Sample records for instruments managing projects

  1. Community Air Sensor Network CAIRSENSE Project: Lower ...

    EPA Pesticide Factsheets

    Presentation slides on the CAIRSENSE project, Atlanta field study testing low cost air sensors against FEM instruments. To be presented at the Air and Waste Management Association conference. Presentation slides on the CAIRSENSE project, Atlanta field study testing low cost air sensors against FEM instruments. To be presented at the Air and Waste Management Association conference.

  2. Project management for complex ground-based instruments: MEGARA plan

    NASA Astrophysics Data System (ADS)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  3. Preparing project managers for faster-better-cheaper robotic planetary missions

    NASA Technical Reports Server (NTRS)

    Gowler, P.; Atkins, K.

    2003-01-01

    The authors have developed and implemented a week-long workshop for Jet Propulsion Laboratory Project Managers, designed around the development phases of the JPL Project Life Cycle. The workshop emphasizes the specific activities and deliverables that pertain to JPL managers of NASA robotic space exploration and instrument development projects.

  4. Using Project Management Systems at the Construction Field Office

    DTIC Science & Technology

    1989-03-01

    instrumentation 13550 transportation control instrumentation 13600 solor energy systems 13700 wind energy systems 13800 building automation systems ...Engineering Research Laboratory AD-A207 077 Using Project Management Systems at the Construction Field Office by E. William East Jeffrey G. Kirby Automated...automated systems available, engineers at the construction fieid office (or resident office) are faced with the over- whelming task of choosing which

  5. Using tailored methodical approaches to achieve optimal science outcomes

    NASA Astrophysics Data System (ADS)

    Wingate, Lory M.

    2016-08-01

    The science community is actively engaged in research, development, and construction of instrumentation projects that they anticipate will lead to new science discoveries. There appears to be very strong link between the quality of the activities used to complete these projects, and having a fully functioning science instrument that will facilitate these investigations.[2] The combination of using internationally recognized standards within the disciplines of project management (PM) and systems engineering (SE) has been demonstrated to lead to achievement of positive net effects and optimal project outcomes. Conversely, unstructured, poorly managed projects will lead to unpredictable, suboptimal project outcomes ultimately affecting the quality of the science that can be done with the new instruments. The proposed application of these two specific methodical approaches, implemented as a tailorable suite of processes, are presented in this paper. Project management (PM) is accepted worldwide as an effective methodology used to control project cost, schedule, and scope. Systems engineering (SE) is an accepted method that is used to ensure that the outcomes of a project match the intent of the stakeholders, or if they diverge, that the changes are understood, captured, and controlled. An appropriate application, or tailoring, of these disciplines can be the foundation upon which success in projects that support science can be optimized.

  6. Astronomical large projects managed with MANATEE: management tool for effective engineering

    NASA Astrophysics Data System (ADS)

    García-Vargas, M. L.; Mujica-Alvarez, E.; Pérez-Calpena, A.

    2012-09-01

    This paper describes MANATEE, which is the Management project web tool developed by FRACTAL, specifically designed for managing large astronomical projects. MANATEE facilitates the management by providing an overall view of the project and the capabilities to control the three main projects parameters: scope, schedule and budget. MANATEE is one of the three tools of the FRACTAL System & Project Suite, which is composed also by GECO (System Engineering Tool) and DOCMA (Documentation Management Tool). These tools are especially suited for those Consortia and teams collaborating in a multi-discipline, complex project in a geographically distributed environment. Our Management view has been applied successfully in several projects and currently is being used for Managing MEGARA, the next instrument for the GTC 10m telescope.

  7. [Development of an instrument for the assessment of demand and monitoring of the health management in a health insurance].

    PubMed

    Burnus, M; Benner, V; Becker, L; Müller, D; Stock, S

    2014-06-01

    To identify and follow up the health relevant effects of change-management-projects and to determine improvements in activities following this change a specific health-controlling instrument with benchmarking options has been developed. This instrument applies scientific quality standards and shows the organisational value in form of an index (BGM-Systemindex). It shows the correlation between the four indices management system, health-related actions, health and absence rate and allows a qualitative view of corporate health promotion on and its long term effects. The initiator for the project was an employee survey, which showed a need for action to improve job satisfaction. The survey was the reason that management initiated an integral change-management-project. The project showed many interfaces with the corporate health promotion (BGM), thus enabling consequent changes to be made and their effects to be evaluated. The aim of the project was to clearly increase employee satisfaction up to the next employee survey. Overall the project can be considered a success as the main aim of the project to increase the employees job satisfaction in the given period of time was clearly accomplished. The BGM-Systemindex also stood the test for comprehensive monitoring of the employees health. The project was able to prove that the health relevant parameters could be optimised and that the quality, acceptance and efficiency of the intervention methods had improved. It also showed a positive development of the early and long term health indicators. This is a positive contrast to available literature, which shows that an insufficient or incorrectly used change management results in a lower employee satisfaction. As a result it was decided to use the tool in future.

  8. [The relevance of clinical risk management].

    PubMed

    Gulino, Matteo; Vergallo, Gianluca Montanari; Frati, Paola

    2011-01-01

    Medical activity includes a risk of possible injury or complications for the patients, that should drive the Health Care Institutions to introduce and/ or improve clinical Risk management instruments. Although Italy is still lacking a National project of Clinical Risk Management, a number of efforts have been made by different Italian Regions to introduce instruments of risk management. In addition, most of National Health Care Institutions include actually a Department specifically in charge to manage the clinical risk. Despite the practical difficulties, the results obtained until now suggest that the risk management may represent a useful instrument to contribute to the reduction of errors in clinical conduct. Indeed, the introduction of adequate instruments of prevention and management of clinical risk may help to ameliorate the quality of health care Institution services.

  9. Sustainable knowledge development across cultural boundaries: Experiences from the EU-project SILMAS (Toolbox for conflict solving instruments in Alpine Lake Management)

    NASA Astrophysics Data System (ADS)

    Fegerl, Michael; Wieden, Wilfried

    2013-04-01

    Increasingly people have to communicate knowledge across cultural and language boundaries. Even though recent technologies offer powerful communication facilities people often feel confronted with barriers which clearly reduce their chances of making their interaction a success. Concrete evidence concerning such problems derives from a number of projects, where generated knowledge often results in dead-end products. In the Alpine Space-project SILMAS (Sustainable Instruments for Lake Management in Alpine Space), in which both authors were involved, a special approach (syneris® ) was taken to avoid this problem and to manage project knowledge in sustainable form. Under this approach knowledge input and output are handled interactively: Relevant knowledge can be developed continuously and users can always access the latest state of expertise. Resort to the respective tools and procedures can also assist in closing knowledge gaps and in developing innovative responses to familiar or novel problems. This contribution intends to describe possible ways and means which have been found to increase the chances of success of knowledge communication across cultural boundaries. The process of trans-cultural discussions of experts to find a standardized solution is highlighted as well as the problem of dissemination of expert knowledge to variant stakeholders. Finally lessons learned are made accessible, where a main task lies in the creation of a tool box for conflict solving instruments, as a demonstrable result of the project and for the time thereafter. The interactive web-based toolbox enables lake managers to access best practice instruments in standardized, explicit and cross-linguistic form.

  10. The Undergraduate Student Instrument Project (USIP) - building the STEM workforce by providing exciting, multi-disciplinary, student-led suborbital flight projects.

