A. C.
2015-12-01
Nitrous oxide is the third most important greenhouse gas, with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of CO2. The main cause of nitrous oxide's atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate and also for designing crop systems with lower GHG emissions. This work focuses on the early development of an open path N2O instrument for field deployment, based on quantum cascade laser absorption. With a targeted precision of 0.1 ppb at 10 Hz, this instrument will enable eddy covariance measurements to determine vertical fluxes of N2O. Details of the instrument design, which emphasizes ruggedness and high thermal stability, will be presented along with initial results from outdoor testing of the instrument.
NASA Technical Reports Server (NTRS)
Schott, John; Gerace, Aaron; Brown, Scott; Gartley, Michael; Montanaro, Matthew; Reuter, Dennis C.
2012-01-01
The next Landsat satellite, which is scheduled for launch in early 2013, will carry two instruments: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). Significant design changes over previous Landsat instruments have been made to these sensors to potentially enhance the quality of Landsat image data. TIRS, which is the focus of this study, is a dual-band instrument that uses a push-broom style architecture to collect data. To help understand the impact of design trades during instrument build, an effort was initiated to model TIRS imagery. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool was used to produce synthetic "on-orbit" TIRS data with detailed radiometric, geometric, and digital image characteristics. This work presents several studies that used DIRSIG simulated TIRS data to test the impact of engineering performance data on image quality in an effort to determine if the image data meet specifications or, in the event that they do not, to determine if the resulting image data are still acceptable.
Indoor calibration of Sky Quality Meters: Linearity, spectral responsivity and uncertainty analysis
NASA Astrophysics Data System (ADS)
Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M.
2016-09-01
The indoor calibration of brightness sensors requires extremely low values of irradiance in the most accurate and reproducible way. In this work the testing equipment of an ISO 17025 accredited laboratory for electrical testing, qualification and type approval of solar photovoltaic modules was modified in order to test the linearity of the instruments from few mW/cm2 down to fractions of nW/cm2, corresponding to levels of simulated brightness from 6 to 19 mag/arcsec2. Sixteen Sky Quality Meter (SQM) produced by Unihedron, a Canadian manufacturer, were tested, also assessing the impact of the ageing of their protective glasses on the calibration coefficients and the drift of the instruments. The instruments are in operation on measurement points and observatories at different sites and altitudes in Southern Switzerland, within the framework of OASI, the Environmental Observatory of Southern Switzerland. The authors present the results of the calibration campaign: linearity; brightness calibration, with and without protective glasses; transmittance measurement of the glasses; and spectral responsivity of the devices. A detailed uncertainty analysis is also provided, according to the ISO 17025 standard.
NASA Astrophysics Data System (ADS)
Hartogh, P.; Ilyushin, Ya. A.
2016-10-01
Exploration of subsurface oceans on Jovian icy moons is a key issue of the icy moons' geology. Electromagnetic wave propagation is the only way to probe their icy mantles from the orbit. In the present paper, a principal concept of a passive interferometric instrument for deep sounding of the icy moons' crust is proposed. Its working principle is measuring and correlating Jupiter's radio wave emissions with reflections from the deep sub-surface of the icy moons. A number of the functional aspects of the proposed experiment are studied, in particular, impact of the wave scattering on the surface terrain on the instrument performance and digital sampling of the noisy signal. Results of the test of the laboratory prototype of the instrument are also presented in the paper.
ERIC Educational Resources Information Center
Sinaga, Parlindungan; Feranie, Shelly
2017-01-01
The research aims to identify the impacts of embedding non-traditional writing tasks within the course of modern physics conducted to the students of Physics Education and Physics Study Programs. It employed a quasi-experimental method with the pretest-posttest control group design. The used instruments were tests on conceptual mastery, tests on…
Coleman, Susanne; Smith, Isabelle L; McGinnis, Elizabeth; Keen, Justin; Muir, Delia; Wilson, Lyn; Stubbs, Nikki; Dealey, Carol; Brown, Sarah; Nelson, E Andrea; Nixon, Jane
2018-02-01
To test the psychometric properties and clinical usability of a new Pressure Ulcer Risk Assessment Instrument including inter-rater and test-retest reliability, convergent validity and data completeness. Methodological and practical limitations associated with traditional Pressure Ulcer Risk Assessment Instruments, prompted a programme to work to develop a new instrument, as part of the National Institute for Health Research funded, Pressure UlceR Programme Of reSEarch (RP-PG-0407-10056). Observational field test. For this clinical evaluation 230 patients were purposefully sampled across four broad levels of pressure ulcer risk with representation from four secondary care and four community NHS Trusts in England. Blinded and simultaneous paired (ward/community nurse and expert nurse) PURPOSE-T assessments were undertaken. Follow-up retest was undertaken by the expert nurse. Field notes of PURPOSE-T use were collected. Data were collected October 2012-January 2013. The clinical evaluation demonstrated "very good" (kappa) inter-rater and test-retest agreement for PURPOSE-T assessment decision overall. The percentage agreement for "problem/no problem" was over 75% for the main risk factors. Convergent validity demonstrated moderate to high associations with other measures of similar constructs. The PURPOSE-T evaluation facilitated the initial validation and clinical usability of the instrument and demonstrated that PURPOSE-T is suitable of use in clinical practice. Further study is needed to evaluate the impact of using the instrument on care processes and outcomes. © 2017 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.
2003-10-27
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Eric Madaras (left), NASA-Langley Research Center, and Jim McGee, The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.
Brain Jogging Training to Improve Motivation and Learning Result of Tennis Skills
NASA Astrophysics Data System (ADS)
Tafaqur, M.; Komarudin; Mulyana; Saputra, M. Y.
2017-03-01
This research is aimed to determine the effect of brain jogging towards improvement of motivation and learning result of tennis skills. The method used in this research is experimental method. The population of this research is 15 tennis athletes of Core Siliwangi Bandung Tennis Club. The sampling technique used in this research is purposive sampling technique. Sample of this research is the 10 tennis athletes of Core Siliwangi Bandung Tennis Club. Design used for this research is pretest-posttest group design. Data analysis technique used in this research is by doing Instrument T-test to measure motivation using The Sport Motivation Scale questionnaire (SMS-28) and Instrument to measure learning result of tennis skill by using tennis skills test, which include: (1) forehand test, (2) backhand test, and (3) service placement test. The result of this research showed that brain jogging significantly impact the improvement of motivation and learning result of tennis skills.
JWST ISIM Harness Thermal Evaluation
NASA Technical Reports Server (NTRS)
Kobel, Mark; Glazer, Stuart; Tuttle, Jim; Martins, Mario; Ruppel, Sean
2008-01-01
The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for 2013. JWST wl1 be the premier observatory of the next decade serving thousands of astronomers worldwide. The Integrated Science Instrument Module (ISIM) is the unit that will house thc four main JWST instruments. The ISIM enclosure passively cooled to 37 Kelvin and has a tightly managed thermal budget. A significant portion of the ISIM heat load is due to parasitic heat gains from the instrument harnesses. These harnesses provide a thermal path from the Instrument Electronics Control (IEC) to the ISIM. Because of the impact of this load to the ISIM thermal design, understanding the harness parasitic heat gains is critical. To this effect, a thermal test program has been conducted in order to characterize these parasitic loads and verify harness thermal models. Recent parasitic heat loads tests resulted in the addition of a dedicated multiple stage harness radiator. In order for the radiator to efficiently reject heat from the harness, effective thermal contact conductance values for multiple harnesses had to be determined. This presentation will describe the details and the results of this test program.
Impact of cold climates on vehicle emissions: the cold start air toxics pulse : final report.
DOT National Transportation Integrated Search
2016-09-21
This project measured cold start emissions from four vehicles in winter using fast response instrumentation to accurately measure the : time variation of the cold start emission pulse. Seventeen successful tests were conducted over a temperature rang...
An examination of impact damage in glass-phenolic and aluminum honeycomb core composite panels
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Lance, D. G.; Hodge, A. J.
1990-01-01
An examination of low velocity impact damage to glass-phenolic and aluminum core honeycomb sandwich panels with carbon-epoxy facesheets is presented. An instrumented drop weight impact test apparatus was utilized to inflict damage at energy ranges between 0.7 and 4.2 joules. Specimens were checked for extent of damage by cross sectional examination. The effect of core damage was assessed by subjecting impact-damaged beams to four-point bend tests. Skin-only specimens (facings not bonded to honeycomb) were also tested for comparison purposes. Results show that core buckling is the first damage mode, followed by delaminations in the facings, matrix cracking, and finally fiber breakage. The aluminum honeycomb panels exhibited a larger core damage zone and more facing delaminations than the glass-phenolic core, but could withstand more shear stress when damaged than the glass-phenolic core specimens.
Haar, Rohini J; Footer, Katherine Ha; Singh, Sonal; Sherman, Susan G; Branchini, Casey; Sclar, Joshua; Clouse, Emily; Rubenstein, Leonard S
2014-01-01
Attacks on health care in armed conflict and other civil disturbances, including those on health workers, health facilities, patients and health transports, represent a critical yet often overlooked violation of human rights and international humanitarian law. Reporting has been limited yet local health workers working on the frontline in conflict are often the victims of chronic abuse and interferences with their care-giving. This paper reports on the validation and revision of an instrument designed to capture incidents via a qualitative and quantitative evaluation method. Based on previous research and interviews with experts, investigators developed a 33-question instrument to report on attacks on healthcare. These items would provide information about who, what, where, when, and the impact of each incident of attack on or interference with health. The questions are grouped into 4 domains: health facilities, health workers, patients, and health transports. 38 health workers who work in eastern Burma participated in detailed discussion groups in August 2013 to review the face and content validity of the instrument and then tested the instrument based on two simulated scenarios. Completed forms were graded to test the inter-rater reliability of the instrument. Face and content validity were confirmed with participants expressing that the instrument would assist in better reporting of attacks on health in the setting of eastern Burma where they work. Participants were able to give an accurate account of relevant incidents (86% and 82% on Scenarios 1 and 2 respectively). Item-by-item review of the instrument revealed that greater than 95% of participants completed the correct sections. Errors primarily occurred in quantifying the impact of the incident on patient care. Revisions to the translated instrument based on the results consisted primarily of design improvements and simplification of some numerical fields. This instrument was validated for use in eastern Burma and could be used as a model for reporting violence towards health care in other conflict settings.
The impact of clinical use on the torsional behavior of Reciproc and WaveOne instruments.
Magalhães, Rafael Rodrigues Soares de; Braga, Lígia Carolina Moreira; Pereira, Érika Sales Joviano; Peixoto, Isabella Faria da Cunha; Buono, Vicente Tadeu Lopes; Bahia, Maria Guiomar de Azevedo
2016-01-01
The aim of this study was to assess the influence of clinical use, in vivo, on the torsional behavior of Reciproc and WaveOne instruments considering the possibility that they degraded with use. Diameter at each millimeter, pitch length, and area at 3 mm from the tip were determined for both types of instruments. Twenty-four instruments, size 25, 0.08 taper, of each system were divided into two groups (n=12 each): Control Group (CG), in which new Reciproc (RC) and WaveOne Primary (WO) instruments were tested in torsion until rupture based on ISO 3630-1; and Experimental Group (EG), in which each new instrument was clinically used to clean and shape the root canals of one molar. After clinical use, the instruments were analyzed using optical and scanning electron microscopy and subsequently tested in torsion until fracture. Data were analyzed using one-way analysis of variance at a=.05. WO instruments showed significantly higher mean values of cross-sectional area A3 (P=0.000) and smaller pitch lengths than RC instruments with no statistically significant differences in the diameter at D3 (P=0.521). No significant differences in torsional resistance between the RC and WO new instruments (P=0.134) were found. The clinical use resulted in a tendency of reduction in the maximum torque of the analyzed instruments but no statistically significant difference was observed between them (P=0.327). During the preparation of the root canals, two fractured RC instruments and longitudinal and transversal cracks in RC and WO instruments were observed through SEM analysis. After clinical use, no statistically significant reduction in the torsional resistance was observed.
Experimental and numerical study of drill bit drop tests on Kuru granite
NASA Astrophysics Data System (ADS)
Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko
2017-01-01
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
NASA Astrophysics Data System (ADS)
Wang, Jing; Tronville, Paolo
2014-06-01
The filtration of airborne nanoparticles is an important control technique as the environmental, health, and safety impacts of nanomaterials grow. A review of the literature shows that significant progress has been made on airborne nanoparticle filtration in the academic field in the recent years. We summarize the filtration mechanisms of fibrous and membrane filters; the air flow resistance and filter media figure of merit are discussed. Our review focuses on the air filtration test methods and instrumentation necessary to implement them; recent experimental studies are summarized accordingly. Two methods using monodisperse and polydisperse challenging aerosols, respectively, are discussed in detail. Our survey shows that the commercial instruments are already available for generating a large amount of nanoparticles, sizing, and quantifying them accurately. The commercial self-contained filter test systems provide the possibility of measurement for particles down to 15 nm. Current international standards dealing with efficiency test for filters and filter media focus on measurement of the minimum efficiency at the most penetrating particle size. The available knowledge and instruments provide a solid base for development of test methods to determine the effectiveness of filtration media against airborne nanoparticles down to single-digit nanometer range.
Evaluation of Q-band instrumentation requirements for Strategic Satellite System (SSS) program
NASA Astrophysics Data System (ADS)
Raponi, D. J.
1981-12-01
Q-band instrumentation appropriate for testing the Strategic Satellite System (SSS) satellite terminal is evaluated in terms of current and projected availability; desired and practical measurement capabilities; required development; and schedule/cost impacts to the program. The Air Force is considering several approaches to increasing the strategic communications capability now provided by the recently deployed ultra high frequency (UHF) Air Force Satellite Communications (AFSATCOM) system. The Strategic Satellite System (SSS) was proposed to improve antijam (AJ) characteristics through the use of advanced modulation techniques and higher frequencies (8 and 44 GHz) on links between ground and airborne terminals and the satellites. This report is an assessment of Q-band (44 GHz) test instrumentation requirements, availability, and accuracy as these factors affect cost and schedule for the SSS satellite terminal development program. Though the SSS program has been cancelled, information presented in the report has applicability to the EHF MILSTAR program.
Behrangrad, Shabnam; Kordi Yoosefinejad, Amin
2018-03-01
The purpose of this study is to investigate the validity and reliability of the Persian version of the Multidimensional Assessment of Fatigue Scale (MAFS) in an Iranian population with multiple sclerosis. A self-reported survey on fatigue including the MAFS, Fatigue Impact Scale and demographic measures was completed by 130 patients with multiple sclerosis and 60 healthy persons sampled with a convenience method. Test-retest reliability and validity were evaluated 3 days apart. Construct validity of the MAFS was assessed with the Fatigue Impact Scale. The MAFS had high internal consistency (Cronbach's alpha >0.9) and 3-d test-retest reliability (intraclass correlation coefficient = 0.99). Correlation between the Fatigue Impact Scale and MAFS was high (r = 0.99). Correlation between MAFS scores and the Expanded Disability Status Scale was also strong (r = 0.85). Questionnaire items showed acceptable item-scale correlation (0.968-0.993). The Persian version of the MAFS appears to be a valid and reliable questionnaire. It is an appropriate short multidimensional instrument to assess fatigue in patients with multiple sclerosis in clinical practice and research. Implications for Rehabilitation The Persian version of Multidimensional Assessment of Fatigue is a valid and reliable instrument for the assessment and monitoring the fatigue in Persian-language patients with multiple sclerosis. It is very easy to administer and a time efficient scale in comparison to other instruments evaluating fatigue in patients with multiple sclerosis.
2006-06-16
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the tilt table lowers the STEREO spacecraft "A." In this position, technicians can perform the final comprehensive performance test of the instruments, verifying the instrument is fully functional before flight. After a rotation, this configuration also allows deployment tests to be done on the solar arrays. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket on July 22. Photo credit: NASA/George Shelton
The effects of acute stress on Pavlovian-instrumental transfer in rats.
Pielock, Steffi M; Braun, Stephanie; Hauber, Wolfgang
2013-03-01
Pavlovian stimuli invigorate ongoing instrumental action, a phenomenon termed the Pavlovian-instrumental transfer (PIT) effect. Acute stressors can markedly enhance the release of corticotropin-releasing factor (CRF), and CRF injection into the nucleus accumbens increases the PIT effect. However, it is unknown whether acute stressors by themselves would amplify the PIT effect. Here, we examined the effects of acute stressors on PIT. Rats first received Pavlovian and instrumental training, and then the impact of the Pavlovian stimuli on instrumental responding was analyzed in the subsequent PIT test. Acute stressors were applied prior to the PIT test. Because the effects of acute stressors critically depend on stressor type and time of day, we used two acute stressors that involved one or several distinct stressors (denoted here as "single" vs. "multiple" stressors) applied either in the light or the dark period of the light:dark cycle. The results revealed that single and multiple stressors applied in the light period did not alter the PIT effect--that is, the ability of an appetitive Pavlovian stimulus to enhance leverpressing--or the basal leverpress rate. When applied in the dark period, single and multiple stressors also did not alter the PIT effect, but they did markedly reduce the basal leverpress rate. Diazepam pretreatment did not counteract the declines in basal instrumental responding in the PIT test that were induced by either a single or multiple stressors. Our findings suggest that acute stressors were unable to amplify the incentive salience of reward-predictive Pavlovian stimuli to activate instrumental responding, but, depending on the time of day of stressor exposure, they did reduce basal instrumental responding.
Légaré, France; Borduas, Francine; Freitas, Adriana; Jacques, André; Godin, Gaston; Luconi, Francesca; Grimshaw, Jeremy
2014-01-01
Decision-makers in organizations providing continuing professional development (CPD) have identified the need for routine assessment of its impact on practice. We sought to develop a theory-based instrument for evaluating the impact of CPD activities on health professionals' clinical behavioral intentions. Our multipronged study had four phases. 1) We systematically reviewed the literature for instruments that used socio-cognitive theories to assess healthcare professionals' clinically-oriented behavioral intentions and/or behaviors; we extracted items relating to the theoretical constructs of an integrated model of healthcare professionals' behaviors and removed duplicates. 2) A committee of researchers and CPD decision-makers selected a pool of items relevant to CPD. 3) An international group of experts (n = 70) reached consensus on the most relevant items using electronic Delphi surveys. 4) We created a preliminary instrument with the items found most relevant and assessed its factorial validity, internal consistency and reliability (weighted kappa) over a two-week period among 138 physicians attending a CPD activity. Out of 72 potentially relevant instruments, 47 were analyzed. Of the 1218 items extracted from these, 16% were discarded as improperly phrased and 70% discarded as duplicates. Mapping the remaining items onto the constructs of the integrated model of healthcare professionals' behaviors yielded a minimum of 18 and a maximum of 275 items per construct. The partnership committee retained 61 items covering all seven constructs. Two iterations of the Delphi process produced consensus on a provisional 40-item questionnaire. Exploratory factorial analysis following test-retest resulted in a 12-item questionnaire. Cronbach's coefficients for the constructs varied from 0.77 to 0.85. A 12-item theory-based instrument for assessing the impact of CPD activities on health professionals' clinical behavioral intentions showed adequate validity and reliability. Further studies could assess its responsiveness to behavior change following CPD activities and its capacity to predict health professionals' clinical performance.
Légaré, France; Borduas, Francine; Freitas, Adriana; Jacques, André; Godin, Gaston; Luconi, Francesca; Grimshaw, Jeremy
2014-01-01
Background Decision-makers in organizations providing continuing professional development (CPD) have identified the need for routine assessment of its impact on practice. We sought to develop a theory-based instrument for evaluating the impact of CPD activities on health professionals' clinical behavioral intentions. Methods and Findings Our multipronged study had four phases. 1) We systematically reviewed the literature for instruments that used socio-cognitive theories to assess healthcare professionals' clinically-oriented behavioral intentions and/or behaviors; we extracted items relating to the theoretical constructs of an integrated model of healthcare professionals' behaviors and removed duplicates. 2) A committee of researchers and CPD decision-makers selected a pool of items relevant to CPD. 3) An international group of experts (n = 70) reached consensus on the most relevant items using electronic Delphi surveys. 4) We created a preliminary instrument with the items found most relevant and assessed its factorial validity, internal consistency and reliability (weighted kappa) over a two-week period among 138 physicians attending a CPD activity. Out of 72 potentially relevant instruments, 47 were analyzed. Of the 1218 items extracted from these, 16% were discarded as improperly phrased and 70% discarded as duplicates. Mapping the remaining items onto the constructs of the integrated model of healthcare professionals' behaviors yielded a minimum of 18 and a maximum of 275 items per construct. The partnership committee retained 61 items covering all seven constructs. Two iterations of the Delphi process produced consensus on a provisional 40-item questionnaire. Exploratory factorial analysis following test-retest resulted in a 12-item questionnaire. Cronbach's coefficients for the constructs varied from 0.77 to 0.85. Conclusion A 12-item theory-based instrument for assessing the impact of CPD activities on health professionals' clinical behavioral intentions showed adequate validity and reliability. Further studies could assess its responsiveness to behavior change following CPD activities and its capacity to predict health professionals' clinical performance. PMID:24643173
Achievement Motivation Training's Effects on Psychosocial Self-Perceptions.
ERIC Educational Resources Information Center
Martin, Larry G.
1983-01-01
A study identified the psychosocial needs of low-literate adults by using an instrument based on Erikson's ego-stage development model. It also tested the effectiveness of Achievement Motivation Training in counterbalancing the negative impact of school experiences on students' psychosocial development. (Author/SK)
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VAB SHOWS OPEN PARACHUTE
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB WITH PARACHUTE HOISTED HIGH
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB PRIOR TO ATTACHING PRESSURE VESSEL
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VEHICLE ASSEMBLY BUILDING
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
Impact Testing and Simulation of Composite Airframe Structures
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II
2014-01-01
Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.
NASA Astrophysics Data System (ADS)
Field, L. A.; Sholtz, A.; Chetty, S.; Manzara, A.; Johnson, D.; Christodoulou, E.; Decca, R.; Walter, P.; Katuri, K.; Bhattacharyya, S.; Ivanova, D.; Mlaker, V.; Perovich, D. K.
2017-12-01
This work uses ecologically benign surface treatment of silica-based materials in carefully selected, limited areas to reduce polar ice melt by reflecting energy from summertime polar sun to attempt to slow ice loss due to the Ice-Albedo Feedback Effect. Application of Ice911's materials can be accomplished within a season, at a comparatively low cost, and with far less secondary environmental impact than many other proposed geo-engineering solutions. Field testing, instrumentation, safety testing, data-handling and modeling results will be presented. The albedo modification has been tested over a number of melt seasons with an evolving array of instrumentation, at multiple sites and on progressively larger scales, most recently in a small artificial pond in Minnesota and in a lake in Barrow, Alaska's BEO (Barrow Experimental Observatory) area. The test data show that the glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. Using NCAR's CESM package the environmental impact of the approach of surface albedo modification was studied. During two separate runs, region-wide Arctic albedo modification as well as more targeted localized treatments were modeled and compared. The parameters of a surface snow layer are used as a proxy to simulate Ice911's high-albedo materials, and the modification is started in January over selected ice/snow regions in the Arctic. Preliminary results show promising possibilities of enhancements in surface albedo, sea ice area and sea-ice concentration, as well as temperature reductions of .5 to 3 degree Kelvin in the Arctic, and global average temperature reductions of .5 to 1 degrees.
NASA Astrophysics Data System (ADS)
Winkler, Stefan; Corbett, David
2014-05-01
The Southern Alps of New Zealand are among the few key study sites for investigating Holocene glacier chronologies in the mid-latitudinal Southern Hemisphere. Their characteristic highly dynamic geomorphological process systems prove, however, to be a considerable challenge for all attempts to date and palaeoclimatologically interpret the existing Holocene moraines record. As a multi-proxy approach combining 10Be terrestrial cosmogenic nuclide dating (TCND) with Schmidt-hammer testing, the recently developed Schmidt-hammer exposure-age dating (SHD) has already shown its potential in this study area (cf. Winkler 2005, 2009, 2013). An electronic Schmidt-hammer (named SilverSchmidt) was introduced by the manufacturer of the original mechanical Schmidt-hammer (Proceq SA) a few years ago. It offers, in particular, facilities for much easier data processing and constitutes a major improvement and potential replacement for the mechanical Schmidt-hammer. However, its different approach to the measurement of surface hardness - based on Q-(velocity) values instead of R-(rebound) values - is a potential drawback. This difference effectively means that measurements from the two instruments are not easily interconvertible and, hence, that the instruments cannot be used interchangeably without previous comparative tests of both instruments under field conditions. Both instruments used in this comparative study were N-type models with identical impact energy of 2.207 Nm for the plunger. To compare both instruments and explore interconvertibility, parallel measurements were performed on a selected number of boulders (10 boulders per site with 5 impacts each, at least 2 sites per moraine) on moraines of homogeneous lithology but different established ages covering the entire Holocene and the Late Glacial. All moraines are located east of the Main Divide of the Southern Alps at Mueller Glacier, Tasman Glacier, and in the outer Tasman River Valley. All paired samples (n = 50) were collected so that the plunger impacts of both instruments were set close together on the rock surface (to avoid any influence of modifications to the surface by consecutive impacts on the same spot). In order to test their performance at the higher and lower end of surface hardness, similar paired sample tests were also made on the full-metal test anvil. The results of paired samples for all sites/moraines reveal that Q-/R-value pairs are closely clustered for young surfaces but more scattered for the older ones with a corresponding moderate R2 for a calculated linear trend. The greater variability of the older, weathered surfaces with greater scatter and hence higher standard deviations and broader confidence intervals has been recognised in numerous previous Schmidt-hammer studies and is elated to the effects of micro-scale lithological variability, which becomes a more pronounced influence with time exposed to subaerial weathering. But most important, Q-values and R-values are closely related and Q-values are systematically higher than R-values by c. 10 - 12 units over most of the operational range of both instruments. Linear conversion equations indicate a conversion factor in the order of + 11 units is applicable when converting R-values to Q-values. These estimates agree well with data obtained on the standard test anvil. Given the apparent interconvertibility of the two instruments, the SilverSchmidt is regarded as a potential replacement for the mechanical Schmidt hammer. This enables, moreover, continuity in study areas with existing R-value data archives. However, when comparing data sets of different age, adjustments must be made for any changes to the instrumental calibration value over time. References: Winkler, S. (2005): The 'Schmidt hammer' as a relative-age dating technique: potential and limitations of its application on Holocene moraines in Mt Cook National Park, Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics 48, 105 - 116. Winkler, S. (2009): First attempt to combine terrestrial cosmogenic nuclide (10Be) and Schmidt hammer relative-age dating: Strauchon Glacier, Southern Alps, New Zealand. Central European Journal of Geosciences 1, 274 - 290. Winkler, S. (2013): Investigation of late-Holocene moraines in the western Southern Alps, New Zealand, applying Schmidt-hammer exposure-age dating (SHD). The Holocene (online), doi: 10.1177/0959683613512169.
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1986-01-01
Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assessed on the basis of loading capability, energy absorption, and extent of damage.
The Impact of Patient Aggression on Carers Scale: instrument derivation and psychometric testing.
Needham, Ian; Abderhalden, Chris; Halfens, Rudolph J G; Dassen, Theo; Haug, Hans-Joachim; Fischer, Joachim E
2005-09-01
Patient aggression towards carers constitutes a problem for patients and carers alike. Patients' aggressive behaviour often leads to adverse consequences for carers, especially nurses. Various extensive instruments have been developed to measure such adverse effects on carers. The 'Impact of Patient Aggression on Carers Scale' (IMPACS) is a short instrument intended for use in monitoring negative consequences of such incidents. The items of the IMPACS were derived basically from a review of the literature on negative effects of patient aggression on nurses. The IMPACS was administered to a convenience sample of nurses working on 14 psychiatric acute admission wards in the German speaking part of Switzerland. Factor analysis led to the exclusion of three of the original items and to an interpretable three-factor solution with all factors demonstrating eigen values higher than 1. The factors demonstrate moderate to good internal consistency. Canonical correlation analysis using the dimensions of the Maslach Burnout Inventory (MBI) produced a correlation coefficient of 0.457, thus demonstrating external reliability. In spite of some caveats such as possible response bias and the necessity of the investigation of the test-retest stability of the scale this study suggests that the IMPACS is a good measure of adverse effects and thus merits further development.
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Polis, Daniel L.
2014-01-01
Damage tolerance performance is critical to composite structures because surface impacts at relatively low energies may result in a significant strength loss. For certification, damage tolerance criteria require aerospace vehicles to meet design loads while containing damage at critical locations. Data from standard small coupon testing are difficult to apply to larger more complex structures. Due to the complexity of predicting both the impact damage and the residual properties, damage tolerance is demonstrated primarily by testing. A portable, spring-propelled, impact device was developed which allows the impact damage response to be investigated on large specimens, full-scale components, or entire vehicles. During impact, both the force history and projectile velocity are captured. The device was successfully used to demonstrate the damage tolerance performance of the NASA Composite Crew Module. The impactor was used to impact 18 different design features at impact energies up to 35 J. Detailed examples of these results are presented, showing impact force histories, damage inspection results, and response to loading.
Braakman-Jansen, Louise M A; Taal, Erik; Kuper, Ina H; van de Laar, Mart A F J
2012-02-01
To explore the impact of at-work productivity loss on the total productivity cost by different instruments in patients recently diagnosed with RA and controls without RA. Cross-sectional data were collected from outpatients with RA between December 2007 and February 2008. The control group was formed by subjects without RA matched on age and gender. Absenteeism and presenteeism were estimated by the Quantity and Quality (QQ) Questionnaire, Work Productivity and Activity Impairment Questionnaire General Health V2.0 (WPAI-GH) and Health and Labor Questionnaire (HLQ) questionnaires. Differences between groups were tested by Mann-Whitney U-test. Costs were valued by the human capital approach. Data were available from 62 patients with a paid job and 61 controls. QQ- and WPAI-GH scores of presenteeism were moderately correlated (r = 0.61) while the HLQ presenteeism score correlated poorly with the other instruments (r = 0.34). The contribution of presenteeism on total productivity costs was estimated at ∼70% in the RA group. The mean costs per person per week due to presenteeism varied between €79 and €318 per week in the RA group, dependent on the instrument used. The costs due to presenteeism were about two to four times higher in the RA group compared with the control group. This study indicates that the impact of presenteeism on the total productivity costs in patients with RA is high. However, work productivity in individuals without RA was not optimal either, which implies a risk of overestimation of cost when a normal score is not taken into account. Finally, different presenteeism instruments lead to different results.
Mundy, Lily R; Miller, H Catherine; Klassen, Anne F; Cano, Stefan J; Pusic, Andrea L
2016-10-01
Patient-reported outcomes (PROs) are of growing importance in research and clinical care and may be used as primary outcomes or as compliments to traditional surgical outcomes. In assessing the impact of surgical and traumatic scars, PROs are often the most meaningful. To assess outcomes from the patient perspective, rigorously developed and validated PRO instruments are essential. The authors conducted a systematic literature review to identify PRO instruments developed and/or validated for patients with surgical and/or non-burn traumatic scars. Identified instruments were assessed for content, development process, and validation under recommended guidelines for PRO instrument development. The systematic review identified 6534 articles. After review, we identified four PRO instruments meeting inclusion criteria: patient and observer scar assessment scale (POSAS), bock quality of life questionnaire for patients with keloid and hypertrophic scarring (Bock), patient scar assessment questionnaire (PSAQ), and patient-reported impact of scars measure (PRISM). Common concepts measured were symptoms and psychosocial well-being. Only PSAQ had a dedicated appearance domain. Qualitative data were used to inform content for the PSAQ and PRISM, and a modern psychometric approach (Rasch Measurement Theory) was used to develop PRISM and to test POSAS. Overall, PRISM demonstrated the most rigorous design and validation process, however, was limited by the lack of a dedicated appearance domain. PRO instruments to evaluate outcomes in scars exist but vary in terms of concepts measured and psychometric soundness. This review discusses the strengths and weaknesses of existing instruments, highlighting the need for future scar-focused PRO instrument development. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Flip-Flop Recovery System for sounding rocket payloads
NASA Technical Reports Server (NTRS)
Flores, A., Jr.
1986-01-01
The design, development, and testing of the Flip-Flop Recovery System, which protects sensitive forward-mounted instruments from ground impact during sounding rocket payload recovery operations, are discussed. The system was originally developed to reduce the impact damage to the expensive gold-plated forward-mounted spectrometers in two existing Taurus-Orion rocket payloads. The concept of the recovery system is simple: the payload is flipped over end-for-end at a predetermined time just after parachute deployment, thus minimizing the risk of damage to the sensitive forward portion of the payload from ground impact.
The effects of tensile preloads on the impact response of carbon/epoxy laminates
NASA Technical Reports Server (NTRS)
Nettles, Alan; Daniel, Vince; Branscomb, Caleb
1995-01-01
The effects of tensile preloads on the tension-after-impact (TAI) strength of composite laminates of IM7/8551-7 were examined. A failure threshold curve was first determined so the most informative values for preload/impact energy combinations could be determined. The impact tests were instrumented so maximum load of impact, as well as several other parameters could be measured. The elastic response data indicate that as the tensile preload is increased, the maximum load of impact also increases. The damage data show that at low impact energies, the damage/failure is an 'all-or-nothing' event but at higher impact energies, a region of preload values exists where the coupons could sustain damage, yet not fail catastrophically.
The impact of epilepsy on preschool children and their families.
Tanriverdi, Müberra; Mutluay, Fatma Karantay; Tarakçi, Devrim; Güler, Serhat; Iscan, Akin
2016-09-01
This study investigated the possible presence of sensory-motor developmental impairments in preschool children with epilepsy and explored epilepsy impact on their activities and quality of life and on the stress load of their family. Study participants were children aged 2-6years diagnosed with epilepsy without any other comorbidities (epi-only children). The instruments used for assessment included the Neurological, Sensory, Motor, Developmental Assessment (NSMDA) scale for sensory-motor development, the Impact of Childhood Neurologic Disability Scale (ICNDS), and the Impact of Pediatric Epilepsy Scale (IPES) for disease impact on disability and Quality of Life (QoL), as well as the Pediatric Outcomes Data Collection Instrument (PODCI) for functional health status, and the Parental Stress Scale (PSS) for the family stress load. Required data were obtained from direct testing or observation of children's activities and mother-supplied answers to questions. Eighty-two children were investigated. The NSMDA scores were in the normal development range 6-8. Significant moderate impact of the disease on disability and QoL was estimated with the ICNDS and IPES instruments. The PODCI scores were similar to healthy population levels except for the happiness dimension which was better for children with epilepsy. PSS were significantly above normal. The functional health and QoL of the children as well as their family stress were found to be positively correlated with increasing age. It is found that epilepsy does not degrade neuromotor development and functional health status of preschool epi-only children, though it has a significant impact on their neurological disability and QoL and the stress level of their families; this impact seems to decrease with age. Copyright © 2016 Elsevier Inc. All rights reserved.
Full-Scale Passive Earth Entry Vehicle Landing Tests: Methods and Measurements
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Kellas, Sotiris
2018-01-01
During the summer of 2016, a series of drop tests were conducted on two passive earth entry vehicle (EEV) test articles at the Utah Test and Training Range (UTTR). The tests were conducted to evaluate the structural integrity of a realistic EEV vehicle under anticipated landing loads. The test vehicles were lifted to an altitude of approximately 400m via a helicopter and released via release hook into a predesignated 61 m landing zone. Onboard accelerometers were capable of measuring vehicle free flight and impact loads. High-speed cameras on the ground tracked the free-falling vehicles and data was used to calculate critical impact parameters during the final seconds of flight. Additional sets of high definition and ultra-high definition cameras were able to supplement the high-speed data by capturing the release and free flight of the test articles. Three tests were successfully completed and showed that the passive vehicle design was able to withstand the impact loads from nominal and off-nominal impacts at landing velocities of approximately 29 m/s. Two out of three test resulted in off-nominal impacts due to a combination of high winds at altitude and the method used to suspend the vehicle from the helicopter. Both the video and acceleration data captured is examined and discussed. Finally, recommendations for improved release and instrumentation methods are presented.
2003-10-27
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Bill Prosser (left) and Eric Madaras, NASA-Langley Research Center, and Jim McGee (right), The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.
75 FR 71131 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... impacts. To complete this task with scientific rigor, it will be necessary to collect high quality survey... instruments, methodologies, procedures, and analytical techniques for this task. Moreover, they have been pilot tested in 11 States. The tools and techniques were submitted for review, and were approved, by...
2015-08-18
machine and its impact to the bio properties. Samples are printed and test will be conducted in summer 2015. 5. Selective Melting of Nitinol : The...objective of this research is to print Nitinol and investigate its application in bio implant and aviation. Planned research: 1. Hierarchical
Development of the Student Affairs Officers Work Environment Perception Scale
ERIC Educational Resources Information Center
Haynes, Derrick E.
2010-01-01
The qualitative and quantitative study developed and validated a questionnaire to measure Student Affairs Officers' (SAO) perceptions of the work environment. A review of the literature identified five major categories and 25 elements having an impact on SAOs' perceptions of the work environment. The test instrument (questionnaire) was developed…
Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker
2016-12-30
Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal "housekeeping" data to nearly perfectly control SEALDH-II's health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively.
Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker
2016-01-01
Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal “housekeeping” data to nearly perfectly control SEALDH-II’s health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively. PMID:28042844
Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Gyekanyesi, John (Technical Monitor); Liaw, Benjamin; Villars, Esther; Delmont, Frantz
2003-01-01
The main objective of this NASA Faculty Awards for Research (FAR) project is to conduct ultrasonic assessment of impact-induced damage and microcracking in fiber-metal laminated (FML) composites at various temperatures. It is believed that the proposed study of impact damage assessment on FML composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Impact-induced damage mechanisms in GLARE and ARALL fiber-metal laminates subject to instrumented drop-weight impacts at various temperatures were studied. GLARE and ARALL are hybrid composites made of alternating layers of aluminum and glass- (for GLARE) and aramid- (for ARALL) fiber reinforced epoxy. Damage in pure aluminum panels impacted by foreign objects was mainly characterized by large plastic deformation surrounding a deep penetration dent. On the other hand, plastic deformation in fiber-metal laminates was often not as severe although the penetration dent was still produced. The more stiff fiber-reinforced epoxy layers provided better bending rigidity; thus, enhancing impact damage tolerance. Severe cracking, however, occurred due to the use of these more brittle fiber-reinforced epoxy layers. Fracture patterns, e.g., crack length and delamination size, were greatly affected by the lay-up configuration rather than by the number of layers, which implies that thickness effect was not significant for the panels tested in this study. Immersion ultrasound techniques were then used to assess damages generated by instrumented drop-weight impacts onto these fiber-metal laminate panels as well as 2024-T3 aluminum/cast acrylic sandwich plates adhered by epoxy. Depending on several parameters, such as impact velocity, mass, temperature, laminate configuration, sandwich construction, etc., various types of impact damage were observed, including plastic deformation, radiating cracks emanating from the impact site, ring cracks surrounding the impact site, partial and full delamination, and combinations of these damages.
Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Liaw, Benjamin; Villars, Esther; Delmont, Frantz; Bowles, Kenneth J. (Technical Monitor)
2001-01-01
The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Impact-induced damage mechanisms in GLARE and ARALL fiber-metal laminates subject to instrumented drop-weight impacts at various temperatures were studied. GLARE and ARALL are hybrid composites made of alternating layers of aluminum and glass (for GLARE) and aramid- (for ARALL) fiber-reinforced epoxy. Damage in pure aluminum panels impacted by foreign objects was mainly characterized by large plastic deformation surrounding a deep penetration dent. On the other hand, plastic deformation in fiber-metal laminates was often not as severe although the penetration dent was still produced. The more stiff fiber-reinforced epoxy layers provided better bending rigidity; thus, enhancing impact damage tolerance. Severe cracking, however, occurred due to the use of these more brittle fiber-reinforced epoxy layers. Fracture patterns, e.g., crack length and delamination size, were greatly affected by the lay-up configuration rather than by the number of layers, which implies that thickness effect was not significant for the panels tested in this study. Immersion ultrasound techniques were then used to assess damages generated by instrumented drop-weight impacts onto these fiber-metal laminate panels as well as 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy. Depending on several parameters, such as impact velocity, mass, temperature, laminate configuration, sandwich construction, etc., various types of impact damage were observed, including plastic deformation, radiating cracks emanating from the impact site, ring cracks surrounding the impact site, partial and full delamination, and combinations of these damages.
Li, Chenghao; Xia, Bin; Wang, Yu; Guan, Xuelin; Yuan, Junwei; Ge, Lihong
2014-11-30
Although caries and malocclusion occur with a high prevalence in Chinese school-age children, there were no appropriate instrument to assess the oral health-related quality of life (OHRQoL) for this population. The aim of our study was to develop a Chinese (Mandarin) version of the Child Oral Health Impact Profile-Short Form 19 (COHIP-SF 19) and provide a preliminary test of its psychometric properties. The Chinese version of COHIP-SF 19 was developed through a standard translation and back translation procedure. The psychometric properties of the instrument were tested among 644 school-age children in Beijing, China, including the internal consistency, test-retest reliability, discriminant and convergent validity. A Mann-Whitney U test was used to determine the capability of the instrument to differentiate children with different caries and malocclusion outcomes. And partial Spearman correlations were used to determine the relationships between the OHRQoL scores and clinical-severity indicators and self-perceived health ratings, respectively. Chinese school-age children had relatively high OHRQoL scores, in spite of the fact that oral impacts were quite common (56.3%). The internal consistency and retest reliability were good to excellent with a Chronbach's alpha of 0.81 and an intra-class correlation coefficient (ICC) of 0.77. Children who had active tooth decay or severe malocclusion had significantly lower COHIP-SF 19 scores (P ≤0.001). Girls had somewhat higher scores in the oral health and functional well-being subscales (P <0.05), while children from rural districts had lower scores than children from urban areas (P <0.05). We observed a low to moderate correlation between the overall COHIP-SF 19, subscale scores and clinical severity indicators as well as self-perceived health ratings, after adjustment for children's age, gender, and school district (│r s │ =0.11 - 0.51, P <0.05). We confirmed satisfactory psychometric properties for the Chinese version of COHIP-SF 19 in a community sample of Chinese school-age children. The OHRQoL instrument should play a more important role in future clinical studies, epidemiological surveys and potential public health policy in China.
