Science.gov

Sample records for instruments for measuring fluid properties or phenomena

  1. System for Measuring Conditional Amplitude, Phase, or Time Distributions of Pulsating Phenomena

    PubMed Central

    Van Brunt, Richard J.; Cernyar, Eric W.

    1992-01-01

    A detailed description is given of an electronic stochastic analyzer for use with direct “real-time” measurements of the conditional distributions needed for a complete stochastic characterization of pulsating phenomena that can be represented as random point processes. The measurement system described here is designed to reveal and quantify effects of pulse-to-pulse or phase-to-phase memory propagation. The unraveling of memory effects is required so that the physical basis for observed statistical properties of pulsating phenomena can be understood. The individual unique circuit components that comprise the system and the combinations of these components for various measurements, are thoroughly documented. The system has been applied to the measurement of pulsating partial discharges generated by applying alternating or constant voltage to a discharge gap. Examples are shown of data obtained for conditional and unconditional amplitude, time interval, and phase-of-occurrence distributions of partial-discharge pulses. The results unequivocally show the existence of significant memory effects as indicated, for example, by the observations that the most probable amplitudes and phases-of-occurrence of discharge pulses depend on the amplitudes and/or phases of the preceding pulses. Sources of error and fundamental limitations of the present measurement approach are analyzed. Possible extensions of the method are also discussed. PMID:28053450

  2. A Robust Magnetic Resonance Imager For Ground and Flight Based Measurements of Fluid Physics Phenomena

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nuclear magnetic resonance (NMR) is a powerful and versatile, noninvasive method for studying fluid transport problems, However, its applications to these types of investigations have been limited. A primary factor that limits the application of NMR has been the lack of a user-friendly, versatile, and inexpensive NMR imaging apparatus that can be used by scientists who are not familiar with sophisticated NMR. To rectify this situation, we developed a user-friendly, NMR imager for projects of relevance to the MRD science community. To that end, we performed preliminary collaborative experiments between NASA, NCMR, and New Mexico Resonance in the high field NMR set up at New Mexico Resonance to track wetting front dynamics in foams under gravity. The experiments were done in a 30 cm, 1.9T Oxford magnet with a TECMAG Libra spectrometer (Tecmag, Inc., Houston, TX). We used two different imaging strategies depending on whether the water in the foam sample was static or moving. Stationary water distributions were imaged with the standard Fourier imaging method, as used in medical MRI, in which data are acquired from all parts of the region of interest at all times and Fourier transformed into a static spatial image.

  3. Concepts and methods for describing critical phenomena in fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Sengers, J. M. H. L.

    1977-01-01

    The predictions of theoretical models for a critical-point phase transistion in fluids, namely the classical equation with third-degree critical isotherm, that with fifth-degree critical isotherm, and the lattice gas, are reviewed. The renormalization group theory of critical phenomena and the hypothesis of universality of critical behavior supported by this theory are discussed as well as the nature of gravity effects and how they affect cricital-region experimentation in fluids. The behavior of the thermodynamic properties and the correlation function is formulated in terms of scaling laws. The predictions of these scaling laws and of the hypothesis of universality of critical behavior are compared with experimental data for one-component fluids and it is indicated how the methods can be extended to describe critical phenomena in fluid mixtures.

  4. Advanced optical measuring systems for measuring the properties of fluids and structures

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1986-01-01

    Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.

  5. Diver-Operated Instruments for In-Situ Measurement of Optical Properties

    DTIC Science & Technology

    1999-09-30

    IMPACT/APPLICATION The new instruments are intended to advance the state of the art in diver-operated tools for underwater spectral measurements. They...Diver-Operated Instruments for In-Situ Measurement of Optical Properties Charles Mazel Physical Sciences Inc. 20 New England Business Center Andover...improved diver-operated instrumentation for making reflectance and fluorescence spectral measurements from benthic features in situ. The new instrument

  6. Quantum Simulator for Transport Phenomena in Fluid Flows.

    PubMed

    Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-08-17

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

  7. Quantum Simulator for Transport Phenomena in Fluid Flows

    PubMed Central

    Mezzacapo, A.; Sanz, M.; Lamata, L.; Egusquiza, I. L.; Succi, S.; Solano, E.

    2015-01-01

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors. PMID:26278968

  8. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOEpatents

    Campbell, Melvin D.

    1994-01-01

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position.

  9. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOEpatents

    Campbell, M.D.

    1994-01-11

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position. 8 figures.

  10. Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties.

    PubMed

    Bautista, Mary Ann C; Nurjono, Milawaty; Lim, Yee Wei; Dessers, Ezra; Vrijhoef, Hubertus Jm

    2016-12-01

    Policy Points: Investigations on systematic methodologies for measuring integrated care should coincide with the growing interest in this field of research. A systematic review of instruments provides insights into integrated care measurement, including setting the research agenda for validating available instruments and informing the decision to develop new ones. This study is the first systematic review of instruments measuring integrated care with an evidence synthesis of the measurement properties. We found 209 index instruments measuring different constructs related to integrated care; the strength of evidence on the adequacy of the majority of their measurement properties remained largely unassessed.

  11. Noncontact temperature measurements in the microgravity fluids and transport phenomena discipline

    NASA Technical Reports Server (NTRS)

    Salzman, Jack

    1988-01-01

    The program of activities within the Microgravity Fluids and Transport Phenomena Discipline has been structured to enable the systematic pursuit of an increased understanding of low gravity fluid behavior/phenomena in a way which ensures that the results are appropriate to the widest range of applications. This structure is discussed and an overview of some of the activities which are underway is given. Of significance is the fact that in the majority of the current and planned activities, the measurement and, or control of the fluid temperature is a key experiment requirement. In addition, many of the experiments require that the temperature measurement be nonintrusive. A description of these requirements together with the current techniques which are being employed or under study to make these measurements is also discussed.

  12. Means and Method for Measurement of Drilling Fluid Properties

    NASA Astrophysics Data System (ADS)

    Lysyannikov, A.; Kondrashov, P.; Pavlova, P.

    2016-06-01

    The paper addresses the problem on creation of a new design of the device for determining rheological parameters of drilling fluids and the basic requirements which it must meet. The key quantitative parameters that define the developed device are provided. The algorithm of determining the coefficient of the yield point from the rheological Shvedov- Bingam model at a relative speed of rotation of glasses from the investigated drilling fluid of 300 and 600 rpm is presented.

  13. Critical phenomena experiments in space. [for fluid phase-equilibrium

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Moldover, M. R.

    1978-01-01

    The paper analyzes several types of critical phenomena in fluids, shows how they are affected by the presence of gravity, and describes how experiments conducted in an orbiting laboratory under low gravity conditions could extend the range of measurements needed to study critical phenomena. Future experiments are proposed. One would be a careful measurement of the dielectric constant in a low gravity environment. Two basic problems that can benefit especially from space experiments are the specific heat near the critical point and the shear viscosity at the gas-liquid critical point.

  14. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  15. Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.

    2010-01-01

    A technique was created to measure the pupil alignment of instruments in situ by measuring calibrated pupil alignment references (PARs) in instruments. The PAR can also be measured using an alignment telescope or an imaging system. PAR allows the verification of the science instrument (SI) pupil alignment at the integrated science instrument module (ISIM) level of assembly at ambient and cryogenic operating temperature. This will allow verification of the ISIM+SI alignment, and provide feedback to realign the SI if necessary.

  16. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  17. Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications

    NASA Technical Reports Server (NTRS)

    Gavert, R.

    2000-01-01

    Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.

  18. A non-contacting vertical alignment system for mass properties measuring instruments

    SciTech Connect

    James, G.H. III; Suazo, J.E.; Varga, R.C.

    1993-11-01

    A non-contact system for alignment of objects on mass properties measuring instruments is described. Test parts can be aligned to within the capabilities of the user and the fixture to make the adjustments. The current implementation can align objects to less than .001 inches at two points with final requested adjustments of a few ten-thousands of an inch. The non-contact capability allows the alignment of objects which are too compliant or fragile for traditional contacting measurement methods. Also, this system allows the definition of a reference axis on objects which are not perfectly symmetric. The reference axis is defined at the top of the object by an appropriate marker and defined at the bottom by a best fit circle through the surface at a specified height. A general description of the hardware, procedures, and results are presented for the non-user. Appendices which contain a complete description of the software, usage, and mathematical implementation are provided for the reader who is interested in using or further developing the system.

  19. Seismoelectric Phenomena in Fluid-Saturated Sediments

    SciTech Connect

    Block, G I; Harris, J G

    2005-04-22

    Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study this electrokinetic (EK) effect are described and outcomes for studies of seismoelectric phenomena in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves, and (2) the electromagnetic wave produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores--this feature is characteristic of poroelastic (Biot) media, but not predicted by either viscoelastic fluid or solid models. A model of plane-wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both sand and glass microspheres.

  20. Study of Microfluidic System for Mechanical Property Measurement of Fluid-cell Interface

    NASA Astrophysics Data System (ADS)

    Moon, Ji Young; Lee, Jung Shin; Choi, Se Bin; Yoon, Hong Min; Tanner, Roger I.; Lee, Joon Sang

    2016-11-01

    The system for measuring the mechanical properties of active cell is studied through an integrated microfluidic system for cell separation, alignment and measurement of mechanical properties. A highly efficient lattice Boltzmann method (LBM) was employed to optimize the micro-fluidic system to investigate the interrelations between mechanical properties and various surrounding fluid ingredients which are difficult to observe using current experimental techniques. A combination model of the three dimensional LBM and the immersed boundary method (IBM) were used to simulate these systems. The LBM was used to determine incompressible fluid flow with a regular Eulerian grid. The IBM was used to solve the deformation of cells and matrix fluid interaction with a Lagrangian grid. Highly non-linear results such as cell-cell interactions, fluid-cell interactions, and optical force-cell interactions is studied. National Research Foundation of Korea (NRF) (Grant Number: NRF-2015R1A2A1A15056182, NRF-2015R1A5A1037668).

  1. Instrumented thick-walled tube method for measuring thermal pressure in fluids and isotropic stresses in thermosetting resins

    NASA Astrophysics Data System (ADS)

    Merzlyakov, Mikhail; Simon, Sindee L.; McKenna, Gregory B.

    2005-06-01

    We have developed a method for measuring the thermal pressure coefficient and cure-induced and thermally induced stresses based on an instrumented thick-walled tube vessel. The device has been demonstrated at pressures up to 330 MPa and temperatures to 300 °C. The method uses a sealed stainless steel thick-walled tube to impose three-dimensional isotropic constraints. The tube is instrumented with strain gauges in hoop and in axial directions and can be used in open or closed configurations. By making measurements of the isotropic stresses as a function of temperature, the method allows determination of the thermal pressure coefficient in both the glassy and rubbery (or liquid) states. The method also can be used to measure isotropic stress development in thermosetting resins during cure and subsequent thermal cycling. Experimental results are presented for sucrose benzoate, di-2-ethylhexylsebacate, and an epoxy resin. The current report shows that the method provides reliable estimates for the thermal pressure coefficient. The thermal pressure coefficient is determined with resolution on the order of 10kPa/K. Among advantages of the method is that the tubes are reusable, even when measurements are made for cure response of thermosetting resins.

  2. From Particles to Fluid Dynamics for Flocking Phenomena

    NASA Astrophysics Data System (ADS)

    Toscani, G.

    2010-04-01

    We study the dynamics of groups of undistinguished agents, which, while interacting according to their relative positions, dissipate energy. These models are developed to mimic the collective motion of groups of living individuals such as bird flocks, fish schools or bacteria colonies. According to the Cucker and Smale model,7 binary interactions between agents are modelled by dissipative collisions in which the coefficient of restitution depends on their relative distance. Under the assumption of weak dissipation, it is shown that the consequent dynamics can be described at a fluid dynamic level by the Euler equation for compressible fluids, in which the equations for momentum and energy present a dissipative correction.

  3. Instrumentation for Sensitive Gas Measurements

    NASA Technical Reports Server (NTRS)

    OKeefe, Anthony

    2005-01-01

    An improved instrument for optical absorption spectroscopy utilizes off-axis paths in an optical cavity in order to increase detection sensitivity while suppressing resonance effects. The instrument is well suited for use in either cavity ring-down spectroscopy (CRDS) [in which one pulses an incident light beam and measures the rate of decay of light in the cavity] or integrated cavity output spectroscopy (ICOS) [in which one uses a continuous-wave incident light beam and measures the power of light in the cavity as a function of wavelength]. Typically, in optical absorption spectroscopy, one seeks to measure absorption of a beam of light in a substance (usually a gas or liquid) in a sample cell. In CRDS or ICOS, the sample cell is placed in (or consists of) an optical cavity, so that one can utilize multiple reflections of the beam to increase the effective optical path length through the absorbing substance and thereby increase the sensitivity for measuring absorption. If an absorbing substance is not present in the optical cavity, one can utilize the multiple passes of the light beam to increase the sensitivity for measuring absorption and scattering by components of the optical cavity itself. It is desirable to suppress the effects of resonances in the cavity in order to make the spectral response of the cavity itself as nearly constant as possible over the entire wavelength range of interest. In the present instrument, the desired flattening of the spectral response is accomplished by utilizing an off-axis beam geometry to effectively decrease the frequency interval between longitudinal electromagnetic modes of the cavity, such that the resulting transmission spectrum of the cavity is nearly continuous: in other words, the cavity becomes a broad-band optical device.

  4. A Laboratory Laser-Ultrasonic Instrument for Measuring the Mechanical Properties of Paper Webs

    NASA Astrophysics Data System (ADS)

    Lafond, Emmanuel; Ridgway, Paul; Jackson, Ted; Habeger, Chuck; Russo, Rick

    2003-03-01

    For the paper industry, stiffness properties are an important parameter for producing more efficiently a fibrous material like paper. Some stiffness properties of paper webs can be obtained in a non-contact fashion using two lasers. The authors have developed an automated laboratory laser-ultrasonics instrument for paper, described here. The results of non-contact laser generation and detection of ultrasound are also presented. The paper grades investigated were heavy grades like linerboard, as well as copy paper.

  5. Ultrasonic techniques for measuring physical properties of fluids in harsh environments

    NASA Astrophysics Data System (ADS)

    Pantea, Cristian

    Ultrasonic-based measurement techniques, either in the time domain or in the frequency domain, include a wide range of experimental methods for investigating physical properties of materials. This discussion is specifically focused on ultrasonic methods and instrumentation development for the determination of liquid properties at conditions typically found in subsurface environments (in the U.S., more than 80% of total energy needs are provided by subsurface energy sources). Such sensors require materials that can withstand harsh conditions of high pressure, high temperature and corrosiveness. These include the piezoelectric material, electrically conductive adhesives, sensor housings/enclosures, and the signal carrying cables, to name a few. A complete sensor package was developed for operation at high temperatures and pressures characteristic to geothermal/oil-industry reservoirs. This package is designed to provide real-time, simultaneous measurements of multiple physical parameters, such as temperature, pressure, salinity and sound speed. The basic principle for this sensor's operation is an ultrasonic frequency domain technique, combined with transducer resonance tracking. This multipurpose acoustic sensor can be used at depths of several thousand meters, temperatures up to 250 °C, and in a very corrosive environment. In the context of high precision measurement of sound speed, the determination of acoustic nonlinearity of liquids will also be discussed, using two different approaches: (i) the thermodynamic method, in which precise and accurate frequency domain sound speed measurements are performed at high pressure and high temperature, and (ii) a modified finite amplitude method, requiring time domain measurements of the second harmonic at room temperature. Efforts toward the development of an acoustic source of collimated low-frequency (10-150 kHz) beam, with applications in imaging, will also be presented.

  6. Acoustic properties of a crack containing magmatic or hydrothermal fluids

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2000-01-01

    We estimate the acoustic properties of a crack containing maginatic or hydrothermal fluids to quantify the source properties of long-period (LP) events observed in volcanic areas assuming that a crack-like structure is the source of LP events. The tails of synthetic waveforms obtained from a model of a fluid-driven crack are analyzed by the Sompi method to determine the complex frequencies of one of the modes of crack resonance over a wide range of the model parameters ??/a and ??f/??s, where ?? is the P wave velocity of the rock matrix, a is the sound speed of the fluid, and ??f and ??s are the densities of the fluid and rock matrix, respectively. The quality factor due to radiation loss (Qr) for the selected mode almost monotonically increases with increasing ??/a, while the dimensionless frequency (??) of the mode decreases with increasing ??/a and ??f/??s. These results are used to estimate Q and ?? for a crack containing various types of fluids (gas-gas mixtures, liquid-gas mixtures, and dusty and misty gases) for values of a, ??f, and quality factor due to intrinsic losses (Qi) appropriate for these types of fluids, in which Q is given by Q-1 = Qr-1 + Qi-1. For a crack containing such fluids, we obtain Q ranging from almost unity to several hundred, which consistently explains the wide variety of quality factors measured in LP events observed at various volcanoes. We underscore the importance of dusty and misty gases containing small-size particles with radii around 1 ??m to explain long-lasting oscillations with Q significantly larger than 100. Our results may provide a basis for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events in terms of fluid compositions beneath volcanoes. Copyright 2000 by the American Geophysical Union.

  7. The Game Transfer Phenomena Scale: An Instrument for Investigating the Nonvolitional Effects of Video Game Playing.

    PubMed

    Ortiz de Gortari, Angelica B; Pontes, Halley M; Griffiths, Mark D

    2015-10-01

    A variety of instruments have been developed to assess different dimensions of playing video games and its effects on cognitions, affect, and behaviors. The present study examined the psychometric properties of the Game Transfer Phenomena Scale (GTPS) that assesses nonvolitional phenomena experienced after playing video games (i.e., altered perceptions, automatic mental processes, and involuntary behaviors). A total of 1,736 gamers participated in an online survey used as the basis for the analysis. Confirmatory factor analysis (CFA) was performed to confirm the factorial structure of the GTPS. The five-factor structure using the 20 indicators based on the analysis of gamers' self-reports fitted the data well. Population cross-validity was also achieved, and the positive associations between the session length and overall scores indicate the GTPS warranted criterion-related validity. Although the understanding of Game Transfer Phenomena is still in its infancy, the GTPS appears to be a valid and reliable instrument for assessing nonvolitional gaming-related phenomena. The GTPS can be used for understanding the phenomenology of post-effects of playing video games.

  8. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  9. Fluid Flow Phenomena during Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  10. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    DOEpatents

    Weitz, Karl K.; Moore, Ronald J.

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  11. Blood-Mimicking Fluid for Testing Ultrasonic Diagnostic Instrument

    NASA Astrophysics Data System (ADS)

    Tanaka, Kouhei; Yoshida, Tomoji; Sato, Kazuishi; Kondo, Toshio; Yasukawa, Kazuhiro; Miyamoto, Nobuaki; Taniguchi, Masahiko

    2012-07-01

    We present a blood-mimicking fluid (BMF) for the Doppler test object of medical diagnostic instruments. Accurate measurement in a flow Doppler test requires a BMF that has the acoustic velocity and density defined in the International Electrotechnical Commission (IEC) standard, and furthermore, they must be stable over time. To formulate a fluid with the desired density and acoustic velocity, we have developed a new fluid made of glycerine and water-soluble silicone oil. The new BMF includes dispersed polystyrene particles as scatterers. The density of the liquid can be adjusted to maintain it at the same value as that of the polystyrene particles, thus ensuring neutral buoyancy of the particles. The MBF was stable over a period of 2 weeks, during which the density and acoustic velocity did not change.

  12. A Differential Pressure Instrument with Wireless Telemetry for In-Situ Measurement of Fluid Flow across Sediment-Water Boundaries

    PubMed Central

    Gardner, Alan T.; Karam, Hanan N.; Mulligan, Ann E.; Harvey, Charles F.; Hammar, Terence R.; Hemond, Harold F.

    2009-01-01

    An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument's two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated. PMID:22389608

  13. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.

  14. Instrumentation for the determination of material properties from spectroscopic measurements of total integrated scatter

    SciTech Connect

    Powell, G.L.; Barber, T.E.; Neu, J.T.

    1995-06-19

    A variety of important optical properties can be determined from spectroscopic analysis of diffuse reflectance of surfaces. The design of a small user friendly, light-weight, field hardened, computer controlled device for performing infrared spectroscopic analysis of trace contaminants on surfaces is described. The device employs a miniature Fourier transform infrared (FTIR) spectrometer with very efficient diffuse reflectance optics and a portable computer to provide reflectance spectra of surfaces measured relative to some idealized surface. These spectra yield qualitative and quantitative chemical information from a host of surfaces that has imminently practical applications in the determination of surface identification, contamination, and degradation.

  15. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  16. Characterization of Side Load Phenomena Using Measurement of Fluid/Structure Interaction

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joseph; Reed, Darren; DAgostino, Mark; Keanini, Russell; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    During ground-tests of most production rocket engines over the last 30 years, large asymmetric transient side loads coming from the nozzle and related steady-state vibrational loads within the nozzle have been measured. The widely varying magnitude of these loads has been large enough to fail interfacing components as well as nozzles in these engines. This paper will discuss a comprehensive test and analysis program that has been undertaken to develop a methodology to accurately predict the character and magnitude of this loading. The project to-date has incorporated analytical modeling of both the fluid flow and the nozzle structure and testing of both full-scale and sub-scale rocket nodes. Examination of the test data indicates that one of the two-nodal diameter structural modes may be interacting with flow separation from the nozzle inside-wall in a self-excited or aeroelastic vibration phenomenon. If verified, this observation will be used to develop a methodology for design and analysis. A fuller understanding of the characteristics of this vibration will provide an increase in the accuracy and confidence of side load predictions, which will be critical for the successful construction of the next generation of low-cost, reliable rocket engines.

  17. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review

    PubMed Central

    Lima, Elaine; Teixeira-Salmela, Luci F.; Simões, Luan; Guerra, Ana C. C.; Lemos, Andrea

    2016-01-01

    Background While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. Objective To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Method Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. Results A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. Conclusion The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed. PMID:26982452

  18. Instrumentation for detailed bridge-scour measurements

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; Trent, Roy E.; ,

    1993-01-01

    A portable instrumentation system is being developed to obtain channel bathymetry during floods for detailed bridge-scour measurements. Portable scour measuring systems have four components: sounding instrument, horizontal positioning instrument, deployment mechanisms, and data storage device. The sounding instrument will be a digital fathometer. Horizontal position will be measured using a range-azimuth based hydrographic survey system. The deployment mechanism designed for this system is a remote-controlled boat using a small waterplane area, twin-hull design. An on-board computer and radio will monitor the vessel instrumentation, record measured data, and telemeter data to shore.

  19. An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime.

    PubMed

    Vajente, G; Quintero, E A; Ni, X; Arai, K; Gustafson, E K; Robertson, N A; Sanchez, E J; Greer, J R; Adhikari, R X

    2016-06-01

    Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10(-15) m/Hz in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.

  20. An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime

    NASA Astrophysics Data System (ADS)

    Vajente, G.; Quintero, E. A.; Ni, X.; Arai, K.; Gustafson, E. K.; Robertson, N. A.; Sanchez, E. J.; Greer, J. R.; Adhikari, R. X.

    2016-06-01

    Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10-15 m/ √{ Hz } in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.

  1. An instrument for environmental control of vapor pressure and temperature for tensile creep and other mechanical property measurements.

    PubMed

    Majsztrik, P W; Bocarsly, A B; Benziger, J B

    2007-10-01

    An instrument for measuring the creep response of a material maintained under a controlled environment of temperature and vapor pressure is described. The temperature range of the instrument is 20-250 degrees C while the range of vapor pressure is 0-1 atm. Data are presented for tests conducted on this instrument with Nafion, a perfluorinated ionomer developed by DuPont and used as a membrane in polymer exchange membrane fuel cells, over a range of temperature and water vapor pressure. The data are useful for predicting long-term creep behavior of the material in the fuel cell environment as well as providing insight to molecular level interactions in the material as a function of temperature and hydration. Measurements including dynamic and equilibrium strain due to water uptake as well as elastic modulus are described. The main features of the instrument are presented along with experimental methodology and analysis of results. The adaptation of the instrument to other mechanical tests is briefly described.

  2. An instrument for environmental control of vapor pressure and temperature for tensile creep and other mechanical property measurements

    NASA Astrophysics Data System (ADS)

    Majsztrik, P. W.; Bocarsly, A. B.; Benziger, J. B.

    2007-10-01

    An instrument for measuring the creep response of a material maintained under a controlled environment of temperature and vapor pressure is described. The temperature range of the instrument is 20-250°C while the range of vapor pressure is 0-1atm. Data are presented for tests conducted on this instrument with Nafion®, a perfluorinated ionomer developed by DuPont and used as a membrane in polymer exchange membrane fuel cells, over a range of temperature and water vapor pressure. The data are useful for predicting long-term creep behavior of the material in the fuel cell environment as well as providing insight to molecular level interactions in the material as a function of temperature and hydration. Measurements including dynamic and equilibrium strain due to water uptake as well as elastic modulus are described. The main features of the instrument are presented along with experimental methodology and analysis of results. The adaptation of the instrument to other mechanical tests is briefly described.

  3. Development of measurement capabilities for the thermophysical properties of energy-related fluids. Annual report, December 1, 1993--November 30, 1994

    SciTech Connect

    Not Available

    1993-08-17

    Objectives are to develop state-of-the-art experimental apparatus for measuring the thermophysical properties of a wide range of fluids and fluid mixtures important to the energy, chemical, and energy-related industries, and carry out benchmark measurements on key systems. Measurement capabilities to be developed cover transport properties, thermodynamic properties, phase equilibria properties, and dielectric properties. The new apparatus will make it possible to study a wide range of complex fluid systems under conditions that have been previously inaccessible. Specific measurement capabilities to be developed are: Thermal Conductivity Apparatus, Vibrating Wire Viscometer, Dual-Sinker Densimeter, High-Temperature Vibrating Tube Densimeter, Dynamic Phase Equilibria Apparatus, Apparatus for Dilute Solutions, Total-Enthalpy Flow Calorimeter, Dielectric Constant Apparatus. The research also includes benchmark experimental measurements on pure and mixed alternative refrigerants, aqueous solutions, and carefully selected systems consisting of species of diverse size (methane + neopentane) and polarity (methane + ammonia) important for development of predictive models for energy-related fluids.

  4. Instrument for measuring human biting force

    NASA Astrophysics Data System (ADS)

    Kopola, Harri K.; Mantyla, Olavi; Makiniemi, Matti; Mahonen, Kalevi; Virtanen, Kauko

    1995-02-01

    Alongside EMG activity, biting force is the primary parameter used for assessing the biting problems of dentulous patients and patients with dentures. In a highly conductive oral cavity, dielectric measurement methods are preferred, for safety reasons. The maximum biting force for patients with removable dentures is not more than 100 ... 300 N. We report here on an instrument developed for measuring human biting force which consists of three units: a mouthpiece, a signal processing and interface unit (SPI), and a PC. The mouthpiece comprises a sensor head of thickness 3.4 mm, width 20 mm and length 30 mm constructed of two stainless steel plates and with a fiber optic microbending sensor between them. This is connected to the SPI unit by a three-meter fiber optic cable, and the SPI unit to the PC by an RS connection. A computer program has been developed that includes measurement, display, zeroing, and calibration operations. The instrument measures biting force as a function of time and displays the time-dependent force profile and maximum force on a screen or plots it in hard copy. The dynamic measurement range of the mouthpiece is from 0 to 1000 N, and the resolution of the instrument is 10 N. The results of preliminary clinical measurements and repeatability tests are reported.

  5. Instrumentation for Surface Flux Measurements

    DTIC Science & Technology

    2012-05-10

    National Park , she used the sonic and a Li-Cor C02-H20 analyzer at a height of 3 m to measure the vertical turbulent flux of C02 downwind of...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office P.O. Box 12211 Research Triangle Park , NC 27709-2211 3. REPORT TYPE...and subgrid-scale array measurements In summer 2000 we lent 7 of the CSAT3 sonics to the National Center for Atmo- spheric Research (NCAR) for use in

  6. Method for simultaneous measurement of mass loading and fluid property changes using a quartz crystal microbalance

    DOEpatents

    Granstaff, Victoria E.; Martin, Stephen J.

    1993-01-01

    A method, using a quartz crystal microbalance, to obtain simultaneous measurement of solid mass accumulation and changes in liquid density-viscosity product. The simultaneous real-time measurements of electrical parameters yields that changes in surface mass can be differentiated from changes in solution properties. Two methods to obtain the admittance/frequency data are employed.

  7. Method for simultaneous measurement of mass loading and fluid property changes using a quartz crystal microbalance

    DOEpatents

    Granstaff, V.E.; Martin, S.J.

    1993-04-13

    A method is described, using a quartz crystal microbalance, to obtain simultaneous measurement of solid mass accumulation and changes in liquid density-viscosity product. The simultaneous real-time measurements of electrical parameters yields that changes in surface mass can be differentiated from changes in solution properties. Two methods to obtain the admittance/frequency data are employed.

  8. A Magnetic-Fluid Seal for Measurement of Aerodynamic Surface Pressure.

    DTIC Science & Technology

    1977-04-01

    A magnetic - fluid sliding seal was designed, fabricated, and tested for application in a special instrumentation arrangement to measure the...spin rates. The effects of certain seal parameters were investigated including: gap distance between stationary and moving components, magnetic ... fluid properties (i.e., magnetization strength and viscosity), and ferrous versus nonferrous moving component material. These tests demonstrated that the

  9. A Novel Instrumentation Circuit for Electrochemical Measurements

    PubMed Central

    Yin, Li-Te; Wang, Hung-Yu; Lin, Yang-Chiuan; Huang, Wen-Chung

    2012-01-01

    In this paper, a novel signal processing circuit which can be used for the measurement of H+ ion and urea concentration is presented. A potentiometric method is used to detect the concentrations of H+ ions and urea by using H+ ion-selective electrodes and urea electrodes, respectively. The experimental data shows that this measuring structure has a linear pH response for the concentration range within pH 2 and 12, and the dynamic range for urea concentration measurement is in the range of 0.25 to 64 mg/dL. The designed instrumentation circuit possesses a calibration function and it can be applied to different sensing electrodes for electrochemical analysis. It possesses the advantageous properties of being multi-purpose, easy calibration and low cost. PMID:23012565

  10. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    of constant cross sectional area, and to facilitate fluid filling and draining operations in microgravity. The fluid cells may be used singly for bulk solutions, or in a Stokes diaphragm configuration to investigate membrane mediated phenomena. Thermal and electrical driving potentials are applied to the experiment fluids through boundary plates located at the ends of the fluid cells. In the ground based instrument, two constant temperature baths circulate through reservoirs adjacent to the boundary plates, and establish the thermal environment within the fluid cells. The boundary plates also serve as electrodes for measurement and application of electrical potentials. The Fluid Manipulation System associated with the MTA is a computer controlled system that enables storage and transfer of experiment fluids during on orbit operations. The system is used to automatically initiate experiments and manipulate fluids by orchestrating pump and valve operations through scripted sequences. Unique technologies are incorporated in the MTA for measurement of fluid properties. Volumetric Flow Sensors have been developed for precision measurement of total fluid volume contained within the fluid cells over time. This data is most useful for measuring the kinetics of osmosis, where fluid is transported from one fluid cell to another through a semipermeable membrane. The MicroSensor Array has been designed to perform in situ measurement of several important fluid parameters, providing simultaneous measurement of solution composition at multiple locations within the experiment fluids. Micromachined sensors and interface electronics have been developed to measure temperature, electrical conductivity, pH, cation activity, and anion activity. The Profile Refractometer uses a laser optical system to directly image the fluid Index of Refraction profile that exists along the MTA fluid cell axis. A video system acquires images of the RI profile over time, and records the transport kinetics

  11. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for

  12. Measurement of Henry's Law Constants Using Internal Standards: A Quantitative GC Experiment for the Instrumental Analysis or Environmental Chemistry Laboratory

    ERIC Educational Resources Information Center

    Ji, Chang; Boisvert, Susanne M.; Arida, Ann-Marie C.; Day, Shannon E.

    2008-01-01

    An internal standard method applicable to undergraduate instrumental analysis or environmental chemistry laboratory has been designed and tested to determine the Henry's law constants for a series of alkyl nitriles. In this method, a mixture of the analytes and an internal standard is prepared and used to make a standard solution (organic solvent)…

  13. Instruments Measuring Externalizing Mental Health Problems in Immigrant Ethnic Minority Youths: A Systematic Review of Measurement Properties

    PubMed Central

    Paalman, Carmen H.; Terwee, Caroline B.; Jansma, Elise P.; Jansen, Lucres M. C.

    2013-01-01

    Background Little is known about reliability and validity of instruments measuring externalizing mental health problems in immigrant ethnic minority youths. Aims To provide an overview of studies on measurement properties of instruments measuring these problems in immigrant ethnic minority youths, their methodological quality and results. Methods A systematic review of the literature in MEDLINE, EMbase, PsycINFO and Cochrane Library was performed. Evaluation of methodological quality of studies found was done by using the ‘COSMIN-checklist’. Full text, original articles, published in English after 1990 were included. Articles had to concern the development or evaluation of the measurement properties of self-reported, parent-reported and/or teacher- or clinician-reported questionnaires assessing or screening externalizing mental health problems in immigrant ethnic minority youths. Specific results of analyses on (an) immigrant ethnic minority group had to be given. Results Twenty-nine studies evaluating 18 instruments met our criteria. Most studies concerned instruments with known validity in Western populations, tested mainly in African Americans. Considering methodological quality, inequivalences between ethnicities were found, self-reports seemed to perform better, and administration of an instrument influenced reliability and validity. Conclusion It seems that the majority of instruments for assessing externalizing problems in immigrant ethnic minority youths is currently not sufficiently validated. Further evaluating existing instruments is crucial to accurately assess and interpreted externalizing problems in immigrant ethnic minority youths. PMID:23704892

  14. Instrumentation for bone density measurement

    NASA Technical Reports Server (NTRS)

    Meharg, L. S.

    1968-01-01

    Measurement system evaluates the integrated bone density over a specific cross section of bone. A digital computer converts stored bone scan data to equivalent aluminum calibration wedge thickness, and bone density is then integrated along the scan by using the trapezoidal approximation integration formula.

  15. Instruments for measuring mental health recovery: a systematic review.

    PubMed

    Sklar, Marisa; Groessl, Erik J; O'Connell, Maria; Davidson, Larry; Aarons, Gregory A

    2013-12-01

    Persons in recovery, providers, and policymakers alike are advocating for recovery-oriented mental health care, with the promotion of recovery becoming a prominent feature of mental health policy in the United States and internationally. One step toward creating a recovery-oriented system of care is to use recovery-oriented outcome measures. Numerous instruments have been developed to assess progress towards mental health recovery. This review identifies instruments of mental health recovery and evaluates the appropriateness of their use including their psychometric properties, ease of administration, and service-user involvement in their development. A literature search using the Medline and Psych-INFO databases was conducted, identifying 21 instruments for potential inclusion in this review, of which thirteen met inclusion criteria. Results suggest only three instruments (25%) have had their psychometric properties assessed in three or more unique samples of participants. Ease of administration varied between instruments, and for the majority of instruments, development included service user involvement. This review updates and expands previous reviews of instruments to assess mental health recovery. As mental health care continues to transform to a recovery-oriented model of service delivery, this review may facilitate selection of appropriate assessments of mental health recovery for systems to use in evaluating and improving the care they provide.

  16. An instrumented tissue tester for measuring soft tissue property under the metatarsal heads in relation to metatarsophalangeal joint angle.

    PubMed

    Chen, Wen-Ming; Phyau-Wui Shim, Victor; Park, Seung-Bum; Lee, Taeyong

    2011-06-03

    Identification of the localized mechanical response of the plantar soft tissue pads underneath the metatarsal heads (i.e., sub-MTH pad) to external loading is key to understand and predict how it functions in a gait cycle. The mechanical response depends on various parameters, such as the external load (direction and rate), the sub-MTH tissue properties (anisotropy and viscoelasticity), and the configuration of the metatarsophalangeal (MTP) joint overlying the tissue. In this study, an instrument-driven tissue tester that incorporates a portable motorized indentor within a special foot positioning apparatus was developed for realistic in vivo mechanical characterization (i.e. tissue stiffness and force relaxation behavior) of the local sub-MTH pad with the MTP joint configured at various dorsiflexion angles associated with gait. The tester yields consistent results for tests on the 2nd sub-MTH pad. Measurement errors for the initial stiffness (for indentation depths ≤ 1 mm), end-point stiffness, and percentage force relaxation were less than 0.084 N/mm, 0.133 N/mm, and 0.127%, respectively, across all test configurations. The end-point tissue stiffness, which increased by 104.2% due to a 50° MTP joint dorsiflexion, also agreed with a previous investigation. In vivo tissue's force relaxation was shown to be pronounced (avg. = 8.1%), even for a short holding-time interval. The proposed technique to facilitate study of the dependence of the local sub-MTH pad and tissue response on the MTP joint angle might be preferable to methods that focus solely on measurement of tissue property because under physiologic conditions the sub-MTH pad elasticity may vary in gait, to adapt to drastically changing mechanical demands in the sub-MTH region of the terminal stance-phase, where MTP joint dorsiflexion occurs.

  17. The quality of evidence of psychometric properties of three-dimensional spinal posture-measuring instruments

    PubMed Central

    2011-01-01

    Background Psychometric properties include validity, reliability and sensitivity to change. Establishing the psychometric properties of an instrument which measures three-dimensional human posture are essential prior to applying it in clinical practice or research. Methods This paper reports the findings of a systematic literature review which aimed to 1) identify non-invasive three-dimensional (3D) human posture-measuring instruments; and 2) assess the quality of reporting of the methodological procedures undertaken to establish their psychometric properties, using a purpose-build critical appraisal tool. Results Seventeen instruments were identified, of which nine were supported by research into psychometric properties. Eleven and six papers respectively, reported on validity and reliability testing. Rater qualification and reference standards were generally poorly addressed, and there was variable quality reporting of rater blinding and statistical analysis. Conclusions There is a lack of current research to establish the psychometric properties of non-invasive 3D human posture-measuring instruments. PMID:21569486

  18. Hysteresis phenomena in hydraulic measurement

    NASA Astrophysics Data System (ADS)

    Ran, H. J.; Luo, X. W.; Chen, Y. L.; Xu, H. Y.; Farhat, M.

    2012-11-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  19. Measuring the Optical Properties of Astrophysical Dust Analogues: Instrumentation and Methods

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Benford, D. J.; Cataldo, G.; Dwek, E.; Henry, R.; Kinzer, R. E., Jr.; Nuth, J.; Silverberg, R.; Wheeler, C.; Wollack, E.

    2011-01-01

    Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new infrared facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-infrared through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools.

  20. Projectile Measurements and Instrumentation Laboratory Mass Property Measurements

    DTIC Science & Technology

    1974-09-01

    balance should be stored in a place where vibrations will not be transmitted to the bearings and knives, causing undue wear. The balance should be kept...Also for simplicity, any clockwise tendency will be considered positive, and counterclockwise potation of the beam will be considered negative...displacement of the wire with respect to its equilibrium or unstressed position. If the elastic limit is not exceeded, the same potential energy

  1. An instrument for measuring cancer patients' preferences for support groups.

    PubMed

    Smoczyk, C M; Zhu, W; Whatley, M H

    1992-01-01

    The purpose of this study was to develop a valid and reliable instrument to assess cancer patients' preferences for all types of social support and organizational features of cancer support groups. The content of the instrument was the result of a detailed analysis of four resources: (1) literature relating to cancer support group interventions, (2) program materials from existing groups, (3) interviews with individuals who developed or directed groups, and (4) interviews with patients who have participated in cancer support groups. A jury of six experts was used to establish content validity of the instrument. The reliability of the instrument was examined by measuring a sample of 258 cancer patients. The reliability coefficients of the instrument were all above .80, except for two types of social support (instrumental and informational-educational), which were .72 and .78, respectively. It was concluded that the instrument produces valid and reliable measurements of cancer patients' preferences for cancer support groups.

  2. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Lambert, Kevin M.; Romanofsky, Robert R.; Durham, Tim; Speed, Kerry; Lange, Robert; Olsen, Art; Smith, Brett; Taylor, Robert; Schmidt, Mark; Racette, Paul; Bonds, Quenton; Brucker, Ludovic; Koenig, Lora; Marshall, Hans-Peter; Vanhille, Ken; Borissenko, Anatoly; Tsang, Leung; Tan, Shurun

    2016-01-01

    This presentation discusses current efforts to develop a Wideband Instrument for Snow Measurements (WISM). The objective of the effort are as follows: to advance the utility of a wideband active and passive instrument (8-40 gigahertz) to support the snow science community; improve snow measurements through advanced calibration and expanded frequency of active and passive sensors; demonstrate science utility through airborne retrievals of snow water equivalent (SWE); and advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  3. Instrumentation for measuring speech privacy in rooms

    NASA Astrophysics Data System (ADS)

    Horrall, Thomas; Pirn, Rein; Markham, Ben

    2003-10-01

    Federal legislation pertaining to oral privacy in healthcare and financial services industries has increased the need for a convenient and economical way to document speech privacy conditions in offices, medical examination rooms, and certain other workspaces. This legislation is embodied in the Health Insurance Portability and Accountability Act (HIPAA) and Gramm-Leach-Bliley Act (GLBA). Both laws require that reasonable measures be put in place to safeguard the oral privacy of patients and clients. While techniques for privacy documentation are known within the acoustical consulting community, it is unlikely that community alone has the capacity to provide the surveys needed to evaluate acoustical conditions and demonstrate compliance with the legislation. A portable computer with integrated soundboard and a suitable amplified loudspeaker and test microphone are all that are needed to perform in situ measurements of articulation index or other accepted indices of speech privacy. Along with modest training, such instrumentation allows technicians to survey a large number of sites economically. Cost-effective components are shown that can meet the requirements for testing in most common environments where oral privacy is likely to be required. Example cases are presented to demonstrate the feasibility of such instrumentation.

  4. Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor

    SciTech Connect

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink; Keith G. Condie; Glenn E. McCreery

    2007-09-01

    Mean velocity field and turbulence data are presented for flow phenomena in a lower plenum of a typical prismatic gas-cooled reactor (GCR), such as in a Very High Temperature Reactor (VHTR) concept. In preparation for design, safety analyses and licensing, research has begun on readying the computational tools that will be needed to predict the thermal-hydraulics behavior of the reactor design. Fluid dynamics experiments have been designed and built to develop benchmark databases for the assessment of computational fluid dynamics (CFD) codes and their turbulence models for a typical VHTR plenum geometry in the limiting case of negligible buoyancy and constant fluid properties. This experiment has been proposed as a “Standard Problem” for assessing advanced reactor (CFD) analysis tools. Present results concentrate on the region of the plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum can locally be considered as multiple jets into a confined cross flow - with obstructions. A model of the lower plenum has been fabricated and scaled to the geometric dimensions of the Next Generation Nuclear Plant (NGNP) Point Design. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to induce flow features somewhat comparable to those expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive-index of the working fluid so that optical techniques may be employed for the measurements. The experiments were conducted in the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Laboratory (INL). The benefit of the MIR technique is that it permits optical measurements to determine complex flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The

  5. Development of measurement capabilities for the thermophysical properties of energy-related fluids. Annual report, December 1, 1992--November 30, 1993

    SciTech Connect

    Kayser, R.F.

    1993-08-13

    The measurement capabilities to be developed include new apparatus for transport properties, thermodynamic properties, phase equilibria, and dielectric properties. Specific capabilities are: Thermal conductivity apparatus, vibrating wire viscometer, dual-sinker densimeter, high-temperature vibrating tube densimeter, dynamic phase equilibria apparatus, apparatus for dilute solutions, total-enthalpy flow calorimeter. Benchmark measurements were made (no data given) on pure and mixed alternative refrigerants and their mixtures with lubricants, and other fluids.