    NASA Astrophysics Data System (ADS)

    Dingwall, B. J.

    2015-12-01

    NASA's Science Mission Directorate (SMD) recognizes that suborbital carriers play a vital role in training our country's future science and technology leaders. SMD created the Undergraduate Student Instrument Project (USIP) to offer students the opportunity to design, build, and fly instruments on NASA's unique suborbital research platforms. This paper explores the projects, the impact, and the lessons learned of USIP. USIP required undergraduate teams to design, build, and fly a scientific instrument in 18 months or less. Students were required to form collaborative multidisciplinary teams to design, develop and build their instrument. Teams quickly learned that success required skills often overlooked in an academic environment. Teams quickly learned to share technical information in a clear and concise manner that could be understood by other disciplines. The aggressive schedule required team members to hold each other accountable for progress while maintaining team unity. Unanticipated problems and technical issues led students to a deeper understanding of the need for schedule and cost reserves. Students exited the program with a far deeper understanding of project management and team dynamics. Through the process of designing and building an instrument that will enable new research transforms students from textbook learners to developers of new knowledge. The initial USIP project funded 10 undergraduate teams that flew a broad range of scientific instruments on scientific balloons, sounding rockets, commercial rockets and aircraft. Students were required to prepare for and conduct the major reviews that are an integral part of systems development. Each project conducted a Preliminary Design Review, Critical Design Review and Mission Readiness review for NASA officials and flight platform providers. By preparing and presenting their designs to technical experts, the students developed a deeper understanding of the technical and programmatic project pieces that were necessary for success. A student survey was conducted to assess the impact of USIP. Over 90% of students reported a significant improvement in their technical and project management skills. Perhaps more importantly, 88% of students reported that they have a far better appreciation for the value of multi-disciplinary teams.

  11. Customer Responsiveness

    NASA Technical Reports Server (NTRS)

    Chiu, Mary

    2002-01-01

    If you know anyone who's been involved in building a spacecraft, I'm sure you've heard the mantra, 'Test what you fly, and fly what you test.' Listen to a project manager from my institution (The Johns Hopkins Applied Physics Laboratory, a.k.a. APL) talking in his or her sleep, and this is likely what you're going to hear. At APL, we do a lot of testing. We probably do more testing in the initial stages of a project than we could explain to review boards. Perhaps we are conservative in this respect, but our project managers and engineers believe in getting a good night's sleep before a launch, and testing is a good way of ensuring that. So you can imagine my reaction when the NASA project manager, Don Margolies, suggested that on the Advanced Composition Explorer (ACE) mission we pull all the instruments off the spacecraft after we had just completed the full range of environmental testing. This would allow the scientists to do a better job of calibrating their instruments.

  12. Compensatory Mitigation Site Protection Instrument Handbook and Fact Sheet

    EPA Pesticide Factsheets

    The site protection instrument is a written description of the legal arrangements including site ownership, management, and enforcement of any use restrictions that will be used to ensure the long-term protection of the compensatory mitigation project site

  13. An Approach to Assess Knowledge and Skills in Risk Management through Project-Based Learning

    ERIC Educational Resources Information Center

    Galvao, Tulio Acacio Bandeira; Neto, Francisco Milton Mendes; Campos, Marcos Tullyo; Junior, Edson de Lima Cosme

    2012-01-01

    The increasing demand for Software Engineering professionals, particularly Project Managers, and popularization of the Web as a catalyst of human relations have made this platform interesting for training this type of professional. The authors have observed the widespread use of games as an attractive instrument in the process of teaching and…

  14. [Evaluation of public health risk. A new instrument for environmental management in Chile].

    PubMed

    Matus C, Patricia

    2011-08-01

    One of the main challenges in environmental management is to prevent the public health impact of projects that can cause pollution. To tackle this problem, the new Chilean bill on environmental management has defined the need to determine the potential health risks of a given Project. This paper gives a summary of the method used for risk evaluation and its evolution. Its incorporation in the Environmental Impact Evaluation System is proposed, to guarantee an effective prevention of the potential risks on health of new projects.

  15. SKA Telescope Manager (TM): status and architecture overview

    NASA Astrophysics Data System (ADS)

    Natarajan, Swaminathan; Barbosa, Domingos; Barraca, Joao P.; Bridger, Alan; Choudhury, Subhrojyoti R.; Di Carlo, Matteo; Dolci, Mauro; Gupta, Yashwant; Guzman, Juan; Van den Heever, Lize; Le Roux, Gerhard; Nicol, Mark; Patil, Mangesh; Smareglia, Riccardo; Swart, Paul; Thompson, Roger; Vrcic, Sonja; Williams, Stewart

    2016-07-01

    The SKA radio telescope project is building two telescopes, SKA-Low in Australia and SKA-Mid in South Africa respectively. The Telescope Manager is responsible for the observations lifecycle and for monitoring and control of each instrument, and is being developed by an international consortium. The project is currently in the design phase, with the Preliminary Design Review having been successfully completed, along with re-baselining to match project scope to available budget. This report presents the status of the Telescope Manager work, key architectural challenges and our approach to addressing them.

  16. CARMENES: management of a schedule-driven project

    NASA Astrophysics Data System (ADS)

    García-Vargas, M. L.; Caballero, J.; Pérez-Calpena, A.; Amado, Pedro; Seifert, Walter; Azzaro, Marco; Mandel, Holger; Quirrenbach, Andreas; Ribas, Ignasi; Reiners, Ansgar; Guenther, Eike; Gesa, Lluís.; Galadí, David; Aceituno, Jesús

    2016-08-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) is an instrument consistent in two ultra-stable high resolution (R 82,000) spectrographs covering simultaneously the visible (0.5 - 1.0μm) and near-IR (1.0 - 1.7μm) ranges to provide high-accuracy radial-velocity measurements (˜1 m/s) thanks to the long-term stability. CARMENES was the initiative of a consortium of eleven German and Spanish institutions. CARMENES has been built for the 3.5m telescope at the Centro Astronómico Hipano- Alemán (CAHA), Calar Alto Observatory (Almería, Spain) and is currently in operation. CAHA is jointly operated by the Max-Planck-Society (MPG) and the Spanish National Research Council (CSIC). The project received the green light in October 2010 and in February 2013 passed a Final Design Review. Six months later, the MPG and CSIC, the observatory's owners, made an independent evaluation concluding that CARMENES had to be ready for operations at the end of 2015. Since then, fulfilling the calendar was the driver of all project decisions. Moreover, the observatory's survival was linked to the instrument's success: should the instrument fail, the observatory would be closed. On the contrary, the instrument's success would give unique capabilities to the Observatory for Big Science. Such a challenge became to be our private Olympic Games: we had to be on time. This decision definitively impacted on the project dynamics, there was no room for a delay. The deadline, December 31st, 2015, was controlled by a strict tracking of the critical path; calendar deviations were corrected with risky decisions while fast tracking or even crashing methods were applied. The management scenario was far from optimum: most key people in the project shared their time with other duties; the observatory funding cuts; the budget was tight and distributed among the 11 partner centers with their own different rules, etc. Despite these difficulties, the close coordination among the project manager, the system engineer and the work package managers, the hard work of the whole team, and the support from the observatory were our best bets. Two frenetic years after the calendar decision, we had manufactured, integrated and tested the two spectrographs and we were commissioning the instrument. The instrument first light took place on November, 9th, 2015 and CARMENES entered in operation at the end of December 2015. This paper describes the keys to success.