2003-10-27
In the Orbiter Processing Facility, Eric Madaras, NASA-Langley Research Center, conducts impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.
Experimental and numerical study of drill bit drop tests on Kuru granite.
Fourmeau, Marion; Kane, Alexandre; Hokka, Mikko
2017-01-28
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit-rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist-Johnson-Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
Experimental and numerical study of drill bit drop tests on Kuru granite
Kane, Alexandre; Hokka, Mikko
2017-01-01
This paper presents an experimental and numerical study of Kuru grey granite impacted with a seven-buttons drill bit mounted on an instrumented drop test machine. The force versus displacement curves during the impact, so-called bit–rock interaction (BRI) curves, were obtained using strain gauge measurements for two levels of impact energy. Moreover, the volume of removed rock after each drop test was evaluated by stereo-lithography (three-dimensional surface reconstruction). A modified version of the Holmquist–Johnson–Cook (MHJC) material model was calibrated using Kuru granite test results available from the literature. Numerical simulations of the single drop tests were carried out using the MHJC model available in the LS-DYNA explicit finite-element solver. The influence of the impact energy and additional confining pressure on the BRI curves and the volume of the removed rock is discussed. In addition, the influence of the rock surface shape before impact was evaluated using two different mesh geometries: a flat surface and a hyperbolic surface. The experimental and numerical results are compared and discussed in terms of drilling efficiency through the mechanical specific energy. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956511
A Review of Instrumented Equipment to Investigate Head Impacts in Sport
2016-01-01
Contact, collision, and combat sports have more head impacts as compared to noncontact sports; therefore, such sports are uniquely suited to the investigation of head impact biomechanics. Recent advances in technology have enabled the development of instrumented equipment, which can estimate the head impact kinematics of human subjects in vivo. Literature pertaining to head impact measurement devices was reviewed and usage, in terms of validation and field studies, of such devices was discussed. Over the past decade, instrumented equipment has recorded millions of impacts in the laboratory, on the field, in the ring, and on the ice. Instrumented equipment is not without limitations; however, in vivo head impact data is crucial to investigate head injury mechanisms and further the understanding of concussion. PMID:27594780
The impact of clinical use on the torsional behavior of Reciproc and WaveOne instruments
de MAGALHÃES, Rafael Rodrigues Soares; BRAGA, Lígia Carolina Moreira; PEREIRA, Érika Sales Joviano; PEIXOTO, Isabella Faria da Cunha; BUONO, Vicente Tadeu Lopes; BAHIA, Maria Guiomar de Azevedo
2016-01-01
ABSTRACT Torsional overload is a fracture representative parameter for instruments in single-file techniques. Objective The aim of this study was to assess the influence of clinical use, in vivo, on the torsional behavior of Reciproc and WaveOne instruments considering the possibility that they degraded with use. Material and Methods Diameter at each millimeter, pitch length, and area at 3 mm from the tip were determined for both types of instruments. Twenty-four instruments, size 25, 0.08 taper, of each system were divided into two groups (n=12 each): Control Group (CG), in which new Reciproc (RC) and WaveOne Primary (WO) instruments were tested in torsion until rupture based on ISO 3630-1; and Experimental Group (EG), in which each new instrument was clinically used to clean and shape the root canals of one molar. After clinical use, the instruments were analyzed using optical and scanning electron microscopy and subsequently tested in torsion until fracture. Data were analyzed using one-way analysis of variance at a=.05. Results WO instruments showed significantly higher mean values of cross-sectional area A3 (P=0.000) and smaller pitch lengths than RC instruments with no statistically significant differences in the diameter at D3 (P=0.521). No significant differences in torsional resistance between the RC and WO new instruments (P=0.134) were found. The clinical use resulted in a tendency of reduction in the maximum torque of the analyzed instruments but no statistically significant difference was observed between them (P=0.327). During the preparation of the root canals, two fractured RC instruments and longitudinal and transversal cracks in RC and WO instruments were observed through SEM analysis. Conclusion After clinical use, no statistically significant reduction in the torsional resistance was observed. PMID:27556200
NASA Technical Reports Server (NTRS)
Miller, Timothy; Atlas, Robert; Bailey, M. C.; Black, Peter; El-Nimri, Salem; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher;
2009-01-01
The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will be presented, as well as data from the brassboard instrument chamber tests.
Anjos, Daniela Brianne Martins Dos; Rodrigues, Roberta Cunha Matheus; Padilha, Kátia Melissa; Pedrosa, Rafaela Batista Dos Santos; Gallani, Maria Cecília Bueno Jayme
2016-12-19
evaluate the practicality, acceptability and the floor and ceiling effects, estimate the reliability and verify the convergent construct's validity with the instrument called the Heart Valve Disease Impact on daily life (IDCV) of the valve disease in patients with mitral and or aortic heart valve disease. data was obtained from 86 heart valve disease patients through 3 phases: a face to face interview for a socio-demographic and clinic characterization and then other two done through phone calls of the interviewed patients for application of the instrument (test and repeat test). as for the practicality and acceptability, the instrument was applied with an average time of 9,9 minutes and with 110% of responses, respectively. Ceiling and floor effects observed for all domains, especially floor effect. Reliability was tested using the test - repeating pattern to give evidence of temporal stability of the measurement. Significant negative correlations with moderate to strong magnitude were found between the score of the generic question about the impact of the disease and the scores of IDCV, which points to the validity of the instrument convergent construct. the instrument to measure the impact of valve heart disease on the patient's daily life showed evidence of reliability and validity when applied to patients with heart valve disease. avaliar a praticabilidade, aceitabilidade e os efeitos teto e chão, estimar a confiabilidade e verificar a validade de construto convergente do Instrumento para Mensuração do Impacto da Doença no Cotidiano do Valvopata em pacientes com valvopatia mitral e/ou aórtica. dados foram obtidos junto a 86 pacientes valvopatas por meio de três etapas: uma entrevista presencial para caracterização sociodemográfica e clínica e as duas outras realizadas por meio de contato telefônico para as aplicações do instrumento (Teste e teste de repetição). quanto à praticabilidade e aceitabilidade, o instrumento foi aplicado com tempo médio de 9,9 minutos e com 110% de respostas, respectivamente. Constatados efeitos teto e chão para todos os domínios, principalmente efeito chão. A confiabilidade foi testada por meio do teste-teste de repetição, obtendo-se evidências de estabilidade temporal da medida. Foram constatadas correlações negativas significantes de moderada a forte magnitude entre o escore da questão genérica sobre o impacto da doença e os escores do IDCV, o que aponta para validade de construto convergente do instrumento. o Instrumento para Mensuração do Impacto da Doença no Cotidiano do Valvopata apresentou evidências de confiabilidade e validade quando aplicado em pacientes com valvopatia. evaluar la viabilidad, aceptabilidad y los efectos techo y suelo, estimar la confiabilidad y verificar la validez de constructo convergente del Instrumento para Medir el Impacto en lo Cotidiano (IDCV) del sujeto con valvulopatías mitral y/o aórtica. los datos fueron obtenidos de 86 pacientes con valvulopatías por medio de tres etapas: una entrevista presencial para caracterización sociodemográfica y clínica y las otras dos realizadas por medio de contacto telefónico para las aplicaciones del instrumento (test y test de repetición). en cuanto a la viabilidad y aceptabilidad, el instrumento fue aplicado con un tiempo promedio de 9,9 minutos y con 110% de respuestas, respectivamente. Fueron constatados los efectos techo y suelo para todos los dominios, principalmente el efecto suelo. La confiabilidad fue comprobada por medio del test de repetición, obteniéndose evidencias de estabilidad temporal de la medida. Fueron constatadas correlaciones negativas significativas de moderada a fuerte magnitud entre el puntaje de la pregunta genérica sobre el impacto de la enfermedad y los puntajes del IDCV, lo que apunta para la validez de constructo convergente del instrumento. el instrumento para medir el impacto de la valvulopatía en lo cotidiano del sujeto, presentó evidencias de confiabilidad y validez cuando aplicado en pacientes con esa enfermedad.
NASA Technical Reports Server (NTRS)
Bozak, Richard F.
2017-01-01
In February 2017, aerodynamic and acoustic testing was completed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. The objective of testing was to determine the aerodynamic and acoustic impact of fan casing treatments designed to reduce noise. The baseline configuration consisted of the R4 rotor with a hardwall fan case. Data are presented for a baseline acoustic run with fan exit instrumentation removed to give a clean acoustic configuration.
Football helmet drop tests on different fields using an instrumented Hybrid III head.
Viano, David C; Withnall, Chris; Wonnacott, Michael
2012-01-01
An instrumented Hybrid III head was placed in a Schutt ION 4D football helmet and dropped on different turfs to study field types and temperature on head responses. The head was dropped 0.91 and 1.83 m giving impacts of 4.2 and 6.0 m/s on nine different football fields (natural, Astroplay, Fieldturf, or Gameday turfs) at turf temperatures of -2.7 to 23.9 °C. Six repeat tests were conducted for each surface at 0.3 m (1') intervals. The Hybrid III was instrumented with triaxial accelerometers to determine head responses for the different playing surfaces. For the 0.91-m drops, peak head acceleration varied from 63.3 to 117.1 g and HIC(15) from 195 to 478 with the different playing surfaces. The lowest response was with Astroplay, followed by the engineered natural turf. Gameday and Fieldturf involved higher responses. The differences between surfaces decreased in the 1.83 m tests. The cold weather testing involved higher accelerations, HIC(15) and delta V for each surface. The helmet drop test used in this study provides a simple and convenient means of evaluating the compliance and energy absorption of football playing surfaces. The type and temperature of the playing surface influence head responses.
NASA Astrophysics Data System (ADS)
Meiland, Franka; Dröes, Rose-Marie; Sävenstedt, Stefan
Assistive technologies to support persons with dementia and their carers are used increasingly often. However, little is known about the effectiveness of most assistive devices. Much technology is put on the market without having been properly tested with potential end-users. To increase the chance that an assistive device is well accepted and useful for the target group, it is important, especially in the case of disabled persons, to involve potential users in the development process and to evaluate the impact of using the device on them before implementing it in the daily care and support. When evaluating the impact, decisions have to be made regarding the selection of measuring instruments. Important considerations in the selection process are the underlying domains to be addressed by the assistive technology, the target group and the availability of standardized instruments with good psychometric properties. In this chapter the COGKNOW project is used as a case example to explain how the impact of cognitive prosthetics on the daily lives of people with dementia and their carers can be measured. In COGKNOW a cognitive prosthetic device is being developed to improve the quality of life and autonomy of persons with dementia and to help them to remember and remind, to have social contact, to perform daily activities and to enhance feelings of safety. For all these areas, potential measuring instruments are described. Besides (standardized) measuring instruments, other data collection methods are used as well, such as semi-structured interviews and observations, diaries and in situ measurement. Within the COGKNOW project a first uncontrolled small-scale impact measurement takes place during the development process of the assistive device. However, it is recommended to perform a larger randomized controlled study as soon as the final product is ready to evaluate the impact of the device on persons with dementia and carers before it is released on the market.
On impact damage detection and quantification for CFRP laminates using structural response data only
NASA Astrophysics Data System (ADS)
Sultan, M. T. H.; Worden, K.; Pierce, S. G.; Hickey, D.; Staszewski, W. J.; Dulieu-Barton, J. M.; Hodzic, A.
2011-11-01
The overall purpose of the research is to detect and attempt to quantify impact damage in structures made from composite materials. A study that uses simplified coupon specimens made from a Carbon Fibre-Reinforced Polymer (CFRP) prepreg with 11, 12 and 13 plies is presented. PZT sensors were placed at three separate locations in each test specimen to record the responses from impact events. To perform damaging impact tests, an instrumented drop-test machine was used and the impact energy was set to cover a range of 0.37-41.72 J. The response signals captured from each sensor were recorded by a data acquisition system for subsequent evaluation. The impacted specimens were examined with an X-ray technique to determine the extent of the damaged areas and it was found that the apparent damaged area grew monotonically with impact energy. A number of simple univariate and multivariate features were extracted from the sensor signals recorded during impact by computing their spectra and calculating frequency centroids. The concept of discordancy from the statistical discipline of outlier analysis is employed in order to separate the responses from non-damaging and damaging impacts. The results show that the potential damage indices introduced here provide a means of identifying damaging impacts from the response data alone.
Domestic Violence Courts: A Multisite Test of Whether and How They Change Offender Outcomes.
Cissner, Amanda B; Labriola, Melissa; Rempel, Michael
2015-09-01
Findings are from an investigation of 24 criminal domestic violence courts (DVCs) across New York, testing their effect on recidivism, case processing, and case resolutions. Overall, we found a small positive impact on recidivism among convicted offenders. We further found that the sex of defendants moderated the court impact on case resolutions; that is, among male defendants only, DVCs increased conviction rates and sentences involving jail or prison. In addition, multi-level, multivariate analyses found that court policies specifically designed to increase victim safety, hold offenders accountable, and reduce offender recidivism (through deterrence or rehabilitation) were instrumental in reducing recidivism. © The Author(s) 2015.
Surface penetrators for planetary exploration: Science rationale and development program
NASA Technical Reports Server (NTRS)
Murphy, J. P.; Reynolds, R. T.; Blanchard, M. B.; Clanton, U. S.
1981-01-01
Work on penetrators for planetary exploration is summarized. In particular, potential missions, including those to Mars, Mercury, the Galilean satellites, comets, and asteroids are described. A baseline penetrator design for the Mars mission is included, as well as potential instruments and their status in development. Penetration tests in soft soil and basalt to study material eroded from the penetrator; changes in the structure, composition, and physical properties of the impacted soil; seismic coupling; and penetrator deflection caused by impacting rocks, are described. Results of subsystem studies and tests are given for design of entry decelerators, high-g components, thermal control, data acquisition, and umbilical cable deployment.
NASA Astrophysics Data System (ADS)
Leproux, Anaïs; O'Sullivan, Thomas D.; Cerussi, Albert; Durkin, Amanda; Hill, Brian; Hylton, Nola; Yodh, Arjun G.; Carp, Stefan A.; Boas, David; Jiang, Shudong; Paulsen, Keith D.; Pogue, Brian; Roblyer, Darren; Yang, Wei; Tromberg, Bruce J.
2017-12-01
We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed <0.0010 mm-1 (10.3%) and 0.06 mm-1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging.
Methods to Develop the Eye-tem Bank to Measure Ophthalmic Quality of Life.
Khadka, Jyoti; Fenwick, Eva; Lamoureux, Ecosse; Pesudovs, Konrad
2016-12-01
There is an increasing demand for high-standard, comprehensive, and reliable patient-reported outcome (PRO) instruments in all the disciplines of health care including in ophthalmology and optometry. Over the past two decades, a plethora of PRO instruments have been developed to assess the impact of eye diseases and their treatments. Despite this large number of instruments, significant shortcomings exist for the measurement of ophthalmic quality of life (QoL). Most PRO instruments are short-form instruments designed for clinical use, but this limits their content coverage often poorly targeting any study population other than that which they were developed for. Also, existing instruments are static paper and pencil based and unable to be updated easily leading to outdated and irrelevant item content. Scores obtained from different PRO instruments may not be directly comparable. These shortcomings can be addressed using item banking implemented with computer-adaptive testing (CAT). Therefore, we designed a multicenter project (The Eye-tem Bank project) to develop and validate such PROs to enable comprehensive measurement of ophthalmic QoL in eye diseases. Development of the Eye-tem Bank follows four phases: Phase I, Content Development; Phase II, Pilot Testing and Item Calibration; Phase III, Validation; and Phase IV, Evaluation. This project will deliver technologically advanced comprehensive QoL PROs in the form of item banking implemented via a CAT system in eye diseases. Here, we present a detailed methodological framework of this project.
Seismic reading taken at MSC recording impact of Apollo 13 S-IVB with surface
NASA Technical Reports Server (NTRS)
1970-01-01
A seismic reading taken from instruments at the Manned Spacecraft Center (MSC) recording impact of the Apollo 13 S-IVB/Instrument Unit with lunar surface. The expended Saturn third stage and instrument unit impacted the lunar surface at 7:09 p.m., April 14, 1970. The location of the impact was 2.4 degrees south latitude and 27.9 degrees west longitude, about 76 nautical miles west-northwest of the Apollo 12 Lunar Surface Experiment package deployment site. The S-IVB/IU impact was picked up by the Passive Seismic Experiment, a component of the package and transmitted to instruments at the Mission Control Center.
Keller, T S; Colloca, C J; Fuhr, A W
1999-02-01
To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (<0.1 ms) followed by several lower force (30 to 100 N), longer duration impulses (1 to 5 ms). The force profile was highly reproducible in terms of the peak impulse forces delivered to the beam structure (<8% variance). Spectrum analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (<10% variation). The addition of a preload-control frame to the Activator Adjusting Instrument improved the characteristics of the force frequency spectrum and repeatability of the driving point impedance measurements. These findings indicate that the Activator Adjusting Instrument combined with an integral load cell and accelerometer was able to obtain an accurate description of a steel beam with readily identifiable geometric and dynamic mechanical properties. These findings support the rationale for using the device to assess the dynamic mechanical behavior of the vertebral column. Such information would be useful for SMT and may ultimately be used to evaluate the [corrected] biomechanical effectiveness of various manipulative, surgical, and rehabilitative spinal procedures.
Ridgely, M Susan; Giard, Julienne; Shern, David; Mulkern, Virginia; Burnam, M Audrey
2002-01-01
Objective To develop an instrument to characterize public sector managed behavioral health care arrangements to capture key differences between managed and “unmanaged” care and among managed care arrangements. Study Design The instrument was developed by a multi-institutional group of collaborators with participation of an expert panel. Included are six domains predicted to have an impact on access, service utilization, costs, and quality. The domains are: characteristics of the managed care plan, enrolled population, benefit design, payment and risk arrangements, composition of provider networks, and accountability. Data are collected at three levels: managed care organization, subcontractor, and network of service providers. Data Collection Methods Data are collected through contract abstraction and key informant interviews. A multilevel coding scheme is used to organize the data into a matrix along key domains, which is then reviewed and verified by the key informants. Principal Findings This instrument can usefully differentiate between and among Medicaid fee-for-service programs and Medicaid managed care plans along key domains of interest. Beyond documenting basic features of the plans and providing contextual information, these data will support the refinement and testing of hypotheses about the impact of public sector managed care on access, quality, costs, and outcomes of care. Conclusions If managed behavioral health care research is to advance beyond simple case study comparisons, a well-conceptualized set of instruments is necessary. PMID:12236386
Yu, Lei
2016-08-20
The design, manufacturing, and testing of an imaging spectrometer prototype that will address new scientific requirements by the observation of the lower atmosphere's impact on the ionosphere are presented. The two sided lateral limb observation covering 130-180 nm far-ultraviolet (FUV) region allows the instrument to perform particle measurements in the daytime and nighttime. In this paper, we focus upon the working design principle, observation, and calibration.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Hodge, A. J.
1997-01-01
Low velocity dropweight impact tests were conducted on carbon/epoxy laminates under various boundary conditions. The composite plates were 8-ply (+45,0,-45,90)s laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load, N(sub x), applied. Specimens were impacted at energies of 3.4, 4.5, and 6 Joules (2.5, 3.3, and 4.4 ft-lb). The amount of damage induced into the specimen was evaluated using instrumented impact techniques, x-ray inspection, and cross-sectional photomicroscopy. Some static identation tests were performed to examine if the impact events utilized in this study were of a quasi-static nature and also to gain insight into the shape of the deflected surface at various impact load combinations. Load-displacement curves from these tests were compared to those of the impact tests, as was damage determined from x-ray inspection. The finite element technique was used to model the impact event and determine the stress field within the laminae. Results showed that for a given impact energy level, more damage was induced into the specimen as the external in-plane load, N(sub x), was increased. The majority of damage observed consisted of back face splitting of the matrix parallel to the fibers in that ply, associated with delaminations emanating from these splits. The analysis showed qualitatively the results of impact conditions on maximum load of impact, maximum transverse deflection, and first failure mode and location.
75 FR 20570 - Information Collection; Submission for OMB Review, Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... instrument is to measure community impact of RSVP grantees. Comment 9. Three commenters suggested that there... of the instrument is to measure community impact of RSVP grantees and to clarify that the benefit of... purpose of the instrument is to measure community impact of RSVP grantees. Comment 18. One way to minimize...
Full-scale Transport Controlled Impact Demonstration Program
NASA Technical Reports Server (NTRS)
1987-01-01
The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.
Testing the limits: cautions and concerns regarding the new Wechsler IQ and Memory scales.
Loring, David W; Bauer, Russell M
2010-02-23
The Wechsler Adult Intelligence Scale (WAIS) and the Wechsler Memory Scale (WMS) are 2 of the most common psychological tests used in clinical care and research in neurology. Newly revised versions of both instruments (WAIS-IV and WMS-IV) have recently been published and are increasingly being adopted by the neuropsychology community. There have been significant changes in the structure and content of both scales, leading to the potential for inaccurate patient classification if algorithms developed using their predecessors are employed. There are presently insufficient clinical data in neurologic populations to insure their appropriate application to neuropsychological evaluations. We provide a perspective on these important new neuropsychological instruments, comment on the pressures to adopt these tests in the absence of an appropriate evidence base supporting their incremental validity, and describe the potential negative impact on both patient care and continuing research applications.
Impacts of Vocabulary Acquisition Techniques Instruction on Students' Learning
ERIC Educational Resources Information Center
Orawiwatnakul, Wiwat
2011-01-01
The objectives of this study were to determine how the selected vocabulary acquisition techniques affected the vocabulary ability of 35 students who took EN 111 and investigate their attitudes towards the techniques instruction. The research study was one-group pretest and post-test design. The instruments employed were in-class exercises…
ERIC Educational Resources Information Center
Baker, David, Ed.; Wiseman, Alex, Ed.
2006-01-01
This volume of International Perspectives on Education and Society explores how educational research from a comparative perspective has been instrumental in broadening and testing hypotheses from institutional theory. Institutional theory has also played an increasingly influential role in developing an understanding of education in society. This…
Brown, Alexander L; Wagner, Gregory J; Metzinger, Kurt E
2012-06-01
Transportation accidents frequently involve liquids dispersing in the atmosphere. An example is that of aircraft impacts, which often result in spreading fuel and a subsequent fire. Predicting the resulting environment is of interest for design, safety, and forensic applications. This environment is challenging for many reasons, one among them being the disparate time and length scales that are necessary to resolve for an accurate physical representation of the problem. A recent computational method appropriate for this class of problems has been described for modeling the impact and subsequent liquid spread. Because the environment is difficult to instrument and costly to test, the existing validation data are of limited scope and quality. A comparatively well instrumented test involving a rocket propelled cylindrical tank of water was performed, the results of which are helpful to understand the adequacy of the modeling methods. Existing data include estimates of drop sizes at several locations, final liquid surface deposition mass integrated over surface area regions, and video evidence of liquid cloud spread distances. Comparisons are drawn between the experimental observations and the predicted results of the modeling methods to provide evidence regarding the accuracy of the methods, and to provide guidance on the application and use of these methods.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Finchum, Andy; Hubbs, Whitney; Evans, Steve
2008-01-01
Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Samsa, Greg; Matchar, David B; Dolor, Rowena J; Wiklund, Ingela; Hedner, Ewa; Wygant, Gail; Hauch, Ole; Marple, Cheryl Beadle; Edwards, Roger
2004-01-01
Background Anticoagulation can reduce quality of life, and different models of anticoagulation management might have different impacts on satisfaction with this component of medical care. Yet, to our knowledge, there are no scales measuring quality of life and satisfaction with anticoagulation that can be generalized across different models of anticoagulation management. We describe the development and preliminary validation of such an instrument – the Duke Anticoagulation Satisfaction Scale (DASS). Methods The DASS is a 25-item scale addressing the (a) negative impacts of anticoagulation (limitations, hassles and burdens); and (b) positive impacts of anticoagulation (confidence, reassurance, satisfaction). Each item has 7 possible responses. The DASS was administered to 262 patients currently receiving oral anticoagulation. Scales measuring generic quality of life, satisfaction with medical care, and tendency to provide socially desirable responses were also administered. Statistical analysis included assessment of item variability, internal consistency (Cronbach's alpha), scale structure (factor analysis), and correlations between the DASS and demographic variables, clinical characteristics, and scores on the above scales. A follow-up study of 105 additional patients assessed test-retest reliability. Results 220 subjects answered all items. Ceiling and floor effects were modest, and 25 of the 27 proposed items grouped into 2 factors (positive impacts, negative impacts, this latter factor being potentially subdivided into limitations versus hassles and burdens). Each factor had a high degree of internal consistency (Cronbach's alpha 0.78–0.91). The limitations and hassles factors consistently correlated with the SF-36 scales measuring generic quality of life, while the positive psychological impact scale correlated with age and time on anticoagulation. The intra-class correlation coefficient for test-retest reliability was 0.80. Conclusions The DASS has demonstrated reasonable psychometric properties to date. Further validation is ongoing. To the degree that dissatisfaction with anticoagulation leads to decreased adherence, poorer INR control, and poor clinical outcomes, the DASS has the potential to help identify reasons for dissatisfaction (and positive satisfaction), and thus help to develop interventions to break this cycle. As an instrument designed to be applicable across multiple models of anticoagulation management, the DASS could be crucial in the scientific comparison between those models of care. PMID:15132746
Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.
2010-01-01
This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.
NASA Technical Reports Server (NTRS)
McQuigg, Thomas D.
2011-01-01
A better understanding of the effect of impact damage on composite structures is necessary to give the engineer an ability to design safe, efficient structures. Current composite structures suffer severe strength reduction under compressive loading conditions, due to even light damage, such as from low velocity impact. A review is undertaken to access the current state-of-development in the areas of experimental testing, and analysis methods. A set of experiments on honeycomb core sandwich panels, with thin woven fiberglass cloth facesheets, is described, which includes detailed instrumentation and unique observation techniques.
NASA Astrophysics Data System (ADS)
Wilson, Christopher David
Despite the emphasis in modern zoos and aquaria on conservation and environmental education, we know very little about what people learn in these settings, and even less about how they learn it. Research on informal learning in settings such as zoos has suffered from a lack of theory, with few connections being made to theories of learning in formal settings, or to theories regarding the nature of the educational goals. This dissertation consists of three parts: the development and analysis of a test instrument designed to measure constructs of environmental learning in zoos; the application of the test instrument along with qualitative data collection in an evaluation designed to measure the effectiveness of a zoo's education programs; and the analysis of individually matched pre- and post-test data to examine how environmental learning takes place, with respect to the constructivist view of learning, as well as theories of environmental learning and the barriers to pro-environmental behavior. The test instrument consisted of 40 items split into four scales: environmental knowledge, attitudes toward the environment, support for conservation, and environmentally responsible behavior. A model-driven approach was used to develop the instrument, which was analyzed using Item Response Theory and the Rasch dichotomous measurement model. After removal of two items with extremely high difficulty, the instrument was found to be unidimensional and sufficiently reliable. The results of the IRT analyses are interpreted with respect to a modern validity framework. The evaluation portion of this study applied this test instrument to measuring the impact of zoo education programs on 750 fourth through seventh grade students. Qualitative data was collected from program observations and teacher surveys, and a comparison was also made between programs that took place at the zoo, and those that took place in the school classroom, thereby asking questions regarding the role of setting in environmental education. It was found that students in both program types significantly increased their environmental knowledge as a result of the program, but only students in the school-based programs significantly improved their attitudes towards the environment. Analyzing by grade, seventh grade students scored significantly lower on all aspects of the test than the younger students, suggesting a detrimental effect of novel settings on learning in adolescents. Teacher survey data suggests that teachers place great importance on how the education program would fit in with their school-based curriculum, but did little to integrate the program into their classroom teaching. Observations of the programs revealed some logistical issues, and some concerns regarding the zoo instructors' use of curriculum materials. Analyzing the test data from a constructivist perspective revealed that students with high incoming environmental attitudes had significant increases in environmental knowledge. That is, students with positive attitudes towards the environment are predisposed to engage in learning about the environment. Some gender-specific findings are also discussed.
Gupta, Abhinav; Tewari, R K
2016-01-01
The present study was undertaken to evaluate and compare the impact strength and transverse strength of the high-impact denture base materials. A conventional heat polymerized acrylic resin was used as a control. The entire experiment was divided into four main groups with twenty specimens each according to denture base material selected Trevalon, Trevalon Hi, DPI Tuff and Metrocryl Hi. These groups were further subgrouped into the two parameters selected, impact strength and flexural strength with ten specimens each. These specimens were then subjected to transverse bend tests with the help of Lloyds instrument using a three point bend principle. Impact tests were undertaken using an Izod-Charpy digital impact tester. This study was analyzed with one-way analysis of variance using Fisher f-test and Bonferroni t-test. There was a significant improvement in the impact strength of high-impact denture base resins as compared to control (Trevalon). However, in terms of transverse bend tests, only DPI Tuff showed higher transverse strength in comparison to control. Trevalon Hi and Metrocryl Hi showed a decrease in transverse strength. Within the limits of this in vitro study, (1) There is a definite increase in impact strength due to the incorporation of butadiene styrene rubber in this high strength denture base materials as compared to Trevalon used as a control. (2) Further investigations are required to prevent the unduly decrease of transverse strength. (3) It was the limitation of the study that the exact composition of the high-impact resins was not disclosed by the manufacturer that would have helped in better understanding of their behavior.
Albon, Simon P.; Cancilla, Devon A.; Hubball, Harry
2006-01-01
Objectives To pilot test and evaluate a gas chromatography-mass spectrometry (GCMS) case study as a teaching and learning tool. Design A case study incorporating remote access to a GCMS instrument through the Integrated Laboratory Network (ILN) at Western Washington University was developed and implemented. Student surveys, faculty interviews, and examination score data were used to evaluate learning. Assessment While the case study did not impact final examination scores, approximately 70% of students and all faculty members felt the ILN-supported case study improved student learning about GCMS. Faculty members felt the “live” instrument access facilitated more authentic teaching. Students and faculty members felt the ILN should continue to be developed as a teaching tool. Conclusion Remote access to scientific instrumentation can be used to modify case studies to enhance student learning and teaching practice in pharmaceutical analysis. PMID:17149450
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Reynolds, J. M.
1986-01-01
The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.
Crogan, Neva L; Evans, Bronwynne; Velasquez, Donna
2004-04-01
Malnutrition impacts the quality of life and general health of many older persons living in our nation's 20,000 nursing homes (1). Despite the urgency of this issue, no instrument that measures resident satisfaction with food and food service was found in an extensive literature search. The purpose of this article is to describe the development and initial testing of a resident satisfaction with food and food service questionnaire (FoodEx-LTC) in the context of the Quality Nutrition Outcomes-Long-Term Care Model. This pilot study was conducted in two phases. During phase one the instrument was developed, peer-reviewed, and pretested. Phase two further tested the instrument using a correlational design, measuring both intermediate and long-term outcomes found on the Quality Nutrition Outcomes-Long-Term Care Model. Hypothesis testing was used to measure construct validity. 4 of 5 FoodEx-LTC domains were significantly correlated with depression, 2 of 5 with serum albumin. The FoodEx-LTC demonstrates acceptable reliability for a new instrument. The coefficient alpha scores ranged from.69-.87 and test-retest correlations ranged from.55-.89, dependent upon domain. FoodEx-LTC appears to be a valid and reliable measure of resident food and food service satisfaction in nursing homes. This line of inquiry is of great importance because perceived quality of food and food service are strongly related to quality of life for residents in nursing homes, and adequate food intake is integral to maintaining weight and preventing protein-calorie malnutrition among elderly residents.
Reflectivity of the AL-N coating: results of mechanical and environmental tests
NASA Astrophysics Data System (ADS)
Anisimov, Vladimir P.; Anisimova, Irina A.; Kashirin, Victor A.; Moldosanov, Kamil A.; Skrynnikov, Alexander M.
2002-09-01
This paper concerns a behavior of the total hemispherical reflectance (THR) of the Al-N coating in the course of mechanical and environmental tests. The Al-N coating has been designed to reduce the stray sunlight background in the satellite-borne optical instruments and charge-particles-analyzing apparatus operating in open space under intensive solar radiation. Usually, this problem arises when a density of instruments installed on the satellite is high and it is difficult to avoid getting to instrument the light reflected by neighboring devices. Resolution of this problem is also important in connection with development of the extra-atmosphere Far UV astronomy. The THR measurement results are presented for 10 wavelengths wihtin a range from 400 to 927 nm, and also at 121.6 nm, the most intensive line of the solar UV spectrum able to result in considerable contribution to the detector noise in space devices. The samples of the Al-N coating were exposed to standard mechanical loads including the vibratory loads, linear overloads, and impacts, to which the space equipment may be subjected when shipping to the space-vehicle launching site and also when lauching. The samples were also exposed to environmental tests simulating the vacuum, humidity, and cyclic temperature conditions, which may influence the space instruments while shipping, storing, launching, in flight, and under operating conditions. The THR measurements of the samples were made following exposure to each test. The THRs of tested samples at the wavelength of 121.6 nm were as low as 1.5-2%.
Garg, Kanika; Tripathi, Tulika; Rai, Priyank; Sharma, Nandini; Kanase, Anup
2017-08-01
The impact of dental appearance, malocclusion and treatment for the same on psychological and functional well-being has drawn increasing attention over the past decade. Various psychometric instruments alongside normative indices have been used to predict orthodontic concerns. Evaluating the patients' experience during the orthodontic treatment can help us understand the true benefits and advantages of orthodontic therapy. The aim of the present study was to evaluate the change in the psychosocial impact of malocclusion using the Psychosocial Impact of Dental Aesthetics Questionnaire (PIDAQ) adapted for the Indian population after one year of fixed orthodontic treatment. This interventional study was conducted on 93 patients requiring fixed orthodontic treatment. Brazilian, Chinese, Spanish, Nepali and Moroccan versions of the PIDAQ have been published but the questionnaire is not available in Hindi. In the present study, the original PIDAQ was translated into Hindi language to adapt it for the Indian population and was validated by back translation and pretest. All the subjects answered the Hindi version of the questionnaire at pretreatment (T1) and at one year of orthodontic treatment (T2). Additionally, the Index of Orthodontic Treatment Need (IOTN) was applied to measure the severity and self-perception of malocclusion. The data were analysed using paired t-test, Wilcoxon signed rank test and Kruskal-Wallis test. Significant reduction was found in the total PIDAQ score and each factor's score (p<0.001) after one year of orthodontic treatment. There was a positive association of the psychosocial impact of malocclusion with the IOTN-AC (IOTN-Aesthetic Component). Adolescent females were found to be most concerned with their dentofacial appearance. Results showed significant improvement in the psychosocial impact of malocclusion with a reduction in the self-perceived needs of patients with orthodontic treatment. The psychometric instrument used may be recommended as an Oral Health Related Quality of Life (OHRQoL) assessment tool for the population in India for further research.
Lababidi, Emad Aldin
2013-12-01
Recent advances in endodontic equipment and materials have considerably changed the manner in which endodontic treatment is delivered. Specific technological advances, including nickel-titanium instruments, ultrasonic instruments and the dental operating microscope have been associated with increased efficiency and efficacy of treatment and simplification of delivery. The effects of most of these changes have been tested via in vitro studies and case reports. Ongoing studies should constantly investigate what effects technological advances might have on the outcome of endodontic treatment. © 2013 Australian Society of Endodontology.
New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications
NASA Astrophysics Data System (ADS)
Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.
2007-08-01
A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.
Preliminary Characterization Results from the DebriSat Project
NASA Technical Reports Server (NTRS)
Rivero, M.; Shiotani, B.; Kleespies, J.; Toledo-Burdett, R.; Moraguez, M.; Carrasquila, M.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.
2016-01-01
The DebriSat project is a continuing effort sponsored by NASA and DoD to update existing break-up models using data obtained from two separate hypervelocity impact tests used to simulate on-orbit collisions. To protect the fragments resulting from the impact tests, "soft-catch" arenas made of polyurethane foam panels were utilized. After each impact test, the test chamber was cleaned and debris resulting from the catastrophic demise of the test article were collected and shipped to the University of Florida for post-impact processing. The post-impact processing activities include collecting, characterizing, and cataloging of the fragments. Since the impact tests, a team of students has been working to characterize the fragments in terms of their mass, size, shape, color and material content. The focus of the 20 months since the impact tests has been on the collection of 2 millimeters- and larger fragments resulting from impact test on the 56 kilogram-representative LEO (Low Earth Orbit) satellite referred to as DebriSat. To date we have recovered in excess of 115,000 fragments, 30,000 more than the prediction of 85,000 fragments from the existing model. We continue to collect fragments but have transitioned to the characterization phase of the post-impact activities. Since the start of the characterization phase, the focus has been to utilize automation to (i) expedite fragment characterization process and (ii) minimize human-in-the- loop. We have developed and implemented such automated processes; e.g., we have automated the data entry process to reduce operator errors during transcription of the measurement data. However, at all steps of the process, there is human oversight to ensure the integrity of the data. Additionally, we have developed and implemented repeatability and reproducibility tests to ensure that the instrumentation used in the characterization process is accurate and properly calibrated. In this paper, the implemented processes are described and preliminary results presented. Additionally, lessons learned from the implemented automations and their impacts on the integrity of the results are discussed.
Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates
NASA Technical Reports Server (NTRS)
Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)
2000-01-01
Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.
Cole, Jason C; Ito, Diane; Chen, Yaozhu J; Cheng, Rebecca; Bolognese, Jennifer; Li-McLeod, Josephine
2014-09-04
There is a lack of validated instruments to measure the level of burden of Alzheimer's disease (AD) on caregivers. The Impact of Alzheimer's Disease on Caregiver Questionnaire (IADCQ) is a 12-item instrument with a seven-day recall period that measures AD caregiver's burden across emotional, physical, social, financial, sleep, and time aspects. Primary objectives of this study were to evaluate psychometric properties of IADCQ administered on the Web and to determine most appropriate scoring algorithm. A national sample of 200 unpaid AD caregivers participated in this study by completing the Web-based version of IADCQ and Short Form-12 Health Survey Version 2 (SF-12v2™). The SF-12v2 was used to measure convergent validity of IADCQ scores and to provide an understanding of the overall health-related quality of life of sampled AD caregivers. The IADCQ survey was also completed four weeks later by a randomly selected subgroup of 50 participants to assess test-retest reliability. Confirmatory factor analysis (CFA) was implemented to test the dimensionality of the IADCQ items. Classical item-level and scale-level psychometric analyses were conducted to estimate psychometric characteristics of the instrument. Test-retest reliability was performed to evaluate the instrument's stability and consistency over time. Virtually none (2%) of the respondents had either floor or ceiling effects, indicating the IADCQ covers an ideal range of burden. A single-factor model obtained appropriate goodness of fit and provided evidence that a simple sum score of the 12 items of IADCQ can be used to measure AD caregiver's burden. Scales-level reliability was supported with a coefficient alpha of 0.93 and an intra-class correlation coefficient (for test-retest reliability) of 0.68 (95% CI: 0.50-0.80). Low-moderate negative correlations were observed between the IADCQ and scales of the SF-12v2. The study findings suggest the IADCQ has appropriate psychometric characteristics as a unidimensional, Web-based measure of AD caregiver burden and is supported by strong model fit statistics from CFA, high degree of item-level reliability, good internal consistency, moderate test-retest reliability, and moderate convergent validity. Additional validation of the IADCQ is warranted to ensure invariance between the paper-based and Web-based administration and to determine an appropriate responder definition.
Kydd, Robyn M.; Connor, Jennie
2015-01-01
Aims: To describe inconsistencies in reporting past-year drinking status and heavy drinking occasions (HDOs) on single questions from two different instruments, and to identify associated characteristics and impacts. Methods: We compared computer-presented Alcohol Use Disorder Identification Test-Consumption (AUDIT-C) with categorical response options, and mental health interview (MHI) with open-ended consumption questions, completed on the same day. Participants were 464 men and 459 women aged 38 (91.7% of surviving birth cohort members). Differences in dichotomous single-item measures of abstention and HDO frequency, associations of inconsistent reporting with sex, socioeconomic status (SES) and survey order, and impacts of instrument choice on associations of alcohol with sex and SES were examined. Results: The AUDIT-C drinking frequency question estimated higher past-year abstention prevalence (AUDIT = 7.6%, MHI = 5.4%), with one-third of AUDIT-C abstainers being MHI drinkers. Only AUDIT-C produced significant sex differences in abstainer prevalence. Inconsistencies in HDO classifications were bidirectional, but with fewer HDOs reported on the MHI than AUDIT-C question. Lower SES was associated with inconsistency in abstention and weekly+ HDOs. Abstention and higher HDO frequency were associated with lower SES overall, but sex-specific associations differed by instrument. Conclusions: In this context, data collection method affected findings, with inconsistencies in abstention reports having most impact. Future studies should: (a) confirm self-reported abstention; (b) consider piloting data collection methods in target populations; (c) expect impacts of sex and SES on measurements and analyses. PMID:25648932
A Perspective on Development Flight Instrumentation and Flight Test Analysis Plans for Ares I-X
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Richards, James S.; Brunty, Joseph A.; Smith, R. Marshall; Trombetta, Dominic R.
2009-01-01
NASA. s Constellation Program will take a significant step toward completion of the Ares I crew launch vehicle with the flight test of Ares I-X and completion of the Ares I-X post-flight evaluation. The Ares I-X flight test vehicle is an ascent development flight test that will acquire flight data early enough to impact the design and development of the Ares I. As the primary customer for flight data from the Ares I-X mission, Ares I has been the major driver in the definition of the Development Flight Instrumentation (DFI). This paper focuses on the DFI development process and the plans for post-flight evaluation of the resulting data to impact the Ares I design. Efforts for determining the DFI for Ares I-X began in the fall of 2005, and significant effort to refine and implement the Ares I-X DFI has been expended since that time. This paper will present a perspective in the development and implementation of the DFI. Emphasis will be placed on the process by which the list was established and changes were made to that list due to imposed constraints. The paper will also discuss the plans for the analysis of the DFI data following the flight and a summary of flight evaluation tasks to be performed in support of tools and models validation for design and development.
Analysis-test correlation of airbag impact for Mars landing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salama, M.; Davis, G.; Kuo, C.P.