  6. Review of outcome measurement instruments in Alzheimer's disease drug trials: psychometric properties of global scales.

    PubMed

    Oremus, M; Perrault, A; Demers, L; Wolfson, C

    2000-01-01

    The use of global outcome measures with strong psychometric properties in Alzheimer's disease (AD) drug trials is encouraged. This article focuses on Clinician Global Impression of Change scales, the Clinical Dementia Rating, and the Global Deterioration Scale to provide (1) a review of psychometric properties, (2) a critique of how these properties are assessed in the literature, and (3) a basis for evaluating, from the standpoint of psychometric properties, the appropriateness of using a given global scale in a drug trial. Reported reliability and validity estimates for the aforementioned scales range from fair to very good, but small sample sizes and/or inappropriate measures of correlation weaken the quality of the evidence. There is also a dearth of published information on responsiveness to change. Researchers planning AD drug trials should consider these issues, along with the interval between test administrations for test-retest reliability, to help select appropriate global outcome measurement instruments.

  7. Pump instability phenomena generated by fluid forces

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  8. Pump for molten metal or other fluid

    DOEpatents

    Horton, James A.; Brown, Donald L.

    1994-01-01

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  9. Crossover critical phenomena in fluids

    NASA Astrophysics Data System (ADS)

    Kostrowicka Wyczalkowska, Anna Judyta

    In fluids the effects of critical density fluctuations remain significant over a large range of temperatures and densities. The nonanalytical behavior observed in real fluids in the vicinity of the critical point is well described by renormalization-group theory. This theory accounts properly for the influence of the critical fluctuations in density which are entirely neglected by the classical equations. Specifically, fluids asymptotically close to the critical point belong to the universality class of the 3-dimensional Ising model and their behavior near the critical point is governed by scaling laws with critical exponents appropriate for this universality class. The validity of the asymptotic power laws is, however, restricted to a very small region near the critical point. An approach to deal with the nonasymptotic behavior of fluids including the crossover from Ising behavior in the immediate vicinity of the critical point to classical behavior far away from the critical point has been developed by Chen and coworkers and is further improved in this thesis. This approach is based on earlier work of Nicoll and coworkers and it leads to a transformation of a classical Landau expansion to incorporate the effects of critical fluctuations. Here we show how this transformation applies to real fluids: water and sulfurhexafluoride. Nevertheless, even such a crossover Landau expansion still fails to make a connection with the behavior of the fluid very far away from the critical point like the ideal-gas limit at low densities. We demonstrate how a procedure, earlier developed to include the effects of critical fluctuations into a classical Landau expansion of the Helmholtz-energy density, can also be applied to a closed-form classical equation of state like the equation of van der Waals. One of the consequences of accounting for the presence of the critical fluctuations is a shift in the location of the critical point. The resulting equation incorporates the

  10. Instrumentation For Detector Spectral / Spatial Uniformity Measurements

    NASA Astrophysics Data System (ADS)

    Craft, Ronald W.; Bronson, Robert M.

    1989-09-01

    The information presented in this report describes an instrument which is used for precision measurements of detector spectral response and spatial response. Emphasis will be placed on detector spatial uniformity measurements. To allow spatial uniformity testing at selected wavelengths, an instrument was designed by applying existing spectral response instrumentation technology with the addition of special exit optics, a dual axis motorized positioning table, and supporting software. Supporting components consisted of a computer controlled radiometer and a monochromator with a high intensity light source attached. Spectral response is determined by measuring the wavelength response photosensitivity of a stationary specimen to the irradiance of a calibrated monochromatic light source over the wavelength range of interest at evenly spaced intervals. Data is presented in a pictorial format by graphing the RESPONSE versus the WAVELENGTH. Detector spatial response is determined by measuring the variation in photosensitivity over the surface of the test detector by moving the detector in an X,Y grid at evenly spaced intervals under a small monochromatic spot of light. Several versions of the instrument were built and test results are provided which represent data from the spatial uniformity testing of Ge, PbS, and PbSe detectors. Data acquired is presented as a 3-Dimensional surface map by plotting the RESPONSE versus the X POSITION versus the Y POSITION.

  11. Lightning instrumentation for warning and measurement

    NASA Technical Reports Server (NTRS)

    Wojtasinski, R. J.

    1973-01-01

    A presentation of instrumentation techniques used at Kennedy Space Center for assessing the hazards of lightning, measure lightning currents, induced voltage effects and assess the probability of lightning strikes to launch structures. The electric field and sferics are measured to determine the lightning hazard from the clouds. Measurements are made on launch structures to determine the magnitude of lightning currents and the induced voltages. Photographs are taken to ascertain the location of lightning strikes. Data is analyzed and presented on operations personnel and the Weather Office for assessment of impact on launch critical electromechanical systems and industrial operations.

  12. Line spread instrumentation for propagation measurements

    NASA Technical Reports Server (NTRS)

    Bailey, W. H., Jr.

    1980-01-01

    A line spread device capable of yielding direct measure of a laser beam's line spread function (LSF) was developed and employed in propagation tests conducted in a wind tunnel to examine optimal acoustical suppression techniques for laser cavities exposed to simulated aircraft aerodynamic environments. Measurements were made on various aerodynamic fences and cavity air injection techniques that effect the LSF of a propagating laser. Using the quiescent tunnel as a control, the relative effect of each technique on laser beam quality was determined. The optical instrument employed enabled the comparison of relative beam intensity for each fence or mass injection. It was found that fence height had little effect on beam quality but fence porosity had a marked effect, i.e., 58% porosity alleviated cavity resonance and degraded the beam the least. Mass injection had little effect on the beam LSF. The use of a direct LSF measuring device proved to be a viable means of determining aerodynamic seeing qualities of flow fields.

  13. FY2001 Annual Report for EMSP Project #70108: Effects of Fluid Distribution on Measured Geophysical Properties for Partially Saturated, Shallow Subsurface Conditions

    SciTech Connect

    Berge, P A; Bonner, B P; Roberts, J J; Wildenschild, D; Aracne-Ruddle, C M; Berryman, J G; Bertete-Aguirre, H; Boro, C O; Carlberg, E D

    2001-06-14

    Our goal is to improve geophysical imaging of the vadose zone. We will achieve this goal by providing new methods to improve interpretation of field data. The purpose of this EMSP project is to develop relationships between laboratory measured geophysical properties and porosity, saturation, and fluid distribution, for partially saturated soils. Algorithms for relationships between soil composition, saturation, and geophysical measurements will provide new methods to interpret geophysical field data collected in the vadose zone at sites such as Hanford, WA.

  14. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides a brief summary of the utility of a wideband active and passive (radar and radiometer, respectively) instrument (8-40 GHz) to support the snow science community. The effort seeks to improve snow measurements through advanced calibration and expanded frequency of active and passive sensors and to demonstrate their science utility through airborne retrievals of snow water equivalent (SWE). In addition the effort seeks to advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  15. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 4; Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols; Revised

    NASA Technical Reports Server (NTRS)

    Mueller, J. L. (Editor); Fargion, Giuletta S. (Editor); McClain, Charles R. (Editor); Pegau, Scott; Zaneveld, J. Ronald V.; Mitchell, B. Gregg; Kahru, Mati; Wieland, John; Stramska, Malgorzat

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the six volumes of Revision 4 listed above.

  16. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    NASA Technical Reports Server (NTRS)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  17. An instrument for measuring turbulent pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Papadimitrakis, Yiannis Alex; Hsu, En Yu; Street, Robert L.

    1986-04-01

    An instrument is described for laboratory measurements of the fluctuating static pressure in the turbulent boundary layer above progressive water waves. It consists of a disk-shaped sensing head properly designed to minimize the dynamic pressure variation to an acceptable level, a commercially available piezocrystal transducer housed inside a casing, and a forward-bent connecting tube. Pressure fluctuations sampled by the disk are converted into an electrical signal by the piezocrystal transducer. Through low-pass filtering, only the frequency range of interest is retained. The instrument was tested successfully for frequency response, dynamic and mechanical noise sensitivity, and response to spurious pressure fluctuations (produced when operating in a Eulerian wave-following mode) inside a cylindrical chamber and in a wind-wave facility, and some sample results along with the calibration procedures and data analysis are presented.

  18. The Complex Trauma Questionnaire (ComplexTQ): development and preliminary psychometric properties of an instrument for measuring early relational trauma

    PubMed Central

    Maggiora Vergano, Carola; Lauriola, Marco; Speranza, Anna M.

    2015-01-01

    Research on the etiology of adult psychopathology and its relationship with childhood trauma has focused primarily on specific forms of maltreatment. This study developed an instrument for the assessment of childhood and adolescence trauma that would aid in identifying the role of co-occurring childhood stressors and chronic adverse conditions. The Complex Trauma Questionnaire (ComplexTQ), in both clinician and self-report versions, is a measure for the assessment of multi-type maltreatment: physical, psychological, and sexual abuse; physical and emotional neglect as well as other traumatic experiences, such rejection, role reversal, witnessing domestic violence, separations, and losses. The four-point Likert scale allows to specifically indicate with which caregiver the traumatic experience has occurred. A total of 229 participants, a sample of 79 nonclinical and that of 150 high-risk and clinical participants, were assessed with the ComplexTQ clinician version applied to Adult Attachment Interview (AAI) transcripts. Initial analyses indicate acceptable inter-rater reliability. A good fit to a 6-factor model regarding the experience with the mother and to a 5-factor model with the experience with the father was obtained; the internal consistency of factors derived was good. Convergent validity was provided with the AAI scales. ComplexTQ factors discriminated normative from high-risk and clinical samples. The findings suggest a promising, reliable, and valid measurement of early relational trauma that is reported; furthermore, it is easy to complete and is useful for both research and clinical practice. PMID:26388820

  19. Apparatus for measuring fluid flow

    DOEpatents

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  20. Apparatus for measuring fluid flow

    DOEpatents

    Smith, Jack E.; Thomas, David G.

    1984-01-01

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  1. A New Digital Holographic Instrument for Measuring Microphysical Properties of Contrails in the SASS (Subsonic Assessment) Program

    NASA Technical Reports Server (NTRS)

    Lawson, R. Paul

    2000-01-01

    SPEC incorporated designed, built and operated a new instrument, called a pi-Nephelometer, on the NASA DC-8 for the SUCCESS field project. The pi-Nephelometer casts an image of a particle on a 400,000 pixel solid-state camera by freezing the motion of the particle using a 25 ns pulsed, high-power (60 W) laser diode. Unique optical imaging and particle detection systems precisely detect particles and define the depth-of-field so that at least one particle in the image is almost always in focus. A powerful image processing engine processes frames from the solid-state camera, identifies and records regions of interest (i.e. particle images) in real time. Images of ice crystals are displayed and recorded with 5 micron pixel resolution. In addition, a scattered light system simultaneously measures the scattering phase function of the imaged particle. The system consists of twenty-eight 1-mm optical fibers connected to microlenses bonded on the surface of avalanche photo diodes (APDs). Data collected with the pi-Nephelometer during the SUCCESS field project was reported in a special issue of Geophysical Research Letters. The pi-Nephelometer provided the basis for development of a commercial imaging probe, called the cloud particle imager (CPI), which has been installed on several research aircraft and used in More than a dozen field programs.

  2. Virtual instrumentation for electro–analytical measurements

    PubMed Central

    Economou, A. S.; Volikakis, G. J.; Efstathiou, C. E.

    1999-01-01

    This paper deals with some applications of Virtual Instrumentation to electroanalytical measurements. Virtual Instruments (VIs) are software programmes that simulate the external appearance and functions of a real instrument on the screen of a computer. In this work, programmes have been developed to control the potential of a working electrode (through a suitable potentiostat), acquire the current response, process the acquired current signal, and control a peristaltic pump and injection valve. The sequence of operations was controlled by the VI. The programmes developed have been applied to amperometric and voltammetric measurements in static and flowing solutions. The Vl package that has been used was Lab VIEW 4.0.1 from National Instruments. PMID:18924841

  3. A Simple Instrument for Measuring Surface Forces in Liquids

    NASA Astrophysics Data System (ADS)

    Hannon, James; Tromp, Rudolf; Haight, Richard; Ellis, Arthur

    2015-03-01

    We have constructed a simple instrument to measure the interaction force between two surfaces in solution, or in vacuum. Specifically, we measure the interaction between a lens and a thin silicon cantilever. Either the lens, or the cantilever (or both) can be coated with the species of interest. When the lens is brought close to the cantilever surface, the force of interaction causes the cantilever to bend. By measuring the deflection as a function of the distance between the lens and cantilever, the long-range interactions between the two surfaces can be determined. Our approach includes three important innovations. First, a commercial lens with a radius of ~ 1 cm is used for one surface. The relatively large radius of curvature enhances force sensitivity of the method. Second, we use optical interference (Newton's Rings) to determine the distance between lens and cantilever with ~ 1 nm accuracy. Third, we make use of thin crystalline cantilevers (100 μm thick) whose elastic properties can be easily measured. We have achieved a force sensitivity F / R better than 0.001 mN/m. I will discuss the theory of operation of the new instrument and describe measurements made on SiO2 and metal oxide surfaces in water.

  4. Instrument and methods for surface dilatational rheology measurements

    NASA Astrophysics Data System (ADS)

    Russev, Stoyan C.; Alexandrov, Nikola; Marinova, Krastanka G.; Danov, Krassimir D.; Denkov, Nikolai D.; Lyutov, Lyudmil; Vulchev, Vassil; Bilke-Krause, Christine

    2008-10-01

    We describe an instrument combining the advantages of two methods, axisymmetric drop shape analysis for well-deformed drops and capillary pressure tensiometry for spherical drops, both used for measuring the interfacial tension and interfacial rheological parameters. The rheological parameters are the complex interfacial elasticity, and the surface elasticity and viscosity of Kelvin-Voigt and Maxwell rheological models. The instrument is applicable for investigation of the effect of different types of surfactants (nonionic, ionic, proteins, and polymers) on the interfacial rheological properties both of air/water and oil/water interfaces, and of interfaces between liquids with equal mass densities. A piezodriven system and a specially designed interface unit, implemented in the instrument, ensure precise control for standard periodic waveforms of surface deformation (sine, square, triangle, and sawtooth) at a fixed frequency, or produce surface deformation at constant rate. The interface unit ensures accurate synchronization between the pressure measurement and the surface control, which is used for real-time data processing and feedback control of drop area in some of the applications.

  5. Locating Tests and Measurement Instruments for Assessment

    ERIC Educational Resources Information Center

    Mastel, Kristen; Morris-Knower, Jim; Marsalis, Scott

    2016-01-01

    Extension educators, staff, and specialists need to use surveys and other measurement instruments to assess their programming and conduct other research. Challenges in locating tests and measurement tools, however, include lack of time and lack of familiarity with techniques that can be used to find them. This article discusses library resources…

  6. Interfacial phenomena in hard-rod fluids

    NASA Astrophysics Data System (ADS)

    Shundyak, K. Y.

    2004-05-01

    the isotropic-nematic (IN) coexistence and may induce (suppress) a demixing of the high-density nematic phase into two nematic phases of different composition (N1 and N2). Studies of their interfaces show an increase of the surface tension with fractionation at the IN interface, and complete wetting of the IN2 interface by the N1 phase upon approach of the triple point coexistence. In all explored cases bulk and interfacial properties of the nonadditive mixtures exhibit a surprising similarity with the properties of additive mixtures of larger diameter ratio. In Chapter VI we consider properties of a monodisperse hard-rod fluid in contact with the single wall (W). Studies of surface properties of a fluid of Onsager hard rods represent significant numerical difficulties, therefore we consider a simpler model fluid of hard rods with a restricted number of allowed orientations. Within this model, known as the Zwanzig model, we explore the thermodynamic properties of a fluid of monodisperse hard rods in contact with a model substrate represented by a hard wall with a short-ranged attractive or repulsive ``tail''. The attraction enhances the orientational ordering near the wall in both isotropic and nematic phases, and shifts the transition from uniaxial (U) to biaxial (B) symmetry in the isotropic surface layer to lower chemical potentials, whereas the wetting properties of the substrate remain similar to those of the pure hard wall. The soft repulsion reduces the density in the surface layer, which leads to the shift (or even suppression) of the UB transition, and strong modification of wetting properties. At the WI interface one always finds the wetting transition at sufficiently large repulsion, whereas a drying transition at the WN interface is observed only for sufficiently long-ranged potentials. In Chapter VII we explore some limitations of models of hard-rod fluids with a finite number of allowed orientations. Within Onsager's second virial theory we construct

  7. Isotopic CO2 Instrumentation for UAV Measurements

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Silver, J.

    2013-12-01

    Carbon dioxide is the largest component of anthroprogenic green house gas emissions. Knowing atmospheric 13CO2/12CO2 ratios precisely is important for understanding biogenic and anthroprogenic sources and sinks for carbon. Instrumentation mounted on UAV aircraft would enable important spatial isotopic CO2 information. However, current isotopic CO2 instrumentation have unfavorable attributes for UAV use, such as high power requirements, high cost, high weight, and large size. Here we present the early development of a compact isotopic CO2 instrument that is designed to nullify effects of pressure, temperature and moisture, and will ultimately be suitable for UAV deployment.

  8. Instruments for measuring radiant thermal fluxes

    NASA Technical Reports Server (NTRS)

    Gerashenko, O. A.; Sazhina, S. A.

    1974-01-01

    An absolute two-sided radiometer, designed on the principle of replacing absorbed radiant energy with electrical energy, is described. The sensitive element of the detector is a thermoelectric transducer of thermal flux. The fabrication technology, methods of measurement, technical characteristics, and general operation of the instrument are presented.

  9. A passive DOAS instrument for trace gas measurements on medium sized UAS: Instrumental design and first measurements.

    NASA Astrophysics Data System (ADS)

    Horbanski, Martin; Pöhler, Denis; Mahr, Tobias; Wagner, Thomas; Keleshis, Christos; Ioannou, Stelios; Lange, Manfred A.; Lelieveld, Jos; Platt, Ulrich

    2013-04-01

    Unmanned Aerial Systems (UAS) are a new powerful tool for observations in the atmospheric boundary layer. Recent developments in measuring technology allow the construction of compact and sensitive active and passive DOAS instruments which can fit the space and weight constraints on UAS. This opens new possibilities for trace gas measurements in the lower troposphere, especially in areas which are not accessible to manned aviation e.g. volcanic plumes or which should be monitored regularly (e.g. industrial emissions of a stack). We present a new developed passive DOAS instrument for the APAESO Platform of the Cyprus Institute, a medium size UAS. It is equipped with two telescopes for observations in downward (nadir) and horizontal (limb) viewing direction, respectively. Thus it allows determining height profiles and the horizontal distribution of trace gases. This is accomplished by analyzing the radiation collected by the telescopes with compact spectrometers, which cover the UV-blue spectral range allowing to measure a broad variety of atmospheric trace gases (e.g. NO2, SO2, BrO, IO, H2O ...) as well as aerosol properties via O4 absorption. Additionally, the nadir direction is equipped with a VIS-NIR spectrometer. It is used to measure reflection spectra of different types of vegetation. These will serve as references for satellite measurements to create global maps. First measurements on the APAESO platform were performed in October 2012 on Cyprus in a rural area south of Nicosia. The instrument is shown to work reliably and was able to detect NO2, H2O and O4 at atmospheric column densities. The instrumental design and first measurements will be presented and discussed.

  10. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement... practice. (2) Flow air through the calibration system at the sample flow rate used for particulate testing... standard device. (4) Calculate air flow at standard conditions as measured by both the standard device...

  11. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement... practice. (2) Flow air through the calibration system at the sample flow rate used for particulate testing... standard device. (4) Calculate air flow at standard conditions as measured by both the standard device...

  12. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement... practice. (2) Flow air through the calibration system at the sample flow rate used for particulate testing... standard device. (4) Calculate air flow at standard conditions as measured by both the standard device...

  13. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement... practice. (2) Flow air through the calibration system at the sample flow rate used for particulate testing... standard device. (4) Calculate air flow at standard conditions as measured by both the standard device...

  14. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement... practice. (2) Flow air through the calibration system at the sample flow rate used for particulate testing... standard device. (4) Calculate air flow at standard conditions as measured by both the standard device...

  15. Method and device for measuring fluid flow

    DOEpatents

    Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson

    1976-11-23

    This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.

  16. Microthermal Instrument for Measuring Surface Layer Seeing

    NASA Astrophysics Data System (ADS)

    Li, Xue-Bao; Zheng, Yan-Fang; Deng, Lin Hua; Xu, Guang

    2012-02-01

    Microthermal fluctuations are introduced by atmospheric turbulence very near the ground. In order to detect microthermal fluctuations at Fuxian Solar Observatory (FSO), a microthermal instrument has been developed. The microthermal instrument consists of a microthermal sensor, which is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors, an associated signal processing unit, and a data collection, & communication subsystem. In this paper, after a brief introduction to surface layer seeing, we discuss the instrumentation behind the microthermal detector we have developed and then present the results obtained. The results of the evaluation indicate that the effect of the turbulent surface boundary layer to astronomical seeing would become sufficiently small when installing a telescope at a height of 16m or higher from the ground at FSO.

  17. 77 FR 37409 - Request for Domains, Instruments, and Measures for Development of a Standardized Instrument for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... HUMAN SERVICES Request for Domains, Instruments, and Measures for Development of a Standardized... domains, instruments, and measures is occurring now because of the multi-phased survey development and... consistency, test-retest, etc) and validity (content, construct, criterion-related). Results of...

  18. Instrument transfer as knowledge transfer in neurophysiology: François Magendie's (1783-1855) early attempts to measure cerebrospinal fluid pressure.

    PubMed

    Stahnisch, Frank W

    2008-01-01

    François Magendie's (1783-1855) experimental model for measuring blood pressure in animals, which he developed in 1838, had a major impact on French physiology in the nineteenth century, especially upon Etienne-Jules Marey (1830-1904) in Paris. In due course it was also adopted by other European investigators, such as the Leipzig physiologist Carl Ludwig (1816-1895), and by clinicians who developed it into a major measuring tool. Historians of science, however, have paid hardly any attention to Magendie's further laboratory investigations conducted with the assistance of Jean-Louis Marie Poiseuille's (1799-1869) sphygmomètre (blood pressure meter). After having used the apparatus to conduct his experiments on a variety of blood vessels, Magendie also applied the sphygmomètre in 1840 to the ventricular system of the brain in order to measure cerebrospinal fluid (CSF) pressure. But the scope of this new procedure had yet to be defined: the new measuring device invited many speculative interpretations about the meaning of CSF flow for the physiology of the ventricular system in healthy and diseased brain function. As such, Magendie's experiments produced phenomena in very heterogeneous knowledge areas, and CSF measurement was situated at the interface of quite disparate investigative spaces regarding the structure and function of the brain. In his textbook Leçons sur les Fonctions et les Maladies du Système Nerveux (Lectures on the Functions and Diseases of the Nervous System), Magendie described extending application of the measuring "apparatus of Poiseuille" from blood vessels to parts of the brain. The instrument thus became something of a liquidodynamomètre (liquor dynamometer), that paved the way for later applications, including (after 1896) diagnostic intracranial pressure (ICP) measurement by Theodor Kocher (1841-1917) and Harvey Cushing (1869-1939). The current paper focuses on the experimental contingencies that prompted the instrument transfer in

  19. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D.; Naughton, Jonathan; Lindberg, William R.

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  20. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    ERIC Educational Resources Information Center

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  1. Critique of fluid theory of magnetospheric phenomena. [kinetic theory vs two fluid models

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1973-01-01

    Discussion of the limitations and shortcomings of the fluid theory of magnetospheric phenomena. Following a brief qualitative review of the various theoretical approaches and of their interrelation, some of the limitations of the fluid theory with respect to magnetospheric problems are outlined, and the subsequent fallacies are exposed. The idea of frozen field convection and the concept of field line annihilation or merging are criticized. In conclusion, a plea is made for a more balanced approach to magnetospheric problems.

  2. Properties of material in the submillimeter wave region (instrumentation and measurement of index of refraction)

    NASA Technical Reports Server (NTRS)

    Lally, J.; Meister, R.

    1983-01-01

    The Properties of Materials in the Submillimeter Wave Region study was initiated to instrument a system and to make measurements of the complex index of refraction in the wavelength region between 0.1 to 1.0 millimeters. While refractive index data is available for a number of solids and liquids there still exists a need for an additional systematic study of dielectric properties to add to the existing data, to consider the accuracy of the existing data, and to extend measurements in this wavelength region for other selected mateials. The materials chosen for consideration would be those with useful thermal, mechanical, and electrical characteristics. The data is necessary for development of optical components which, for example, include beamsplitters, attenuators, lenses, grids, all useful for development of instrumentation in this relatively unexploited portion of the spectrum.

  3. Laboratory Measurements of Fluid Transport Properties on Tight Gas Sandstones and Applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Daniel; Reitenbach, Viktor

    2014-05-01

    Deep gas reservoirs are of great interest for the E&P industry. Large areas of such reservoirs have permeabilities below 1 mD. The reservoir rocks in these areas show a strong stress sensitivity of the fluid transport properties and a considerable productivity decline due to changing stress conditions during the production process. For correct modeling and simulation of Tight Gas reservoirs it is important to know the behavior of the fluid transport properties under the changing stress condition the reservoir experiences. In several measurement series the effects of changing overburden and pore pressure on Rotliegend sandstone samples from north German Tight Gas reservoirs have been quantified and used to set up correlation functions. With the correlation functions from the own measurements and additional data and correlations from literature a Rock Data Catalog has been developed as tool to help reservoir engineers with modeling and simulation of such reservoirs. The Rock Data Catalog consists of the Rock Database and the Correlation Module. The Rock Database contains general and petrophysical rock data. The Correlation Module uses this data to generate secondary data of e.g. in-situ capillary and hydraulic rock properties with appropriate correlation functions. Viability of the economic gas production from Tight Gas Reservoirs strongly depends on reservoir quality. Therefore identification of high quality reservoir parts or so called Sweet Spots for placing production wells and planning hydraulic fracturing stimulation, is one of key issues of the tight gas reservoir characterization and evaluation. The data and correlation functions collected in the Rock Data Catalog could also be used to identify Sweet Spots in Tight Gas reservoirs. Several rock parameters and properties, which affect the fluid flow in a reservoir (like lithology, clay content, water saturation, permeability, pore size distribution) can be identified and used to set up a Sweet Spot Index as a

  4. Topics in Chemical Instrumentation--An Introduction to Supercritical Fluid Chromatography: Part 1: Principles and Instrumentation.

    ERIC Educational Resources Information Center

    Palmieri, Margo D.

    1988-01-01

    Identifies the properties and characteristics of supercritical fluids. Discusses the methodology for supercritical fluid chromatography including flow rate, plate height, column efficiency, viscosity, and other factors. Reviews instruments, column types, and elution conditions. Lists supercritical fluid data for 22 compounds, mostly organic. (MVL)

  5. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    of constant cross sectional area, and to facilitate fluid filling and draining operations in microgravity. The fluid cells may be used singly for bulk solutions, or in a Stokes diaphragm configuration to investigate membrane mediated phenomena. Thermal and electrical driving potentials are applied to the experiment fluids through boundary plates located at the ends of the fluid cells. In the ground based instrument, two constant temperature baths circulate through reservoirs adjacent to the boundary plates, and establish the thermal environment within the fluid cells. The boundary plates also serve as electrodes for measurement and application of electrical potentials. The Fluid Manipulation System associated with the MTA is a computer controlled system that enables storage and transfer of experiment fluids during on orbit operations. The system is used to automatically initiate experiments and manipulate fluids by orchestrating pump and valve operations through scripted sequences. Unique technologies are incorporated in the MTA for measurement of fluid properties. Volumetric Flow Sensors have been developed for precision measurement of total fluid volume contained within the fluid cells over time. This data is most useful for measuring the kinetics of osmosis, where fluid is transported from one fluid cell to another through a semipermeable membrane. The MicroSensor Array has been designed to perform in situ measurement of several important fluid parameters, providing simultaneous measurement of solution composition at multiple locations within the experiment fluids. Micromachined sensors and interface electronics have been developed to measure temperature, electrical conductivity, pH, cation activity, and anion activity. The Profile Refractometer uses a laser optical system to directly image the fluid Index of Refraction profile that exists along the MTA fluid cell axis. A video system acquires images of the RI profile over time, and records the transport kinetics

  6. Measurement of interstage fluid-annulus dynamical properties

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Makay, E.; Diaz-Tous, I. A.

    1982-01-01

    The work described in this paper is part of an Electric Power Research Institute sponsored effort to improve rotor vibrational performance on power plant feed water pumps. A major objective of this effort is to reduce vibration levels by devising inter-stage sealing configurations with optimized damping capacity, realizing that the typical multi-stage centrifugal pump has several ore inter-stage fluid annuli than it has journal bearings. Also, the fluid annuli are distributed between the journal bearings where vibration levels are highest and can therefore be 'exercised' more as dampers than can the bearings. Described in this paper is a test apparatus which has been built to experimentally determine fluid-annulus dynamical coefficients for various configurations of inter-stage sealing geometry.

  7. Spectroelectrochemical Instrument Measures TOC

    NASA Technical Reports Server (NTRS)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  8. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  9. Instrument for Measuring Temperature of Water

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Nixon, Thomas; Pagnutti, Mary; Zanoni, Vicki

    2003-01-01

    A pseudo-Brewster-angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster-angle radiometer would exploit the spectral-emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation. The relevant emissivity and polarization characteristics are the following: . The Brewster angle is the angle at which light polarized parallel to the plane of incidence on a purely dielectric material is not reflected. The pseudo-Brewster angle, defined for a lossy dielectric (somewhat electrically conductive) material, is the angle for which the reflectivity for parallel-polarized light is minimized. For pure water, the reflectivity for parallel-polarized light is only 2.2 x 10(exp -4) at its pseudo- Brewster angle of 51deg. The reflectivity remains near zero, several degrees off from the 51deg optimum, allowing this angle of incidence requirement to be easily achieved. . The wavelength range of interest for measuring water temperatures is 8 to 12 microns. The emissivity of water for parallel- polarized light at the pseudo-Brewster angle is greater than 0.999 in this wavelength range. The radiometer would be sensitive in the wavelength range of 8 to 12 microns, would be equipped with a polarizer to discriminate against infrared light polarized perpendicular to the plane of incidence, and would be aimed toward a body of water at the pseudo- Brewster angle (see figure). Because the infrared radiation entering the radiometer would be polarized parallel to the plane of incidence and because very little downwelling parallel-polarized radiation would be reflected into the radiometer on account of the pseudo-Brewster arrangement, the

  10. Measurement techniques for local and global fluid dynamic quantities in two and three phase systems

    SciTech Connect

    Kumar, S.; Dudukovic, M.P.; Toseland, B.A.

    1996-03-01

    This report presents a critical review of the methods available for assessing the fluid dynamic parameters in large industrial two and three phase bubble column and slurry bubble column reactors operated at high pressure and temperature. The physical principles behind various methods are explained, and the basic design of the instrumentation needed to implement each measurement principle is discussed. Fluid dynamic properties of interest are: gas, liquid and solids holdup and their axial and radial distribution as well as the velocity distribution of the two (bubble column) or three phases (slurry bubble column). This information on operating pilot plant and plant reactors is essential to verify the computational fluid dynamic codes as well as scale-up rules used in reactor design. Without such information extensive and costly scale-up to large reactors that exploit syngas chemistries, and other reactors in production of fuels and chemicals, cannot be avoided. In this report, available measurement techniques for evaluation of global and local phase holdups, instantaneous and average phase velocities and for the determination of bubble sizes in gas-liquid and gas-liquid-solid systems are reviewed. Advantages and disadvantages of various techniques are discussed. Particular emphasis is placed on identifying methods that can be employed on large scale, thick wall, high pressure and high temperature reactors used in the manufacture of fuels and chemicals from synthesis gas and its derivatives.

  11. Wave Phenomena on the Interface Separating Fluids of Different Viscosities

    NASA Astrophysics Data System (ADS)

    Hogan, John Michael

    Wave phenomena on the interface separating fluids of different viscosities have been examined via analytical techniques. The stability of a viscous stream flowing relative to an inviscid stream has also been studied and the stability boundary delineated. An important contribution of this work has been the obtaining of exact solutions of two important and separate classes of linearized interfacial motion. The first class involves the interface separating two viscous, non-flowing, incompressible fluids. In this case, the Navier-Stokes equations are linearized and the exact solutions for the velocities, pressures and interface displacement for a disturbance of a given wavelength are presented in detail. The equation for the wave propagation speed and damping rate is found and evaluated. It is emphasized that viscosity is fully accounted for in both fluids and that a single solution, valid for any viscosity on either side of the interface, is found. This solution contains the classical inviscid treatment (Laplaces equation for the velocity potentials) as a well behaved limit. For sufficiently high levels of viscosity, the solution predicts overdamped waves--initial disturbances which decay exponentially in time with no propagation. Such waves can be readily observed on the surface of highly viscous fluids such as syrup or honey. The second class of fluid motion studied in this dissertation involves the interface separating a flowing viscous fluid from a flowing inviscid fluid--a previously unaddressed area of theoretical fluid mechanics. The exact solution for the linear stability threshold of this interface is presented. The solution contains the classical Kelvin -Helmholtz inviscid treatment as a well behaved limit. Conditions are determined under which the solution is a valid zero order approximation for interfaces separating real fluids of widely different viscosities. The analysis is extended to the case of a viscous fluid flowing relative to an inviscid

  12. Towards a measurement instrument for determinants of innovations

    PubMed Central

    Fleuren, Margot A.H.; Paulussen, Theo G.W.M.; Van Dommelen, Paula; Van Buuren, Stef

    2014-01-01

    Objective To develop a short instrument to measure determinants of innovations that may affect its implementation. Design We pooled the original data from eight empirical studies of the implementation of evidence-based innovations. The studies used a list of 60 potentially relevant determinants based on a systematic review of empirical studies and a Delphi study among implementation experts. Each study used similar methods to measure both the implementation of the innovation and determinants. Missing values in the final data set were replaced by plausible values using multiple imputation. We assessed which determinants predicted completeness of use of the innovation (% of recommendations applied). In addition, 22 implementation experts were consulted about the results and about implications for designing a short instrument. Setting Eight innovations introduced in Preventive Child Health Care or schools in the Netherlands. Participants Doctors, nurses, doctor's assistants and teachers; 1977 respondents in total. Results The initial list of 60 determinants could be reduced to 29. Twenty-one determinants were based on the pooled analysis of the eight studies, seven on the theoretical expectations of the experts consulted and one new determinant was added on the basis of the experts' practical experience. Conclusions The instrument is promising and should be further validated. We invite researchers to use and explore the instrument in multiple settings. The instrument describes how each determinant should preferably be measured (questions and response scales). It can be used both before and after the introduction of an innovation to gain an understanding of the critical change objectives. PMID:24951511

  13. Protocol of the COSMIN study: COnsensus-based Standards for the selection of health Measurement INstruments

    PubMed Central

    Mokkink, LB; Terwee, CB; Knol, DL; Stratford, PW; Alonso, J; Patrick, DL; Bouter, LM; de Vet, HCW

    2006-01-01

    Background Choosing an adequate measurement instrument depends on the proposed use of the instrument, the concept to be measured, the measurement properties (e.g. internal consistency, reproducibility, content and construct validity, responsiveness, and interpretability), the requirements, the burden for subjects, and costs of the available instruments. As far as measurement properties are concerned, there are no sufficiently specific standards for the evaluation of measurement properties of instruments to measure health status, and also no explicit criteria for what constitutes good measurement properties. In this paper we describe the protocol for the COSMIN study, the objective of which is to develop a checklist that contains COnsensus-based Standards for the selection of health Measurement INstruments, including explicit criteria for satisfying these standards. We will focus on evaluative health related patient-reported outcomes (HR-PROs), i.e. patient-reported health measurement instruments used in a longitudinal design as an outcome measure, excluding health care related PROs, such as satisfaction with care or adherence. The COSMIN standards will be made available in the form of an easily applicable checklist. Method An international Delphi study will be performed to reach consensus on which and how measurement properties should be assessed, and on criteria for good measurement properties. Two sources of input will be used for the Delphi study: (1) a systematic review of properties, standards and criteria of measurement properties found in systematic reviews of measurement instruments, and (2) an additional literature search of methodological articles presenting a comprehensive checklist of standards and criteria. The Delphi study will consist of four (written) Delphi rounds, with approximately 30 expert panel members with different backgrounds in clinical medicine, biostatistics, psychology, and epidemiology. The final checklist will subsequently be field

  14. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery

    PubMed Central

    Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad

    2007-01-01

    In this paper we present an inexpensive electronic measurement instrumentation developed in our laboratory, to measure and plot the impedance of a loaded fuel cell or battery. Impedance measurements were taken by using the load modulation method. This instrumentation has been developed around a VXI system stand which controls electronic cards. Software under Hpvee® was developed for automatic measurements and the layout of the impedance of the fuel cell on load. The measurement environment, like the ambient temperature, the fuel cell temperature, the level of the hydrogen, etc…, were taken with several sensors that enable us to control the measurement. To filter the noise and the influence of the 50Hz, we have implemented a synchronous detection which filters in a very narrow way around the useful signal. The theoretical result obtained by a simulation under Pspice® of the method used consolidates the choice of this method and the possibility of obtaining correct and exploitable results. The experimental results are preliminary results on a 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedance measurements on a fuel cell are in progress, and will be the subject of a forthcoming paper). The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V) and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical) enables us to validate our electronic measurement instrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.

  15. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    NASA Astrophysics Data System (ADS)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  16. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance... or 0.2% of max K 0.2% of pt. K or 0.1% of max K 0.1% of max. Dewpoint sensor for intake air, PM.... Dilution air, inlet air, exhaust, and sample flow meters c n 1 s 1 Hz means of 5 Hz samples 2.5% of pt....

  17. Standard of Measurement for Student Evaluation Instruments

    ERIC Educational Resources Information Center

    Simione, Kathleen; Cadden, David; Mattie, Angela

    2008-01-01

    For colleges and universities, the expectation for excellence in teaching and learning has made development of a system for measuring teaching effectiveness critical. Teaching effectiveness is generally assessed with a comprehensive review of skills including instructional design, instructional delivery and course management. This requires student…

  18. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205...

  19. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205...

  20. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205...

  1. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205...

  2. Microcomputer based instrument for measuring a novel pulmonary function test

    NASA Astrophysics Data System (ADS)

    Craine, Brian L.; Craine, Eric R.

    1996-08-01

    The design of a prototype instrument for measuring the end-tidal concentration of carbon monoxide during human respiration is presented. The instrument automatically samples the final sixty cubic centimeters of exhaled breath, from successive breathing cycles, by coordinating a pump and the breathing cycle with a set of vacuum and pressure sensors. The concentration of carbon monoxide is measured using a nondispersive infrared spectrophotometer. The amount of carbon monoxide present is measured relative to the source air concentration eliminating the need for calibrating the instrument. The testing protocol and measurements can be controlled by a microcomputer connected to the instrument through a standard RS-232 serial interface. When at equilibrium, the end-tidal concentration of CO can be measured in a simple and reproducible fashion. This simplified technology allows for the construction of a small, portable, easy to use instrument that will allow the application of this new pulmonary function test at the point of contact with patients.

  3. Measuring the Youth Bullying Experience: A Systematic Review of the Psychometric Properties of Available Instruments

    ERIC Educational Resources Information Center

    Vessey, Judith; Strout, Tania D.; DiFazio, Rachel L.; Walker, Allison

    2014-01-01

    Background: Bullying is a significant problem in schools and measuring this concept remains problematic. The purposes of this study were to (1) identify the published self-report measures developed to assess youth bullying; (2) evaluate their psychometric properties and instrument characteristics; and (3) evaluate the quality of identified…

  4. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas...

  5. Fluid physics phenomena of resistojet thrusters

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J. (Principal Investigator)

    1996-01-01

    This final report includes a list of publications and part of an M.S. thesis titled 'Analyses in Theoretical and Experimental Fluid Flow', by Tony G. Howell. The thesis discusses analyses of momentum and heat transfer occurring in a laminar boundary layer of a non-Newtonian power-law fluid, and experiments completed in a simulated space thruster's plume for prediction comparison.

  6. Searching for Electrical Properties, Phenomena and Mechanisms in the Construction and Function of Chromosomes

    PubMed Central

    Kanev, Ivan; Mei, Wai-Ning; Mizuno, Akira; DeHaai, Kristi; Sanmann, Jennifer; Hess, Michelle; Starr, Lois; Grove, Jennifer; Dave, Bhavana; Sanger, Warren

    2013-01-01

    Our studies reveal previously unidentified electrical properties of chromosomes: (1) chromosomes are amazingly similar in construction and function to electrical transformers; (2) chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3) chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a) electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b) electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c) mechanisms demonstrating heterochromatin to be electrically active and genetically important. PMID:24688715

  7. Measurement of Turbulent Flow Phenomena for the Lower Plenum of a Prismatic Gas-Cooled Reactor

    SciTech Connect

    Hugh M. McIlroy, Jr.; Donald M. McEligot; Robert J. Pink

    2010-02-01

    Mean velocity field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics design (Gas-Turbine-Modular Helium Reactor). The datawere obtained in the Matched-Index-of-Refraction (MIR) facility at Idaho National Laboratory (INL) and are offered as a benchmark for assessing computational fluid dynamics (CFD) software. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The primary objective of this paper is to document the experiment and present a sample of the data set that has been established for this standard problem. Present results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flowin the lower plenum consists of multiple jets injected into a confined crossflow—with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive index of the mineral oil working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to similar facilities at smaller scales. A three-dimensional (3D) particle image velocimetry (PIV) system was used to collect the data. Inlet-jet Reynolds numbers (based on the hydraulic diameter of the jet

  8. Instruments for measuring the amount of moisture in the air

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1978-01-01

    A summarization and discussion of the many systems available for measuring moisture in the atmosphere is presented. Conventional methods used in the field of meteorology and methods used in the laboratory are discussed. Performance accuracies, and response of the instruments were reviewed as well as the advantages and disadvantages of each. Methods of measuring humidity aloft by instrumentation onboard aircraft and balloons are given, in addition to the methods used to measure moisture at the Earth's surface.

  9. Prototype Instrument for Noninvasive Ultrasonic Inspection and Indentification of Fluids in Sealed Containers

    SciTech Connect

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-08-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  10. Prototype instrument for noninvasive ultrasonic inspection and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-05-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, handheld, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  11. Unified Instrumentation: Examining the Simultaneous Application of Advanced Measurement Techniques for Increased Wind Tunnel Testing Capability

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A. (Editor); Bartram, Scott M.; Humphreys, William M., Jr.; Jenkins, Luther N.; Jordan, Jeffrey D.; Lee, Joseph W.; Leighty, Bradley D.; Meyers, James F.; South, Bruce W.; Cavone, Angelo A.; Ingram, JoAnne L.

    2002-01-01

    A Unified Instrumentation Test examining the combined application of Pressure Sensitive Paint, Projection Moire Interferometry, Digital Particle Image Velocimetry, Doppler Global Velocimetry, and Acoustic Microphone Array has been conducted at the NASA Langley Research Center. The fundamental purposes of conducting the test were to: (a) identify and solve compatibility issues among the techniques that would inhibit their simultaneous application in a wind tunnel, and (b) demonstrate that simultaneous use of advanced instrumentation techniques is feasible for increasing tunnel efficiency and identifying control surface actuation / aerodynamic reaction phenomena. This paper provides summary descriptions of each measurement technique used during the Unified Instrumentation Test, their implementation for testing in a unified fashion, and example results identifying areas of instrument compatibility and incompatibility. Conclusions are drawn regarding the conditions under which the measurement techniques can be operated simultaneously on a non-interference basis. Finally, areas requiring improvement for successfully applying unified instrumentation in future wind tunnel tests are addressed.