  17. MASTR-MS: a web-based collaborative laboratory information management system (LIMS) for metabolomics.

    PubMed

    Hunter, Adam; Dayalan, Saravanan; De Souza, David; Power, Brad; Lorrimar, Rodney; Szabo, Tamas; Nguyen, Thu; O'Callaghan, Sean; Hack, Jeremy; Pyke, James; Nahid, Amsha; Barrero, Roberto; Roessner, Ute; Likic, Vladimir; Tull, Dedreia; Bacic, Antony; McConville, Malcolm; Bellgard, Matthew

    2017-01-01

    An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research community. It is freely available under the GNU GPL v3 licence and can be accessed from, https://muccg.github.io/mastr-ms/.

  18. 78 FR 59943 - Submission for OMB Review; 30-Day Comment Request; Interactive Informed Consent for Pediatric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... opportunity for public comment on proposed data collection projects, the National Institute Heart, Lung, and... proposed projects to be submitted to the Office of Management and Budget (OMB) for review and approval. The... collection plans and instruments or request more information on the proposed project contact: Victoria...

  19. The structure of control and data transfer management system for the GAMMA-400 scientific complex

    NASA Astrophysics Data System (ADS)

    Arkhangelskiy, A. I.; Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Topchiev, N. P.

    2016-02-01

    A description of the control and data transfer management system for scientific instrumentation involved in the GAMMA-400 space project is given. The technical capabilities of all specialized equipment to provide the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands, as well as program commands in the form of 16-bit code words, which are transmitted via onboard control system and scientific data acquisition system. Up to 100 GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified by the experimental working-off of the prototype of the GAMMA-400 scientific complex in laboratory conditions.

  20. The development of a strategy for the implementation of automation in a bioanalytical laboratory.

    PubMed

    Mole, D; Mason, R J; McDowall, R D

    1993-03-01

    Laboratory automation is equipment, instrumentation, software and techniques that are classified into four groups: instrument automation; communications; data to information conversion; and information management. This new definition is necessary to understand the role that automation can play in achieving the aims and objectives of a laboratory within its organization. To undertake automation projects effectively, a laboratory automation strategy is outlined which requires an intimate knowledge of an organization and the target environment to implement individual automation projects.

  1. Reality check in the project management of EU funding

    NASA Astrophysics Data System (ADS)

    Guo, Chenbo

    2015-04-01

    A talk addressing workload, focuses, impacts and outcomes of project management (hereinafter PM) Two FP7 projects serve as objects for investigation. In the Earth Science sector NACLIM is a large scale collaborative project with 18 partners from North and West Europe. NACLIM aims at investigating and quantifying the predictability of the North Atlantic/Arctic sea surface temperature, sea ice variability and change on seasonal to decadal time scales which have a crucial impact on weather and climate in Europe. PRIMO from Political Science is a global PhD program funded by Marie Curie ITN instrument with 11 partners from Europe, Eurasia and BRICS countries focusing on the rise of regional powers and its impact on international politics at large. Although the two projects are granted by different FP7 funding instruments, stem from different cultural backgrounds and have different goals, the inherent processes and the key focus of the PM are quite alike. Only the operational management is at some point distinguished from one another. From the administrative point of view, understanding of both EU requirements and the country-specific regulations is essential; it also helps us identifying the grey area in order to carry out the projects more efficiently. The talk will focus on our observation of the day-to-day PM flows - primarily the project implementation - with few particular cases: transparency issues, e.g. priority settings of non-research stakeholders including the conflict in the human resources field, End-User integration, gender issues rising up during a monitoring visit and ethical aspects in field research. Through a brief comparison of both projects we summarize a range of dos and don'ts, an "acting instead of reacting" line of action, and the conclusion to a systematic overall management instead of exclusively project controlling. In a nutshell , the talk aims at providing the audience a summary of the observation in management methodologies and toolkits applied in both projects, our best practices and lessons learnt in coordinating large international consortia.

  2. Evaluating the Safety Benefits of a Low-Cost Driving Behavior Management System in Commercial Vehicle Operations

    DOT National Transportation Integrated Search

    2010-04-01

    This project provides an independent evaluation of a commercially available low-cost driving behavior management system. Participating drivers from two carriers (identified as Carrier A and Carrier B) drove an instrumented vehicle for 17 consecutive ...

  3. The PI-Mode of Project Management

    NASA Technical Reports Server (NTRS)

    Isaac, Dan

    1997-01-01

    The PI-Mode is NASA's new approach to project management. It responds to the Agency's new policy to develop scientific missions that deliver the highest quality science for a fixed cost. It also attempts to provide more research opportunities by reducing project development times and increasing the number of launches per year. In order to accomplish this, the Principal Investigator is placed at the helm of the project with full responsibility over all aspects of the mission, including instrument and spacecraft development, as well as mission operations and data analysis. This paper intends to study the PI-Mode to determine the strengths and weaknesses of such a new project management technique. It also presents an analysis of its possible impact on the scientific community and its relations with industry, NASA, and other institutions.

  4. Galileo: Exploration of Jupiter's system

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Yeates, C. M.; Colin, L.; Fanale, F. P.; Frank, L.; Hunten, D. M.

    1985-01-01

    The scientific objectives of the Galileo mission to the Jovian system is presented. Topics discussed include the history of the project, our current knowledge of the system, the objectives of interrelated experiments, mission design, spacecraft, and instruments. The management, scientists, and major contractors for the project are also given.

  5. Initiating and Managing University-Based International Research and Development Activities.

    ERIC Educational Resources Information Center

    Peterson, Marla P.

    1987-01-01

    Initiating and managing international research and development are discussed, including: basic principles for participation in international development activities; AID and World Bank project cycles; AID and World Bank contracting modes and instruments; and international contract negotiations. Some reference sources are appended. (MLW)

  6. The MUSE project face to face with reality

    NASA Astrophysics Data System (ADS)

    Caillier, P.; Accardo, M.; Adjali, L.; Anwand, H.; Bacon, Roland; Boudon, D.; Brotons, L.; Capoani, L.; Daguisé, E.; Dupieux, M.; Dupuy, C.; François, M.; Glindemann, A.; Gojak, D.; Hansali, G.; Hahn, T.; Jarno, A.; Kelz, A.; Koehler, C.; Kosmalski, J.; Laurent, F.; Le Floch, M.; Lizon, J.-L.; Loupias, M.; Manescau, A.; Migniau, J. E.; Monstein, C.; Nicklas, H.; Parès, L.; Pécontal-Rousset, A.; Piqueras, L.; Reiss, R.; Remillieux, A.; Renault, E.; Rupprecht, G.; Streicher, O.; Stuik, R.; Valentin, H.; Vernet, J.; Weilbacher, P.; Zins, G.

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation instrument built for ESO (European Southern Observatory) to be installed in Chile on the VLT (Very Large Telescope). The MUSE project is supported by a European consortium of 7 institutes. After the critical turning point of shifting from the design to the manufacturing phase, the MUSE project has now completed the realization of its different sub-systems and should finalize its global integration and test in Europe. To arrive to this point many challenges had to be overcome, many technical difficulties, non compliances or procurements delays which seemed at the time overwhelming. Now is the time to face the results of our organization, of our strategy, of our choices. Now is the time to face the reality of the MUSE instrument. During the design phase a plan was provided by the project management in order to achieve the realization of the MUSE instrument in specification, time and cost. This critical moment in the project life when the instrument takes shape and reality is the opportunity to look not only at the outcome but also to see how well we followed the original plan, what had to be changed or adapted and what should have been.