1994-12-31
The NASA Mars Pathfinder mission is intended to demonstrate key low cost technologies for use in future science missions to Mars. Among these technologies is the landing system. Upon entering in Martian atmosphere at about 7000 m/sec., the spacecraft will deploy a series of breaking devices (parachute and solid rockets) to slow down its speed to less than 20 m/sec. as it impacts with the Martian ground. To cushion science instruments form the landing impact, an airbag system is inflated to surround the lander approximately five seconds before impact. After multiple bounces, the lander/airbags comes to rest, the airbags aremore » deflated and retracted, and the lander opens up its petals to allow a microrover to begin exploration. Of interest here, is the final landing phase. Specifically, this paper will focus on the methodology used to simulate the nonlinear dynamics of lander/airbags landing impact, and how this simulation correlates with initial tests.« less
NASA Astrophysics Data System (ADS)
Jiang, Yu; Yang, Jiacheng; Gagné, Stéphanie; Chan, Tak W.; Thomson, Kevin; Fofie, Emmanuel; Cary, Robert A.; Rutherford, Dan; Comer, Bryan; Swanson, Jacob; Lin, Yue; Van Rooy, Paul; Asa-Awuku, Akua; Jung, Heejung; Barsanti, Kelley; Karavalakis, Georgios; Cocker, David; Durbin, Thomas D.; Miller, J. Wayne; Johnson, Kent C.
2018-06-01
Knowledge of black carbon (BC) emission factors from ships is important from human health and environmental perspectives. A study of instruments measuring BC and fuels typically used in marine operation was carried out on a small marine engine. Six analytical methods measured the BC emissions in the exhaust of the marine engine operated at two load points (25% and 75%) while burning one of three fuels: a distillate marine (DMA), a low sulfur, residual marine (RMB-30) and a high-sulfur residual marine (RMG-380). The average emission factors with all instruments increased from 0.08 to 1.88 gBC/kg fuel in going from 25 to 75% load. An analysis of variance (ANOVA) tested BC emissions against instrument, load, and combined fuel properties and showed that both engine load and fuels had a statistically significant impact on BC emission factors. While BC emissions were impacted by the fuels used, none of the fuel properties investigated (sulfur content, viscosity, carbon residue and CCAI) was a primary driver for BC emissions. Of the two residual fuels, RMB-30 with the lower sulfur content, lower viscosity and lower residual carbon, had the highest BC emission factors. BC emission factors determined with the different instruments showed a good correlation with the PAS values with correlation coefficients R2 >0.95. A key finding of this research is the relative BC measured values were mostly independent of load and fuel, except for some instruments in certain fuel and load combinations.
Developing a Danish version of the "Impact on Participation and Autonomy Questionnaire".
Ghaziani, Emma; Krogh, Anne Grethe; Lund, Hans
2013-05-01
To translate the "Impact on Participation and Autonomy Questionnaire" into Danish (IPAQ-DK), and estimate its internal consistency and test-retest reliability in order to promote participation-based interventions and research. Translation and two successive reliability assessments through test-retest. 137 adults with varying degrees of impairment; of these, 67 participated in the final reliability assessment. The translation followed guidelines set forth by the "European Group for Quality of Life Assessment and Health Measurement". Internal consistency for subscales was estimated by Chronbach's alpha. Weighted kappa coefficients and intraclass correlation coefficients were calculated to assess the test-retest reliability at item and subscale level, respectively. A preliminary reliability assessment revealed residual issues regarding the translation and cultural adaptation of the instrument. The revised version (IPAQ-DK) was subsequently subjected to a similar assessment demonstrating Chronbach's alpha values from 0.698 to 0.817. Weighted kappa ranged from 0.370 to 0.880; 78% of these values were higher than 0.600. The intraclass correlation coefficient covered values from 0.701 to 0.818. IPAQ-DK is a useful instrument for identifying person-perceived participation restrictions and satisfaction with participation. Further studies of IPAQ-DK's floor/ceiling effects and responsiveness to change are recommended, and whether there is a need for further linguistic improvement of certain items.
NASA Technical Reports Server (NTRS)
Reimold, W. U.; Reimold, J. N.
1984-01-01
A comparative review of mineralogical, chemical, and chronological data on crystalline Apollo 16 impact melt rocks is presented. The use of such data to identify distinct impact melt complex is discussed, and 22 distinct impact melt bodies are identified. The recently detected group of feldspathic microporphyritic (FM) melt rocks was tested for chemical and isotopic homogeneity; instrumental neutron activation analysis and new Rb-Sr isotopic whole rock data indicate that FMs were probably not derived from a single impact melt sheet, but might be representative of the Descartes basement. Stratigraphical and chronological concepts for the geological development of the landing site are discussed, and a model is presented for the formation of the Cayley Plains and the Descartes formation.
ITSG-Grace2016 data preprocessing methodologies revisited: impact of using Level-1A data products
NASA Astrophysics Data System (ADS)
Klinger, Beate; Mayer-Gürr, Torsten
2017-04-01
For the ITSG-Grace2016 release, the gravity field recovery is based on the use of official GRACE (Gravity Recovery and Climate Experiment) Level-1B data products, generated by the Jet Propulsion Laboratory (JPL). Before gravity field recovery, the Level-1B instrument data are preprocessed. This data preprocessing step includes the combination of Level-1B star camera (SCA1B) and angular acceleration (ACC1B) data for an improved attitude determination (sensor fusion), instrument data screening and ACC1B data calibration. Based on a Level-1A test dataset, provided for individual month throughout the GRACE period by the Center of Space Research at the University of Texas at Austin (UTCSR), the impact of using Level-1A instead of Level-1B data products within the ITSG-Grace2016 processing chain is analyzed. We discuss (1) the attitude determination through an optimal combination of SCA1A and ACC1A data using our sensor fusion approach, (2) the impact of the new attitude product on temporal gravity field solutions, and (3) possible benefits of using Level-1A data for instrument data screening and calibration. As the GRACE mission is currently reaching its end-of-life, the presented work aims not only at a better understanding of GRACE science data to reduce the impact of possible error sources on the gravity field recovery, but it also aims at preparing Level-1A data handling capabilities for the GRACE Follow-On mission.
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Oberbeck, V. R.; Bunch, T. E.; Reynolds, R. T.; Canning, T. N.; Jackson, R. W.
1976-01-01
The feasibility of employing penetrators for exploring Mars was examined. Eight areas of interest for key scientific experiments were identified. These include: seismic activity, imaging, geochemistry, water measurement, heatflow, meteorology, magnetometry, and biochemistry. In seven of the eight potential experiment categories this year's progress included: conceptual design, instrument fabrication, instrument performance evaluation, and shock loading of important components. Most of the components survived deceleration testing with negligible performance changes. Components intended to be placed inside the penetrator forebody were tested up to 3,500 g and components intended to be placed on the afterbody were tested up to 21,000 g. A field test program was conducted using tentative Mars penetrator mission constraints. Drop tests were performed at two selected terrestrial analog sites to determine the range of penetration depths for anticipated common Martian materials. Minimum penetration occurred in basalt at Amboy, California. Three full-scale penetrators penetrated 0.4 to 0.9 m into the basalt after passing through 0.3 to 0.5 m of alluvial overburden. Maximum penetration occurred in unconsolidated sediments at McCook, Nebraska. Two full-scale penetrators penetrated 2.5 to 8.5 m of sediment. Impact occurred in two kinds of sediment: loess and layered clay. Deceleration g loads of nominally 2,000 for the forebody and 20,000 for the afterbody did not present serious design problems for potential experiments. Penetrators have successfully impacted into terrestrial analogs of the probable extremes of potential Martian sites.
Sardenberg, Fernanda; Oliveira, Ana Cristina; Paiva, Saul M; Auad, Sheyla Márcia; Vale, Miriam P
2011-06-01
Oral health-related quality of life (OHRQoL) is an important aspect of health outcomes and its assessment should be made using validated instruments. The psychosocial impact of dental aesthetics questionnaire (PIDAQ) is an OHRQoL instrument that assesses the psychosocial impact of dental aesthetics was developed and validated for use on young adults. The aim of the present study was to assess the reliability, validity, and applicability of the PIDAQ for young adults in Brazil. After translation and cross-cultural adaptation, the questionnaire was completed by 245 individuals (124 males and 121 females) aged 18-30 years from the city of Belo Horizonte, Brazil. In order to test discriminant validity, the subjects were examined for the presence or absence of malocclusion based on the dental aesthetic index criteria. Dental examinations were carried out by a previously calibrated examiner [weighted kappa = 0.64-1.00, intraclass correlation coefficient (ICC) = 0.78-1.00]. Internal consistency measured by Cronbach's alpha of the subscales was between 0.75 and 0.91 and test-retest reliability was assessed using the ICC, which ranged from 0.89 to 0.99 for dental self-confidence and social impact, thereby revealing satisfactory reliability. Discriminant validity revealed that subjects without malocclusion had different PIDAQ scores when compared with those with malocclusion. The results suggest that the Brazilian version of the PIDAQ has satisfactory psychometric properties and is thus applicable to young adults in Brazil. Further research is needed to assess these properties in population studies.
Neelakantan, P; Varughese, A A; Sharma, S; Subbarao, C V; Zehnder, M; De-Deus, G
2012-12-01
To test the impact of continuous chelation by NaOCl+ etidronic acid (HEBP) during instrumentation, and a final rinse of EDTA or NaOCl + HEBP on the dentine bond strength of an epoxy resin sealer (AH Plus). Single-rooted teeth (n = 100) were divided into five groups (n = 20) based on the irrigation protocol and their root canals instrumented using a rotary Ni-Ti system: 2.5% NaOCl during instrumentation followed by bi-distilled water (G1) or 17% EDTA (G2) as final rinse; 1 : 1 mixture of 5% NaOCl and 18% HEBP during instrumentation, and the same mixture (G3), 17% EDTA (G4) or bi-distilled water (G5) as final rinse. Canals were filled with AH Plus. Roots were sectioned, and push-out tests were performed in coronal, middle and apical root thirds. Results were analysed using analysis of variance (anova) and Bonferroni test for multiple comparisons. The alpha-type error was set at 0.05 for all the analyses. Push-out bond strength was highest in coronal and lowest in apical root thirds (P < 0.05). Groups that used NaOCl + HEBP irrigation during instrumentation had significantly higher bond strengths than groups following the NaOCl-EDTA irrigation in all root thirds (P < 0.05). The use of a strong chelator as final flush further increased bond strengths (G4, P < 0.05). The continuous chelation irrigation protocol optimizes the bond strength of an epoxy resin sealer to dentine. © 2012 International Endodontic Journal.
Development of the Test Of Astronomy STandards (TOAST) Assessment Instrument
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Slater, S. J.
2008-05-01
Considerable effort in the astronomy education research (AER) community over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing the AER discipline so that researchers could establish the initial knowledge state of students as well as to attempt measure some of the impacts of innovative instructional interventions. Unfortunately, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. This was not done in oversight, but rather as a result of the relative youth of AER as a discipline. Now that several important science education reform documents exist and are generally accepted by the AER community, we are in a position to develop, validate, and disseminate a new assessment instrument which is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. In response, researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science & Math Teaching Center (UWYO SMTC) have designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for courses with learning goals tightly aligned to the consensus goals of our community.
The impact of contextualization on immersion in healthcare simulation.
Engström, Henrik; Andersson Hagiwara, Magnus; Backlund, Per; Lebram, Mikael; Lundberg, Lars; Johannesson, Mikael; Sterner, Anders; Maurin Söderholm, Hanna
2016-01-01
The aim of this paper is to explore how contextualization of a healthcare simulation scenarios impacts immersion, by using a novel objective instrument, the Immersion Score Rating Instrument. This instrument consists of 10 triggers that indicate reduced or enhanced immersion among participants in a simulation scenario. Triggers refer to events such as jumps in time or space (sign of reduced immersion) and natural interaction with the manikin (sign of enhanced immersion) and can be used to calculate an immersion score. An experiment using a randomized controlled crossover design was conducted to compare immersion between two simulation training conditions for prehospital care: one basic and one contextualized. The Immersion Score Rating Instrument was used to compare the total immersion score for the whole scenario, the immersion score for individual mission phases, and to analyze differences in trigger occurrences. A paired t test was used to test for significance. The comparison shows that the overall immersion score for the simulation was higher in the contextualized condition. The average immersion score was 2.17 (sd = 1.67) in the contextualized condition and -0.77 (sd = 2.01) in the basic condition ( p < .001). The immersion score was significantly higher in the contextualized condition in five out of six mission phases. Events that might be disruptive for the simulation participants' immersion, such as interventions of the instructor and illogical jumps in time or space, are present to a higher degree in the basic scenario condition; while events that signal enhanced immersion, such as natural interaction with the manikin, are more frequently observed in the contextualized condition. The results suggest that contextualization of simulation training with respect to increased equipment and environmental fidelity as well as functional task alignment might affect immersion positively and thus contribute to an improved training experience.
Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.
Noe, D A; Voto, S J; Hoffmann, M S; Askew, M J; Gradisar, I A
1993-01-01
The capacity of the calcaneal heel pad, with and without augmentation by a polymeric shock absorbing material (Sorbothane 0050), to attenuate heel strike impulses has been studied using five fresh human cadaveric lower leg specimens. The specimens, instrumented with an accelerometer, were suspended and impacted with a hammer; a steel rod was similarly suspended and impacted. The calcaneal heel pad attenuated the peak accelerations by 80%. Attenuations of up to 93% were achieved by the shock absorbing material when tested against the steel rod; however, when tested in series with the calcaneal heel pad, the reduction in peak acceleration due to the shock absorbing material dropped to 18%. Any evaluation of the effectiveness of shock absorbing shoe materials must take into account their mechanical interaction with the body.
Basic temperature correction of QWIP cameras in thermoelastic/plastic tests of composite materials.
Boccardi, Simone; Carlomagno, Giovanni Maria; Meola, Carosena
2016-12-01
The present work is concerned with the use of a quantum well infrared photodetector (QWIP) infrared camera to measure very small temperature variations, which are related to thermoelastic/plastic effects, developing on composites under relatively low loads, either periodic or due to impact. As is evident from previous work, some temperature variations are difficult to measure, being at the edge of the IR camera resolution and/or affected by the instrument noise. Conversely, they may be valuable to get either information about the material characteristics and its behavior under periodic load (thermoelastic), or to assess the overall extension of delaminations due to impact (thermo-plastic). An image post-processing procedure is herein described that, with the help of a reference signal, allows for suppression of the instrument noise and better discrimination of thermal signatures induced by the two different loads.
NASA Astrophysics Data System (ADS)
Barry, Richard K.; Bennett, D. P.; Klaasen, K.; Becker, A. C.; Christiansen, J.; Albrow, M.
2014-01-01
We have worked to characterize two exoplanets newly detected from the ground: OGLE-2012-BLG-0406 and OGLE-2012-BLG-0838, using microlensing observations of the Galactic Bulge recently obtained by NASA’s Deep Impact (DI) spacecraft, in combination with ground data. These observations of the crowded Bulge fields from Earth and from an observatory at a distance of ~1 AU have permitted the extraction of a microlensing parallax signature - critical for breaking exoplanet model degeneracies. For this effort, we used DI’s High Resolution Instrument, launched with a permanent defocus aberration due to an error in cryogenic testing. We show how the effects of a very large, chromatic PSF can be reduced in differencing photometry. We also compare two approaches to differencing photometry - one of which employs the Bramich algorithm and another using the Fruchter & Hook drizzle algorithm.
Repeated Impact Method and Devices to Simulate the Impact Fatigue Property of Drillstring
NASA Astrophysics Data System (ADS)
Lin, Y. H.; Li, B.; Pan, J.; Li, Q.; Liu, W. Y.; Pan, Y.
2017-05-01
It is well known that drillstring failures are a pendent problem in drilling engineering, because of the fatigue accumulation caused by the low amplitude-repeated impact. In order to reveal the effect of low amplitude-repeated impact on the failure mechanism of the drillstring, a repeated impact method and instrument have been developed based on the Charpy impact method, by which a series of tests have been performed in the condition of non-corrosive medium and with H2S environment respective. Test results of non-corrosive medium environment indicates that, with the increase of single impact energy, the low amplitude-repeated impact resistance of drillstring decreases significantly; For H2S corrosion environment, the low amplitude-repeated impact resistances with H2S is much lower than that without H2S corrosion, and high strength material such as V-150 drillstring is more sensitive to H2S corrosion media. Furthermore, based on the experiment data, the accumulation fatigue model to predict the service life of the drillstring is developed, which could be used to predict the fatigue life. Research fruits are very vital to select a suitable rotational speed for drilling job and drillstring design.
NASA Astrophysics Data System (ADS)
Uprety, Bibhisha
Within the aerospace industry the need to detect and locate impact events, even when no visible damage is present, is important both from the maintenance and design perspectives. This research focused on the use of Acoustic Emission (AE) based sensing technologies to identify impact events and characterize damage modes in composite structures for structural health monitoring. Six commercially available piezoelectric AE sensors were evaluated for use with impact location estimation algorithms under development at the University of Utah. Both active and passive testing were performed to estimate the time of arrival and plate wave mode velocities for impact location estimation. Four sensors were recommended for further comparative investigations. Furthermore, instrumented low-velocity impact experiments were conducted on quasi-isotropic carbon/epoxy composite laminates to initiate specific types of damage: matrix cracking, delamination and fiber breakage. AE signal responses were collected during impacting and the test panels were ultrasonically C-scanned after impact to identify the internal damage corresponding to the AE signals. Matrix cracking and delamination damage produced using more compliant test panels and larger diameter impactor were characterized by lower frequency signals while fiber breakage produced higher frequency responses. The results obtained suggest that selected characteristics of sensor response signals can be used both to determine whether damage is produced during impacting and to characterize the types of damage produced in an impacted composite structure.
Solutions for acceleration measurement in vehicle crash tests
NASA Astrophysics Data System (ADS)
Dima, D. S.; Covaciu, D.
2017-10-01
Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.
Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite
NASA Technical Reports Server (NTRS)
Tadikonda, S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todrita, Monica
2016-01-01
The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar back-ground-sevents impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.
Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite
NASA Technical Reports Server (NTRS)
Tadikonda, Sivakumara S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todirita, Monica
2016-01-01
The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments - Solar Ultra Violet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar backgrounds/events impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.
El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.
2016-01-01
The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759
Repeatability of a dynamic rollover test system.
Seppi, Jeremy; Toczyski, Jacek; Crandall, Jeff R; Kerrigan, Jason
2016-08-17
The goal of this study was to characterize the rollover crash and to evaluate the repeatability of the Dynamic Rollover Test System (DRoTS) in terms of initial roof-to-ground contact conditions, vehicle kinematics, road reaction forces, and vehicle deformation. Four rollover crash tests were performed on 2 pairs of replicate vehicles (2 sedan tests and 2 compact multipurpose van [MPV] tests), instrumented with a custom inertial measurement unit to measure vehicle and global kinematics and string potentiometers to measure pillar deformation time histories. The road was instrumented with load cells to measure reaction loads and an optical encoder to measure road velocity. Laser scans of pre- and posttest vehicles were taken to provide detailed deformation maps. Initial conditions were found to be repeatable, with the largest difference seen in drop height of 20 mm; roll rate, roll angle, pitch angle, road velocity, drop velocity, mass, and moment of inertia were all 7% different or less. Vehicle kinematics (roll rate, road speed, roll and pitch angle, global Z' acceleration, and global Z' velocity) were similar throughout the impact; however, differences were seen in the sedan tests because of a vehicle fixation problem and differences were seen in the MPV tests due to an increase in reaction forces during leading side impact likely caused by disparities in roll angle (3° difference) and mass properties (2.2% in moment of inertia [MOI], 53.5 mm difference in center of gravity [CG] location). Despite those issues, kinetic and deformation measures showed a high degree of repeatability, which is necessary for assessing injury risk in rollover because roof strength positively correlates with injury risk (Brumbelow 2009). Improvements of the test equipment and matching mass properties will ensure highly repeatable initial conditions, vehicle kinematics, kinetics, and deformations.
Field Evaluation of Four Novel Roof Designs for Energy-Efficient Manufactured Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, E.; Dentz, J.; Ansanelli, E.
2015-12-03
"9A five-bay roof test structure was built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The roof structure in Jamestown, California was designed to examine how differences in roof construction impact space conditioning loads, wood moisture content and attic humidity levels. Conclusions are drawn from the data on the relative energy and moisture performance of various configurations of vented and sealed attics.
Field Evaluation of Four Novel Roof Designs for Energy-Efficient Manufactured Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, E.; Dentz, J.; Ansanelli, E.
2015-12-01
A five-bay roof test structure was built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The roof structure in Jamestown, California was designed to examine how differences in roof construction impact space conditioning loads, wood moisture content and attic humidity levels. Conclusions are drawn from the data on the relative energy and moisture performance of various configurations of vented and sealed attics.
Impact behaviour of Napier/polyester composites under different energy levels
NASA Astrophysics Data System (ADS)
Fahmi, I.; Majid, M. S. Abdul; Afendi, M.; Haslan, M.; Helmi E., A.; M. Haameem J., A.
2016-07-01
The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.
Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.
Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P
2017-03-01
Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.
Sneed, Joel R; Johnson, Jeffrey G; Cohen, Patricia; Gilligan, Carol; Chen, Henian; Crawford, Thomas N; Kasen, Stephanie
2006-09-01
Data from the Children in the Community Transitions Study were used to examine gender differences in the impact of family contact on the development of finance and romance instrumentality from ages 17 to 27 years. Family contact decreased among both men and women across emerging adulthood, although it decreased more rapidly in men than in women. Both finance and romance instrumentality increased for men and women across emerging adulthood. The growth rate did not differ between men and women in either domain, although men tended to be characterized by higher levels of instrumentality than women. There were noteworthy gender differences in the impact of family contact on the development of instrumentality. At age 17, family contact was negatively associated with instrumentality for both men and women; at age 27, the impact of family contact on instrumentality was less negative for women and was positive for men.
Shokry, Mohamed; Aboelsaad, Nayer
2016-01-01
The purpose of this study was to test the effect of the surgical removal of impacted mandibular third molars using piezosurgery versus the conventional surgical technique on postoperative sequelae and bone healing. Material and Methods. This study was carried out as a randomized controlled clinical trial: split mouth design. Twenty patients with bilateral mandibular third molar mesioangular impaction class II position B indicated for surgical extraction were treated randomly using either the piezosurgery or the conventional bur technique on each site. Duration of the procedure, postoperative edema, trismus, pain, healing, and bone density and quantity were evaluated up to 6 months postoperatively. Results. Test and control sites were compared using paired t-test. There was statistical significance in reduction of pain and swelling in test sites, where the time of the procedure was statistically increased in test site. For bone quantity and quality, statistical difference was found where test site showed better results. Conclusion. Piezosurgery technique improves quality of patient's life in form of decrease of postoperative pain, trismus, and swelling. Furthermore, it enhances bone quality within the extraction socket and bone quantity along the distal aspect of the mandibular second molar. PMID:27597866
Physics of debris clouds from hypervelocity impacts
NASA Technical Reports Server (NTRS)
Zee, Ralph
1993-01-01
The protection scheme developed for long duration space platforms relies primarily upon placing thin metal plates or 'bumpers' around flight critical components. The effectiveness of this system is highly dependent upon its ability to break up and redistribute the momentum of any particle which might otherwise strike the outer surface of the spacecraft. Therefore it is of critical importance to design the bumpers such that maximum dispersion of momentum is achieved. This report is devoted to an in-depth study into the design and development of a laboratory instrument which would permit the in-situ monitoring of the momentum distribution as the impact event occurs. A series of four designs were developed, constructed and tested culminating with the working instrument which is currently in use. Each design was individually tested using the Space Environmental Effects Facility (SEEF) at the Marshall Space Flight Center in Huntsville, Alabama. Along with the development of the device, an experimental procedure was developed to assist in the investigation of various bumper materials and designs at the SEEF. Preliminary results were used to compute data which otherwise were not experimentally obtainable. These results were shown to be in relative agreement with previously obtained values derived through other methods. The results of this investigation indicated that momentum distribution could in fact be measured in-situ as the impact event occurred thus giving a more accurate determination of the effects of experimental parameters on the momentum spread. Data produced by the instrument indicated a Gaussian-type momentum distribution. A second apparatus was developed and it was placed before the shield in the line of travel utilized a plate to collect impact debris scattered backwards. This plate had a passage hole in the center to allow the particle to travel through it and impact the proposed shield material. Applying the law of conservation of angular momentum a backward momentum vector was determined from the angular velocity of the plate. The forward scattered and backward scattered momentum values were then analyzed to judge the distribution of debris. Loss of momentum was attributed to the inaccuracies of the means of measurement. Assumptions of symmetrical debris for the forward and backward scattered directions also contributed to this loss.
Hutchinson, T Paul; Anderson, Robert W G; Searson, Daniel J
2012-01-01
Tests are routinely conducted where instrumented headforms are projected at the fronts of cars to assess pedestrian safety. Better information would be obtained by accounting for performance over the range of expected impact conditions in the field. Moreover, methods will be required to integrate the assessment of secondary safety performance with primary safety systems that reduce the speeds of impacts. Thus, we discuss how to estimate performance over a range of impact conditions from performance in one test and how this information can be combined with information on the probability of different impact speeds to provide a balanced assessment of pedestrian safety. Theoretical consideration is given to 2 distinct aspects to impact safety performance: the test impact severity (measured by the head injury criterion, HIC) at a speed at which a structure does not bottom out and the speed at which bottoming out occurs. Further considerations are given to an injury risk function, the distribution of impact speeds likely in the field, and the effect of primary safety systems on impact speeds. These are used to calculate curves that estimate injuriousness for combinations of test HIC, bottoming out speed, and alternative distributions of impact speeds. The injuriousness of a structure that may be struck by the head of a pedestrian depends not only on the result of the impact test but also the bottoming out speed and the distribution of impact speeds. Example calculations indicate that the relationship between the test HIC and injuriousness extends over a larger range than is presently used by the European New Car Assessment Programme (Euro NCAP), that bottoming out at speeds only slightly higher than the test speed can significantly increase the injuriousness of an impact location and that effective primary safety systems that reduce impact speeds significantly modify the relationship between the test HIC and injuriousness. Present testing regimes do not take fully into account the relationship between impact severity and variations in impact conditions. Instead, they assess injury risk at a single impact speed. Hence, they may fail to differentiate risks due to the effects of bottoming out under different impact conditions. Because the level of injuriousness changes across a wide range of HIC values, even slight improvements to very stiff structures need to be encouraged through testing. Indications are that the potential of autonomous braking systems is substantial and needs to be weighted highly in vehicle safety assessments.
Development of test methodology for dynamic mechanical analysis instrumentation
NASA Technical Reports Server (NTRS)
Allen, V. R.
1982-01-01
Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.
Miller, Jacob A; Balagamwala, Ehsan H; Berriochoa, Camille A; Angelov, Lilyana; Suh, John H; Benzel, Edward C; Mohammadi, Alireza M; Emch, Todd; Magnelli, Anthony; Godley, Andrew; Qi, Peng; Chao, Samuel T
2017-10-01
OBJECTIVE Spine stereotactic radiosurgery (SRS) is a safe and effective treatment for spinal metastases. However, it is unknown whether this highly conformal radiation technique is suitable at instrumented sites given the potential for microscopic disease seeding. The authors hypothesized that spinal decompression with instrumentation is not associated with increased local failure (LF) following SRS. METHODS A 2:1 propensity-matched retrospective cohort study of patients undergoing SRS for spinal metastasis was conducted. Patients with less than 1 month of radiographic follow-up were excluded. Each SRS treatment with spinal decompression and instrumentation was propensity matched to 2 controls without decompression or instrumentation on the basis of demographic, disease-related, dosimetric, and treatment-site characteristics. Standardized differences were used to assess for balance between matched cohorts. The primary outcome was the 12-month cumulative incidence of LF, with death as a competing risk. Lesions demonstrating any in-field progression were considered LFs. Secondary outcomes of interest were post-SRS pain flare, vertebral compression fracture, instrumentation failure, and any Grade ≥ 3 toxicity. Cumulative incidences analysis was used to estimate LF in each cohort, which were compared via Gray's test. Multivariate competing-risks regression was then used to adjust for prespecified covariates. RESULTS Of 650 candidates for the control group, 166 were propensity matched to 83 patients with instrumentation. Baseline characteristics were well balanced. The median prescription dose was 16 Gy in each cohort. The 12-month cumulative incidence of LF was not statistically significantly different between cohorts (22.8% [instrumentation] vs 15.8% [control], p = 0.25). After adjusting for the prespecified covariates in a multivariate competing-risks model, decompression with instrumentation did not contribute to a greater risk of LF (HR 1.21, 95% CI 0.74-1.98, p = 0.45). The incidences of post-SRS pain flare (11% vs 14%, p = 0.55), vertebral compression fracture (12% vs 22%, p = 0.04), and Grade ≥ 3 toxicity (1% vs 1%, p = 1.00) were not increased at instrumented sites. No instrumentation failures were observed. CONCLUSIONS In this propensity-matched analysis, LF and toxicity were similar among cohorts, suggesting that decompression with instrumentation does not significantly impact the efficacy or safety of spine SRS. Accordingly, spinal instrumentation may not be a contraindication to SRS. Future studies comparing SRS to conventional radiotherapy at instrumented sites in matched populations are warranted.
NASA Astrophysics Data System (ADS)
Evci, C.; Uyandıran, I.
2017-02-01
Impact damage is one of the major concerns that should be taken into account with the new aircraft and spacecraft structures which employ ever-growing use of composite materials. Considering the thermal loads encountered at different altitudes, both low and high temperatures can affect the properties and impact behavior of composite materials. This study aims to investigate the effect of temperature and impactor diameter on the impact behavior and damage development in balanced and symmetrical CFRP laminates which were manufactured by employing vacuum bagging process with autoclave cure. Instrumented drop-weight impact testing system is used to perform the low velocity impact tests in a range of temperatures ranged from 60 down to -50 °C. Impact tests for each temperature level were conducted using three different hemispherical impactor diameters varying from 10 to 20 mm. Energy profile method is employed to determine the impact threshold energies for damage evolution. The level of impact damage is determined from the dent depth on the impacted face and delamination damage detected using ultrasonic C-Scan technique. Test results reveal that the threshold of penetration energy, main failure force and delamination area increase with impactor diameter at all temperature levels. No clear influence of temperature on the critical force thresholds could be derived. However, penetration threshold energy decreased as the temperature was lowered. Drop in the penetration threshold was more obvious with quite low temperatures. Delamination damage area increased while the temperature decreased from +60 °C to -50 °C.
Residual strength assessment of low velocity impact damage of graphite-epoxy laminates
NASA Technical Reports Server (NTRS)
Lal, K. M.
1983-01-01
This report contains the study of Low Velocity Transverse Impact Damage of graphite-epoxy T300/5208 composite laminates. The specimen, 100 mm diameter clamped plates, were impact damaged by a cantilever-type instrumented 1-inch diameter steel ball. Study was limited to impact velocity 6 m/sec. Rectangular strips, 50 mm x 125 mm, were cut from the impact-damage specimens so that the impact damage zone was in the center of the strips. These strips were tested in tension to obtain their residual strength. An energy dissipation model was developed to predict the residual strength from fracture mechanics concepts. Net energy absorbed I(a) was evaluated from coefficient of restitution concepts based on shear dominated theory of fiber-reinforced materials, with the modification that during loading and unloading the shear deformation are respectively elastic-plastic and elastic. Delamination energy I(d) was predicted by assuming that the stiffness of the laminate dropped due to debonding. Fiber-breakage energy, assumed to be equal to the difference of I(a) and I(d), was used to determine the residual strength. Predictions were compared with test results.
Quality of life as a cancer nursing outcome variable.
Padilla, G V; Grant, M M
1985-10-01
A reliable and valid multidimensional instrument for measuring quality of life in cancer patients has been developed. Furthermore, a model has been offered that describes how quality of life works as an outcome variable. Using this model, predictions were made of how nursing interventions may directly or indirectly impact on quality of life. Initial testing of the model using data from 135 colostomy patients showed how satisfaction with nursing care and personal control act as cognitive mediators of self-worth, which then impacts on dimensions of quality of life.
MISOE [Management Information System for Occupational Education] Impact Battery.
ERIC Educational Resources Information Center
Conroy, William G., Jr.
The impact battery consists of two instruments used to obtain impact data (descriptions of the experiences of program completors during post-program life) for the Sample Data Systems of the Management Information System for Occupational Education (MISOE). The first, Massachusetts Educational Impact Instrument (MEII), is an 11-page extensive…
Outcome instruments to assess scoliosis surgery.
Bagó, Juan; Climent, Jose Ma; Pérez-Grueso, Francisco J S; Pellisé, Ferran
2013-03-01
To review and summarize the current knowledge regarding the outcome measures used to evaluate scoliosis surgery. Literature review. Outcome instruments should be tested to ensure that they have adequate metric characteristics: content and construct validity, reliability, and responsiveness. In the evaluation of scoliosis, generic instruments to assess health-related quality of life (HRQL) have been used, such as the SF-36 questionnaire and the EuroQol5D instrument. Nonetheless, it is preferable to use disease-specific instruments for this purpose, such as the SRS-22 Patient Questionnaire and the quality of life profile for spinal deformities (QLPSD). More recently, these generic and disease-specific instruments have been complemented with the use of super-specific instruments; i.e., those assessing a single aspect of the condition or specific populations with the condition. The patients' perception of their trunk deformity and body image has received particular attention, and several instruments are available to evaluate these aspects, such as the Walter-Reed Visual Assessment Scale (WRVAS), the Spinal Appearance Questionnaire (SAQ), and the Trunk Appearance Perception Scale (TAPS). The impacts of brace use can also be measured with specific scales, including the Bad Sobernheim Stress Questionnaire (BSSQ) and the Brace Questionnaire (BrQ). The available instruments to evaluate the treatment for non-idiopathic scoliosis have not been sufficiently validated and analyzed. Evaluation of scoliosis treatment should include the patient's perspective, which can be obtained with the use of patient-reported outcome measures.
Lilley, Rebbecca; Feyer, Anne-Marie; Firth, Hilda; Cunningham, Chris; Paul, Charlotte
2010-02-01
Changes to work and the impact of these changes on worker health and safety have been significant. A core surveillance data set is needed to understand the impact of working conditions and work environments. Yet, there is little harmony amongst international surveys and a critical lack of guidance identifying the best directions for surveillance efforts. This paper describes the establishment of an instrument suitable for use as a hazard surveillance tool for New Zealand workers. An iterative process of critical review was undertaken to create a dimensional framework and select specific measures from existing instruments. Pilot testing to ascertain participant acceptability of the questions was undertaken. The final questionnaire includes measures of socio-demographic characteristics, occupational history, work organisation, physicochemical, ergonomic and psychosocial hazards. Outcome measures were also included. A robust New Zealand hazard surveillance questionnaire comprehensively covering the key measures of work organisation and work environments that impact upon worker health and safety outcomes was developed. Recommended measures of work organisation, work environment and health outcomes that should be captured in work environment surveillance are made.
Instrumentation issues in implementation science.
Martinez, Ruben G; Lewis, Cara C; Weiner, Bryan J
2014-09-04
Like many new fields, implementation science has become vulnerable to instrumentation issues that potentially threaten the strength of the developing knowledge base. For instance, many implementation studies report findings based on instruments that do not have established psychometric properties. This article aims to review six pressing instrumentation issues, discuss the impact of these issues on the field, and provide practical recommendations. This debate centers on the impact of the following instrumentation issues: use of frameworks, theories, and models; role of psychometric properties; use of 'home-grown' and adapted instruments; choosing the most appropriate evaluation method and approach; practicality; and need for decision-making tools. Practical recommendations include: use of consensus definitions for key implementation constructs; reporting standards (e.g., regarding psychometrics, instrument adaptation); when to use multiple forms of observation and mixed methods; and accessing instrument repositories and decision aid tools. This debate provides an overview of six key instrumentation issues and offers several courses of action to limit the impact of these issues on the field. With careful attention to these issues, the field of implementation science can potentially move forward at the rapid pace that is respectfully demanded by community stakeholders.
ERIC Educational Resources Information Center
Alzu'bi, Mohammad Akram
2014-01-01
This study aimed at investigating the impact of extensive reading on improving reading proficiency. The study tried to find the effect of ER on EFL student's reading, vocabulary and grammar. The researcher designed two instruments; a program based on the extensive reading strategy and general test. Forty-one university students who study English…
Medical student hand preference, perceived dexterity, and impact of handedness on training.
Callahan, Devon; de Virgilio, Christian; Tillou, Areti; DeUgarte, Daniel A
2016-07-01
The ubiquity of right-handed instruments and a predominance of right-handed surgical faculty present a challenge to left-handed trainees. Little is known about hand preference and its impact on specialty selection. We sought to evaluate hand preference, perceived dexterity, and impact of handedness on training among medical students. A survey was distributed to third and fourth year medical students. Hand preference was queried for various activities. A Likert scale was used to assess perceived dexterity and impact of handedness on training. Fisher's exact test was used to compare groups. Of those queried, 131 (37%) responded. Handedness was defined by writing preference: right (80%), left (18%), other (2%). Left-handed students were more likely to perceive themselves to be ambidextrous (50% versus 15%; P < 0.001) and prefer their contralateral hand for at least one other activity (50% versus 4%; P < 0.001). Left-handed students were significantly more likely to report that handedness affected their specialty selection (33% versus 10%; P < 0.01) and training (58% versus 6%; P < 0.001). In addition, they reported that they would benefit from additional training with right-handed instruments (61% versus 31%; P < 0.01), availability of left-handed instruments (63% versus 8%; P < 0.001), and trainers who adapted to their handedness (70% versus 14%; P < 0.001). Left-handed medical students reported greater ambidexterity and adverse impact of handedness on training. These results provide a contemporary snapshot of hand preference in medical students and an argument for improving and adapting surgical training for left-handed individuals. Copyright © 2016 Elsevier Inc. All rights reserved.
Kameník, Josef; Saláková, Alena; Vyskočilová, Věra; Pechová, Alena; Haruštiaková, Danka
2017-09-01
The aim of this study was to determine the salt content in selected cooked meat products by the methods of determining the sodium content and the content of chlorides. The resulting data was compared with other chemical, instrumental and sensory parameters of the analysed samples. A total of 133 samples of 5 meat products were tested. The sodium content ranged from 558.0 to 1308.0mgNa/100g. Salt level determined by the two methods strongly correlated and did not differ in any meat product. Intensity of salty taste of the product was independent on its salt content. The salt (sodium) content may be reduced without a negative impact on sensory or instrumental properties of meat products. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Robinson, Wayne D.; Patt, Frederick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.
2009-08-01
One of the roles of the VIIRS Ocean Science Team (VOST) is to assess the performance of the instrument and scientific processing software that generates ocean color parameters such as normalized water-leaving radiances and chlorophyll. A VIIRS data simulator is being developed to help aid in this work. The simulator will create a sufficient set of simulated Sensor Data Records (SDR) so that the ocean component of the VIIRS processing system can be tested. It will also have the ability to study the impact of instrument artifacts on the derived parameter quality. The simulator will use existing resources available to generate the geolocation information and to transform calibrated radiances to geophysical parameters and visa-versa. In addition, the simulator will be able to introduce land features, cloud fields, and expected VIIRS instrument artifacts. The design of the simulator and its progress will be presented.
NASA Astrophysics Data System (ADS)
Hendrix, Roy E.; Dugger, Paul H.
1983-03-01
Since the onset of user testing in the AEDC aeroballistic ranges in 1961, concentrated efforts in such areas as model launching techniques, test environment simulation, and specialized instrumentation have been made to enhance the usefulness of these test facilities. A wide selection of specialized instrumentation has been developed over the years to provide, among other features, panoramic photographic coverage of test models during flight. Pulsed ruby lasers, xenon flash lamps, visible-light spark sources, and flash X-ray systems are employed as short-duration radiation sources in various front-light and back-light photographic systems. Visible-light and near infrared image intensifier diodes are used to achieve high-speed shuttering in photographic pyrometry systems that measure surface temperatures of test models in flight. Turbine-driven framing cameras are used to provide multiframe photography of such high-speed phenomena as impact debris formation and model encounter with erosive fields. As a result, the capabilities of these ballistic range test units have increased significantly in regard to the types of tests that can be accommodated and to the quality and quantity of data that can be provided. Presently, five major range and companion track facilities are active in conducting hypervelocity testing in AEDC's von K6rman Gas Dynamics Facility (VKF): Ranges G, K, and S-1 and Tracks G and K. The following types of tests are conducted in these test units: ablation/erosion, transpiration-cooled nosetip (TCNT), nosetip transition, heat transfer, aerodynamic, cannon projectile, rocket contrail, reentry physics, and hypervelocity impact. The parallel achievements in high-speed photography and testing capabilities are discussed, and the significant role of photographic systems in the development of the overall testing capabilities of the AEDC range and track facilities is illustrated in numerous examples of photographic results.
Esplen, Mary Jane; Cappelli, Mario; Wong, Jiahui; Bottorff, Joan L; Hunter, Jon; Carroll, June; Dorval, Michel; Wilson, Brenda; Allanson, Judith; Semotiuk, Kara; Aronson, Melyssa; Bordeleau, Louise; Charlemagne, Nicole; Meschino, Wendy
2013-01-01
Objectives To develop a brief, reliable and valid instrument to screen psychosocial risk among those who are undergoing genetic testing for Adult-Onset Hereditary Disease (AOHD). Design A prospective two-phase cohort study. Setting 5 genetic testing centres for AOHD, such as cancer, Huntington's disease or haemochromatosis, in ambulatory clinics of tertiary hospitals across Canada. Participants 141 individuals undergoing genetic testing were approached and consented to the instrument development phase of the study (Phase I). The Genetic Psychosocial Risk Instrument (GPRI) developed in Phase I was tested in Phase II for item refinement and validation. A separate cohort of 722 individuals consented to the study, 712 completed the baseline package and 463 completed all follow-up assessments. Most participants were female, at the mid-life stage. Individuals in advanced stages of the illness or with cognitive impairment or a language barrier were excluded. Interventions Phase I: GPRI items were generated from (1) a review of the literature, (2) input from genetic counsellors and (3) phase I participants. Phase II: further item refinement and validation were conducted with a second cohort of participants who completed the GPRI at baseline and were followed for psychological distress 1-month postgenetic testing results. Primary and secondary outcome measures GPRI, Hamilton Depression Rating Scale (HAM-D), Hamilton Anxiety Rating Scale (HAM-A), Brief Symptom Inventory (BSI) and Impact of Event Scale (IES). Results The final 20-item GPRI had a high reliability—Cronbach's α at 0.81. The construct validity was supported by high correlations between GPRI and BSI and IES. The predictive value was demonstrated by a receiver operating characteristic curve of 0.78 plotting GPRI against follow-up assessments using HAM-D and HAM-A. Conclusions With a cut-off score of 50, GPRI identified 84% of participants who displayed distress postgenetic testing results, supporting its potential usefulness in a clinical setting. PMID:23485718
Boeing CST-100 Starliner Seat Test
2017-02-21
Engineers working with Boeing's CST-100 Starliner test the spacecraft's seat design in Mesa, Arizona, focusing on how the spacecraft seats would protect an astronaut's head, neck and spine during the 240-mile descent from the International Space Station. The company incorporated test dummies for a detailed analysis of impacts on a crew returning to earth. The human-sized dummies were equipped with sensitive instrumentation and secured in the seats for 30 drop tests at varying heights, angles, velocities and seat orientations in order to mimic actual landing conditions. High-speed cameras captured the footage for further analysis. The Starliner spacecraft is being developed in partnership with NASA's Commercial Crew Program.