  12. Antenna Characterization for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurement (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  13. Antenna Characterization for the Wideband Instrument for Snow Measurements

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  14. Fluid transport phenomena in ocular epithelia.

    PubMed

    Candia, Oscar A; Alvarez, Lawrence J

    2008-03-01

    This article discusses three largely unrecognized aspects related to fluid movement in ocular tissues; namely, (a) the dynamic changes in water permeability observed in corneal and conjunctival epithelia under anisotonic conditions, (b) the indications that the fluid transport rate exhibited by the ciliary epithelium is insufficient to explain aqueous humor production, and (c) the evidence for fluid movement into and out of the lens during accommodation. We have studied each of these subjects in recent years and present an evaluation of our data within the context of the results of others who have also worked on electrolyte and fluid transport in ocular tissues. We propose that (1) the corneal and conjunctival epithelia, with apical aspects naturally exposed to variable tonicities, are capable of regulating their water permeabilities as part of the cell-volume regulatory process, (2) fluid may directly enter the anterior chamber of the eye across the anterior surface of the iris, thereby representing an additional entry pathway for aqueous humor production, and (3) changes in lens volume occur during accommodation, and such changes are best explained by a net influx and efflux of fluid.

  15. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  16. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  17. Investigations of Physicochemical Properties of Size-Resolved, Subsaturated, Atmospheric Aerosol Particles: Instrument Development, Field Measurements, and Data Analysis

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor

    Aerosol particle properties and their impact on air quality, clouds, and the hydrologic cycle remain a critically important factor for the understanding of our atmosphere. Particle hygroscopic growth leads to impacts on direct and indirect radiative forcing properties, the likelihood for particles to act as cloud condensation nuclei, and aerosol-cloud interactions. Current instruments measuring hygroscopic growth have a number of limitations, lacking either the ability to measure size-resolved particles or process samples at a fast enough resolution to be suitable for airborne deployment. Advanced in-situ airborne particle retrieval and measurements of aerosol hygroscopic growth and scattering properties are analyzed and discussed. To improve the analysis of cloud nuclei particles, an updated counterflow virtual impact inlet was characterized and deployed during the 2011 E-PEACE field campaign. Theoretical and laboratory based cut size diameters were determined and validated against data collected from an airborne platform. In pursuit of higher quality aerosol particle hygroscopicity measurements, a newer instrument, the differential aerosol sizing and hygroscopicity probe (DASH-SP) has been developed in the recent past and only flown on a handful of campaigns. It has been proven to provide quality, rapid, size-resolved hygroscopic growth factor data, but was further improved into a smaller form factor making it easier for deployment on airborne platforms. It was flown during the 2013 SEAC4RS field campaign and the data was analyzed to composite air mass based hygroscopicity and refractive index (real portion only) statistics. Additionally, a comparison of bulk and size-resolved hygroscopic growth measurements was conducted. Significant findings include a potential particle size bias on bulk scattering measurements as well as a narrow range of ambient real portion of refractive index values. An investigation into the first reported ambient hygroscopicity

  18. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    SciTech Connect

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  19. Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.

  20. Compact Instrument for Measuring Profile of a Light Beam

    NASA Technical Reports Server (NTRS)

    Papanyan, Valeri

    2004-01-01

    The beamviewer is an optical device designed to be attached to a charge-coupled-device (CCD) image detector for measuring the spatial distribution of intensity of a beam of light (the beam profile ) at a designated plane intersecting the beam. The beamviewer-and-CCD combination is particularly well suited for measuring the radiant- power profile (for a steady beam) or the radiant-energy profile (for a pulsed beam) impinging on the input face or emerging from the output face of a bundle of optical fibers. The beamviewer and-CCD combination could also be used as a general laboratory instrument for profiling light beams, including beams emerging through small holes and laser beams in free space.

  1. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Deringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected.

  2. A compact DOAS instrument optimised for ammonia field-measurements

    NASA Astrophysics Data System (ADS)

    Neftel, Albrecht; Sintermann, Joerg; Dietrich, Klaus; Häni, Christoph; Jocher, Markus

    2016-04-01

    Accurate, high time-resolution measurements of NH3 in ambient air are still a challenge due to the stickiness of this molecule and its interactions with inlet or instrument surfaces. Differential optical absorption spectroscopy (DOAS) with open-path arrangement offers a contact-free in-situ approach to determine ambient NH3. We present a DOAS instrument, optimised for open-path field-measurements of ambient ammonia (NH3) alongside nitrogen oxide (NO) and sulphur dioxide (SO2). This device, operating in the UV range over paths of up to 100 m, is a further development of the miniDOAS presented by Volten et al. (2012). We use a temperature-controlled spectrometer, a deuterium light source and a modified optical arrangement. The system was set up in a robust, field-deployable, temperature-regulated housing. For the evaluation of light spectra a new high-pass filter routine based upon robust baseline extraction with local regression was used. In order to fit differential absorption cross-sections to the measurements, multiple linear regression is performed including terms of an autoregressive-moving-average model. In this presentation we discuss the influence of filter and fit procedure on the precision and accuracy of the system with examples of field measurements with artificial NH3 sources. Volten, H., Bergwerff, J. B., Haaima, M., Lolkema, D. E., Berkhout, A. J. C., van der Hoff, G. R., Potma, C. J. M., Wichink Kruit, R. J., van Pul, W. A. J. and Swart, D. P. J.: Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere, Atmospheric Meas. Tech., 5(2), 413-427, doi:10.5194/amt-5-413-2012, 2012.

  3. Noninvasive Measurement of Acoustic Properties of Fluids Using Ultrasonic Interferometry Technique

    SciTech Connect

    Han, W.; Sinha, D.N.; Springer, K.N.; Lizon, D.C.

    1997-06-15

    A swept-frequency ultrasonic interferometry technique is used for noninvasively determining acoustic properties of fluids inside containers. Measurements over a frequency range 1-15 MHz on six liquid chemicals are presented. Measurements were made with the liquid inside standard rectangular optical glass cells and stainless steel cylindrical shells. A theoretical model based on one-dimensional planar acoustic wave propagation through multi-layered media is employed for the interpretation of the observed resonance (interference) spectrum. Two analytical methods, derived from the transmission model are used for determination of sound speed, sound attenuation coefficient, and density of liquids from the relative amplitude and half-power peak width of the observed resonance peaks. Effects of the container material and geometrical properties, path-length, wall thickness are also studied. This study shows that the interferometry technique and the experimental method developed are capable of accurate determination of sound speed, sound attenuation, and density in fluids completely noninvasively. It is a capable and versatile fluid characterization technique and has many potential NDE applications.

  4. An algorithm for stylus instruments to measure aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Ock; Park, Kilsu; Chon Park, Byong; Lee, Yoon Woo

    2005-05-01

    A reliable algorithm is developed for the analysis of machined aspheric surfaces with a stylus instrument. This research has been done prior to the evaluation of uncertainties in the aspheric surface analysis. The algorithm considers two factors: the pickup configuration (pivoted arm) and the stylus radius. It also compensates for the sample tilt and the axis offset (the setup error) in the best-fit least-squares process. The algorithm consists of two parts for instrument calibration and aspheric surface analysis, and has been coded by means of C++ and MATLAB. Further it was also applied to the instrument calibration and the aspheric surface measurement, and the results were compared with the instrument-produced ones. The developed algorithm shows better performance over the commercial instrument in both the instrument calibration and the analysis of aspheric surfaces. Besides the uncertainty analysis, the developed algorithm will be a basis for the applications that the commercial instrument cannot provide with its own built-in code.

  5. The Psychometric Properties of the Simple Screening Instrument for Substance Abuse.

    PubMed

    Boothroyd, Roger A; Peters, Roger H; Armstrong, Mary I; Rynearson-Moody, Sarah; Caudy, Michael

    2015-12-01

    The Simple Screening Instrument for Substance Abuse (SSI-SA) is gaining widespread use as a self-report measure of substance abuse; yet, little information exists regarding the instrument's psychometric properties. This study examined the SSI's psychometric properties within a population of 6,664 adult Medicaid enrollees in Florida, who responded to a survey conducted as part of a statewide evaluation of Medicaid services. The SSI-SA had excellent internal consistency (.85). Evidence of the SSI's validity was strong; SSI-SA scores distinguished among individuals with and without substance abuse needs and were significantly correlated with a measure of functioning in daily living. Using the recommended SSI-SA cutoff score of 4 or higher to indicate the presence of a substance abuse problem, the SSI-SA had respectable sensitivity (.82) and specificity (.90).

  6. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    NASA Astrophysics Data System (ADS)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  7. A systematic review of clinimetric properties of measurements of motivation for children aged 5-16 years with a physical disability or motor delay.

    PubMed

    Miller, Laura; Ziviani, Jenny; Boyd, Roslyn Nancy

    2014-02-01

    The purpose of this systematical review was to appraise the clinimetric properties of measures of motivation in children aged 5-16 years with a physical disability or motor delay. Six electronic databases were searched. Studies were included if they reported measuring motivation in school-aged children across occupational performance areas. Two reviewers independently identified measures from included articles. Evaluation of measures was completed using the COSMIN (consensus-based standards for the selection of health measurement instruments) checklist. A total of 13,529 papers were retrieved, 15 reporting measurement of motivation in this population. Two measures met criteria: Dimensions of Mastery Questionnaire (DMQ) and Pediatric Volitional Questionnaire (PVQ). There was evidence of adequate validity for DMQ, and preliminary evidence of test-retest reliability. Psychometric evidence for PVQ was poor. Both measures demonstrated good clinical utility. The large number of retrieved papers highlights the importance being attributed to motivation in clinical studies, although measurement is seldom performed. Both identified measures show promise but further psychometric research is required.

  8. Critical Transport Phenomena in Fluid Helium Under Low Gravity

    NASA Technical Reports Server (NTRS)

    Meyer, H.; Behringer, R. P.

    1985-01-01

    The feasibility of carrying out measurements of certain critical transport properties of pure fluid under conditions of low gravity was studied. These properties are the thermal conductivity, kappa, the shear viscosity zeta and the diffusive relaxation time tau, which are predicted to diverge (tend to infinity) as the liquid-vapor critical point is approached. However, in this critical region, the Earth's gravity effect becomes very important. As the critical point is approached, the gravity effects increasingly distort the results. The reason for this is that the compressibility of the fluid also diverges and under the influence of gravity causes a vertical density gradient in the fluid, which is significant even when very thin fluid layers (typically 1 mm high) are being used. The result is that the temperature dependence of kappa, zeta, and tau tends to flatten off as T sub c is approached instead of continuing to increase, and therefore the predictions from the renormalization group and mode coupling theories cannot be subjected to a satisfactory test.

  9. The MOPITT instrument as a Prototype for Long-Term Space-Based Atmospheric Measurements in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Drummond, James

    2016-07-01

    One of the major characteristics of the Anthropocene will be changes in all the Earth systems on many timescales. Changes that occur within a generation will be very significant for policy decisions and these will require measurements on corresponding timescales from space-based instruments, but these times are long compared to traditional satellite lifetimes. Whether by luck or by good design there are now a number of satellite missions that are recording data over long time periods. With a single instrument, decadal and longer time series of relevant atmospheric parameters have been achieved and the Measurements Of Pollution In The Troposphere (MOPITT) instrument is one such instrument. Launched on 18th December 1999 on the Terra spacecraft, MOPITT has now completed more than 16 years of operation measuring carbon monoxide (CO) over the planet and the mission continues. It is entirely possible that these measurements will span two decades before completion. MOPITT therefore offers a case study of a very long single-instrument time series, albeit one with challenges because this longevity was not part of the original design criteria: The original design specified about a five year life and this has already been considerably exceeded. MOPITT does enable us to look at long term trends and intermittent phenomena over the planet for an extended period of tie encompassing an entire solar cycle and many cycles of El Niño and other quasi-periodic phenomena. This presentation will consider, with examples, some of the advantages and some of the problems of these long-term space measurements with an eye to the future and the needs of future generations. MOPITT was provided to NASA's Terra spacecraft by the Canadian Space Agency and was built by COMDEV of Cambridge, Ontario. Data processing is performed by the MOPITT team at the National Center for Atmospheric Research, Boulder, CO. Instrument control is by the team at the University of Toronto.

  10. Theory of critical phenomena in fluids

    NASA Astrophysics Data System (ADS)

    Reatto, L.; Meroni, A.; Parola, A.

    1990-12-01

    The authors discuss a differential approach to the theory of fluids, the hierarchical reference theory, which, above the critical temperature, has been shown to be (i) as accurate as the most widespread theories of liquid state in the high density region and (ii) able to reproduce the renormalization group results in the critical region. In this region it predicts both the universal and the non-universal quantities. The authors have studied the Lennard-Jones fluid in detail but the method can be directly applied to more realistic interactions between molecules. The treatment of temperatures below the critical one presents some additional difficulties due to the presence of the inhomogeneous two-phase region. Preliminary results indicate that the theory gives the coexistence curve with the correct scaling behaviour without any need for an ad hoc Maxwell construction. The extension of the formalism to binary mixtures is under way.

  11. Instrumentation for chemical species measurements in the troposphere and stratosphere

    SciTech Connect

    Kolb, C.E. )

    1991-01-01

    Instrument advances made during 1987-1990 for atmospheric trace species measurements are reviewed. Problems discussed include types of measurement strategies, oxidant species, reductant species, and flux measurement. Particular attention is given to odd oxygen species, hydrogen oxides, hydrocarbon oxy and peroxy radicals, halogen oxides, sulfur oxides, carbon monoxides, hydrocarbons, oxygenated hydrocarbons, halogenated hydrocarbons, reduced sulfur compounds, ammonia, cyanide compounds, water vapor, nitrous oxide, hydrogen halides, fully halogenated carbon compounds, fully halogenated carbonyl compounds, and sulfur hexafluoride. 195 refs.

  12. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  13. Modification in Cay Concrete Properties During Fluid Flow Permeability Measurement

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    In this paper, two methods consisting of triaxial water permeability and water penetration were used to evaluate the changes occurring in the pores of clay concretes during the tests. Triaxial permeability is generally used for concrete with higher permeability while concretes with very low permeability are suited for the penetration method. Clay concrete specimens of 0 to 40% clay content were used in the study. The concrete mixes had water-to-cement ratios (w/c) of 0.70, 0.75, 0.80, 0.85, and the cementitious content 380 and 450 kg/m3. Results show that concrete gains moisture during wetting at a much faster rate than loses it during subsequent drying. This could be explained by the contribution of suction pressure created upon drying. When water penetration pressure is applied, more water is driven into pore space that could be responsible for changing the network of the voids. Pore structure during drying may certainly be different in size and shape than its form during wetting, leading to a consequent effect on the permeability of the clay concretes. The modification could be one reason why the moisture gain percentage in clay concretes was higher than in normal concretes.

  14. Design Considerations for Remote High-Speed Pressure Measurements of Dynamic Combustion Phenomena

    SciTech Connect

    Straub, D.L.; Ferguson, D.H.; Rohrssen, Robert; Perez, Eduardo

    2007-01-01

    As gas turbine combustion systems evolve to achieve ultra-low emission targets, monitoring and controlling dynamic combustion processes becomes increasingly important. These dynamic processes may include flame extinction, combustion-driven instabilities, or other dynamic combustion phenomena. Pressure sensors can be incorporated into the combustor liner design, but this approach is complicated by the harsh operating environment. One practical solution involves locating the sensor in a more remote location, such as outside the pressure casing. The sensor can be connected to the measurement point by small diameter tubing. Although this is a practical approach, the dynamics of the tubing can introduce significant errors into the pressure measurement. This paper addresses measurement errors associated with semi-infinite coil remote sensing setups and proposes an approach to improve the accuracy of these types of measurements.

  15. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1993-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.

  16. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  17. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1993-10-05

    An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.

  18. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1995-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.

  19. POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols.

    PubMed

    Chami, Malik; Thirouard, Alexandre; Harmel, Tristan

    2014-10-20

    An innovative instrument dedicated to the multispectral measurements of the directional and polarized scattering properties of the hydrosols, so-called POLVSM, is described. The instrument could be used onboard a ship, as a benchtop instrument, or at laboratory. The originality of the POLVSM concept relies on the use of a double periscopic optical system whose role is (i) to separate the plane containing the light source from the scattering plane containing the sample and the receiver and (ii) to prevent from any specularly reflected light within the sample chamber. As a result, a wide range of scattering angle, namely from 1° to 179°, is covered by the detector. Another originality of the instrument is to measure the Mueller scattering matrix elements, including the degree of polarization. A relevant calibration procedure, which could be of great interest as well for other instruments, is proposed to convert the raw data into physical units. The relative uncertainty in POLVSM data was determined at ± 4.3%. The analysis of measurements of the volume scattering function and degree of polarization performed under controlled conditions for samples dominated either by inorganic hydrosols or phytoplankton monospecific species showed a good consistency with literature, thus confirming the good performance of the POLVSM device. Comparisons of POLVSM data with theoretical calculations showed that Mie theory could reproduce efficiently the measurements of the VSF and degree of polarization for the case of inorganic hydrosols sample, despite the likely non sphericity of these particles as revealed by one of the element of the Mueller matrix. Our results suggested as well that a sophisticated modeling of the heterogeneous internal structure of living cells, or at least, the use of layered sphere models, is needed to correctly predict the directional and polarized effects of phytoplankton on the oceanic radiation. The relevance of performing angularly resolved measurements

  20. Algorithm for stylus instruments to measure aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Park, Byong C.; Lee, Y. W.; Lee, Chang-ock; Park, Kilsu

    2005-02-01

    A reliable algorithm was developed for the analysis of the machined aspheric surfaces with the stylus instrument. The research has been done as a prior step, with the intent to evaluate the uncertainties in the aspheric surfaces analysis as well as to make the applications that the commercial instruments cannot provide with its own code implemented inside. The algorithm considered two important factors in the instrument-calibration and the aspheric analysis: pickup configuration (pivoted arm) and the stylus radius. It also compensates for the sample tilt and axis offset due to the setup error in the analysis of aspheric surface. The algorithm has been coded by means of C++ and MATLAB. The algorithm was also applied to the real measurement, and compared with the instrument-produced results. Our algorithm found calibration constants better fitting the calibration ball in the instrument-calibration without noticeable cost of the speed. In conclusion, the developed algorithm can cover, and further, shows better performance over the commercial one in both of the instrument-calibration and analysis of aspheric surfaces.

  1. A miniDOAS instrument optimised for ammonia field measurements

    NASA Astrophysics Data System (ADS)

    Sintermann, Jörg; Dietrich, Klaus; Häni, Christoph; Bell, Michael; Jocher, Markus; Neftel, Albrecht

    2016-06-01

    We present a differential optical absorption spectroscopy (DOAS) instrument, called "miniDOAS", optimised for optical open-path field-measurements of ambient ammonia (NH3) alongside nitrogen oxide (NO) and sulfur dioxide (SO2). The instrument is a further development of the miniDOAS presented by Volten et al. (2012). We use a temperature-controlled spectrometer, a deuterium light source and a modified optical arrangement. The system was set up in a robust, field-deployable, temperature-regulated housing. For the evaluation of light spectra we use a new high-pass filter routine based upon robust baseline extraction with local regression. Multiple linear regression including terms of an autoregressive-moving-average model is used to determine concentrations. For NH3 the random uncertainty is about 1.4 % of the concentration, and not better than 0.2 µg m-3. Potential biases for the slope of the calibration are given by the precision of the differential absorption cross sections (±3 %) and for the offset by the precision of the estimation of concentration offsets (cref) introduced by the reference spectrum Iref. Comparisons of miniDOAS measurements to those by NH3 acid trap devices showed good agreement. The miniDOAS can be flexibly used for a wide range of field trials, such as micrometeorological NH3 flux measurements with approaches based upon horizontal or vertical concentration differences. Results from such applications covering concentration dynamics of less than one up to several hundreds of µg m-3 are presented.

  2. An instrument for measuring scintillators efficiently based on silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Yang, M. J.; Zhang, Z. M.; Wang, Y. J.; Li, D. W.; Zhou, W.; Tang, H. H.; Liu, Y. T.; Chai, P.; Shuai, L.; Huang, X. C.; Liu, S. Q.; Zhu, M. L.; Jiang, X. P.; Zhang, Y. W.; Li, T.; Ma, B.; Sun, S. F.; Sun, L. Y.; Wang, Q.; Lu, Z. R.; Zhang, T.; Wei, L.

    2016-11-01

    An instrument used for measuring multiple scintillators' light output and energy resolution was developed. The instrument consisted of a light sensor array which was composed of 64 discrete SiPMs (Silicon Photomultipliers), a corresponding individual channel readout electronics system, and a data processing algorithm. A Teflon grid and a large interval between adjacent SiPMs were employed to eliminate the optical cross talk among scintillators. The scintillators' light output was obtained by comparing with a reference sample with known light output. Given the SiPM temperature dependency and the difference among each SiPM, a temperature offset correction algorithm and a non-uniformity correction algorithm were added to the instrument. A positioning algorithm, based on nine points, was designed to evaluate the performance of a scintillator array. Tests were performed to evaluate the instrument's performance. The uniformity of 64 channels for light output measurement was better than 98%, the stability was better than 98% when temperature varied from 15 °C to 40 °C, and the nonlinearity under 511 keV was better than 2%. This instrument was capable of selecting scintillators and evaluating the packaging technology of scintillator arrays with high efficiency and accuracy.

  3. An instrument for measuring scintillators efficiently based on silicon photomultipliers.

    PubMed

    Yang, M J; Zhang, Z M; Wang, Y J; Li, D W; Zhou, W; Tang, H H; Liu, Y T; Chai, P; Shuai, L; Huang, X C; Liu, S Q; Zhu, M L; Jiang, X P; Zhang, Y W; Li, T; Ma, B; Sun, S F; Sun, L Y; Wang, Q; Lu, Z R; Zhang, T; Wei, L

    2016-11-01

    An instrument used for measuring multiple scintillators' light output and energy resolution was developed. The instrument consisted of a light sensor array which was composed of 64 discrete SiPMs (Silicon Photomultipliers), a corresponding individual channel readout electronics system, and a data processing algorithm. A Teflon grid and a large interval between adjacent SiPMs were employed to eliminate the optical cross talk among scintillators. The scintillators' light output was obtained by comparing with a reference sample with known light output. Given the SiPM temperature dependency and the difference among each SiPM, a temperature offset correction algorithm and a non-uniformity correction algorithm were added to the instrument. A positioning algorithm, based on nine points, was designed to evaluate the performance of a scintillator array. Tests were performed to evaluate the instrument's performance. The uniformity of 64 channels for light output measurement was better than 98%, the stability was better than 98% when temperature varied from 15 °C to 40 °C, and the nonlinearity under 511 keV was better than 2%. This instrument was capable of selecting scintillators and evaluating the packaging technology of scintillator arrays with high efficiency and accuracy.

  4. Fluid models and simulations of biological cell phenomena

    NASA Technical Reports Server (NTRS)

    Greenspan, H. P.

    1982-01-01

    The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.

  5. Instrument for Aircraft-Icing and Cloud-Physics Measurements

    NASA Technical Reports Server (NTRS)

    Lilie, Lyle; Bouley, Dan; Sivo, Chris

    2006-01-01

    The figure shows a compact, rugged, simple sensor head that is part of an instrumentation system for making measurements to characterize the severity of aircraft-icing conditions and/or to perform research on cloud physics. The quantities that are calculated from measurement data acquired by this system and that are used to quantify the severity of icing conditions include sizes of cloud water drops, cloud liquid water content (LWC), cloud ice water content (IWC), and cloud total water content (TWC). The sensor head is mounted on the outside of an aircraft, positioned and oriented to intercept the ambient airflow. The sensor head consists of an open housing that is heated in a controlled manner to keep it free of ice and that contains four hot-wire elements. The hot-wire sensing elements have different shapes and sizes and, therefore, exhibit different measurement efficiencies with respect to droplet size and water phase (liquid, frozen, or mixed). Three of the hot-wire sensing elements are oriented across the airflow so as to intercept incoming cloud water. For each of these elements, the LWC or TWC affects the power required to maintain a constant temperature in the presence of cloud water.

  6. An inexpensive instrument for measuring wave exposure and water velocity

    USGS Publications Warehouse

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  7. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L.

    2007-12-25

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  8. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L

    2013-12-31

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  9. Aerosol Characterization and New Instrumentation for Better Understanding Snow Radiative Properties

    NASA Astrophysics Data System (ADS)

    Beres, N. D.

    2015-12-01

    Snow albedo is determined by snowpack thickness and grain size, but also affected by contamination with light-absorbing, microscopic (e.g., mineral dust, combustion aerosols, bio-aerosols) and macroscopic (e.g., microalgae, plant debris, sand, organisms) compounds. Most currently available instruments for measuring snow albedo utilize the natural, downward flux of solar radiation and the reflected upward flux. This reliance on solar radiation (and, thus, large zenith angles and clear-sky conditions) leads to severe constraints, preventing characterization of detailed diurnal snow albedo cycles. Here, we describe instrumentation and methodologies to address these limitations with the development and deployment of new snow radiation sensors for measuring surface spectral and in-snow radiative properties. This novel instrumentation will be tested at the CRREL/UCSB Eastern Sierra (CUES) Snow Study Site at Mammoth Mountain, which is extensively instrumented for characterizing snow properties including snow albedo and surface morphology. However, it has been lacking instrumentation for the characterization of aerosols that can be deposited on the snow surface through dry and wet deposition. Currently, we are installing aerosol instrumentation at the CUES site, which are also described. This includes instruments for the multi-wavelength measurement of aerosol scattering and absorption coefficients and for the characterization of aerosol size distribution. Knowledge of aerosol concentration and physical and optical properties will allow for the study of aerosol deposition and modification of snow albedo and for establishing an aerosol climatology for the CUES site.

  10. Interactive FORTRAN IV computer programs for the thermodynamic and transport properties of selected cryogens (fluids pack)

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1980-01-01

    The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.

  11. Portable digital lock-in instrument to determine chemical constituents with single-color absorption measurements for Global Health Initiatives

    NASA Astrophysics Data System (ADS)

    Vacas-Jacques, Paulino; Linnes, Jacqueline; Young, Anna; Gerrard, Victoria; Gomez-Marquez, Jose

    2014-03-01

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

  12. Portable digital lock-in instrument to determine chemical constituents with single-color absorption measurements for Global Health Initiatives

    SciTech Connect

    Vacas-Jacques, Paulino; Linnes, Jacqueline; Young, Anna; Gomez-Marquez, Jose; Gerrard, Victoria

    2014-03-15

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

  13. Mass measuring instrument for use under microgravity conditions

    SciTech Connect

    Fujii, Yusaku; Yokota, Masayuki; Hashimoto, Seiji; Sugita, Yoichi; Ito, Hitomi; Shimada, Kazuhito

    2008-05-15

    A prototype instrument for measuring astronaut body mass under microgravity conditions has been developed and its performance was evaluated by parabolic flight tests. The instrument, which is the space scale, is applied as follows. Connect the subject astronaut to the space scale with a rubber cord. Use a force transducer to measure the force acting on the subject and an optical interferometer to measure the velocity of the subject. The subject's mass is calculated as the impulse divided by the velocity change, i.e., M={integral}Fdt/{delta}v. Parabolic flight by using a jet aircraft produces a zero-gravity condition lasting approximately 20 s. The performance of the prototype space scale was evaluated during such a flight by measuring the mass of a sample object.

  14. Mercury-free PVT apparatus for thermophysical property analyses of hydrocarbon reservoir fluids

    SciTech Connect

    Lansangan, R.M.; Lievois, J.S.

    1992-08-31

    Typical reservoir fluid analyses of complex, multicomponent hydrocarbon mixtures include the volumetric properties, isothermal compressibility, thermal expansivity, equilibrium ratios, saturation pressure, viscosities, etc. These parameters are collectively referred to as PVT properties, an acronym for the primary state variables; pressure, volume, and temperature. The reservoir engineer incorporates this information together with the porous media description in performing material balance calculations. These calculations lead to the determination (estimation) of the initial hydrocarbon in-place, the future reservoir performance, the optimal production scheme, and the ultimate hydrocarbon recovery. About four years ago, Ruska Instrument Corporation embarked on a project to develop an apparatus designed to measure PVT properties that operates free of mercury. The result of this endeavor is the 2370 Hg-Free PVT system which has been in the market for the last three years. The 2370 has evolved from the prototype unit to its present configuration which is described briefly in this report. The 2370 system, although developed as a system-engineered apparatus based on existing technology, has not been exempt from this burden-of-proof Namely, the performance of the apparatus under routine test conditions with real reservoir fluids. This report summarizes the results of the performance and applications testing of the 2370 Hg-Free PVT system. Density measurements were conducted on a pure fluid. The results were compared against literature values and the prediction of an equation of state. Routine reservoir fluid analyses were conducted with a black oil and a retrograde condensate gas mixtures. Limited comparison of the results were performed based on the same tests performed on a conventional mercury-based PVT apparatus. The results of these tests are included in this report.

  15. Instrumentation of sampling aircraft for measurement of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.

    1977-01-01

    An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.

  16. Fluid Merging Viscosity Measurement (FMVM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  17. Optical fiber system for saline concentration measurement in drilling fluids

    NASA Astrophysics Data System (ADS)

    Caetano, L. A. C.; Fontoura, S. A. B.; Torres, P. I.; Valente, L. C. G.

    2001-08-01

    Laboratory setups are used to simulate real conditions in which drilling fluid and shales interact during an oil well drilling process. The present work describes the development of fiber optic systems capable of measuring the ionic diffusion in water-based fluids under high pressure. Two alternatives have been tested and calibrations are presented for both. The most successful one was tested in a real experiment in which the concentration of CaCl2 has been continuously measured during five days. Starting from pure water, the final ionic concentration measured by this method was compared with the result from chemical analysis of the fluid with very good agreement.

  18. Photogrammetric methods for measurements in fluid physics experiments in space

    NASA Astrophysics Data System (ADS)

    Maas, H.-G.; Virant, M.; Becker, J.; Bösemann, W.; Gatti, L.; Henrichs, A.

    2002-02-01

    Methods of digital close-range photogrammetry allow for manifold real 3-D measurements in dynamic processes. Based on the acquisition of multi-camera digital image sequences, image analysis with subpixel accuracy image measurement operators, photogrammetric multi-image matching and point determination techniques, strict geometric modeling of complex environments and thorough system calibration techniques, time-resolved accurate 3-D coordinates of a large number of objects in a scene can be determined fully automatically. The paper will first give a short review on basic principles of digital photogrammetry and discuss the application and accuracy potential. After that, practical examples will be given from several breadboard experiments conducted in the frame of the ESA Technological Research and Development Programme to show the applicability of the technique to typical experiments in the field of fluid physics. These experiments focus on the investigation of experiments on Marangoni convection; they include the determination of 3-D velocity fields near a hanging drop within a fluid matrix and the observation of the tangential tension on the boundary surface by measuring changes in shape and/or position of liquid bodies like drops, bubbles or liquid columns in a fluid matrix.

  19. A thermal stack structure for measurement of fluid flow

    NASA Astrophysics Data System (ADS)

    Zhao, Hao; Mitchell, S. J. N.; Campbell, D. H.; Gamble, Harold S.

    2003-03-01

    A stacked thermal structure for fluid flow sensing has been designed, fabricated, and tested. A double-layer polysilicon process was employed in the fabrication. Flow measurement is based on the transfer of heat from a temperature sensor element to the moving fluid. The undoped or lightly doped polysilicon temperature sensor is located on top of a heavily doped polysilicon heater element. A dielectric layer between the heater and the sensor elements provides both thermal coupling and electrical isolation. In comparison to a hot-wire flow sensor, the heating and sensing functions are separated, allowing the electrical characteristics of each to be optimized. Undoped polysilicon has a large temperature coefficient of resistance (TCR) up to 7 %/K and is thus a preferred material for the sensor. However, heavily doped polysilicon is preferred for the heater due to its lower resistance. The stacked flow sensor structure offers a high thermal sensitivity making it especially suitable for medical applications where the working temperatures are restricted. Flow rates of various fluids can be measured over a wide range. The fabricated flow sensors were used to measure the flow rate of water in the range μl - ml/min and gas (Helium) in the range 10 - 100ml/min.

  20. Development of a new instrument for direct skin friction measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    A device developed for the direct measurement of wall shear stress generated by flows is described. Simple and symmetric in design with optional small moving mass and no internal friction, the features employed in the design eliminate most of the difficulties associated with the traditional floating element balances. The device is basically small and can be made in various sizes. Vibration problems associated with the floating element skin friction balances were found to be minimized due to the design symmetry and optional damping provided. The design eliminates or reduces the errors associated with conventional floating element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer, and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Dynamic measurements could be made in a limited range and measurements in liquids could be performed readily. Measurement made in the three different tunnels show excellent agreement with data obtained by the floating element devices and other techniques.

  1. Instrument for measuring the misalignments of ocular surfaces

    NASA Astrophysics Data System (ADS)

    Tabernero, Juan; Benito, Antonio; Nourrit, Vincent; Artal, Pablo

    2006-10-01

    A compact and robust instrument for measuring the alignment of ocular surfaces has been designed and used in living eyes. It is based on recording Purkinje images (reflections of light at the ocular surfaces) at nine different angular fixations. A complete analysis on the causes of misalignments of Purkinje images and its relations with those physical variables to be measured (global eye tilt, lens decentration and lens tilt) is presented. A research prototype based on these ideas was built and tested in normal and pseudophakic eyes (after cataract surgery). The new analysis techniques, together with the semicircular extended source and multiple fixation tests that we used, are significant improvements towards a robust approach to measuring the misalignments of the ocular surfaces in vivo. This instrument will be of use in both basic studies of the eye’s optics and clinical ophthalmology.

  2. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    PubMed Central

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  3. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    PubMed

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  4. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  5. Method for noninvasive determination of acoustic properties of fluids inside pipes

    DOEpatents

    None

    2016-08-02

    A method for determining the composition of fluids flowing through pipes from noninvasive measurements of acoustic properties of the fluid is described. The method includes exciting a first transducer located on the external surface of the pipe through which the fluid under investigation is flowing, to generate an ultrasound chirp signal, as opposed to conventional pulses. The chirp signal is received by a second transducer disposed on the external surface of the pipe opposing the location of the first transducer, from which the transit time through the fluid is determined and the sound speed of the ultrasound in the fluid is calculated. The composition of a fluid is calculated from the sound speed therein. The fluid density may also be derived from measurements of sound attenuation. Several signal processing approaches are described for extracting the transit time information from the data with the effects of the pipe wall having been subtracted.

  6. Nondestructive technique based on vibration measurements and piezoelectric patches for monitoring corrosion phenomena

    NASA Astrophysics Data System (ADS)

    Monaco, Ernesto; Fontana, Mauro; De Rosa, Luca; Bellucci, Francesco; Lecce, Leonardo

    2002-07-01

    The paper presents a new application of a NDT based on vibrations measurements which has been developed by the authors and already tested for analyzing damages of many structural elements. The proposed method is based on the acquisition and comparison of Frequency Response Functions (FRFs) of the monitored structure before and after a damage occurred. Structural damages modify the dynamical behavior of the structure and consequently its FRFs making possible to calculate a representative Damage Index. Main target of this work was to test the developed NDT for identifying and analyzing typical corrosive phenomena. A thin aluminium plate, typical for aeronautical employ, was chosen as test-article; an array of piezoelectric patches has been employed for both exciting the test article and acquiring the structural response in many points of it. Both homogeneous and localized corrosion phenomena have been recreated on the plate surface in laboratory environment. Two expressions of Damage Indices were calculated and statistically analyzed. Very small percentages of thickness variations have been detected and localized using the proposed methodology and it has been possible to follow corrosion dynamics (in terms of mass and stiffness variations of the test-article) by monitoring the values of the experimental Damage Indices.

  7. An intelligent radiological instrument for field samples and contamination measurements

    NASA Astrophysics Data System (ADS)

    Drndarevic, Vujo R.; Djuric, Danko J.

    1993-09-01

    A new intelligent radiological instrument for fast and accurate measurements of mass α and β activities of samples of human and animal food and other materials and for the detection of surface contamination of different objects have been developed. The original concept of an iterative dialogue operator-instrument, based on the built-in intelligence into the instrument—has reduced to a minimum the chance of obtaining an erroneous result. The built-in intelligence specifies: the sequence of the measurements, the subsequence of selecting the necessary absorber for mass β activity measurement, the algorithms for all necessary calculations. Minimum detectable β activity of measured samples (40K) is 0.17 Bq/g with an error not exceeding ±30% and measurement time 1000 s. The sensitivity of α activity measurement is related to the method of sample preparation; it ranges from 0.04 up to 10 Bq/g, with a selectivity with respect to β activity exceeding 104.

  8. Method and apparatus for measuring the intensity and phase of one or more ultrashort light pulses and for measuring optical properties of materials

    DOEpatents

    Trebino, Rick P.; DeLong, Kenneth W.

    1996-01-01

    The intensity and phase of one or more ultrashort light pulses are obtained using a non-linear optical medium. Information derived from the light pulses is also used to measure optical properties of materials. Various retrieval techniques are employed. Both "instantaneously" and "non-instantaneously" responding optical mediums may be used.

  9. An instrument for precision magnetic measurements of large magnetic structures

    NASA Astrophysics Data System (ADS)

    Beltrán, D.; Bordas, J.; Campmany, J.; Molins, A.; Perlas, J. A.; Traveria, M.

    2001-02-01

    A high precision-system for measuring the three-dimensional distribution of magnetic fields over large volumes, such as those produced by accelerator magnets, has been designed and commissioned. This instrument can be calibrated to a precision of ±1 G for magnetic fields of up to 1.5 T by means of an NMR system. A moving arm containing a 3D Hall probe scans the volume (up to 500×250×3000 mm 3) with a precision of ±50 μm in any direction. After appropriate identification of the various sources of error, and the optimisation of the various parts of the instrument where they are generated, an overall precision of ±2 G has been achieved, i.e. a relative precision of ±2×10 -4 for a nominal field of 1 T.

  10. Electro-optic phase-modulated polarimetry: Instrumentation and signal analysis techniques for the characterization of material properties

    NASA Astrophysics Data System (ADS)

    Mackey, Jeffrey Richard

    Novel compact and robust phase-modulated electro-optic birefringence and material stress measurement instrumentation is needed for the study of anisotropic materials such as non-Newtonian polymers, crystalline structures, biological fluids and many other optically active materials. This instrumentation developed by the research presented in this dissertation utilizes many different modulation approaches in order to incorporate heterodyning signal recovery techniques that improve measurement sensitivity by several orders of magnitude over simple crossed-polarizer methods. Modulation methods include photoelastic techniques, liquid-crystal variable retarder methods, dual-crystal transverse electro-optic modulation and dual lasers sinusoidally intensity-modulated with a pi-phase lag between them. The theoretical framework governing the development of this instrumentation using the Mueller-Stokes polarization matrices and heterodyning signal recovery methods is discussed in detail. Many experiments are performed to compare the measurements obtained by the instrumentation with the results derived theoretically. Results from the experimental material characterization instrumentation agree well with the predicted signal theory. Signal analysis was further refined through the use of wavelet-based denoising techniques. These denoising techniques resulted in improved measurement accuracy and sensitivity. The measurement theory is also adapted to solve several other applications including electro-optic force, pressure and acceleration measurements which use a polymer linkage to infer stresses from the physical system to data that can be analyzed by the material characterization instrumentation. The best commercially available force transducers capable of measuring transient responses have a lower resolution of approximately 10-5 N. Research with the rheology of fluids, transient flows of pharmaceuticals in combinatorial research, biological tissue response, and biomimetic

  11. Momentum Flux Measuring Instrument for Neutral and Charged Particle Flows

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Schafer, Charles F. (Technical Monitor)

    2002-01-01

    An instrument to measure the momentum flux (total pressure) of plasma and neutral particle jets onto a surface has been developed. While this instrument was developed for magnetized plasmas, the concept works for non-magnetized plasmas as well. We have measured forces as small as 10(exp -4) Newtons on a surface immersed in the plasma where small forces are due to ionic and neutral particles with kinetic energies on the order of a few eV impacting the surface. This instrument, a force sensor, uses a target plate (surface) that is immersed in the plasma and connected to one end of an alumina rod while the opposite end of the alumina rod is mechanically connected to a titanium beam on which four strain gauges are mounted. The force on the target generates torque causing strain in the beam. The resulting strain measurements can be correlated to a force on the target plate. The alumina rod electrically and thermally isolates the target plate from the strain gauge beam and allows the strain gauges to be located out of the plasma flow while also serving as a moment arm of several inches to increase the strain in the beam at the strain gauge location. These force measurements correspond directly to momentum flux and may be used with known plasma conditions to place boundaries on the kinetic energies of the plasma and neutral particles. The force measurements may also be used to infer thrust produced by a plasma propulsive device. Stainless steel, titanium, molybdenum, and aluminum flat target plates have been used. Momentum flux measurements of H2, D2, He, and Ar plasmas produced in a magnetized plasma device have been performed.

  12. Determination of constant-volume balloon capabilities for aeronautical research. [specifically measurement of atmospheric phenomena

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; King, R. L.

    1977-01-01

    The proper application of constant-volume balloons (CVB) for measurement of atmospheric phenomena was determined. And with the proper interpretation of the resulting data. A literature survey covering 176 references is included. the governing equations describing the three-dimensional motion of a CVB immersed in a flow field are developed. The flowfield model is periodic, three-dimensional, and nonhomogeneous, with mean translational motion. The balloon motion and flow field equations are cast into dimensionless form for greater generality, and certain significant dimensionless groups are identified. An alternate treatment of the balloon motion, based on first-order perturbation analysis, is also presented. A description of the digital computer program, BALLOON, used for numerically integrating the governing equations is provided.

  13. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  14. Career Instruments and High School Students with Learning Disabilities: Support for the Utility of Three Vocational Measures

    ERIC Educational Resources Information Center

    Dipeolu, Abiola O.

    2007-01-01

    Conventional wisdom in the area of assessment strongly supports the notion that instruments used for vocational or career decision-making purposes should possess sound psychometric properties. This study is a preliminary attempt to examine the reliability and validity of three important career decision-making measures administered to high school…

  15. Critical phenomena in the aspherical gravitational collapse of radiation fluids

    NASA Astrophysics Data System (ADS)

    Baumgarte, Thomas W.; Montero, Pedro J.

    2015-12-01

    We study critical phenomena in the gravitational collapse of a radiation fluid. We perform numerical simulations in both spherical symmetry and axisymmetry, and observe critical scaling in both supercritical evolutions, which lead to the formation of a black hole, and subcritical evolutions, in which case the fluid disperses to infinity and leaves behind flat space. We identify the critical solution in spherically symmetric collapse, find evidence for its universality, and study the approach to this critical solution in the absence of spherical symmetry. For the cases that we consider, aspherical deviations from the spherically symmetric critical solution decay in damped oscillations in a manner that is consistent with the behavior found by Gundlach in perturbative calculations. Our simulations are performed with an unconstrained evolution code, implemented in spherical polar coordinates, and adopting "moving-puncture" coordinates.

  16. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  17. A new instrument for high statistics measurement of photomultiplier characteristics

    NASA Astrophysics Data System (ADS)

    Mollo, C. M.; Bozza, C.; Chiarusi, T.; Costa, M.; Di Capua, F.; Kulikovskiy, V.; Mele, R.; Migliozzi, P.; Pellegrino, C.; Riccobene, G.; Vivolo, D.