  7. Walking a Fine Line

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    2004-01-01

    My division was charged with building a suite of cameras for the Mars Exploration Rover (MER) project. We were building the science cameras on the mass assembly, the microscope camera, and the hazard and navigation cameras for the rovers. Not surprisingly, a lot of folks were paying attention to our work - because there's really no point in landing on Mars if you can't take pictures. In Spring 2002 things were not looking good. The electronics weren't coming in, and we had to go back to the vendors. The vendors would change the design, send the boards back, and they wouldn't work. On our side, we had an instrument manager in charge who I believe has the potential to become a great manager, but when things got behind schedule he didn't have the experience to know what was needed to catch up. As division manager, I was ultimately responsible for seeing that all my project and instrument managers delivered their work. I had to make the decision whether or not to replace him.

  8. The Value of Methodical Management: Optimizing Science Results

    NASA Astrophysics Data System (ADS)

    Saby, Linnea

    2016-01-01

    As science progresses, making new discoveries in radio astronomy becomes increasingly complex. Instrumentation must be incredibly fine-tuned and well-understood, scientists must consider the skills and schedules of large research teams, and inter-organizational projects sometimes require coordination between observatories around the globe. Structured and methodical management allows scientists to work more effectively in this environment and leads to optimal science output. This report outlines the principles of methodical project management in general, and describes how those principles are applied at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia.

  9. 78 FR 15959 - Proposed Collection; 60-day Comment Request: Early Career Reviewer Program Online Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... projects to be submitted to the Office of Management and Budget (OMB) for review and approval. Written... Information: To obtain a copy of the data collection plans and instruments, submit comments in writing, or... requests for additional plans and instruments must be requested in writing. Comment Due Date: Comments...

  10. Next step in Studying the Ultraviolet Universe: WSO-UV

    NASA Astrophysics Data System (ADS)

    Shustov, Boris M.; Sachkov, Mikhail; Gomez De Castro, Ana

    The World Space Observatory-Ultraviolet (WSO-UV) is an international space mission born as a response to the growing up demand for UV facilities by the astronomical community. In the horizon of the next 10 years, the WSO-UV will be the only 2-meters class mission in the after-HST epoch that will guarantee access to UV wavelength domain. The project is managed by an international consortium led by the Federal Space Agency (ROSCOSMOS, Russia). Here we describe the WSO-UV project with its general objectives and main features, the details and status of instrumentation that includes WUVS (spectrographs) and the ISSIS instrument (Field Camera Unit), WSO-UV ground segment, science management plan, the WSO-UV key science issues and prospects of high resolution spectroscopic studies with WSO-UV.

  11. From Ions to Bits - Developing the IT infrastructure around the CAMECA IMS 1280-HR SIMS lab at GFZ Potsdam

    NASA Astrophysics Data System (ADS)

    Galkin, A.; Klump, J.; Wiedenbeck, M.

    2012-04-01

    Secondary Ion Mass Spectrometers (SIMS) is an highly sensitive technique for analyzing the surfaces of solids and thin film samples, but has the major drawback that such instruments are both rare and expensive. The Virtual SIMS project aims to design, develop and operate the IT infrastructure around the CAMECA IMS 1280-HR SIMS at GFZ Potsdam. The system will cover the whole spectrum of the procedures in the lab - from the online application for measurement time, to the remote access to the instrument and finally the maintenance of the data for publishing and future re-use. A virtual lab infrastructure around the IMS 1280 will enable remote access to the instrument and make measurement time available to the broadest possible user community. Envisioned is that the IT infrastructure would consist of the following: web portal, data repository, sample repository, project management software, communication arrangements between the lab staff and distant researcher and remote access to the instruments. The web portal will handle online applications for the measurement time. The data from the experiments, the monitoring sensor logs and the lab logbook entries are to be stored and archived. Researchers will be able to access their data remotely in real time, thus imposing a user rights management strucuture. Also planned is that all samples and the standards will be assigned a unique International GeoSample Number (IGSN) and that the images of the samples will be stored and made accessible in addition to any additional documents which might be uploaded by the researcher. The project management application will schedule the application process, the measurements times, notifications and alerts. A video conference capability is forseen for communication between the Potsdam staff and the remote researcher. The remote access to the instruments requires a sophisticated client-server solution. This highly sensitive instrument has to be controlled in real-time with latencies diminished to a minimum. Also, failures and shortages of the internet connection, as well as possible outages on the client side, have to be considered and safe fallbacks for such events must be provided. The level of skills of the researcher remotely operating the instrument will define the scope of control given during an operating session. An important aspect of the project is the design of the virtual lab system in collaboration with the laboratory operators and the researchers who will use the instrument and its peripherals. Different approaches for the IT solutions will be tested and evaluated, so imporved guidelines can evolve from obsperved operating performance.

  12. The science of laboratory and project management in regulated bioanalysis.

    PubMed

    Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward

    2014-05-01

    Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory.

  13. Competency Profile Development for Management in Marketing Education on the Secondary Level and Cooperative Vocational/Industrial Education Programs on the Secondary Level.

    ERIC Educational Resources Information Center

    Smith, Clifton L.

    A project revalidated, revised, and adapted/modified the minimum core competencies for the management and cooperative vocational/industrial education (CIE) courses on the secondary level. In Missouri, each marketing instructor teaching a management course and each CIE instructor completed a survey instrument for the assessment of each core…

  14. Simple Tools to Facilitate Project Management of a Nursing Research Project.

    PubMed

    Aycock, Dawn M; Clark, Patricia C; Thomas-Seaton, LaTeshia; Lee, Shih-Yu; Moloney, Margaret

    2016-07-01

    Highly organized project management facilitates rigorous study implementation. Research involves gathering large amounts of information that can be overwhelming when organizational strategies are not used. We describe a variety of project management and organizational tools used in different studies that may be particularly useful for novice researchers. The studies were a multisite study of caregivers of stroke survivors, an Internet-based diary study of women with migraines, and a pilot study testing a sleep intervention in mothers of low-birth-weight infants. Project management tools were used to facilitate enrollment, data collection, and access to results. The tools included protocol and eligibility checklists, event calendars, screening and enrollment logs, instrument scoring tables, and data summary sheets. These tools created efficiency, promoted a positive image, minimized errors, and provided researchers with a sense of control. For the studies described, there were no protocol violations, there were minimal missing data, and the integrity of data collection was maintained. © The Author(s) 2016.

  15. De-mystifying earned value management for ground based astronomy projects, large and small

    NASA Astrophysics Data System (ADS)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  16. The project management office: transforming healthcare in the context of a hospital redevelopment project.

    PubMed

    Richer, Marie-Claire; Marchionni, Caroline; Lavoie-Tremblay, Melanie; Aubry, Monique

    2013-01-01

    It has been shown that classifying projects into a typology allows improved allocation of resources and promotes project success. However, a typology of healthcare projects has yet to be developed. The projects encountered by the Transition Support Office at the McGill University Health Centre in Montreal, Quebec, where a major redevelopment project is under way, were classified into a typology unique to the healthcare context. Examples of the 3 project types, Process, People, and Practice, are provided to clarify the specific support strategies and context-adapted interventions that were instrumental to their success.