Construction Of Critical Thinking Skills Test Instrument Related The Concept On Sound Wave
NASA Astrophysics Data System (ADS)
Mabruroh, F.; Suhandi, A.
2017-02-01
This study aimed to construct test instrument of critical thinking skills of high school students related the concept on sound wave. This research using a mixed methods with sequential exploratory design, consists of: 1) a preliminary study; 2) design and review of test instruments. The form of test instruments in essay questions, consist of 18 questions that was divided into 5 indicators and 8 sub-indicators of the critical thinking skills expressed by Ennis, with questions that are qualitative and contextual. Phases of preliminary study include: a) policy studies; b) survey to the school; c) and literature studies. Phases of the design and review of test instruments consist of two steps, namely a draft design of test instruments include: a) analysis of the depth of teaching materials; b) the selection of indicators and sub-indicators of critical thinking skills; c) analysis of indicators and sub-indicators of critical thinking skills; d) implementation of indicators and sub-indicators of critical thinking skills; and e) making the descriptions about the test instrument. In the next phase of the review test instruments, consist of: a) writing about the test instrument; b) validity test by experts; and c) revision of test instruments based on the validator.
Abetz, Linda; Rajagopalan, Krithika; Mertzanis, Polyxane; Begley, Carolyn; Barnes, Rod; Chalmers, Robin
2011-12-08
To develop and validate a comprehensive patient-reported outcomes instrument focusing on the impact of dry eye on everyday life (IDEEL). Development and validation of the IDEEL occurred in four phases: 1) focus groups with 45 dry eye patients to develop a draft instrument, 2) item generation, 3) pilot study to assess content validity in 16 patients and 4) psychometric validation in 210 subjects: 130 with non-Sjögren's keratoconjunctivitis sicca, 32 with Sjögren's syndrome and 48 controls, and subsequent item reduction. Focus groups identified symptoms and the associated bother, the impact of dry eye on daily life and the patients' satisfaction with their treatment as the central concepts in patients' experience of dry eye. Qualitative analysis indicated that saturation was achieved for these concepts and yielded an initial 112-item draft instrument. Patients understood the questionnaire and found the items to be relevant indicating content validity. Patient input, item descriptive statistics and factor analysis identified 55 items that could be deleted. The final 57-item IDEEL assesses dry eye impact constituting 3 modules: dry eye symptom-bother, dry eye impact on daily life comprising impact on daily activities, emotional impact, impact on work, and dry eye treatment satisfaction comprising satisfaction with treatment effectiveness and treatment-related bother/inconvenience. The psychometric analysis results indicated that the IDEEL met the criteria for item discriminant validity, internal consistency reliability, test-retest reliability and floor/ceiling effects. As expected, the correlations between IDEEL and the Dry Eye Questionnaire (a habitual symptom questionnaire) were higher than between IDEEL and Short-Form-36 and EuroQoL-5D, indicating concurrent validity. The IDEEL is a reliable, valid and comprehensive questionnaire relevant to issues that are specific to dry eye patients, and meets current FDA patient-reported outcomes guidelines. The use of this questionnaire will provide assessment of the impact of dry eye on patient dry eye-related quality of life, impact of treatment on patient outcomes in clinical trials, and may aid in treatment effectiveness evaluation.
NASA Technical Reports Server (NTRS)
Scudder, Jack D.
1992-01-01
The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.
SPIDER OPTIMIZATION. II. OPTICAL, MAGNETIC, AND FOREGROUND EFFECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dea, D. T.; Clark, C. N.; Contaldi, C. R.
2011-09-01
SPIDER is a balloon-borne instrument designed to map the polarization of the cosmic microwave background (CMB) with degree-scale resolution over a large fraction of the sky. SPIDER's main goal is to measure the amplitude of primordial gravitational waves through their imprint on the polarization of the CMB if the tensor-to-scalar ratio, r, is greater than 0.03. To achieve this goal, instrumental systematic errors must be controlled with unprecedented accuracy. Here, we build on previous work to use simulations of SPIDER observations to examine the impact of several systematic effects that have been characterized through testing and modeling of various instrumentmore » components. In particular, we investigate the impact of the non-ideal spectral response of the half-wave plates, coupling between focal-plane components and Earth's magnetic field, and beam mismatches and asymmetries. We also present a model of diffuse polarized foreground emission based on a three-dimensional model of the Galactic magnetic field and dust, and study the interaction of this foreground emission with our observation strategy and instrumental effects. We find that the expected level of foreground and systematic contamination is sufficiently low for SPIDER to achieve its science goals.« less
NASA Astrophysics Data System (ADS)
Slater, Stephanie
2009-05-01
The Test Of Astronomy STandards (TOAST) assessment instrument is a multiple-choice survey tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. Researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science and Math Teaching Center (UWYO SMTC) have been conducting a question-by-question distractor analysis procedure to determine the sensitivity and effectiveness of each item. In brief, the frequency each possible answer choice, known as a foil or distractor on a multiple-choice test, is determined and compared to the existing literature on the teaching and learning of astronomy. In addition to having statistical difficulty and discrimination values, a well functioning assessment item will show students selecting distractors in the relative proportions to how we expect them to respond based on known misconceptions and reasoning difficulties. In all cases, our distractor analysis suggests that all items are functioning as expected. These results add weight to the validity of the Test Of Astronomy STandards (TOAST) assessment instrument, which is designed to help instructors and researchers measure the impact of course-length duration instructional strategies for undergraduate science survey courses with learning goals tightly aligned to the consensus goals of the astronomy education community.
Results of qualification tests on water-level sensing instruments, 1987
Olive, T.E.
1989-01-01
The U.S. Geological Survey 's Hydrologic Instrumentation Facility at the Stennis Space Center, Mississippi, conducts qualification tests on water level sensing instruments. Instrument systems, which meet or exceed the Survey 's minimum performance requirements, are placed on the Survey 's Qualified Products List. The qualification tests conducted in 1987 added two instrument systems to the Survey 's Qualified Products List. One system met requirements for use at a daily-discharge station , and the other system met requirements for a special-case station. The report is prepared for users of hydrologic instruments. The report provides a list of instrument features, describes the instrument systems, summarizes test procedures, and presents test results for the two instrument systems that met the Survey 's minimum performance standards for the 1987 round of qualification tests. (USGS)
21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Instrumentation for clinical multiplex test... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification. Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple signals...
21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Instrumentation for clinical multiplex test... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification. Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple signals...
21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Instrumentation for clinical multiplex test... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification. Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple signals...
21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Instrumentation for clinical multiplex test... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification. Instrumentation for clinical multiplex test systems is a device intended to measure and sort multiple signals...
Science Instrument Sensitivities to Radioisotope Power System Environment
NASA Technical Reports Server (NTRS)
Bairstow, Brian; Lee, Young; Smythe, William; Zakrajsek, June
2016-01-01
Radioisotope Power Systems (RPS) have been and will be enabling or significantly enhancing for many missions, including several concepts identified in the 2011 Planetary Science Decadal Survey. Some mission planners and science investigators might have concerns about possible impacts from RPS-induced conditions upon the scientific capabilities of their mission concepts. To alleviate these concerns, this paper looks at existing and potential future RPS designs, and examines their potential radiation, thermal, vibration, electromagnetic interference (EMI), and magnetic fields impacts on representative science instruments and science measurements. Radiation impacts from RPS on science instruments are of potential concern for instruments with optical detectors and instruments with high-voltage electronics. The two main areas of concern are noise effects on the instrument measurements, and long-term effects of instrument damage. While RPS by their nature will contribute to total radiation dose, their addition for most missions should be relatively small. For example, the gamma dose rate from one Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) would be an order of magnitude lower than the environmental dose rate at Mars, and would have a correspondingly lower contribution to instrument noise and to any permanent damage to payload sensors. Increasing the number of General Purpose Heat Source (GPHS) modules used in an RPS would be expected to increase the generated radiation proportionally; however, the effect of more GPHS modules is mitigated from a strictly linear relationship by self-shielding effects. The radiation field of an RPS is anisotropic due to the deviation of the modules from a point-source-geometry. For particularly sensitive instruments the total radiation dose could be mitigated with separation or application of spot shielding. Though a new, higher-power RPS could generate more heat per unit than current designs, thermal impact to the flight system could be mitigated with shading and pointing if required by the mission. Alternatively, excess heat could prove beneficial in providing needed heat to spacecraft components and instruments in some thermal environments. Vibration for a new higher-power Stirling Radioisotope Generator (SRG) would be expected to be similar to the recent Advanced Stirling Radioisotope Generator (ASRG) design. While vibration should be low, it must be considered and addressed during spacecraft and instrument design. EMI and magnetic fields for new RPS concepts are expected to be low as for the current RPS, but must be considered and addressed if the mission includes sensitive instruments such as magnetometers. The assessment conducted for this paper focused on orbiter instrument payloads for two representative mission concepts- a Titan Saturn System Mission (TSSM) and a Uranus Orbiter and Probe (UOP)-since both of these Decadal Survey concepts would include many diverse instruments on board. Quick-look design studies using notional new RPS concepts were carried out for these two mission concepts, and their specific instrument packages were analyzed for their interactions with new RPS designs. The original Decadal Survey TSSM and UOP concepts did not have complete instrument performance requirements so typical measurement requirements were used where needed. Then, the general RPS environments were evaluated for impacts to various types of instruments. This paper describes how the potential impacts of the RPS on science instruments and measurements were assessed, which impacts were addressed, proposed mitigation strategies against those impacts, and provides an overview of future work.
NASA Technical Reports Server (NTRS)
Bourkland, Kristin L.; Liu, Kuo-Chia
2011-01-01
The Solar Dynamics Observatory (SDO), launched in 2010, is a NASA-designed spacecraft built to study the Sun. SDO has tight pointing requirements and instruments that are sensitive to spacecraft jitter. Two High Gain Antennas (HGAs) are used to continuously send science data to a dedicated ground station. Preflight analysis showed that jitter resulting from motion of the HGAs was a cause for concern. Three jitter mitigation techniques were developed and implemented to overcome effects of jitter from different sources. These mitigation techniques include: the random step delay, stagger stepping, and the No Step Request (NSR). During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft, in which various sources of jitter were examined to determine their level of effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. The jitter levels were compared with the gimbal jitter allocations for each instrument. The decision was made to consider implementing two of the jitter mitigating techniques on board the spacecraft: stagger stepping and the NSR. Flight data with and without jitter mitigation enabled was examined, and it is shown in this paper that HGA tracking is not negatively impacted with the addition of the jitter mitigation techniques. Additionally, the individual gimbal steps were examined, and it was confirmed that the stagger stepping and NSRs worked as designed. An Image Quality Test was performed to determine the amount of cumulative jitter from the reaction wheels, HGAs, and instruments during various combinations of typical operations. The HGA-induced jitter on the instruments is well within the jitter requirement when the stagger step and NSR mitigation options are enabled.
Systematic Review of Retraction Devices for Laparoscopic Surgery.
Vargas-Palacios, Armando; Hulme, Claire; Veale, Thomas; Downey, Candice L
2016-02-01
Retraction plays a vital role in optimizing the field of vision in minimal-access surgery. As such, a number of devices have been marketed to aid the surgeon in laparoscopic retraction. This systematic review explores the advantages and disadvantages of the different instruments in order to aid surgeons and their institutions in selecting the appropriate device. Primary outcome measures include operation time, length of stay, use of staff, patient morbidity, ease of use, conversion rates to open surgery, and cost. Systematic literature searches were performed in MEDLINE, EMBASE, The Cochrane Library, Current Controlled Trials, and ClinicalTrials.gov. The search strategy focused on studies testing a retraction device. The selection process was based on a predefined set of inclusion and exclusion criteria. Data were then extracted and analyzed. Out of 1360 papers initially retrieved, 12 articles were selected for data extraction and analysis. A total of 10 instruments or techniques were tested. Devices included the Nathanson's liver retractor, liver suspension tape, the V-List technique, a silicone disk with or without a snake retractor, the Endoloop, the Endograb, a magnetic retractor, the VaroLift, a laparoscope holder, and a retraction sponge. None of the instruments reported were associated with increased morbidity. No studies found increased rates of conversion to open surgery. All articles reported that the tested instruments might spare the use of an assistant during the procedure. It was not possible to determine the impact on length of stay or operation time. Each analyzed device facilitates retraction, providing a good field of view while allowing reduced staff numbers and minimal patient morbidity. Due to economic and environmental advantages, reusable devices may be preferable to disposable instruments, although the choice must be primarily based on clinical judgement. © The Author(s) 2015.
Buck, Harleah G; Harkness, Karen; Ali, Muhammad Usman; Carroll, Sandra L; Kryworuchko, Jennifer; McGillion, Michael
2017-04-01
Caregivers (CGs) contribute important assistance with heart failure (HF) self-care, including daily maintenance, symptom monitoring, and management. Until CGs' contributions to self-care can be quantified, it is impossible to characterize it, account for its impact on patient outcomes, or perform meaningful cost analyses. The purpose of this study was to conduct psychometric testing and item reduction on the recently developed 34-item Caregiver Contribution to Heart Failure Self-care (CACHS) instrument using classical and item response theory methods. Fifty CGs (mean age 63 years ±12.84; 70% female) recruited from a HF clinic completed the CACHS in 2014 and results evaluated using classical test theory and item response theory. Items would be deleted for low (<.05) or high (>.95) endorsement, low (<.3) or high (>.7) corrected item-total correlations, significant pairwise correlation coefficients, floor or ceiling effects, relatively low latent trait and item information function levels (<1.5 and p > .5), and differential item functioning. After analysis, 14 items were excluded, resulting in a 20-item instrument (self-care maintenance eight items; monitoring seven items; and management five items). Most items demonstrated moderate to high discrimination (median 2.13, minimum .77, maximum 5.05), and appropriate item difficulty (-2.7 to 1.4). Internal consistency reliability was excellent (Cronbach α = .94, average inter-item correlation = .41) with no ceiling effects. The newly developed 20-item version of the CACHS is supported by rigorous instrument development and represents a novel instrument to measure CGs' contribution to HF self-care. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Louie, Richard F; Ferguson, William J; Curtis, Corbin M; Vy, John H; Kost, Gerald J
2014-03-01
Strategic integration of point-of-care (POC) diagnostic tools during crisis response can accelerate triage and improve management of victims. Timely differential diagnosis is essential wherever care is provided to rule out or rule in disease, expedite life-saving treatment, and improve utilization of limited resources. POC testing needs to be accurate in any environment in which it is used. Devices are exposed to potentially adverse storage and operating conditions, such as high/low temperature and humidity during emergencies and field rescues. Therefore, characterizing environmental conditions allows technology developers, operators, and responders to understand the broad operational requirements of test reagents, instruments, and equipment in order to improve the quality and delivery of care in complex emergencies, disasters, and austere environmental settings. This review aims to describe the effects of environmental stress on POC testing performance and its impact on decision-making, to describe how to study the effects, and to summarize ways to mitigate the effects of environmental stresses through good laboratory practice, development of robust reagents, and novel thermal packaging solutions.
An analysis of penetration and ricochet phenomena in oblique hypervelocity impact
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.
1988-01-01
An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.
Impact behaviour of Napier/polyester composites under different energy levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahmi, I., E-mail: fahmi-unimap@yahoo.com; Majid, M. S. Abdul, E-mail: shukry@unimap.edu.my; Afendi, M., E-mail: afendirojan@unimap.edu.my
2016-07-19
The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energymore » levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.« less
NASA Technical Reports Server (NTRS)
Parker, Bradford H.
1992-01-01
An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.
NASA Astrophysics Data System (ADS)
Lajeunesse, E.; Delacourt, C.; Allemand, P.; Limare, A.; Dessert, C.; Ammann, J.; Grandjean, P.
2010-12-01
A series of recent works have underlined that the flux of material exported outside of a watershed is dramatically increased during extreme climatic events, such as storms, tropical cyclones and hurricanes [Dadson et al., 2003 and 2004; Hilton et al., 2008]. Indeed the exceptionally high rainfall rates reached during these events trigger runoff and landsliding which destabilize slopes and accumulate a significant amount of sediments in flooded rivers. This observation raises the question of the control that extreme climatic events might exert on the denudation rate and the morphology of watersheds. Addressing this questions requires to measure sediment transport in flooded rivers. However most conventional sediment monitoring technics rely on manned operated measurements which cannot be performed during extreme climatic events. Monitoring riverine sediment transport during extreme climatic events remains therefore a challenging issue because of the lack of instruments and methodologies adapted to such extreme conditions. In this paper, we present a new methodology aimed at estimating the impact of extreme events on sediment transport in rivers. Our approach relies on the development of two instruments. The first one is an in-situ optical instrument, based on a LISST-25X sensor, capable of measuring both the water level and the concentration of suspended matter in rivers with a time step going from one measurement every hour at low flow to one measurement every 2 minutes during a flood. The second instrument is a remote controlled drone helicopter used to acquire high resolution stereophotogrammetric images of river beds used to compute DEMs and to estimate how flash floods impact the granulometry and the morphology of the river. These two instruments were developed and tested during a 1.5 years field survey performed from june 2007 to january 2009 on the Capesterre river located on Basse-Terre island (Guadeloupe archipelago, Lesser Antilles Arc).
Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer
Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David
2007-01-01
Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937
Students' Initial Knowledge State and Test Design: Towards a Valid and Reliable Test Instrument
ERIC Educational Resources Information Center
CoPo, Antonio Roland I.
2015-01-01
Designing a good test instrument involves specifications, test construction, validation, try-out, analysis and revision. The initial knowledge state of forty (40) tertiary students enrolled in Business Statistics course was determined and the same test instrument undergoes validation. The designed test instrument did not only reveal the baseline…
Distributed dynamic load on composite laminates
NASA Astrophysics Data System (ADS)
Langella, A.; Lopresto, V.; Caprino, G.
2016-05-01
An experimental activity conducted in order to assess the impact behavior at room and low temperature of carbon fibre in vinylester resin laminates used in the shipbuilding industry, was reported. The conditions which reproduce the impact of a hull at low temperature with a solid body suspended in the water was reproduced. A test equipment was designed and realized to reproduce the real material behaviour in water to obtain a load distribution on the entire surface of the specimen. The results were obtained impacting the laminates placed between the cilyndrical steel impactor and a bag containing water. A falling weight machine, equipped with an instrumented steel impactor and a thermal chamber, was adopted for the experimental tests. The impact behaviour in hostile environments was compared to the behaviour at room temperature and the data obtained under distributed load conditions were compared with the results from concentrated loads: a completely different behaviour was observed between the two different loading conditions in terms of load-displacement curve. The effect of the impact on the laminates has been related with the delaminations, evaluated by ultrasonic scanning, and the indentation.
McNeer, Richard R; Bennett, Christopher L; Dudaryk, Roman
2016-02-01
Operating rooms are identified as being one of the noisiest of clinical environments, and intraoperative noise is associated with adverse effects on staff and patient safety. Simulation-based experiments would offer controllable and safe venues for investigating this noise problem. However, realistic simulation of the clinical auditory environment is rare in current simulators. Therefore, we retrofitted our operating room simulator to be able to produce immersive auditory simulations with the use of typical sound sources encountered during surgeries. Then, we tested the hypothesis that anesthesia residents would perceive greater task load and fatigue while being given simulated lunch breaks in noisy environments rather than in quiet ones. As a secondary objective, we proposed and tested the plausibility of a novel psychometric instrument for the assessment of stress. In this simulation-based, randomized, repeated-measures, crossover study, 2 validated psychometric survey instruments, the NASA Task Load Index (NASA-TLX), composed of 6 items, and the Swedish Occupational Fatigue Inventory (SOFI), composed of 5 items, were used to assess perceived task load and fatigue, respectively, in first-year anesthesia residents. Residents completed the psychometric instruments after being given lunch breaks in quiet and noisy intraoperative environments (soundscapes). The effects of soundscape grouping on the psychometric instruments and their comprising items were analyzed with a split-plot analysis. A model for a new psychometric instrument for measuring stress that combines the NASA-TLX and SOFI instruments was proposed, and a factor analysis was performed on the collected data to determine the model's plausibility. Twenty residents participated in this study. Multivariate analysis of variance showed an effect of soundscape grouping on the combined NASA-TLX and SOFI instrument items (P = 0.003) and the comparisons of univariate item reached significance for the NASA Temporal Demand item (P = 0.0004) and the SOFI Lack of Energy item (P = 0.001). Factor analysis extracted 4 factors, which were assigned the following construct names for model development: Psychological Task Load, Psychological Fatigue, Acute Physical Load, and Performance-Chronic Physical Load. Six of the 7 fit tests used in the partial confirmatory factor analysis were positive when we fitted the data to the proposed model, suggesting that further validation is warranted. This study provides evidence that noise during surgery can increase feelings of stress, as measured by perceived task load and fatigue levels, in anesthesiologists and adds to the growing literature pointing to an overall adverse impact of clinical noise on caregivers and patient safety. The psychometric model proposed in this study for assessing perceived stress is plausible based on factor analysis and will be useful for characterizing the impact of the clinical environment on subject stress levels in future investigations.
Rosselli, Mónica; Ardila, Alfredo
2003-08-01
Clinical neuropsychology has frequently considered visuospatial and non-verbal tests to be culturally and educationally fair or at least fairer than verbal tests. This paper reviews the cross-cultural differences in performance on visuoperceptual and visuoconstructional ability tasks and analyzes the impact of education and culture on non-verbal neuropsychological measurements. This paper compares: (1) non-verbal test performance among groups with different educational levels, and the same cultural background (inter-education intra-culture comparison); (2) the test performance among groups with the same educational level and different cultural backgrounds (intra-education inter-culture comparisons). Several studies have demonstrated a strong association between educational level and performance on common non-verbal neuropsychological tests. When neuropsychological test performance in different cultural groups is compared, significant differences are evident. Performance on non-verbal tests such as copying figures, drawing maps or listening to tones can be significantly influenced by the individual's culture. Arguments against the use of some current neuropsychological non-verbal instruments, procedures, and norms in the assessment of diverse educational and cultural groups are discussed and possible solutions to this problem are presented.
ERIC Educational Resources Information Center
CROSSMAN, EDWARD R.F.W.; AND OTHERS
THE MAJOR OBJECTIVE WAS TO TEST THE HYPOTHESIS THAT THE HIGHEST LEVELS OF MECHANIZATION AND AUTOMATION GENERALLY REQUIRE LOWER LEVELS OF SKILLS THAN EARLIER PRODUCTION SYSTEMS. A SECONDARY OBJECTIVE WAS TO DEVELOP AN INSTRUMENT CAPABLE OF GIVING UNBIASED PROJECTIONS OF THE MANPOWER IMPACT OF SPECIFIC ADVANCES IN PRODUCTION TECHNOLOGY. DEPENDENT…
ERIC Educational Resources Information Center
Bobbett, Gordon C.; And Others
This study examines the relationships among a variety of secondary/postsecondary experiences and activities and postsecondary students' musical independence (MI). The paper reports on the impact of 10 Performance Fundamentals (PFs) on the postsecondary student's MI as measured by Colwell's Musical Achievement Test 3 (MAT3) and Musical Achievement…
De Vliegher, Kristel; Aertgeerts, Bert; Declercq, Anja; Gosset, Christiane; Heyden, Isabelle; Van Geert, Michel; Moons, Philip
2015-01-01
Home health care today is challenged by a shift from an acute to a chronic health-care model, moving the focus of care from the hospital to home-care setting. This increased focus on care at home emphasizes the need for an efficient, effective, and transparent management of home health care. However, it is not precisely known what home-care nurses do; what kind of care is received by patients; what the performance of home nurses is; and what the impact of the increasing need for home nursing is on the current and future role of home nurses. In this respect, it is necessary to gain a clear insight into the activity profile of home nurses, but there is no gold standard to measure their activities. This study reports on the development and psychometric testing of the '24-hour recall instrument for home nursing' to measure the activity profile of home nurses. Five home nurses in Belgium, simultaneously with the researcher, registered the performed activities in a total of 69 patients, using the 24-h recall instrument for home nursing. The validity and the interrater reliability of this instrument were high: the proportions that observed agreement were very high; the strength of kappa agreement was substantial to almost perfect; the prevalence index showed great variety; and the bias index was low. The findings in this study support the validity evidence based on test content and the interrater reliability of the 24-h recall instrument. This instrument can help to shape practice and policy by making the home nursing profession more transparent: a clear insight into the kind of care that is provided by home nurses and is received by the patients in primary care contributes to the development of a clear definition of the role of home nurses in health care.
Pampel, Michael; Jakstat, Holger A; Ahlers, Oliver M
2014-01-01
Playing a wind instrument can be either a reason for overuse or a protecting factor against certain diseases. Some individuals have many findings but low morbidity while others have few findings but high morbidity. This contradictory phenomenon should be researched. The temporomandibular system (TMS) is a functional unit which comprises the mandible, associated muscles and bilateral joints with the temporal bone. The TMS is responsible for the generation of sound when wind instruments are played. Over the long-term and with intensive usage, this causes changes in the musculature and in the temporomandibular joint (TMJ) of wind musicians, often resulting in temporomandibular disorders (TMD). The aim of this study is to examine evidence that TMD constitute an occupational disease in wind musicians. TMD patients and wind musicians were examined by dental clinical functional analysis. 102 male subjects were divided into three groups: "healthy" individuals, wind musicians, and patients with TMD. Dental Examination was carried out based on focused inclusion of the research diagnostic criteria - TMD [1,7]. Findings were evaluated for statistical significance by first transferring data into a digital database [2,15], then generating T-Test und Wilcoxon-Test when non-Gaussian distribution appears and applying the Mann-Whitney rank sum test using Sigmaplot Version 1.1 software (Systat Software Inc, Washington, USA). The evaluation revealed that wind instrument musicians show a high incidence of developing TMD as the researchers found almost 100% morbidity regarding parafunctional habits and preauricular muscle pain of each adult and highly active musician. The result is highly significant (p< 0.001) for protrusion distance of the mandible. A higher prevalence of functional disorders of the musculoskeletal system has previously been demonstrated in wind musicians. New research results and the typical functions of various wind instruments provide evidence that playing a wind instrument generates occupational risks to the TMS.
Nutakki, Kavitha; Hingtgen, Cynthia M; Monahan, Patrick; Varni, James W; Swigonski, Nancy L
2013-02-21
Neurofibromatosis type 1 (NF1) is a common autosomal dominant genetic disorder with significant impact on health-related quality of life (HRQOL). Research in understanding the pathogenetic mechanisms of neurofibroma development has led to the use of new clinical trials for the treatment of NF1. One of the most important outcomes of a trial is improvement in quality of life, however, no condition specific HRQOL instrument for NF1 exists. The objective of this study was to develop an NF1 HRQOL instrument as a module of PedsQL™ and to test for its initial feasibility, internal consistency reliability and validity in adults with NF1. The NF1 specific HRQOL instrument was developed using a standard method of PedsQL™ module development - literature review, focus group/semi-structured interviews, cognitive interviews and experts' review of initial draft, pilot testing and field testing. Field testing involved 134 adults with NF1. Feasibility was measured by the percentage of missing responses, internal consistency reliability was measured with Cronbach's alpha and validity was measured by the known-groups method. Feasibility, measured by the percentage of missing responses was 4.8% for all subscales on the adult version of the NF1-specific instrument. Internal consistency reliability for the Total Score (alpha =0.97) and subscale reliabilities ranging from 0.72 to 0.96 were acceptable for group comparisons. The PedsQL™ NF1 module distinguished between NF1 adults with excellent to very good, good, and fair to poor health status. The results demonstrate the initial feasibility, reliability and validity of the PedsQL™ NF1 module in adult patients. The PedsQL™ NF1 Module can be used to understand the multidimensional nature of NF1 on the HRQOL patients with this disorder.
Lessons learned from the AIRS pre-flight radiometric calibration
NASA Astrophysics Data System (ADS)
Pagano, Thomas S.; Aumann, Hartmut H.; Weiler, Margie
2013-09-01
The Atmospheric Infrared Sounder (AIRS) instrument flies on the NASA Aqua satellite and measures the upwelling hyperspectral earth radiance in the spectral range of 3.7-15.4 μm with a nominal ground resolution at nadir of 13.5 km. The AIRS spectra are achieved using a temperature controlled grating spectrometer and HgCdTe infrared linear arrays providing 2378 channels with a nominal spectral resolution of approximately 1200. The AIRS pre-flight tests that impact the radiometric calibration include a full system radiometric response (linearity), polarization response, and response vs scan angle (RVS). We re-derive the AIRS instrument radiometric calibration coefficients from the pre-flight polarization measurements, the response vs scan (RVS) angle tests as well as the linearity tests, and a recent lunar roll test that allowed the AIRS to view the moon. The data and method for deriving the coefficients is discussed in detail and the resulting values compared amongst the different tests. Finally, we examine the residual errors in the reconstruction of the external calibrator blackbody radiances and the efficacy of a new radiometric uncertainty model. Results show the radiometric calibration of AIRS to be excellent and the radiometric uncertainty model does a reasonable job of characterizing the errors.
Hu, Jianwei; Gauld, Ian C.
2014-12-01
The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jianwei; Gauld, Ian C.
The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less
Controlled Impact Demonstration instrumented test dummies installed in plane
NASA Technical Reports Server (NTRS)
1984-01-01
In this photograph are seen some of dummies in the passenger cabin of the B-720 aircraft. NASA Langley Research Center instrumented a large portion of the aircraft and the dummies for loads in a crashworthiness research program. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Adimistration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive called Anti-misting Kerosene (AMK) designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.
The Effects of Compressive Preloads on the Compression-After-Impact Strength of Carbon/Epoxy
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
1994-01-01
A fixture to apply compressive loads to composite specimens during an impact event was used to assess the effect of prestresses on the compression-after-impact (CAI) strength of 16 ply quasi-isotropic carbon/epoxy test coupons. Advanced design of experiments techniques were used to evaluate a range of prestresses and impact energies on two material systems, T300/934 and IM7/8551-7. An instrumented drop tower supplied impact energies between 1 and 9 Joules for the T300/934 material and between 4 and 16 Joules for the IM7/8551-7 material. The prestress values varied between a low of 5.7 Wa and a high of 287 NDa. Results showed some change in CAI strength that could be attributed to the prestresses on the specimens.
Quinn, Gwendolyn P; Huang, I-Chan; Murphy, Devin; Zidonik-Eddelton, Katie; Krull, Kevin R
2013-02-01
Young adult survivors of childhood cancer (YASCC) are an ever-growing cohort of survivors due to increasing advances in technology. Today, there is a shift of focus to not just ensuring survivorship but also the quality of survivorship, which can be assessed with standardized instruments. The majority of standardized health related quality of life (HRQoL) instruments, however, are non-specific to this age group and the unique late effects within YASCC populations. The purpose of this study was to investigate the relevance and accuracy of standardized HRQoL instruments used with YASCC. In a previous study, HRQoL items from several instruments (SF-36, QLACS, QLS-CS) were examined for relevance with a population of YASCC. Participants (n = 30) from this study were recruited for a follow-up qualitative interview to expand on their perceptions of missing content from existing instruments. Respondents reported missing, relevant content among all three of the HRQoL instruments. Results identified three content areas of missing information: (1) Perceived sense of self, (2) Relationships, and (3) Parenthood. Existing HRQoL instruments do not take into account the progression and interdependence of emotional development impacted by a cancer diagnosis. The themes derived from our qualitative interviews may serve as a foundation for the generation of new items in future HRQoL instruments for YASCC populations. Further testing is required to examine the prevalence, frequency, and breadth of these items in a larger sample.
49 CFR 572.167 - Test conditions and instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Test conditions and instrumentation. 572.167... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.167 Test conditions and instrumentation. The test conditions and instrumentation are as specified in 49 CFR 572.127 (Subpart N). Pt. 572, Subpt. S, Figs...
49 CFR 572.167 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Test conditions and instrumentation. 572.167... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.167 Test conditions and instrumentation. The test conditions and instrumentation are as specified in 49 CFR 572.127 (Subpart N). Pt. 572, Subpt. S, Figs...
49 CFR 572.167 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Test conditions and instrumentation. 572.167... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.167 Test conditions and instrumentation. The test conditions and instrumentation are as specified in 49 CFR 572.127 (Subpart N). Pt. 572, Subpt. S, Figs...
49 CFR 572.167 - Test conditions and instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Test conditions and instrumentation. 572.167... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.167 Test conditions and instrumentation. The test conditions and instrumentation are as specified in 49 CFR 572.127 (Subpart N). Pt. 572, Subpt. S, Figs...
49 CFR 572.167 - Test conditions and instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Test conditions and instrumentation. 572.167... Hybrid III Six-Year-Old Weighted Child Test Dummy § 572.167 Test conditions and instrumentation. The test conditions and instrumentation are as specified in 49 CFR 572.127 (Subpart N). Pt. 572, Subpt. S, Figs...
Testing and injury potential analysis of rollovers with narrow object impacts.
Meyer, Steven E; Forrest, Stephen; Herbst, Brian; Hayden, Joshua; Orton, Tia; Sances, Anthony; Kumaresan, Srirangam
2004-01-01
Recent statistics highlight the significant risk of serious and fatal injuries to occupants involved in rollover collisions due to excessive roof crush. The government has reported that in 2002. Sports Utility Vehicle rollover related fatalities increased by 14% to more than 2400 annually. 61% of all SUV fatalities included rollovers [1]. Rollover crashes rely primarily upon the roof structures to maintain occupant survival space. Frequently these crashes occur off the travel lanes of the roadway and, therefore, can include impacts with various types of narrow objects such as light poles, utility poles and/or trees. A test device and methodology is presented which facilitates dynamic, repeatable rollover impact evaluation of complete vehicle roof structures with such narrow objects. These tests allow for the incorporation of Anthropomorphic Test Dummies (ATDs) which can be instrumented to measure accelerations, forces and moments to evaluate injury potential. High-speed video permits for detailed analysis of occupant kinematics and evaluation of injury causation. Criteria such as restraint performance, injury potential, survival space and the effect of roof crush associated with various types of design alternatives, countermeasures and impact circumstances can also be evaluated. In addition to presentation of the methodology, two representative vehicle crash tests are also reported. Results indicated that the reinforced roof structure significantly reduced the roof deformation compared to the production roof structure.
Peri, Kathy; Robinson, Elizabeth; Wilkinson, Tim; von Randow, Martin; Kiata, Liz; Parsons, John; Latham, Nancy; Parsons, Matthew; Willingale, Jane; Brown, Paul; Arroll, Bruce
2008-01-01
Objective To assess the effectiveness of an activity programme in improving function, quality of life, and falls in older people in residential care. Design Cluster randomised controlled trial with one year follow-up. Setting 41 low level dependency residential care homes in New Zealand. Participants 682 people aged 65 years or over. Interventions 330 residents were offered a goal setting and individualised activities of daily living activity programme by a gerontology nurse, reinforced by usual healthcare assistants; 352 residents received social visits. Main outcome measures Function (late life function and disability instruments, elderly mobility scale, FICSIT-4 balance test, timed up and go test), quality of life (life satisfaction index, EuroQol), and falls (time to fall over 12 months). Secondary outcomes were depressive symptoms and hospital admissions. Results 473 (70%) participants completed the trial. The programme had no impact overall. However, in contrast to residents with impaired cognition (no differences between intervention and control group), those with normal cognition in the intervention group may have maintained overall function (late life function and disability instrument total function, P=0.024) and lower limb function (late life function and disability instrument basic lower extremity, P=0.015). In residents with cognitive impairment, the likelihood of depression increased in the intervention group. No other outcomes differed between groups. Conclusion A programme of functional rehabilitation had minimal impact for elderly people in residential care with normal cognition but was not beneficial for those with poor cognition. Trial registration Australian Clinical Trials Register ACTRN12605000667617. PMID:18845605
RTS effect detection in Sentinel-4 data
NASA Astrophysics Data System (ADS)
Candeias, Henrique; Gnata, Xavier; Harlander, Maximilian; Hermsen, Markus; Hohn, Rüdiger; Riedl, Stefan; Skegg, Michael; Williges, Christian; Reulke, Ralf
2017-09-01
The future ESA Earth Observation Sentinel-4/UVN is a high resolution spectrometer intended to fly on board a Meteosat Third Generation Sounder (MTG-S) platform, placed in a geostationary orbit. The main objective of this optical mission is to continuously monitor the air quality over Europe in near-real time. The Sentinel-4/UVN instrument operates in three wavelength bands: Ultraviolet (UV: 305-400 nm), Visible (VIS: 400- 500 nm) and Near-infrared (NIR: 750-775 nm). Two dedicated CCD detector have been developed to be used in the Focal Plane Subsystems (FPS), one for the combined UV and VIS band, the other covering the NIR band. Being a high resolution spectrometer with challenging radiometric accuracy requirements, both on spectral and spatial dimensions, an effect such the Random Telegraph Signal (RTS) can represent a relevant contribution for the complete system accuracy. In this work we analyze the RTS effect on data acquired during the FPS testing campaign with qualification models for the Sentinel-4/UVN detectors. This test campaign has been performed in late 2016. The strategy for the impact assessment of RTS is to measure the effect at room temperature and then to extrapolate the results to the at instrument operational temperature. This way, very-long lasting data acquisitions could be avoided since the RTS frequency is much lower at cryogenic temperatures. A reliable technique for RTS effect detection has been developed in order to characterize the signal levels amplitude and occurrence frequencies (flipping rate). We demonstrate the residual impact of the RTS on the global In-Orbit Sentinel-4/UVN instrument performance and products accuracy.
Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)
2000-01-01
The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Currently, impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.
Kierkegaard, Marie; Einarsson, Ulrika; Gottberg, Kristina; von Koch, Lena; Holmqvist, Lotta Widén
2012-05-01
Multiple sclerosis has a vast impact on health, but the relationship between walking, manual dexterity, cognition and activity/participation is unclear. The specific aims were to explore the discriminative ability of measures of walking, manual dexterity and cognition, and to identify cut-off values in these measures, for prediction of independence in personal and instrumental activities of daily living (ADL) and activity/participation in social and lifestyle activities. Data from 164 persons with multiple sclerosis were collected during home visits with the following measures: the 2 × 5 m walk test, the Nine-hole Peg Test, the Symbol Digit Modalities Test, the Katz Personal and Instrumental ADL Indexes, and the Frenchay Activities Index (measuring frequency in social and lifestyle activities). The 2 × 5 m walk test and the Nine-hole Peg Test had high and better discriminative and predictive ability than the Symbol Digit Modalities Test. Cut-off values were identified. The accuracy of predictions was increased above all by combining the 2 × 5 m walk test and the Nine-hole Peg Test. The proposed cut-off values in the 2 × 5 m walk test and the Nine-hole Peg Test may be used as indicators of functioning and to identify persons risking activity limitations and participation restrictions. However, further studies are needed to confirm the usefulness in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cashmore, Matthew, E-mail: m.cashmore@uea.ac.u; Richardson, Tim; Hilding-Ryedvik, Tuija
2010-11-15
The central role of impact assessment instruments globally in policy integration initiatives has been cemented in recent years. Associated with this trend, but also reflecting political emphasis on greater accountability in certain policy sectors and a renewed focus on economic competitiveness in Western countries, demand has increased for evidence that these instruments are effective (however defined). Resurgent interest in evaluation has not, however, been accompanied by the conceptual developments required to redress longstanding theoretical problems associated with such activities. In order to sharpen effectiveness evaluation theory for impact assessment instruments this article critically examines the neglected issue of their politicalmore » constitution. Analytical examples are used to concretely explore the nature and significance of the politicisation of impact assessment. It is argued that raising awareness about the political character of impact assessment instruments, in itself, is a vital step in advancing effectiveness evaluation theory. Broader theoretical lessons on the framing of evaluation research are also drawn from the political analysis. We conclude that, at least within the contemporary research context, learning derived from analysing the meaning and implications of plural interpretations of effectiveness represents the most constructive strategy for advancing impact assessment and policy integration theory.« less
Carfora, Valentina; Caso, Daniela; Conner, Mark
2016-11-01
The present research aimed to test the efficacy of affective and instrumental text messages compared with a no-message control as a strategy to increase fruit and vegetable intake (FVI) in adolescents. A randomized controlled trial was used test impact of different text messages compared with no message on FVI over a 2-week period. A total of 1,065 adolescents (14-19 years) from a high school of the South of Italy completed the baseline questionnaire and were randomly allocated to one of three conditions: instrumental messages (N = 238), affective messages (N = 300), and no messages (N = 521). Students in the message conditions received one message each day over a 2-week period. The messages targeted affective (affective benefits) or instrumental (instrumental benefits) information about FVI. Self-reported FVI at 2 weeks was the key dependent variable. Analyses were based on the N = 634 who completed all aspects of the study. Findings showed that messages significantly increased FVI, particularly in the affective condition and this effect was partially mediated by changes in affective attitude and intentions towards FVI. Text messages can be used to increase FVI in adolescents. Text messages based on affective benefits are more effective than text messages based on instrumental benefits. Statement of contribution What is already known on this subject? Text messages have been shown to promote positive change in health behaviours. However, the most appropriate target for such text messages is less clear although targeting attitudes may be effective. What does this study add? This randomized controlled study shows that text messages targeting instrumental or affective attitudes produce changes in fruit and vegetable intake (FVI) in adolescents. Text messages targeting affective attitudes are shown to be more effective than text messages targeting instrumental attitudes. The effect of affective text messages on FVI was partially mediated by changes in affective attitudes. © 2016 The British Psychological Society.