    2016-08-01

    Since the early days of experimental particle physics photomultipliers (PMTs) have played an important role in the detector design. Thanks to their capability of fast photon counting, PMTs are extensively used in the new-generation of astroparticle physics experiments, such as air, ice and water Cherenkov detectors. Small size PMTs (<= 3 inches diameter) show little sensitivity to the Earth magnetic field, small transit time, stable transit time spread; the price per photocathode area is less comparing to the one for the large area PMTs, typically used so far in such applications. Together with developments and reduced price of multichannel electronics, the use of PMTs of 3-inches or smaller diameter is a promising option even for nowadays large volume detectors. In this paper we report on the design and performance of a new instrument for mass characterisation of PMTs (from 1 inch to 3 inches size), capable to calibrate hundreds of PMTs per day and provide measurements of dark counts, signal amplitude, late-, delayed-, pre- and after-pulses, transit time and transit time spread.

  18. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Han, Zhaolong; Nair, Achuth; Schill, Alexander; Twa, Michael D.; Larin, Kirill V.

    2017-02-01

    Current clinical tools provide critical information about ocular health such as intraocular pressure (IOP). However, they lack the ability to quantify tissue material properties, which are potent markers for ocular tissue health and integrity. We describe a single instrument to measure the eye-globe IOP, quantify corneal biomechanical properties, and measure corneal geometry with a technique termed applanation optical coherence elastography (Appl-OCE). An ultrafast OCT system enabled visualization of corneal dynamics during noncontact applanation tonometry and direct measurement of micro air-pulse induced elastic wave propagation. Our preliminary results show that the proposed Appl-OCE system can be used to quantify IOP, corneal biomechanical properties, and corneal geometry, which builds a solid foundation for a unique device that can provide a more complete picture of ocular health.

  19. Final report on the design and development of a Rolling Float Meter for drilling-fluid outflow measurement

    SciTech Connect

    Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wright, E.K.; Glowka, D.A.

    1998-03-01

    Lost circulation, which is the loss of well drilling fluids to the formation while drilling, is a common problem encountered while drilling geothermal wells. The rapid detection of the loss of well drilling fluids is critical to the successful and cost-effective treatment of the wellbore to stop or minimize lost circulation. Sandia National Laboratories has developed an instrument to accurately measure the outflow rate of drilling fluids while drilling. This instrument, the Rolling Float Meter, has been under development at Sandia since 1991 and is now available for utilization by interested industry users. This report documents recent Rolling Float Meter design upgrades resulting from field testing and industry input, the effects of ongoing testing and evaluation both in the laboratory and in the field, and the final design package that is available to transfer this technology to industry users.

  20. Micromechanical transient sensor for measuring viscosity and density of a fluid

    DOEpatents

    Thundat, Thomas G.; Oden, Patrick I.; Warmack, Robert J.; Finot, Eric Laurent

    2001-01-01

    A method and apparatus for measuring the viscosity and/or specific density of a fluid utilizes a microcantilever vibrated in the analyte fluid. The source of vibration is switched on and off and the transient behavior or decay in amplitude of the vibration is monitored. The method is particularly useful for the measurement of process conditions in remote locations in real time.

  1. Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Peyvan, K.; Danley, D.; Ricco, A. J.

    2010-01-01

    To facilitate astrobiological studies on the survival and adaptation of microorganisms and mixed microbial cultures to space environment, we have been developing a fully automated, miniaturized system for measuring their gene expression on small spacecraft. This low-cost, multi-purpose instrument represents a major scientific and technological advancement in our ability to study the impact of the space environment on biological systems by providing data on cellular metabolism and regulation orders of magnitude richer than what is currently available. The system supports growth of the organism, lyse it to release the expressed RNA, label the RNA, read the expression levels of a large number of genes by microarray analysis of labeled RNA and transmit the measurements to Earth. To measure gene expression we use microarray technology developed by CombiMatrix, which is based on electrochemical reactions on arrays of electrodes on a semiconductor substrate. Since the electrical integrity of the microarray remains intact after probe synthesis, the circuitry can be employed to sense nucleic acid binding at each electrode. CombiMatrix arrays can be sectored to allow multiple samples per chip. In addition, a single array can be used for several assays. The array has been integrated into an automated microfluidic cartridge that uses flexible reagent blisters and pinch pumping to move liquid reagents between chambers. The proposed instrument will help to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment, develop effective countermeasures against these effects, and test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration. The instrument is suitable for small satellite platforms, which provide frequent, low cost access to space. It can be also used on any other platform in space

  2. Gaussian beam measurement for HIFI instrument: Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Pantaleev, Miroslav G.; Ermisch, Karsten; Fredrixon, Mathias; Svensson, Magnus; Belitsky, Victor

    2004-09-01

    The Heterodyne Instrument (HIFI) is part of the ESA Herschel Space Observatory Project. The instrument is intended for high-resolution spectroscopy and has a frequency coverage from 480 to 1250 GHz band in five receiver bands and 1410 to 1910 GHz in two additional bands. HIFI is built based on a modular principle: the mixers together with their respective optics are integrated into Mixer Sub-Assemblies (MSA). Each frequency band has two MSAs allocated for horizontal and vertical polarization. In this paper, we present the work done on the design and construction of a Gaussian beam measurement range. One of the unique features of the developed method is a possibility to measure the beam parameters of the MSAs in the absolute coordinate system referred to the device under test. This along with other methods should allow integration of the entire HIFI with the best possible coupling of the antenna beam to the receivers and achieving ultimate performance in such a complicated optical system. The range houses the measured MSA, which is at 4 K ambient temperature, and a continuous wave source placed on a precise scanner entirely under vacuum. Developed triangulation system provides mechanical reference data on the MSA, in-situ, after the entire system is evacuated and the cooling is finished. We adopted a scalar measurement approach where the test source scans the receiver input beam and the mixer IF power is measured. The data collected from 3-4 planar scans are used to calculate the orientation and position of the optical axis. We present results from the first beam measurements for MSA HIFI bands 1 and 2 (480 and 640 GHz), the measurement system performance and accuracy analysis.

  3. Fluid friction in incompressible laminar convection: Reynolds' analogy revisited for variable fluid properties

    NASA Astrophysics Data System (ADS)

    Mahulikar, S. P.; Herwig, H.

    2008-03-01

    The Reynolds' analogy between the Stanton number (St) and the skin friction coefficient (cf) is popularly believed to hold when St increases with increasing cf, for simple situations. In this investigation, the validity of Reynolds' analogy between St and cf for micro-convection of liquids with variations in fluid properties is re-examined. It is found that the Sieder-Tate's property-ratio method for obtaining Nusselt number corrections is theoretically based on the validity of Reynolds' analogy. The inverse dependence of Reynolds number and skin friction coefficient is the basis for validity of the Reynolds' analogy, in convective flows with fluid property variations. This leads to the unexpected outcome that Reynolds' analogy now results in St increasing with decreasing cf. These results and their analyses indicate that the validity of Reynolds' analogy is based on deeper foundations, and the well-known validity criterion is a special case.

  4. Homodyne full-field interferometer for measuring dynamic surface phenomena in microstructures

    NASA Astrophysics Data System (ADS)

    Lipiäinen, Lauri; Kokkonen, Kimmo; Kaivola, Matti

    2017-01-01

    We describe a stabilized homodyne full-field interferometer capable of measuring vertical surface deformations of microstructures in the time domain. The interferometer is stabilized to a chosen operation point by obtaining a feedback signal from a non-moving, freely selectable, reference region on the sample surface. The stabilized full-field interferometer enables detection of time-dependent changes in the surface profile with nanometer scale vertical resolution, while the temporal resolution of the measurement is ultimately limited by the refresh rate of the camera only. The lateral resolution of the surface deformation is determined by the combination of the imaging optics together with the pixel size of the camera. The setup is used to measure the deformation of an Aluminum nitride membrane as a function of time-dependent pressure change. The data analysis allows for unambiguous determination of surface deformations over multiple fringes of the interferogram, hence enabling the study of a wide range of physical phenomena with varying magnitude of vertical surface movement.

  5. On-line fast response device and method for measuring dissolved gas in a fluid

    DOEpatents

    Tutu, Narinder Kumar

    2011-01-11

    A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

  6. Microprocessor instruments for measuring nonlinear distortions; algorithms for digital processing of the measurement signal and an estimate of the errors

    SciTech Connect

    Mints, M.Ya.; Chinkov, V.N.

    1995-09-01

    Rational algorithms for measuring the harmonic coefficient in microprocessor instruments for measuring nonlinear distortions based on digital processing of the codes of the instantaneous values of the signal being investigated are described and the errors of such instruments are obtained.

  7. Systems and methods for separating particles and/or substances from a sample fluid

    DOEpatents

    Mariella, Jr., Raymond P.; Dougherty, George M.; Dzenitis, John M.; Miles, Robin R.; Clague, David S.

    2016-11-01

    Systems and methods for separating particles and/or toxins from a sample fluid. A method according to one embodiment comprises simultaneously passing a sample fluid and a buffer fluid through a chamber such that a fluidic interface is formed between the sample fluid and the buffer fluid as the fluids pass through the chamber, the sample fluid having particles of interest therein; applying a force to the fluids for urging the particles of interest to pass through the interface into the buffer fluid; and substantially separating the buffer fluid from the sample fluid.

  8. Practical resolution requirements of measurement instruments for precise characterization of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Collomb-Patton, Véronique; Bignon, Thibault

    2014-03-01

    Different ways to evaluate the optical performances of auto-stereoscopic 3D displays are reviewed. Special attention is paid to the crosstalk measurements that can be performed by measuring, either the precise angular emission at one or few locations on the display surface, or the full display surface emission from very specific locations in front of the display. Using measurements made in the two ways with different instruments on different auto-stereoscopic displays, we show that measurement instruments need to match the resolution of the human eye to obtain reliable results in both cases. Practical requirements in terms of angular resolution for viewing angle measurement instruments and in terms of spatial resolution for imaging instruments are derived and verified on practical examples.

  9. ASRDI oxygen technology survey. Volume 6: Flow measurement instrumentation

    NASA Technical Reports Server (NTRS)

    Mann, D. B.

    1974-01-01

    A summary is provided of information available on liquid and gaseous oxygen flowmetering including an evaluation of commercial meters. The instrument types, physical principles of measurement, and performance characteristics are described. Problems concerning flow measurements of less than plus or minus two percent uncertainty are reviewed. Recommendations concerning work on flow reference systems, the use of surrogate fluids, and standard tests for oxygen flow measurements are also presented.

  10. Measuring the psychosocial characteristics of family caregivers of palliative care patients: psychometric properties of nine self-report instruments.

    PubMed

    Hudson, Peter L; Hayman-White, Karla

    2006-03-01

    Researchers and clinicians have experienced substantial difficulties locating measures that are suitable for use within palliative care settings. This article details the psychometric properties of nine instruments designed to assess the following psychosocial characteristics of family caregivers: competence, mastery, self-efficacy, burden, optimism, preparedness, social support, rewards, and mutuality. Results are based on the responses of 106 primary family caregivers caring for relatives dying of cancer. Principal components extraction with varimax rotation was used to explore the underlying structure of each measure. Following the exclusion of complex variables, suggested components for most measures comprised relatively homogenous items, which were good to excellent measures of each component. Some components comprised only two items; however, Cronbach's alphas typically indicated moderate to high levels of internal consistency. Overall, the results of this study suggest that most of the measures analyzed, excepting the mastery and mutuality scales, can be recommended to examine the family caregiver experience and test supportive interventions.

  11. Instrumentation for the measurement of autofluorescence in human skin

    NASA Astrophysics Data System (ADS)

    Graaff, Reindert; Meerwaldt, Robbert; Lutgers, Helen L.; Baptist, Rene; de Jong, Ed D.; Zijp, Jaap R.; Links, Thera P.; Smit, Andries J.; Rakhorst, Gerhard

    2005-04-01

    A setup to measure skin autofluorescence was developed to assess accumulation of advanced glycation endproducts (AGE) in patients noninvasively. The method applies direct blacklight tube illumination of the skin of the lower arm, and spectrometry. The setup displays skin autofluorescence (AF) as a ratio of mean intensities detected from the skin between 420-600 nm and 300-420 nm, respectively. In an early clinical application in 46 and control subjects matched for age and gender, AF was significantly increased in the patients (p = 0.015), and highly correlated with skin AGE's that were determined from skin biopsies in both groups. A large follow-up study on type 2 diabetes mellitus, ongoing since 2001 with more than 1000 subjects, aims to assess the value of the instrument in predicting chronic complications of diabetes. At baseline, a relation with age, glycemic status and with complications present was found. In a study in patients with end stage renal disease on dialysis AF was a strong and independent predictor of total and cardiovascular mortality. A commercial version of this AGE-reader is now under development and becomes available early 2005 (DiagnOptics B.V., Groningen, The Netherlands). One of the remaining questions, that will be answered by measuring so-called Exciation-Emission Matrices (EEM's) of the skin tissue in vivo, is whether a more selective choice of wavelengths is more strongly related to clinical characteristics. An experimental instrument to measure these EEM's was, therefore, developed as well. Clinical measurements are underway of EEM's in patient groups with diabetes mellitus and in healthy volunteers.

  12. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  13. Instrumentation for Structure Measurements on Highly Non-equilibrium Materials

    SciTech Connect

    Weber, Richard; Benmore, Chris J; Neuefeind, Joerg C; Wilding, Martin C

    2011-01-01

    Containerless techniques (levitation) completely eliminate contact with the sample. This unique sample environment allows deep supercooling of many liquids and avoids contamination of high temperature melts. Recent experiments at the APS high energy beamline 11 ID-C used aerodynamic levitation with laser beam heating and acoustic levitation with cryogenic cooling. By using these two methods, liquids were studied over much of the temperature range from -40 to +2500 C. This paper briefly describes the instrumentation and its use with an -Si area detector that allows fast, in-situ measurements. Use of the instruments is illustrated with examples of measurements on molten oxides and aqueous materials.

  14. [Psychometric properties of an instrument for assessing cyber-sex addiction].

    PubMed

    Ballester Arnal, Rafael; Gil Llario, Ma Dolores; Gómez Martínez, Sandra; Gil Juliá, Beatriz

    2010-11-01

    Psychometric properties of an instrument for assessing cyber-sex addiction. Cyber-sex addiction is a «new pathology» whose prevalence has grown rapidly in recent years. Therefore, it is important to have validated assessment instruments. The aim of this study was the adaptation and validation of the Internet Sex Screening Test (ISST) for its use in a Spanish population. The instrument was administered to 1239 Spanish college students. The results yielded five components that account for 47.5% of the variance. Internal consistency was .88 and temporal stability was .84. Moreover, the instrument had adequate convergent and discriminant validity and was related to other behaviors such as the use of pornography, internet addiction, number of hours online and sexual frequency. Therefore, this tool is proposed as an appropriate measure to assess cyber-sex addiction.

  15. Instrument for benzene and toluene emission measurements of glycol regenerators

    NASA Astrophysics Data System (ADS)

    Hanyecz, Veronika; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád; Szabó, Gábor

    2013-11-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m-3 for benzene, 3 mg m-3 for toluene in natural gas, and 5 g m-3 for benzene and 6 g m-3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature.

  16. Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Astrophysics Data System (ADS)

    Pohorille, Andrew; Danley, David; Payvan, Kia; Ricco, Antonio

    To facilitate astrobiological studies on the survival and adaptation of microorganisms and mixed microbial cultures to space environment, we have been developing a fully automated, minia-turized system for measuring their gene expression on small spacecraft. This low-cost, multi-purpose instrument represents a major scientific and technological advancement in our ability to study the impact of the space environment on biological systems by providing data on cel-lular metabolism and regulation orders of magnitude richer than what is currently available. The system supports growth of the organism, lyse it to release the expressed RNA, label the RNA, read the expression levels of a large number of genes by microarray analysis of labeled RNA and transmit the measurements to Earth. To measure gene expression we use microarray technology developed by CombiMatrix, which is based on electrochemical reactions on arrays of electrodes on a semiconductor substrate. Since the electrical integrity of the microarray re-mains intact after probe synthesis, the circuitry can be employed to sense nucleic acid binding at each electrode. CombiMatrix arrays can be sectored to allow multiple samples per chip. In addition, a single array can be used for several assays. The array has been integrated into an automated microfluidic cartridge that uses flexible reagent blisters and pinch pumping to move liquid reagents between chambers. The proposed instrument will help to understand adaptation of terrestrial life to conditions be-yond the planet of origin, identify deleterious effects of the space environment, develop effective countermeasures against these effects, and test our ability to sustain and grow in space organ-isms that can be used for life support and in situ resource utilization during long-duration space exploration. The instrument is suitable for small satellite platforms, which provide frequent, low cost access to space. It can be also used on any other platform in space

  17. An instrument for measuring thermal inertia in the field

    NASA Technical Reports Server (NTRS)

    Marsh, S. E.; Schieldge, J. P.; Kahle, A. B.

    1982-01-01

    Features and test results of a thermal inertial meter (TIM) for cataloging the thermal inertial of surface material in situ as a basis for satellite remote sensing of geologic materials are described. The instrument is employed to determine the temperature rise of the materials in the field, with the assumptions that the sample and a standard are homogeneous in composition, the heat flux density is constant at the surface of each material, and the specimens are thick enough to be treated as semi-infinite bodies. A formula for calculating thermal inertia is presented, and the components of the TIM are detailed. A box with three compartments, two holding standards, is placed on the sample surface with the third compartment open to the specimen. Dolomite and quartz are used as references when all samples are measured after heating. Tests with rocks and sand in Nevada and California revealed that chert has a higher thermal inertia than barite.

  18. Compact Instruments Measure Heat Potential

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Based in Huntsville, Alabama, AZ Technology Inc. is a woman- and veteran-owned business that offers expertise in electromechanical-optical design and advanced coatings. AZ Technology has received eight Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center for the development of spectral reflectometers and the measurement of surface thermal properties. The company uses a variety of measurement services and instruments, including the Spectrafire, a portable spectral emissometer it used to assist General Electric with the design of its award-winning Giraffe Warmer for neonatal intensive care units.

  19. Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment

    SciTech Connect

    D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

    2005-09-01

    The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

  20. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  1. Procedure for measuring simultaneously the solar and visible properties of glazing with complex internal or external structures.

    PubMed

    Gentle, A R; Smith, G B

    2014-10-20

    Accurate solar and visual transmittances of materials in which surfaces or internal structures are complex are often not easily amenable to standard procedures with laboratory-based spectrophotometers and integrating spheres. Localized "hot spots" of intensity are common in such materials, so data on small samples is unreliable. A novel device and simple protocols have been developed and undergone validation testing. Simultaneous solar and visible transmittance and reflectance data have been acquired for skylight components and multilayer polycarbonate roof panels. The pyranometer and lux sensor setups also directly yield "light coolness" in lumens/watt. Sample areas must be large, and, although mainly in sheet form, some testing has been done on curved panels. The instrument, its operation, and the simple calculations used are described. Results on a subset of diffuse and partially diffuse materials with no hot spots have been cross checked using 150 mm integrating spheres with a spectrophotometer and the Air Mass 1.5 spectrum. Indications are that results are as good or better than with such spheres for transmittance, but reflectance techniques need refinement for some sample types.

  2. An Automated Instrument for the Measurement of Bark Microrelief

    NASA Astrophysics Data System (ADS)

    van Stan, J. T.; Jarvis, M.; Levia, D. F.

    2009-05-01

    Bark microrelief is of importance to the physiological ecology of forested ecosystems because it has been documented to influence the distribution of corticolous lichens, stemflow generation, and forest biogeochemical cycles. Hitherto no instrument existed to characterize the inherent variability of bark microrelief with high spatial resolution. Our newly-designed bark microrelief instrument, the LaserBarkTM, consists of a hinged ring, laser rangefinder, and motor linked to a standard laptop. The LaserBarkTM produces trunk cross- sections at a 0.33 degree horizontal resolution and detects bark ridge-to furrow heights at < 1 mm resolution. The LaserBarkTM was validated by comparing measurements of bark microrelief between the instrument and digital calipers. The mean absolute error of the instrument was 0.83 mm. Our bark microrelief instrument can supply critical requisite information of bark microstructure that be used by researchers to interpret the distribution of lichens and bryophytes on tree surfaces, relate stemflow yield and chemistry to bark microrelief, and provide detailed measurements of the changes of bark microrelief with stem dehydration. In short, the LaserBarkTM can be used to gain a more holistic understanding of the functional ecology of forest ecosystems.

  3. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  4. Semiconductor laser-based ranging instrument for earth gravity measurements

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Millar, Pamela S.; Sun, Xiaoli

    1995-01-01

    A laser ranging instrument is being developed to measure the spatial variations in the Earth's gravity field. It will range in space to a cube corner on a passive co-orbiting sub-satellite with a velocity accuracy of 20 to 50 microns/sec by using AlGaAs lasers intensity modulated at 2 GHz.

  5. Modelling Phase Transition Phenomena in Fluids

    DTIC Science & Technology

    2015-07-01

    results are verified against an exact benchmark solution. RELEASE LIMITATION Approved for Public Release UNCLASSIFIED UNCLASSIFIED Published by...are conducted, and some results are verified against an exact benchmark solution. UNCLASSIFIED UNCLASSIFIED THIS PAGE IS INTENTIONALLY BLANK...formulation . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.3 Exact similarity solution . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.4

  6. Design and implementation of a slope measuring instrument for measurement of charged particle temperatures

    NASA Astrophysics Data System (ADS)

    Rajput, S. S.; Garg, S. C.

    1998-01-01

    This article reports the design considerations, implementation, and performance of an instrument, used to measure the slope of current-voltage (I-V) characteristics of ionospheric plasma, for onboard measurement of charged particle temperatures. The instrument measures the reflected ac signal in the probe current, when an ac voltage is superposed over the probe bias, and is designed for the slope measurement from 6.3×10-14 A/V2 to 6.3×10-9 A/V2 with full scale resolution of 0.2%.

  7. Psychometric properties of instruments for assessing depression among African youth: a systematic review

    PubMed Central

    Mutumba, Massy; Tomlinson, Mark; Tsai, Alexander C.

    2014-01-01

    Objective: To systematically review the psychometric properties of instruments used to screen for major depressive disorder or assess depression symptom severity among African youth. Methods: Systematic search terms were applied to seven bibliographic databases: African Journals Online, the African Journal Archive, CINAHL, Embase, MEDLINE, PsycINFO, and the WHO African Index Medicus. Studies examining the reliability and/or validity of depression assessment tools were selected for inclusion if they were based on data collected from youth (any author definition) in an African member state of the United Nations. We extracted data on study population characteristics, sampling strategy, sample size, the instrument assessed, and the type of reliability and/or validity evidence provided. Results: Of 1,027 records, we included 23 studies of 10,499 youth in 10 African countries. Most studies reported excellent scale reliability, but there was much less evidence of equivalence or criterion-related validity. No measures were validated in more than two countries. Conclusions: There is a paucity of evidence on the reliability or validity of depression assessment among African youth. The field is constrained by a lack of established criterion standards, but studies incorporating mixed methods offer promising strategies for guiding the process of cross-cultural development and validation. PMID:25391712

  8. An instrument for measuring the complex permittivity of the Martian top soil

    NASA Technical Reports Server (NTRS)

    Grard, R.

    1988-01-01

    This permittivity measuring instrument measures the resistivity rho and the relative dielectric constant epsilon sub r of the Martian top soil along the path of a rover. This aim is achieved by measuring the real and imaginary parts of the complex permittivity epsilon = epsilon sub r - j epsilon sub i where epsilon sub i = omega epsilon sub o rho/1; epsilon sub 1 is the permittivity of vacuum and omega is a variable angular working frequency. The experimental technique consists in evaluating the mutual, or transfer, impedance of a quadrupolar probe, i.e., in quantifying the influence of the Martian ground on the electrical coupling of two Hertz dipoles. The horizontal and vertical spatial resolutions are of the order of the length and separation of the dipoles, typically 1 to 2 metres. The four-electrode method for measuring the ground resistivity on earth was first applied by Wenner and Schlumberger, but the proposed investigation bears closer resemblance to a similar instrument developed for ground surveying at shallow depth, in connection with archaelogical and pedological research. A quadrupolar probe will provide essential information about the electric properties of the Martian ground and will contribute usefully to the identification of the soil structure and composition in association with other experimental equipment (camera, infra-red detector, gamma and X-ray spectrometers, chemical analyzers, ground temperature probes).

  9. Tidal interaction: A possible explanation for geysers and other fluid phenomena in the Neptune-Triton system

    NASA Technical Reports Server (NTRS)

    Kelly, W. D.; Wood, C. L.

    1993-01-01

    Discovery of geyser-like plumes on the surface of Triton was a highlight of Voyager 2's passage through the Neptune planetary system. Remarkable as these observations were, they were not entirely without precedent. Considering the confirmed predictions for the 1979 Voyager Jovian passage, it was logical to consider other solar system bodies beside Io where tidal effects could be a significant factor in surface processes. It was our intuition that the Neptune-Triton gravitational bond acting at high inclination to the Neptune equator and the fact that Neptune was a fluid body was significant oblateness would produce tidal and mechanical forces that could be transformed into thermal energy vented on Triton's surface. Prior to the Voyager flyby, others have noted that capture and evolution of Triton's orbit from extreme eccentricity to near circular state today would have resulted in significant tidal heating, but these analysts disregard current day forces. Our calculations indicate that the time varying forces between Neptune-Triton fall midway between those exerted in the Earth-Moon and Jupiter-Io systems, and considering the low level of other energy inputs, this source of internal energy should not be ignored when seeking an explanation for surface activity. In each planet-satellite case, residual or steady-state eccentricity causes time-varying stresses on internal satellite strata. In the case of Jupiter the residual eccentricity is due largely to Galilean satellite interactions, particularly Io-Europa, but in the case of Neptune-Triton, it is the effect of Triton's inclined orbit about an oblate primary.

  10. 46 CFR 67.265 - Requirements for instruments evidencing satisfaction or release.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Requirements for instruments evidencing satisfaction or... for instruments evidencing satisfaction or release. An instrument satisfying or releasing a mortgage... claim of lien is recorded. If the recording information cannot be provided because the satisfaction...

  11. 46 CFR 67.265 - Requirements for instruments evidencing satisfaction or release.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Requirements for instruments evidencing satisfaction or... for instruments evidencing satisfaction or release. An instrument satisfying or releasing a mortgage... claim of lien is recorded. If the recording information cannot be provided because the satisfaction...

  12. Rating Scale Instruments and Measurement

    ERIC Educational Resources Information Center

    Cavanagh, Robert F.; Romanoski, Joseph T.

    2006-01-01

    The article examines theoretical issues associated with measurement in the human sciences and ensuring data from rating scale instruments are measures. An argument is made that using raw scores from rating scale instruments for subsequent arithmetic operations and applying linear statistics is less preferable than using measures. These theoretical…

  13. Dielectric properties of EVA rubber composites at microwave frequencies theory, instrumentation and measurements.

    PubMed

    Banerjee, Prasun; Biswas, Salil Kumar; Ghosh, Gautam

    2011-01-01

    This work describes and evaluates a technique for determining the dielectric properties of carbon-black filled Ethylene Vinyl Acetate (EVA) rubber and presents results on the studies of the effect of frequency on the permittivity and microwave conductivity using resonant cavity perturbation method. The measurements are performed with the aid of a Network Analyzer in X-band. The simplicity of this method lies in the fact that the dielectric properties can be obtained directly from the analytical formula without taking recourse to calibration.

  14. Commercial Instrument for Automated Specific Heat Measurements at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Neils, W. K.; Martien, Dinesh; Bauer, E. D.; Mixson, D.; Hur, N.; Thompson, J. D.; Sarrao, J. L.

    2006-09-01

    The specific heat of CeRhIn5-xSnx was measured down to 55 mK using a novel, fully automated measurement system. The system consists of a dilution refrigerator designed to operate in a Quantum Design Physical Property Measurement System, a calorimeter optimized for millikelvin temperatures and very low addenda heat capacity, electronics to perform the measurement, and software to automate the measurement. The compound CeRhIn5 exhibits antiferromagnetism at a Neel temperature of TN = 3.8 K which is suppressed at a critical pressure Pc ˜ 25 kbar, indicating a quantum critical point (QCP). At pressures above ˜ 15 kbar, CeRhIn5 exhibits antiferromagnetism and superconductivity simultaneously. Measurement of the specific heat of CeRhIn5-xSnx in magnetic field offers an additional tool to probe the antiferromagnetic QCP. Preliminary measurements up to H = 3 T for CeRhIn4.77Sn0.23 are reported.

  15. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Measurement instrumentation. 201.22... PROGRAMS NOISE EMISSION STANDARDS FOR TRANSPORTATION EQUIPMENT; INTERSTATE RAIL CARRIERS Measurement Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level...

  16. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Measurement instrumentation. 201.22... PROGRAMS NOISE EMISSION STANDARDS FOR TRANSPORTATION EQUIPMENT; INTERSTATE RAIL CARRIERS Measurement Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level...

  17. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Measurement instrumentation. 201.22... PROGRAMS NOISE EMISSION STANDARDS FOR TRANSPORTATION EQUIPMENT; INTERSTATE RAIL CARRIERS Measurement Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level...

  18. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Measurement instrumentation. 201.22... PROGRAMS NOISE EMISSION STANDARDS FOR TRANSPORTATION EQUIPMENT; INTERSTATE RAIL CARRIERS Measurement Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level...

  19. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Measurement instrumentation. 201.22... PROGRAMS NOISE EMISSION STANDARDS FOR TRANSPORTATION EQUIPMENT; INTERSTATE RAIL CARRIERS Measurement Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level...

  20. Capacitance Probe for Fluid Flow and Volume Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  1. Capacitance probe for fluid flow and volume measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  2. Review of modern instrumentation for magnetic measurements at high pressure and low temperature

    NASA Astrophysics Data System (ADS)

    Wang, X.; Kamenev, K. V.

    2014-08-01

    High-pressure magnetic susceptibility experiments can provide insights into the changes in magnetic behavior and electric properties which can accompany extreme compressions of material. Instrumentation plays an important role in the experimental work in this field since 1990s. Here we present a comprehensive review of the high-pressure instrumentation development for magnetic measurement from the engineering perspective in the last 20 years. Suitable nonmagnetic materials for high pressure cell are introduced initially. Then we focus on the existing cells developed for magnetic property measurement system (MPMS®) SQUID magnetometer from Quantum Design (USA). Two categories of high pressure cells for this system are discussed in detail respectively. Some high pressure cells with built-in magnetic measurement system are also reviewed.

  3. Brief communication "Snow profile associated measurements (SPAM) - a new instrument for quick snow profile measurements"

    NASA Astrophysics Data System (ADS)

    Lahtinen, P.

    2011-06-01

    A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.

  4. Doppler backscatter properties of a blood-mimicking fluid for Doppler performance assessment.

    PubMed

    Ramnarine, K V; Hoskins, P R; Routh, H F; Davidson, F

    1999-01-01

    The Doppler backscatter properties of a blood-mimickig fluid (BMF) were studied to evaluate its suitability for use in a Doppler flow test object. Measurements were performed using a flow rig with C-flex tubing and BMF flow produced by a roller pump or a gear pump. A SciMed Doppler system was used to measure the backscattered Doppler power with a root-mean-square power meter connected to the audio output. Studies investigated the dependence of the backscattered Doppler power of the BMF with: circulation time; batch and operator preparations; storage; sieve size; flow speed; and pump type. A comparison was made with human red blood cells resuspended in saline. The backscatter properties are stable and within International Electrotechnical Commission requirements. The BMF is suitable for use in a test object for Doppler performance assessment.

  5. Local-field effects and nanostructuring for controlling optical properties and enabling novel optical phenomena

    NASA Astrophysics Data System (ADS)

    Dolgaleva, Ksenia

    My Ph. D. thesis is devoted to the investigation of the methods of controlling and improving the linear and nonlinear optical properties of materials. Within my studies, two approaches are considered: nanostructuring and invoking local-field effects. These broad topics involve various projects that I have undertaken during my Ph. D. research. The first project is on composite laser gain media. It involves both nanostructuring and using local-field effects to control the basic laser parameters, such as the radiative lifetime, small-signal gain and absorption, and the saturation intensity. While being involved in this project, I have performed both theoretical and experimental studies of laser characteristics of composite materials. In particular, I have developed simple theoretical models for calculating the effective linear susceptibilities of layered and Maxwell Garnett composite materials with a gain resonance in one of their components. The analysis of the results given by the models suggests that local-field effects provide considerable freedom in controlling the optical properties of composite laser gain media. I have also experimentally measured the radiative lifetime of Nd:YAG nanopowder suspended in different liquids to extract information regarding local-field effects. The second project is devoted to the investigation of a not-well-known phenomenon that local-field effects can induce, which is microscopic cascading in nonlinear optics. This project involves the theoretical prediction of local-field-induced microscopic cascading effect in the fifth-order nonlinear response and its first experimental observation. This effect has been mostly overlooked or underestimated, but could prove useful in quantum optics. I have shown that, under certain conditions, the microscopic cascaded contribution can be a dominant effect in high-order nonlinearities. The third project is about characterization of laser performance of a new dye, oligofluorene, embedded into

  6. Deriving aerosol properties from measurements of the Atmosphere-Surface Radiation Automatic Instrument (ASRAI)

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Li, Donghui; Li, Zhengqiang; Zheng, Xiaobing; Li, Xin; Xie, Yisong; Liu, Enchao

    2015-10-01

    The Atmosphere-surface Radiation Automatic Instrument (ASRAI) is a newly developed hyper-spectral apparatus by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (AIOFM, CAS), measuring total spectral irradiance, diffuse spectral irradiance of atmosphere and reflected radiance of the land surface for the purpose of in-situ calibration. The instrument applies VIS-SWIR spectrum (0.4~1.0 μm) with an averaged spectral resolution of 0.004 μm. The goal of this paper is to describe a method of deriving both aerosol optical depth (AOD) and aerosol modes from irradiance measurements under free cloudy conditions. The total columnar amounts of water vapor and oxygen are first inferred from solar transmitted irradiance at strong absorption wavelength. The AOD together with total columnar amounts of ozone and nitrogen dioxide are determined by a nonlinear least distance fitting method. Moreover, it is able to infer aerosol modes from the spectral dependency of AOD because different aerosol modes have their inherent spectral extinction characteristics. With assumption that the real aerosol is an idea of "external mixing" of four basic components, dust-like, water-soluble, oceanic and soot, the percentage of volume concentration of each component can be retrieved. A spectrum matching technology based on Euclidean-distance method is adopted to find the most approximate combination of components. The volume concentration ratios of four basic components are in accordance with our prior knowledge of regional aerosol climatology. Another advantage is that the retrievals would facilitate the TOA simulation when applying 6S model for satellite calibration.

  7. Measuring Approaches to Learning in Preschoolers: Validating the Structure of an Instrument for Teachers and Parents

    ERIC Educational Resources Information Center

    Barbu, Otilia C.; Marx, Ronald W.; Yaden, David B., Jr.; Levine-Donnerstein, Deborah

    2016-01-01

    This study examined a 13-item instrument measuring approaches to learning (AtL) as a component of school readiness in the context of early childhood socio-emotional development. Few instruments, limited to preschool teacher ratings, measure AtL among kindergarteners with short easy-to-use questionnaires. We investigated psychometric properties of…

  8. FluidCam 1&2 - UAV-Based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2015-12-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  9. The Development of an Instrument for Measuring Healing

    PubMed Central

    Meza, James Peter; Fahoome, Gail F.

    2008-01-01

    PURPOSE Our lack of ability to measure healing attributes impairs our ability to research the topic. The specific aim of this project is to describe the psychological and social construct of healing and to create a valid and reliable measurement scale for attributes of healing. METHODS A content expert conducted a domain analysis examining the existing literature of midrange theories of healing. Theme saturation of content sampling was ensured by brainstorming more than 220 potential items. Selection of items was sequential: pile sorting and data reduction, with factor analysis of a mailed 54-item questionnaire. Criterion validity (convergent and divergent) and temporal reliability were established using a second mailing of the development version of the instrument. Construct validity was judged with structural equation modeling for goodness of fit. RESULTS Cronbach’s α of the original questionnaire was .869 and the final scale was .862. The test-retest reliability was .849. Eigenvalues for the 2 factors were 8 and 4, respectively. Divergent and convergent validity using the Spann-Fischer Codependency Scale and SF-36 mental health and emotional subscales were consistent with predictions. The root mean square error of approximation was 0.066 and Bentler’s Comparative Fit Index was 0.871. Root mean square residual was 0.102. CONCLUSIONS We developed a valid and reliable measurement scale for attributes of healing, which we named the Self-Integration Scale v 2.1. By creating a new variable, new areas of research in humanistic health care are possible. PMID:18626036

  10. Cleanliness of common air sampling sorbents for application to phenolic compounds measurement using supercritical fluid extraction

    SciTech Connect

    Bowyer, J.R.; Pleil, J.D.

    1994-12-31

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. Recently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction method to Soxhlet extraction or thermal desorption to achieve more efficient recoveries. For such methodology to become practical, the candidate sorbents must first be tested for stability and cleanliness under SFE conditions. This paper describes exploratory research results of background contamination tests and cleanup properties of some common air sampling sorbent media with respect to future application to phenolic compounds monitoring.

  11. Cleanliness of common air sampling sorbents for application to phenolic compounds measurement using supercritical fluid extraction

    SciTech Connect

    Bowyer, J.R.; Pleil, J.D.

    1994-01-01

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. Recently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction method to Soxhlet extraction or thermal desorption to achieve more efficient recoveries. For such methodology to become practical, the candidate sorbents must first be tested for stability and cleanliness under SFE conditions. The paper describes exploratory research results of background contamination tests and cleanup properties of some common air sampling sorbent media with respect to future application to phenolic compounds monitoring.

  12. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  13. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    SciTech Connect

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-08-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  14. Building a Low-Cost, Six-Electrode Instrument to Measure Electrical Properties of Self-Assembled Monolayers of Gold Nanoparticles

    ERIC Educational Resources Information Center

    Gerber, Ralph W.; Oliver-Hoyo, Maria

    2007-01-01

    The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.

  15. Digital correlator for the portable channel prober measurement instrument

    NASA Astrophysics Data System (ADS)

    Peo, George E., Jr.

    1987-12-01

    This document describes a Digital Correlator for the Portable Channel Prober Measurement Instrument being developed by the Naval Research Laboratory for use in experiments designed to characterize high frequency (HF) radio channels. This Digital Correlator is a digital signal processor designed and constructed by Stow Computer, 111 old Bolton Road, Stow, MA 01775, (617/508) 897-6838. Two Digital Correlators are integrated into the existing Digital Pre-processor to make a Portable Wideband HF Channel Analyzer. The Portable Wideband HF Channel Analyzer will be located at the receiving site of the channel probing experiment and is situated between the coherent radio receiver and the microcomputer used for data recording and analysis. The Portable Wideband HF Channel Analyzer computes the delay power spectrum of the received waveform. The in-phase and quadrature outputs of the receiver are sampled and converted to digital values by the Analog to Digital Converter, integrated by the Integrator, and correlated with a stored replica of the transmitted waveform by two Digital Correlators. The resulting tap gains are then read by the system microcomputer using the microcomputer interface.

  16. Radiometric and Spectral Measurement Instruments

    DTIC Science & Technology

    1992-03-18

    NSWCCR/RDTN-92/0003 AD-A250 771LI~ llliii11l li l l iillt111 RADIOMETRIC AND SPECTRAL MEASUREMENT INSTRUMENTS CRANE DIVISION NAVAL SURFACE WARFARE... INSTRUMENTS 6. AUTHOR(S) B. E. DOUDA H. A. WEBSTER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION REPORT NIJMBER...Maxiry-um 200 w ords) THIS IS A DESCRIPTION OF AN ASSORTMENT OF RADIOMETRIC AND SPECTRAL INSTRUMENTATION USED FOR MEASUREMENT OF THE RADIATIVE OUTPUT OF

  17. Satellite observations and instrumentation for measuring energetic neutral atoms

    SciTech Connect

    Voss, H.D.; Mobilia, J.; Collin, H.L.; Imhof, W.L. . Space Sciences Lab.)

    1993-12-01

    Direct measurements of energetic neutral atoms (ENA) and ions have been obtained with the cooled solid state detectors on the low-altitude (220 km) three-axis stabilized S81-1/ stimulated emissions of energetic particles (SEEP) satellite and on the spinning 400 km [times] 5.5 R[sub e] (where R[sub e] is Earth radii) Combined Release and Radiation Effects Satellite (CRRES). During magnetic storms ENA and ion precipitation (E > 10 keV) are evident over the low-altitude equatorial region based on data from the SEEP (ONR 804) spectrometers and CRRES ion mass spectrometer (IMS-HI) (ONR 307-8-3) ion composition and ENA instrument. The IMS-HI neutral atom spectrometer covers the energy range from 20 to 1,500 keV with a geometrical factor of 10[sub [minus]3] cm[sup 2] sr and uses a 7-kG magnetic field to screen out protons less than about 50 MeV. During the strong magnetic storm of 24 March 1991 the first ENA and ion mass composition measurements were obtained of ring current particles below the inner belt and these fluxes are compared to the IMS-HI flux measurements in the ring current. Recently, an advanced spectrometer, the Source/Loss-cone Energetic Particle Spectrometer (SEPS), has been developed to image electrons, ions, and neutrals on the despun platform of the POLAR satellite ([approximately]1.8 [times] 9 R[sub e]) for launch in the mid 1990s as part of NASA's International Solar Terrestrial Physics/Global Geospace Science (ISTP/GGS) program.

  18. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  19. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  20. New instrumentation for temperature measurement. Phase 1: Program solicitation, small business innovation research

    NASA Astrophysics Data System (ADS)

    Fergason, J. L.

    1980-08-01

    Temperature sensitive liquid crystals designed to meet the need for a measuring device to accurately measure temperature and temperature distribution in the presence of electric, magnetic, and sonic fields, especially with high space and thermal resolution are discussed. A technique was developed to make highly reproducible, stable configurations of liquid crystal encapsulates. Temperature stable sensors have been produced which can be calibrated to the National Bureau of Standards. The thermal properties of the liquid crystal can be matched to the properties of the surrounding medium. Since a two dimensional representation of the temperature distribution is possible, the use of this instrumentation has significant implications for bioengineering.

  1. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  2. Development of instrumentation for differential spectroscopic measurements at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    D'Alessandro, G.; de Bernardis, P.; Masi, S.; Schillaci, A.

    2016-07-01

    The study of the spectral-spatial anisotropy of the high-latitude mm-wave sky is a powerful tool of cosmology. It can be used to provide deep insight in the Sunyaev-Zeldovich (SZ) effect, the Cosmic Infrared Background, the anisotropy of the CMB, using the spectral dimension to provide substantially increased information with respect to what is achievable by means of standard multiband photometry. Here we focus on spectral measurements of the SZ effect. Large mm-wave telescopes are now routinely mapping photometrically the SZ effect in a number of clusters, estimating the comptonisation parameter and using them as cosmological probes. Low-resolution spectroscopic measurements of the SZ effect would be very effective in removing the degeneracy between parameters inevitable in photometric measurements. We describe a real-world implementation of this measurement strategy, based on an imaging, efficient, differential Fourier transform spectrometer (FTS). The instrument is based on a Martin-Puplett interferometer (MPI) configuration. We combined two MPIs working synchronously to use the entire input power. In our implementation the observed sky field is divided into two halves along the meridian. Each half-field corresponds to one of the two input ports of the MPI. Each detector in the FTS focal planes measures the difference in brightness between two sky pixels, symmetrically located with respect to the meridian. Exploiting the high common mode rejection of the MPI, tiny sky brightness gradients embedded in an overwhelming isotropic background might be measured. We investigate experimentally the common-mode rejection achievable in the MPI at mm wavelengths, and discuss the use of such an instrument to measure the spectrum of cosmic microwave background (CMB) anisotropy and the SZ effect.