  17. Case Study of the U.S. Army’s Should-Cost Management Implementation

    DTIC Science & Technology

    2013-12-03

    and Pelvic Protection Systems (PPS). After graduating from the Naval Postgraduate School, Major Choi will be assigned to the U.S. Army...Systems PMO Product/Project/Program Management Office PMT Program Management Training POA&M Plan of Action and Milestones POE Program Office...Intelligence, Electronic Warfare and Sensors  PEO Simulation, Training , and Instrumentation  JPEO Chemical and Biological Defense The researcher

  18. APOM-project: managing change to the customer in community pharmacy practice.

    PubMed

    Mobach, M P; van der Werf, J; Tromp, T F

    1999-10-01

    In 1994, a Ph.D.-study started regarding pharmacy, organization and management (APOM) in the Netherlands. This article describes the final phase of the study in community pharmacy practice: managerial problems in change to the customer and the difference between supported pharmacy managers and independent ones. It appeared that pharmacy managers experienced problems with the formulation and use of aims, norms, and measurements. Although many organizations operating in the pharmaceutical sector are a good source for new ideas, they lack to have the proper support for these problems. The difference between supported and independent pharmacy managers was minimal in the change to the customer. Pharmacy managers are in need of micro-instrumentalization: aims, norms, and monitor instruments for customer activities applicable at their own pharmacy. Moreover, pharmacy managers will have to learn how to deal with the tension between money and care in order to improve the 'grip' on their organization.

  19. Developing a Survey Instrument for Evaluating the Effectiveness of Data Management Training Materials

    NASA Astrophysics Data System (ADS)

    Hou, C. Y.; Soyka, H.; Hutchison, V.; Budden, A. E.

    2016-12-01

    Education and training resources that focus on best practices and guidelines for working with data such as: data management, data sharing, quality metadata creation, and maintenance for reuse, have vital importance not only to the users of Data Observation Network for Earth (DataONE), but also to the broader scientific, research, and academic communities. However, creating and maintaining relevant training/educational materials that remain sensitive and responsive to community needs is dependent upon careful evaluations of the current landscape in order to promote and support thoughtful development of new resources. Using DataONE's existing training/educational resources as the basis for this project, the authors have worked to develop an evaluation instrument that can be used to evaluate the effectiveness of data management training/education resources. The evaluation instrument is in the form of a digital questionnaire/survey. The evaluation instrument also includes the structure and content as recommended by the best practices/guidelines of questionnaire/survey design, based on a review of the literature. Additionally, the evaluation instrument can be customized to evaluate various training/education modalities and be implemented using a web-based questionnaire/survey platform. Finally, the evaluation instrument can be used for site-wide evaluation of DataONE teaching materials and resources, and once made publicly available and openly accessible, other organizations may also utilize the instrument. One key outcome of developing the evaluation instrument is to help in increasing the effectiveness of data management training/education resources across the Earth/Geoscience community. Through this presentation, the authors will provide the full background and motivations for creating an instrument for evaluating the effectiveness of data management training/education resources. The presentation will also discuss in detail the process and results of the current version of the evaluation instrument. Finally, the presentation will highlight the key features and the next steps to examine in order to improve the next revisions of the instrument.

  20. Eight year experience in open ended instrumentation laboratory

    NASA Astrophysics Data System (ADS)

    Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.

    2015-10-01

    When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.

  1. Interventions to delay institutionalization of frail older persons: design of a longitudinal study in the home care setting.

    PubMed

    De Almeida Mello, Johanna; Van Durme, Therese; Macq, Jean; Declercq, Anja

    2012-08-06

    Older people usually prefer staying at home rather than going into residential care. The Belgian National Institute for Health and Disability Insurance wishes to invest in home care by financing innovative projects that effectively help older people to stay at home longer. In this study protocol we describe the evaluation of 34 home care projects. These projects are clustered according to the type of their main intervention such as case management, night care, occupational therapy at home and psychological/psychosocial support. The main goal of this study is to identify which types of projects have the most effect in delaying institutionalization of frail older persons. This is a longitudinal intervention study based on a quasi-experimental design. Researchers use three comparison strategies to evaluate intervention--comparison among different types of projects, comparisons between older persons in the projects and older persons not benefiting from a project but who are still at home and between older persons in the projects and older persons who are already institutionalized. Projects are asked to include clients who are frail and at risk of institutionalization. In the study we use internationally validated instruments such as the interRAI Home Care instrument, the WHO-QOL-8 and the Zarit Burden Interview-12. These instruments are filled out at baseline, at exit from the project and 6 months after baseline. Additionally, caregivers have to do a follow-up every 6 months until exit from the project. Criteria to exit the cohort will be institutionalization longer than 3 months and death. The main analysis in the study consists of the calculation of incidence rates, cumulative incidence rates and hazard rates of definitive institutionalization through survival analyses for each type of project. This research will provide knowledge on the functional status of frail older persons who are still living at home. This is important information to identify determinants of risk for institutionalization. The identification of effective home care projects in delaying institutionalization will be useful to inform and empower home care providers, policy and related decision makers to manage and improve home care services.

  2. WPI Nanosat-3 Final Report: PANSAT - Powder Metallurgy and Navigation Satellite

    DTIC Science & Technology

    2006-02-06

    catalyst for industrial innovation and the exchange of information and ideas in powder metallurgy technology and management . It also serves as an...and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 1. AGENCY USE ONLY (Leave blank) 2...characterize a powder metallurgy (P/M) bus structure that has specific thermal management and instrument/component support properties. The traditional

  3. Controlled Vocabularies and Ontologies for Oceanographic Data: The R2R Eventlogger Project

    NASA Astrophysics Data System (ADS)

    Coburn, E.; Maffei, A. R.; Chandler, C. L.; Raymond, L. M.

    2012-12-01

    Research vessels coordinated by the United States University-National Oceanographic Laboratory System (US-UNOLS) collect data which is considered an important oceanographic resource. The NSF-funded Rolling Deck to Repository (R2R) project aims to improve access to this data and diminish the barriers to use. One aspect of the R2R project has been to develop a shipboard scientific event logging system, Eventlogger, that incorporates best practice guidelines, controlled vocabularies, a cruise metadata schema, and a scientific event log. This will facilitate the eventual ingestion of datasets into oceanographic data repositories for subsequent integration and synthesis by investigators. One important aspect of this system is the careful use of controlled vocabularies and ontologies. Existing ontologies, where available, will be used and others will be developed. The use of internationally-informed, consensus-driven controlled vocabularies will make datasets more interoperable, and discoverable. The R2R Eventlogger project is led by Woods Hole Oceanographic Institution (WHOI), and the management of the controlled vocabularies and mapping of these vocabularies to authoritative community vocabularies are led by the Data Librarian in the Marine Biological Laboratory/Woods Hole Oceanographic Institution (MBLWHOI) Library. The first target vocabulary is oceanographic instruments. Management of this vocabulary has thus far consisted of reconciling local community terms with the more widely used SeaDataNet Device Vocabulary terms. Rather than adopt existing terms, often the local terms are mapped by data managers in the NSF-funded Biological and Chemical Oceanographic Data Management Office (BCO-DMO) to the existing terms as they are given by investigators and often provide important information and meaning. New terms (often custom, or modified instruments) are submitted for review to the SeaDataNet community listserv for discussion and eventual incorporation into the Device Vocabulary. These vocabularies and their mappings are an important part of the Eventlogger system. Before a research cruise investigators configure the instruments they intend to use for science activities. The instruments available for selection are pulled directly from the instrument vocabulary. The promotion and use of controlled vocabularies and ontologies will pave the way for linked data. By mapping local terms to agreed upon authoritative terms links are created, whereby related datasets can be discovered, and utilized. The Library is a natural home for the management of standards. Librarians have an established history of working with controlled vocabularies and metadata and libraries serve as centers for information discovery. Eventlogger is currently being tested across the UNOLS fleet. A large submission of suggested instrument terms to the SeaDataNet community listserv is in progress. References: Maffei, Andrew R., Cynthia L. Chandler, Janet Fredericks, Nan Galbraith, Laura Stolp. Rolling Deck to Repository (R2R): A Controlled Vocabulary and Ontology Development Effort for Oceanographic Research Cruise Event Logging. EGU2011-12341. Poster presented at the 2011 EGU Meeting.