Remote control of an impact demonstration vehicle
NASA Technical Reports Server (NTRS)
Harney, P. F.; Craft, J. B., Jr.; Johnson, R. G.
1985-01-01
Uplink and downlink telemetry systems were installed in a Boeing 720 aircraft that was remotely flown from Rogers Dry Lake at Edwards Air Force Base and impacted into a designated crash site on the lake bed. The controlled impact demonstration (CID) program was a joint venture by the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) to test passenger survivability using antimisting kerosene (AMK) to inhibit postcrash fires, improve passenger seats and restraints, and improve fire-retardent materials. The uplink telemetry system was used to remotely control the aircraft and activate onboard systems from takeoff until after impact. Aircraft systems for remote control, aircraft structural response, passenger seat and restraint systems, and anthropomorphic dummy responses were recorded and displayed by the downlink stems. The instrumentation uplink and downlink systems are described.
Sonar Test and Test Instrumentation Support.
1979-03-29
AD-AlSO 055 TEXAS UNIV AT AUSTIN APPLIED RESEARCH LABS F/6 17/1 SONAR TEST AND TEST INSTRUMENTATION SUPPORT (U) MAR 79 0 D BAKER N00140-76-C-64a7... SONAR TEST AND TEST INSTRUMENTATION SUPPORT quarterly progress report September - 30 November 197Pj 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) S...involves technical support with sonar testing, test instrumentation, and documentation. This report describes progress made under the tasks that are
FDR Soil Moisture Sensor for Environmental Testing and Evaluation
NASA Astrophysics Data System (ADS)
Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin
To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.
NASA Astrophysics Data System (ADS)
Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.
2014-09-01
The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm α-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far-infrared to submillimeter and millimeter regions of the electromagnetic spectrum.
NASA Astrophysics Data System (ADS)
Genc, Evrim
The primary purpose of this study was to develop a valid and reliable instrument to examine science teachers' assessment beliefs and practices in science classrooms. The present study also investigated the relationship between teachers' beliefs and practices in terms of assessment issues in science, their perceptions of the factors that influenced their assessment practices and their feelings towards high-stakes testing. The participants of the study were 408 science teachers teaching at middle and high school levels in the State of Florida. Data were collected through two modes of administration of the instrument as a paper-and-pencil and a web-based form. The response rate for paper-and-pencil administration was estimated as 68% whereas the response for the web administration was found to be 27%. Results from the various dimensions of validity and reliability analyses revealed that the 24 item-four-factor belief and practice measures were psychometrically sound and conceptually anchored measures of science teachers' assessment beliefs and self-reported practices. Reliability estimates for the belief measure ranged from .83 to .91 whereas alpha values for the practice measure ranged from .56 to .90. Results from the multigroup analysis supported that the instrument has the same theoretical structure across both administration groups. Therefore, future researchers may use either a paper-and-pencil or web-based format of the instrument. This study underscored a discrepancy between what teachers believe and how they act in classroom settings. It was emphasized that certain factors were mediating the dynamics between the belief and the practice. The majority of teachers reported that instruction time, class size, professional development activities, availability of school funding, and state testing mandates impact their assessment routines. Teachers reported that both the preparation process and the results of the test created unbelievable tension both on students and teachers. Implications of the study indicated that it would be valuable to conduct alignment studies to examine whether state tests are fully aligned with the state standards and classroom assessment. Perhaps, such analyses would assist state level decision makers in reconsidering the current policies and "unintended" influences of mandated tests on classroom practices.
Coleman, S; Nixon, J; Keen, J; Muir, D; Wilson, L; McGinnis, E; Stubbs, N; Dealey, C; Nelson, E A
2016-11-16
Variation in development methods of Pressure Ulcer Risk Assessment Instruments has led to inconsistent inclusion of risk factors and concerns about content validity. A new evidenced-based Risk Assessment Instrument, the Pressure Ulcer Risk Primary Or Secondary Evaluation Tool - PURPOSE-T was developed as part of a National Institute for Health Research (NIHR) funded Pressure Ulcer Research Programme (PURPOSE: RP-PG-0407-10056). This paper reports the pre-test phase to assess and improve PURPOSE-T acceptability, usability and confirm content validity. A descriptive study incorporating cognitive pre-testing methods and integration of service user views was undertaken over 3 cycles comprising PURPOSE-T training, a focus group and one-to-one think-aloud interviews. Clinical nurses from 2 acute and 2 community NHS Trusts, were grouped according to job role. Focus group participants used 3 vignettes to complete PURPOSE-T assessments and then participated in the focus group. Think-aloud participants were interviewed during their completion of PURPOSE-T. After each pre-test cycle analysis was undertaken and adjustment/improvements made to PURPOSE-T in an iterative process. This incorporated the use of descriptive statistics for data completeness and decision rule compliance and directed content analysis for interview and focus group data. Data were collected April 2012-June 2012. Thirty-four nurses participated in 3 pre-test cycles. Data from 3 focus groups, 12 think-aloud interviews incorporating 101 PURPOSE-T assessments led to changes to improve instrument content and design, flow and format, decision support and item-specific wording. Acceptability and usability were demonstrated by improved data completion and appropriate risk pathway allocation. The pre-test also confirmed content validity with clinical nurses. The pre-test was an important step in the development of the preliminary PURPOSE-T and the methods used may have wider instrument development application. PURPOSE-T proposes a new approach to pressure ulcer risk assessment, incorporating a screening stage, the inclusion of skin status to distinguish between those who require primary prevention and those who require secondary prevention/treatment and the use of colour to support pathway allocation and decision making. Further clinical evaluation is planned to assess the reliability and validity of PURPOSE-T and it's impact on care processes and patient outcomes.
Aldrees, Turki; Almubarak, Zaid; Hassouneh, Basil; Albosaily, Ahamed; Aloulah, Mohammad; Almasoud, Mai; Alsaleh, Saad
2018-01-01
Disease-specific quality of life instruments assess the impact of chronic rhinosinusitis on patients' quality of life (QoL). To the extent of our knowledge, there are no Arabic versions of two instruments-the Rhinosinusitis Disability Index (RSDI) and the Chronic Sinusitis Survey (CSS). Develop an Arabic-validated version of both instruments, thus allowing its use among the Arabic population. Prospective cross-sectional study for instrument validation. Tertiary university hospital. This study was conducted between September 2015 and October 2016. We followed the international comprehensive guidelines for translation and cross-cultural adaptation of QoL instruments. Test-retest reliability, discriminant validity, and responsiveness ability of both the RSDI and CSS Arabic versions. 124. The sample comprised 75 patients diagnosed with chronic rhinosinusitis and 49 healthy control subjects. The Arabic version of both instruments showed high internal consistency (Cronbach's alpha: RSDI=0.97, CSS=.88) and the ability to differentiate between diseased and healthy volunteers (P less than .0001). The translated versions also detected significant change in response to an intervention (P less than .0001). These Arabic validated versions of the RSDI and CSS can be used for both clinical and research purposes. This study was performed in only one tertiary hospital. None.
77 FR 59023 - Preoperational Testing of Instrument and Control Air Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-25
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0065] Preoperational Testing of Instrument and Control Air..., ``Preoperational Testing of Instrument and Control Air Systems.'' This regulatory guide is being revised to address... instrument and control air systems (ICAS) to meet seismic requirement, ICAS air- dryer testing to meet dew...
Multiwalled carbon nanotubes for stray light suppression in space flight instruments
NASA Astrophysics Data System (ADS)
Hagopian, John G.; Getty, Stephanie A.; Quijada, Manuel; Tveekrem, June; Shiri, Ron; Roman, Patrick; Butler, James; Georgiev, Georgi; Livas, Jeff; Hunt, Cleophus; Maldonado, Alejandro; Talapatra, Saikat; Zhang, Xianfeng; Papadakis, Stergios J.; Monica, Andrew H.; Deglau, David
2010-08-01
Observations of the Earth are extremely challenging; its large angular extent floods scientific instruments with high flux within and adjacent to the desired field of view. This bright light diffracts from instrument structures, rattles around and invariably contaminates measurements. Astrophysical observations also are impacted by stray light that obscures very dim objects and degrades signal to noise in spectroscopic measurements. Stray light is controlled by utilizing low reflectance structural surface treatments and by using baffles and stops to limit this background noise. In 2007 GSFC researchers discovered that Multiwalled Carbon Nanotubes (MWCNTs) are exceptionally good absorbers, with potential to provide order-of-magnitude improvement over current surface treatments and a resulting factor of 10,000 reduction in stray light when applied to an entire optical train. Development of this technology will provide numerous benefits including: a.) simplification of instrument stray light controls to achieve equivalent performance, b.) increasing observational efficiencies by recovering currently unusable scenes in high contrast regions, and c.) enabling low-noise observations that are beyond current capabilities. Our objective was to develop and apply MWCNTs to instrument components to realize these benefits. We have addressed the technical challenges to advance the technology by tuning the MWCNT geometry using a variety of methods to provide a factor of 10 improvement over current surface treatments used in space flight hardware. Techniques are being developed to apply the optimized geometry to typical instrument components such as spiders, baffles and tubes. Application of the nanostructures to alternate materials (or by contact transfer) is also being investigated. In addition, candidate geometries have been tested and optimized for robustness to survive integration, testing, launch and operations associated with space flight hardware. The benefits of this technology extend to space science where observations of extremely dim objects require suppression of stray light.
Gräske, Johannes; Fischer, Thomas; Kuhlmey, Adelheid; Wolf-Ostermann, Karin
2012-01-01
Shared-housing arrangements (SHA) in Germany are a specific type of housing arrangement that belongs to the global concept of small-scale living arrangements. This caring approach comprises characteristics of both home and institutional care for persons with dementia. To evaluate the impact of SHA on the quality of life (QoL) of residents, an appropriate setting- and dementia-specific QoL instrument is needed. This article aims to identify QoL instruments that relate to the core domains of SHA. After a comprehensive literature review, existing dementia-specific QoL instruments were evaluated to determine whether any have been specifically designed for or applied in SHA. Additionally, each domain of the instruments was matched with the core domains of SHA. None of the existing instruments was identified as having been developed for SHA. Matching of the instrument domains with the SHA core domains leads to the conclusion that Quality of Life-Alzheimer's Disease, Dementia Quality of Life, Alzheimer Disease-Related Quality of Life, and QUALIDEM are adequate instruments for measuring the dementia-specific QoL of persons living in SHA. For the first time, a basis has been created for valid QoL evaluations of residents with dementia living in SHA. The 4 identified instruments are considered applicable in SHA. Conducting a performance test and evaluating further attributes according to the Scientific Advisory Committee of the Medical Outcomes Trust (e.g., reliability and validity) will further elucidation of the appropriateness of the instruments for SHA. Copyright © 2012 Mosby, Inc. All rights reserved.
Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel
2014-11-15
Economic instruments can be used to control groundwater nitrate pollution due to the intensive use of fertilizers in agriculture. In order to test their efficiency on the reduction of nitrate leaching, we propose an approach based on the combined use of production and pollution functions to derive the impacts on the expected farmer response of these instruments. Some of the most important factors influencing nitrate leaching and crop yield are the type of soil and the climatic conditions. Crop yield and nitrate leaching responses to different soil and climatic conditions were classified by means of a cluster analysis, and crops located in different areas but with similar response were grouped for the analysis. We use a spatial economic optimization model to evaluate the potential of taxes on nitrogen fertilizers, water prices, and taxes on nitrate emissions to reduce nitrate pollution, as well as their economic impact in terms of social welfare and farmers' net benefits. The method was applied to the Mancha Oriental System (MOS) in Spain, a large area with different soil types and climatic conditions. We divided the study area into zones of homogeneous crop production and nitrate leaching properties. Results show spatially different responses of crop growth and nitrate leaching, proving how the cost-effectiveness of pollution control instruments is contingent upon the spatial heterogeneities of the problem. Copyright © 2014 Elsevier B.V. All rights reserved.
Factor analyses of an Adult Epilepsy Self-Management Measurement Instrument (AESMMI).
Escoffery, Cam; Bamps, Yvan; LaFrance, W Curt; Stoll, Shelley; Shegog, Ross; Buelow, Janice; Shafer, Patricia; Thompson, Nancy J; McGee, Robin E; Hatfield, Katherine
2015-09-01
The purpose of this study was to test the psychometric properties of an enhanced Adult Epilepsy Self-Management Measurement Instrument (AESMMI). An instrument of 113 items, covering 10 a priori self-management domains, was generated through a multiphase process, based on a review of the literature, validated epilepsy and other chronic condition self-management scales and expert input. Reliability and exploratory factor analyses were conducted on data collected from 422 adults with epilepsy. The instrument was reduced to 65 items, converging on 11 factors: Health-care Communication, Coping, Treatment Management, Seizure Tracking, Social Support, Seizure Response, Wellness, Medication Adherence, Safety, Stress Management, and Proactivity. Exploratory factors supported the construct validity for 6 a priori domains, albeit with significant changes in the retained items or in their scope and 3 new factors. One a priori domain was split in 2 subscales pertaining to treatment. The configuration of the 11 factors provides additional insight into epilepsy self-management behaviors. Internal consistency reliability of the 65-item instrument was high (α=.935). Correlations with independent measures of health status, quality of life, depression, seizure severity, and life impact of epilepsy further validated the instrument. This instrument shows potential for use in research and clinical settings and for assessing intervention outcomes and self-management behaviors in adults with epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.
Evaluation of the psychometric properties of the Nighttime Symptoms of COPD Instrument.
Mocarski, Michelle; Zaiser, Erica; Trundell, Dylan; Make, Barry J; Hareendran, Asha
2015-01-01
Nighttime symptoms can negatively impact the quality of life of patients with chronic obstructive pulmonary disease (COPD). The Nighttime Symptoms of COPD Instrument (NiSCI) was designed to measure the occurrence and severity of nighttime symptoms in patients with COPD, the impact of symptoms on nighttime awakenings, and rescue medication use. The objective of this study was to explore item reduction, inform scoring recommendations, and evaluate the psychometric properties of the NiSCI. COPD patients participating in a Phase III clinical trial completed the NiSCI daily. Item analyses were conducted using weekly mean and single day scores. Descriptive statistics (including percentage of respondents at floor/ceiling and inter-item correlations), factor analyses, and Rasch model analyses were conducted to examine item performance and scoring. Test-retest reliability was assessed for the final instrument using the intraclass correlation coefficient (ICC). Correlations with assessments conducted during study visits were used to evaluate convergent and known-groups validity. Data from 1,663 COPD patients aged 40-93 years were analyzed. Item analyses supported the generation of four scores. A one-factor structure was confirmed with factor analysis and Rasch analysis for the symptom severity score. Test-retest reliability was confirmed for the six-item symptom severity (ICC, 0.85), number of nighttime awakenings (ICC, 0.82), and rescue medication (ICC, 0.68) scores. Convergent validity was supported by significant correlations between the NiSCI, St George's Respiratory Questionnaire, and Exacerbations of Chronic Obstructive Pulmonary Disease Tool-Respiratory Symptoms scores. The results suggest that the NiSCI can be used to determine the severity of nighttime COPD symptoms, the number of nighttime awakenings due to COPD symptoms, and the nighttime use of rescue medication. The NiSCI is a reliable and valid instrument to evaluate these concepts in COPD patients in clinical trials and clinical practice. Scoring recommendations and steps for further research are discussed.
Ward, Irene; Pivko, Susan; Brooks, Gary; Parkin, Kate
2011-11-01
To demonstrate sensitivity to change of the Stroke Rehabilitation Assessment of Movement (STREAM) as well as the concurrent and predictive validity of the STREAM in an acute rehabilitation setting. Prospective cohort study. Acute, in-patient rehabilitation department within a tertiary-care teaching hospital in the United States. Thirty adults with a newly diagnosed, first ischemic stroke. Clinical assessments were conducted on admission and then again on discharge from the rehabilitation hospital with the STREAM (total STREAM and upper extremity, lower extremity, and mobility subscales), Functional Independence Measure (FIM), and Stroke Impact Scale-16 (SIS-16). Sensitivity to change was determined with the Wilcoxon signed rank test and by the calculation of standardized response means. Spearman correlations were used to assess concurrent validity of the total STREAM and STREAM subscales with the FIM and SIS-16 on admission and discharge. We determined predictive validity for all instruments by correlating admission scores with actual and predicted length of stay and by testing associations between admission scores and discharge destination (home vs subacute facility). Not applicable. For all instruments, there was statistically significant improvement from admission to discharge. The standardized response means for the total STREAM and STREAM subscales were large. Spearman correlations between the total STREAM and STREAM subscales and the FIM and SIS-16 were moderate to excellent, both on admission and discharge. Among change scores, only the SIS-16 correlated with the total STREAM. All 3 instruments were significantly associated with discharge destination; however, the associations were strongest for the total STREAM and STREAM subscales. All instruments showed moderate-to-excellent correlations with predicted and actual length of stay. The STREAM is sensitive to change and demonstrates good concurrent and predictive validity as compared with the FIM and SIS-16 in the acute inpatient rehabilitation population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Ping; Wu, Guangqiang
2013-03-01
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.
Health Literacy and Cancer Prevention: Two New Instruments to Assess Comprehension
Mazor, Kathleen M.; Roblin, Douglas W.; Williams, Andrew E.; Greene, Sarah M.; Gaglio, Bridget; Field, Terry S.; Costanza, Mary E.; Han, Paul K. J.; Saccoccio, Laura; Calvi, Josephine; Cove, Erica; Cowan, Rebecca
2012-01-01
Objectives Ability to understand spoken health information is an important facet of health literacy, but to date, no instrument has been available to quantify patients’ ability in this area. We sought to develop a test to assess comprehension of spoken health messages related to cancer prevention and screening to fill this gap, and a complementary test of comprehension of written health messages. Methods We used the Sentence Verification Technique to write items based on realistic health messages about cancer prevention and screening, including media messages, clinical encounters and clinical print materials. Items were reviewed, revised, and pre-tested. Adults aged 40 to 70 participated in a pilot administration in Georgia, Hawaii, and Massachusetts. Results The Cancer Message Literacy Test-Listening is self-administered via touchscreen laptop computer. No reading is required. It takes approximately 1 hour. The Cancer Message Literacy Test-Reading is self-administered on paper. It takes approximately 10 minutes. Conclusions These two new tests will allow researchers to assess comprehension of spoken health messages, to examine the relationship between listening and reading literacy, and to explore the impact of each form of literacy on health-related outcomes. Practice Implications Researchers and clinicians now have a means of measuring comprehension of spoken health information. PMID:22244323
Gibbons, Laura E; McCurry, Susan; Rhoads, Kristoffer; Masaki, Kamal; White, Lon; Borenstein, Amy R; Larson, Eric B; Crane, Paul K
2009-02-01
The Cognitive Abilities Screening Instrument (CASI) was designed for use in cross-cultural studies of Japanese and Japanese-American elderly in Japan and the U.S.A. The measurement equivalence in Japanese and English had not been confirmed in prior studies. We analyzed the 40 CASI items for differential item functioning (DIF) related to test language, as well as self-reported proficiency with written Japanese, age, and educational attainment in two large epidemiologic studies of Japanese-American elderly: the Kame Project (n=1708) and the Honolulu-Asia Aging Study (HAAS; n = 3148). DIF was present if the demographic groups differed in the probability of success on an item, after controlling for their underlying cognitive functioning ability. While seven CASI items had DIF related to language of testing in Kame (registration of one item; recall of one item; similes; judgment; repeating a phrase; reading and performing a command; and following a three-step instruction), the impact of DIF on participants' scores was minimal. Mean scores for Japanese and English speakers in Kame changed by <0.1 SD after accounting for DIF related to test language. In HAAS, insufficient numbers of participants were tested in Japanese to assess DIF related to test language. In both studies, DIF related to written Japanese proficiency, age, and educational attainment had minimal impact. To the extent that DIF could be assessed, the CASI appeared to meet the goal of measuring cognitive function equivalently in Japanese and English. Stratified data collection would be needed to confirm this conclusion. DIF assessment should be used in other studies with multiple language groups to confirm that measures function equivalently or, if not, form scores that account for DIF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMullin, S.R.
The Savannah River Site is currently evaluating some 40 hazardous and radioactive-waste sites for remediation. Among the remedial alternatives considered is closure using a kaolin clay cap. The hydraulic conductivity suggested by the US Environmental Protection Agency is 1.0 {times} 10{sup {minus}7} cm/sec. One instrument to measure this value is the Sealed Double-Ring Infiltrometer{trademark} (SDRI). Six SDRI were recently installed on a kaolin test cap. Test results demonstrated uniform performance of these instruments. However, the test data showed as much as an order of magnitude of variation over time. This variation is attributed to both internal structural heterogeneity and variablemore » external boundary conditions. The internal heterogeneity is caused by construction variability within a specified range of moisture and density. The external influences considered are temperature and barometric pressure. Temperature was discharged as a source of heterogeneity because of a lack of correlation with test data and a negligible impact from the range of variability. However, a direct correlation was found between changes in barometric pressure and hydraulic conductivity. This correlation is most pronounced when pressure changes occur over a short period of time. Additionally, this correlation is related to a single soil layer. When the wetting front passes into a more porous foundation layer, the correlation with pressure changes disappears. Conclusions are that the SDRI performs adequately, with good repeatability of results. The duration of test is critical to assure a statistically valid data set. Data spikes resulting from pressure changes should be identified, and professional judgment used to determine the representative hydraulic conductivity. Further evaluation is recommended to determine the impact of pressure change on the actual hydraulic conductivity.« less
Mass spectrometer calibration of Cosmic Dust Analyzer
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.; Gupta, Satish C.; Jyoti, G.; Beauchamp, J. L.
2003-02-01
The time-of-flight (TOF) mass spectrometer (MS) of the Cosmic Dust Analyzer (CDA) instrument aboard the Cassini spacecraft is expected to be placed in orbit about Saturn to sample submicrometer-diameter ring particles and impact ejecta from Saturn's satellites. The CDA measures a mass spectrum of each particle that impacts the chemical analyzer sector of the instrument. Particles impact a Rh target plate at velocities of 1-100 km/s and produce some 10-8 to 10-5 times the particle mass of positive valence, single-charged ions. These are analyzed via a TOF MS. Initial tests employed a pulsed N2 laser acting on samples of kamacite, pyrrhotite, serpentine, olivine, and Murchison meteorite induced bursts of ions which were detected with a microchannel plate and a charge sensitive amplifier (CSA). Pulses from the N2 laser (1011 W/cm2) are assumed to simulate particle impact. Using aluminum alloy as a test sample, each pulse produces a charge of ~4.6 pC (mostly Al+1), whereas irradiation of a stainless steel target produces a ~2.8 pC (Fe+1) charge. Thus the present system yields ~10-5% of the laser energy in resulting ions. A CSA signal indicates that at the position of the microchannel plate, the ion detector geometry is such that some 5% of the laser-induced ions are collected in the CDA geometry. Employing a multichannel plate detector in this MS yields for Al-Mg-Cu alloy and kamacite targets well-defined peaks at 24 (Mg+1), 27(Al+1), and 64 (Cu+1) and 56 (Fe+1), 58 (Ni+1), and 60 (Ni+1) dalton, respectively.
A Cosmic Dust Sensor Based on an Array of Grid Electrodes
NASA Astrophysics Data System (ADS)
Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.
2014-04-01
We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.
ERIC Educational Resources Information Center
Ester, Don; Turner, Kristin
2009-01-01
The purpose of this study was to investigate the impact of a public school loaner-instrument program on the attitudes and achievement of low-income students in an urban environment. Socioeconomic Status (SES) and Instrument Status served as independent variables. Participants (N = 245) completed surveys at the beginning and end of the school year,…
The Impact of Instrumental Music Learning on Attainment at Age 16: A Pilot Study
ERIC Educational Resources Information Center
Hallam, Susan; Rogers, Kevin
2016-01-01
There is increasing international evidence that playing a musical instrument has a positive impact on attainment at school but little research has been undertaken in the UK. This study addresses this drawing on data on attainment at age 11 and 16 relating to 608 students, 115 of whom played a musical instrument. The fndings showed that the young…
Swart, Jennifer C; Froböse, Monja I; Cook, Jennifer L; Geurts, Dirk Em; Frank, Michael J; Cools, Roshan; den Ouden, Hanneke Em
2017-05-15
Catecholamines modulate the impact of motivational cues on action. Such motivational biases have been proposed to reflect cue-based, 'Pavlovian' effects. Here, we assess whether motivational biases may also arise from asymmetrical instrumental learning of active and passive responses following reward and punishment outcomes. We present a novel paradigm, allowing us to disentangle the impact of reward and punishment on instrumental learning from Pavlovian response biasing. Computational analyses showed that motivational biases reflect both Pavlovian and instrumental effects: reward and punishment cues promoted generalized (in)action in a Pavlovian manner, whereas outcomes enhanced instrumental (un)learning of chosen actions. These cue- and outcome-based biases were altered independently by the catecholamine enhancer melthylphenidate. Methylphenidate's effect varied across individuals with a putative proxy of baseline dopamine synthesis capacity, working memory span. Our study uncovers two distinct mechanisms by which motivation impacts behaviour, and helps refine current models of catecholaminergic modulation of motivated action.
Lee, Hyewon; Milev, Roumen; Paik, Jong-Woo
2015-12-01
Stigma is one of the key barriers to mental health services, and there have been growing efforts to develop antistigma programs. However, little research has been done on quantifying experiences of stigma and their psychosocial impacts in the perspectives of those who suffer from mental illnesses. It is essential to develop an instrument that quantifies the extent and impact of stigma. Therefore, we conducted a study to conduct a field test on The Inventory of Stigmatizing Experiences and measure the difference in perceived stigma and its psychosocial impacts on Korean and Canadian patients with depression and bipolar disorders. A cross-sectional comparison study was conducted. Data collection took place at a tertiary care hospital located in Seoul, South Korea. Data for the Canadian patient group were retrieved from a previous study conducted by Lazowski et al. In total, 214 Canadian and 51 Korean individuals with depression and bipolar disorder participated. Canadian participants reported significantly higher experience with stigma (P<0.05) and its impact (P<0.05) compared with Korean participants. Both subscales of the inventory (the Stigma Experiences Scale and the Stigma Impact Scale) were highly reliable, with reliability coefficients of 0.81 and 0.93, respectively. In conclusion, there seems to be higher level of stigma and impact in the Canadian population compared with the Korean population. These differences in stigma experience and their impact in different populations suggest the need to develop more tailored antistigma programs. The Inventory of Stigmatizing Experiences is a highly reliable instrument. © 2015 Wiley Publishing Asia Pty Ltd.
Hogarth, Lee; Chase, Henry W
2012-06-01
Individual differences in drug dependence may be mediated by several abnormalities in associative learning, including perseveration of drug-seeking following contingency change, greater control over drug-seeking by Pavlovian stimuli, or greater sensitivity to drug reinforcement establishing higher rates of drug-seeking. To evaluate these three candidate markers for nicotine dependence, Experiment 1 contrasted daily (N = 22) and nondaily smoker groups (N = 22) on a novel instrumental learning task, where one S+ was first trained as a predictor of tobacco reward before being extinguished. Experiment 2 compared daily (N = 18) and nondaily smoker groups (N = 18) on a concurrent-choice task for tobacco and chocolate reward before an extinction test in which the tobacco response was extinguished, followed by a Pavlovian-to-instrumental transfer test, wherein the impact of tobacco and chocolate cues on concurrent choice was measured (gender was balanced within each smoker group). The results showed no group difference in sensitivity to extinction of either the stimulus-drug or response-drug contingency in Experiments 1 and 2, respectively, nor did groups show a difference in Pavlovian-to-instrumental transfer of control over tobacco choice. By contrast, nicotine-dependence status was marked by a higher frequency of tobacco choice in the concurrent-choice procedure, and this choice preference was associated with subjective craving (gender did not affect any behavioral measure). These results favor the view that nicotine dependence in this sample is not determined by individual predilection for perseveration or stimulus-control over drug-seeking, but by greater sensitivity to reinforcement of instrumental drug choice. Value-based decision theories of dependence are discussed.
Heinl, D; Prinsen, C A C; Sach, T; Drucker, A M; Ofenloch, R; Flohr, C; Apfelbacher, C
2017-04-01
Quality of life (QoL) is one of the core outcome domains identified by the Harmonising Outcome Measures for Eczema (HOME) initiative to be assessed in every eczema trial. There is uncertainty about the most appropriate QoL instrument to measure this domain in infants, children and adolescents. To systematically evaluate the measurement properties of existing measurement instruments developed and/or validated for the measurement of QoL in infants, children and adolescents with eczema. A systematic literature search in PubMed and Embase, complemented by a thorough hand search of reference lists, retrieved studies on measurement properties of eczema QoL instruments for infants, children and adolescents. For all eligible studies, we judged the adequacy of the measurement properties and the methodological study quality with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Results from different studies were summarized in a best-evidence synthesis and formed the basis to assign four degrees of recommendation. Seventeen articles, three of which were found by hand search, were included. These 17 articles reported on 24 instruments. No instrument can be recommended for use in all eczema trials because none fulfilled all required adequacy criteria. With adequate internal consistency, reliability and hypothesis testing, the U.S. version of the Childhood Atopic Dermatitis Impact Scale (CADIS), a proxy-reported instrument, has the potential to be recommended depending on the results of further validation studies. All other instruments, including all self-reported ones, lacked significant validation data. Currently, no QoL instrument for infants, children and adolescents with eczema can be highly recommended. Future validation research should primarily focus on the CADIS, but also attempt to broaden the evidence base for the validity of self-reported instruments. © 2016 British Association of Dermatologists.
Orbital Debris Assesment Tesing in the AEDC Range G
NASA Technical Reports Server (NTRS)
Polk, Marshall; Woods, David; Roebuck, Brian; Opiela, John; Sheaffer, Patti; Liou, J.-C.
2015-01-01
The space environment presents many hazards for satellites and spacecraft. One of the major hazards is hypervelocity impacts from uncontrolled man-made space debris. Arnold Engineering Development Complex (AEDC), The National Aeronautics and Space Administration (NASA), The United States Air Force Space and Missile Systems Center (SMC), the University of Florida, and The Aerospace Corporation configured a large ballistic range to perform a series of hypervelocity destructive impact tests in order to better understand the effects of space collisions. The test utilized AEDC's Range G light gas launcher, which is capable of firing projectiles up to 7 km/s. A non-functional full-scale representation of a modern satellite called the DebriSat was destroyed in the enclosed range enviroment. Several modifications to the range facility were made to ensure quality data was obtained from the impact events. The facility modifcations were intended to provide a high impact energy to target mass ratio (>200 J/g), a non-damaging method of debris collection, and an instrumentation suite capable of providing information on the physics of the entire imapct event.
Impact detection method for composite winglets based on neural network implementation
NASA Astrophysics Data System (ADS)
Viscardi, Massimo; Arena, Maurizio; Napolitano, Pasquale
2018-03-01
Maintenance tasks and safety aspects represent a strategic role in the managing of the modern aircraft fleets. The demand for reliable techniques for structural health monitoring represent so a key aspect looking forward to new generation aircraft. In particular, the use of more technologically complex materials and manufacturing methods requires anyway more efficient as well as rapid application processes to improve the design strength and service life. Actually, it is necessary to rely on survey instruments, which allow for safeguarding the structural integrity of the aircraft, especially after the wide use of composite structures highly susceptible to non-detected damages as delamination of the ply. In this paper, the authors have investigated the feasibility to implement a neural network-based algorithm to predict the impact event at low frequency, typically due to the bird collision. Relying upon a numerical model, representative of a composite flat panel, the approach has been also experimentally validated. The purpose of the work is therefore the presentation of an innovative application within the Non Destructive Testing field based upon vibration measurements. The aim of the research has been the development of a Non Destructive Test which meets most of the mandatory requirements for effective health monitoring systems while, at the same time, reducing as much as possible the complexity of the data analysis algorithm and the experimental acquisition instrumentation. Future activities will be addressed to test such technique on a more complex aeronautical system.
Analysis and Testing of a Composite Fuselage Shield for Open Rotor Engine Blade-Out Protection
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Emmerling, William; Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Carney, Kelly S.
2015-01-01
The Federal Aviation Administration is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the Aircraft. The NASA Glenn Research Center and The Naval Air Warfare Center (NAWC), China Lake, collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test lightweight composite shields for protection of the aircraft passengers and critical systems from a released blade that could impact the fuselage. In the test, two composite blades were pyrotechnically released from a running engine, each impacting a composite shield with a different thickness. The thinner shield was penetrated by the blade and the thicker shield prevented penetration. This was consistent with pre-test predictions. This paper documents the live fire test from the full scale rig at NAWC China Lake and describes the damage to the shields as well as instrumentation results.
Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.
2012-01-01
NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.
International Instrumentation Symposium, 32nd, Seattle, WA, May 5-8, 1986, Proceedings
NASA Astrophysics Data System (ADS)
The conference presents papers on blast, shock, and vibration instrumentation; wind tunnel instrumentation and controls; electrooptic and fiber optic instrumentation; special test facilities; reentry vehicle testing; and nondestructive test and acoustic test instrumentation. Other topic include real time systems, flight test and avionics instrumentation, data aquisition and analysis systems, thermal measurements, and advances in measurement technology. Particular attention is given to an automated fringe counting laser interferometer for low frequency vibration measurements, dynamic pressure measurements in pneumatic lines, optically interfaced sensor system for aerospace applications, the picobalance for single microparticle measurements, ellipsometric film thickness, nanometer wear measurement by ultrathin surface layer activation, a rugged electronic scanner designed for turbine test, failure mechanism characterization of platinum alloy, and the thick film strain gage.
Top tether effectiveness during side impacts.
Majstorovic, Jordan; Bing, Julie; Dahle, Eric; Bolte, John; Kang, Yun-Seok
2018-02-28
Few studies have looked at the effectiveness of the top tether during side impacts. In these studies, limited anthropomorphic test device (ATD) data were collected and/or few side impact scenarios were observed. The goal of this study was to further understand the effects of the top tether on ATD responses and child restraint system (CRS) kinematics during various side impact conditions. A series of high-speed near-side and far-side sled tests were performed using the FMVSS213 side impact sled buck and Q3s ATD. Tests were performed at both 10° and 30° impacts with respect to the pure lateral direction. Two child restraints, CRS A and CRS B, were attached to the bench using flexible lower anchors. Each test scenario was performed with the presence and absence of a top tether. Instrumentation recorded Q3s responses and CRS kinematics, and the identical test scenarios with and without a top tether attachment were compared. For the far-side lateral (10°) and oblique (30°) impacts, top tether attachment increased resultant head accelerations by 8-38% and head injury criterion (HIC 15 ) values by 20-140%. However, the top tether was effective in reducing lateral head excursion by 5-25%. For near-side impacts, the top tether resulted in less than 10% increases in both resultant head acceleration and HIC 15 in the lateral impact direction. For near-side oblique impacts, the top tether increased HIC 15 by 17.3% for CRS A and decreased it by 19.5% for CRS B. However, the injury values determined from both impact conditions were below current injury assessment reference values (IARVs). Additionally, the top tether proved beneficial in preventing forward and lateral CRS rotations. The results show that the effects of the top tether on Q3s responses were dependent on impact type, impact angle, and CRS. Tether attachments that increased head accelerations and HIC 15 values were generally counterbalanced by a reduction in head excursion and CRS rotation compared to nontethered scenarios.
First Cryo-Vacuum Test of the JWST Integrated Science Instrument Module
NASA Astrophysics Data System (ADS)
Kimble, Randy A.; Antonille, S. R.; Balzano, V.; Comber, B. J.; Davila, P. S.; Drury, M. D.; Glasse, A.; Glazer, S. D.; Lundquist, R.; Mann, S. D.; McGuffey, D. B.; Novo-Gradac, K. J.; Penanen, K.; Ramey, D. D.; Sullivan, J.; Van Campen, J.; Vila, M. B.
2014-01-01
The integration and test program for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) calls for three cryo-vacuum tests of the ISIM hardware. The first is a risk-reduction test aimed at checking out the test hardware and procedures; this will be followed by two formal verification tests that will bracket other key aspects of the environmental test program (e.g. vibration and acoustics, EMI/EMC). The first of these cryo-vacuum tests, the risk-reduction test, was executed at NASA’s Goddard Space Flight Center starting in late August, 2013. Flight hardware under test included two (of the eventual four) flight instruments, the Mid-Infrared Instrument (MIRI) and the Fine Guidance Sensor/Near-Infrared Imager and Slitless Spectrograph (FGS/NIRISS), mounted to the ISIM structure, as well as the ISIM Electronics Compartment (IEC). The instruments were cooled to their flight operating temperatures 40K for FGS/NIRISS, ~6K for MIRI) and optically tested against a cryo-certified telescope simulator. Key goals for the risk reduction test included: 1) demonstration of controlled cooldown and warmup, stable control at operating temperature, and measurement of heat loads, 2) operation of the science instruments with ISIM electronics systems at temperature, 3) health trending of the science instruments against instrument-level test results, 4) measurement of the pupil positions and six degree of freedom alignment of the science instruments against the simulated telescope focal surface, 5) detailed optical characterization of the NIRISS instrument, 6) verification of the signal-to-noise performance of the MIRI, and 7) exercise of the Onboard Script System that will be used to operate the instruments in flight. In addition, the execution of the test is expected to yield invaluable logistical experience - development and execution of procedures, communications, analysis of results - that will greatly benefit the subsequent verification tests. At the time of this submission, the hardware had reached operating temperature and was partway through the cryo test program. We report here on the test configuration, the overall process, and the results that were ultimately obtained.
Experimental constraints on impact-induced winds
NASA Astrophysics Data System (ADS)
Quintana, Stephanie N.; Schultz, Peter H.; Horowitz, Seth S.
2018-05-01
A new class of wind streaks on Mars uniquely associated with impact craters is most clearly detected in nighttime thermal infrared imaging. Thermally bright streaks radiate from some well-preserved impact craters and are related to the impact process. Using laboratory experiments performed at the NASA Ames Vertical Gun Range, we test the hypothesis that these streaks are formed from either the winds within an air-blast or winds set up by expanding impact vapor interacting with the atmosphere. The experiments use a variety of tracers and instruments to document three interrelated processes occurring in the impact of a Pyrex projectile into an easily vaporized powdered dolomite target: (1) a surface roughening spreading outward from the impact point, (2) an expanding vapor plume, and (3) outward winds made visible by dust trails from vertically placed, dusty pipe cleaners. The clear connection between the surface roughening, vapor expansion, and outward winds implicate an expanding vapor interacting with the atmosphere as the controlling process.
Impact response of composite materials
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Srinivasan, K.
1991-01-01
Composite materials composed of carbon fibers and resin matrices offer great promise in reducing the weight of aerospace structures. However they remain extremely vulnerable to out of plane impact loads, which lead to severe losses in strength and stiffness. The results of an experimental program, undertaken to investigate the low velocity impact damage tolerance of composite materials is presented. The objectives were to identify key neat resin/composite properties that lead to enhancement of composite impact damage tolerance and to find a small scale test that predicts compression after impact properties of panels. Five materials were selected for evaluation. These systems represented different classes of material behavior such as brittle epoxy, modified epoxies, and amorphous and semicrystalling thermoplastics. The influence of fiber properties on the impact performance was also studied in one material, i.e., in polyether ether ketone (PEEK). Several 24 and 48 ply quasi-isotropic and 24 ply orthotropic laminates were examined using an instrumented drop weight impactor. Correlations with post impact compression behavior were made.
Newman, Julie B; Reesman, Jennifer H; Vaughan, Christopher G; Gioia, Gerard A
2013-01-01
Deficit in the speed of cognitive processing is a commonly identified neuropsychological change in children recovering from a mild TBI. However, there are few validated child assessment instruments that allow for serial assessment over the course of recovery in this population. Pediatric ImPACT is a novel measure that purports to assess cognitive speed, learning, and efficiency in this population. The current study sought to validate the use of this new measure by comparing it to traditional paper and pencil measures of processing speed. One hundred and sixty-four children (71% male) age 5-12 with mild TBI evaluated in an outpatient concussion clinic were administered Pediatric ImPACT and other neuropsychological test measures as part of a flexible test battery. Performance on the Response Speed Composite of Pediatric ImPACT was more strongly associated with other measures of cognitive processing speed, than with measures of immediate/working memory and learning/memory in this sample of injured children. There is preliminary support for convergent and discriminant validity of Pediatric ImPACT as a measure for use in post-concussion evaluations of processing speed in children.
DebriSat Fragment Characterization System and Processing Status
NASA Technical Reports Server (NTRS)
Rivero, M.; Shiotani, B.; M. Carrasquilla; Fitz-Coy, N.; Liou, J. C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.
2016-01-01
The DebriSat project is a continuing effort sponsored by NASA and DoD to update existing break-up models using data obtained from hypervelocity impact tests performed to simulate on-orbit collisions. After the impact tests, a team at the University of Florida has been working to characterize the fragments in terms of their mass, size, shape, color and material content. The focus of the post-impact effort has been the collection of 2 mm and larger fragments resulting from the hypervelocity impact test. To date, in excess of 125K fragments have been recovered which is approximately 40K more than the 85K fragments predicted by the existing models. While the fragment collection activities continue, there has been a transition to the characterization of the recovered fragments. Since the start of the characterization effort, the focus has been on the use of automation to (i) expedite the fragment characterization process and (ii) minimize the effects of human subjectivity on the results; e.g., automated data entry processes were developed and implemented to minimize errors during transcription of the measurement data. At all steps of the process, however, there is human oversight to ensure the integrity of the data. Additionally, repeatability and reproducibility tests have been developed and implemented to ensure that the instrumentations used in the characterization process are accurate and properly calibrated.