  3. Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

    SciTech Connect

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

    2007-09-30

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil

  4. Flow-induced birefringence measurement system using dual-crystal transverse electro-optic modulator for microgravity fluid physics applications

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.

    1999-01-01

    We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.

  5. Measurement of nonlinear viscoelastic properties of fluids using Dynamic Acoustoelastic Testing

    NASA Astrophysics Data System (ADS)

    Trarieux, C.; Callé, S.; Poulin, A.; Tranchant, J.-F.; Moreschi, H.; Defontaine, M.

    2012-12-01

    A nonlinear ultrasound-based method called Dynamic Acoustoelastic Testing (DAET) is used to assess nonlinear viscoelastic properties of fluids. This method is based on the interaction between two elastic waves: a low-frequency (LF) sinusoidal wave (4 kHz) to successively compress and expand the liquid as a bulk stress, and ultrasound (US) pulses (1 MHz) to simultaneously probe the sample at different states of the quasi-hydrostatic pressure. The DAET method provides estimations of the elastic nonlinearities issued from the Time Of Flight Modulations (TOFM) of the US pulses. The TOFM is plotted as a function of the LF acoustic pressure, allowing an estimation of the nonlinear elastic parameter B/A. In this study, we first present the results obtained in Newtonian fluids such as water and silicone oils. Simple viscoelastic gels (Carbomers and Xanthan gums) have also been tested exhibiting the same behavior: TOFM linearly related to LF pressure amplitude corresponding to classical quadratic nonlinearity. Finally, preliminary DAET measurements have been performed in biphasic systems composed of hard glass beads in a gel-based matrix and in gelatin during a gelation process.

  6. A Procedure for Measuring Microplastics using Pressurized Fluid Extraction.

    PubMed

    Fuller, Stephen; Gautam, Anil

    2016-06-07

    A method based on pressurized fluid extraction (PFE) was developed for measuring microplastics in environmental samples. This method can address some limitations of the current microplastic methods and provide laboratories with a simple analytical method for quantifying common microplastics in a range of environmental samples. The method was initially developed by recovering 101% to 111% of spiked plastics on glass beads and was then applied to a composted municipal waste sample with spike recoveries ranging from 85% to 94%. The results from municipal waste samples and soil samples collected from an industrial area demonstrated that the method is a promising alternative for determining the concentration and identity of microplastics in environmental samples.

  7. A fundamental measure theory for the sticky hard sphere fluid.

    PubMed

    Hansen-Goos, Hendrik; Wettlaufer, J S

    2011-01-07

    We construct a density functional theory (DFT) for the sticky hard sphere (SHS) fluid which, like Rosenfeld's fundamental measure theory (FMT) for the hard sphere fluid [Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)], is based on a set of weighted densities and an exact result from scaled particle theory (SPT). It is demonstrated that the excess free energy density of the inhomogeneous SHS fluid Φ(SHS) is uniquely defined when (a) it is solely a function of the weighted densities from Kierlik and Rosinberg's version of FMT [E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382 (1990)], (b) it satisfies the SPT differential equation, and (c) it yields any given direct correlation function (DCF) from the class of generalized Percus-Yevick closures introduced by Gazzillo and Giacometti [J. Chem. Phys. 120, 4742 (2004)]. The resulting DFT is shown to be in very good agreement with simulation data. In particular, this FMT yields the correct contact value of the density profiles with no adjustable parameters. Rather than requiring higher order DCFs, such as perturbative DFTs, our SHS FMT produces them. Interestingly, although equivalent to Kierlik and Rosinberg's FMT in the case of hard spheres, the set of weighted densities used for Rosenfeld's original FMT is insufficient for constructing a DFT which yields the SHS DCF.

  8. Quantitative phase-field modeling for wetting phenomena.

    PubMed

    Badillo, Arnoldo

    2015-03-01

    A new phase-field model is developed for studying partial wetting. The introduction of a third phase representing a solid wall allows for the derivation of a new surface tension force that accounts for energy changes at the contact line. In contrast to other multi-phase-field formulations, the present model does not need the introduction of surface energies for the fluid-wall interactions. Instead, all wetting properties are included in a unique parameter known as the equilibrium contact angle θeq. The model requires the solution of a single elliptic phase-field equation, which, coupled to conservation laws for mass and linear momentum, admits the existence of steady and unsteady compact solutions (compactons). The representation of the wall by an additional phase field allows for the study of wetting phenomena on flat, rough, or patterned surfaces in a straightforward manner. The model contains only two free parameters, a measure of interface thickness W and β, which is used in the definition of the mixture viscosity μ=μlϕl+μvϕv+βμlϕw. The former controls the convergence towards the sharp interface limit and the latter the energy dissipation at the contact line. Simulations on rough surfaces show that by taking values for β higher than 1, the model can reproduce, on average, the effects of pinning events of the contact line during its dynamic motion. The model is able to capture, in good agreement with experimental observations, many physical phenomena fundamental to wetting science, such as the wetting transition on micro-structured surfaces and droplet dynamics on solid substrates.

  9. Do Two or More Multicomponent Instruments Measure the Same Construct? Testing Construct Congruence Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Tong, Bing

    2016-01-01

    A latent variable modeling procedure is discussed that can be used to test if two or more homogeneous multicomponent instruments with distinct components are measuring the same underlying construct. The method is widely applicable in scale construction and development research and can also be of special interest in construct validation studies.…

  10. Functional capacity, physical activity and muscle strength assessment of individuals with non-small cell lung cancer: a systematic review of instruments and their measurement properties

    PubMed Central

    2013-01-01

    Background The measurement properties of instruments used to assess functional capacity, physical activity and muscle strength in participants with non-small cell lung cancer (NSCLC) have not been systematically reviewed. Method Objectives: To identify outcome measures used to assess these outcomes in participants with NSCLC; and to evaluate, synthesise and compare the measurement properties of the outcome measures identified. Data Sources: A systematic review of articles using electronic databases MEDLINE (1950–2012), CINAHL (1982–2012), EMBASE (1980–2012), Cochrane Library (2012), Expanded Academic ASAP (1994–2012), Health Collection Informit (1995–2012) and PEDRO (1999–2012). Additional studies were identified by searching personal files and cross referencing. Eligibility Criteria for Study Selection: Search one: studies which assessed functional capacity, physical activity or muscle strength in participants with NSCLC using non-laboratory objective tests were included. Search two: studies which evaluated a measurement property (inter- or intra-rater reliability; measurement error; criterion or construct validity; or responsiveness) in NSCLC for one of the outcome measures identified in search one. Studies published in English from 1980 were eligible. Data Extraction and Methodological Quality Assessment: data collection form was developed and data extracted. Methodological quality of studies was assessed by two independent reviewers using the 4-point COSMIN checklist. Results Thirteen outcome measures were identified. Thirty-one studies evaluating measurement properties of the outcome measures in participants with NSCLC were included. Functional capacity was assessed using the six- and twelve-minute walk tests; incremental- and endurance-shuttle walk tests; and the stair-climbing test. Criterion validity for three of these measures was established in NSCLC but not the reliability or responsiveness. Physical activity was measured using accelerometers

  11. Deaf Pupils' Reasoning about Scientific Phenomena: School Science as a Framework for Understanding or as Fragments of Factual Knowledge.

    ERIC Educational Resources Information Center

    Molander, B. O.; Pedersen, Svend; Norell, Kia

    2001-01-01

    A Swedish interview study of how deaf pupils reason about phenomena in a science context revealed significant variation in the extent to which pupils used scientific principles for reasoning about science phenomena, which suggests that for some pupils, school science offers little as a framework for reasoning. (Contains references.) (DB)

  12. Soil Shear Properties Assessment, Resistance, Thermal, and Triboelectric Analysis (SPARTTA) Tool: A New Multitool Instrument for Identifying the Physical Properties of In-situ Soils on Planetary Surfaces.

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Peters, G. H.; Beegle, L. W.; Zhou, Y. M.; Van Stryk, N.; Carey, E. M.

    2015-12-01

    SPARTTA is a low cost, low mass (< 1 kg), and low power (< 5 watt) deployable rover-arm mounted contact instrument that will provide a new capability for measurements of the physical properties of in-situ soils on a planetary surface. SPARTTA is TRL-4 and is able to characterize the mechanical (shear and compressive strength), thermal (conductivity), and electrical (dielectric spectroscopy and triboelectric charging) properties of soils through the integration of five specialized tools into a small, portable instrument, analogous to the Swiss army knife. All of the SPARTTA components are based on classical terrestrial soil analytical tools. Each component will be used to measure a specific physical property of a planetary regolith. SPARTTA will be easily adaptable to a wide range of surface environments for any future planetary robotic surface mission. A key innovation of SPARTTA is its state-of-the-art miniature packaging approach which enables in-situ comprehensive analyses of the physical properties of soils on any planetary body (e.g. asteroids, comets, etc.) with a single compact instrument. SPARTTA will specifically address several high-priority science goals identified in the Decadal Study regarding the physical properties of planetary soils, liquid water/water-ice detection, and electrostatics for bodies as diverse as comets, Trojan asteroids, Mars and the Moon [Planetary Science Decadal Study, 2013]. Additionally, it will provide valuable data to assist engineers in designing landing, drilling, coring, and sample acquisition systems for future Discovery, New Frontiers missions, or flagship landed missions.

  13. Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6. Volume 2

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.

  14. Optical distance measuring instrument

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1986-01-01

    An optical instrument, such as a stability monitor or a target range finder, uses an unstabilized laser to project a composite optical signal of coherent light having two naturally occurring longitudinal mode components. A beamsplitter divides the signal into a reference beam which is directed toward one photodetector and a transmitted beam which illuminates and is reflected from a distant target onto a second photodetector optically isolated from the first photodetector. Both photodetectors are operated on the square law principle to provide electrical signals modulated at a frequency equal to the separation between the frequencies of the two longitudinal mode components of the optical signal projected by the laser. Slight movement of the target may be detected and measured by electrically monitoring the phase difference between the two signals provided by the photodetectors and the range of the target measured with the aid of a microprocessor by changing the separation between the longitudinal modes by shifting the length of the resonator cavity in an iterative series of increments.

  15. A review of instruments to measure interprofessional collaboration for chronic disease management for community-living older adults.

    PubMed

    Bookey-Bassett, Sue; Markle-Reid, Maureen; McKey, Colleen; Akhtar-Danesh, Noori

    2016-01-01

    It is acknowledged internationally that chronic disease management (CDM) for community-living older adults (CLOA) is an increasingly complex process. CDM for older adults, who are often living with multiple chronic conditions, requires coordination of various health and social services. Coordination is enabled through interprofessional collaboration (IPC) among individual providers, community organizations, and health sectors. Measuring IPC is complicated given there are multiple conceptualisations and measures of IPC. A literature review of several healthcare, psychological, and social science electronic databases was conducted to locate instruments that measure IPC at the team level and have published evidence of their reliability and validity. Five instruments met the criteria and were critically reviewed to determine their strengths and limitations as they relate to CDM for CLOA. A comparison of the characteristics, psychometric properties, and overall concordance of each instrument with salient attributes of IPC found the Collaborative Practice Assessment Tool to be the most appropriate instrument for measuring IPC for CDM in CLOA.

  16. Thermophysical Properties of Fluids and Fluid Mixtures

    SciTech Connect

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  17. Rheological properties of synovial fluids.

    PubMed

    Fam, H; Bryant, J T; Kontopoulou, M

    2007-01-01

    Synovial fluid is the joint lubricant and shock absorber [Semin. Arthritis Rheum. 32 (2002), 10-37] as well as the source of nutrition for articular cartilage. The purpose of the present paper is to provide a comprehensive review of the rheological properties of synovial fluid as they relate to its chemical composition. Given its importance in the rheology of synovial fluid, an overview of the structure and rheology of HA (hyaluronic acid) is presented first. The rheology of synovial fluids is discussed in detail, with a focus on the possible diagnosis of joint pathology based on the observed differences in rheological parameters and trends. The deterioration of viscoelastic properties of synovial fluid in pathological states due to effects of HA concentration and molecular weight is further described. Recent findings pertaining to the composition and rheology of periprosthetic fluid, the fluid that bathes prosthetic joints in vivo are reported.

  18. High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow

    NASA Astrophysics Data System (ADS)

    Xu, Muchen; Kim, Chang-Jin ``Cj''

    2015-11-01

    The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).

  19. Instrumentation for measuring the dynamic pressure on rotating compressor blades

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Lanati, G. A.

    1978-01-01

    To establish the capability for measurement of oscillatory pressure on rotating blades, miniature fast response semiconductor strain gage pressure transducers (2mm x 0.33mm) were mounted in several configurations on thin titanium and steel compressor blades and subjected to pressure cycles from 1 to 310 kPa during static tests and spin tests. Static test conditions included 20 C to 150 C, 0 to 3000 tensile microstrain, -1000 to +1000 bending microstrain and + or - 650G vibration. The spin test conditions included 20 C to 82 C at 0 to 90,000G. Durability was excellent. Pressure transducer sensitivity changed by only a few percent over this range of environmental conditions. Noise signal due to oscillatory acceleration normal to the diaphragm was acceptable (0.33Pa/G). Noise signal due to oscillatory strain was acceptable (0.5 Pa/microstrain) when the transducer was mounted on a 0.05mm rubber pad, with a total buildup of 0.38mm on the measure surface. Back mounting or partial recessing to eliminate buildup, increased the strain effect to 1.2 Pa/microstrain. Flush mounting within the blade to eliminate buildup reduced the strain effect, but required development of a special transducer shape. This transducer was not available in time for spin tests. Unpredictable zero drift + or - 14 kPa ruled out the use of these mounting arrangements for accurate steady-state (D.C.) measurements on rotating blades. The two best configurations fully developed and spin tested were then successfully applied in the NAS3-20606 rotating fan flutter program for quantitative measurement of oscillatory pressure amplitudes.

  20. Thermophysical properties of fluids for the gas industry. Annual report, January-December 1992

    SciTech Connect

    Bruno, T.J.; Haynes, W.M.

    1993-05-01

    The US gas industry standard for computing thermophysical properties is the A.G.A. Transmission Measurement Committee Report No. 8 equation of state (AGA 8). The report summarized the results from several experimental, theoretical, and modeling programs directed at the extensive evaluation of the accuracy with which various types of natural gas physical properties can be calculated using AGA 8 and related methods. The most important results were the assembly of benchmark data sets for speed of sound, viscosity, fugacity, heat capacity, critical region PVT, mixture compressibilities, and vapor pressure measurements for natural gas fluids. When tested against these benchmark properties data, the AGA 8 equation of state model was found to be generally accurate within + or - 0.1% for sound speeds (and densities) and within + or - 0.03% for compressibilities over the ranges of pressure, temperature, and composition that encompass the major region of custody transfer for natural gas. Work was also completed on the fabrication and testing of a prototype catalytic cracking detector for the selective detection of hydrocarbons; a US patent was awarded for this invention with the assignment to GRI.

  1. Apparatus for measuring particle properties

    DOEpatents

    Rader, Daniel J.; Castaneda, Jaime N.; Grasser, Thomas W.; Brockmann, John E.

    1998-01-01

    An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.

  2. Apparatus for measuring particle properties

    DOEpatents

    Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.

    1998-08-11

    An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.

  3. Biomagnetic instrumentation and measurement

    NASA Technical Reports Server (NTRS)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  4. A New Instrument for the Measurement of the Waveform in X-Ray Units

    NASA Astrophysics Data System (ADS)

    Ramírez-Jiménez, Francisco J.; Martínez-Hernández, Marco A.

    2004-09-01

    The experience gained in the quality control in X-ray units used in Radiology has demonstrated that the measurement of the waveform of the X-ray beam, measured as the response of a radiation detector is very helpful to decide if the unit fulfills the quality control requirements and also has been useful to define some kind of faults in the unit. Several instruments are available on the market to make this measurement but they need in general a storage or digital oscilloscope to see the waveform. In this work a stand alone new instrument is proposed in which the waveform is seen in a Liquid Crystal Display (LCD). The instrument is based in the X-ray response of a photo diode. The analog response depending on time is converted to digital numbers that are stored sequentially in a memory. The stored information is recovered with a microcontroller and reconstructed in the screen of the LCD. The instrument is able to measure in the mammographic range from 22 kV to 35 kV and in the conventional range from 40 kV to 120 kV in the different settings of current encountered on practical applications, the time range for the measurement of the X-ray shot is from 100 ms to 3 s. The instrument can be useful in quality control practices and in the verification and maintenance of X-ray units.

  5. 76 FR 81945 - Request for Measures and Domains To Use in Development of a Standardized Instrument for Use in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Act of 2009 (CHIPRA), Public Law 111-3, amended the Social Security Act (the Act) to enact section... soliciting the submission of instruments or domains (for example, key concepts) measuring aspects of families... Principles and will develop implementation instructions based on those for CAHPS instruments (...

  6. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    PubMed

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  7. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas

    SciTech Connect

    West, Michael D.; Charles, Christine; Boswell, Rod W.

    2009-05-15

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 {mu}N. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  8. Development of a solar-cell dust opacity measurement instrument for Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey; Jenkins, Phillip P.

    1996-01-01

    The atmosphere of Mars has a considerable load of suspended dust. Over time, this dust is deposited out of the atmosphere. The mechanism and the temporal and geographical variation of this deposition are not well characterized. Measurements of settling rates and dust properties are of considerable scientific interest. Atmospheric dust affects the atmospheric solar absorption and thus the heat balance of Mars, as well as serving as nucleation sites for water and CO2 frost. Knowledge of dust properties is of critical interest to design and prediction of the lifetime and power output of solar arrays, and also to design of mechanical mechanisms and radiators. An instrument has been designed and fabricated to measure the dust accumulation during the course of the Mars Pathfinder rover mission. The solar-cell coverglass transmission experiment will measure the change in optical opacity of a transparent coverglass as dust settles on the surface, and a quartz crystal monitor will measure the mass deposited.

  9. Thermophysical properties of fluids for the gas industry. Final report, February 1, 1988-August 31, 1993

    SciTech Connect

    Bruno, T.J.; Haynes, W.M.

    1993-11-01

    The U.S. gas industry standard for computing thermophysical properties is the A.G.A. Transmission Measurement Committee Report No. 8 equation of state (AGA 8). The report summarized the results from several experimental, theoretical, and modeling programs directed at the extensive evaluation of the accuracy with which various types of natural gas physical properties can be calculated using AGA 8 and related methods. The most important results were the assembly of benchmark data sets for speed of sound, viscosity, fugacity, heat capacity, critical region PVT, mixture compressibilities, and vapor pressure measurements for natural gas fluids.

  10. Fluid-Structure Analysis of Opening Phenomena in a Collapsible Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir N.; Banks, Julie; Swarts, J. Douglas

    2003-11-01

    Several physiological functions require the opening of collapsed respiratory airways. For example, the Eustachian tube (ET), which connects the nasopharynx with the middle ear (ME), must be periodically opened to maintain ambient ME pressures. These openings normally occur during swallowing when muscle contraction deforms the surrounding soft tissue. The inability to open the ET results in the most common and costly ear disease in children, Otitis Media. Although tissue-based treatments have been purposed, the influence of the various tissue mechanical properties on flow phenomena has not been investigated. A computational model of ET opening was developed using in-vivo structural data to investigate these fluid-structure interactions. This model accounts for both tissue deformation and the resulting airflow in a non-circular conduit. Results indicate that ET opening is more sensitive to the applied muscle forces than elastic tissue properties. These models have therefore identified how different tissue elements alter ET opening phenomena, which elements should be targeted for treatment and the optimal mechanical properties of these tissue constructs. Research supported by NIH grant DC005345.

  11. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  12. Designing Chemistry Practice Exams for Enhanced Benefits: An Instrument for Comparing Performance and Mental Effort Measures

    ERIC Educational Resources Information Center

    Knaus, Karen J.; Murphy, Kristen L.; Holme, Thomas A.

    2009-01-01

    The design and use of a chemistry practice exam instrument that includes a measure for student mental effort is described in this paper. Use of such an instrument can beneficial to chemistry students and chemistry educators as well as chemical education researchers from both a content and cognitive science perspective. The method for calculating…

  13. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE PAGES

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...

    2014-12-24

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2measurements. Asmore » a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.« less

  14. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, Bernard M.; Ketterson, John B.; Bohanon, Thomas M.; Mikrut, John M.

    1994-01-01

    A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.

  15. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.

    1994-04-12

    A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.

  16. Instrumentation and Measurements for Electron Emission from Charged Insulators

    NASA Technical Reports Server (NTRS)

    Sim, Alec M.

    2005-01-01

    The electron was first discovered in 1898 by Sir John Joseph Thomson and has since been the subject of detailed study by nearly every scientific discipline. At nearly the same time Heinrich Rudolf Hertz conducted a series of experiments using cathode tubes, high potentials and ultraviolet light. When applying a large potential to a cathode he found that an arching event across the metal plates would occur. In addition, when shining an ultraviolet light on the metal he found that less potential was required to induce the spark. This result, taken together with other electrical phenomena brought about by the shining of light upon metal and was eventually termed the photoelectric effect. The work of Thomson and Hertz represent the beginning of electron emission studies and a body of ideas that pervade nearly all aspects of physics. In particular these ideas tell us a great deal about the nature of physical interactions within solids. In this thesis we will focus on the emission of electrons induced by an incident electron source over a range of energies, in which one can observe changes in emitted electron flux and energy distribution. In particular, when energetic particles impinge on a solid they can impart their energy, exciting electrons within the material. If this energy is sufficient to overcome surface energy barriers such as the work function, electron affinity or surface charge potential, electrons can escape from the material. The extent of electron emission from the material can be quantified as the ratio of incident particle flux to emitted particle flux, and is termed the electron yield.

  17. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde... or flow instrumentation to determine flow through the particulate filters, methanol impingers...

  18. Molecular model for chirality phenomena.

    PubMed

    Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G

    2016-10-21

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  19. 3ω slope comparative method for fluid and powder thermal conductivity measurements

    NASA Astrophysics Data System (ADS)

    Zheng, X. H.; Qiu, L.; Yue, P.; Wang, G.; Tang, D. W.

    2016-09-01

    By analyzing the relationship among the heat penetration depth, measurement frequency and detector characteristic parameters, a simple and practical 3ω slope comparative method has been proposed. The corresponding measurement system for measuring the thermal properties of fluids and powder materials was established and verified using several specimens with known thermophysical parameters, such as alcohol, distilled water, and air. Compared to the two-dimensional model, the data processing of the method is relatively simple and quick. Due to the elimination of errors introduced by the detector parameter measurement, the measurement accuracy of the method is higher than the conventional one-dimensional model. By using an appropriate frequency range, the new method is time saving and convenient for measuring the thermal conductivity of fluids and powders with low thermal conductivity. Based on the analysis, the effective thermal conductivity of nano-SiO2 powder is accurately determined.

  20. Blow-up phenomena and persistence property for the modified b-family of equations

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhu, Min

    2017-02-01

    In this paper, we study the blow-up mechanism and persistence property of solutions to the modified b-family of equations. The dynamics of the blow-up quantity along the characteristics is established by the Riccati-type differential inequality with various parameters. The key feature of the method is to refine the analysis on the growth rate of the relative ratio between solution and its gradient by performing a vertical shift. Furthermore, the persistence results for the solution are established in weighted spaces.

  1. The Plasma Instrument for Magnetic Sounding (PIMS): Enabling Required Plasma Measurements for the Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Westlake, J. H.; McNutt, R. L., Jr.; Kasper, J. C.; Case, A. W.; Rymer, A. M.; Khurana, K. K.; Stevens, M. L.; Jia, X.; Slavin, J. A.; Paty, C. S.; Smith, H. T.; Kivelson, M.; Saur, J.; Krupp, N.; Roussos, E.; Korth, H.

    2015-12-01

    Europa exists in a complicated plasma environment where the tilt of Jupiter's magnetic field and rapid rotation rate leads to a dynamic interaction with Europa's ionospheric plasma. While understanding this plasma interaction is interesting in its own right, it is crucial for successfully magnetically sounding Europa's subsurface ocean. . In magnetic sounding, currents induced in Europa by the changing Jovian plasma produce a detectable secondary magnetic field that reflects properties of Europa's subsurface ocean such as depth and conductivity. This technique was successfully employed with Galileo observations of Europa to demonstrate that Europa indeed has a subsurface ocean containing more liquid water than Earth's oceans. While these Galileo observations contributed to the renewed interest in Europa, the results raised major questions that remain unanswered, in part due to the large uncertainties in the ice shell thickness, ocean depth, and ocean salinity due to limitations in the observations. Here we present the scientific goals of the Plasma Instrument for Magnetic Sounding (PIMS), one of the 9 instruments selected for the Europa Multiple Flyby Mission. We specifically address how PIMS plasma measurements will transform the accuracy of magnetic sounding of Europa's subsurface oceans. We also present synergistic science with other Europa instrumentation such as the ultraviolet spectrometer, mass spectrometer, and the radar.

  2. The Cabauw Intercomparison Campaign for Nitrogen Dioxide Measuring Instruments (CINDI): Design, Execution, and Early Results

    NASA Technical Reports Server (NTRS)

    Piters, Ankie; Boersma, K.F.; Kroon, M.; Hains, J. C.; Roozendael, M. Van; Wittrock, F.; Abuhassan, N.; Adams, C.; Akrami, M.; Allaart, M. A. F.; Apituley, A.; Beirle, S.; Bergwerff, J. B.; Berkhout, A. J. C.; Brunner, D.; Cede, A.; Chong, J.; Clemer, K.; Fayt, C.; FrieB, U.; Gast, L. F. L.; Gil-Ojeda, M.; Goutail, F.; Graves, R.; Griesfeller, A.

    2012-01-01

    From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Its main objectives were to determine the accuracy of state-ofthe- art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25% of one another, and MAX

  3. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  4. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  5. Membrane-Introduction Mass Spectrometry Analysis of Desflurane, Propofol and Fentanyl in Plasma and Cerebrospinal Fluid for Estimation BBB Properties

    PubMed Central

    Cherebillo, Vyacheslav Yu.; Polegaev, Andrei V.

    2015-01-01

    A possibility to use the Membrane-Introduction Mass Spectrometry (MIMS) with membrane separator interface has evolved into a powerful method for measurement of anaesthetic agents absolute concentration in blood plasma and cerebrospinal fluid for the study of blood-brain barrier (BBB) properties. Recent advanced a new membrane material was used for drug concentration measurement in biologic fluids. A hydrophobic membrane was used in the interface to separate anaesthetic agents from biological fluids: inhalational anaesthetic desflurane,hypnotic propofol, analgesic fentanyl. The selective detection of volatile anesthetic agents in blood does not require long-term sample processing before injecting the sample into mass-spectrometer interface, in contrast to chromatographic methods. Mass-spectrometric interface for the measurement of anaesthetic agent concentration in biological fluids (blood plasma and cerebrospinal fluid) is described. Sampling of biological fluids was performed during balanced inhalational (desflurane, fentanyl) anaesthesia and total intravenous (propofol, fentanyl) anaesthesia. PMID:26412969

  6. PREFACE: Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Andreozzi, Laura; Giordano, Marco; Leporini, Dino; Tosi, Mario

    2007-04-01

    round-table discussion sessions were organized to discuss issues that have special impact on our current understanding (or lack of it) of the dynamics of glass transition: 'Low-energy excitations and relaxations in glasses' and 'An assessment of current theories: interconnections and relevance to experiments'. We are very grateful to M A Ramos and R Bömer, and to P G Debenedetti and H Z Cummins for organizing and leading these two activities. Two very active and profitable poster sessions collected contributions on the themes of relaxation processes, cooperativity in polymers and mixtures, polyamorphism and water, biomaterials, relaxation, aging phenomena in thin films, confined and complex systems, and theoretical aspect, energy landscape and molecular dynamics, low temperature, glass and PT procedures, tracer dynamics, heterogeneity and relaxation in glass formers We acknowledge the generous support given to the workshop by our institutions, and in particular by Scuola Normale Superiore. The organization of the events in its beautiful rooms and corridors, as well as the lunches and coffee breaks held in its courtyard, especially favoured meetings and discussions between the participants. Several public and private Institutions have also supported our efforts and we would like to thank them warmly: they are the 'Soft Matter' Center of Rome, the INFN Section in Pisa, the CNR/INFM Polylab, and Ital Scientifica, TA Instruments, Novocontrol Technologies, Up Group, Isole e Olena. Finally, we express our gratitude to all those individuals—we mention here in particular Dr Ciro Autiero, Dr Massimo Faetti, Dr Fabio Zulli, Ms Patrizia Pucci, and Ms Caterina D'Elia—who have given their work and time to the making and running of the Workshop.

  7. P- V- T properties of fluids in the system H 2O ± CO 2 ± NaCl: New graphical presentations and implications for fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Brown, Philip E.; Lamb, William M.

    1989-06-01

    Understanding the role of fluids in geologic processes requires a knowledge of the P- V- T properties of fluids over a wide range of conditions. Comparisons of several published equations of state with available experimental data for fluids composed of H 2O and CO 2 lead to the conclusion that the hard-sphere modified Redlich-Kwong equation of state of Kerrick and Jacobs (1981) most accurately predicts the P- V- T properties in this binary system. To model the volumetric properties in the H 2OCO 2NaCl system a formulation is presented involving a linear (ideal) interpolation between a pure-CO 2 isochore predicted by the equation of state of Kerrick. and Jacobs (1981) and an H 2O-NaCl isochore predicted by an empirical equation derived from the regression of available P- V- T data for the H 2O-NaCl system. This formulation is applicable over a wide range of temperatures (>350°C) and pressures (2-10 kbars) and is especially suitable for high pressures and low-to-moderate temperatures (fluid densities ≥ 1.0 cm 3). Determination of the appropriate isochore for an H 2OCO 2NaCl fluid inclusion requires (1) the relative salinity (NaCl/H 2O + NaCl), (2) bulk density of the combined gas and liquid CO 2 phases, and (3) volume percent estimate of the aqueous p the total homogenization temperature. The commonly encountered problem of estimating the volume percents of phases in inclusions may be avoided in some applications, and several new P- X(CO 2) diagrams have been constructed and contoured with (a) the solvi in the mixed volatile system and (b) the measured density of the CO 2 phase. The effects of H 2OCO 2 clathrates during microthermometric observations in the laboratory are evaluated and in most instances can be minimized or avoided. Application of these results to fluid inclusion studies have led to improved determinations of (1) pressures and temperatures of fluid entrapment in a variety of geologic settings and (2) pressures and temperatures of

  8. International Classification of Functioning, Disability, and Health in women with breast cancer: a proposal for measurement instruments.

    PubMed

    Carvalho, Flávia Nascimento de; Koifman, Rosalina Jorge; Bergmann, Anke

    2013-06-01

    The International Classification of Functioning, Disability, and Health (ICF) aims at standardization, but its applicability requires consistent instruments. In Brazil, invasive therapeutic approaches are frequent, leading to functional alterations. The current study thus aimed to identify and discuss instruments capable of measuring ICF core set codes for breast cancer. The review included ICF studies in women with breast cancer diagnosis and studies with the objective of translating and validating instruments for the Brazilian population, and consistent with the codes. Review studies, systematic or not, were excluded. Eight instruments were selected, and the WHOQOL-Bref was the most comprehensive. The use of various instruments showed 19 coinciding codes, and the instruments as a whole covered 58 of the total of 81 codes. The use of multiple instruments is time-consuming, so new studies are needed to propose parsimonious tools capable of measuring functioning in women treated for breast cancer.

  9. The Berkeley Puppet Interview: A Screening Instrument for Measuring Psychopathology in Young Children

    ERIC Educational Resources Information Center

    Stone, Lisanne L.; van Daal, Carlijn; van der Maten, Marloes; Engels, Rutger C. M. E.; Janssens, Jan M. A. M.; Otten, Roy

    2014-01-01

    Background: While child self-reports of psychopathology are increasingly accepted, little standardized instruments are utilized for these practices. The Berkeley Puppet Interview (BPI) is an age-appropriate instrument for self-reports of problem behavior by young children. Objective: Psychometric properties of the Dutch version of the BPI will be…

  10. Psychometric Evaluation of an Instrument for Measuring Organizational Climate for Quality: Evidence From a National Sample of Infection Preventionists.

    PubMed

    Pogorzelska-Maziarz, Monika; Nembhard, Ingrid M; Schnall, Rebecca; Nelson, Shanelle; Stone, Patricia W

    2016-09-01

    In recent years, there has been increased interest in measuring the climate for infection prevention; however, reliable and valid instruments are lacking. This study tested the psychometric properties of the Leading a Culture of Quality for Infection Prevention (LCQ-IP) instrument measuring the infection prevention climate in a sample of 972 infection preventionists from acute care hospitals. An exploratory principal component analysis showed that the instrument had structural validity and captured 4 factors related to the climate for infection prevention: Psychological Safety, Prioritization of Quality, Supportive Work Environment, and Improvement Orientation. LCQ-IP exhibited excellent internal consistency, with a Cronbach α of .926. Criterion validity was supported with overall LCQ-IP scores, increasing with the number of evidence-based prevention policies in place (P = .047). This psychometrically sound instrument may be helpful to researchers and providers in assessing climate for quality related to infection prevention.

  11. MIPROPS - INTERACTIVE FORTRAN PROGRAMS FOR MICROCOMPUTERS TO CALCULATE THE THERMAL PHYSICAL PROPERTIES OF TWELVE FLUIDS

    NASA Technical Reports Server (NTRS)

    Cleghorn, T. F.

    1994-01-01

    MIPROPS is a set of programs which gives the thermophysical and transport properties of selected fluids. Although these programs are written in FORTRAN 77 for implementation on microcomputers, they are direct translations of interactive FORTRAN IV programs which were originally developed for large mainframes. MIPROPS calculates the properties of fluids in both the liquid and vapor states over a wide range of temperatures and pressures. The fluids included are: helium, parahydrogen, nitrogen, oxygen, argon, nitrogen trifluoride, methane, ethylene, ethane, propane, and iso- and normal butane. All of the programs except for the helium program utilize the same mathematical model of the equation of state. A separate program was necessary for helium, as the model for the helium thermodynamic surface is of a different form. The input variables are any two of pressure, density, or temperature for the single phase regions, and either pressure or temperature for the saturated liquid or vapor states. The output is pressure, density, temperature, internal energy, enthalpy, entropy, specific heat capacities, and speed of sound. In addition, viscosity, thermal conductivity, and dielectric constants are calculated for most of the fluids. The user can select either a single point or a table of output values for a specified temperature range, and can display the data either in engineering or metric units. This machine independent FORTRAN 77 program was implemented on an IBM PC XT with an MS-DOS 3.21 operating system. It has a memory requirement of approximately 100K. The program was developed in 1986.

  12. Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Lipa, J.

    2004-01-01

    We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.

  13. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  14. Correlation between gas compositions and physical phenomena affecting the reservoir fluid in Palinpinon geothermal field (Philippines)

    SciTech Connect

    D'More F.; Nuti, S.; Ruaya, J.R.; Ramos-Candelaria, M.N.; Seastres, J.S.

    1993-01-28

    Using thermodynamic gas equilibria to calculate temperature and steam fraction in the reservoir, three main physical phenomena due to exploitation of Palinpinon field are identified. 1) Pressure drawdown producing a local increase in the computed steam fraction, with the fluid maintaining high temperature values (close to 300°C). Strong decline in flow rate is observed. 2) Irreversible steam losses from the original high temperature liquid phase during its ascent through fractures in upper zones of the reservoir. Steam is generally lost at temperatures (e.g. 240°C) lower then those of the original aquifer. 3) Dilution and cooling effects due to reinjection fluid returns. These are function of the local geostructural conditions linking through fractures the injectors and production wells. The computed fraction of the recovered reinjected brine can in some case exceed 80% of the total produced fluid. At the same time the computed gas equilibration temperatures can decline from 280-300°C to as low as 215-220°C. Comparing these values with the well bottom measured temperatures, the proposed methodology based on gas chemistry gives more reliable temperature estimate than water chemistry based geothermometers for fluids with high fractions of injected brine.

  15. The rhesus measurement system: A new instrument for space research

    NASA Technical Reports Server (NTRS)

    Schonfeld, Julie E.; Hines, John W.

    1993-01-01

    The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project.

  16. The theoretical analysis of an instrument for linear and angular displacements of the steered wheel measuring

    NASA Astrophysics Data System (ADS)

    Wach, K.

    2016-09-01

    In the paper the theoretical analysis of the measuring instrument for determination of translation and rotation of the stub axle with the steered wheel against car body was presented. The instrument is made of nine links with elongation sensors embedded in it. One of several possible structures of instrument of this kind was presented. Basing on solution of the geometrical constraints system of equations of the device, the numerical analysis of the measurement accuracy was conducted.

  17. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  18. Plan for the testing of radiation measurement instrumentation intended for use at an excavation site

    SciTech Connect

    Gehrke, R.J.

    1994-11-01

    This plan describes performance tests to be made with ionizing radiation measurement instrumentation designed and built for in-field assay at an excavation site. One instrument measures gross gamma-ray and neutron fields and the other identifies gamma-ray emitting radionuclides and also is capable of assaying for selected hazardous materials. These instruments will be operationally tested to verify that original specifications have been met and performance tested to establish and verify that they have the potential to function as intended at an excavation site.

  19. Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects.

    PubMed

    Park, J H; Garipov, G K; Jeon, J A; Khrenov, B A; Kim, J E; Kim, M; Kim, Y K; Lee, C-H; Lee, J; Na, G W; Nam, S; Park, I H; Park, Y-S

    2008-12-08

    We introduce a novel telescope consisting of a pinhole-like camera with rotatable MEMS micromirrors substituting for pinholes. The design is ideal for observations of transient luminous phenomena or fast-moving objects, such as upper atmospheric lightning and bright gamma ray bursts. The advantage of the MEMS "obscura telescope" over conventional cameras is that it is capable both of searching for events over a wide field of view, and fast zooming to allow detailed investigation of the structure of events. It is also able to track the triggering object to investigate its space-time development, and to center the interesting portion of the image on the photodetector array. We present the proposed system and the test results for the MEMS obscura telescope which has a field of view of 11.3 degrees, sixteen times zoom-in and tracking within 1 ms.

  20. Information Content Analysis for the Multi-Viewing, Multi-Channel, Multi-Polarization Imaging (3MI) Instrument : Toward Retrieval of Vertically Resolved Cloud Properties from Passive Only Measurements.

    NASA Astrophysics Data System (ADS)

    Riedi, J.; Merlin, G.; Labonnote, L.; Cornet, C.; Ferlay, N.; Desmons, M.; Dubuisson, P.; Parol, F.; Davis, A. B.; Marbach, T.

    2014-12-01

    The EUMETSAT Polar System- Second Generation (EPS-SG) is currently under development to take over the current EUMETSAT Polar System at the 2020 horizon. As part of it, the Multi-Viewing Multi-Channel Multi-Polarization Imaging mission (3MI) will be dedicated to the operational monitoring of aerosols but will also provide unique observations for characterization of cloud properties building on the legacy of POLDER and particularly of its 3rd mission (PARASOL) within the A-Train. Through the synergy of POLDER3/PARASOL and MODIS/AQUA several studies have demonstrated the great interest of combining multispectral, multiangle and polarization measurements in the visible, near and shortwave infrared to better constrain retrieval of clouds microphysical and macrophysical properties. Remote-sensing of cloud thermodynamic phase (Riedi et al, 2010), liquid (Bréon and Doutriaux-Boucher, 2005) or ice clouds microphysics (Zhang et al, 2009; Cole et al, 2012), cloud radiative (Zeng et al, 2012) or macrophysical properties (Ferlay et al, 2010; Desmons et al, 2013) can unarguably benefit from the additional information content brought by polarization and multiangle measurements. At the same time, retrieval algorithms are gaining further complexity and skills. Thanks to availability of computational resources, practical implementation of optimal estimation or related optimization techniques (Delanoe & Hogan, 2008; Dubovik et al, 2013) have appeared that allow simultaneous and consistent retrieval of larger sets of parameters from constantly growing observations vectors. Therefore 3MI observations will not only allow to improve accuracy of future cloud products but also opens perspectives for the development of new retrieval algorithms. A major challenge for cloud remote-sensing from passive measurements is to obtain information on clouds properties vertical distribution and structure. Through results of a comprehensive information content analysis we will illustrate our current

  1. A Wireless Fluid-Level Measurement Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    This paper presents the application of a recently developed wireless measurement acquisition system to fluid-level measurement. This type of fluid-level measurement system alleviates many shortcomings of fluid-level measurement methods currently being used, including limited applicability of any one fluid-level sensor design. Measurement acquisition shortcomings include the necessity for power to be supplied to each sensor and for the measurement to be extracted from each sensor via a physical connection to the sensor. Another shortcoming is existing measurement systems require that a data channel and signal conditioning electronics be dedicated to each sensor. Use of wires results in other shortcomings such as logistics needed to add or replace sensors, weight, potential for electrical arcing and wire degradations. The fluid level sensor design is a simple passive inductor-capacitor circuit that is not subject to mechanical failure that is possible when float and lever-arm systems are used. Methods are presented for using the sensor in caustic, acidic or cryogenic fluids. Oscillating magnetic fields are used to power the sensor. Once electrically excited, the sensor produces a magnetic field response. The response frequency corresponds to the amount to fluid within the capacitor s electric field. The sensor design can be modified for measuring the level of any fluid or fluent substance that can be stored in a non-conductive reservoir. The interrogation method for discerning changes in the sensor response frequency is also presented.

  2. Instruments and Methods for Measuring the Flow of Water Around Ships and Ship Models

    DTIC Science & Technology

    1948-03-01

    Showing Arrangement of Orifices Figure 2 - Cylindrical Pitot Tube tubes convenient for observation, or, in the mercury manometer , to bring the water...investigate the wake of models at high* er speeds, it became necessary to have an instrument with a greater range of measurement. A 13-tube mercury ... manometer was designed for this purpose. This iU Figure 9 - Spherical Pltot Tube and Manometer Mounted on Model Th« position of the sphere relative

  3. Instrument for the measurement of retinal vessel oxygen saturation

    NASA Astrophysics Data System (ADS)

    Drewes, Jonathan J.; Smith, Matthew H.; Denninghoff, Kurt R.; Hillman, Lloyd W.

    1999-06-01

    Retinal vessel oxygen saturation has been suggested as a parameter for monitoring a wide range of conditions including occult blood los and a variety of ophthalmic diseases. We have developed an Eye Oximeter (EOX), that noninvasively measures the oxygen saturation of the blood in individual large retinal vessels using scanning lasers. 1D vessel extinction profiles are obtained at four wavelengths (629, 678, 821 and 899 nm), and the vessel transmittances computed. The oxygen saturation of blood within the vessel is then calculated from the transmittance data. We have performed an in vitro experiment on human blood which demonstrates the calibration of the EOX measurements and validates our oximetry equations. Retinal vessel oxygen saturation was measured in a human subject and found to be 65%O2Sat and 101 - 102%O2Sat in the veins and arteries on the optic disk. Irregularities in the background measured away from the optic disk resulted in a large variance in the calculated saturation when compared to measurements made on the disk.

  4. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  5. New instrument for tribocharge measurement due to single particle impacts

    NASA Astrophysics Data System (ADS)

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  6. New instrument for tribocharge measurement due to single particle impacts

    SciTech Connect

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding Yulong; Pitt, Kendal G.

    2007-02-15

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as {approx}100 {mu}m impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  7. New instrument for tribocharge measurement due to single particle impacts.