  4. Research and technology, 1984 report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research and technology projects in the following areas are described: cryogenic engineering, hypergolic engineering, hazardous warning instrumentation, structures and mechanics, sensors and controls, computer sciences, communications, material analysis, biomedicine, meteorology, engineering management, logistics, training and maintenance aids, and technology applications.

  5. Public surveys at ESO

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Delmotte, Nausicaa; Hilker, Michael; Hussain, Gaitee; Mascetti, Laura; Micol, Alberto; Petr-Gotzens, Monika; Rejkuba, Marina; Retzlaff, Jörg; Mieske, Steffen; Szeifert, Thomas; Ivison, Rob; Leibundgut, Bruno; Romaniello, Martino

    2016-07-01

    ESO has a strong mandate to survey the Southern Sky. In this article, we describe the ESO telescopes and instruments that are currently used for ESO Public Surveys, and the future plans of the community with the new wide-field-spectroscopic instruments. We summarize the ESO policies governing the management of these projects on behalf of the community. The on-going ESO Public Surveys and their science goals, their status of completion, and the new projects selected during the second ESO VISTA call in 2015/2016 are discussed. We then present the impact of these projects in terms of current numbers of refereed publications and the scientific data products published through the ESO Science Archive Facility by the survey teams, including the independent access and scientific use of the published survey data products by the astronomical community.

  6. Atmospheric Research 2011 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The 2011 Technical Highlights describes the efforts of all members of Atmospheric Research. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  7. FRACTAL Systems & Project suite: engineering tools for improving development and operation of the systems

    NASA Astrophysics Data System (ADS)

    Pérez-Calpena, A.; Mujica-Alvarez, E.; Osinde-Lopez, J.; García-Vargas, M.

    2008-07-01

    This paper describes the FRACTAL Systems & Projects suite. This suite is composed by several tools (GECO, DOCMA and SUMO) that provide the capabilities that all organizations need to store and manage the system information generated along the project's lifetime, from the design phase to the operation phase. The amount of information that is generated in a project keeps growing in size and complexity along the project's lifetime, to an extent that it becomes impossible to manage it without the aid of specific computer-based tools. The suite described in this paper is the solution developed by FRACTAL to assist the execution of different scientific projects, mainly related with telescopes and instruments, for astronomical research centres. These tools help the system and project engineers to maintain the technical control of the systems and to ensure an optimal use of the resources. GECO eases the control of the system configuration data; DOCMA provides the means to organise and manage the documents generated in the project; SUMO allows managing and scheduling the operation, the maintenance activities and the resources during the operational phase of a system. These tools improve the project communication making the information available to the authorized users (project team, customers, Consortium's members, etc). Finally and depending on the project needs, these three tools can be used integrated or in an independent manner.

  8. Innovation management based on proactive engagement of customers: A case study on LEGO Group. Part II: Challenge of engaging the digital customer

    NASA Astrophysics Data System (ADS)

    Avasilcăi, S.; Rusu, G.

    2015-11-01

    To foster the development of innovative products and new technologies, nowadays companies use an open innovation system, encouraging stakeholders to contribute, using the companies’ online platforms for open innovation or social media, bringing and sharing creative solutions and ideas in order to respond to challenging needs the company directly expresses. Accordingly, the current research continues the analysis of the LEGO Group innovation efforts, aiming to provide a case study approach based on describing the most important projects and online instruments company uses to interact with customers and other external stakeholders. Thus, by analysing the experience of the company in developing projects of involving stakeholders in the innovation processes, the article emphasizes the objective of these past projects developed by LEGO Group, outlining their objectives regarding the focus on the product or process innovation, the team management and stakeholders involved in the innovation actions and the results they obtained. Moreover, the case study highlights the features of the most important online instruments LEGO Group uses at the moment for engaging LEGO fans, children, parents, and other external stakeholders in developing new LEGO sets. Thus, LEGO online instruments provide the opportunity for customers to be creative and to respond to LEGO management team challenges. Accordingly, LEGO involve customers in bringing innovative ideas for LEGO sets through LEGO Ideas instrument, which aims to engage customers in submitting projects, voting and supporting ideas and also sharing them on social media. Also, the research emphasizes the role of supporting the open dialogue and interaction with customers and other external stakeholders through LEGO.com Create & Share Galleries instrument, using their creativity to upload innovative models in the public galleries. The continuous challenges LEGO launches for their fans create a long-term connection between company and its customers, supporting the value co-creation process, as the submitted ideas can materialize in new LEGO products which can be found on the market. As a consequence, customers’ engagement in the co-creation process facilitated by the multiple online instruments provided by LEGO, resulted in positive outcomes for the company regarding new product development for the sets launched on the market to satisfy changing needs of their customers. The results provided by this case study approach can be useful for the business environment and academia as well in order to understand the role of engaging customers in the open innovation process, creating a competitive advantage on the market for companies.

  9. Spacecraft computer resource margin management. [of Project Galileo Orbiter in-flight reprogramming task

    NASA Technical Reports Server (NTRS)

    Larman, B. T.

    1981-01-01

    The conduction of the Project Galileo Orbiter, with 18 microcomputers and the equivalent of 360K 8-bit bytes of memory contained within two major engineering subsystems and eight science instruments, requires that the key onboard computer system resources be managed in a very rigorous manner. Attention is given to the rationale behind the project policy, the development stage, the preliminary design stage, the design/implementation stage, and the optimization or 'scrubbing' stage. The implementation of the policy is discussed, taking into account the development of the Attitude and Articulation Control Subsystem (AACS) and the Command and Data Subsystem (CDS), the reporting of margin status, and the response to allocation oversubscription.

  10. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    Treesearch

    T.J. Johnson; R.J. Yokelson; S.K. Akagi; I.R. Burling; D.R. Weise; S.P. Urbanski; C.E. Stockwell; J. Reardon; E.N. Lincoln; L.T.M. Profeta; A. Mendoza; M.D.W. Schneider; R.L. Sams; S.D. Williams; C.E. Wold; D.W.T. Griffith; M. Cameron; J.B. Gilman; C. Warneke; J.M. Roberts; P. Veres; W.C. Kuster; J de Gouw

    2014-01-01

    Project RC-1649, "Advanced Chemical Measurement of Smoke from DoD-prescribed Burns" was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement...