Kang, Yun-Seok; Bolte, John H; Moorhouse, Kevin; Donnelly, Bruce; Herriott, Rodney; Mallory, Ann
2012-10-01
The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies. Instrumentation used to measure biomechanical responses of the PMHS included both accelerometers and angular rate sensors (ARS). A total of fourteen sled tests using eight PMHS (males 175.8 ± 6.2 cm of stature and 78.4 ± 7.2 kg of weight) provided data sets of seven PMHS for both test conditions. The biomechanical responses are described at both speeds, and cervical spine injuries are documented. Biomechanical targets are also created for internal and external biofidelity evaluation of rear impact anthropomorphic test devices (ATDs).
Physical basis of tap test as a quantitative imaging tool for composite structures on aircraft
NASA Astrophysics Data System (ADS)
Hsu, David K.; Barnard, Daniel J.; Peters, John J.; Dayal, Vinay
2000-05-01
Tap test is a simple but effective way for finding flaws in composite and honeycomb sandwich structures; it has been practiced in aircraft inspection for decades. The mechanics of tap test was extensively researched by P. Cawley et al., and several versions of instrumented tap test have emerged in recent years. This paper describes a quantitative study of the impact duration as a function of the mass, radius, velocity, and material property of the impactor. The impact response is compared to the predictions of Hertzian-type contact theory and a simple spring model. The electronically measured impact duration, τ, is used for generating images of the tapped region. Using the spring model, the images are converted into images of a spring constant, k, which is a measure of the local contact stiffness. The images of k, largely independent of tapper mass and impact velocity, reveal the size, shape and severity (cf. Percent stiffness reduction) of defects and damages, as well as the presence of substructures and the associated stiffness increase. The studies are carried out on a variety of real aircraft components and the results serve to guide the development of a fieldable tap test imaging system for aircraft inspection.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.
Field Tests of Optical Instruments
1947-03-15
s > S3KS55Ü j.6),&;i.r..fc..’.w.~— * s1 Field Tests of Optical Instruments ^. (Not known) (Same) Bureau of Ordnance. Washington, D..D...a large-scale field test of optical instruments are described. The tests were instituted to check the correctness of theoretical considerations and...of laboratory tests -which have been v.sed in the selection and design of such instruments. Field con- ditions approximated as far as possible those
Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates
NASA Astrophysics Data System (ADS)
Liu, Yanxiong; Liaw, Benjamin
2010-02-01
Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.
Geodesy and the UNAVCO Consortium: Three Decades of Innovations
NASA Astrophysics Data System (ADS)
Rowan, L. R.; Miller, M. M.; Meertens, C. M.; Mattioli, G. S.
2015-12-01
UNAVCO, a non-profit, university consortium that supports geoscience research using geodesy, began with the ingenious recognition that the nascent Global Positioning System constellation (GPS) could be used to investigate earth processes. The consortium purchased one of the first commercially available GPS receivers, Texas Instrument's TI-4100 NAVSTAR Navigator, in 1984 to measure plate deformation. This early work was highlighted in a technology magazine, GPSWorld, in 1990. Over a 30-year period, UNAVCO and the community have helped advance instrument design for mobility, flexibility, efficiency and interoperability, so research could proceed with higher precision and under ever challenging conditions. Other innovations have been made in data collection, processing, analysis, management and archiving. These innovations in tools, methods and data have had broader impacts as they have found greater utility beyond research for timing, precise positioning, safety, communication, navigation, surveying, engineering and recreation. Innovations in research have expanded the utility of geodetic tools beyond the solid earth science through creative analysis of the data and the methods. For example, GPS sounding of the atmosphere is now used for atmospheric and space sciences. GPS reflectrometry, another critical advance, supports soil science, snow science and ecological research. Some research advances have had broader impacts for society by driving innovations in hazards risk reduction, hazards response, resource management, land use planning, surveying, engineering and other uses. Furthermore, the geodetic data is vital for the design of space missions, testing and advancing communications, and testing and dealing with interference and GPS jamming. We will discuss three decades (and counting) of advances by the National Science Foundation's premiere geodetic facility, consortium and some of the many geoscience principal investigators that have driven innovations in research, instrumentation, data management, cyberinfrastructure and other applications.
Siesmaa, Emma J; Blitvich, Jennifer D; White, Peta E; Finch, Caroline F
2011-01-01
Despite the health benefits associated with children's sport participation, the occurrence of injury in this context is common. The extent to which sport injuries impact children's ongoing involvement in sport is largely unknown. Surveys have been shown to be useful for collecting children's injury and sport participation data; however, there are currently no published instruments which investigate the impact of injury on children's sport participation. This study describes the processes undertaken to assess the validity of two survey instruments for collecting self-reported information about child cricket and netball related participation, injury history and injury risk perceptions, as well as the reliability of the cricket-specific version. Face and content validity were assessed through expert feedback from primary and secondary level teachers and from representatives of peak sporting bodies for cricket and netball. Test-retest reliability was measured using a sample of 59 child cricketers who completed the survey on two occasions, 3-4 weeks apart. Based on expert feedback relating to face and content validity, modification and/or deletion of some survey items was undertaken. Survey items with low test-retest reliability (κ≤0.40) were modified or deleted, items with moderate reliability (κ=0.41-0.60) were modified slightly and items with higher reliability (κ≥0.61) were retained, with some undergoing minor modifications. This is the first survey of its kind which has been successfully administered to cricketers aged 10-16 years to collect information about injury risk perceptions and intentions for continued sport participation. Implications for its generalisation to other child sport participants are discussed. Copyright © 2010 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Beckwith, Jonathan G; Chu, Jeffrey J; Greenwald, Richard M
2007-08-01
Although the epidemiology and mechanics of concussion in sports have been investigated for many years, the biomechanical factors that contribute to mild traumatic brain injury remain unclear because of the difficulties in measuring impact events in the field. The purpose of this study was to validate an instrumented boxing headgear (IBH) that can be used to measure impact severity and location during play. The instrumented boxing headgear data were processed to determine linear and rotational acceleration at the head center of gravity, impact location, and impact severity metrics, such as the Head Injury Criterion (HIC) and Gadd Severity Index (GSI). The instrumented boxing headgear was fitted to a Hybrid III (HIII) head form and impacted with a weighted pendulum to characterize accuracy and repeatability. Fifty-six impacts over 3 speeds and 5 locations were used to simulate blows most commonly observed in boxing. A high correlation between the HIII and instrumented boxing headgear was established for peak linear and rotational acceleration (r2= 0.91), HIC (r2 = 0.88), and GSI (r2 = 0.89). Mean location error was 9.7 +/- 5.2 masculine. Based on this study, the IBH is a valid system for measuring head acceleration and impact location that can be integrated into training and competition.
Results of qualification tests on water-level sensing instruments, 1986
Holland, Randolph R.; Rapp, Donald H.
1988-01-01
This report presents to users of hydrological instrumentation and U.S. Geological Survey procurement personnel a list of instruments that have met or exceeded the Survey 's minimum performance requirements for water level sensing instruments. The Hydrologic Instrumentation Facility at the National Space Technology Laboratories, Mississippi conducted qualification tests on four instrument systems. The data collected are summarized, brief system descriptions are given, qualification testing purposes and procedures are summarized, and results are given for each of the three systems that met performance requirements. The fourth system was returned to the manufacturer , because in preliminary testing the instrument system did not perform properly according to the manufacturer 's operating procedures. As a result of the qualification tests, the three systems that met performance requirements have been included on the Survey 's Qualified Products List. (USGS)
Dobrev, Hristo P; Atanasov, Nikolay G; Dimitrova, Donka D
2017-09-01
Psoriasis vulgaris (PsV) is a chronic skin condition that has a major impact on health-related quality of life (HRQOL). To determine the individual burden of PsV on HRQOL using willingness to pay (WTP) instrument. Fifty-one consecutive PsV patients were asked to evaluate their overall health and psoriasis affected health by visual analogue scale (VAS), and interviewed on 8 domains (physical, emotional, sleep, work, social, self-care, intimacy, and concentration) of HRQOL and WTP for a hypothetical cure in each domain. Two additional questions proposing 6 alternatives for therapy were also asked. The analysis is performed with descriptive and frequency statistics, Mann-Whitney and Kruskal-Wallis tests. The domains ranked highly were: physical comfort (90%), social comfort (77%), emotional health (75%) and work (53%). The following tendencies concerning WTP for top four impacted domains were found: the median WTP were the highest in the top impacted domains; the younger patients were willing to pay more than the older ones; the highest median WTP amounts appear in the lowest income group; the highest median WTP is associated with smaller psoriasis affected health VAS scores. The largest proportion and number of patients (37.3%, n=19) stated preferences for the systemic therapy. The second preferred choice was the thalassotherapy (29.4%, n=15). The utility and reliability of the instrument based on the assessment of WTP stated preferences for 8 domains of HRQOL for evaluation the individual burden of psoriasis were strongly supported.
Exploration Flight Test 1 Afterbody Aerothermal Environment Reconstruction
NASA Technical Reports Server (NTRS)
Hyatt, Andrew J.; Oliver, Brandon; Amar, Adam; Lessard, Victor
2016-01-01
The Exploration Flight Test 1 vehicle included roughly 100 near surface thermocouples on the after body of the vehicle. The temperature traces at each of these instruments have been used to perform inverse environment reconstruction to determine the aerothermal environment experienced during re-entry of the vehicle. This paper provides an overview of the reconstructed environments and identifies critical aspects of the environment. These critical aspects include transition and reaction control system jet influence. A blind test of the process and reconstruction tool was also performed to build confidence in the reconstructed environments. Finally, an uncertainty quantification analysis was also performed to identify the impact of each of the uncertainties on the reconstructed environments.
LBL's Pollution Instrumentation Comparability Program.
ERIC Educational Resources Information Center
McLaughlin, R. D.; And Others
1979-01-01
Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)
Want, Andrew; Crawford, Rebecca; Kakkonen, Jenni; Kiddie, Greg; Miller, Susan; Harris, Robert E; Porter, Joanne S
2017-08-01
As part of ongoing commitments to produce electricity from renewable energy sources in Scotland, Orkney waters have been targeted for potential large-scale deployment of wave and tidal energy converting devices. Orkney has a well-developed infrastructure supporting the marine energy industry; recently enhanced by the construction of additional piers. A major concern to marine industries is biofouling on submerged structures, including energy converters and measurement instrumentation. In this study, the marine energy infrastructure and instrumentation were surveyed to characterise the biofouling. Fouling communities varied between deployment habitats; key species were identified allowing recommendations for scheduling device maintenance and preventing spread of invasive organisms. A method to measure the impact of biofouling on hydrodynamic response is described and applied to data from a wave-monitoring buoy deployed at a test site in Orkney. The results are discussed in relation to the accuracy of the measurement resources for power generation. Further applications are suggested for future testing in other scenarios, including tidal energy.
Brumbelow, Matthew L; Mueller, Becky C; Arbelaez, Raul A
2015-01-01
The Insurance Institute for Highway Safety (IIHS) introduced its side impact consumer information test program in 2003. Since that time, side airbags and structural improvements have been implemented across the fleet and the proportion of good ratings has increased to 93% of 2012-2014 model year vehicles. Research has shown that drivers of good-rated vehicles are 70% less likely to die in a left-side crash than drivers of poor-rated vehicles. Despite these improvements, side impact fatalities accounted for about one quarter of passenger vehicle occupant fatalities in 2012. This study is a detailed analysis of real-world cases with serious injury resulting from side crashes of vehicles with good ratings in the IIHS side impact test. NASS-CDS and Crash Injury Research and Engineering Network (CIREN) were queried for occupants of good-rated vehicles who sustained an Abbreviated Injury Scale (AIS) ≥ 3 injury in a side-impact crash. The resulting 110 cases were categorized by impact configuration and other factors that contributed to injury. Patterns of impact configuration, restraint performance, and occupant injury were identified and discussed in the context of potential upgrades to the current IIHS side impact test. Three quarters of the injured occupants were involved in near-side impacts. For these occupants, the most common factors contributing to injury were crash severities greater than the IIHS test, inadequate side-airbag performance, and lack of side-airbag coverage for the injured body region. In the cases where an airbag was present but did not prevent the injury, occupants were often exposed to loading centered farther forward on the vehicle than in the IIHS test. Around 40% of the far-side occupants were injured from contact with the struck-side interior structure, and almost all of these cases were more severe than the IIHS test. The remaining far-side occupants were mostly elderly and sustained injury from the center console, instrument panel, or seat belt. In addition, many far-side occupants were likely out of position due to events preceding the side impact and/or being unbelted. Individual changes to the IIHS side impact test have the potential to reduce the number of serious injuries in real-world crashes. These include impacting the vehicle farther forward (relevant to 28% of all cases studied), greater test severity (17%), the inclusion of far-side occupants (9%), and more restrictive injury criteria (9%). Combinations of these changes could be more effective.
Cross-cultural equivalence in translations of the oral health impact profile.
MacEntee, Michael I; Brondani, Mario
2016-04-01
The Oral Health Impact Profile (OHIP) has been translated for comparisons across cultural boundaries. This report on a systematic search of literature published between 1994 and 2014 aims to identify an acceptable method of translating psychometric instruments for cross-cultural equivalence, and how they were used to translate the OHIP. An electronic search used the keywords 'cultural adaptation', 'validation', 'Oral Health Impact Profile' and 'OHIP' in MEDLINE and EMBASE databases supplemented by reference links and grey literature. It included papers on methods of cross-cultural translation and translations of the OHIP for dentulous adults and adolescents, and excluded papers without translational details or limited to specific disorders. The search identified eight steps to cross-cultural equivalence, and 36 (plus three supplemental) translations of the OHIP. The steps involve assessment of (i) forward/backward translation by committee, (ii) constructs, (iii) item interpretations, (iv) interval scales, (v) convergent validity, (vi) discriminant validity, (vii) responsiveness to clinical change and (viii) pilot tests. Most (>60%) of the translations involved forward/backward translation by committee, item interpretations, interval scales, convergence, discrimination and pilot tests, but fewer assessed the underlying theory (47%) or responsiveness to clinical change (28%). An acceptable method for translating quality of life-related psychometric instruments for cross-cultural equivalence has eight procedural steps, and most of the 36 OHIP translations involved at least five of the steps. Only translations to Saudi Arabian Arabic, Chinese Mandarin, German and Japanese used all eight steps to claim cultural equivalence with the original OHIP. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pahel, Bhavna Talekar; Rozier, R Gary; Slade, Gary D
2007-01-01
Background Dental disease and treatment experience can negatively affect the oral health related quality of life (OHRQL) of preschool aged children and their caregivers. Currently no valid and reliable instrument is available to measure these negative influences in very young children. The objective of this research was to develop the Early Childhood Oral Health Impact Scale (ECOHIS) to measure the OHRQL of preschool children and their families. Methods Twenty-two health professionals evaluated a pool of 45 items that assess the impact of oral health problems on 6-14-year-old children and their families. The health professionals identified 36 items as relevant to preschool children. Thirty parents rated the importance of these 36 items to preschool children; 13 (9 child and 4 family) items were considered important. The 13-item ECOHIS was administered to 295 parents of 5-year-old children to assess construct validity and internal consistency reliability (using Cronbach's alpha). Test-retest reliability was evaluated among another sample of parents (N = 46) using the intraclass correlation coefficient (ICC). Results ECOHIS scores on the child and parent sections indicating worse quality of life were significantly associated with fair or poor parental ratings of their child's general and oral health, and the presence of dental disease in the child. Cronbach's alphas for the child and family sections were 0.91 and 0.95 respectively, and the ICC for test-retest reliability was 0.84. Conclusion The ECOHIS performed well in assessing OHRQL among children and their families. Studies in other populations are needed to further establish the instrument's technical properties. PMID:17263880
NASA Technical Reports Server (NTRS)
Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan
2004-01-01
Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.
Ringwald, Johanna; Wochnowski, Christina; Bosse, Kristin; Giel, Katrin Elisabeth; Schäffeler, Norbert; Zipfel, Stephan; Teufel, Martin
2016-10-01
Understanding the intermediate- and long-term psychological consequences of genetic testing for cancer patients has led to encouraging research, but a clear consensus of the psychosocial impact and clinical routine for cancer-affected BRCA1 and BRCA2 mutation carriers is still missing. We performed a systematic review of intermediate- and long-term studies investigating the psychological impact like psychological distress, anxiety, and depression in cancer-affected BRCA mutation carriers compared to unaffected mutation carriers. This review included the screening of 1243 studies. Eight intermediate- and long-term studies focusing on distress, anxiety, and depression symptoms among cancer-affected mutation carriers at least six months after the disclosure of genetic testing results were included. Studies reported a great variety of designs, methods, and patient outcomes. We found evidence indicating that cancer-affected mutation carriers experienced a negative effect in relation to psychological well-being in terms of an increase in symptoms of distress, anxiety, and depression in the first months after test disclosure. In the intermediate- and long-term, no significant clinical relevant symptoms occurred. However, none of the included studies used specific measurements, which can clearly identify psychological burdens of cancer-affected mutation carriers. We concluded that current well-implemented distress screening instruments are not sufficient for precisely identifying the psychological burden of genetic testing. Therefore, future studies should implement coping strategies, specific personality structures, the impact of genetic testing, supportive care needs and disease management behaviour to clearly screen for the possible intermediate- and long-term psychological impact of a positive test disclosure.
Swart, Jennifer C; Froböse, Monja I; Cook, Jennifer L; Geurts, Dirk EM; Frank, Michael J; Cools, Roshan; den Ouden, Hanneke EM
2017-01-01
Catecholamines modulate the impact of motivational cues on action. Such motivational biases have been proposed to reflect cue-based, ‘Pavlovian’ effects. Here, we assess whether motivational biases may also arise from asymmetrical instrumental learning of active and passive responses following reward and punishment outcomes. We present a novel paradigm, allowing us to disentangle the impact of reward and punishment on instrumental learning from Pavlovian response biasing. Computational analyses showed that motivational biases reflect both Pavlovian and instrumental effects: reward and punishment cues promoted generalized (in)action in a Pavlovian manner, whereas outcomes enhanced instrumental (un)learning of chosen actions. These cue- and outcome-based biases were altered independently by the catecholamine enhancer melthylphenidate. Methylphenidate’s effect varied across individuals with a putative proxy of baseline dopamine synthesis capacity, working memory span. Our study uncovers two distinct mechanisms by which motivation impacts behaviour, and helps refine current models of catecholaminergic modulation of motivated action. DOI: http://dx.doi.org/10.7554/eLife.22169.001 PMID:28504638
A Computerized Asthma Outcomes Measure Is Feasible for Disease Management.
Turner-Bowker, Diane M; Saris-Baglama, Renee N; Anatchkova, Milena; Mosen, David M
2010-04-01
OBJECTIVE: To develop and test an online assessment referred to as the ASTHMA-CAT (computerized adaptive testing), a patient-based asthma impact, control, and generic health-related quality of life (HRQOL) measure. STUDY DESIGN: Cross-sectional pilot study of the ASTHMA-CAT's administrative feasibility in a disease management population. METHODS: The ASTHMA-CAT included a dynamic or static Asthma Impact Survey (AIS), Asthma Control Test, and SF-8 Health Survey. A sample of clinician-diagnosed adult asthmatic patients (N = 114) completed the ASTHMA-CAT. Results were used to evaluate administrative feasibility of the instrument and psychometric performance of the dynamic AIS relative to the static AIS. A prototype aggregate (group-level) report was developed and reviewed by care providers. RESULTS: Online administration of the ASTHMA-CAT was feasible for patients in disease management. The dynamic AIS functioned well compared with the static AIS in preliminary studies evaluating response burden, precision, and validity. Providers found reports to be relevant, useful, and applicable for care management. CONCLUSION: The ASTHMA-CAT may facilitate asthma care management.
Rosenberg, David; Schön, Ulla-Karin; Nyholm, Maria; Grim, Katarina; Svedberg, Petra
2017-04-01
Despite the potential impact of shared decision making on users satisfaction with care and quality in health care decisions, there is a lack of knowledge and skills regarding how to work with shared decision making among health care providers. The aim of this study was to evaluate the psychometric properties of three instruments that measure varied dimensions of shared decision making, based on self-reports by clients, in a Swedish community mental health context. The study sample consisted of 121 clients with experience of community mental health care, and involved in a wide range of decisions regarding both social support and treatment. The questionnaires were examined for face and content validity, internal consistency, test-retest reliability and construct validity. The instruments displayed good face and content validity, satisfactory internal consistency and a moderate to good level of stability in test-retest reliability with fair to moderate construct correlations, in a sample of clients with serious mental illness and experience of community mental health services in Sweden. The questionnaires are considered to be relevant to the decision making process, user-friendly and appropriate in a Swedish community mental health care context. They functioned well in settings where non-medical decisions, regarding social and support services, are the primary focus. The use of instruments that measure various dimensions of the self-reported experience of clients, can be a key factor in developing knowledge of how best to implement shared decision making in mental health services.
Vallefuoco, L; Sorrentino, R; Spalletti Cernia, D; Colucci, G; Portella, G
2012-12-01
The cobas p 630, a fully automated pre-analytical instrument for primary tube handling recently introduced to complete the Cobas(®) TaqMan systems portfolio, was evaluated in conjunction with: the COBAS(®) AmpliPrep/COBAS(®) TaqMan HBV Test, v2.0, COBAS(®) AmpliPrep/COBAS(®) TaqMan HCV Test, v1.0 and COBAS(®) AmpliPrep/COBAS(®) TaqMan HIV Test, v2.0. The instrument performance in transferring samples from primary to secondary tubes, its impact in improving COBAS(®) AmpliPrep/COBAS(®) TaqMan workflow and hands-on reduction and the risk of possible cross-contamination were assessed. Samples from 42 HBsAg positive, 42 HCV and 42 HIV antibody (Ab) positive patients as well as 21 healthy blood donors were processed with or without automated primary tubes. HIV, HCV and HBsAg positive samples showed a correlation index of 0.999, 0.987 and of 0.994, respectively. To assess for cross-contamination, high titer HBV DNA positive samples, HCV RNA and HIV RNA positive samples were distributed in the cobas p 630 in alternate tube positions, adjacent to negative control samples within the same rack. None of the healthy donor samples showed any reactivity. Based on these results, the cobas p 630 can improve workflow and sample tracing in laboratories performing molecular tests, and reduce turnaround time, errors, and risks. Copyright © 2012 Elsevier B.V. All rights reserved.
Benjamin, Sara E; Neelon, Brian; Ball, Sarah C; Bangdiwala, Shrikant I; Ammerman, Alice S; Ward, Dianne S
2007-01-01
Background Few assessment instruments have examined the nutrition and physical activity environments in child care, and none are self-administered. Given the emerging focus on child care settings as a target for intervention, a valid and reliable measure of the nutrition and physical activity environment is needed. Methods To measure inter-rater reliability, 59 child care center directors and 109 staff completed the self-assessment concurrently, but independently. Three weeks later, a repeat self-assessment was completed by a sub-sample of 38 directors to assess test-retest reliability. To assess criterion validity, a researcher-administered environmental assessment was conducted at 69 centers and was compared to a self-assessment completed by the director. A weighted kappa test statistic and percent agreement were calculated to assess agreement for each question on the self-assessment. Results For inter-rater reliability, kappa statistics ranged from 0.20 to 1.00 across all questions. Test-retest reliability of the self-assessment yielded kappa statistics that ranged from 0.07 to 1.00. The inter-quartile kappa statistic ranges for inter-rater and test-retest reliability were 0.45 to 0.63 and 0.27 to 0.45, respectively. When percent agreement was calculated, questions ranged from 52.6% to 100% for inter-rater reliability and 34.3% to 100% for test-retest reliability. Kappa statistics for validity ranged from -0.01 to 0.79, with an inter-quartile range of 0.08 to 0.34. Percent agreement for validity ranged from 12.9% to 93.7%. Conclusion This study provides estimates of criterion validity, inter-rater reliability and test-retest reliability for an environmental nutrition and physical activity self-assessment instrument for child care. Results indicate that the self-assessment is a stable and reasonably accurate instrument for use with child care interventions. We therefore recommend the Nutrition and Physical Activity Self-Assessment for Child Care (NAP SACC) instrument to researchers and practitioners interested in conducting healthy weight intervention in child care. However, a more robust, less subjective measure would be more appropriate for researchers seeking an outcome measure to assess intervention impact. PMID:17615078
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; McPeters, Richard D.; Russell, James M.; Bevilacqua, Richard; Labow, Gordon J.; Fleming, Eric L.; Einaudi, Franco (Technical Monitor)
2000-01-01
A large solar flare with an associated coronal mass ejection occurred in mid-July and caused a very large solar proton event at the earth in the time period July 14-16, 2000. So far this is the largest solar storm of solar cycle 23. The solar proton fluxes were measured by instruments aboard the GOES-10 satellite and used in our proton energy deposition model to help quantify the energy input to the middle atmosphere during this large solar event. Using this computed energy deposition in the GSFC 2D atmospheric model resulted in a prediction of $>$ 20\\% increases in HO$-(x)$ (H, OH, HO$-(2)$) and $>$ 100\\% increases in NO$-(x)$ (N, NO, NO$-(2)$) constituents in the mesosphere and upper stratosphere at polar latitudes ($>$ 60 degrees geomagnetic). Both the HO$-(x)$ and NO$_fx)$ increases impacted ozone. Large atmospheric impacts have been measured with the NOAA 14 SBUV/2 instrument (0$_(3)$), the UARS HALOE instrument (NO, NO$-(2)$, 0$-(3)$), and the POAM III instrument (0$_{3}$, NO$-(2)$). Preliminary analysis indicates that measured (SBUV/2) and modelled 0$_{3}$ decreases from this solar event are generally in agreement in the Northern Hemisphere. Short-term ozone changes (during the event) indicate $\\sim$ 15% reduction at 2 hPa ($\\sim$ 45 km) up to $\\sim$ 40% reduction at 0.5 hPa ($\\sim$ 55 km). A longer-term ozone depletion of $\\sim$ 5% is indicated between 4 and 2 hPa ($\\sim$ 40-45 km). The middle atmospheric changes caused by this solar event were very large and occurred fairly quickly ($\\sim$ 1-2 days). Such a significant natural perturbation provides a good test of our understanding of the middle atmosphere. The measured and modelled impacts of this solar event will be compared and discussed in this paper.
Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muna, Alice Baca; LaFleur, Chris Bensdotter; Brooks, Dusty Marie
This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of themore » tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.« less
NASA Astrophysics Data System (ADS)
Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.
2016-09-01
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.
Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.
2016-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought. PMID:27624437
NASA Astrophysics Data System (ADS)
Ohuchi, Yoshito; Nakazono, Yoichi
2014-06-01
We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.
NASA Astrophysics Data System (ADS)
Kiekebusch, Mario J.; Di Lieto, Nicola; Sandrock, Stefan; Popovic, Dan; Chiozzi, Gianluca
2014-07-01
ESO is in the process of implementing a new development platform, based on PLCs, for upcoming VLT control systems (new instruments and refurbishing of existing systems to manage obsolescence issues). In this context, we have evaluated the integration and reuse of existing C++ libraries and Simulink models into the real-time environment of BECKHOFF Embedded PCs using the capabilities of the latest version of TwinCAT software and MathWorks Embedded Coder. While doing so the aim was to minimize the impact of the new platform by adopting fully tested solutions implemented in C++. This allows us to reuse the in house expertise, as well as extending the normal capabilities of the traditional PLC programming environments. We present the progress of this work and its application in two concrete cases: 1) field rotation compensation for instrument tracking devices like derotators, 2) the ESO standard axis controller (ESTAC), a generic model-based controller implemented in Simulink and used for the control of telescope main axes.
Boxing headguard performance in punch machine tests.
McIntosh, Andrew S; Patton, Declan A
2015-09-01
The paper presents a novel laboratory method for assessing boxing headguard impact performance. The method is applied to examine the effects of headguards on head impact dynamics and injury risk. A linear impactor was developed, and a range of impacts was delivered to an instrumented Hybrid III head and neck system both with and without an AIBA (Association Internationale de Boxe Amateur)-approved headguard. Impacts at selected speeds between 4.1 and 8.3 m/s were undertaken. The impactor mass was approximately 4 kg and an interface comprising a semirigid 'fist' with a glove was used. The peak contact forces were in the range 1.9-5.9 kN. Differences in head impact responses between the Top Ten AIBA-approved headguard and bare headform in the lateral and forehead tests were large and/or significant. In the 8.3 m/s fist-glove impacts, the mean peak resultant headform accelerations for bare headform tests was approximately 130 g compared with approximately 85 g in the forehead impacts. In the 6.85 m/s bare headform impacts, mean peak resultant angular head accelerations were in the range of 5200-5600 rad/s(2) and almost halved by the headguard. Linear and angular accelerations in 45° forehead and 60° jaw impacts were reduced by the headguard. The data support the opinion that current AIBA headguards can play an important role in reducing the risk of concussion and superficial injury in boxing competition and training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
An evaluation of the infection control potential of a UV clinical podiatry unit.
Humphreys, Paul N; Davies, Chris S; Rout, Simon
2014-02-28
Infection control is a key issue in podiatry as it is in all forms of clinical practice. Airborne contamination may be particularly important in podiatry due to the generation of particulates during treatment. Consequently, technologies that prevent contamination in podiatry settings may have a useful role. The aims of this investigation were twofold, firstly to determine the ability of a UV cabinet to protect instruments from airborne contamination and secondly to determine its ability to remove microbes from contaminated surfaces and instruments. A UV instrument cabinet was installed in a University podiatry suite. Impact samplers and standard microbiological techniques were used to determine the nature and extent of microbial airborne contamination. Sterile filters were used to determine the ability of the UV cabinet to protect exposed surfaces. Artificially contaminated instruments were used to determine the ability of the cabinet to remove microbial contamination. Airborne bacterial contamination was dominated by Gram positive cocci including Staphylococcus aureus. Airborne fungal levels were much lower than those observed for bacteria. The UV cabinet significantly reduced (p < 0.05) the observed levels of airborne contamination. When challenged with contaminated instruments the cabinet was able to reduce microbial levels by between 60% to 100% with more complex instruments e.g. clippers, remaining contaminated. Bacterial airborne contamination is a potential infection risk in podiatry settings due to the presence of S. aureus. The use of a UV instrument cabinet can reduce the risk of contamination by airborne microbes. The UV cabinet tested was unable to decontaminate instruments and as such could pose an infection risk if misused.
An evaluation of the infection control potential of a UV clinical podiatry unit
2014-01-01
Background Infection control is a key issue in podiatry as it is in all forms of clinical practice. Airborne contamination may be particularly important in podiatry due to the generation of particulates during treatment. Consequently, technologies that prevent contamination in podiatry settings may have a useful role. The aims of this investigation were twofold, firstly to determine the ability of a UV cabinet to protect instruments from airborne contamination and secondly to determine its ability to remove microbes from contaminated surfaces and instruments. Method A UV instrument cabinet was installed in a University podiatry suite. Impact samplers and standard microbiological techniques were used to determine the nature and extent of microbial airborne contamination. Sterile filters were used to determine the ability of the UV cabinet to protect exposed surfaces. Artificially contaminated instruments were used to determine the ability of the cabinet to remove microbial contamination. Results Airborne bacterial contamination was dominated by Gram positive cocci including Staphylococcus aureus. Airborne fungal levels were much lower than those observed for bacteria. The UV cabinet significantly reduced (p < 0.05) the observed levels of airborne contamination. When challenged with contaminated instruments the cabinet was able to reduce microbial levels by between 60% to 100% with more complex instruments e.g. clippers, remaining contaminated. Conclusions Bacterial airborne contamination is a potential infection risk in podiatry settings due to the presence of S. aureus. The use of a UV instrument cabinet can reduce the risk of contamination by airborne microbes. The UV cabinet tested was unable to decontaminate instruments and as such could pose an infection risk if misused. PMID:24576315
Sommer, C; Garbusow, M; Jünger, E; Pooseh, S; Bernhardt, N; Birkenstock, J; Schad, D J; Jabs, B; Glöckler, T; Huys, Q M; Heinz, A; Smolka, M N; Zimmermann, U S
2017-08-01
Alcohol-related cues acquire incentive salience through Pavlovian conditioning and then can markedly affect instrumental behavior of alcohol-dependent patients to promote relapse. However, it is unclear whether similar effects occur with alcohol-unrelated cues. We tested 116 early-abstinent alcohol-dependent patients and 91 healthy controls who completed a delay discounting task to assess choice impulsivity, and a Pavlovian-to-instrumental transfer (PIT) paradigm employing both alcohol-unrelated and alcohol-related stimuli. To modify instrumental choice behavior, we tiled the background of the computer screen either with conditioned stimuli (CS) previously generated by pairing abstract pictures with pictures indicating monetary gains or losses, or with pictures displaying alcohol or water beverages. CS paired to money gains and losses affected instrumental choices differently. This PIT effect was significantly more pronounced in patients compared to controls, and the group difference was mainly driven by highly impulsive patients. The PIT effect was particularly strong in trials in which the instrumental stimulus required inhibition of instrumental response behavior and the background CS was associated to monetary gains. Under that condition, patients performed inappropriate approach behavior, contrary to their previously formed behavioral intention. Surprisingly, the effect of alcohol and water pictures as background stimuli resembled that of aversive and appetitive CS, respectively. These findings suggest that positively valenced background CS can provoke dysfunctional instrumental approach behavior in impulsive alcohol-dependent patients. Consequently, in real life they might be easily seduced by environmental cues to engage in actions thwarting their long-term goals. Such behaviors may include, but are not limited to, approaching alcohol.
Instrument Rating Practical Test Standards for Airplane, Helicopter, Airship
DOT National Transportation Integrated Search
1994-10-01
The Instrument Rating Practical Test Standards (PTS) book has : been published by the Federal Aviation Administration (FAA) to : establish the standards for the instrument rating practical test for : airplanes, helicopters, and airships. FAA inspecto...
A comparison of two reciprocating instruments using bending stress and cyclic fatigue tests.
Scelza, Pantaleo; Harry, Davidowicz; Silva, Licinio Esmeraldo da; Barbosa, Igor Bastos; Scelza, Miriam Zaccaro
2015-01-01
The aim of this study was to comparatively evaluate the bending resistance at 45º, the static and dynamic cyclic fatigue life, and the fracture type of the WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) 25-08 and Reciproc (VDW, Munich, Germany) 25-08 instruments. A total of 60 nickel-titanium (NiTi) instruments (30 Reciproc and 30 WaveOne) from three different lots, each of which was 25 mm in length, were tested. The bending resistance was evaluated through the results of a cantilever-bending test conducted using a universal testing machine. Static and dynamic cyclic fatigue testing was conducted using a custom-made device. For the static and dynamic tests, a cast Ni-Cr-Mo-Ti alloy metal block with an artificial canal measuring 1.77 mm in diameter and 20.00 mm in total length was used. A scanning electron microscope was used to determine the type of fracture. Statistical analyses were performed on the results. The WaveOne instrument was less flexible than the Reciproc (p < 0.05). The Reciproc instrument showed better resistance in the static and dynamic cyclic fatigue tests (p < 0.05). The transverse cross-section and geometry of the instruments were important factors in their resistance to bending and cyclic fracture. Both of the instruments showed ductile-type fracture characteristics. It can be concluded that the Reciproc 25-08 instrument was more resistant to static and dynamic cyclic fatigue than the WaveOne 25-08 instrument, while the WaveOne 25-08 instrument was less flexible. Bending and resistance to cyclic fracture were influenced by the instruments' geometries and transverse cross-sections. Both of the instruments showed ductile-type fracture characteristics.
Comparing Free-Free and Shaker Table Model Correlation Methods Using Jim Beam
NASA Technical Reports Server (NTRS)
Ristow, James; Smith, Kenneth Wayne, Jr.; Johnson, Nathaniel; Kinney, Jackson
2018-01-01
Finite element model correlation as part of a spacecraft program has always been a challenge. For any NASA mission, the coupled system response of the spacecraft and launch vehicle can be determined analytically through a Coupled Loads Analysis (CLA), as it is not possible to test the spacecraft and launch vehicle coupled system before launch. The value of the CLA is highly dependent on the accuracy of the frequencies and mode shapes extracted from the spacecraft model. NASA standards require the spacecraft model used in the final Verification Loads Cycle to be correlated by either a modal test or by comparison of the model with Frequency Response Functions (FRFs) obtained during the environmental qualification test. Due to budgetary and time constraints, most programs opt to correlate the spacecraft dynamic model during the environmental qualification test, conducted on a large shaker table. For any model correlation effort, the key has always been finding a proper definition of the boundary conditions. This paper is a correlation case study to investigate the difference in responses of a simple structure using a free-free boundary, a fixed boundary on the shaker table, and a base-drive vibration test, all using identical instrumentation. The NAVCON Jim Beam test structure, featured in the IMAC round robin modal test of 2009, was selected as a simple, well recognized and well characterized structure to conduct this investigation. First, a free-free impact modal test of the Jim Beam was done as an experimental control. Second, the Jim Beam was mounted to a large 20,000 lbf shaker, and an impact modal test in this fixed configuration was conducted. Lastly, a vibration test of the Jim Beam was conducted on the shaker table. The free-free impact test, the fixed impact test, and the base-drive test were used to assess the effect of the shaker modes, evaluate the validity of fixed-base modeling assumptions, and compare final model correlation results between these boundary conditions.
Compression After Impact on Honeycomb Core Sandwich Panels With Thin Facesheets. Part 1; Experiments
NASA Technical Reports Server (NTRS)
McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.
2012-01-01
A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part one, the subject of the current paper, is focused on the experimental testing. Of interest are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of specimens, which were identical with the exception of the density of the honeycomb core, were tested. Static indentation and low velocity impact using a drop tower are used to study damage formation in these materials. A series of highly instrumented CAI tests was then completed. New techniques used to observe CAI response and failure include high speed video photography, as well as digital image correlation (DIC) for full-field deformation measurement. Two CAI failure modes, indentation propagation, and crack propagation, were observed. From the results, it can be concluded that the CAI failure mode of these panels depends solely on the honeycomb core density.
NASA Astrophysics Data System (ADS)
Kohley, Ralf; Barbier, Rémi; Kubik, Bogna; Ferriol, Sylvain; Clemens, Jean-Claude; Ealet, Anne; Secroun, Aurélia; Conversi, Luca; Strada, Paolo
2016-08-01
Euclid is an ESA mission to map the geometry of the dark Universe with a planned launch date in 2020. Euclid is optimised for two primary cosmological probes, weak gravitational lensing and galaxy clustering. They are implemented through two science instruments on-board Euclid, a visible imager (VIS) and a near-infrared spectro-photometer (NISP), which are being developed and built by the Euclid Consortium instrument development teams. The NISP instrument contains a large focal plane assembly of 16 Teledyne HgCdTe H2RG detectors with 2.3μm cut-off wavelength and SIDECAR readout electronics. The performance of the detector systems is critical to the science return of the mission and extended on-ground tests are being performed for characterisation and calibration purposes. Special attention is given also to effects even on the scale of individual pixels, which are difficult to model and calibrate, and to identify any possible impact on science performance. This paper discusses a variety of undesired pixel behaviour including the known effect of random telegraph signal (RTS) noise based on initial on-ground test results from demonstrator model detector systems. Some stability aspects of the RTS pixel populations are addressed as well.
James Webb Space Telescope: Frequently Asked Questions for Scientists and Engineers
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.
2008-01-01
JWST will be tested incrementally during its construction, starting with individual mirrors and instruments (including cameras and spectrometers) and building up to the full observatory. JWST's mirrors and the telescope structure are first each tested individually, including optical testing of the mirrors and alignment testing of the structure inside a cold thermal-vacuum chamber. The mirrors are then installed on the telescope structure in a clean room at Goddard Space Flight Center (GSFC). In parallel to the telescope assembly and alignment, the instruments are being built and tested, again first individually, and then as part of an integrated instrument assembly. The integrated instrument assembly will be tested in a thermal-vacuum chamber at GSFC using an optical simulator of the telescope. This testing makes sure the instruments are properly aligned relative to each other and also provides an independent check of the individual tests. After both the telescope and the integrated instrument module are successfully assembled, the integrated instrument module will be installed onto the telescope, and the combined system will be sent to Johnson Space Flight Center (JSC) where it will be optically tested in one of the JSC chambers. The process includes testing the 18 primary mirror segments acting as a single primary mirror, and testing the end-to-end system. The final system test will assure that the combined telescope and instruments are focused and aligned properly, and that the alignment, once in space, will be within the range of the actively controlled optics. In general, the individual optical tests of instruments and mirrors are the most accurate. The final system tests provide a cost-effective check that no major problem has occurred during assembly. In addition, independent optical checks of earlier tests will be made as the full system is assembled, providing confidence that there are no major problems.
Economic impact of laparoscopic instrumentation: a company perspective.
Swem, T; Fazzalari, R
1995-01-01
This report represents findings concerning the economic impact of laparoscopic surgery. Specifically, the study addresses hospital costs, and not the hospital charges often given attention by studies in the literature. Hospital expenditures for the equipment and instrumentation required for laparoscopic surgery are important cost factors in laparoscopic surgery. Data for determining hospital costs was obtained from nine hospitals throughout the United States. At each hospital, a research team spent four to five days interviewing surgeons, OR staff, hospital administrators and other personnel as well as gathering data. Analysis of operating room equipment and supplies indicates that single-use laparoscopic instruments are a cost-effective alternative to reusable instruments. In addition, single-use instruments have many benefits that were not possible to quantify accurately in this study.
Falsification Testing of Instrumental Variables Methods for Comparative Effectiveness Research.
Pizer, Steven D
2016-04-01
To demonstrate how falsification tests can be used to evaluate instrumental variables methods applicable to a wide variety of comparative effectiveness research questions. Brief conceptual review of instrumental variables and falsification testing principles and techniques accompanied by an empirical application. Sample STATA code related to the empirical application is provided in the Appendix. Comparative long-term risks of sulfonylureas and thiazolidinediones for management of type 2 diabetes. Outcomes include mortality and hospitalization for an ambulatory care-sensitive condition. Prescribing pattern variations are used as instrumental variables. Falsification testing is an easily computed and powerful way to evaluate the validity of the key assumption underlying instrumental variables analysis. If falsification tests are used, instrumental variables techniques can help answer a multitude of important clinical questions. © Health Research and Educational Trust.
Swartz, R. Andrew
2013-01-01
This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136
Integrated Data Collection Analysis (IDCA) Program - Statistical Analysis of RDX Standard Data Sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.