    PubMed

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  8. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  9. Design of a surface deformation measuring instrument for the Surface Tension Driven Convection Experiment (STDCE-2)

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    1993-12-01

    This final technical report covers the work accomplished (under NAG3-1300) from 1 October 1991 to 1 October 1993. The grant is a direct result of Dr. H. Philip Stahl's (of Rose-Hulman Institute of Technology) participation in the NASA/ASEE Summer Faculty Fellowship Program at NASA Lewis Research Center sponsored by Case Western Reserve University and the Ohio Aerospace Institute. The Surface Tension Driven Convection Experiment (STDCE) is a fundamental fluid physics experiment designed to provide quantitative data on the thermocapillary flow of fluid under the influence of an increased localized surface temperature. STDCE flew on the Space Shuttle Columbia in the First United States Microgravity Laboratory (USML-1) in June 1992. The second flight of this experiment (STDCE-2) is scheduled for 1995. The specific science objectives of STDCE-2 are to determine the extent and nature of thermocapillary flows, the effect of heating mode and level, the effect of the liquid free-surface shape, and the onset conditions for and nature of oscillatory flows. In order to satisfy one of these objectives, an instrument for measuring the shape of an air/oil free surface must be developed.

  10. Design of a surface deformation measuring instrument for the Surface Tension Driven Convection Experiment (STDCE-2)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    1993-01-01

    This final technical report covers the work accomplished (under NAG3-1300) from 1 October 1991 to 1 October 1993. The grant is a direct result of Dr. H. Philip Stahl's (of Rose-Hulman Institute of Technology) participation in the NASA/ASEE Summer Faculty Fellowship Program at NASA Lewis Research Center sponsored by Case Western Reserve University and the Ohio Aerospace Institute. The Surface Tension Driven Convection Experiment (STDCE) is a fundamental fluid physics experiment designed to provide quantitative data on the thermocapillary flow of fluid under the influence of an increased localized surface temperature. STDCE flew on the Space Shuttle Columbia in the First United States Microgravity Laboratory (USML-1) in June 1992. The second flight of this experiment (STDCE-2) is scheduled for 1995. The specific science objectives of STDCE-2 are to determine the extent and nature of thermocapillary flows, the effect of heating mode and level, the effect of the liquid free-surface shape, and the onset conditions for and nature of oscillatory flows. In order to satisfy one of these objectives, an instrument for measuring the shape of an air/oil free surface must be developed.

  11. Optical microsensor for continuous glucose measurements in interstitial fluid

    NASA Astrophysics Data System (ADS)

    Olesberg, Jonathon T.; Cao, Chuanshun; Yager, Jeffrey R.; Prineas, John P.; Coretsopoulos, Chris; Arnold, Mark A.; Olafsen, Linda J.; Santilli, Michael

    2006-02-01

    Tight control of blood glucose levels has been shown to dramatically reduce the long-term complications of diabetes. Current invasive technology for monitoring glucose levels is effective but underutilized by people with diabetes because of the pain of repeated finger-sticks, the inconvenience of handling samples of blood, and the cost of reagent strips. A continuous glucose sensor coupled with an insulin delivery system could provide closed-loop glucose control without the need for discrete sampling or user intervention. We describe an optical glucose microsensor based on absorption spectroscopy in interstitial fluid that can potentially be implanted to provide continuous glucose readings. Light from a GaInAsSb LED in the 2.2-2.4 μm wavelength range is passed through a sample of interstitial fluid and a linear variable filter before being detected by an uncooled, 32-element GaInAsSb detector array. Spectral resolution is provided by the linear variable filter, which has a 10 nm band pass and a center wavelength that varies from 2.18-2.38 μm (4600-4200 cm -1) over the length of the detector array. The sensor assembly is a monolithic design requiring no coupling optics. In the present system, the LED running with 100 mA of drive current delivers 20 nW of power to each of the detector pixels, which have a noise-equivalent-power of 3 pW/Hz 1/2. This is sufficient to provide a signal-to-noise ratio of 4500 Hz 1/2 under detector-noise limited conditions. This signal-to-noise ratio corresponds to a spectral noise level less than 10 μAU for a five minute integration, which should be sufficient for sub-millimolar glucose detection.

  12. Ruggedized Instrumentation Package for Marine Mammal Evoked Potential Hearing Measurements

    DTIC Science & Technology

    2009-09-30

    equipment taken to Portugal and tested on the Pilot whale . Combined equipment tested on the beach for the Pygmy killer whale and on the striped...Ruggedized package assemblage continues. Audiograms of the long finned pilot whale , the pygmy killer whale and the striped dolphin were measured...1 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 2 IMPACT/APPLICATIONS Of the 85 species of whales and

  13. Free-Surface Fluid-Object Interaction for the Large-Scale Computation of Ship Hydrodynamics Phenomena

    DTIC Science & Technology

    2014-05-21

    Methods for Offshore Wind Turbines , MARINE 2011, IV International Conference on Computational Methods in Marine Engineering: Selected papers...Computational Technology for Offshore Wind Turbines . Plenary Lecture at the IVth International Conference on Computational Methods in Marine Engineering... Wind Turbines . Plenary Lecture at IXth Deep Sea Offshore Wind R&D Seminar (DeepWind2012), Trondheim, Norway, January 19-20, 2012 5. K. Benner, I

  14. Electromagnetic, heat and fluid flow phenomena in levitated metal droplets both under earthbound and microgravity conditions

    NASA Technical Reports Server (NTRS)

    Szekely, Julian

    1988-01-01

    The purpose is to develop an improved understanding of the electromagnetic, heat, and fluid flow phenomena in electromagnetically levitated metal droplets, both under earthbound and microgravity conditions. The main motivation for doing this work, together with the past accomplishments, and the plans for future research are discussed.

  15. Spacelab experiment definition study on phase transition and critical phenomena in fluids: Interim report on experimental justification

    NASA Technical Reports Server (NTRS)

    Moldover, M. R.; Hocken, M. R.; Gammon, R. W.; Sengers, J. V.

    1976-01-01

    Pure fluids and fluid mixtures near critical points are identified and are related to the progress of several disciplines. Consideration is given to thermodynamic properties, transport properties, and the complex nonlinear phenomena which occur when fluids undergo phase transitions in the critical region. The distinction is made between practical limits which may be extended by advances in technology and intrinsic ones which arise from the modification of fluid properties by the earth's gravitational field. The kinds of experiments near critical points which could best exploit the low gravity environment of an orbiting laboratory are identified. These include studies of the index of refraction, constant volume specific heat, and phase separation.

  16. Computer program for computing the properties of seventeen fluids. [cryogenic liquids

    NASA Technical Reports Server (NTRS)

    Brennan, J. A.; Friend, D. G.; Arp, V. D.; Mccarty, R. D.

    1992-01-01

    The present study describes modifications and additions to the MIPROPS computer program for calculating the thermophysical properties of 17 fluids. These changes include adding new fluids, new properties, and a new interface to the program. The new program allows the user to select the input and output parameters and the units to be displayed for each parameter. Fluids added to the MIPROPS program are carbon dioxide, carbon monoxide, deuterium, helium, normal hydrogen, and xenon. The most recent modifications to the MIPROPS program are the addition of viscosity and thermal conductivity correlations for parahydrogen and the addition of the fluids normal hydrogen and xenon. The recently added interface considerably increases the program's utility.

  17. An instrumentation project for measuring weak and broadband ultrafast laser signals

    NASA Astrophysics Data System (ADS)

    Ellis, Armin T.

    From our everyday experiences, we know that as light travels through a medium it attenuates due to absorption and scattering. Absorption is the cause of color in tea or grape juice, and it is described by Beer's law. Scattering is the reason why scuba divers have a limited range of vision and why mountain peaks become harder to see the further away they are. Precursors, although not fully understood, are transient light transmission effects and have been shown to exhibit lower attenuation through media than that predicted by Beer's law for steady-state light. In this thesis we present an instrumentation based approach for studying precursors by measuring spectral evolution and pure attenuation over distance. We will also introduce a new instrument concept, RotaryFROG, capable of simultaneous measurement of intensity, phase, and polarization versus frequency of low-intensity broadband pulses for use with ultrafast lasers.

  18. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    SciTech Connect

    Hussain, M.N.; Benedict, C.R.

    1987-06-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day.

  19. Instrumentation requirements for small scale towed temperature measurements

    NASA Astrophysics Data System (ADS)

    Dugan, J. P.; Morris, W. D.

    1984-03-01

    Measurements of horizontal ocean temperature structure are difficult to obtain by towing sensors from research vessels because the tow cable induces sensor platform motions which contaminate the data. In this report, temperature data which previously were acquired in the thermocline with special care are used to specify the acceptable level of motion and to prescribe appropriate sensor noise levels. In the swell-induced ship motion band, for example, the rms vertical displacements of the sensors should be less than several centimeters and temperature sensors should resolve fluctuations of one millidegree Celsius in regions of high (approx 0.1 C/m) temperature gradient.

  20. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE PAGES

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibriummore » is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.« less

  1. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    SciTech Connect

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO2-induced drifts in thermocouple readings. Oxygen equilibrium is monitored using both an O2 sensor and the transient behavior of the resistance as a proxy. A pO2 range of 10-25–100 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO2 on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO2 range of 10-19–10-8 atm at 973 K for the donor-doped single crystals is observed.

  2. Systems and methods for thermal imaging technique for measuring mixing of fluids

    DOEpatents

    Booten, Charles; Tomerlin, Jeff; Winkler, Jon

    2016-06-14

    Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.

  3. Readiness and Expectations Questionnaire: A Cross-Cultural Measurement Instrument for First-Year University Students

    ERIC Educational Resources Information Center

    Jansen, Ellen; Andre, Stefanie; Suhre, Cor

    2013-01-01

    The readiness and expectations questionnaire (REQ) assesses first-year students' expectations and preparedness for their first year in university. This measurement instrument is useful for educational policy and curriculum development; it can also be used to predict the outcomes of the first year of college. This instrument was initially developed…

  4. Thermodynamic properties and static structure factor for a Yukawa fluid in the mean spherical approximation.

    PubMed

    Montes-Perez, J; Cruz-Vera, A; Herrera, J N

    2011-12-01

    This work presents the full analytic expressions for the thermodynamic properties and the static structure factor for a hard sphere plus 1-Yukawa fluid within the mean spherical approximation. To obtain these properties of the fluid type Yukawa analytically it was necessary to solve an equation of fourth order for the scaling parameter on a large scale. The physical root of this equation was determined by imposing physical conditions. The results of this work are obtained from seminal papers of Blum and Høye. We show that is not necessary the use the series expansion to solve the equation for the scaling parameter. We applied our theoretical result to find the thermodynamic and the static structure factor for krypton. Our results are in good agreement with those obtained in an experimental form or by simulation using the Monte Carlo method.

  5. Instrument for the measurement of heat flux from a surface with uniform temperature

    NASA Astrophysics Data System (ADS)

    Baughn, J. W.; Cooper, D.; Iacovides, H.; Jackson, D.

    1986-05-01

    An instrument for the measurement of heat flux from a surface with a nearly uniform temperature is described. This instrument contains a thin-film electrical resistance heater embedded in a copper cone which is thermally isolated from the surrounding walls. A differential thermocouple between the copper cone and the wall is nulled such that the electrical power becomes a direct measure of the surface heat flux. The advantage of this design over earlier sensors is its modular characteristic and its ability to be flush mounted in an external surface or mounted in the wall of a duct. It has been used to measure the local time-average heat transfer coefficient inside a circular duct. The time constant in this application was 43 s. For these measurements an uncertainty analysis is presented which shows that this instrument has an uncertainty of ±3.6% for a convective heat flux of 342 W/sq m. The major source of uncertainty was the surface area.

  6. The CU 2-D-MAX-DOAS instrument - Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; Lantz, Kathy; Michalsky, Joseph; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-08-01

    The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ˜ 0.19, and that over oceans is ˜ 0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations to show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3 < AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), -0.012 ± 0.024 (MFRSR), -0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD - MFRSRAOD) and yields the following expressions for correlations between different instruments

  7. Consistent properties reconstruction on adaptive Cartesian meshes for complex fluids computations

    SciTech Connect

    Xia, Guoping . E-mail: xiag@purdue.edu; Li, Ding; Merkle, Charles L.

    2007-07-01

    An efficient reconstruction procedure for evaluating the constitutive properties of a complex fluid from general or specialized thermodynamic databases is presented. Properties and their pertinent derivatives are evaluated by means of an adaptive Cartesian mesh in the thermodynamic plane that provides user-specified accuracy over any selected domain. The Cartesian grid produces a binary tree data structure whose search efficiency is competitive with that for an equally spaced table or with simple equations of state such as a perfect gas. Reconstruction is accomplished on a triangular subdivision of the 2D Cartesian mesh that ensures function continuity across cell boundaries in equally and unequally spaced portions of the table to C {sup 0}, C {sup 1} or C {sup 2} levels. The C {sup 0} and C {sup 1} reconstructions fit the equation of state and enthalpy relations separately, while the C {sup 2} reconstruction fits the Helmholtz or Gibbs function enabling EOS/enthalpy consistency also. All three reconstruction levels appear effective for CFD solutions obtained to date. The efficiency of the method is demonstrated through storage and data retrieval examples for air, water and carbon dioxide. The time required for property evaluations is approximately two orders of magnitude faster with the reconstruction procedure than with the complete thermodynamic equations resulting in estimated 3D CFD savings of from 30 to 60. Storage requirements are modest for today's computers, with the C {sup 1} method requiring slightly less storage than those for the C {sup 0} and C {sup 2} reconstructions when the same accuracy is specified. Sample fluid dynamic calculations based upon the procedure show that the C {sup 1} and C {sup 2} methods are approximately a factor of two slower than the C {sup 0} method but that the reconstruction procedure enables arbitrary fluid CFD calculations that are as efficient as those for a perfect gas or an incompressible fluid for all three accuracy

  8. Proposal for a Universal Test Mirror for Characterization of SlopeMeasuring Instruments

    SciTech Connect

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Warwick, Tony; Noll,Tino; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf D.

    2007-07-31

    The development of third generation light sources like theAdvanced Light Source (ALS) or BESSY II brought to a focus the need forhigh performance synchrotron optics with unprecedented tolerances forslope error and micro roughness. Proposed beam lines at Free ElectronLasers (FEL) require optical elements up to a length of one meter,characterized by a residual slope error in the range of 0.1murad (rms),and rms values of 0.1 nm for micro roughness. These optical elements mustbe inspected by highly accurate measuring instruments, providing ameasurement uncertainty lower than the specified accuracy of the surfaceunder test. It is essential that metrology devices in use at synchrotronlaboratories be precisely characterized and calibrated to achieve thistarget. In this paper we discuss a proposal for a Universal Test Mirror(UTM) as a realization of a high performance calibration instrument. Theinstrument would provide an ideal calibration surface to replicate aredundant surface under test of redundant figure. The application of asophisticated calibration instrument will allow the elimination of themajority of the systematic error from the error budget of an individualmeasurement of a particular optical element. We present the limitationsof existing methods, initial UTM design considerations, possiblecalibration algorithms, and an estimation of the expectedaccuracy.

  9. An instrument for the heat flux measurement from a contour of a surface with uniform temperature

    NASA Astrophysics Data System (ADS)

    Baughn, J. W.; Hoffman, M. A.; Lee, Daehee

    1994-03-01

    An instrument for the measurement of the heat flux distribution along an internal or external contour of a surface with a uniform temperature is described. The main element in this instrument is an electrically heated narrow nickel/chromium ribbon which is mounted flush with, but thermally and electrically insulated from, walls on all sides. The walls are separately heated and are made of a highly conducting material (e.g., aluminum) to ensure a uniform temperature. Differential thermocouples are used to measure the temperature difference between the walls and Ni/Cr ribbon at various positions along the ribbon. The ribbon power is adjusted until the differential temperature is nulled at a particular position on the ribbon. Since conduction along the ribbon is small, the electrical power divided by the sensor area is a direct measure of the surface heat flux at the nulled position. This makes it possible to measure the local time-average heat flux at various positions along a contour of a surface inside a circular duct. The time constant in this application was 13 s. An uncertainty analysis shows that this instrument has an uncertainty of ±3.84% for a convective heat flux on the order of 900 W/m2.

  10. A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments

    PubMed Central

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements. PMID:22319320

  11. A new automatic system for angular measurement and calibration in radiometric instruments.

    PubMed

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  12. Fluid turbulence - Deterministic or statistical

    NASA Astrophysics Data System (ADS)

    Cheng, Sin-I.

    The deterministic view of turbulence suggests that the classical theory of fluid turbulence may be treating the wrong entity. The paper explores the physical implications of such an abstract mathematical result, and provides a constructive computational demonstration of the deterministic and the wave nature of fluid turbulence. The associated pressure disturbance for restoring solenoidal velocity is the primary agent, and its reflection from solid surface(s) the dominant mechanism of turbulence production. Statistical properties and their modeling must address to the statistics of the uncertainties of initial boundary data of the ensemble.

  13. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    SciTech Connect

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science

    2007-01-16

    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  14. Physical Activity Measurement Instruments for Children with Cerebral Palsy: A Systematic Review

    ERIC Educational Resources Information Center

    Capio, Catherine M.; Sit, Cindy H. P.; Abernethy, Bruce; Rotor, Esmerita R.

    2010-01-01

    Aim: This paper is a systematic review of physical activity measurement instruments for field-based studies involving children with cerebral palsy (CP). Method: Database searches using PubMed Central, MEDLINE, CINAHL Plus, PsycINFO, EMBASE, Cochrane Library, and PEDro located 12 research papers, identifying seven instruments that met the inclusion…

  15. Developing and validating an instrument for measuring mobile computing self-efficacy.

    PubMed

    Wang, Yi-Shun; Wang, Hsiu-Yuan

    2008-08-01

    IT-related self-efficacy has been found to have a critical influence on system use. However, traditional measures of computer self-efficacy and Internet-related self-efficacy are perceived to be inapplicable in the context of mobile computing and commerce because they are targeted primarily at either desktop computer or wire-based technology contexts. Based on previous research, this study develops and validates a multidimensional instrument for measuring mobile computing self-efficacy (MCSE). This empirically validated instrument will be useful to researchers in developing and testing the theories of mobile user behavior, and to practitioners in assessing the mobile computing self-efficacy of users and promoting the use of mobile commerce systems.

  16. WISM - A Wideband Instrument for Snow Measurement: Past Accomplishments, Current Status, and Path Forward

    NASA Technical Reports Server (NTRS)

    Bonds, Quenton; Racette, Paul; Durham, Tim (Principal Investigator)

    2016-01-01

    Presented are the prior accomplishments, current status and path forward for GSFC's Wideband Instrument for Snow Measurement (WISM). This work is a high level overview of the project, presented via Webinar to the IEEE young professionals.

  17. Measurement of Flow Phenomena in a VHTR Lower Plenum Model

    SciTech Connect

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2007-06-01

    Mean velocity and turbulence data that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor are presented as a follow-up to summaries presented at the 2006 Annual Meeting and the 2006 Winter Meeting. The experiments were designed to develop benchmark databases to support the first Standard Problem endorsed by the Generation IV International Forum to validate the heat transfer and fluid flow software that will be used to study the behavior of the VHTR system.

  18. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    Measurement of land surface snow remains a significant challenge in the remote sensing arena. Developing the tools needed to remotely measure Snow Water Equivalent (SWE) is an important priority. The Wideband Instrument for Snow Measurements (WISM) is being developed to address this need. WISM is an airborne instrument comprised of a dual-frequency (X- and Ku-bands) Synthetic Aperture Radar (SAR) and dual-frequency (K- and Ka-bands) radiometer. A unique feature of this instrument is that all measurement bands share a common antenna aperture consisting of an array feed reflector that covers the entire bandwidth. This paper covers the design and fabrication of the wideband array feed which is based on tightly coupled dipole arrays. Implementation using a relatively new multi-layer microfabrication process results in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 gigahertz.

  19. Health-related quality of life after TBI: a systematic review of study design, instruments, measurement properties, and outcome.

    PubMed

    Polinder, Suzanne; Haagsma, Juanita A; van Klaveren, David; Steyerberg, Ewout W; van Beeck, Ed F

    2015-01-01

    Measurement of health-related quality of life (HRQL) is essential to quantify the subjective burden of traumatic brain injury (TBI) in survivors. We performed a systematic review of HRQL studies in TBI to evaluate study design, instruments used, methodological quality, and outcome. Fifty-eight studies were included, showing large variation in HRQL instruments and assessment time points used. The Short Form-36 (SF-36) was most frequently used. A high prevalence of health problems during and after the first year of TBI was a common finding of the studies included. In the long term, patients with a TBI still showed large deficits from full recovery compared to population norms. Positive results for internal consistency and interpretability of the SF-36 were reported in validity studies. The Quality of Life after Brain Injury instrument (QOLIBRI), European Brain Injury Questionnaire (EBIQ), Child Health Questionnaire (CHQ), and the World Health Organization Quality of Life short version (WHOQOL-BREF) showed positive results, but evidence was limited. Meta-analysis of SF-36 showed that TBI outcome is heterogeneous, encompassing a broad spectrum of HRQL, with most problems reported in the physical, emotional, and social functioning domain. The use of SF-36 in combination with a TBI-specific instrument, i.e., QOLIBRI, seems promising. Consensus on preferred methodologies of HRQL measurement in TBI would facilitate comparability across studies, resulting in improved insights in recovery patterns and better estimates of the burden of TBI.

  20. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was

  1. Instrumentation for Mars Environments

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1997-01-01

    The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.

  2. Hydrazine engine plume contamination mapping. [measuring instruments for rocket exhaust from liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1975-01-01

    Instrumentation for the measurement of plume exhaust specie deposition rates were developed and demonstrated. The instruments, two sets of quartz crystal microbalances, were designed for low temperature operation in the back flow and variable temperature operation in the core flow regions of an exhaust plume. These quartz crystal microbalances performed nominally, and measurements of exhaust specie deposition rates for 8400 number of pulses for a 0.1-lb monopropellant thruster are reported.

  3. A portable instrument for 3-D dynamic robot measurements using triangulation and laser tracking

    SciTech Connect

    Mayer, J.R.R. . Mechanical Engineering Dept.); Parker, G.A. . Dept. of Mechanical Engineering)

    1994-08-01

    The paper describes the development and validation of a 3-D measurement instrument capable of determining the static and dynamic performance of industrial robots to ISO standards. Using two laser beams to track an optical target attached to the robot end-effector, the target position coordinates may be estimated, relative to the instrument coordinate frame, to a high accuracy using triangulation principles. The effect of variations in the instrument geometry from the nominal model is evaluated through a kinematic model of the tracking head. Significant improvements of the measurement accuracy are then obtained by a simple adjustment of the main parameters. Extensive experimental test results are included to demonstrate the instrument performance. Finally typical static and dynamic measurement results for an industrial robot are presented to illustrate the effectiveness and usefulness of the instrument.

  4. Instrument for x-ray magnetic circular dichroism measurements at high pressures

    SciTech Connect

    Haskel, D.; Tseng, Y. C.; Lang, J. C.; Sinogeikin, S.

    2007-08-15

    An instrument has been developed for x-ray magnetic circular dichroism (XMCD) measurements at high pressures and low temperatures. This instrument couples a nonmagnetic copper-beryllium diamond anvil cell featuring perforated diamonds with a helium flow cryostat and an electromagnet. The applied pressure can be controlled in situ using a gas membrane and calibrated using Cu K-edge x-ray absorption fine structure measurements. The performance of this instrument was tested by measuring the XMCD spectra of the Gd{sub 5}Si{sub 2}Ge{sub 2} giant magnetocaloric material.

  5. Instrumentation, Equipment and Methods for the In Vivo Measurement of Radioactive Material in the Body

    SciTech Connect

    Lynch, Timothy P.

    2005-07-01

    The current applications for the in vivo measurement of radioactive material can be divided into three broad categories: (1) occupational exposure monitoring, (2) monitoring of the public, and (3) medical monitoring. The focus of this chapter is on occupational exposure monitoring that is part of an internal dosimetry program for monitoring workers for intakes and assessing the dose consequences of an intake. In the 1920's when electroscopes were first used to measure radium in the body of dial painters issues affecting the measurement accuracy were identified related to external contamination interferences, properly measuring the instrument background, need for measurement QC, microphonic interferences, shielding and others. The sophistication of the radiation detection instrumentation has evolved to the point where most systems today employ one or more detectors primarily either sodium iodide or germanium. Many different styles of detectors and cryostat designs are used at different facilities. However, the same issues identified in the 1920's are still issues today. The in vivo measurement systems are calibrated with anthropometric phantoms that simulate the body or parts of the body. Whole body phantoms, torso phantoms, lung phantoms, thyroid phantoms and skeletal phantoms are just some of the different types used.The systems are typically shielded with low background materials such as pre-World War II steel from battleships. Interferences can come from naturally occurring radioactive material, medically administered radiopharmaceuticals, equipment instability, non-ionizing electromagnetic radiation and other sources. These contribute to the uncertainties in measurement results that can range from 10% to 1000% or more depending on the measurement system, the energy of the radiation associated with the radionuclide to be measured, the accuracy of the phantom versus the person especially how well the distributions of activity match.

  6. Calibration of Instruments for Measuring Wind Velocity and Direction

    NASA Technical Reports Server (NTRS)

    Vogler, Raymond D.; Pilny, Miroslav J.

    1950-01-01

    Signal Corps wind equipment AN/GMQ-1 consisting of a 3-cup anemometer and wind vane was calibrated for wind velocities from 1 to 200 miles per hour. Cup-shaft failure prevented calibration at higher wind velocities. The action of the wind vane was checked and found to have very poor directional accuracy below a velocity of 8 miles per hour. After shaft failure was reported to the Signal Corps, the cup rotors were redesigned by strengthening the shafts for better operation at high velocities. The anemometer with the redesigned cup rotors was recalibrated, but cup-shaft failure occurred again at a wind velocity of approximately 220 miles per hour. In the course of this calibration two standard generators were checked for signal output variation, and a wind-speed meter was calibrated for use with each of the redesigned cup rotors. The variation of pressure coefficient with air-flow direction at four orifices on a disk-shaped pitot head was obtained for wind velocities of 37.79 53.6, and 98.9 miles per hour. A pitot-static tube mounted in the nose of a vane was calibrated up to a dynamic pressure of 155 pounds per square foot, or approximately 256 miles per hour,

  7. Comparative measurements using different particle size instruments

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    This paper discusses the measurement and comparison of particle size and velocity measurements in sprays. The general nature of sprays and the development of standard, consistent research sprays are described. The instruments considered in this paper are: pulsed laser photography, holography, television, and cinematography; laser anemometry and interferometry using visibility, peak amplitude, and intensity ratioing; and laser diffraction. Calibration is by graticule, reticle, powders with known size distributions in liquid cells, monosize sprays, and, eventually, standard sprays. Statistical analyses including spatial and temporal long-time averaging as well as high-frequency response time histories with conditional sampling are examined. Previous attempts at comparing instruments, the making of simultaneous or consecutive measurements with similar types and different types of imaging, interferometric, and diffraction instruments are reviewed. A program of calibration and experiments for comparing and assessing different instruments is presented.

  8. A Multidimensional Scaling Approach to Dimensionality Assessment for Measurement Instruments Modeled by Multidimensional Item Response Theory

    ERIC Educational Resources Information Center

    Toro, Maritsa

    2011-01-01

    The statistical assessment of dimensionality provides evidence of the underlying constructs measured by a survey or test instrument. This study focuses on educational measurement, specifically tests comprised of items described as multidimensional. That is, items that require examinee proficiency in multiple content areas and/or multiple cognitive…

  9. Measuring Properties of Magnetic Reconnection in Nonlinear Resistive and Two-Fluid Toroidal Simulations of Sawteeth

    NASA Astrophysics Data System (ADS)

    Beidler, Matthew; Cassak, Paul; Jardin, Stephen; Ferraro, Nathaniel

    2015-11-01

    The sawtooth crash in tokamaks limits the core temperature, harms confinement, and seeds disruptions. A predictive capability of its ramifications has been elusive. Extended-MHD physics is needed to properly analyze the magnetic reconnection that occurs during the crash phase, but it has only recently been integrated into codes using a toroidal geometry. In this study, we employ the three-dimensional toroidal, extended-MHD code M3D-C1 to study reconnection during the sawtooth crash. We study the nonlinear evolution of a test equilibrium in a non-reduced field representation for resistive-MHD and the two-fluid model. We find that the toroidal mode growth rates for the two-fluid reconnection process exhibit a nonlinear acceleration and greatly exceed that of a similar resistive MHD model, more closely in line with experimental results. Furthermore, by sampling the two-fluid simulation data in the plane perpendicular to the helical (m,n) =(1,1) mode, we present the first observation of the quadrupole out-of-plane magnetic field appearing during sawtooth reconnection with the Hall term. We also explore how reconnection as viewed in the helically perpendicular plane varies toroidally, which affects the symmetry of the reconnection geometry and the local diamagnetic effects.

  10. Quantifying solid-fluid interfacial phenomena in porous rocks with proton nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Schmidt, Ehud J.; Velasco, Katherine K.; Nur, Amos M.

    1986-04-01

    The three order-of-magnitude variation in the proton nuclear magnetic resonance (NMR) longitudinal relaxation time T1 of water adsorbed on silica surfaces versus that of bulk water makes proton NMR studies of porous materials powerful tools to study the effects of adsorption. Recent theory permits the utilization of this different response to obtain pore space surface-to-volume (S/V) distribution functions by inverting the decay of the z component of magnetization of fully saturated porous rocks; information can likewise be obtained on the fluid distribution at partially saturated conditions. A computer program has been developed to invert the NMR relaxation curves for the S/V distribution function, assuming an isolated pore regime, the ramifications of which are examined. The program has been applied to experimental results from water, porous sandstones, and tight gas sands at various pore fluid saturations and varying electrolyte content. For the fully saturated case, the results show promise in the application of NMR to describing pore space geometries in rock samples with widely varying surface-to-volume ratios. For partially saturated rocks, the results reflect the preferential early draining of the large pores at high water saturations, connectivity percolation phenomena at intermediate saturations, and the dominating role of adsorbed water films at low water saturations. Experiments on rocks saturated with saline solutions disclose the importance of the effects of alteration of the active sites on the rock surfaces as well as the role of electrolytes in modifying the structural properties of bulk solution.

  11. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Thornton, Donald C.; Johnson, James E.; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D.

    1993-01-01

    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS) and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios less than 25 pptv and less than 10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio greater than 25 pptv, the instruments agreed on average to about 15%. At mixing ratios less than 25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios less than 50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.

  12. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  13. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  14. Probe systems for measuring static pressure and turbulence intensity in fluid streams

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J. (Inventor)

    1993-01-01

    A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.

  15. Use of FFT-Based Measuring Instruments for EMI Compliance Measurements

    NASA Astrophysics Data System (ADS)

    Keller, Matthias; Medler, Jens

    2016-05-01

    The use of FFT-based measuring receivers for EMI compliance measurements is motivated by the desire to reduce the scan time by several orders of magnitude and to gain additional insights by applying longer measurement times or using enhanced methods like scan spectrogram and persistence mode. Usage of an appropriate measurement time is the key to comprehensively record the disturbance characteristic of the equipment under test (EUT). The practical use of FFT-based scan spectrogram and persistence mode is demonstrated.

  16. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).

  17. POLARBEAR-2: an instrument for CMB polarization measurements

    NASA Astrophysics Data System (ADS)

    Inoue, Y.; Ade, P.; Akiba, Y.; Aleman, C.; Arnold, K.; Baccigalupi, C.; Barch, B.; Barron, D.; Bender, A.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; de Haan, T.; Dobbs, M. A.; Ducout, A.; Dünner, R.; Elleflot, T.; Errard, J.; Fabbian, G.; Feeney, S.; Feng, C.; Fuller, G.; Gilbert, A. J.; Goeckner-Wald, N.; Groh, J.; Hall, G.; Halverson, N.; Hamada, T.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hill, C.; Holzapfel, W. L.; Hori, Y.; Howe, L.; Irie, F.; Jaehnig, G.; Jaffe, A.; Jeong, O.; Katayama, N.; Kaufman, J. P.; Kazemzadeh, K.; Keating, B. G.; Kermish, Z.; Keskitalo, R.; Kisner, T. S.; Kusaka, A.; Le Jeune, M.; Lee, A. T.; Leon, D.; Linder, E. V.; Lowry, L.; Matsuda, F.; Matsumura, T.; Miller, N.; Mizukami, K.; Montgomery, J.; Navaroli, M.; Nishino, H.; Paar, H.; Peloton, J.; Poletti, D.; Puglisi, G.; Raum, C. R.; Rebeiz, G. M.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K. M.; Segawa, Y.; Sherwin, B. D.; Shirley, I.; Siritanasak, P.; Stebor, N.; Stompor, R.; Suzuki, J.; Suzuki, A.; Tajima, O.; Takada, S.; Takatori, S.; Teply, G. P.; Tikhomirov, A.; Tomaru, T.; Whitehorn, N.; Zahn, A.; Zahn, O.

    2016-07-01

    POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision σ(r) > 0:01, and the sum of neutrino masses, Σmz, with σ(Σmv) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.

  18. KaRIN: an Instrument for Measuring High-Resolution Sea-Surface Topography and Fresh Water Extent, Stage, and Slope

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Moller, D.; Enjolras, V.

    2006-12-01

    Traditional nadir profiling altimeters, such as Topex, Jason, or IceSat, are incaple of fully sampling the space- time signatures of both ocean mesoscale and submesoscale phenomena and changes in river discharge. To overcome this limitation, we present an instrument concept, the Ka-band Radar Interferometer (KaRIN), which is able to provide the appropriate space-time sampling to sample these phenomena with a height and slope accuracy suitable to resolve topographic signatures for both ocean and land hydrology applications. Although ocean and hydrlogic applications are quite different, the required sampling characteristics are similar. Both applications require global coverage up to high latitudes (78deg). Measurement of ocean mesoscale and submesoscale phenomena requires a temporal revisit time on the order of 10 days and a height accuracy of about 2cm over a spatial scale of 2km. The sampling of river discharge requires an approximately weekly revisit time, an ability to image water bodies (to determine extent) with a spatial resolution of 100m, a height accuracy better than 10cm and a slope accuracy of 1cm/1km, after averaging over a river area equivalent to 1km x 1km. The similarity in measurement requirements allows for the possibility of meeting both ocean and hydrology requirements with a single instrument. The KaRIN instrument builds on the interferometric SAR concept demonstrated by the NASA Shuttle Radar Topography Mission (SRTM), and the Wide-Swath Ocean Altimeter concept, which was studied by NASA as a potential complement to the Ocean Surface Topography Mission (OSTM). Two major modifications are made to these systems to achieve the desired performance: the spatial sampling requirement implies that full synthetic aperture must be used. Second, achieving the desired height and slope accuracy with a realizable spaceborne instrument requires using a Ka-band (0.8 cm wavelength) radar at near nadir incidence. To validate the science performance of the

  19. Instrumentation for Combined Dispersion and Absorption Measurements in the VUV.

    PubMed

    Banfield, F P; Huber, M C; Parkinson, W H; Tubbs, E F

    1973-06-01

    When the hook method that measures anomalous dispersion is combined with photoelectric photometry, a particularly powerful tool results. An apparatus that combines these techniques over a wavelength range extending into the vacuum ultraviolet has been constructed and used chiefly on the iron-group elements. It consists of hydrogen-discharge light source, a Mach-Zehnder interferormeter, a high temperature furnace, a stigmatic spectrograph, and a photoelectric photometer.

  20. Improved and new balloon-borne instruments for the measurements of stratospheric aerosols

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Gaubicher, Bertrand; Chartier, Michel; Brogniez, Colette; Verwaerde, Christian; Balois, Jean-Yves; Auriol, Frédérique; Palumbo, Pasquale

    The aerosols in the stratosphere play an important role in the ozone chemistry. Liquid sulphate aerosols are involved in the heterogeneous chemistry of nitrogen and bromine species. The key parameters for modelling calculations of stratospheric species are the amount of these aerosols and their size distribution. In fact, the aerosol content in the stratosphere is more complex than previously assumed, since different natures of solid particles are present: soot from various origins and interplanetary dust intercepted by the Earth atmosphere. Since no major volcanic eruption has occurred since 15 years, it is possible to study at present the content of stratospheric background aerosols and to detect the different natures of particles. There is no unique technique of measurements in order to fully describe the physical properties of liquid and solid aerosols. Then different instruments must be used: SALOMON-N2, which is a night-time UV-visible spectrometer (from 350 to 950 nm) allowing the retrieval of the extinction coefficient of aerosols, the STAC particle counter (giving 14 size classes of aerosols), and MicroRADIBAL, which is a polarimeter allowing the retrieval of the aerosol phase function from the radiance and the polarisation measurements in the near infrared. Analysis of measurements performed during previous flights shows that significant amount of solid aerosols were detected in the middle stratosphere, up to about 30 km, with strong spatial and temporal variability. Combined aerosols measurements are necessary in order to be able to distinguish between the various natures of aerosols. Then, STAC is now implanted in the SALOMON-N2 and MicroRADIBAL gondolas. STAC can be also implanted on other gondolas flying in the stratosphere a few days apart, in order to study the variability of the total aerosol content. A new instrument, DUSTER, will be implanted soon in the SALOMON gondola. This instrument will collect solid particles in the middle stratosphere, in

  1. Search for New Phenomena Using W/Z + (b)-Jets Measurements Performed with the ATLAS Detector

    SciTech Connect

    Beauchemin, Pierre-Hugues

    2015-06-30

    The Project proposed to use data of the ATLAS experiment, obtained during the 2011 and 2012 data-taking campaigns, to pursue studies of the strong interaction (QCD) and to examine promising signatures for new physics. The Project also contains a service component dedicated to a detector development initiative. The objective of the strong interaction studies is to determine how various predictions from the main theory (QCD) compare to the data. Results of a set of measurements developed by the Tufts team indicate that the dominant factor of discrepancy between data and QCD predictions come from the mis-modeling of the low energy gluon radiation as described by algorithms called parton showers. The discrepancies introduced by parton showers on LHC predictions could even be larger than the effect due to completely new phenomena (dark matter, supersymmetry, etc.) and could thus block further discoveries at the LHC. Some of the results obtained in the course of this Project also specify how QCD predictions must be improved in order to open the possibility for the discovery of something completely new at the LHC during Run-II. This has been integrated in the Run-II ATLAS physics program. Another objective of Tufts studies of the strong interaction was to determine how the hypothesis about an intrinsic heavy-quark component of the proton (strange, charm or bottom quarks) could be tested at the LHC. This hypothesis has been proposed by theorists 30 years ago and is still controversial. The Tufts team demonstrated that intrinsic charms can be observed, or severely constrained, at the LHC, and determine how the measurement should be performed in order to maximize its sensitivity to such an intrinsic heavy-quark component of the proton. Tufts also embarked on performing the measurement that is in progress, but final results are not yet available. They should shade a light of understanding on the fundamental structure of the proton. Determining the nature of dark matter

  2. Comparing the psychometric properties of the pediatric outcomes data collection instrument and the activities scales for kids: a review.

    PubMed

    Christakou, Anna; Laiou, Athanasia

    2014-09-01

    The aim of this study was to review and evaluate the psychometric properties of two general musculoskeletal outcome measures focusing on pediatric physical disability, namely, the Pediatric Outcomes Data Collection Instrument (PODCI) and the Activities Scales for Kids (ASK). Although this review reveals the psychometric superiority of ASK to PODCI, further research should confirm the psychometric properties of both the instruments. A number of psychometric issues need to be further addressed. Specifically, future studies should examine additional types of reliability and validity, for example, content, construct, criterion, and discriminant with more sophisticated statistical analyses, for example, Aiken's item content validity coefficient and confirmatory factor analysis. Until these issues are addressed, researchers should be cautious utilizing these instruments in children with musculoskeletal problems in a clinical setting.

  3. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  4. A Hydrostatic Bearing Test System for Measuring Bearing Load Using Magnetic-Fluid Lubricants.

    PubMed

    Weng, Huei Chu; Chen, Lu-Yu

    2016-05-01

    This paper conducts a study on the design of a hydrostatic bearing test system. It involves the determination of viscous properties of magnetic-fluid lubricants. The load of a hydrostatic thrust bearing using a water-based magnetite nanofluid of varying volume flow rate is measured under an applied external induction field via the test system. Results reveal that the presence of nanoparticles in a carrier liquid would cause an enhanced bearing load. Such an effect could be further magnified by increasing the lubricant volume flow rate or the external induction field strength.

  5. Comparative performance of color-measuring instruments.

    PubMed

    Billmeyer, F W

    1969-04-01

    The comparative performance of fifteen different color-measuring instruments was studied for precision (short-term repeatability) and accuracy of color measurement and of color difference measurement. For estimates of accuracy, a GE spectrophotometer was considered the referee instrument. The instruments tested included two integrating sphere spectrophotometers, six integrating sphere colorimeters (four of which were individually calibrated for close conformance to CIE coordinates), and seven 45 degrees / normal calorimeters (four of which were individually calibrated for close conformance to CIE coordinates). Up to fifty-three samples were measured, most of them several times, on each instrument. Paint panels, plastics, porcelain enamels, and ceramic tiles were among the samples used. Overall, the well-established IDL D-1 Signature Color-Eye colorimeter-abridged spectrophotometer and the Hunter D25 Color and Color Difference Meter demonstrated the best and next best performance, respectively, in all categories. Several other instruments, both well established and new, were outstanding in one or more respects. All production instruments tested gave generally satisfactory results.

  6. The MSA: An Instrument for Measuring Motivation to Study Abroad

    ERIC Educational Resources Information Center

    Anderson, Philip H.; Lawton, Leigh

    2015-01-01

    While there is a growing body of research on study abroad programs, as Li, Olson, and Frieze (2013) observed, "Research on study abroad has primarily focused on the effects or outcomes of study abroad participation on the students involved in these programs…Very limited attention has been devoted to studying factors affecting students'…

  7. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pumps that may be part of the system, using good engineering practice. (2) Flow air through the... range. (6) If the air flow at standard conditions measured by the instrument differs by ±1.0 percent of... agrees with the calibration measurement at the specified flow rates using the criteria of paragraph...

  8. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... part of the system, using good engineering practice. (2) Flow air through the calibration system at the... range. (6) If the air flow at standard conditions measured by the instrument differs by ±1.0 percent of... agrees with the calibration measurement at the specified flow rates using the criteria of paragraph...

  9. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... part of the system, using good engineering practice. (2) Flow air through the calibration system at the... range. (6) If the air flow at standard conditions measured by the instrument differs by ±1.0 percent of... agrees with the calibration measurement at the specified flow rates using the criteria of paragraph...

  10. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pumps that may be part of the system, using good engineering practice. (2) Flow air through the... range. (6) If the air flow at standard conditions measured by the instrument differs by ±1.0 percent of... agrees with the calibration measurement at the specified flow rates using the criteria of paragraph...

  11. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part of the system, using good engineering practice. (2) Flow air through the calibration system at the... range. (6) If the air flow at standard conditions measured by the instrument differs by ±1.0 percent of... agrees with the calibration measurement at the specified flow rates using the criteria of paragraph...

  12. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... part of the system, using good engineering practice. (2) Flow air through the calibration system at the... range. (6) If the air flow at standard conditions measured by the instrument differs by ±1.0 percent of... agrees with the calibration measurement at the specified flow rates using the criteria of paragraph...

  13. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pumps that may be part of the system, using good engineering practice. (2) Flow air through the... range. (6) If the air flow at standard conditions measured by the instrument differs by ±1.0 percent of... agrees with the calibration measurement at the specified flow rates using the criteria of paragraph...

  14. Artificial Fluid Properties for Large-Eddy Simulation of Compressible Turbulent Mixing

    SciTech Connect

    Cook, A W

    2007-01-08

    An alternative methodology is described for Large-Eddy Simulation of flows involving shocks, turbulence and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of an ''LES'' fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a 10th-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in crisp fashion.