  11. The WISE Satellite Development: Managing the Risks and the Opportunities

    NASA Technical Reports Server (NTRS)

    Duval, Valerie G.; Elwell, John D.; Howard, Joan F.; Irace, William R.; Liu, Feng-Chuan

    2010-01-01

    NASA's Wide-field Infrared Survey Explorer (WISE) MIDEX mission is surveying the entire sky in four infrared bands from 3.4 to 22 micrometers. The WISE instrument consists of a 40 cm telescope, a solid hydrogen cryostat, a scan mirror mechanism, and four 1K x1K infrared detectors. The WISE spacecraft bus provides communication, data handling, and avionics including instrument pointing. A Delta 7920 successfully launched WISE into a Sun-synchronous polar orbit on December 14, 2009. WISE was competitively selected by NASA as a Medium cost Explorer mission (MIDEX) in 2002. MIDEX missions are led by the Principal Investigator who delegates day-to-day management to the Project Manager. Given the tight cost cap and relatively short development schedule, NASA chose to extend the development period one year with an option to cancel the mission if certain criteria were not met. To meet this and other challenges, the WISE management team had to learn to work seamlessly across institutional lines and to recognize risks and opportunities in order to develop the flight hardware within the project resources. In spite of significant technical issues, the WISE satellite was delivered on budget and on schedule. This paper describes our management approach and risk posture, technical issues, and critical decisions made.

  12. Flexible Workflow Software enables the Management of an Increased Volume and Heterogeneity of Sensors, and evolves with the Expansion of Complex Ocean Observatory Infrastructures.

    NASA Astrophysics Data System (ADS)

    Tomlin, M. C.; Jenkyns, R.

    2015-12-01

    Ocean Networks Canada (ONC) collects data from observatories in the northeast Pacific, Salish Sea, Arctic Ocean, Atlantic Ocean, and land-based sites in British Columbia. Data are streamed, collected autonomously, or transmitted via satellite from a variety of instruments. The Software Engineering group at ONC develops and maintains Oceans 2.0, an in-house software system that acquires and archives data from sensors, and makes data available to scientists, the public, government and non-government agencies. The Oceans 2.0 workflow tool was developed by ONC to manage a large volume of tasks and processes required for instrument installation, recovery and maintenance activities. Since 2013, the workflow tool has supported 70 expeditions and grown to include 30 different workflow processes for the increasing complexity of infrastructures at ONC. The workflow tool strives to keep pace with an increasing heterogeneity of sensors, connections and environments by supporting versioning of existing workflows, and allowing the creation of new processes and tasks. Despite challenges in training and gaining mutual support from multidisciplinary teams, the workflow tool has become invaluable in project management in an innovative setting. It provides a collective place to contribute to ONC's diverse projects and expeditions and encourages more repeatable processes, while promoting interactions between the multidisciplinary teams who manage various aspects of instrument development and the data they produce. The workflow tool inspires documentation of terminologies and procedures, and effectively links to other tools at ONC such as JIRA, Alfresco and Wiki. Motivated by growing sensor schemes, modes of collecting data, archiving, and data distribution at ONC, the workflow tool ensures that infrastructure is managed completely from instrument purchase to data distribution. It integrates all areas of expertise and helps fulfill ONC's mandate to offer quality data to users.

  13. Systems engineering real estate development projects

    NASA Astrophysics Data System (ADS)

    Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy

    2017-10-01

    In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.

  14. Environmental Protection Tools in Agricultural Management Works

    NASA Astrophysics Data System (ADS)

    Glowacka, Agnieszka; Taszakowski, Jaroslaw; Janus, Jaroslaw; Bozek, Piotr

    2016-10-01

    Land consolidation is a fundamental instrument for agricultural management. It facilitates comprehensive changes in the agricultural, social, and ecological domains. Consolidation and post-consolidation development-related investments are an opportunity to improve living conditions in rural areas, and simultaneously ensure its positive impact on the environment. One of the primary goals of consolidation, directly specified in the Act on land consolidation, is to improve farming conditions. In Poland, consolidation is possible due to EU funds: RDP 2007-2013 and RDP 2014-2020. In order for individual villages to be granted EU funds for consolidation and post-consolidation development under the Rural Development Programme 2014-2020, their consolidation has to implement actions with positive impact on the environment and the landscape. The goal of this paper is to analyse documentation in the form of assumptions for a land consolidation project enclosed to an RDP 2014-2020 grant application and project information sheets as the basis for environmental impact assessment in the context of detailed presentation of environmental protection solutions that ensure a positive impact of the project on the environment and landscape. The detailed study involved 9 villages in the Malopolskie Voivodeship, which applied for EU grants for land consolidation in the current financial perspective. The paper specifies the existing state of the analysed villages as regards the natural environment, lists agricultural management instruments that have a positive impact on the environment, and demonstrates that planning of actions aimed at environmental protection is a necessary element of assumptions for land consolidation projects.

  15. Psychological Attributes Critical to the Performance of MQ-1 Predator and MQ-9 Reaper U.S. Air Force Sensor Operators

    DTIC Science & Technology

    2010-06-25

    Deputy, 711 HPW/XP), Roscoe "Yogi" VanCamp,UCa!. USAF, and Mark Marley, M.A., (project manager ) who were critical to the logistical operations of...national security, and international relations. Understanding basic principles of aviation, crew resource management , communicat ion protocols, geo...ain::raft flight controls, instruments, weight, balance), as well as topics in aircrew coordination (e.g., crew resource management and situational

  16. Laboratory for Atmospheres: 2006 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    2007-01-01

    The 2006 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, are highlighted in this report.

  17. Laboratory for Atmospheres 2009 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Cote, Charles E.

    2010-01-01

    The 2009 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  18. Laboratory for Atmospheres 2005 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The 2005 Technical highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  19. Laboratory for Atmospheres 2007 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    2008-01-01

    The 2007 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  20. Laboratory for Atmospheres 2010 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The 2010 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  1. Digital instrumentation and management of dead time: first results on a NaI well-type detector setup.

    PubMed

    Censier, B; Bobin, C; Bouchard, J; Aubineau-Lanièce, I

    2010-01-01

    The LNE-LNHB is engaged in a development program on digital instrumentation, the first step being the instrumentation of a NaI well-type detector set-up. The prototype acquisition card and its technical specifications are presented together with the first comparison with the classical NIM-based acquisition chain, for counting rates up to 100 kcps. The digital instrumentation is shown to be counting-loss free in this range. This validates the main option adopted in this project, namely the implementation of an extending dead time with live-time measurement already successfully used in the MTR2 NIM module developed at LNE-LNHB. Copyright 2010. Published by Elsevier Ltd.

  2. Contributions of the SDR Task Network tool to Calibration and Validation of the NPOESS Preparatory Project instruments

    NASA Astrophysics Data System (ADS)

    Feeley, J.; Zajic, J.; Metcalf, A.; Baucom, T.

    2009-12-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) Calibration and Validation (Cal/Val) team is planning post-launch activities to calibrate the NPP sensors and validate Sensor Data Records (SDRs). The IPO has developed a web-based data collection and visualization tool in order to effectively collect, coordinate, and manage the calibration and validation tasks for the OMPS, ATMS, CrIS, and VIIRS instruments. This tool is accessible to the multi-institutional Cal/Val teams consisting of the Prime Contractor and Government Cal/Val leads along with the NASA NPP Mission team, and is used for mission planning and identification/resolution of conflicts between sensor activities. Visualization techniques aid in displaying task dependencies, including prerequisites and exit criteria, allowing for the identification of a critical path. This presentation will highlight how the information is collected, displayed, and used to coordinate the diverse instrument calibration/validation teams.