2015-10-30
The Integrated Data Collection Analysis (IDCA) program is conducting a Proficiency Test for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are statistical analyses of the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of the RDX Type II Class 5 standard. The material was tested as a well-characterized standard several times during the proficiency study to assess differences among participants and the range of results that may arise for well-behaved explosive materials. The analyses show that there are detectable differences among the results from IDCA participants. While these differences are statisticallymore » significant, most of them can be disregarded for comparison purposes to assess potential variability when laboratories attempt to measure identical samples using methods assumed to be nominally the same. The results presented in this report include the average sensitivity results for the IDCA participants and the ranges of values obtained. The ranges represent variation about the mean values of the tests of between 26% and 42%. The magnitude of this variation is attributed to differences in operator, method, and environment as well as the use of different instruments that are also of varying age. The results appear to be a good representation of the broader safety testing community based on the range of methods, instruments, and environments included in the IDCA Proficiency Test.« less
Donelan, Ronan; Walker, Stuart; Salek, Sam
2016-01-01
The impact of decision-making during the development and the regulatory review of medicines greatly influences the delivery of new medicinal products. Currently, there is no generic instrument that can be used to assess the quality of decision-making. This study describes the development of the Quality of Decision-Making Orientation Scheme QoDoS(©) instrument for appraising the quality of decision-making. Semi-structured interviews about decision-making were carried out with 29 senior decision makers from the pharmaceutical industry (10), regulatory authorities (9) and contract research organizations (10). The interviews offered a qualified understanding of the subjective decision-making approach, influences, behaviors and other factors that impact such processes for individuals and organizations involved in the delivery of new medicines. Thematic analysis of the transcribed interviews was carried out using NVivo8® software. Content validity was carried out using qualitative and quantitative data by an expert panel, which led to the developmental version of the QoDoS. Further psychometric evaluations were performed, including factor analysis, item reduction, reliability testing and construct validation. The thematic analysis of the interviews yielded a 94-item initial version of the QoDoS(©) with a 5-point Likert scale. The instrument was tested for content validity using a panel of experts for language clarity, completeness, relevance and scaling, resulting in a favorable agreement by panel members with an intra-class correlation coefficient value of 0.89 (95% confidence interval = 0.56, 0.99). A 76-item QoDoS(©) (version 2) emerged from content validation. Factor analysis produced a 47-item measure with four domains. The 47-item QoDoS(©) (version 3) showed high internal consistency (n = 120, Cronbach's alpha = 0.89), high reproducibility (n = 20, intra-class correlation = 0.77) and a mean completion time of 10 min. Reliability testing and construct validation was successfully performed. The QoDoS(©) is both reliable and valid for use. It has the potential for extensive use in medicines development by both the pharmaceutical industry and regulatory authorities. The QoDoS(©) can be used to assess the quality of decision-making and to inform decision makers of the factors that influence decision-making.
Testing in Support of Space Fission System Development and Qualification
NASA Technical Reports Server (NTRS)
Houts, Mike; Bragg-Sitton, Shannon; Garber, Anne; Godfrey, Tom; Martin, Jim; Pearson, Boise; Webster, Kenny
2007-01-01
Extensive data would be required for the qualification of a fission surface power (FSP) system. The strategy for qualifying a FSP system could have a significant programmatic impact. This paper explores potential options that could be used for qualifying FSP systems, including cost-effective means for obtaining required data. three methods for obtaining qualification data are analysis, non-nuclear testing, and nuclear testing. It has been over 40 years since the US qualified a space reactor for launch. During that time, advances have been made related to all three methods. Perhaps the greatest advancement has occurred in the area of computational tools for design and analysis. Tools that have been developed, coupled with modem computers, would have a significant impact on a FSP qualification. This would be especially true for systems with materials and fuels operating well within temperature, irradiation damage, and burnup limits. The ability to perform highly realistic non-nuclear testing has also advanced throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modem FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.} and extensive data to be taken from the core region. Both steady-state and transient operation can be tested. For transient testing, reactivity feedback is calculated (or measured in cold/warm criticals) based on reactor temperature and/or dimensional changes. Pin power during a transient is then calculated based on the reactivity feedback that would occur given measured values of temperature and/or dimensional change. In this way nonnuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. Realistic non-nuclear testing is most useful for systems operating within known temperature, irradiation damage, and burnup capabilities.
49 CFR 572.21 - Test conditions and instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Test conditions and instrumentation. 572.21 Section 572.21 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY...-Year-Old Child § 572.21 Test conditions and instrumentation. (a)(1) The test probe used for head and...
49 CFR 572.21 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Test conditions and instrumentation. 572.21 Section 572.21 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY...-Year-Old Child § 572.21 Test conditions and instrumentation. (a)(1) The test probe used for head and...
49 CFR 572.21 - Test conditions and instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Test conditions and instrumentation. 572.21 Section 572.21 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY...-Year-Old Child § 572.21 Test conditions and instrumentation. (a)(1) The test probe used for head and...
49 CFR 572.21 - Test conditions and instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Test conditions and instrumentation. 572.21 Section 572.21 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY...-Year-Old Child § 572.21 Test conditions and instrumentation. (a)(1) The test probe used for head and...
Abraham, Lucy; Symonds, Tara; Morris, Mark F
2008-03-01
An instrument that can systematically capture the impact of sexual dysfunction on quality of life (QoL) in men is needed. To psychometrically validate a sexual QoL instrument for men (SQOL-M) with premature ejaculation (PE) or erectile dysfunction (ED). The main assessment populations were men participating in clinical trials of treatments for PE or ED. Men with PE had a confirmed intravaginal ejaculatory latency time of < or = 2 minutes in > or = 70% of attempts. Men with ED had a score of > 21 on the International Index of Erectile Function (IIEF). Confirmatory psychometric testing was conducted in further groups of men with PE. The internal consistency, convergent and discriminant validity, test-retest reliability, and known-groups validity of the instrument were assessed. An 11-item version of the SQOL-M was produced following factor analyses on men with either PE or ED. Psychometric testing showed no overlap between items and good item-total correlations. Factor analysis confirmed a one-factor solution. Excellent internal consistency was demonstrated, with a Cronbach's alpha of > or = 0.82 in all groups. In men reporting no change in their symptoms, the SQOL-M showed excellent test-retest reliability: the intraclass correlation coefficient was 0.77 for men with PE, and 0.79 for men with ED. Convergent validity was also good. In men with PE, the SQOL-M correlated with the satisfaction and distress domains of the Index of Premature Ejaculation. In men with ED, the SQOL-M correlated with the overall satisfaction domain of the IIEF. The measure also demonstrated excellent discriminant validity between men with PE or ED and men with no sexual dysfunction (P < 0.0001). The SQOL-M instrument is a useful tool for evaluating sexual QoL in men with PE and ED.
Development of TPS flight test and operational instrumentation
NASA Technical Reports Server (NTRS)
Carnahan, K. R.; Hartman, G. J.; Neuner, G. J.
1975-01-01
Thermal and flow sensor instrumentation was developed for use as an integral part of the space shuttle orbiter reusable thermal protection system. The effort was performed in three tasks: a study to determine the optimum instruments and instrument installations for the space shuttle orbiter RSI and RCC TPS; tests and/or analysis to determine the instrument installations to minimize measurement errors; and analysis using data from the test program for comparison to analytical methods. A detailed review of existing state of the art instrumentation in industry was performed to determine the baseline for the departure of the research effort. From this information, detailed criteria for thermal protection system instrumentation were developed.
Research on mechanical properties of carbon fiber /polyamide reinforced PP composites
NASA Astrophysics Data System (ADS)
Chen, Xinghui; Yu, Qiang; Liu, Lixia; Ji, Wenhua; Yang, Li; Fan, Dongli
2017-10-01
The polyamide composites reinforced by carbon fiber/polypropylene are produced by injection molding processing. The flow abilities and mechanical properties of the CF/PA/PP composite materials are studied by the fusion index instrument and the universal testing machine. The results show that with the content of carbon fiber/polyamide increase, the impact breaking strength and the tensile property of the composite materials increase, which is instructive to the actual injection production of polypropylene products.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ.
As part of its 6-year longitudinal study designed to assess the impact of Head Start, Educational Testing Service (ETS) has summarized and compiled tables of data collected on 16 of the 33 instruments administered to children in 1969 in three sites (St. Louis, Missouri; Trenton, New Jersey; and Portland, Oregon). Data from the parent interview and…
Broadband optical equalizer using fault tolerant digital micromirrors.
Riza, Nabeel; Mughal, M Junaid
2003-06-30
For the first time, the design and demonstration of a near continuous spectral processing mode broadband equalizer is described using the earlier proposed macro-pixel spatial approach for multiwavelength fiber-optic attenuation in combination with a high spectral resolution broadband transmissive volume Bragg grating. The demonstrated design features low loss and low polarization dependent loss with broadband operation. Such an analog mode spectral processor can impact optical applications ranging from test and instrumentation to dynamic alloptical networks.
Impact of Financial Incentives for Prenatal Care on Birth Outcomes and Spending
Rosenthal, Meredith B; Li, Zhonghe; Robertson, Audra D; Milstein, Arnold
2009-01-01
Objective To evaluate the impact of offering US$100 each to patients and their obstetricians or midwives for timely and comprehensive prenatal care on low birth weight, neonatal intensive care admissions, and total pediatric health care spending in the first year of life. Data Sources/Study Setting Claims and enrollment profiles of the predominantly low-income and Hispanic participants of a union-sponsored, health insurance plan from 1998 to 2001. Study Design Panel data analysis of outcomes and spending for participants and nonparticipants using instrumental variables to account for selection bias. Data Collection/Abstraction Methods Data provided were analyzed using t-tests and chi-squared tests to compare maternal characteristics and birth outcomes for incentive program participants and nonparticipants, with and without instrumental variables to address selection bias. Adjusted variables were analyzed using logistic regression models. Principle Findings Participation in the incentive program was significantly associated with lower odds of neonatal intensive care unit admission (0.45; 95 percent CI, 0.23–0.88) and spending in the first year of life (estimated elasticity of −0.07; 95 percent CI, −0.12 to −0.01), but not low birth weight (0.53; 95 percent CI, 0.23–1.18). Conclusion The use of patient and physician incentives may be an effective mechanism for improving use of recommended prenatal care and associated outcomes, particularly among low-income women. PMID:19619248
Schierenbeck, Tim M; Smith, Matthew C
2017-05-02
Natural freshwater systems have been severely affected by excess loading of macronutrients (e.g., nitrogen and phosphorus) from fertilizers, fossil fuels, and human and livestock waste. In the USA, impacts to drinking water quality, biogeochemical cycles, and aquatic ecosystems are estimated to cost US$210 billion annually. Field-deployable nutrient sensors (FDS) offer potential to support research and resource management efforts by acquiring higher resolution data than are currently supported by expensive conventional sampling methods. Following nearly 40 years of research and development, FDS instruments are now starting to penetrate commercial markets. However, instrument uncertainty factors (high cost, reliability, accuracy, and precision) are key drivers impeding the uptake of FDS by the majority of users. Using nitrite sensors as a case study, we review the trends, opportunities, and challenges in producing and implementing FDS from a perspective of innovation and impact. We characterize the user community and consumer needs, identify trends in research approaches, tabulate state-of-the-art examples and specifications, and discuss data life cycle considerations. With further development of FDS through prototyping and testing in real-world applications, these tools can deliver information for protecting and restoring natural waters, enhancing process control for industrial operations and water treatment, and providing novel research insights.
NASA Technical Reports Server (NTRS)
Cacciani, A.; Moretti, Pier Francesco; Dolci, M.; Smith, E. J.
1995-01-01
The observations made in July 1994 on the impact of fragment A of the comet P/Shoemaker-Levy 9 with Jupiter are described. The instrumentation used was a magneto-optical filter, acting as a two-channel filter. The data showed a double-peak transient which occurred after the impact, and whose general properties indicated a true jovian origin. The peaks appear in absorption. A numerical simulation can explain the main characteristics of the observed signal where the two peaks have the same polarity and appear only in the channel at shorter wavelengths. The simulation carried out appeared to indicate that the observed signal could be produced by the combination of shock waves and the expanding material with a velocity of 13 +/- 8 km/s. This implies that two separate impacts may have been observed. The developed simulation can be extended to predict long term effects.
High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.
49 CFR 572.130 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in § 572.132. (3) SAE Recommended Practice J211/1, Rev. Mar 95 “Instrumentation for Impact Tests—Part 1—Electronic Instrumentation”, incorporated by reference in § 572.137; (4) SAE Recommended Practice J211/2, Rev. Mar 95 “Instrumentation for Impact Tests—Part 2—Photographic Instrumentation” incorporated...
49 CFR 572.130 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in § 572.132. (3) SAE Recommended Practice J211/1, Rev. Mar 95 “Instrumentation for Impact Tests—Part 1—Electronic Instrumentation”, incorporated by reference in § 572.137; (4) SAE Recommended Practice J211/2, Rev. Mar 95 “Instrumentation for Impact Tests—Part 2—Photographic Instrumentation” incorporated...
49 CFR 572.130 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in § 572.132. (3) SAE Recommended Practice J211/1, Rev. Mar 95 “Instrumentation for Impact Tests—Part 1—Electronic Instrumentation”, incorporated by reference in § 572.137; (4) SAE Recommended Practice J211/2, Rev. Mar 95 “Instrumentation for Impact Tests—Part 2—Photographic Instrumentation” incorporated...
Insulation failure in electrosurgery instrumentation: a prospective evaluation.
Tixier, Floriane; Garçon, Mélanie; Rochefort, Françoise; Corvaisier, Stéphane
2016-11-01
The use of electrosurgery has expanded to a wide variety of surgical specialities, but it has also been accompanied by its share of complications, including thermal injuries to nontargeted tissues, caused by a break or defect in the insulation of the instrument's coat. The purpose of this study was to determine the prevalence and the location of insulation failures (IFs) in electrosurgical instruments, then to assess the necessity of routine IF testing. Electrosurgical instruments were visually inspected and checked for IF using a high-voltage detector. Two different detectors were used during two testing sessions: DTU-6 (Petel company) and DIATEG (Morgate company). Laparoscopic and non-laparoscopic instruments were determined to have IF if current crossed the instrument's insulation, signaled by an alarm sound. A total of 489 instruments were tested. The overall prevalence of IFs was 24.1 % with only visual inspection and 37.2 % with the IF detector. Among the 489 instruments, 13.1 % were visually intact, but had an electric test failure. DTU-6 and DIATEG detectors showed comparable efficiency in detection of overall IFs and for laparoscopic and non-laparoscopic instruments. The median location of IFs was more pronounced for laparoscopic instruments (50.4 %) and the distal location for non-laparoscopic instruments (40.4 %). Accidental burns are a hidden problem and can lead to patient complications. In Central Sterilization Service Department, prevention currently includes only visual control of electrosurgery instrumentation, but testing campaigns are now necessary in order to identify maximum instruments' defects.
42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Test systems, equipment, instruments... REQUIREMENTS Quality System for Nonwaived Testing Analytic Systems § 493.1252 Standard: Test systems, equipment...) Temperature. (3) Humidity. (4) Protection of equipment and instruments from fluctuations and interruptions in...
Setterbo, Jacob J.; Chau, Anh; Fyhrie, Patricia B.; Hubbard, Mont; Upadhyaya, Shrini K.; Symons, Jennifer E.; Stover, Susan M.
2012-01-01
Background Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. Objective To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. Methods Track-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. Results Most dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. Conclusions Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD). Potential Relevance Dynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions. PMID:23227183
Sampogna, F; Finlay, A Y; Salek, S S; Chernyshov, P; Dalgard, F J; Evers, A W M; Linder, D; Manolache, L; Marron, S E; Poot, F; Spillekom-van Koulil, S; Svensson, Å; Szepietowski, J C; Tomas-Aragones, L; Abeni, D
2017-09-01
The patient is the centre of a web of relationships, and the impact of his/her disease on family members and caregivers must be taken into account. The aim of this study was to identify the specific instruments that measure the impact of a dermatological disease on the quality of life (QoL) of family members, by performing a systematic search of the literature. Fifteen papers were identified, describing the creation and validation of nine instruments. Four of them concerned atopic dermatitis (Dermatitis Family Index, DFI; Parents' Index QoL Atopic Dermatitis, PiQoL-AD; QoL in primary caregivers of children with atopic dermatitis, QPCAD; Childhood Atopic Dermatitis Impact Scale, CADIS), two measured the impact of psoriasis in family members (Psoriasis Family Index, PFI; FamilyPso), one the impact of epidermolysis bullosa (Epidermolysis Bullosa Burden of Disease, EB-BoD), one of ichthyosis (Family Burden Ichthyosis, FBI), and one was generic for dermatological conditions (Family Dermatology Life Quality Index, FDLQI). The European Academy of Dermatology and Venereology quality of life taskforce recommends that the impact of a skin disease on family and caregivers should be measured as part of any thorough evaluation of the burden of a disease. Guidelines are given to choose the most appropriate instruments. © 2017 European Academy of Dermatology and Venereology.
A study on ground truth data for impact damaged polymer matrix composites
NASA Astrophysics Data System (ADS)
Wallentine, Sarah M.; Uchic, Michael D.
2018-04-01
This study presents initial results toward correlative characterization of barely-visible impact damage (BVID) in unidirectional carbon fiber reinforced polymer matrix composite laminate plates using nondestructive ultrasonic testing (UT) and destructive serial sectioning microscopy. To produce damage consistent with BVID, plates were impacted using an instrumented drop-weight tower with pneumatic anti-rebound brake. High-resolution, normal-incidence, single-sided, pulse-echo, immersion UT scans were performed to verify and map internal damage after impact testing. UT C-scans were registered to optical images of the specimen via landmark registration and the use of an affine transformation, allowing location of internal damage in reference to the overall plate and enabling specimen preparation for subsequent serial sectioning. The impact-damaged region was extracted from each plate, prepared and mounted for materialographic sectioning. A modified RoboMet.3D version 2 was employed for serial sectioning and optical microscopy characterization of the impact damaged regions. Automated montage capture of sub-micron resolution, bright-field reflection, 12-bit monochrome optical images was performed over the entire specimen cross-section. These optical images were post- processed to produce 3D data sets, including segmentation to improve visualization of damage features. Impact-induced delaminations were analyzed and characterized using both serial sectioning and ultrasonic methods. Those results and conclusions are presented, as well as future direction of the current study.
Lang, Shawn M.; Lippitt, Margaret; Jin, Harry; Chaudoir, Stephenie R.
2015-01-01
Despite efforts to eliminate it at the societal level, HIV stigma persists and continues to threaten the health of people living with HIV (PLWH). We tested whether social support, adaptive coping, and/or HIV identity centrality act as resilience resources by buffering people from the negative impact of enacted and/or anticipated stigma on stress and ultimately HIV symptoms. Ninety-three PLWH completed a survey, and data analyses tested for evidence of mediation and moderation. Results demonstrated that instrumental social support, perceived community support, and HIV identity centrality buffered participants from the association between anticipated stigma and HIV symptoms. That is, anticipated stigma was associated with HIV symptoms via stress only at low levels of these resources. No resources buffered participants from the impact of enacted stigma. Identifying and enhancing resilience resources among PLWH is critical for protecting PLWH from the harmful effects of stigma. PMID:24715226
NASA Technical Reports Server (NTRS)
Wang, J.; Magee, D.; Schneider, J. A.
2009-01-01
The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.
Yusof, Zamros Y M; Jaafar, Nasruddin
2012-06-08
The study aimed to develop and test a Malay version of the Child-OIDP index, evaluate its psychometric properties and report on the prevalence of oral impacts on eight daily performances in a sample of 11-12 year old Malaysian schoolchildren. The Child-OIDP index was translated from English into Malay. The Malay version was tested for reliability and validity on a non-random sample of 132, 11-12 year old schoolchildren from two urban schools in Kuala Lumpur. Psychometric analysis of the Malay Child-OIDP involved face, content, criterion and construct validity tests as well as internal and test-retest reliability. Non-parametric statistical methods were used to assess relationships between Child-OIDP scores and other subjective outcome measures. The standardised Cronbach's alpha was 0.80 and the weighted Kappa was 0.84 (intraclass correlation = 0.79). The index showed significant associations with different subjective measures viz. perceived satisfaction with mouth, perceived needs for dental treatment, perceived oral health status and toothache experience in the previous 3 months (p < 0.05). Two-thirds (66.7%) of the sample had oral impacts affecting one or more performances in the past 3 months. The three most frequently affected performances were cleaning teeth (36.4%), eating foods (34.8%) and maintaining emotional stability (26.5%). In terms of severity of impact, the ability to relax was most severely affected by their oral conditions, followed by ability to socialise and doing schoolwork. Almost three-quarters (74.2%) of schoolchildren with oral impacts had up to three performances affected by their oral conditions. This study indicated that the Malay Child-OIDP index is a valid and reliable instrument to measure the oral impacts of daily performances in 11-12 year old urban schoolchildren in Malaysia.
Meterko, Mark; Young, Gary J; White, Bert; Bokhour, Barbara G; Burgess, James F; Berlowitz, Dan; Guldin, Matthew R; Nealon Seibert, Marjorie
2006-01-01
Objective To develop an instrument for assessing physician attitudes toward quality incentive programs, and to assess its reliability and validity. Data Sources Study involved primary data collection. A 40-item paper and pencil survey of primary care physicians in Rochester, New York, and Massachusetts was conducted between May 2004 and December 2004. Seven-hundred and ninety-eight completed questionnaires were received, representing a response rate of 32 percent (798/2,497). Study Design Based on an extensive review of the literature and discussions with experts in the field, we developed a conceptual framework representing the features of pay-for-performance (P4P) programs hypothesized to affect physician behavior in that context. A draft questionnaire was developed based on that conceptual model and pilot tested in three groups of physicians. The questionnaire was modified based on the physician feedback, and the revised version was distributed to 2,497 primary care physicians affiliated with two of the seven sites participating in Rewarding Results, a national evaluation of quality target and financial incentive programs. Data Collection Respondents were randomly divided into a derivation and a validation sample. Exploratory factor analysis was applied to the responses of the derivation sample. Those results were used to create scales in the validation sample, and these were then subjected to multitrait analysis (MTA). One scale representing physicians' perception of the impact of P4P on their clinical practice was regressed on the other scales as a test of construct validity. Principal Findings Seven constructs were identified and demonstrated substantial convergent and discriminant validity in the MTA: awareness and understanding, clinical relevance, cooperation, unintended consequences, control, financial salience, and impact. Internal consistency reliabilities (Cronbach's α coefficients) ranged from 0.50 to 0.80. A statistically significant 25 percent of the variation in perceived impact was accounted for by physician perceptions of the other six characteristics of P4P programs. Conclusions It is possible to identify and measure the key salient features of P4P programs using a valid and reliable 26-item survey. This instrument may now be used in further studies to better understand the impact of P4P programs on physician behavior. PMID:16987311
Measures of Cultural Competence in Nurses: An Integrative Review
2013-01-01
Background. There is limited literature available identifying and describing the instruments that measure cultural competence in nursing students and nursing professionals. Design. An integrative review was undertaken to identify the characteristics common to these instruments, examine their psychometric properties, and identify the concepts these instruments are designed to measure. Method. There were eleven instruments identified that measure cultural competence in nursing. Of these eleven instruments, four had been thoroughly tested in either initial development or in subsequent testing, with developers providing extensive details of the testing. Results. The current literature identifies that the instruments to assess cultural competence in nurses and nursing students are self-administered and based on individuals' perceptions. The instruments are commonly utilized to test the effectiveness of educational programs designed to increase cultural competence. Conclusions. The reviewed instruments measure nurses' self-perceptions or self-reported level of cultural competence but offer no objective measure of culturally competent care from a patient's perspective which can be problematic. Comparison of instruments reveals that they are based on a variety of conceptual frameworks and that multiple factors should be considered when deciding which instrument to use. PMID:23818818
Elnaghy, A M; Elsaka, S E
2017-08-01
To assess and compare the mechanical properties of TRUShape (TRS) with several nickel-titanium rotary instruments. Cyclic fatigue, torsional resistance, flexibility and surface microhardness of TRS (size 25, 0.06v taper), ProTaper Next X2 (PTN X2, size 25, 0.06 taper), ProTaper Gold (PTG F2; size 25, 0.08 taper) and ProTaper Universal (PTU F2; size 25, 0.08 taper) instruments were evaluated. The topographical structures of the fracture surfaces of instruments were assessed using a scanning electron microscope. The cyclic fatigue resistance, torsional resistance and microhardness data were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests. The fragment length and bending resistance data were analysed statistically with the Kruskal-Wallis H-test and Mann-Whitney U-tests. The statistical significance level was set at P < 0.05. PTN and PTG instruments revealed significantly higher resistance to cyclic fatigue than TRS and PTU instruments (P < 0.001). PTN instruments revealed significantly higher torsional resistance compared with the other instruments (P < 0.001). PTG instrument had significantly higher flexibility than the other tested brands (P < 0.05). However, for microhardness, the PTU had significantly higher surface microhardness values compared with other tested brands (P < 0.05). TRS instruments had lower resistance to cyclic fatigue and lower flexibility compared with PTG and PTN instruments. TRS, PTG and PTU instruments had lower resistance to torsional stress than PTN instruments. TRS and PTG instruments had comparable surface microhardness. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Promoting the hydrostatic conceptual change test (HCCT) with four-tier diagnostic test item
NASA Astrophysics Data System (ADS)
Purwanto, M. G.; Nurliani, R.; Kaniawati, I.; Samsudin, A.
2018-05-01
Hydrostatic Conceptual Change Test (HCCT) is a diagnostic test instrument to identify students’ conception on Hydrostatic field. It is very important to support the learning process in the classroom. Based on that point of view, the researcher decided to develop HCCT instrument test into four-tier test diagnostic items. The resolve of this research is planned as the first step of four-tier test-formatted HCCT development as one of investigative test instrument on Hydrostatic. The research method used the 4D model which has four comprehensive steps: 1) defining, 2) designing, 3) developing and 4) disseminating. The instrument developed has been tried to 30 students in one of senior high schools. The data showed that four-tier- test-formatted HCCT is able to identify student’s conception level of Hydrostatic. In conclusion, the development of four-tier test-formatted HCCT is one of potential diagnostic test instrument that able to classify the category of students who misconception, no understanding, understanding, partial understanding and no codeable about concept of Hydrostatic.
Concussion in professional football: helmet testing to assess impact performance--part 11.
Pellman, Elliot J; Viano, David C; Withnall, Chris; Shewchenko, Nick; Bir, Cynthia A; Halstead, P David
2006-01-01
National Football League (NFL) concussions occur at an impact velocity of 9.3 +/- 1.9 m/s (20.8 +/- 4.2 mph) oblique on the facemask, side, and back of the helmet. There is a need for new testing to evaluate helmet performance for impacts causing concussion. This study provides background on new testing methods that form a basis for supplemental National Operating Committee on Standards for Athletic Equipment (NOCSAE) helmet standards. First, pendulum impacts were used to simulate 7.4 and 9.3 m/s impacts causing concussion in NFL players. An instrumented Hybrid III head was helmeted and supported on the neck, which was fixed to a sliding table for frontal and lateral impacts. Second, a linear pneumatic impactor was used to evaluate helmets at 9.3 m/s and an elite impact condition at 11.2 m/s. The upper torso of the Hybrid III dummy was used. It allowed interactions with shoulder pads and other equipment. The severity of the head responses was measured by a severity index, translational and rotational acceleration, and other biomechanical responses. High-speed videos of the helmet kinematics were also recorded. The tests were evaluated for their similarity to conditions causing NFL concussions. Finally, a new linear impactor was developed for use by NOCSAE. The pendulum test closely simulated the conditions causing concussion in NFL players. Newer helmet designs and padding reduced the risk of concussion in 7.4 and 9.3 m/s impacts oblique on the facemask and lateral on the helmet shell. The linear impactor provided a broader speed range for helmet testing and more interactions with safety equipment. NOCSAE has prepared a draft supplemental standard for the 7.4 and 9.3 m/s impacts using a newly designed pneumatic impactor. No helmet designs currently address the elite impact condition at 11.2 m/s, as padding bottoms out and head responses dramatically increase. The proposed NOCSAE standard is the first to address helmet performance in reducing concussion risks in football. Helmet performance has improved with thicker padding and fuller coverage by the shell. However, there remains a challenge for innovative designs that reduce risks in the 11.2 m/s elite impact condition.
Boza, Juliana Catucci; Kundu, Roopal V; Fabbrin, Amanda; Horn, Roberta; Giongo, Natalia; Cestari, Tania Ferreira
2015-01-01
Vitiligo, although asymptomatic, highly compromises patients' quality of life (QoL). Therefore, an adequate evaluation of QoL is essential. Translation, cultural adaptation and validation of VitiQol (Vitiligo-specific health-related quality of life instrument) into Brazilian Portuguese. The study was conducted in two stages; the first stage was the translation and cultural/linguistic adaptation of the instrument; the second stage was the instrument's validation. The translated VitiQol showed high internal consistency (Cronbach alpha = 0.944) and high test-retest reliability and intraclass correlation coefficient=0.95 (CI 95% 0.86 - 0.98), p<0.001. There was no statistically significant difference between the means of the first completion of the VitiQoL questionnaire and the retest, p = 0.661. There was a significant correlation between VitiQoL and DLQI (r = 0.776, p <0.001) and also between VitiQoL-PB and subjects' assessment of the severity of their disease (r = 0.702, p <0.001). The impact of vitiligo on the QoL of Brazilian patients can be assessed by a specific questionnaire.
Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F
2010-09-01
This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (P<.001). Instrument separation occurred at the point of maximum flexure within the artificial canals, i.e., the midpoint of the curved canal segment. SEM analysis revealed that fractured surfaces exhibited characteristics of the ductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Barcelos, Filipe; Patto, José Vaz; Parente, Manuela; Medeiros, Dina; Sousa, Miguel; Figueiredo, Rui; Miguel, Cláudia; Teixeira, Ana
2009-01-01
To evaluate the applicability and utility of unstimulated syalometry and instruments of evaluation of sicca complaints in a Sjögren's syndrome outpatient clinic. We performed unstimulated syalometry to 45 consecutive Primary Sjögren's Syndrome patients (PSS) and 21 healthy asymptomatic individuals age and sex-matched. PSS patients were further evaluated with Schirmer's test. We applied 3 published questionnaires to PSS patients: Xerostomia Inventory (XI), Oral Health Impact Profile-short form (OHIP) and Ocular Surface Disease Index (OSDI), and correlated the results with syalometry and Schirmer's test. Statistical analysis was performed with SPSS (Mann-Whitney U-test and Spearman's correlation). Salivary flux was significantly lower in PSS patients, as compared to controls (0.08+/-0.01 ml/min versus 0.38+/-0.25 ml/min, p=0.000), and decreased with age. Syalometry didn't correlate with Schirmer's test. OHIP scores (mean 26.8 points, ranging from 2 to 43 for a maximum of 56 points) didn't correlate with syalometry neither with Schirmer's test, but showed an association with the XI (p<0.0005) and OSDI (p<0.0005) tests. The XI questionnaire (mean 28.4 points, ranging from 11 to 41 for a maximum of 44 points) correlated with syalometry (p=0.018), with the OHIP questionary (p<0.0005) and with the OSDI scale (p=0.004), although it didn't correlate with Schirmer's test. OSDI scores (mean 56.5 points, ranging from 7 to 90 for a maximum of 100 points) didn't correlate with Schirmer's test neither with syalometry, but associated with the XI (p=0.004) and OHIP (p<0.0005) scales. Unstimulated syalometry is useful in the evaluation of patients suspected of suffering from Sjögren's syndrome, since it can confirm salivary hypofunction in a quick and cheap manner, allowing to differentiate between healthy individuals and patients. In a specialized clinic, the immediate availability of a salivary functional test is important in the classification of PSS or sicca syndrome. The xerostomia and xerophtalmia impact scales were mutually concordant, and since they evaluate the effects of the disease through time, could be helpful in our daily consultation.
Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements
NASA Technical Reports Server (NTRS)
Vargas, Magda B.; Counter, Douglas D.
2011-01-01
The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.
Assessment Instrument for Problem-focused Coping. Reliability test of APC. Part 1.
Tollén, A; Ahlström, G
1998-01-01
A new self-report instrument, the Assessment Instrument of Problem-focused Coping (APC) developed from qualitative interviews, is described. This instrument provides knowledge of the patients' own competence in coping with activities of daily living (ADL), the patients' own assessment of what they experience as problems, and the extent to which they are satisfied with their ADL. The purpose of the study was to test the reliability of the instrument with regard to intra-rater reliability and internal consistency. The study group comprised 40 patients with muscular weakness and other symptoms relating to the postpolio syndrome. The result showed an acceptable internal consistency (alpha 0.70), which confirms the construct validity of the instrument. The test-retest showed that the stability over a period of time varied from low to high for a total of 28 items. At the same time, it is evident that the instrument does not achieve the aim of being a good evaluation instrument, because the stability over a period of time was unsatisfactory. The test-retest should be repeated with a larger test group in future research projects.
NASA Technical Reports Server (NTRS)
Simon, C. G.; Muenzenmeyer, R.; Tanner, W. G., Jr.; Uy, O. M.; Skrivanek, R. A.; Tuzzolino, A. J.; Maag, C.; Wortman, J. J.
1995-01-01
Industry and university participants have joined together to form the IMPA:Ct consortium (In-situ Monitors of the Particulate Ambient: Circumterrestrial) which offers a broad range of flight qualified instruments for monitoring the small particle (0.1 micron to 10 cm) environment in space. Instruments are available in 12 months or less at costs ranging from 0.5 to 1.5 million dollars (US) for the total program. Detector technologies represented by these groups are: impact-induced capacitor-discharge (MOS, metal-oxide-silicon), cratering or penetration of electroactive thin film (polyvinylidene fluoride (PVDF)), impact-plasma detection, acoustic detection, CCD tracking of optical scatter of sunlight, and photodiode detection of optical scatter of laser light. The operational characteristics, general spacecraft interface and resource requirements (mass/power/telemetry), cost and delivery schedules, and points of contact for seven different instruments are presented.
Increased instrument intelligence--can it reduce laboratory error?
Jekelis, Albert W
2005-01-01
Recent literature has focused on the reduction of laboratory errors and the potential impact on patient management. This study assessed the intelligent, automated preanalytical process-control abilities in newer generation analyzers as compared with older analyzers and the impact on error reduction. Three generations of immuno-chemistry analyzers were challenged with pooled human serum samples for a 3-week period. One of the three analyzers had an intelligent process of fluidics checks, including bubble detection. Bubbles can cause erroneous results due to incomplete sample aspiration. This variable was chosen because it is the most easily controlled sample defect that can be introduced. Traditionally, lab technicians have had to visually inspect each sample for the presence of bubbles. This is time consuming and introduces the possibility of human error. Instruments with bubble detection may be able to eliminate the human factor and reduce errors associated with the presence of bubbles. Specific samples were vortexed daily to introduce a visible quantity of bubbles, then immediately placed in the daily run. Errors were defined as a reported result greater than three standard deviations below the mean and associated with incomplete sample aspiration of the analyte of the individual analyzer Three standard deviations represented the target limits of proficiency testing. The results of the assays were examined for accuracy and precision. Efficiency, measured as process throughput, was also measured to associate a cost factor and potential impact of the error detection on the overall process. The analyzer performance stratified according to their level of internal process control The older analyzers without bubble detection reported 23 erred results. The newest analyzer with bubble detection reported one specimen incorrectly. The precision and accuracy of the nonvortexed specimens were excellent and acceptable for all three analyzers. No errors were found in the nonvortexed specimens. There were no significant differences in overall process time for any of the analyzers when tests were arranged in an optimal configuration. The analyzer with advanced fluidic intelligence demostrated the greatest ability to appropriately deal with an incomplete aspiration by not processing and reporting a result for the sample. This study suggests that preanalytical process-control capabilities could reduce errors. By association, it implies that similar intelligent process controls could favorably impact the error rate and, in the case of this instrument, do it without negatively impacting process throughput. Other improvements may be realized as a result of having an intelligent error-detection process including further reduction in misreported results, fewer repeats, less operator intervention, and less reagent waste.
Design of an active helicopter control experiment at the Princeton Rotorcraft Dynamics Laboratory
NASA Technical Reports Server (NTRS)
Marraffa, Andrew M.; Mckillip, R. M., Jr.
1989-01-01
In an effort to develop an active control technique for reducing helicopter vibrations stemming from the main rotor system, a helicopter model was designed and tested at the Princeton Rotorcraft Dynamics Laboratory (PRDL). A description of this facility, including its latest data acquisition upgrade, are given. The design procedures for the test model and its Froude scaled rotor system are also discussed. The approach for performing active control is based on the idea that rotor states can be identified by instrumenting the rotor blades. Using this knowledge, Individual Blade Control (IBC) or Higher Harmonic Control (HHC) pitch input commands may be used to impact on rotor dynamics in such a way as to reduce rotor vibrations. Discussed here is an instrumentation configuration utilizing miniature accelerometers to measure and estimate first and second out-of-plane bending mode positions and velocities. To verify this technique, the model was tested, and resulting data were used to estimate rotor states as well as flap and bending coefficients, procedures for which are discussed. Overall results show that a cost- and time-effective method for building a useful test model for future active control experiments was developed. With some fine-tuning or slight adjustments in sensor configuration, prospects for obtaining good state estimates look promising.
Impact of education on interdental cleaning behaviour based on the transtheoretical model.
Hashemian, Masomeh; Fallahi, Arezoo; Tavakoli, Golaleh; Zarezadeh, Yadolah; Babaki, B Nemat; Rahaei, Zohreh
2012-01-01
To determine the impact of education on stages of change of behaviour in Iranian senior high school students for interdental cleaning based on the transtheoretical model. This experimental study took place from April to November 2010. 306 students were selected by multistage cluster sampling and placed into two groups: control (153 students) and intervention (153 students). Appropriate instruments and the intervention programme were designed with the purpose of improving stages of interdental cleaning behaviour, perceived benefits and self-efficacy, as well as reducing perceived barriers and gingival index (GI). The impact of the intervention programme was assessed after 24 weeks and the GI of each student was recorded for both groups before and after intervention. The data were analysed using SPSS software and the chi-square, t test, ANOVA, paired t test, Mann-Whitney U-test and sign test. The intervention had a significant, positive impact on improvement of the stages of interdental cleaning behaviour, increase in self-efficacy, perceived benefits, decrease in perceived barriers and improvement of GI (P < 0.001). After the intervention, the average grades of self-efficacy, perceived barriers and perceived benefits in the control group vs the intervention group were significantly different (P < 0.001 to 0.01). The programme was found to positively influence the stages of change and potential indicators of interdental cleaning behaviour and GI. It is suggested that this model be used for interventions in the other population groups.
Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service
NASA Technical Reports Server (NTRS)
Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul
1997-01-01
The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.
Evaluation of Thermal Control Coatings for Flexible Ceramic Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius; Carroll, Carol; Smith, Dane; Guzinski, Mike; Marschall, Jochen; Pallix, Joan; Ridge, Jerry; Tran, Duoc
1997-01-01
This report summarizes the evaluation and testing of high emissivity protective coatings applied to flexible insulations for the Reusable Launch Vehicle technology program. Ceramic coatings were evaluated for their thermal properties, durability, and potential for reuse. One of the major goals was to determine the mechanism by which these coated blanket surfaces become brittle and try to modify the coatings to reduce or eliminate embrittlement. Coatings were prepared from colloidal silica with a small percentage of either SiC or SiB6 as the emissivity agent. These coatings are referred to as gray C-9 and protective ceramic coating (PCC), respectively. The colloidal solutions were either brushed or sprayed onto advanced flexible reusable surface insulation blankets. The blankets were instrumented with thermocouples and exposed to reentry heating conditions in the Ames Aeroheating Arc Jet Facility. Post-test samples were then characterized through impact testing, emissivity measurements, chemical analysis, and observation of changes in surface morphology. The results show that both coatings performed well in arc jet tests with backface temperatures slightly lower for the PCC coating than with gray C-9. Impact testing showed that the least extensive surface destruction was experienced on blankets with lower areal density coatings.
4MOST fiber feed preliminary design: prototype testing and performance
NASA Astrophysics Data System (ADS)
Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.
2016-08-01
The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.
Full-Scale Crash Tests and Analyses of Three High-Wing Single
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Littell, Justin D.; Stimson, Chad M.; Jackson, Karen E.; Mason, Brian H.
2015-01-01
The NASA Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project was initiated in 2014 to assess the crash performance standards for the next generation of ELT systems. Three Cessna 172 aircraft have been acquired to conduct crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Testing is scheduled for the summer of 2015 and will simulate three crash conditions; a flare to stall while emergency landing, and two controlled flight into terrain scenarios. Instrumentation and video coverage, both onboard and external, will also provide valuable data of airframe response. Full-scale finite element analyses will be performed using two separate commercial explicit solvers. Calibration and validation of the models will be based on the airframe response under these varying crash conditions.
Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument
NASA Technical Reports Server (NTRS)
Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.
2014-01-01
Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.
Statistical Analysis for Multisite Trials Using Instrumental Variables with Random Coefficients
ERIC Educational Resources Information Center
Raudenbush, Stephen W.; Reardon, Sean F.; Nomi, Takako
2012-01-01
Multisite trials can clarify the average impact of a new program and the heterogeneity of impacts across sites. Unfortunately, in many applications, compliance with treatment assignment is imperfect. For these applications, we propose an instrumental variable (IV) model with person-specific and site-specific random coefficients. Site-specific IV…
Falconer, D W; Cleland, J; Fielding, S; Reid, I C
2010-06-01
The cognitive impact of electroconvulsive therapy (ECT) is rarely measured systematically in everyday clinical practice even though patient and clinician acceptance is limited by its adverse affect on memory. If patients are tested it is often with simple paper and pencil tests of visual or verbal memory. There are no reported studies of computerized neuropsychological testing to assess the cognitive impact of ECT on visuospatial memory. Twenty-four patients with severe depression were treated with a course of bilateral ECT and assessed with a battery of visual memory tests within the Cambridge Neuropsychological Test Automated Battery (CANTAB). These included spatial and pattern recognition memory, pattern-location associative learning and a delayed matching to sample test. Testing was carried out before ECT, during ECT, within the week after ECT and 1 month after ECT. Patients showed significant impairments in visual and visuospatial memory both during and within the week after ECT. Most impairments resolved 1 month following ECT; however, significant impairment in spatial recognition memory remained. This is one of only a few studies that have detected anterograde memory deficits more than 2 weeks after treatment. Patients receiving ECT displayed a range of visual and visuospatial deficits over the course of their treatment. These deficits were most prominent for tasks dependent on the use of the right medial temporal lobe; frontal lobe function may also be implicated. The CANTAB appears to be a useful instrument for measuring the adverse cognitive effects of ECT on aspects of visual and visuospatial memory.