  15. Measuring a caring culture in hospitals: a systematic review of instruments

    PubMed Central

    Hesselink, G; Kuis, E; Pijnenburg, M; Wollersheim, H

    2013-01-01

    Objective To identify instruments or components of instruments that aim to measure aspects of a caring culture-shared beliefs, norms and values that direct professionals and managers to act caring in hospitals, and to evaluate their psychometric properties. Design Systematic review. Data sources PubMed, CINAHL, EMBASE, PsychInfo, Web of Science and the International bibliography of the Social Sciences. Study selection Peer-reviewed articles describing (components of) instruments measuring aspects of a caring culture in a hospital setting. Studies had to report psychometric data regarding the reliability or validity of the instrument. Potentially useful instruments that were identified after the title and abstract scan were assessed on relevance by an expert panel (n=12) using the RAND-modified Delphi procedure. Results Of the 6399 references identified, 75 were examined in detail. 7 studies each covering a unique instrument met our inclusion criteria. On average, 24% of the instrument's items were considered relevant for measuring aspects of the hospital's caring culture. Studies showed moderate-to-high validity and reliability scores. Validity was addressed for 6 of the 7 instruments. Face, content (90%) and construct (60%) validity were the most frequently reported psychometric properties described. One study (14%) reported discriminant validity of the instrument. Reliability data were available for all of the instruments. Internal consistency was the most frequently reported psychometric property for the instruments and demonstrated by: a Cronbach's α coefficient (80%), subscale intercorrelations (60%), and item–total correlations (40%). Conclusions The ultimate standard for measuring a caring culture in hospitals does not exist. Existing instruments provide partial coverage and lack information on discriminant validity, responsiveness and feasibility. Characteristics of the instruments included in this review could provide useful input for the design of a

  16. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  17. EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael

    2008-08-01

    . Neuschaefer-Rube et al, also from PTB, present procedures and standards to test tactile and optical microsensors and micro-computed tomography systems, which are similar to the established tests for classical coordinate measuring machines and assess local and global sensor characteristics. The last three papers are related to micro/nano-metrology and intelligent instrumentation. Jiang et al from Tohoku University describe the fabrication of piezoresistive nanocantilevers for ultra-sensitive force detection by using spin-out diffusion, EB lithography and FAB etching, respectively. Y-C Liu et al from National Taiwan University develop an economical and highly sensitive optical accelerometer using a commercial optical pickup head. Michihata et al from Osaka University experimentally investigate the positioning sensing property and accuracy of a laser trapping probe for a nano-coordinate measuring machine. As guest editors, we believe that this special feature presents the newest information on advances in measurement technology and intelligent instruments from basic research to applied systems for Production Engineering. We would like to thank all the authors for their great contributions to this special feature and the referees for their careful reviews of the papers. We would also like to express our thanks and appreciation to Professor P Hauptmann, Editor-in-Chief of MST, for his kind offer to publish selected ISMTII 2007 papers in MST, and to the publishing staff of MST for their dedicated efforts that have made this special feature possible.

  18. Research on an intelligent ball-screw measuring instrument

    NASA Astrophysics Data System (ADS)

    Fu, Pan; Chen, Yong-Le; Zeng, Quan-Kun; Xiang, Lin-Kui

    1993-09-01

    Ball screw are widely used in the steering-gear of automobile, aero-mechanism, machine tools and precision instrument. Since the thread form is referred to as a Gothic arch, so it is difficult to measure the ball screw. The traditional screw measuring method is "three wire" method or "three ball" method. The weakness of these methods is that the measuring process is too complicated or the measuring precision is not high. We have developed an intelligent ball screw measuring instrument. The instrument can measure the ball center diameter of ball screw. Using a new measuring method("two wire and one ball" method), the instrument has high measuring precision, high reliability and it is easy to operate.The 8098 microcomputer system in the instrument can control the measuring process and accomplish data collecting and processing automatically. This measuring instrument can be used on the production site for fast and precise measurement of ball screw.

  19. Ultra Low Temperature Instrumentation for Measurements in Astrophysics : ULTIMA

    NASA Astrophysics Data System (ADS)

    Bunkov, Yu. M.; Elbs, J.; Godfrin, H.; Winkelmann, C. B.

    2006-09-01

    This paper reviews recent advances in particle detection using superfluid 3He at ultra-low temperature about 100 μK, for application in large detector project ULTIMA for the search of non-baryonic Dark Matter. The unique advantages of 3He, and in particular of its superfluid state, for Dark Matter search are highlighted.

  20. Problems affecting the fidelity of pressure measuring instruments for planetary probes

    NASA Technical Reports Server (NTRS)

    Hudson, J. B.

    1972-01-01

    Determination is made of the nature and magnitude of surface-related effects that cause errors in pressure measuring instruments, with special reference being made to instruments intended for use in planetary probes. The interaction of gases with clean surfaces of metals likely to be used as gage construction materials was studied. Special emphasis was placed on the adsorption, chemical reaction, and electron-induced desorption processes. The results indicated that all metals tested were subject to surface processes which would degrade gage fidelity. It was also found, however, that the formation of inert adsorbed layers on these metal surfaces, such as carbon on platinum, greatly reduced or eliminated these effects. This process, combined with a system design which avoids contact between reactive gases and hot filaments, appears to offer the most promising solution to the gage fidelity problem.

  1. A Superradiant Laser and Spin Squeezed States: Collective Phenomena in a Rubidium Cavity QED System for Enhancing Precision Measurements

    NASA Astrophysics Data System (ADS)

    Bohnet, Justin G.

    By allowing a large ensemble of laser cooled and trapped 87Rb atoms to interact collectively with an optical cavity, I have explored two phenomena that may prove useful for enhancing precision measurements: superradiant lasing and spin squeezing. Superradiant lasers have been proposed as future ultrastable optical frequency references, with predicted linewidths < 1 millihertz. These lasers operate in an unusual regime of laser physics where collective emission from an atomic ensemble maps the quantum phase stored in the atoms onto the optical cavity field. I will give an overview of my experimental work using a cold-atom, superradiant Raman laser as a model system to confirm a number of the key predictions concerning superradiant lasing, including the possibility of coherent emission with < 1 intracavity photon on average and greatly reduced sensitivity to cavity frequency noise. I also present work using cavity-aided, coherence-preserving measurements of the atomic state population to create entanglement between atoms. The entanglement enables more precise estimation of the quantum phase at the heart of nearly all precision measurements and sensors utilizing quantum objects. By utilizing a cycling transition for the quantum non-demolition probe, we have reduced by several orders of magnitude the measurement induced back-action caused by spontaneous Raman transitions. We directly observe, with no background subtraction, a spin squeezed state with sensitivity to measuring a quantum phase enhanced 10.5 times in variance (i.e. 10.2 dB) beyond the standard quantum limit for an unentangled state. This experimental breakthrough demonstrates that quantum-aided sensing techniques can realize large enough enhancements to have a substantial impact on precision measurements and may aid advances in technology as well as searches for new physics.

  2. Evidence for using air or fluid when identifying the epidural space.

    PubMed

    Sanford, Curtis L; Rodriguez, Ricardo E; Schmidt, James; Austin, Paul N

    2013-02-01

    Lumbar epidural analgesia is frequently employed to provide pain relief for women during labor. Anesthesia providers use various methods to identify the epidural space. Some providers use air, some use fluid, and others use a combination of air and fluid during the loss of resistance technique. Loss of resistance to air has been speculated to result in a lesser quality of analgesia compared with loss of resistance to only fluid. A search strategy focusing on preappraised sources was used to locate evidence from interventional and observational studies. Four evidence sources were located, including a systematic review with meta-analysis of 4 older studies. The evidence reviewed was inconclusive in determining whether a difference in analgesia quality results from the use of air or fluid during the loss of resistance technique. Future studies should include an adequate number of subjects and address other problems such as operator experience, observer blinding, equivalence of subject characteristics, outcomes definition and measurement, and composition of epidural solution. Providers should consider other factors when selecting loss of resistance medium, such as the reported complications of large amounts of air injected into the epidural space and surrounding structures.

  3. Instrumentation for time-resolved dynamic and static dichroic measurements of polymers with a near-IR acoustooptic tunable filter

    NASA Astrophysics Data System (ADS)

    Sweat, Joseph Allen

    1999-11-01

    The optical measurement of the orientational response of chemical functional groups of a polymer as it is subjected to conventional dynamic mechanical analysis can give insight into the rheological behavior of the polymer while under repetitive strain based on the chemical structure. Instrumentation used in the mid infrared has included the use of grating monochromators and interferometers. The use of a multiply modulated optical signal has decreased the level of noise to observe the small amplitude changes (typically >10-3 absorbance units) associated with the repetitive oscillatory strain. The use of digital signal processing to replace phase sensitive detection for demodulation of the optical signal has greatly reduced the spectral collection time. In addition, multiplexing gained with the use of step-scan interferometry in making time resolved measurements has aided in making the procedure more practical. However, instrumental complexity and expense are drawbacks. By incorporating the high throughput, polarized tuned beam, and rapid wavelength switching capability of an acousto-optic tunable filter (AOTF), a dynamic instrument with integrated centralized control by a single microprocessor has been built. it operates in the near infrared with a rapid dynamic data collection time and requires the use of only a single modulation in the form of the sample oscillatory strain. The near infrared permits thicker samples to reduce sample preparation tune or allows polymers to be tested without pretreatment. The use of Fourier based digital filtering improves the signal to noise ratio of the dynamic differential spectra. The instrument is cost effective and rugged in comparison to step-scan interferometers yet has a rapid data collection rate allowing use in a routine industrial setting. Information from these measurements can aid in determining the rheological properties necessary for the end use functionality of a polymer. Additionally, AOTF instrumentation can be used

  4. Continuity and internal properties of Gulf Coast sandstones and their implications for geopressured fluid production

    SciTech Connect

    Morton, R.A.; Ewing, T.E.; Tyler, N.

    1983-01-01

    The intrinsic properties of the genetic sandstone units that typify many geopressured geothermal aquifers and hydrocarbon reservoirs in the Gulf Coast region were systematically investigated classified, and differentiated. The following topics are coverd: structural and stratigraphic limits of sandstone reservoirs, characteristics and dimensions of Gulf Coast sandstones; fault-compartment areas; comparison of production and geologic estimates of aquifer fluid volume; geologic setting and reservoir characteristics, Wells of Opportunity; internal properties of sandstones; and implications for geopressured fluid production. (MHR)

  5. Design details of Intelligent Instruments for PLC-free Cryogenic measurements, control and data acquisition

    NASA Astrophysics Data System (ADS)

    Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.

    2017-02-01

    Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.

  6. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOEpatents

    Durham, Michael D.; Sagan, Francis J.; Burkhardt, Mark R.

    1993-01-01

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid.

  7. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOEpatents

    Durham, M.D.; Sagan, F.J.; Burkhardt, M.R.

    1993-12-21

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid. 7 figures.

  8. Instrumentation for a Temperature Controlled Pulsed-4 Measurement System

    DTIC Science & Technology

    2010-12-01

    18. NUMBER OF PAGES 6 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified Standard Form...O.I. Saadat , K.K. Ryu, Y. Liu, R.G. Gordon and T. Palacios: “Low-k passsivation layers for AlGaN/GaN HEMTs”. International Workshop on Nitride...Graphene Week 2010, Maryland, April 2010. • B . Lu and T. Palacios, “High Breakdown (> 1500 V) AlGaN/GaN HEMTs by Substrate-Transfer Technology” IEEE Electron Device Letters, Vol. 31, No. 9, pp. 951-953, Sept. 2010.

  9. Psychometric Properties of the Cyberbullying Test, a Screening Instrument to Measure Cybervictimization, Cyberaggression, and Cyberobservation.

    PubMed

    Garaigordobil, Maite

    2015-08-19

    The purpose of the study was to analyze the psychometric properties of the Cyberbullying Test. The sample included 3,026 participants from the Basque Country (northern Spain), aged 12 to 18 years. Results confirmed high internal consistency and moderate temporal stability. Exploratory factor analysis yielded three moderately correlated factors (cyberobserver, cyberaggressor, and cybervictim). Confirmatory factor analysis ratified adequate model fit of the three factors. Convergent and discriminant validity were confirmed: (a) cybervictims use a variety of conflict resolution strategies, scoring high in neuroticism, openness, antisocial behavior, emotional attention, school-academic problems, shyness-withdrawal, psychopathological disorders, anxiety, and psychosomatic complaints, and low in agreeableness, responsibility, self-esteem, and social adjustment and (b) cyberaggressors use many aggressive conflict resolution strategies, scoring high in neuroticism, antisocial behavior, school-academic problems, psychopathological and psychosomatic disorders, and low in empathy, agreeableness, responsibility, emotion regulation, and social adjustment. The study confirms the test's reliability and validity.

  10. A Greener Approach for Measuring Colligative Properties

    ERIC Educational Resources Information Center

    McCarthy, Sean M.; Gordon-Wylie, Scott W.

    2005-01-01

    As a first step towards the greening of instructional laboratories, we present a new greener version of a laboratory procedure designed to measure colligative properties. The greener procedure substitutes the nontoxic, noncarcinogenic compounds stearic, myristic, lauric, and palmitic acids for the less benign aromatic compounds p-dichlorobenzene,…

  11. Development of an Instrument for Measuring Clinicians’ Power Perceptions in the Workplace

    PubMed Central

    Bartos, Christa E.; Fridsma, Douglas B.; Butler, Brian S.; Penrod, Louis E.; Becich, Michael J.; Crowley, Rebecca S.

    2008-01-01

    We report on the development of an instrument to measure clinicians’ perceptions of their personal power in the workplace in relation to resistance to computerized physician order entry (CPOE). The instrument is based on French and Raven’s six bases of social power and uses a semantic differential methodology. A measurement study was conducted to determine the reliability and validity of the survey. The survey was administered online and distributed via a URL by email to 19 physicians, nurses, and health unit coordinators from a university hospital. Acceptable reliability was achieved by removing or moving some semantic differential word pairs used to represent the six power bases (alpha range from 0.76–0.89). The Semantic Differential Power Perception (SDPP) survey validity was tested against an already validated instrument and found to be acceptable (correlation range from 0.51–0.81). The SDPP survey instrument was determined to be both reliable and valid. PMID:18375189

  12. Final Report: Operational Retrieval of Cloud Microphysical Properties Using Combined Measurements by Diverse Instruments

    SciTech Connect

    Richard T. Austin

    2008-06-30

    The report on the final phase of the project describes improvements in the ice and liquid cloud retrieval algorithms due to the use of three-parameter particle size distributions in which all three parameters may vary with height, testing of the improved retrievals by comparisons of measured and calculated fluxes, and further improvement in liquid retrievals obtained by adding liquid water path information from the microwave radiometer to radar and visible optical depth information.

  13. Instrumentation for measuring lake and reservoir evaporation by the energy-budget and mass-transfer methods

    USGS Publications Warehouse

    Sturrock, A.M.

    1985-01-01

    Instrumentation currently used by the U.S. Geological Survey in studies of lake and reservoir evaporation is described in this paper. This instrumentation is used for the measurement of solar and terrestrial energy necessary to apply the mass-transfer or energy budget methods. The energy budget requires a quantative determination of all form of energy entering or leaving the lake as well as determination of the change in storage of energy within the lake. (USGS)

  14. Schlieren visualization of fluid dynamics phenomena during phacosonication in cataract surgery

    NASA Astrophysics Data System (ADS)

    Serafino, Gabriella; Piuzzi, Barbara; Sanguinetti, G.; Sirotti, C.; Sirotti, Paolo; Tognetto, D.

    2005-03-01

    In ultrasonic phacoemulsification during cataract surgery the lens material fragmentation has been described as being caused by a combination of several mechanisms. The different theories involve tip vibration, acoustic waves produced by the tip, particles and liquids impact on the surface of the lens and cavitation. However the mechanisms are still not clear. To better understand phaco-related phenomena we have tried to produce a description in term of images of the cataract phacoemulsification procedure. An expanded and collimated laser diode beam transilluminates a transparent tube containing a liquid medium. The machine is activated separating the different phases of irrigation, aspiration and phacosonication. Fluid turbulences and phenomena related to the tip vibration constitute the phase images, visualized using Schlieren or similar techniques. The optical Fourier transform is filtered by a blade or by a black dot. The filtered transform is reconstructed into the visualized phase image and this is acquired by a digital image processing system. The presence of acoustic cavitation and possibly of ultrasonic radiation has been revealed. The technique promises to be a possible means for evaluation of single phaco apparatus power setting and comparison between different machines in terms of power modulation and cavitation production.

  15. Dual physiological rate measurement instrument

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G. (Inventor)

    1990-01-01

    The object of the invention is to provide an instrument for converting a physiological pulse rate into a corresponding linear output voltage. The instrument which accurately measures the rate of an unknown rectangular pulse wave over an extended range of values comprises a phase-locked loop including a phase comparator, a filtering network, and a voltage-controlled oscillator, arranged in cascade. The phase comparator has a first input responsive to the pulse wave and a second input responsive to the output signal of the voltage-controlled oscillator. The comparator provides a signal dependent on the difference in phase and frequency between the signals appearing on the first and second inputs. A high-input impedance amplifier accepts an output from the filtering network and provides an amplified output DC signal to a utilization device for providing a measurement of the rate of the pulse wave.

  16. Spectrometer for measuring the concentration of components in a fluid stream and method for using same

    DOEpatents

    Durham, M.D.; Stedman, D.H.; Ebner, T.G.; Burkhardt, M.R.

    1991-12-03

    A device and method are described for measuring the concentrations of components of a fluid stream. Preferably, the fluid stream is an in-situ gas stream, such as a fossil fuel fired flue gas in a smoke stack. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The need for a reference intensity is eliminated. 15 figures.

  17. Spectrometer for measuring the concentration of components in a fluid stream and method for using same

    DOEpatents

    Durham, Michael D.; Stedman, Donald H.; Ebner, Timothy G.; Burkhardt, Mark R.

    1991-01-01

    A device and method for measuring the concentrations of components of a fluid stream. Preferably, the fluid stream is an in situ gas stream, such as a fossil fuel fired flue gas in a smoke stack. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The need for a reference intensity is eliminated.

  18. Two Instruments for Measuring Distributions of Low-Energy Charged Particles in Space

    NASA Technical Reports Server (NTRS)

    Bader, Michel; Fryer, Thomas B.; Witteborn, Fred C.

    1961-01-01

    Current estimates indicate that the bulk of interplanetary gas consists of protons with energies between 0 and 20 kev and concentrations of 1 to 105 particles/cu cm. Methods and instrumentation for measuring the energy and density distribution of such a gas are considered from the standpoint of suitability for space vehicle payloads. It is concluded that electrostatic analysis of the energy distribution can provide sufficient information in initial experiments. Both magnetic and electrostatic analyzers should eventually be used. Several instruments designed and constructed at the Ames Research Center for space plasma measurements, and the methods of calibration and data reduction are described. In particular, the instrument designed for operation on solar cell power has the following characteristics: weight, 1.1 pounds; size, 2 by 3 by 4 inches; and power consumption, 145 mw. The instrument is designed to yield information on the concentration, energy distribution, and the anisotropy of ion trajectories in the 0.2 to 20 kev range.

  19. Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package

    SciTech Connect

    1980-01-01

    The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

  20. Advanced ultrasonic measurement methodology for non-invasive interrogation and identification of fluids in sealed containers

    SciTech Connect

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-05-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  1. Advanced ultrasonic measurement methodology for non-invasive interrogation and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  2. Advanced Ultrasonic Measurement Methodology for Non-Invasive Interrogation and Identification of Fluids in Sealed Containers

    SciTech Connect

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-16

    The Hazardous Materials Response Unit (HMRU) and the Counterterrorism and Forensic Science Research Unit (CTFSRU), Laboratory Division, Federal Bureau of Investigation (FBI) have been mandated to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a portable, hand-held, hazardous materials acoustic inspection device (HAZAID) that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The HAZAID prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the HAZAID prototype. High bandwidth ultrasonic transducers combined with the advanced pulse compression technique allowed researchers to 1) impart large amounts of energy, 2) obtain high signal-to-noise ratios, and 3) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of this feasibility study demonstrated that the HAZAID experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  3. Instrument for high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures

    NASA Astrophysics Data System (ADS)

    Koyama, K.; Hane, S.; Kamishima, K.; Goto, T.

    1998-08-01

    An instrument has been developed for the first time that makes high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures. The instrument consists of an extraction-type magnetometer, a nonmagnetic high pressure clamp cell and a 20 T superconducting magnet with a 3He refrigerator and is able to precisely measure the magnetization of weakly magnetic materials. TiCu alloy with 3 wt % Ti is employed as a nonmagnetic material with high mechanical strength for the high pressure clamp cell. This apparatus can be used in the pressure range 0⩽P⩽13 kbar, the field range 0⩽H⩽200 kOe and the temperature range 0.5⩽T⩽4.2 K. The resolution of the instrument is estimated to be ±0.002 emu. For demonstrating the ability of the instrument, the experimental results on a heavy fermion antiferromagnet Ce7Ni3 is presented.

  4. Guidance on choosing a measuring instrument for indoor particle pollution studies.

    PubMed

    Seelig, Marina Fonseca; Petry, Adriane Prisco; Schneider, Paulo Smith

    2012-07-01

    The possibility of acquiring real-time concentration data is leading many indoor air quality and health researchers to the use of particle measuring instruments instead of the classic filtration approach. This paper summarizes a checklist of characteristics that have to be considered on the selection of such instruments and checks the compliance of three air monitoring devices suitable for environmental exposure researches. An evaluation table with desirable instrument technical, economic, and logistics characteristics was summarized in a checklist, and spec sheets of three air monitoring devices suitable for environmental exposure researches were checked. Technical, economic, and logistics aspects have to be considered. Suitability, measurement range, accuracy, resolution, and robustness are indispensable metrological characteristics. Only one instrument was in comply with it. A popular air monitoring device among environmental exposure researchers was checked and it failed the accuracy check. When selecting a particle measuring instrument, technical, economic, and logistics aspects have to be considered. Suitability, measurement range, accuracy, resolution, and robustness are indispensable metrological characteristics. When selecting an instrument for a study, a lack of information on the quality of results is a strong indication that it should not be considered, as study's response may be compromised.

  5. Convection phenomena at reduced gravity of importance for materials processing

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1976-01-01

    The basic aspects of convection processes are delineated. It is shown that even in weak gravitational fields buoyancy can induce fluid motions. Furthermore, at reduced gravity other nongravity forces such as surface or interfacial tensions, g-jitter, therma-volume expansions, density differences due to phase changes, and magnetic and electric fields can induce fluid motions. The various types of flow possible with these various driving forces are described and criteria for determining the extent and nature of the resulting flows and heat transfer are presented. The various physical mechanisms that can occur separately and in combination are indicated and the present state of knowledge of each of the phenomena is outlined.

  6. Mechanical Properties of the Surface Material of Comet 67P/Churyumov-Gerasimenko Measured By the Casse Instrument Onboard the Philae Lander

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.; Fischer, H. H.; Seidensticker, K. J.; Arnold, W.; Faber, C.; Möhlmann, D.; Thiel, K.

    2014-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard

  7. Advanced working fluids: Thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Lee, Lloyd L.; Gering, Kevin L.

    1990-10-01

    Electrolytes are used as working fluids in gas fired heat pump chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. An accurate correlation is developed to evaluate properties for concentrated electrolyte solutions. Sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in strongly colligative cosolvent. The operating windows are determined for a number of absorption fluids of industrial importance.

  8. Viscosity measuring instrument

    NASA Technical Reports Server (NTRS)

    Feinstein, S. P. (Inventor)

    1980-01-01

    A method and apparatus are provided for enabling the measurement of the viscosity of substances, especially those containing volatiles at elevated temperatures, with greater accuracy and at less cost than before. The apparatus includes a cylinder with a narrow exit opening at one end and a piston which closely slides within the cylinder to apply force against a sample in the cylinder to force the sample through the exit opening. In order to more rapidly heat a sample the ends of the cylinder and piston are tapered and the sample is correspondingly tapered, to provide a large surface to volume ratio. A corresponding coal sample is formed by compressing particles of coal under high pressure in a mold of appropriate shape.

  9. Instrument Development Procedures for Maze Measures. Technical Report # 08-06

    ERIC Educational Resources Information Center

    Liu, Kimy; Sundstrom-Hebert, Krystal; Ketterlin-Geller, Leanne R.; Tindal, Gerald

    2008-01-01

    The purpose of this study was to document the instrument development of maze measures for grades 3-8. Each maze passage contained twelve omitted words that students filled in by choosing the best-fit word from among the provided options. In this technical report, we describe the process of creating, reviewing, and pilot testing the maze measures.…

  10. Non-linear hydrotectonic phenomena: Part I - fluid flow in open fractures under dynamical stress loading

    SciTech Connect

    Archambeau, C.B.

    1994-01-01

    A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself.

  11. Filtered Rayleigh scattering diagnostic for multi-parameter thermal-fluids measurements : LDRD final report.

    SciTech Connect

    Beresh, Steven Jay; Grasser, Thomas W.; Kearney, Sean Patrick; Schefer, Robert W.

    2004-01-01

    Simulation-based life-cycle-engineering and the ASCI program have resulted in models of unprecedented size and fidelity. The validation of these models requires high-resolution, multi-parameter diagnostics. Within the thermal-fluids disciplines, the need for detailed, high-fidelity measurements exceeds the limits of current engineering sciences capabilities and severely tests the state of the art. The focus of this LDRD is the development and application of filtered Rayleigh scattering (FRS) for high-resolution, nonintrusive measurement of gas-phase velocity and temperature. With FRS, the flow is laser-illuminated and Rayleigh scattering from naturally occurring sources is detected through a molecular filter. The filtered transmission may be interpreted to yield point or planar measurements of three-component velocities and/or thermodynamic state. Different experimental configurations may be employed to obtain compromises between spatial resolution, time resolution, and the quantity of simultaneously measured flow variables. In this report, we present the results of a three-year LDRD-funded effort to develop FRS combustion thermometry and Aerosciences velocity measurement systems. The working principles and details of our FRS opto-electronic system are presented in detail. For combustion thermometry we present 2-D, spatially correlated FRS results from nonsooting premixed and diffusion flames and from a sooting premixed flame. The FRS-measured temperatures are accurate to within {+-}50 K (3%) in a premixed CH4-air flame and within {+-}100 K for a vortex-strained diluted CH4-air diffusion flame where the FRS technique is severely tested by large variation in scattering cross section. In the diffusion flame work, FRS has been combined with Raman imaging of the CH4 fuel molecule to correct for the local light scattering properties of the combustion gases. To our knowledge, this is the first extension of FRS to nonpremixed combustion and the first use of joint FRS

  12. New off-line aircraft instrumentation for non-methane hydrocarbon measurements.

    PubMed

    Bechara, Joelle; Borbon, Agnès; Jambert, Corinne; Perros, Pascal E

    2008-11-01

    New off-line instrumentation was developed to implement measurements of non-methane hydrocarbons (NMHC) on (French) research aircraft. NMHC are collected on multisorbent tubes by AMOVOC (Airborne Measurements Of Volatile Organic Compounds), a new automatic sampler. AMOVOC is a versatile and portable sampler targeting a wide range of NMHC at high frequency (sampling time of 10 min). Multisorbent tubes are analyzed on the ground by short-path thermal desorption coupled with gas chromatography and mass spectrometry. The development and optimization of both NMHC sampling and analysis are reported here. On the one hand, the paper points out technical choices that were made according to aircraft constraints and avoiding sample loss or contamination. On the other hand, it describes analytical optimization, tube storage stability, and moisture removal. The method shows high selectivity, sensitivity (limit of detection less than 10 ppt) and precision (less than 24%). Finally, NMHC data collected on French aircraft during the African Monsoon Multidisciplinary Analysis campaign are reported for the first time. The results highlight instrumentation validity and protocol efficiency for NMHC measurements in the lower and upper troposphere.

  13. A study of cantilever-free instrumentation for nanoscale magnetic measurements

    NASA Astrophysics Data System (ADS)

    Altemus, Bruce Adair

    The evolution of the Atomic Force Microscope (AFM) into the Magnetic Force Microscope (MFM) and Magnetic Resonance Force Microscope (MRFM) has had a substantial impact on the characterization of nanoscale phenomena. Detection of 10-17 Newtons per root Hertz has occurred with use of an ultra-sensitive cantilever along with optical interferometry methods within these geometries. The sensitivity of these platforms is dependent on the characteristics of the cantilever, where increased length and a low Young's modulus increase the force sensitivity (meters/newtons). Using IC fabrication techniques, the realization of generating cantilevers with this sensitivity is feasible, but stress compensation layers are required to prevent the free end from curling. Aside from the difficultly in fabrication, the cantilever based approach has one fixed spring constant yielding a finite detectable magnetic force range. An alternative approach incorporating the magnetic levitation of a magnet with an integrated reflector, known as the birdie, has been investigated. The goals of the cantilever-free instrumentation are two fold: (1) To replace the traditional cantilever with a magnetically levitated birdie (which will be scaled down to investigate nanoscale phenomena) through the creation of a virtual cantilever; (2) Investigate the detectable magnetic force range (tunability) of the virtual cantilever. The first 1-D milli-levitation platform has been fabricated and its preliminary characterization has been performed, showing a minimum detectable force in the nano-Newton range with a 10X tunability in spring constant. This high degree of force sensitivity and tunability confirms the design and enables the use for magnetic sample investigation. To further increase the utility of the cantilever-free approach, the birdie has been magnetically levitated in 3D by control circuitry that has been developed and characterized. The magnetic behavior of the custom designed X, Y and Z coil sets

  14. Laser Absorption spectrometer instrument for tomographic 2D-measurement of climate gas emission from soils

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2014-05-01

    One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so

  15. Is the Scale for Measuring Motivational Interviewing Skills a valid and reliable instrument for measuring the primary care professionals motivational skills?: EVEM study protocol

    PubMed Central

    2012-01-01

    Background Lifestyle is one of the main determinants of people’s health. It is essential to find the most effective prevention strategies to be used to encourage behavioral changes in their patients. Many theories are available that explain change or adherence to specific health behaviors in subjects. In this sense the named Motivational Interviewing has increasingly gained relevance. Few well-validated instruments are available for measuring doctors’ communication skills, and more specifically the Motivational Interviewing. Methods/Design The hypothesis of this study is that the Scale for Measuring Motivational Interviewing Skills (EVEM questionnaire) is a valid and reliable instrument for measuring the primary care professionals skills to get behavior change in patients. To test the hypothesis we have designed a prospective, observational, multi-center study to validate a measuring instrument. –Scope: Thirty-two primary care centers in Spain. -Sampling and Size: a) face and consensual validity: A group composed of 15 experts in Motivational Interviewing. b) Assessment of the psychometric properties of the scale; 50 physician- patient encounters will be videoed; a total of 162 interviews will be conducted with six standardized patients, and another 200 interviews will be conducted with 50 real patients (n=362). Four physicians will be specially trained to assess 30 interviews randomly selected to test the scale reproducibility. -Measurements for to test the hypothesis: a) Face validity: development of a draft questionnaire based on a theoretical model, by using Delphi-type methodology with experts. b) Scale psychometric properties: intraobservers will evaluate video recorded interviews: content-scalability validity (Exploratory Factor Analysis), internal consistency (Cronbach alpha), intra-/inter-observer reliability (Kappa index, intraclass correlation coefficient, Bland & Altman methodology), generalizability, construct validity and sensitivity to change

  16. Foundations of measurement and instrumentation

    NASA Technical Reports Server (NTRS)

    Warshawsky, Isidore

    1990-01-01

    The user of instrumentation has provided an understanding of the factors that influence instrument performance, selection, and application, and of the methods of interpreting and presenting the results of measurements. Such understanding is prerequisite to the successful attainment of the best compromise among reliability, accuracy, speed, cost, and importance of the measurement operation in achieving the ultimate goal of a project. Some subjects covered are dimensions; units; sources of measurement error; methods of describing and estimating accuracy; deduction and presentation of results through empirical equations, including the method of least squares; experimental and analytical methods of determining the static and dynamic behavior of instrumentation systems, including the use of analogs.

  17. Development of optical near-infrared spectroscopy instruments for human skin sebum measurement

    NASA Astrophysics Data System (ADS)

    Msabbri, A. R.; Mohamad, M.; MatJafri, M. Z.; Omar, A. F.

    2014-05-01

    There are many techniques and instruments that are currently available to give better results for measuring the quality of human skin. In this study, two non-invasive spectroscopy instruments have been used namely NIRQuest spectrometer and ASD FieldSpec® 3 Spectroradiometer. Both of these spectroscopy instruments were used to find the correlation technique with the commercial instruments (DermaLab® USB Sebum Module). Initially an experiment was conducted to find intensities peak of the absorption of oleic acid as a part of sebum composition. From the spectra peak of the absorbance, the wavelength will be determined. Next step was to measure the reflectance of human skin sebum by using two spectroscopic instruments. The analysis will carry on at the wavelength that have been chosen from the previous study and also from the wavelength of the fatty acid to find the best wavelength that contribute in sebum composition. From several analyses, the wavelengths that contribute in sebum were 1208, 1414, 1726, and 1758 nm that obtained the value of R2 0.8444 for NIRQuest Spectrometer and 0.8532 for ASD FieldSpec® 3 Spectroradiometer. For future research this non- invasive techniques can be used in dermatology field for the use of various skin analysis. Besides that, the less wavelength used is an advantage to develop instruments with less amount of wavelength sensor. It can reduce the cost of development.

  18. On the use of refractive-index-matched hydrogel for fluid velocity measurement within and around geometrically complex solid obstructions

    NASA Astrophysics Data System (ADS)

    Weitzman, Joel S.; Samuel, Lianna C.; Craig, Anna E.; Zeller, Robert B.; Monismith, Stephen G.; Koseff, Jeffrey R.

    2014-12-01

    Laboratory-based particle image velocimetry (PIV) was used to measure current-driven hydrodynamics within and around a collection of complex obstacles. These obstacles were fabricated using a specialty superabsorbent hydrogel produced through the free-radical copolymerization of sodium acrylate and acrylamide. The optical properties of this gel were found to be nearly identical to those of liquid water. Because of refractive index matching (RIM) of both the fluid and solid media, PIV laser light sheets passed through the obstructions without significant degradation or modification. As a result, all tracer particles suspended in the flow were uniformly illuminated, regardless of their position or proximity relative to individual obstacle features. PIV light sheets were also successfully imaged through the hydrogel, enabling accurate velocity measurement in regions that would otherwise be optically inaccessible. These outcomes were reached without reliance on unconventional fluids or specialized flow facilities. For many experimenters interested in fluid-solid interactions, hydrogel-based RIM may thus be less costly and more adaptable than methods that rely on the existing suite of techniques.

  19. Estimation of Fluid Properties and Phase Equilibria.

    ERIC Educational Resources Information Center

    Herskowitz, M.

    1985-01-01

    Describes a course (given to junior/senior students with strong background in thermodynamics and transport phenomena) that covers the theoretical and practical aspects of properties estimation. An outline for the course is included. (JN)

  20. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.

    PubMed

    Throckmorton, Amy L; Untaroiu, Alexandrina; Lim, D Scott; Wood, Houston G; Allaire, Paul E

    2007-05-01

    The latest generation of artificial blood pumps incorporates the use of magnetic bearings to levitate the rotating component of the pump, the impeller. A magnetic suspension prevents the rotating impeller from contacting the internal surfaces of the pump and reduces regions of stagnant and high shear flow that surround fluid or mechanical bearings. Applying this third-generation technology, the Virginia Artificial Heart Institute has developed a ventricular assist device (VAD) to support infants and children. In consideration of the suspension design, the axial and radial fluid forces exerted on the rotor of the pediatric VAD were estimated using computational fluid dynamics (CFD) such that fluid perturbations would be counterbalanced. In addition, a prototype was built for experimental measurements of the axial fluid forces and estimations of the radial fluid forces during operation using a blood analog mixture. The axial fluid forces for a centered impeller position were found to range from 0.5 +/- 0.01 to 1 +/- 0.02 N in magnitude for 0.5 +/- 0.095 to 3.5 +/- 0.164 Lpm over rotational speeds of 6110 +/- 0.39 to 8030 +/- 0.57% rpm. The CFD predictions for the axial forces deviated from the experimental data by approximately 8.5% with a maximum difference of 18% at higher flow rates. Similarly for the off-centered impeller conditions, the maximum radial fluid force along the y-axis was found to be -0.57 +/- 0.17 N. The maximum cross-coupling force in the x direction was found to be larger with a maximum value of 0.74 +/- 0.22 N. This resulted in a 25-35% overestimate of the radial fluid force as compared to the CFD predictions; this overestimation will lead to a far more robust magnetic suspension design. The axial and radial forces estimated from the computational results are well within a range over which a compact magnetic suspension can compensate for flow perturbations. This study also serves as an effective and novel design methodology for blood pump

  1. An Instrument for In Situ Measuring the Volume Scattering Function of Water: Design, Calibration and Primary Experiments

    PubMed Central

    Li, Cai; Cao, Wenxi; Yu, Jing; Ke, Tiancun; Lu, Guixin; Yang, Yuezhong; Guo, Chaoying

    2012-01-01

    The optical volume scattering function (VSF) of seawater is a fundamental property used in the calculation of radiative transfer for applications in the study of the upper-ocean heat balance, the photosynthetic productivity of the ocean, and the chemical transformation of photoreactive compounds. A new instrument to simultaneously measure the VSF in seven directions between 20° to 160°, the attenuation coefficient, and the depth of water is presented. The instrument is self-contained and can be automatically controlled by the depth under water. The self-contained data can be easily downloaded by an ultra-short-wave communication system. A calibration test was performed in the laboratory based on precise estimation of the scattering volume and optical radiometric calibration of the detectors. The measurement error of the VSF measurement instrument has been estimated in the laboratory based on the Mie theory, and the average error is less than 12%. The instrument was used to measure and analyze the variation characteristics of the VSF with angle, depth and water quality in Daya Bay for the first time. From these in situ data, we have found that the phase functions proposed by Fournier-Forand, measured by Petzold in San Diego Harbor and Sokolov in Black Sea do not fit with our measurements in Daya. These discrepancies could manly due to high proportion of suspended calcium carbonate mineral-like particles with high refractive index in Daya Bay. PMID:22666043

  2. Development and application of a portable manual non-contact-type goniometric instrument for measuring human anatomical angular parameters.

    PubMed

    Susato, Shin-ichi

    2013-02-01

    Several manual contact-type goniometric instruments have previously been developed to measure joint range of motion (ROM) during physical-therapy evaluation. These include the universal goniometer and the gravity-dependent goniometer, or inclinometer, which are used to measure the ROM angle of a subject in a fully erect posture. Here, we developed a manual non-contact-type portable goniometric instrument for the measurement of anatomical angular parameters based on the principle of spot irradiation by using laser markers. The accuracy of the developed instrument was tested and its performance was compared with that of a contact-type instrument by using a skeletal model (14 static angle assessments), a free posture manikin (18 static angle assessments), and healthy human bodies (5 males and 5 females; 11 dynamic angle assessments). Measurement errors were examined also. When taking the measurements, a visual landmark-detection method was used in place of the conventional palpation method, which is inappropriate for a non-contact measuring system. The instrument developed here is applicable for practical non-contact goniometry and ROM measurements.

  3. A Practitioner's Instrument for Measuring Secondary Mathematics Teachers' Beliefs Surrounding Learner-Centered Classroom Practice.

    PubMed

    Lischka, Alyson E; Garner, Mary

    2016-01-01

    In this paper we present the development and validation of a Mathematics Teaching Pedagogical and Discourse Beliefs Instrument (MTPDBI), a 20 item partial-credit survey designed and analyzed using Rasch measurement theory. Items on the MTPDBI address beliefs about the nature of mathematics, teaching and learning mathematics, and classroom discourse practices. A Rasch partial credit model (Masters, 1982) was estimated from the pilot study data. Results show that item separation reliability is .96 and person separation reliability is .71. Other analyses indicate the instrument is a viable measure of secondary teachers' beliefs about reform-oriented mathematics teaching and learning. This instrument is proposed as a useful measure of teacher beliefs for those working with pre-service and in-service teacher development.

  4. A new model for the determination of fluid status and body composition from bioimpedance measurements.

    PubMed

    Kraemer, M

    2006-09-01

    In patients with end stage renal failure, control of the fluid status of the body is lost and fluid accumulates continuously. By dialysis therapy, excess fluid can be removed, but there are no reliable methods to establish the amount of excess fluid to be removed. Severe and even lethal complications may be the consequence of longer term deviations from a normal fluid status in dialysis patients, but also in other patient groups. Therefore, a large medical need exists for a precise and pragmatic method to determine fluid status. Bioimpedance measurement, today mainly used for nutrition status assessment, is regarded as an interesting candidate method for fluid status determination. This paper presents a four-compartment model of the human body, developed to derive information on fluid status from extra- and intracellular volumes measured by bioimpedance spectroscopy. The model allows us to determine weights of each of four compartments (overhydration, fat, muscle and remaining 'basic' components) by analyzing extra- and intracellular water volumes in different tissues of the body. Thereby fluid status (overhydration volume, normohydrated weight of the patient) as well as nutrition and fitness status (lean body, fat and muscle mass) can be determined quantitatively from a single measurement. A preliminary evaluation of the performance of a system consisting of a bioimpedance spectrum analyzer and the four-compartment model is also provided.

  5. Fluid permeability measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  6. Determination of properties of fluids for solar-cooling applications. Literature survey

    SciTech Connect

    Podoll, R.T.

    1981-02-01

    A detailed literature search of the available thermodynamic data of proposed refrigerant/absorbent pairs and measurement of those data that are unmeasured or unreliable are reported. The data to be obtained for the pure fluids included: the critical temperature, pressure and volume; the vapor pressure curve; the latent heat of vaporization at the normal boiling point; the freezing point; the specific heat of the liquid and vapor; and the specific volumes of the saturated liquids and vapors. For the fluid mixtures, the data included the dew point and bubble point at four specified pressures plus the heats of mixing and specific heat at several solution compositions. Pure fluids surveyed included: ammonia, methylamine, ethylamine, chlorodifluoromethane (R-22), fluorodichloromethane (R-21), ethylene glycol, 1,4-Butanediol, diethylene glycol dimethyl ether (DGDE), N,N-dimethylacetamide (DMA), N,N-dimethylhexanamide (DMH), N,N-dimethyldecanamide (DMD). Binary fluid mixtures surveyed included: ammonia/ethylene glycol; ammonia/1,4-butanediol; methylamine/ethylene glycol; methylamine/1,4-butanediol; ethylamine/ethylene glycol; ethylamine/1,4-butanediol; and R-22/ DGDE. (LEW)

  7. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    NASA Astrophysics Data System (ADS)

    Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

  8. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    SciTech Connect

    Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, Doug W.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

  9. In vitro digestive fluid extraction as a measure of the bioavailability of sediment-associated polycyclic aromatic hydrocarbons: Sources of variation and implications for partitioning models

    SciTech Connect

    Weston, D.P.; Mayer, L.M.

    1998-05-01

    In vitro extraction of contaminated sediments using the digestive fluid of a deposit-feeding polychaete has recently been proposed to study contaminant bioaccumulation mechanisms and perhaps to better quantify the bioavailable contaminant fraction. This approach was evaluated using digestive fluid from the polychaete Arenicola brasiliensis and six marine sediments containing both spiked radiolabeled polycyclic aromatic hydrocarbons (PAHs) and in situ-contaminated unlabeled PAHs. The proportion of total contaminant extracted by digestive fluid from each sediment varied from 22 to 71% and 13 to 52%, for phenanthrene and benzo[a]pyrene, respectively. The proportions of contaminant solubilized were inversely correlated with the sediments` organic carbon content. The extent of PAH solubilization among sediments by A. brasiliensis digestive fluid was highly correlated with that of digestive fluid from the echiuran Urechis caupo and appears to be a consequence of surfactant properties of the fluids rather than of their enzymatic activity. The proportion of PAHs solubilized in vitro was similar to in vivo measurements of solubilization for contaminant exposures lasting about 24 h. However, with continued exposure, in vivo PAH concentrations in the digestive fluid increased fivefold, suggesting that digestive fluid is retained in the gut longer than sediment and thus accumulates PAHs through sequential digestion of many gut volumes. This phenomenon may enhance contaminant fugacity in the gut and increase the potential for bioaccumulation or toxicity.

  10. Interferometric 30 m bench for calibrations of 1D scales and optical distance measuring instruments

    NASA Astrophysics Data System (ADS)

    Unkuri, J.; Rantanen, A.; Manninen, J.; Esala, V.-P.; Lassila, A.

    2012-09-01

    During construction of a new metrology building for MIKES, a 30 m interferometric bench was designed. The objective was to implement a straight, stable, adjustable and multifunctional 30 m measuring bench for calibrations. Special attention was paid to eliminating the effects of thermal expansion and inevitable concrete shrinkage. The linear guide, situated on top of a monolithic concrete beam, comprises two parallel round shafts with adjustable fixtures every 1 m. A carriage is moved along the rail and its position is followed by a reference interferometer. Depending on the measurement task, one or two retro-reflectors are fixed on the carriage. A microscope with a CCD camera and a monitor can be used to detect line mark positions on different line standards. When calibrating optical distance measuring instruments, various targets can be fixed to the carriage. For the most accurate measurements an online Abbe-error correction based on simultaneous carriage pitch measurement by a separate laser interferometer is applied. The bench is used for calibrations of machinist scales, tapes, circometers, electronic distance meters, total stations and laser trackers. The estimated expanded uncertainty for 30 m displacement for highest accuracy calibrations is 2.6 µm.

  11. Instruments to measure behavioural and psychological symptoms of dementia.

    PubMed

    van der Linde, Rianne M; Stephan, Blossom C M; Dening, Tom; Brayne, Carol

    2014-03-01

    Reliable and valid measurement of behavioural and psychological symptoms of dementia (BPSD) is important for research and clinical practice. Here we provide an overview of the different instruments and discuss issues involved in the choice of the most appropriate instrument to measure BPSD in research. A list of BPSD instruments was generated. For each instrument Pubmed and SCOPUS were searched for articles that reported on their use or quality. Eighty-three instruments that are used to measure BPSD were identified. Instruments differ in length and detail, whether the interview is with participants, informants or by observation, the target sample and the time frames for use. Reliability and validity is generally good, but reported in few independent samples. When choosing a BPSD instrument for research the research question should be carefully scrutinised and the symptoms of interest, population, quality, detail, time frame and practical issues should be considered.

  12. Strategies for Successfully Teaching Students with ADD or ADHD in Instrumental Lessons

    ERIC Educational Resources Information Center

    Melago, Kathleen A.

    2014-01-01

    Teachers can easily encounter students with Attention Deficit Disorder (ADD) or Attention Deficit Hyperactivity Disorder (ADHD) in the instrumental lesson setting. Applicable to instrumental lesson settings in the public or private schools, private studios, or college studios, this article focuses on specific strategies ranging from the…

  13. An instrument for the direct measurement of electron temperature in the ionosphere

    NASA Astrophysics Data System (ADS)

    Markov, V.; Genov, V.; Bliznakov, K.

    An instrument based on a modified Langmuir-probe method is described which is used to measure ratios of the electron currents of two identical probes in the electron-deceleration region of the volt-ampere characteristics. The instrument makes it possible to perform precise measurements of temperature with a relatively simple processing method. A block diagram of the instrument is presented.

  14. An Instrument for the Simultaneous Measurement of Velocity, Temperature and Density in Unseeded Air Flows.

    DTIC Science & Technology

    1989-01-31

    condensed U phases in the form of liquid droplets or solid particulates. The thermodynamical data base is taken from the JANAF tables and is...independent thermodynamic properties of the state at which the equilibrium is sought il (e.g. temperature and pressure). The calculation of the equilibrium...and Measurement Techriques for Aeronautical Aplication &, AIAA-88- 4679-CP, Atlanta, GA,1988. 3. G.Laufer, Development of an Integrated SysteM for

  15. Development of an Instrument for Measuring Cognitive Conflict in Secondary-Level Science Classes.

    ERIC Educational Resources Information Center

    Lee, Gyoungho; Kwon, Jaesool; Park, Sang-Suk; Kim, Jung-Whan; Kwon, Hyeok-Gu; Park, Hac-Kyoo

    2003-01-01

    Develops an instrument for measuring secondary students' cognitive conflict levels as they learn science. Indicates that cognitive conflict consists of four constructs: (1) recognition of an anomalous situation; (2) interest; (3) anxiety; and (4) cognitive reappraisal of the conflict situation. Discusses implications for instruction and…

  16. Beyond Instrumentation: Redesigning Measures and Methods for Evaluating the Graduate College Experience

    ERIC Educational Resources Information Center

    Hardré, Patricia L.; Hackett, Shannon

    2015-01-01

    This manuscript chronicles the process and products of a redesign for evaluation of the graduate college experience (GCE) which was initiated by a university graduate college, based on its observed need to reconsider and update its measures and methods for assessing graduate students' experiences. We examined the existing instrumentation and…

  17. Estimation of Reliability for Multiple-Component Measuring Instruments in Hierarchical Designs

    ERIC Educational Resources Information Center

    Raykov, Tenko; du Toit, Stephen H. C.

    2005-01-01

    A method for estimation of reliability for multiple-component measuring instruments with clustered data is outlined. The approach is applicable with hierarchical designs where individuals are nested within higher order units and exhibit possibly related performance on components of a scale of interest. The procedure is developed within the…

  18. Near-critical point phenomena in fluids (19-IML-1)

    NASA Technical Reports Server (NTRS)

    Beysens, D.

    1992-01-01

    Understanding the effects of gravity is essential if the behavior of fluids is to be predicted in spacecraft and orbital stations, and, more generally, to give a better understanding of the hydrodynamics in these systems. An understanding is sought of the behavior of fluids in space. What should emerge from the International Microgravity Lab (IML-1) mission is a better understanding of the kinetics of growth in off-critical conditions, in both liquid mixtures and pure fluids. This complex phenomenon is the object of intensive study in physics and materials sciences area. It is also expected that the IML-1 flight will procure key results to provide a better understanding of how a pure fluid can be homogenized without gravity induced convections, and to what extent the 'Piston Effect' is effective in thermalizing the compressible fluids.

  19. Mars Exploration Rovers as Virtual Instruments for Determination of Terrain Roughness and Physical Properties

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Lindemann, R.; Matijevic, J.; Richter, L.; Sullivan, R.; Haldemann, A.; Anderson, R.; Snider, N.

    2003-01-01

    The two 2003 Mars Exploration Rovers (MERs), in combination with the Athena Payload, will be used as virtual instrument systems to infer terrain properties during traverses, in addition to using the rover wheels to excavate trenches, exposing subsurface materials for remote and in-situ observations. The MERs are being modeled using finite element-based rover system transfer functions that utilize the distribution of masses associated with the vehicle, together with suspension and wheel dynamics, to infer surface roughness and mechanical properties from traverse time series data containing vehicle yaw, pitch, roll, encoder counts, and motor currents. These analyses will be supplemented with imaging and other Athena Payload measurements. The approach is being validated using Sojourner data, the FIDO rover, and experiments with MER testbed vehicles. In addition to conducting traverse science and associated analyses, trenches will be excavated by the MERs to depths of approximately 10-20 cm by locking all but one of the front wheels and rotating that wheel backwards so that the excavated material is piled up on the side of the trench away from the vehicle. Soil cohesion and angle of internal friction will be determined from the trench telemetry data. Emission spectroscopy and in-situ observations will be made using the Athena payload before and after imaging. Trenching and observational protocols have been developed using Sojourner results; data from the FIDO rover, including trenches dug into sand, mud cracks, and weakly indurated bedrock; and experiments with MER testbed rovers. Particular attention will be focused on Mini-TES measurements designed to determine the abundance and state of subsurface water (e.g. hydrated, in zeolites, residual pore ice?) predicted to be present from Odyssey GRS/NS/HEND data.

  20. Measurement Properties of Indirect Assessment Methods for Functional Behavioral Assessment: A Review of Research

    ERIC Educational Resources Information Center

    Floyd, Randy G.; Phaneuf, Robin L.; Wilczynski, Susan M.

    2005-01-01

    Indirect assessment instruments used during functional behavioral assessment, such as rating scales, interviews, and self-report instruments, represent the least intrusive techniques for acquiring information about the function of problem behavior. This article provides criteria for examining the measurement properties of these instruments…

  1. Evaluation of performance measurement instruments on their use for food quality systems.

    PubMed

    van der Spiegel, M; Luning, P A; Ziggers, G W; Jongen, W M F

    2004-01-01

    Due to regular challenges of food safety, consumers put high demands on the performance of food quality systems. To deal with these requirements, food manufacturers need effective quality management. Performance of food quality systems can be partly realized by quality assurance systems, such as HACCP (hazard analysis and critical control point), ISO (international organization for standardization), and BRC (british retail consortium). However, it is still unknown to what extent these systems factually contribute to the realization of quality in the wider sense. Therefore, an instrument is needed that measures the effectiveness of quality systems. This article describes the evaluation of instruments on their suitability for the development of a diagnostic instrument that measures the effectiveness of food quality systems. For this evaluation, perspectives of quality, typical characteristics of agrifood production, quantification, and performance measurement of quality management were studied. Instruments that measure the performance of both quality management and production quality were identified and evaluated on the basis of the defined criteria. The criteria for the performance of production quality were 6 quality dimensions, i.e., product quality, availability, costs,flexibility, reliability, and service. The criteria for performance of quality management were analyses of the relationships between quality management, context of the organization, and production quality, a normative procedure, validation, applicability, classification, and a process approach. Finally, for the final instrument, the evaluation resulted in an integrated approach i.e., a technomanagerial approach, and 3 suitable instruments i.e., Wageningen Management Approach, Extended Quality Triangle, and the quality concept of Noori and Radford.

  2. Instrumentation for measuring and recording streamflow data at river-control structures

    USGS Publications Warehouse

    ,

    1983-01-01

    Instrumentation was developed in the mid to late 60 's to resolve the dilemma of intolerably high percentages of missing streamflow records on certain large and highly controlled streams in industrialized parts of the United States. Analysis of the field situation at specific problem sites quickly suggested that conventional stream gaging techniques should be supplanted by new instruments, designed to measure key hydraulic data at the nearest stream control structures. The key data were found universally to include some combination of a length measurement to specify the vertical height of a gate opening in a dam; measurement of pressure head differential in a turbine; a count of lockages; and precise measurement of time, to give one master reference scale to which all measurements could be keyed. The instruments designed to collect such key data are the shaft position digitizer, the shaft output follower, the STACOM manometer, the lock pressure switch, and the digital data collection console. Although their design was prompted by the need to collect data at river control structures their potential for field use is not that restrictive. Several of these instruments have already found widespread use in the hydrologic data collection program at large. In the 12-1/2 yr period from June 1968 to December 1980 nineteen different river control structures were instrumented. The general experience to date has been a marked improvement in completeness of record, with the average performance somewhere in the 80 percentile range. Performance percentiles at individual sites have ranged from the mid 90 's to about 70. Maintenance records show the instruments to be virtually trouble free, except for the unpredictable acts of nature and man. (Author 's abstract)

  3. A review of general pain measurement tools and instruments for consideration of use in COPD clinical practice

    PubMed Central

    Johnson, Alisha Maree; Smith, Sheree MS

    2017-01-01

    Background The experience of pain can have a significant impact on the everyday life of individuals including those with COPD. Recently, pain has emerged as an area in COPD research. When considering pain measurement in COPD studies, it is important to consider the validity, reliability, responsiveness and interpretability of instruments and tools. This review sought to assess these domains of general pain instruments and tools using the consensus-based standards for the selection of health measurement instruments (COSMIN). Methods Three separate analyses were used to assess general pain measurement tools and instruments. These comprise COSMIN’s, 1) methodological quality assessment with dichotomous responses, 2) the 4-point rating scale, and 3) overall quality criteria using an assessment scale for clinimetric properties by Terwee. Results Overall Pain Sensitivity Questionnaire (PSQ) was found to have the highest rating in all domains of validity, reliability, responsiveness and interpretability. In the first analysis, PSQ and Geriatric Pain Measure (GPM) scored highest in four of the six domains. In the second analysis, using the 4-point rating, the PSQ scored highest in three of four domains. In the third analysis, the GPM scored the highest in all four domains. Overall the PSQ, GPM and Defense and Veterans Pain Rating Scale scores were consistently high in the three separate analyses in this review. Conclusion This review found variability in the domains of validity, reliability, responsiveness and interpretability in general pain tools and instruments. The PSQ was found to be the most valid and reliable general pain measurement instrument for adult populations. PMID:28360515

  4. Mercury-free PVT apparatus for thermophysical property analyses of hydrocarbon reservoir fluids. Final report, August 16, 1990--July 31, 1992

    SciTech Connect

    Lansangan, R.M.; Lievois, J.S.

    1992-08-31

    Typical reservoir fluid analyses of complex, multicomponent hydrocarbon mixtures include the volumetric properties, isothermal compressibility, thermal expansivity, equilibrium ratios, saturation pressure, viscosities, etc. These parameters are collectively referred to as PVT properties, an acronym for the primary state variables; pressure, volume, and temperature. The reservoir engineer incorporates this information together with the porous media description in performing material balance calculations. These calculations lead to the determination (estimation) of the initial hydrocarbon in-place, the future reservoir performance, the optimal production scheme, and the ultimate hydrocarbon recovery. About four years ago, Ruska Instrument Corporation embarked on a project to develop an apparatus designed to measure PVT properties that operates free of mercury. The result of this endeavor is the 2370 Hg-Free PVT system which has been in the market for the last three years. The 2370 has evolved from the prototype unit to its present configuration which is described briefly in this report. The 2370 system, although developed as a system-engineered apparatus based on existing technology, has not been exempt from this burden-of-proof Namely, the performance of the apparatus under routine test conditions with real reservoir fluids. This report summarizes the results of the performance and applications testing of the 2370 Hg-Free PVT system. Density measurements were conducted on a pure fluid. The results were compared against literature values and the prediction of an equation of state. Routine reservoir fluid analyses were conducted with a black oil and a retrograde condensate gas mixtures. Limited comparison of the results were performed based on the same tests performed on a conventional mercury-based PVT apparatus. The results of these tests are included in this report.

  5. An Instrument for Real-Time Measurement of Solid Rocket Motor Insulation Erosion

    NASA Technical Reports Server (NTRS)

    McWhorter, B. B.

    1999-01-01

    An instrument (eroding potentionmeter) has been designed to measure real-time case wall and inhibitor insulation char depth within a rocket motor during firing. Thus measurement can be close to the real-time recession of the insulation surface. The eroding potentionmeter consists of two small (3 mils 9in diameter) twisted resistive wires that are polyimide insulated. The wire pair form an electrical circuit and will recede with the erosion of the rocket motor internal insulation. A constant current applied along the wires will detect the resistance change via a voltage drop across the wires as the wire pair recedes with the decomposition fo the insulation. The eroding potentionmeter, as presently designed, can be an effective tool for real time measurement of internal insulation recession of a solid rocket motor. This tool will provide a way to accurately measure inhibitor performance or to measure flight effects of insulation erosion on a flight test. The eroding potentiometer has been verified on a plasma torch test and two static tests of a small solid rocket motor. There are some irregularities in the measured date, but the data remains useful in determining the real-time performance of internal insulation during a motor firing.

  6. The Quantitative Measurement of Organizational Culture in Health Care: A Review of the Available Instruments

    PubMed Central

    Scott, Tim; Mannion, Russell; Davies, Huw; Marshall, Martin

    2003-01-01

    Objective To review the quantitative instruments available to health service researchers who want to measure culture and cultural change. Data Sources A literature search was conducted using Medline, Cinahl, Helmis, Psychlit, Dhdata, and the database of the King's Fund in London for articles published up to June 2001, using the phrase “organizational culture.” In addition, all citations and the gray literature were reviewed and advice was sought from experts in the field to identify instruments not found on the electronic databases. The search focused on instruments used to quantify culture with a track record, or potential for use, in health care settings. Data Extraction For each instrument we examined the cultural dimensions addressed, the number of items for each questionnaire, the measurement scale adopted, examples of studies that had used the tool, the scientific properties of the instrument, and its strengths and limitations. Principal Findings Thirteen instruments were found that satisfied our inclusion criteria, of which nine have a track record in studies involving health care organizations. The instruments varied considerably in terms of their grounding in theory, format, length, scope, and scientific properties. Conclusions A range of instruments with differing characteristics are available to researchers interested in organizational culture, all of which have limitations in terms of their scope, ease of use, or scientific properties. The choice of instrument should be determined by how organizational culture is conceptualized by the research team, the purpose of the investigation, intended use of the results, and availability of resources. PMID:12822919

  7. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    NASA Technical Reports Server (NTRS)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  8. Review of Measurement Instruments and Procedures for Assessing Mobility Behaviors: Implications for Quantitative Measurement.

    ERIC Educational Resources Information Center

    Lehr, Donna H.

    The literature review identifies information regarding the emergence of mobility skills in infants and young handicapped children, including rolling, crawling, creeping, and walking. Sections discuss the following topics: assessment instruments relevant to mobility, the identification of developmental milestones in mobility, and a hierarchy of the…

  9. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  10. Ironless transducer for measuring the mechanical properties of porous materials

    NASA Astrophysics Data System (ADS)

    Doutres, Olivier; Dauchez, Nicolas; Genevaux, Jean-Michel; Lemarquand, Guy; Mezil, Sylvain

    2010-05-01

    This paper presents a measurement setup for determining the mechanical properties of porous materials at low and medium frequencies by extending toward higher frequencies the quasistatic method based on a compression test. Indeed, classical quasistatic methods generally neglect the inertia effect of the porous sample and the coupling between the surrounding fluid and the frame; they are restricted to low frequency range (<100 Hz) or specific sample shape. In the present method, the porous sample is placed in a cavity to avoid a lateral airflow. Then a specific electrodynamic ironless transducer is used to compress the sample. This highly linear transducer is used as actuator and sensor; the mechanical impedance of the porous sample is deduced from the measurement of the electrical impedance of the transducer. The loss factor and the Young's modulus of the porous material are estimated by inverse method based on the Biot's model. Experimental results obtained with a polymer foam show the validity of the method in comparison with quasistatic method. The frequency limit has been extended from 100 Hz to 500 Hz. The sensitivity of each input parameter is estimated in order to point out the limitations of the method.

  11. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1989-11-21

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

  12. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  13. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  14. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

  15. TOTAL: a rocket-borne instrument for high resolution measurements of neutral air turbulence during DYANA

    NASA Astrophysics Data System (ADS)

    Hillert, W.; Lübken, F.-J.; Lehmacher, G.

    1994-12-01

    An improved version of a rocket-borne instrument ('TOTAL'), optimized for high resolution measurements of relative density variations, was successfully employed during the DYANA campaign in winter 1990. Both the inertial-convective subrange and the viscous-diffusive subrange of turbulence were observed in the power spectra derived from density fluctuations. An extended spectral model which comprises both subranges has been used to analyse the data. In this paper we present altitude profiles of turbulent parameters, such as turbulent energy dissipation rates ɛ and turbulent diffusion coefficients K, which were derived from a total of eight successfully launched instruments at high (Andoya, 69°N) and middle (Biscarosse, 44°N) latitudes. The limitations of the measurement technique as well as instrumental errors are discussed. The results mainly show small values of ɛ and K throughout the whole campaign period. The turbopause was found at an altitude of 95 ± 3 km.

  16. Dualex: A New Instrument for Field Measurements of Epidermal Ultraviolet Absorbance by Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Goulas, Yves; Cerovic, Zoran G.; Cartelat, Aurélie; Moya, Ismaël

    2004-08-01

    Dualex (dual excitation) is a field-portable instrument, hereby described, for the assessment of polyphenolic compounds in leaves from the measurement of UV absorbance of the leaf epidermis by double excitation of chlorophyll fluorescence. The instrument takes advantage of a feedback loop that equalizes the fluorescence level induced by a reference red light to the UV-light-induced fluorescence level. This allows quick measurement from attached leaves even under field conditions. The use of light-emitting diodes and of a leaf-clip configuration makes Dualex a user-friendly instrument with potential applications in ecophysiological research, light climate analysis, agriculture, forestry, horticulture, pest management, selection of medicinal plants, and wherever accumulation of leaf polyphenolics is involved in plant responses to the environment.

  17. Instrument for the measurement and determination of chemical pulse column parameters

    DOEpatents

    Marchant, Norman J.; Morgan, John P.

    1990-01-01

    An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.

  18. The Development of a Valid and Reliable Instrument for Measuring Instructional Coaching Skills

    ERIC Educational Resources Information Center

    Howley, Aimee Anton; Dudek, Marged Howley; Rittenberg, Rebekah; Larson, William

    2014-01-01

    This research used data from educators and teacher candidates in Ohio (a state in the Midwestern United States) to produce a valid and reliable instrument for measuring instructional coaching skills. The research involved three pilot tests with large samples of respondents. Initial items came from the extant literature on instructional coaching,…

  19. Optical properties of mercury ion thruster exhausts and implications for science instruments

    NASA Technical Reports Server (NTRS)

    Monahan, K. M.; Goldstein, R.

    1974-01-01

    Emission from the exhaust plume of a 30 cm mercury ion thruster was measured from 160 to 600 nm as a function of axial and radial distance from the thruster discharge chamber. The spectrally dispersed absolute intensities were used to construct an empirical volume rate function. The function was integrated along a typical instrument field of view, and the resulting apparent brightness was compared with instrument sensitivities to evaluate the extent of optical interference. Most of the emitted radiation came from UV lines of excited mercury atoms and ions, with no observable continuum emission. The intensity levels degraded rapidly with distance from the thruster so that optical interference was negligible for fields of view not intercepting the beam axis. The operation of only one instrument, a zodiacal photopolarimeter, was considered incompatible with simultaneous thruster operation.

  20. Childhood adversity: a review of measurement instruments.

    PubMed

    Burgermeister, Diane

    2007-01-01

    Measurement instruments are needed to stimulate research on the long-term outcomes of childhood adversity. Therefore, the purpose of this review was to locate, describe, and assess instruments to measure retrospective perceptions of childhood adversity. An electronic search of instruments was conducted using a combination of keywords that included child maltreatment, child trauma, and childhood stressful events. Nine instruments were located and described according to format, definition of childhood adversity as measured by the instrument, characteristics of the sample used in development and testing, reliability and validity evidence, and feasibility for use. Six out of the nine instruments were suitable for investigators who require a comprehensive measure of childhood adversity. Corroboration with independent sources and use of randomized samples are needed to improve upon reports of validity.

  1. Thermopower Puck for Measurement of Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Vargas, Andres; Fukuda, Ryan; Soliz, Nicholas; Ho, Pei-Chun

    2014-03-01

    A thermopower puck was created in order to measure the thermoelectric power and thermal conductance of strongly correlated electron materials from 10K to 300K. The puck consists of a 2k Ω resistivity heater and 2 thermometers. The heater is connected to the top of the sample and applies heat until thermal equilibrium is reached. This creates a temperature gradient across the sample and is read by the 2 thermometers, one reading the hotter temperature and the other reading the colder temperature. The wire that is used as the thermal anchor for the high temperature thermometer, which is electrically isolated from thermometer, is also used as one of the leads to measure the thermal voltage produced across the sample. To calibrate the measurement probe, the thermoelectric power and thermal conductance of a nickel sample, which was purchased from Quantum Design, was measured. The data obtained qualitatively agrees with the literature data provided to us by Quantum Design. For future work, we will be using the measurement probe to investigate the thermodynamic properties of intermetallic compounds. Research at CSU-Fresno is supported by NSF DMR-1104544. Felipe Vargas is also supported by Undergraduate Research Grant at CSU Fresno.

  2. Rigorous bounds on aerosol optical properties from measurement and/or model constraints

    NASA Astrophysics Data System (ADS)

    McGraw, Robert; Fierce, Laura

    2016-04-01

    Sparse-particle aerosol models are an attractive alternative to sectional and modal methods for representation of complex, generally mixed particle populations. In the quadrature method of moments (QMOM) a small set of abscissas and weights, determined from distributional moments, provides the sparse set. Linear programming (LP) yields a generalization of the QMOM that is especially convenient for sparse particle selection. In this paper we use LP to obtain rigorous, nested upper and lower bounds to aerosol optical properties in terms of a prescribed Bayesian-like sequence of model or simulated measurement constraints. Examples of such constraints include remotely-sensed light extinction at different wavelengths, modeled particulate mass, etc. Successive reduction in bound separation with each added constraint provides a quantitative measure of its contextual information content. The present study is focused on univariate populations as a first step towards development of new simulation algorithms for tracking the physical and optical properties of multivariate particle populations.

  3. Measuring transient high temperature thermal phenomena in hostile environment

    SciTech Connect

    Brenden, B.B.; Hartman, J.S.; Reich, F.R.

    1980-01-01

    The design of equipment for measuring temperature and strain in a rapidly heated and pressurized cylinder of stainless steel is discussed. Simultaneous cinematography of the full circumference of the cylinder without interference with temperature and strain measurements is also illustrated. The integrated system uses a reflective chamber for the sample and requires careful consideration of the spectral energy distribution utilized by each instrument.

  4. Development of a surgical instrument for measuring forces applied to the ossicles of the middle ear.

    PubMed

    Sheedy, Michael; Bergin, Mike; Wylie, Grant; Ross, Peter; Dove, Richard; Bird, Phil

    2012-12-01

    Surgery of the middle ear is a delicate process that requires the surgeon to manipulate the ossicles, the smallest bones in the body. Excessive force applied to the ossicles can easily be transmitted through to the inner ear which may cause a permanent sensorineural hearing loss. An instrument was required to measure the forces applied to cadaveric temporal bone ossicles with the vision of measuring forces in vivo at a later stage. A feasibility study was conducted to investigate a method of measuring force and torque applied to the ossicles of the middle ear. Information from research papers was gathered to determine the expected amplitudes. The study looked at commercially available transducers as well as constructing an instrument using individual axis transducers coupled together. A prototype surgical instrument was constructed using the ATI industrial automation Nano17 six axis transducer. The Nano17 allows for the measurement of force and torque in the X, Y and Z axis to a resolution of 1/320 N. The use of the Nano17 enabled rapid development of the surgical instrument. It meets the requirements for its use on cadaveric models and has the potential to be a useful data collection tool in vivo.

  5. How students measure up: An assessment instrument for introductory computer science

    NASA Astrophysics Data System (ADS)

    Decker, Adrienne

    This dissertation presents an assessment instrument specifically designed for programming-first introductory sequences in computer science as given in Computing Curricula 2001: Computer Science Volume. The first-year computer science course has been the focus of many recent innovations and many recent debates in the computer science curriculum. There is significant disagreement as to effective methodology in the first year of computing, and there has been no shortage of ideas as to what predicts student success in the first year of the computing curriculum. However, most investigations into predictors of success lack an appropriately validated assessment instrument to support or refute their findings. This is presumably due to the fact that there are very few validated assessment instruments available for assessing student performance in the first year of computing instruction. The instrument presented here is not designed to test particular language constructs, but rather the underlying principles of the first year of computing instruction. It has been administered to students at the end of their first year of an introductory computer science curriculum. Data needed for analysis of the instrument for reliability and validity was collected and analyzed. Use of this instrument enables validated assessment of student progress at the end of their first year, and also enables the study of further innovations in the curriculum for the first year computer science courses.

  6. A short-pulse K(a)-band instrumentation radar for foliage attenuation measurements.

    PubMed

    Puranen, Mikko; Eskelinen, Pekka

    2008-10-01

    A portable K(a)-band instrumentation radar for foliage attenuation measurements has been designed. It uses direct dielectric resonator oscillator multiplier pulse modulation giving a half power pulse width of 17 ns. The dual conversion scalar receiver utilizes either a digital storage oscilloscope in envelope detection format or a special gated comparator arrangement providing 1 m resolution and associated led seven segment display for data analysis. The calibrated dynamic range is better than 37 dB with an equivalent noise floor of 0.005 dBsm at 25 m test range distance. First experiments indicate an effective beamwidth close to 1 degree. The total weight is below 5 kg and the unit can be mounted on a conventional photographic tripod. Power is supplied from a 12 V/6 A h sealed lead acid battery giving an operating time in excess of 10 h.

  7. Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.

    1981-01-01

    A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.

  8. Visual analogue thermometer: a valid and useful instrument for measuring pain in burned patients.

    PubMed

    Choinière, M; Auger, F A; Latarjet, J

    1994-06-01

    This study assessed the psychometric qualities of a new pain rating instrument--the visual analogue thermometer (VAT)--which was developed to measure pain in burned patients. The validity and utility of the VAT was assessed and compared with a conventional numeric (NUM) and adjective pain scale (ADJ) with a group of 103 burned patients and 51 nurses. Analyses of the results support the concurrent and construct validity of the VAT as a pain measure. Furthermore, the VAT gave more sensitive and precise pain measures than the ADJ and/or NUM scales. No major difference between the three scales emerged in the patients' preference. The same was true for the nurses' evaluation except for those who had more clinical experience with the VAT and who tended to prefer this scale for its accuracy and ease of utilization. The VAT appears to be a valid, sensitive and clinically useful tool to measure pain in burned patients. A systematic pain assessment procedure which can be easily implemented in burn care facilities is presented.

  9. Single-Crystal Sapphire High-Temperature Measurement Instrument for Coal Gasification

    NASA Astrophysics Data System (ADS)

    Zhang, Yibing; Pickrell, Gary; Qi, Bing; May, Russell G.; Wang, Anbo

    2003-09-01

    Based on the broadband polarimetric differential interferometry (BPDI) technology, a complete prototype optical sensor instrumentation system was designed and implemented for on-line reliable and accurate high temperature measurement in a slagging coal gasifier, which operates under high temperatures and extremely corrosive conditions. A wide dynamic measurement range from room temperature up to 1600 °C with a resolution better than 0.1 °C and high accuracy is achieved; long-term operating stability has also been tested.

  10. Psychometric Properties of a Screening Instrument for Domestic Violence in a Sample of Iranian Women

    PubMed Central

    Azadarmaki, Taghi; Kassani, Aziz; Menati, Rostam; Hassanzadeh, Jafar; Menati, Walieh

    2016-01-01

    Background Domestic violence against women is regarded as an important health problem among women and a serious concern in issues related to human rights. To date, a few screening tools for domestic violence exist for Iranian married women, but they assess only some of the domestic violence components. Objectives The present study aimed to design and determine the validity and reliability of a screening instrument for domestic violence in a sample of Iranian women. Materials and Methods The present study was a cross-sectional psychometric evaluation conducted on 350 married women in Ilam, Iran, in 2014. The samples were selected through multistage sampling and the main method was cluster sampling. A 20-item, self-administered questionnaire was validated by exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). An Eigen value > 1 and a loading factor > 0.3 for each component were considered as indices for extracting domestic violence components. Reliability was calculated by test-retest and Cronbach’s alpha. Also, the content validity index (CVI) and content validity ratio (CVR) were used to measure content validity. The data were analyzed using SPSS-13 and LISREL 8.8 software programs. Results The self-administered instrument was completed by 334 women. The CFA and EFA methods confirmed embedding items and the three-factor structure of the instrument including psychological, physical, and sexual violence, which explained 66% of the total variance of the domestic violence. The ICC and Cronbach’s alpha coefficients were > 0.7 for the components of the questionnaire. The test-retest also revealed strong correlations for each of the domestic violence components (r > 0.6). Conclusions The used instrument for measuring domestic violence had desirable validity and reliability and can be used as a suitable instrument in health and social researches in the local population. PMID:27331052

  11. An instrument for measuring bacterial penetration through fabrics used for barrier clothing.

    PubMed Central

    Ransjö, U.; Hambraeus, A.

    1979-01-01

    A new instrument has been designed to measure the penetration by rubbing of bacteria from cloth contaminated in the nursing of burn patients through fabrics designed for barrier garments. Most fabrics tested dry reduced the transfer of bacteria from the source cloth to about 10%, irrespective of the results of air filter tests, which agrees with mock nursing results. When the fabrics were tested against a wet surface, the transfer of bacteria rapidly reached 100% if the fabrics had a high wettability, but was slower for fabrics with a low wettability. Through closely woven waterproofed cotton, transfer was 5--25%, but increased three- to four-fold after ten launderings, in line with the water absorption. Transfer through plastic-laminated material was less than 1%. The results suggest that barrier garments should be made either of plastic or of recently waterproofed closely woven cotton at points of contact between nurse and patient where the clothes may be wetted by bacteria-containing wound secretions. Images Plate 1 PMID:376694

  12. An instrument for measuring bacterial penetration through fabrics used for barrier clothing.

    PubMed

    Ransjö, U; Hambraeus, A

    1979-06-01

    A new instrument has been designed to measure the penetration by rubbing of bacteria from cloth contaminated in the nursing of burn patients through fabrics designed for barrier garments. Most fabrics tested dry reduced the transfer of bacteria from the source cloth to about 10%, irrespective of the results of air filter tests, which agrees with mock nursing results. When the fabrics were tested against a wet surface, the transfer of bacteria rapidly reached 100% if the fabrics had a high wettability, but was slower for fabrics with a low wettability. Through closely woven waterproofed cotton, transfer was 5--25%, but increased three- to four-fold after ten launderings, in line with the water absorption. Transfer through plastic-laminated material was less than 1%. The results suggest that barrier garments should be made either of plastic or of recently waterproofed closely woven cotton at points of contact between nurse and patient where the clothes may be wetted by bacteria-containing wound secretions.

  13. Broadband optical mammography instrument for depth-resolved imaging and local dynamic measurements

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Nishanth; Kainerstorfer, Jana M.; Sassaroli, Angelo; Anderson, Pamela G.; Fantini, Sergio

    2016-02-01

    We present a continuous-wave instrument for non-invasive diffuse optical imaging of the breast in a parallel-plate transmission geometry. The instrument measures continuous spectra in the wavelength range 650-1000 nm, with an intensity noise level <1.5% and a spatial sampling rate of 5 points/cm in the x- and y-directions. We collect the optical transmission at four locations, one collinear and three offset with respect to the illumination optical fiber, to recover the depth of optical inhomogeneities in the tissue. We imaged a tissue-like, breast shaped, silicone phantom (6 cm thick) with two embedded absorbing structures: a black circle (1.7 cm in diameter) and a black stripe (3 mm wide), designed to mimic a tumor and a blood vessel, respectively. The use of a spatially multiplexed detection scheme allows for the generation of on-axis and off-axis projection images simultaneously, as opposed to requiring multiple scans, thus decreasing scan-time and motion artifacts. This technique localizes detected inhomogeneities in 3D and accurately assigns their depth to within 1 mm in the ideal conditions of otherwise homogeneous tissue-like phantoms. We also measured induced hemodynamic changes in the breast of a healthy human subject at a selected location (no scanning). We applied a cyclic, arterial blood pressure perturbation by alternating inflation (to a pressure of 200 mmHg) and deflation of a pneumatic cuff around the subject's thigh at a frequency of 0.05 Hz, and measured oscillations with amplitudes up to 1 μM and 0.2 μM in the tissue concentrations of oxyhemoglobin and deoxyhemoglobin, respectively. These hemodynamic oscillations provide information about the vascular structure and functional integrity in tissue, and may be used to assess healthy or abnormal perfusion in a clinical setting.

  14. Application of transport phenomena analysis technique to cerebrospinal fluid.

    PubMed

    Lam, C H; Hansen, E A; Hall, W A; Hubel, A

    2013-12-01

    The study of hydrocephalus and the modeling of cerebrospinal fluid flow have proceeded in the past using mathematical analysis that was very capable of prediction phenomenonologically but not well in physiologic parameters. In this paper, the basis of fluid dynamics at the physiologic state is explained using first established equations of transport phenomenon. Then, microscopic and molecular level techniques of modeling are described using porous media theory and chemical kinetic theory and then applied to cerebrospinal fluid (CSF) dynamics. Using techniques of transport analysis allows the field of cerebrospinal fluid dynamics to approach the level of sophistication of urine and blood transport. Concepts such as intracellular and intercellular pathways, compartmentalization, and tortuosity are associated with quantifiable parameters that are relevant to the anatomy and physiology of cerebrospinal fluid transport. The engineering field of transport phenomenon is rich and steeped in architectural, aeronautical, nautical, and more recently biological history. This paper summarizes and reviews the approaches that have been taken in the field of engineering and applies it to CSF flow.

  15. Instruments Measuring Blunted Affect in Schizophrenia: A Systematic Review

    PubMed Central

    Kilian, Sanja; Asmal, Laila; Goosen, Anneke; Chiliza, Bonginkosi; Phahladira, Lebogang; Emsley, Robin

    2015-01-01

    Blunted affect, also referred to as emotional blunting, is a prominent symptom of schizophrenia. Patients with blunted affect have difficulty in expressing their emotions. The work of Abrams and Taylor and their development of the Rating Scale for Emotional Blunting in the late 1970’s was an early indicator that blunted affect could indeed be assessed reliably. Since then, several new instruments assessing negative symptoms with subscales measuring blunted affect have been developed. In light of this, we aim to provide researchers and clinicians with a systematic review of the different instruments used to assess blunted affect by providing a comparison of the type, characteristics, administration and psychometric properties of these instruments. Studies reporting on the psychometric properties of instruments assessing blunted affect in patients with schizophrenia were included. Reviews and case studies were excluded. We reviewed 30 full-text articles and included 15 articles and 10 instruments in this systematic review. On average the instruments take 15–30 minutes to administer. We found that blunted affect items common across all instruments assess: gestures, facial expressions and vocal expressions. The CAINS Self-report Expression Subscale, had a low internal consistency score. This suggests that this sub-scale does not reliably assess patients’ self-reported blunted affect symptoms and is likely due to the nature of blunted affect. Instruments correlated minimally with instruments measuring positive symptoms and more importantly with depression suggesting that the instruments distinguish between seemingly similar symptoms. PMID:26035179

  16. Effect of asynchrony on numerical simulations of fluid flow phenomena

    NASA Astrophysics Data System (ADS)

    Konduri, Aditya; Mahoney, Bryan; Donzis, Diego

    2015-11-01

    Designing scalable CFD codes on massively parallel computers is a challenge. This is mainly due to the large number of communications between processing elements (PEs) and their synchronization, leading to idling of PEs. Indeed, communication will likely be the bottleneck in the scalability of codes on Exascale machines. Our recent work on asynchronous computing for PDEs based on finite-differences has shown that it is possible to relax synchronization between PEs at a mathematical level. Computations then proceed regardless of the status of communication, reducing the idle time of PEs and improving the scalability. However, accuracy of the schemes is greatly affected. We have proposed asynchrony-tolerant (AT) schemes to address this issue. In this work, we study the effect of asynchrony on the solution of fluid flow problems using standard and AT schemes. We show that asynchrony creates additional scales with low energy content. The specific wavenumbers affected can be shown to be due to two distinct effects: the randomness in the arrival of messages and the corresponding switching between schemes. Understanding these errors allow us to effectively control them, rendering the method's feasibility in solving turbulent flows at realistic conditions on future computing systems.

  17. Using Rasch Measurement to Validate an Instrument for Measuring the Quality of Classroom Teaching in Secondary Chemistry Lessons

    ERIC Educational Resources Information Center

    He, Peng; Liu, Xiufeng; Zheng, Changlong; Jia, Mengying

    2016-01-01

    This study intends to develop a standardized instrument for measuring classroom teaching and learning in secondary chemistry lessons. Based on previous studies and interviews with expert teachers, the progression of five quality levels was constructed hypothetically to represent the quality of chemistry lessons in Chinese secondary schools. The…

  18. Management of fluid mud in estuaries, bays, and lakes. II: Measurement, modeling, and management

    USGS Publications Warehouse

    McAnally, W.H.; Teeter, A.; Schoellhamer, D.; Friedrichs, C.; Hamilton, D.; Hayter, E.; Shrestha, P.; Rodriguez, H.; Sheremet, A.; Kirby, R.

    2007-01-01

    Techniques for measurement, modeling, and management of fluid mud are available, but research is needed to improve them. Fluid mud can be difficult to detect, measure, or sample, which has led to new instruments and new ways of using existing instruments. Multifrequency acoustic fathometers sense neither density nor viscosity and are, therefore, unreliable in measuring fluid mud. Nuclear density probes, towed sleds, seismic, and drop probes equipped with density meters offer the potential for accurate measurements. Numerical modeling of fluid mud requires solving governing equations for flow velocity, density, pressure, salinity, water surface, plus sediment submodels. A number of such models exist in one-, two-, and three-dimensional form, but they rely on empirical relationships that require substantial site-specific validation to observations. Management of fluid mud techniques can be classified as those that accomplish: Source control, formation control, and removal. Nautical depth, a fourth category, defines the channel bottom as a specific fluid mud density or alternative parameter as safe for navigation. Source control includes watershed management measures to keep fine sediment out of waterways and in-water measures such as structures and traps. Formation control methods include streamlined channels and structures plus other measures to reduce flocculation and structures that train currents. Removal methods include the traditional dredging and transport of dredged material plus agitation that contributes to formation control and/or nautical depth. Conditioning of fluid mud by dredging and aerating offers the possibility of improved navigability. Two examples-the Atchafalaya Bar Channel and Savannah Harbor-illustrate the use of measurements and management of fluid mud. ?? 2007 ASCE.

  19. First-order mean-spherical approximation for interfacial phenomena: a unified method from bulk-phase equilibria study.

    PubMed

    Tang, Yiping

    2005-11-22

    The recently proposed first-order mean-spherical approximation (FMSA) [Y. Tang, J. Chem. Phys. 121, 10605 (2004)] for inhomogeneous fluids is extended to the study of interfacial phenomena. Computation is performed for the Lennard-Jones fluid, in which all phase equilibria properties and direct correlation function for density-functional theory are developed consistently and systematically from FMSA. Three functional methods, including fundamental measure theory for the repulsive force, local-density approximation, and square-gradient approximation, are applied in this interfacial investigation. Comparisons with the latest computer simulation data indicate that FMSA is satisfactory in predicting surface tension, density profile, as well as relevant phase equilibria. Furthermore, this work strongly suggests that FMSA is very capable of unifying homogeneous and inhomogeneous fluids, as well as those behaviors outside and inside the critical region within one framework.

  20. Temperature surface measurements with a 3D velocity fluid flow measurement system using the same laser source and a single instrument

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cervantes, Victor; Guerrero-Viramontes, J. Ascencion; Funes-Gallanzi, Marcelo

    2005-02-01

    The combination of flow velocimetry techniques and Temperature Sensitive Paints, (TSP), requires working with different laser beam intensities. Because velocity flow measurements (i.e. Particle Image Velocimetry, PIV) needs high level laser power compared with temperature surface measurement, where lower levels of laser power is required, is necessary to adjust the system to avoid the damage of the paint due to the high intensities in laser velocimetry measurements. The use of a paint of different grey levels, from white to black, as backgrounds above the TSP film deposition allows to make both, velocity and temperature measurements with the same laser power without damaging the TSP. This work is centered in the characterization, testing and calibration improvements of the temperature surface measurements using Temperature Sensitive Paints as a part of the 3D tunneling velocimetry system.