Elnaghy, Amr; Elsaka, Shaymaa
2018-04-01
The aims of this study were to assess and compare the resistance to cyclic fatigue of XP-endo Shaper (XPS; FKG Dentaire, La Chaux-de-Fonds, Switzerland) instruments with TRUShape (TRS; Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), HyFlex CM (HCM; Coltene, Cuyahoga Falls, OH, USA), Vortex Blue (VB; Dentsply Tulsa Dental Specialties), and iRace (iR; FKG Dentaire) nickel-titanium rotary instruments at body temperature. Size 30, 0.01 taper of XPS, size 30, 0.04 taper of HCM, VB, iR, and size 30, 0.06 taper of TRS instruments were immersed in saline at 37 ± 1 °C during cyclic fatigue testing. The instruments were tested with 60° angle of curvature and a 3-mm radius of curvature. The number of cycles to failure (NCF) was calculated and the length of the fractured segment was measured. Fractographic examination of the fractured surface was performed using a scanning electron microscope. The data were analyzed statistically using Kruskal-Wallis H test and Mann-Whitney U tests. Statistical significance was set at P < 0.05. XPS had a significantly greater NCF compared with the other instruments (P < 0.001). The topographic appearance of the fracture surfaces of tested instruments revealed ductile fracture of cyclic fatigue failure. XPS instruments exhibited greater cyclic fatigue resistance compared with the other tested instruments. XP-endo Shaper instruments could be used more safely in curved canals due to their higher fatigue resistance.
ERIC Educational Resources Information Center
Roessger, Kevin M.
2015-01-01
This paper examines the relationship between reflective practice and instrumental learning within the context of continuing professional development (CPD). It is argued that instrumental learning is a unique process of adult learning, and reflective practice's impact on learning outcomes in instrumental learning contexts remains unclear. A…
Malocclusion and oral health-related quality of life in Brazilian school children.
Sardenberg, Fernanda; Martins, Milene T; Bendo, Cristiane B; Pordeus, Isabela A; Paiva, Saul M; Auad, Sheyla M; Vale, Miriam P
2013-01-01
To test the hypothesis that malocclusion and its impact on quality of life has no effect on 8- to 10-year-old Brazilian schoolchildren as measured by an oral health-related quality of life (OHRQoL) instrument. A cross-sectional study was carried out with a population-based sample of 1204 8- to 10-year-old children attending elementary schools in Belo Horizonte, Brazil. Dental examinations were carried out by two calibrated examiners. OHRQoL was assessed using the Brazilian version of the Child Perceptions Questionnaire. The Dental Aesthetic Index was used for the clinical assessment of malocclusion. Dental caries and socioeconomic factors were used as controlling variables. Bivariate analysis involved the chi-square test and the Fisher exact test. A Poisson regression model was employed for the multivariate analysis (P < .05). Anterior segment spacing and anterior mandibular overjet were significantly associated with impact on OHRQoL (P < .05). Schoolchildren with malocclusion were 1.30-fold (95% CI: 1.15-1.46; P < 0.001) more likely to experience a negative impact on OHRQoL than those without malocclusion. Children belonging to families with an income less than or equal to two times the minimum wage were 1.59-fold (95% CI: 1.35-1.88; P < 0.001) more likely to experience a negative impact on OHRQoL than those belonging to families with the highest income. Schoolchildren with malocclusion from lower-income families experience a greater negative impact on OHRQoL.
New instrument for tribocharge measurement due to single particle impacts.
Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G
2007-02-01
During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.
New instrument for tribocharge measurement due to single particle impacts
NASA Astrophysics Data System (ADS)
Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.
2007-02-01
During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.
Modeling of Stone-impact Resistance of Monolithic Glass Ply Using Continuum Damage Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xin; Khaleel, Mohammad A.; Davies, Richard W.
2005-04-01
We study the stone-impact resistance of a monolithic glass ply using a combined experimental and computational approach. Instrumented stone impact tests were first carried out in controlled environment. Explicit finite element analyses were then used to simulate the interactions of the indentor and the glass layer during the impact event, and a continuum damage mechanics (CDM) model was used to describe the constitutive behavior of glass. The experimentally measured strain histories for low velocity impact served as validation of the modeling procedures. Next, stair-stepping impact experiments were performed with two indentor sizes on two glass ply thickness, and the testmore » results were used to calibrate the critical stress parameters used in the CDM constitutive model. The purpose of this study is to establish the modeling procedures and the CDM critical stress parameters under impact loading conditions. The modeling procedures and the CDM model will be used in our future studies to predict through-thickness damage evolution patterns for different laminated windshield designs in automotive applications.« less
Beeckman, D; Defloor, T; Demarré, L; Van Hecke, A; Vanderwee, K
2010-11-01
Pressure ulcers continue to be a significant problem in hospitals, nursing homes and community care settings. Pressure ulcer incidence is widely accepted as an indicator for the quality of care. Negative attitudes towards pressure ulcer prevention may result in suboptimal preventive care. A reliable and valid instrument to assess attitudes towards pressure ulcer prevention is lacking. Development and psychometric evaluation of the Attitude towards Pressure ulcer Prevention instrument (APuP). Prospective psychometric instrument validation study. A literature review was performed to design the instrument. Content validity was evaluated by nine European pressure ulcer experts and five experts in psychometric instrument validation in a double Delphi procedure. A convenience sample of 258 nurses and 291 nursing students from Belgium and The Netherlands participated in order to evaluate construct validity and stability reliability of the instrument. The data were collected between February and May 2008. A factor analysis indicated the construct of a 13 item instrument in a five factor solution: (1) attitude towards personal competency to prevent pressure ulcers (three items); (2) attitude towards the priority of pressure ulcer prevention (three items); (3) attitude towards the impact of pressure ulcers (three items); (4) attitude towards personal responsibility in pressure ulcer prevention (two items); and (5) attitude towards confidence in the effectiveness of prevention (two items). This five factor solution accounted for 61.4% of the variance in responses related to attitudes towards pressure ulcer prevention. All items demonstrated factor loadings over 0.60. The instrument produced similar results during stability testing [ICC=0.88 (95% CI=0.84-0.91, P<0.001)]. For the total instrument, the internal consistency (Cronbachs alpha) was 0.79. The APuP is a psychometrically sound instrument that can be used to effectively assess attitudes towards pressure ulcer prevention in patient care, education, and research. In further research, the association between attitude, knowledge and clinical performance should be explored. Copyright 2010 Elsevier Ltd. All rights reserved.
[Some critical remarks on standardised assessment instruments in nursing].
Bartholomeyczik, Sabine
2007-08-01
The use of standardised instruments in nursing has rapidly grown and can be seen as a symptom of the necessary comprehensive nursing diagnostics. However, these instruments comprise the risk of misuse, if they are not critically evaluated. Published statements about tests of reliability and validity of an instrument are insufficient. First, the critical evaluation has to ask for the instrument's theoretical and content base: Is the instrument relevant for nursing, suitable for practice and leading to nursing actions? Two examples of well known instruments and different kinds of their utilization in nursing are discussed. Next, the instruments have to be questioned as "bodies with numbers". Studies on reliability and validity have to be as carefully evaluated as other empirical research. The sample, the suitability of agreement indicators (interraterreliability), kind and reason of tests have to be questioned. The same has to be done with tests of validity which comprise an even greater challenge. Methodological studies about these questions are missing; guidelines for test user qualifications need to be developed.
Emotional and cultural impacts of ICT on learners: A case study of Opuwo, Namibia
NASA Astrophysics Data System (ADS)
Hambira, N.; Lim, C. K.; Tan, K. L.
2017-10-01
It is believed that the integration of Information and Communication Technologies (ICT) among learners and teachers can tremendously enhance the quality of teaching and learning. Besides, the advancement of the ICT technology is also used to improve the academic performance of the learners in learning and has given space to the teachers to boost their teaching in a more effective manner. However, it is also crucial to identify the impacts on the cultural and emotional among the learners. Nonetheless, it is also difficult to imagine contemporary learning environments that are not supported by ICT since the impacts of these technological developments vary among the various communities. In this paper, the contributions are three folds: (i) to investigate the impacts in the cultural and emotional aspects from the perceptions of the teachers about the learners in disadvantaged and marginalized communities, (ii) to design an assessment instrument to survey and determine the different impacts of ICT use on learners from various communities through a set of questionnaires and (iii) to validate the assessment instrument through Cronbach's Alpha reliability testing. Then, the survey is conducted on learners from disadvantaged and marginalized communities in Opuwo, Namibia that makes it an ideal case study for the context of this research. This study made use of a quantitative approach using survey research design through the application of questionnaires to collect data. The size of the population of these community is approximately 500 teachers (from 16 schools, 2 High schools and 14 Primary) and the sample size that is taken into consideration is 42 (8.4% of approximate population). The research revealed that the use of ICT has emotional benefits as well cultural impacts on learners. Careful planning of ICT curriculum was suggested as it will be beneficial to the disadvantaged and marginalized learners.
Monari, Paola; Pelizzari, Laura; Crotti, Silvia; Damiani, Giovanni; Calzavara-Pinton, Piergiacomo; Gualdi, Giulio
2015-11-01
PRISM (Pictorial Representation of Illness and Self Measure) is a nonverbal visualization instrument. The authors chose to use this tool to avoid the limitation of the other tests for the assessment of quality of life by using interview methods that depend on the cognitive and cultural level of the patient. The aim of the study was to assess the impact on the quality of life of different types of chronic wounds using the PRISM test. The PRISM test was administered by the same medical student to each patient visiting the dermatology department for a routine visit and medication. The PRISM test was administered to 77 patients with chronic cutaneous ulcers referred to the Dermatology Department of the Spedali Civili of Brescia, Italy. The authors analyzed the "Self-llness-Separation"' (SIS) value, which resulted from the PRISM test, and related it to sex, age, and ulcer etiology. Considering all categories, the mean SIS was 9.58 cm; a different perception of the disease between the sexes was noted and also in the subgroups based on the ulcer's different etiology. In addition, the age of the affected patients influenced the SIS value. PRISM is an easy and sensitive instrument to record information about the patient's expectations and suffering in order to improve the overall physician-patient relationship.
The Need, Development, and Validation of the Innovation Test Instrument
ERIC Educational Resources Information Center
Wheadon, Jacob; Wright, Geoff A.; West, Richard E.; Skaggs, Paul
2017-01-01
This study discusses the need, development, and validation of the Innovation Test Instrument (ITI). This article outlines how the researchers identified the content domain of the assessment and created test items. Then, it describes initial validation testing of the instrument. The findings suggest that the ITI is a good first step in creating an…
Instrument Pilot: Airplane. Flight Test Guide, Part 61 Revised 1973, AC 61-56.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
This flight test guide is designed to assist the applicant and his instructor in preparing for the flight test for Instrument Pilot Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the Instrument Rating.…
Quality of life in children and adolescents: a European public health perspective.
Ravens-Sieberer, U; Gosch, A; Abel, T; Auquier, P; Bellach, B M; Bruil, J; Dür, W; Power, M; Rajmil, L
2001-01-01
The measurement of health-related quality of life (HRQOL) is increasingly important as a means of monitoring population health status over time, of detecting sub-groups within the general population with poor HRQOL, and of assessing the impact of public health interventions within a given population. At present, no standardised instrument exists which can be applied with equal relevance in pediatric populations in different European populations. The collaborative European KIDSCREEN project aims to develop a standardised screening instrument for children's quality of life which will be used in representative national and European health surveys. Participants of the project are centres from Austria, France, Germany, Netherlands, Spain, Switzerland, and United Kingdom. By including the instrument in health services research and health reporting, it also aims at identifying children at risk in terms of their subjective health, thereby allowing the possibility of early intervention. Instrument development will be based on constructing a psychometrically sound HRQOL instrument taking into account the existing state of the art. Development will centre on literature searches, expert consultation (Delphi Methods) and focus groups with children and adolescents (8-17 years). According to international guidelines, items will be translated into the languages of the seven participating countries for a pilot test with 2,100 children and their parents in Europe. The final instrument will be used in representative mail and telephone surveys of HRQOL in 1,800 children and their parents per country (total n = 25,200) and normative data will be produced. The potential for implementing the measurement tool in health services and health reporting will also be evaluated in several different research and public health settings. The final analysis will involve national and cross cultural-analysis of the instrument. The international, collaborative nature of the KIDSCREEN project means it is likely to provide many challenges in terms of producing an instrument which is conceptually and linguistically appropriate for use in many different countries, but it will also provide the opportunity to develop, test and implement the first truly cross-national HRQOL instrument developed for use in children and adolescents. This will help to contribute to a better understanding of perceived health in children and adolescents and to identify populations at risk.
Detection of dust impacts by the Voyager planetary radio astronomy experiment
NASA Technical Reports Server (NTRS)
Evans, David R.
1993-01-01
The Planetary Radio Astronomy (PRA) instrument detected large numbers of dust particles during the Voyager 2 encounter with Neptune. The signatures of these impacts are analyzed in some detail. The major conclusions are described. PRA detects impacts from all over the spacecraft body, not just the PRA antennas. The signatures of individual impacts last substantially longer than was expected from complementary Plasma Wave Subsystem (PWS) data acquired by another Voyager experiment. The signatures of individual impacts demonstrate very rapid fluctuations in signal strength, so fast that the data are limited by the speed of response of the instrument. The PRA detects events at a rate consistently lower than does the Plasma Wave subsystem. Even so, the impact rate is so great near the inbound crossing of the ring plane that no reliable estimate of impact rate can be made for this period. The data are consistent with the presence of electrons accelerated by ions within an expanding plasma cloud from the point of impact. An ancillary conclusion is that the anomalous appearance of data acquired at 900 kHz appears to be due to an error in processing the PRA data prior to their delivery rather than due to overload of the PRA instrument.
Analytical techniques and instrumentation, a compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Procedures for conducting materials tests and structural analyses of aerospace components are presented as a part of the NASA technology utilization program. Some of the subjects discussed are as follows: (1) failures in cryogenic tank insulation, (2) friction characteristics of graphite and graphite-metal combinations, (3) evaluation of polymeric products in thermal-vacuum environment, (4) erosion of metals by multiple impacts with water, (5) mass loading effects on vibrated ring and shell structures, (6) nonlinear damping in structures, and (7) method for estimating reliability of randomly excited structures.
A test case: new retrievals of ozone at the terminator on Mars
NASA Astrophysics Data System (ADS)
Piccialli, A.; Vandaele, A. C.; Robert, S.; Daerden, F.; Viscardy, S.; Neary, L.; Aoki, S.; Wilquet, V.; Lefèvre, F.; Määttänen, A.; Montmessin, F.
2017-09-01
ASIMUT, the BIRA-IASB radiative transfer code, was modified in order to take into account the changes in the atmospheric composition and structure across the martian day/night terminator. Here, we will discuss the impact of this implementation on the retrievals of ozone profiles derived from SPICAM/Mars Express solar occultations in the ultraviolet. Results of this study will then be used for the analysis of the data expected from the NOMAD instrument on the ExoMars 2016 Trace Gas Orbiter.
Study of an instrument for sensing errors in a telescope wavefront
NASA Technical Reports Server (NTRS)
Golden, L. J.; Shack, R. V.; Slater, P. N.
1974-01-01
Focal plane sensors for determining the error in a telescope wavefront were investigated. The construction of three candidate test instruments and their evaluation in terms of small wavefront error aberration measurements are described. A laboratory wavefront simulator was designed and fabricated to evaluate the test instruments. The laboratory wavefront error simulator was used to evaluate three tests; a Hartmann test, a polarization shearing interferometer test, and an interferometric Zernike test.
Nickel release from surgical instruments and operating room equipment.
Boyd, Anne H; Hylwa, Sara A
2018-04-15
Background There has been no systematic study assessing nickel release from surgical instruments and equipment used within the operating suite. This equipment represents important potential sources of exposure for nickel-sensitive patients and hospital staff. To investigate nickel release from commonly used surgical instruments and operating room equipment. Using the dimethylglyoxime nickel spot test, a variety of surgical instruments and operating room equipment were tested for nickel release at our institution. Of the 128 surgical instruments tested, only 1 was positive for nickel release. Of the 43 operating room items tested, 19 were positive for nickel release, 7 of which have the potential for direct contact with patients and/or hospital staff. Hospital systems should be aware of surgical instruments and operating room equipment as potential sources of nickel exposure.
Ten Cool Things Seen in the First Year of LRO
2017-12-08
Mountains on the Moon On the Earth, we are taught that mountains form over millions of years, the result of gradual shifting and colliding plates. On the moon however, the situation is quite different. Even the largest lunar mountains were formed in minutes or less as asteroids and comets slammed into the surface at tremendous velocities, displacing and uplifting enough crust to create peaks that easily rival those found on Earth. On a few occasions in the past year, NASA has tilted the angle of LRO to do calibrations and other tests. In such cases the camera has the opportunity to gather oblique images of the lunar surface like the one featured here of Cabeus Crater providing a dramatic view of the moon's mountainous terrain. Cabeus Crater is located near the lunar south pole and contains the site of the LCROSS mission's impact. Early measurements by several instruments on LRO were used to guide the decision to send LCROSS to Cabeus. During the LCROSS impact LRO was carefully positioned to observe both the gas cloud generated in the impact, as well as the heating at the impact site. Credit: NASA/Goddard/Arizona State University To see the other nine images go to: www.nasa.gov/mission_pages/LRO/news/first-year.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review.
Ferreira, F; Adeodato, C; Barbosa, I; Aboud, L; Scelza, P; Zaccaro Scelza, M
2017-02-01
The aim of this review was to provide a detailed analysis of the literature concerning the correlation between different movement kinematics and the cyclic fatigue resistance of NiTi rotary endodontic instruments. From June 2014 to August 2015, four independent reviewers comprehensively and systematically searched the Medline (PubMed), EMBASE, Web of Science, Scopus and Google Scholar databases for works published since January 2005, using the following search terms: endodontics; nickel-titanium rotary files; continuous rotation; reciprocating motion; cyclic fatigue. In addition to the electronic searches, manual searches were performed to include articles listed in the reference sections of high-impact published articles that were not indexed in the databases. Laboratory studies in English language were considered for this review. The electronic and manual searches resulted in identification of 75 articles. Based on the inclusion criteria, 32 articles were selected for analysis of full-text copies. Specific analysis was then made of 20 articles that described the effects of reciprocating and continuous movements on cyclic fatigue of the instruments. A wide range of testing conditions and methodologies have been used to compare the cyclic fatigue resistance of rotary endodontic instruments. Most studies report that reciprocating motion improves the fatigue resistance of endodontic instruments, compared to continuous rotation, independent of other variables such as the speed of rotation, the angle or radius of curvature of simulated canals, geometry and taper, or the surface characteristics of the NiTi instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Test results of the highly instrumented Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Mcconnaughey, H. V.; Leopard, J. L.; Lightfoot, R. M.
1992-01-01
Test results of a highly instrumented Space Shuttle Main Engine (SSME) are presented. The instrumented engine, when combined with instrumented high pressure turbopumps, contains over 750 special measurements, including flowrates, pressures, temperatures, and strains. To date, two different test series, accounting for a total of sixteen tests and 1,667 seconds, have been conducted with this engine. The first series, which utilized instrumented turbopumps, characterized the internal operating environment of the SSME for a variety of operating conditions. The second series provided system-level validation of a high pressure liquid oxygen turbopump that had been retrofitted with a fluid-film bearing in place of the usual pump-end ball bearings. Major findings from these two test series are highlighted in this paper. In addition, comparisons are made between model predictions and measured test data.
A comparison of artificial turf.
Naunheim, Rosanne; Parrott, Heather; Standeven, John
2004-12-01
In an attempt to decrease injuries, newer forms of artificial turf have been marketed. The purpose of this study was to determine whether a new shredded rubber-based turf improves impact attenuation. An instrumented computerized impact recording device (IRD, Techmark, Lansing, MI) was dropped 20 times from a height of 48 inches onto five types of turf used by a professional football team. Duncan's multiple range test shows that the new rubber-based field and the older foam field are not significantly different. There were significant differences, however, between sites on the shredded rubber-based field. The change from a foam-based system to a shredded rubber-based system had no effect on impact attenuation overall. However, areas in the shredded rubber-based field were significantly compacted, causing some sites to be much harder than the foam-based surface it replaced.
Pancreatitis Quality of Life Instrument: A Psychometric Evaluation.
Wassef, Wahid; DeWitt, John; McGreevy, Kathleen; Wilcox, Mel; Whitcomb, David; Yadav, Dhiraj; Amann, Stephen; Mishra, Girish; Alkaade, Samer; Romagnuolo, Joseph; Stevens, Tyler; Vargo, John; Gardner, Timothy; Singh, Vikesh; Park, Walter; Hartigan, Celia; Barton, Bruce; Bova, Carol
2016-08-01
Chronic pancreatitis is a significant medical problem that impacts a large number of patients worldwide. In 2014, we developed a disease-specific instrument for the evaluation of quality of life in this group of patients: pancreatitis quality of life instrument (PANQOLI). The goal of this study was to evaluate its psychometric properties: its reliability and its construct validity. This is a cross-sectional multi-center study that involved 12 pancreatic disease centers. Patients who met the inclusion/exclusion criteria for chronic pancreatitis were invited to participate. Those who accepted were asked to complete seven questionnaires/instruments. Only patients who completed the PANQOLI were included in the study. Its reliability and its construct validity were tested. A total of 159 patients completed the PANQOLI and were included in the study. They had a mean age of 49.03, 49% were male, and 84% were Caucasian. Six of the 24 items on the scale were removed because of lack of inter-item correlation, redundancy, or lack of correlation to quality of life issues. The final 18-item scale had excellent reliability (Cronbach's alpha coefficient: 0.914) and excellent construct validity with good correlation to generic quality of life instruments (SF-12 and EORTC QLQ-C30/QLQ-PAN26) and lack of correlation to non-quality of life instruments (MAST and DAST). Through exploratory factor analysis, the PANQOLI was found to consist of four subscales: emotional function scale, role function scale, physical function scale, and "self-worth" scale. PANQOLI is the first disease-specific instrument to be developed and validated for the evaluation of quality of life in chronic pancreatitis patients. It has a unique subscale for "self-worth" that differentiates it from other generic instruments. Studies are currently under way to evaluate its use in other populations not included in this study.
Alosco, Michael L; Brickman, Adam M; Spitznagel, Mary Beth; Narkhede, Atul; Griffith, Erica Y; Cohen, Ronald; Sweet, Lawrence H; Josephson, Richard; Hughes, Joel; Gunstad, John
2016-01-01
Heart failure patients require assistance with instrumental activities of daily living in part because of the high rates of cognitive impairment in this population. Structural brain insult (eg, reduced gray matter volume) is theorized to underlie cognitive dysfunction in heart failure, although no study has examined the association among gray matter, cognition, and instrumental activities of daily living in heart failure. The aim of this study was to investigate the associations among gray matter volume, cognitive function, and functional ability in heart failure. A total of 81 heart failure patients completed a cognitive test battery and the Lawton-Brody self-report questionnaire to assess instrumental activities of daily living. Participants underwent magnetic resonance imaging to quantify total gray matter and subcortical gray matter volume. Impairments in instrumental activities of daily living were common in this sample of HF patients. Regression analyses controlling for demographic and medical confounders showed that smaller total gray matter volume predicted decreased scores on the instrumental activities of daily living composite, with specific associations noted for medication management and independence in driving. Interaction analyses showed that reduced total gray matter volume interacted with worse attention/executive function and memory to negatively impact instrumental activities of daily living. Smaller gray matter volume is associated with greater impairment in instrumental activities of daily living in persons with heart failure, possibly via cognitive dysfunction. Prospective studies are needed to clarify the utility of clinical correlates of gray matter volume (eg, cognitive dysfunction) in identifying heart failure patients at risk for functional decline and determine whether interventions that target improved brain and cognitive function can preserve functional independence in this high-risk population.
47 CFR 2.1505 - Test instrumentation and equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Test instrumentation and equipment. 2.1505... Position Indicating Radiobeacons (EPIRBs) General § 2.1505 Test instrumentation and equipment. (a) Receiver... peak measurements with a bandwidth of 100 kHz. (b) Spectrum analyzer. Spectral measurements are to be...
Nano-ADEPT Aeroloads Wind Tunnel Test
NASA Technical Reports Server (NTRS)
Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul;
2016-01-01
A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.
Tools to Assess the Impact of Teacher Enhancement Programs
NASA Astrophysics Data System (ADS)
Heatherly, S. A.; Maddalena, R. J.; Govett, A.; Hemler, D.
1997-05-01
Beginning in 1994, the NRAO has hosted an NSF-funded program, ``Research Experience in Teacher Preparation (RETP),'' in which inservice and preservice science teachers participate in residential institutes lasting one or two weeks. While on site, they conduct open-ended investigations using a 40-foot diameter working radio telescope. The aim of RETP has been to deepen and personalize participants' understanding of the nature of science, and to assist them in applying their newfound knowledge to their classroom teaching. So far RETP, and the teacher enhancement programs from which it evolved, have trained 434 inservice and 69 preservice teachers. The impact of the research experience on teachers' perceptions of themselves as professionals and their views of science was initially assessed through open-ended questionnaires and participant journals. From teachers' responses we learned that the research experience has a profound, positive influence on participants' views of science and increased their confidence in using research-based teaching methods. However, determining what actually happens in the classroom is harder to evaluate and requires a more structured approach. Therefore, to determine what changes occurred in teachers and their students, five survey instruments were developed. The instruments: 1) assess changes in teachers' perceptions of their ability to conduct research; 2) gauge teachers' perceptions of three aspects of the institute; 3) measure changes in teachers' concerns about implementing classroom research projects; 4) evaluate the development of teachers' understanding into the nature of science; and 5) determine changes in their students' perceptions of science and science class. To increase the reliability of the instruments, the survey questions were tested for internal consistency. Early results show that the RETP program has significantly affected participants and their students. These instruments are useful not only for evaluating this program but also for evaluating other teacher enhancement and preparation programs.
Development of Tasks and Evaluation of a Prototype Forceps for NOTES
Addis, Matthew; Aguirre, Milton; Haluck, Randy; Matthew, Abraham; Pauli, Eric; Gopal, Jegan
2012-01-01
Background and Objectives: Few standardized testing procedures exist for instruments intended for Natural Orifice Translumenal Endoscopic Surgery. These testing procedures are critical for evaluating surgical skills and surgical instruments to ensure sufficient quality. This need is widely recognized by endoscopic surgeons as a major hurdle for the advancement of Natural Orifice Translumenal Endoscopic Surgery. Methods: Beginning with tasks currently used to evaluate laparoscopic surgeons and instruments, new tasks were designed to evaluate endoscopic surgical forceps instruments. Results: Six tasks have been developed from existing tasks, adapted and modified for use with endoscopic instruments, or newly designed to test additional features of endoscopic forceps. The new tasks include the Fuzzy Ball Task, Cup Drop Task, Ring Around Task, Material Pull Task, Simulated Biopsy Task, and the Force Gauge Task. These tasks were then used to evaluate the performance of a new forceps instrument designed at Pennsylvania State University. Conclusions: The need for testing procedures for the advancement of Natural Orifice Translumenal Endoscopic Surgery has been addressed in this work. The developed tasks form a basis for not only testing new forceps instruments, but also for evaluating individual performance of surgical candidates with endoscopic forceps instruments. PMID:22906337
In Situ Measurement Activities at the NASA Orbital Debris Program Office
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Burchell, M.; Corsaro, R.; Drolshagen, G.; Giovane, F.; Pisacane, V.; Stansbery, E.
2009-01-01
The NASA Orbital Debris Program Office has been involved in the development of several particle impact instruments since 2003. The main objective of this development is to eventually conduct in situ measurements to better characterize the small (millimeter or smaller) orbital debris and micrometeoroid populations in the near-Earth environment. In addition, the Office also supports similar instrument development to define the micrometeoroid and lunar secondary ejecta environment for future lunar exploration activities. The instruments include impact acoustic sensors, resistive grid sensors, fiber optic displacement sensors, and impact ionization sensors. They rely on different mechanisms and detection principles to identify particle impacts. A system consisting of these different sensors will provide data that are complimentary to each other, and will provide a better description of the physical and dynamical properties (e.g., size, mass, and impact speed) of the particles in the environment. Details of several systems being considered by the Office and their intended mission objectives are summarized in this paper.
Laboratory Instrumentation: An Exploration of the Impact of Instrumentation on Student Learning
ERIC Educational Resources Information Center
Warner, Don L.; Brown, Eric C.; Shadle, Susan E.
2016-01-01
Academic programs generally work to make their laboratory curriculum both as instrumentation rich and up to date as possible. However, little is known about the relationship between the use of instrumentation in the curriculum and student learning. As part of our department's ongoing assessment efforts, a project was designed to probe this…
ERIC Educational Resources Information Center
Cushon, Jennifer A.; Vu, Lan T. H.; Janzen, Bonnie L.; Muhajarine, Nazeem
2011-01-01
Research Findings: The purpose of this study was to investigate how neighborhoods and neighborhood socioeconomic disadvantage impact school readiness over time. School readiness was measured using the Early Development Instrument (EDI) for 3 populations of kindergartners in 2001, 2003, and 2005 in Saskatoon, Saskatchewan, Canada. EDI results…
Younossi, Zobair M; Afendy, Arian; Stepanova, Maria; Racila, Andrei; Nader, Fatema; Gomel, Rachel; Safer, Ricky; Lenderking, William R; Skalicky, Anne; Kleinman, Leah; Myers, Robert P; Subramanian, G Mani; McHutchison, John G; Levy, Cynthia; Bowlus, Christopher L; Kowdley, Kris; Muir, Andrew J
2017-11-20
Primary sclerosing cholangitis (PSC) is a chronic liver disease associated with inflammation and biliary fibrosis that leads to cholangitis, cirrhosis, and impaired quality of life. Our objective was to develop and validate a PSC-specific patient-reported outcome (PRO) instrument. We developed a 42-item PSC PRO instrument that contains two modules (Symptoms and Impact of Symptoms) and conducted an external validation. Reliability and validity were evaluated using clinical data and a battery of other validated instruments. Test-retest reliability was assessed in a subgroup of patients who repeated the PSC PRO after the first administration. One hundred two PSC subjects (44 ± 13 years; 32% male, 74% employed, 39% with cirrhosis, 14% with a history of decompensated cirrhosis, 38% history of depression, and 68% with inflammatory bowel disease [IBD]) completed PSC PRO and other PRO instruments (Short Form 36 V2 [SF-36], Chronic Liver Disease Questionnaire [CLDQ], Primary Biliary Cholangitis - 40 [PBC-40], and five dimensions [5-D Itch]). PSC PRO demonstrated excellent internal consistency (Cronbach alphas, 0.84-0.94) and discriminant validity (41 of 42 items had the highest correlations with their own domains). There were good correlations between PSC PRO domains and relevant domains of SF-36, CLDQ, and PBC-40 (R = 0.69-0.90; all P < 0.0001), but lower (R = 0.31-0.60; P < 0.001) with 5-D Itch. Construct validity showed that PSC PRO can differentiate patients according to the presence and severity of cirrhosis and history of depression (P < 0.05), but not by IBD (P > 0.05). Test-retest reliability was assessed in 53 subjects who repeated PSC PRO within a median (interquartile range) of 37 (27-47) days. There was excellent reliability for most domains with intraclass correlations (0.71-0.88; all P < 0.001). PSC PRO is a self-administered disease-specific instrument developed according to U.S. Food and Drug Administration guidelines. This preliminary validation study suggests good psychometric properties. Further validation of the instrument in a larger and more diverse sample of PSC patients is needed. (Hepatology 2017). © 2017 by the American Association for the Study of Liver Diseases.
Mattsson, Nina Kristiina; Nieminen, Kari; Heikkinen, Anna-Mari; Jalkanen, Jyrki; Koivurova, Sari; Eloranta, Marja-Liisa; Suvitie, Pia; Tolppanen, Anna-Maija
2017-05-02
Although several validated generic health-related quality of life instruments exist, disease-specific instruments are important as they are often more sensitive to changes in symptom severity. It is essential to validate the instruments in a new population and language before their use. The objective of the study was to translate into Finnish the short forms of three condition-specific questionnaires (PFDI-20, PFIQ-7 and PISQ-12) and to evaluate their psychometric properties in Finnish women with symptomatic pelvic organ prolapse. A multistep translation method was used followed by an evaluation of validity and reliability in prolapse patients. Convergent and discriminant validity, internal consistency and reliability via test-retest were calculated. Sixty-three patients waiting for prolapse surgery filled the three questionnaires within two weeks. Response rate for each item was high in PFDI-20 and PISQ-12 (99.8 and 98.9% respectively). For PFIQ-7 response rate was only 60%. In PFIQ-7, six respondents (9.5%) reached the minimum value of zero showing floor effect. None of the instruments had ceiling effect. Based on the item-total correlations both PFIQ-7 and PFDI-20 had acceptable convergent validity, while the convergent validity of PISQ-12 was lower, r = 0.138-0.711. However, in this instrument only three questions (questions 6, 10 and 11) had r < 0.3 while others had r ≥ 0.380. In the test-retest analysis all the three instruments showed good reliability (ICC 0.75-0.92). Similarly, the internal consistency of the instruments, measured by Cronbach's α, was good (range 0.69-0.96) indicating high homogeneity. Finnish validated translation of the PFDI-20 and PISQ-12 have acceptable psychometric properties and can be used for both research purposes and clinical evaluation of pelvic organ prolapse symptoms. The Finnish version of PFIQ-7 displayed low response rate and some evidence of a floor effect, and thus its use is not recommended in its current form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastiani, M.; Llambi, L.D.; Marquez, E.
1998-07-01
In Venezuela, the idea of tiering information between land-use ordering instruments and impact assessment is absent. In this article the authors explore a methodological alternative to bridge the information presented in land-use ordering instruments with the information requirements for impact assessment. The methodology is based on the steps carried out for an environmental impact assessment as well as on those considered to develop land-use ordering instruments. The methodology is applied to the territorial ordering plan and its proposal for the protection zone of the Cataniapo River basin. The purpose of the protection zone is to preserve the water quality andmore » quantity of the river basin for human consumption.« less
Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument…
Developing self-concept instrument for pre-service mathematics teachers
NASA Astrophysics Data System (ADS)
Afgani, M. W.; Suryadi, D.; Dahlan, J. A.
2018-01-01
This study aimed to develop self-concept instrument for undergraduate students of mathematics education in Palembang, Indonesia. Type of this study was development research of non-test instrument in questionnaire form. A Validity test of the instrument was performed with construct validity test by using Pearson product moment and factor analysis, while reliability test used Cronbach’s alpha. The instrument was tested by 65 undergraduate students of mathematics education in one of the universities at Palembang, Indonesia. The instrument consisted of 43 items with 7 aspects of self-concept, that were the individual concern, social identity, individual personality, view of the future, the influence of others who become role models, the influence of the environment inside or outside the classroom, and view of the mathematics. The result of validity test showed there was one invalid item because the value of Pearson’s r was 0.107 less than the critical value (0.244; α = 0.05). The item was included in social identity aspect. After the invalid item was removed, Construct validity test with factor analysis generated only one factor. The Kaiser-Meyer-Olkin (KMO) coefficient was 0.846 and reliability coefficient was 0.91. From that result, we concluded that the self-concept instrument for undergraduate students of mathematics education in Palembang, Indonesia was valid and reliable with 42 items.
Instrument Rating Knowledge Test Guide
DOT National Transportation Integrated Search
1995-01-01
The FAA has available hundreds of computer testing centers nationwide. These testing centers offer the full range of airman knowledge tests including military competence, instrument foreign pilot, and pilot examiner predesignated tests. Refer to appe...
International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings
NASA Astrophysics Data System (ADS)
Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.
Development and Validation of a Quality-of-Life Instrument for Infantile Hemangiomas.
Chamlin, Sarah L; Mancini, Anthony J; Lai, Jin-Shei; Beaumont, Jennifer L; Cella, David; Adams, Denise; Drolet, Beth; Baselga, Eulalia; Frieden, Ilona J; Garzon, Maria; Holland, Kristin; Horii, Kimberly A; Lucky, Anne W; McCuaig, Catherine; Metry, Denise; Morel, Kimberly D; Newell, Brandon D; Nopper, Amy J; Powell, Julie; Siegel, Dawn; Haggstrom, Anita N
2015-06-01
Infantile hemangiomas (IH) are common tumors for which there is no validated disease-specific instrument to measure the quality of life in infants and their parents/caregivers during the critical first months of life. This study prospectively developed and validated a quality-of-life instrument for patients with IH and their parents/caregivers and correlated demographic and clinical features to the effects on the quality of life. A total of 220 parents/caregivers completed the 35-item Infantile Hemangioma Quality-of-Life (IH-QoL) instrument and provided demographic information. The dimensionality of the items was evaluated using factor analysis, with results suggesting four factors: child physical symptoms, child social interactions, parent emotional functioning, and parent psychosocial functioning. Each factor fit the Rasch measurement model with acceptable fit index (mean square <1.4) and demonstrated excellent internal consistency, with alpha ranging from 0.76 to 0.88. The final instrument consists of four scales with a total of 29 items. Content validity was verified by analyzing parents' responses to an open-ended question. Test-retest reliability at a 48-hour interval was supported by a total IH-QoL intraclass correlation coefficient of 0.84. Certain clinical characteristics of hemangioma, including those located on the head and neck, in the proliferative stage, and requiring treatment, are associated with a greater impact on QoL.
NASA Technical Reports Server (NTRS)
Turpie, Kevin; Veraverbeke, Sander; Wright, Robert; Anderson, Martha; Prakash, Anupma; Quattrochi, Dale
2014-01-01
The Hyperspectral Infrared Imager (HyspIRI) mission was recommended for implementation by the 2007 report from the U.S. National Research Council Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also known as the Earth Science Decadal Survey. The HyspIRI mission is science driven and will address a set of science questions identified by the Decadal Survey and broader science community. The mission includes a visible shortwave infrared (VSWIR) imaging spectrometer, a multispectral thermal infrared (TIR) imager and an intelligent payload module (IPM). The IPM enables on-board processing and direct broadcast for those applications with short latency requirements. The science questions are organized as VSWIR-only, TIR-only and Combined science questions, the latter requiring data from both instruments. In order to prepare for the mission NASA is undertaking pre-phase A studies to determine the optimum mission implementation, in particular, cost and risk reduction activities. Each year the HyspIRI project is provided with feedback from NASA Headquarters on the pre-phase A activities in the form of a guidance letter which outlines the work that should be undertaken the subsequent year. The 2013 guidance letter included a recommendation to undertake a study to determine the science impact of deploying the instruments from separate spacecraft in sun synchronous orbits with various time separations and deploying both instruments on the International Space Station (ISS). This report summarizes the results from that study. The approach taken was to evaluate the impact on the combined science questions of time separations between the VSWIR and TIR data of <3 minutes, <1 week and a few months as well as deploying both instruments on the ISS. Note the impact was only evaluated for the combined science questions which require data from both instruments (VSWIR and TIR). The study concluded the impact of a separation of <3 minutes was minimal, e.g. if the instruments were on separate platforms that followed each other in a train. The impact of a separation of <1 week was strongly dependent on the question that was being addressed with no impact for some questions and a severe impact for others. The impact of a time separation of several months was severe and in many cases it was no longer possible to answer the sub-question. The impact of deploying the instruments on the ISS which is in a precessive (non-sun synchronous) orbit was also very question dependent, in some cases it was possible to go beyond the original question, e.g. to examine the impact of the diurnal cycle, whereas in other cases the question could not be addressed for example if the question required observations from the polar regions. As part of the study, the participants were asked to estimate, as a percentage, how completely a given sub-question could be answered with 100% indicating the question could be completely answered. These estimations should be treated with caution but nonetheless can be useful in assessing the impact. Averaging the estimates for each of the combined questions the results indicate that 97% of the questions could be answered with a separation of < 3 minutes. With a separation of < 1 week, 67% of the questions could be answered and with a separation of several months only 21% of the questions could be answered.
Lessons Learned During Instrument Testing for the Thermal Infrared Sensor (TIRS)
NASA Technical Reports Server (NTRS)
Peabody, Hume L.; Otero, Veronica; Neuberger, David
2013-01-01
The Themal InfraRed Sensor (TIRS) instrument, set to launch on the Landsat Data Continuity Mission in 2013, features a passively cooled telescope and IR detectors which are actively cooled by a two stage cryocooler. In order to proceed to the instrument level test campaign, at least one full functional test was required, necessitating a thermal vacuum test to sufficiently cool the detectors and demonstrate performance. This was fairly unique in that this test occurred before the Pre Environmental Review, but yielded significant knowledge gains before the planned instrument level test. During the pre-PER test, numerous discrepancies were found between the model and the actual hardware, which were revealed by poor correlation between model predictions and test data. With the inclusion of pseudo-balance points, the test also provided an opportunity to perform a pre-correlation to test data prior to the instrument level test campaign. Various lessons were learned during this test related to modeling and design of both the flight hardware and the Ground Support Equipment and test setup. The lessons learned in the pre-PER test resulted in a better test setup for the nstrument level test and the completion of the final instrument model correlation in a shorter period of time. Upon completion of the correlation, the flight predictions were generated including the full suite of off-nominal cases, including some new cases defined by the spacecraft. For some of these ·new cases, some components now revealed limit exceedances, in particular for a portion of the hardware that could not be tested due to its size and chamber limitations.. Further lessons were learned during the completion of flight predictions. With a correlated detalled instrument model, significant efforts were made to generate a reduced model suitable for observatory level analyses. This proved a major effort both to generate an appropriate network as well as to convert to the final model to the required format and yielded additional lessons learned. In spite of all the challenges encountered by TIRS, the instrument was successfully delivered to the spacecraft and will soon be tested at observatory level in preparation for a successful mission launch.