  3. Depression Screening in Chronic Disease Management: A Worksite Health Promotion Initiative.

    PubMed

    Jensen, Elizabeth; Dumas, Bonnie P; Edlund, Barbara J

    2016-03-01

    This pilot project aimed to improve depression symptoms and quality-of-life measures for individuals in a worksite disease management program. Two hundred forty-three individuals were invited to participate, out of which 69 enrolled. The participants had a history of diabetes, hypertension, or hyperlipidemia, and demonstrated depression using the Patient Health Questionnaire-9 (PHQ-9). The project consisted of counseling sessions provided every 2 to 4 weeks by a family nurse practitioner. PHQ-9 scores and those of an instrument that measures quality of life, the Veteran's Rand-12 (VR-12), were compared pre-intervention and post-intervention to evaluate the effectiveness of the project. PHQ-9 and VR-12 Mental Health Component (MHC) scores improved significantly after 3 months of nurse practitioner-led individual counseling sessions. This project demonstrated that depression screening and therapeutic management, facilitated by a nurse practitioner, can improve depression and perceived quality of life in individuals with hypertension, hyperlipidemia, or type 2 diabetes. © 2015 The Author(s).

  4. The HST/WFC3 Quicklook Project: A User Interface to Hubble Space Telescope Wide Field Camera 3 Data

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Bajaj, Varun; Bowers, Ariel; Dulude, Michael; Durbin, Meredith; Gosmeyer, Catherine; Gunning, Heather; Khandrika, Harish; Martlin, Catherine; Sunnquist, Ben; Viana, Alex

    2017-06-01

    The Hubble Space Telescope's Wide Field Camera 3 (WFC3) instrument, comprised of two detectors, UVIS (Ultraviolet-Visible) and IR (Infrared), has been acquiring ~ 50-100 images daily since its installation in 2009. The WFC3 Quicklook project provides a means for instrument analysts to store, calibrate, monitor, and interact with these data through the various Quicklook systems: (1) a ~ 175 TB filesystem, which stores the entire WFC3 archive on disk, (2) a MySQL database, which stores image header data, (3) a Python-based automation platform, which currently executes 22 unique calibration/monitoring scripts, (4) a Python-based code library, which provides system functionality such as logging, downloading tools, database connection objects, and filesystem management, and (5) a Python/Flask-based web interface to the Quicklook system. The Quicklook project has enabled large-scale WFC3 analyses and calibrations, such as the monitoring of the health and stability of the WFC3 instrument, the measurement of ~ 20 million WFC3/UVIS Point Spread Functions (PSFs), the creation of WFC3/IR persistence calibration products, and many others.

  5. Adding Interferometer Restoration and Upgrade: Learning by Doing with the NINE Program

    NASA Astrophysics Data System (ADS)

    Saby, Linnea

    2017-01-01

    During the summer of 2016, participants in the National and International Non-Traditional Exchange (NINE) Program were responsible for the restoration and upgrade of N2I2, an instructional interferometer located on New Mexico Tech's Socorro campus. The NINE program is a National Radio Astronomy Observatory (NRAO) initiative geared towards providing training in project management and other STEM functional areas to underrepresented groups around the world. A description of this restoration project illustrates both the experience of a NINE program participant and, more specifically, how principles of engineering and project management were applied to achieve project objectives.N2I2 was created by a joint NRAO-New Mexico Tech (NMT) team and became operational in 2004. The original instrument comprised two ten-foot dishes which recieved signals that were added using a simple power combiner, and data was interpreted using software on computers located in a nearby control room. The theory of adding interferometry was re-discovered for the design of this unique telescope. N2I2 was built using simple hardware with the intention of allowing interested community members and students from middle school to graduate school to learn about the principles of radio astronomy.Unfortunately, between 2008 and 2016 N2I2 was not used on a regular basis and fell into disrepair. NINE program director Lory Wingate accepted the responsibility of restoring the instrument as an experiential learning opportunity for the Socorro, New Mexico NINE team.During their 9 week assignment, the NINE team created a project plan, replaced and upgraded antenna hardware, developed operation and maintenance manuals, and refurbished the control room. A project plan was created for the addition of a third antenna and that plan was successfully carried out during August and September of 2016.Ultimately, functionality was successfully restored and improved, a maintenance plan was put into place, and community interest in the instrument was reignited.

  6. Lunar Prospector: First Results and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Scott Hubbard, G.; Feldman, William; Cox, Sylvia A.; Smith, Marcie A.; Chu-Thielbar, Lisa

    2002-01-01

    Lunar Prospector, the first competitively selected mission in NASA's Discovery Program, is conducting a one-year orbital survey of the Moon's composition and structure. Launched on January 6 1998, the suite of five instruments is measuring water/ice to a sensitivity of 50 ppm (hydrogen), detecting key elemental constituents, gas release events and mapping the Moon's gravitational and magnetic fields. The mission is described with emphasis on the first scientific results and lessons learned from managing a very low cost project. A mission overview and systems description is given along with final mission trajectories. Lessons learned from government-industry teaming, new modes of project management, and novel contractual arrangements are discussed. The suite of five instruments (neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer) is outlined with attention to final technical performance as well as development on a constrained budget and schedule. A review of our novel approaches to education and public outreach is discussed and a summary with suggestions and implications for future missions is provided.

  7. The "What," "Why" and "How" of Job Order Contracting (JOC). IssueTrak: A CEFPI Brief on Educational Facility Issues

    ERIC Educational Resources Information Center

    Jayne, Ken

    2004-01-01

    This "IssueTrak" discusses how facility planners and managers need an assortment of instruments in their toolbox so that they are able to select the best and most appropriate device for each project. A relatively new tool that should be at the disposal of all educational facility managers and planners is the construction delivery system of Job…

  8. ASK Talks with Alex McCool

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As a charter member at Marshall, McCool was instrumental in the design of the propulsion systems for the Saturn launch vehicles that propelled Apollo to the Moon and directed project engineering for Skylab, the first space science laboratory. Alex McCool's 48-year career includes exceptional contributions to the vehicles that launched America into orbit and carried human beings to the moon. Presently, he is the manager of the Space Shuttle Projects Office at Marshall. Among his many honors he recently received the National Space Club's 2002 Astronautics Engineer Award. The award recognizes those who have made outstanding contributions in engineering management to the national space program.

  9. David A. Sievers | NREL

    Science.gov Websites

    fermentation and refining process. One of his favorite topics is in the design and commissioning of custom research equipment. His areas of expertise include: Project management Process design, equipment design , and fabrication Instrumentation and controls design and programming Data analysis and presentation

  10. IEC 61511 and the capital project process--a protective management system approach.

    PubMed

    Summers, Angela E

    2006-03-17

    This year, the process industry has reached an important milestone in process safety-the acceptance of an internationally recognized standard for safety instrumented systems (SIS). This standard, IEC 61511, documents good engineering practice for the assessment, design, operation, maintenance, and management of SISs. The foundation of the standard is established by several requirements in Part 1, Clauses 5-7, which cover the development of a management system aimed at ensuring that functional safety is achieved. The management system includes a quality assurance process for the entire SIS lifecycle, requiring the development of procedures, identification of resources and acquisition of tools. For maximum benefit, the deliverables and quality control checks required by the standard should be integrated into the capital project process, addressing safety, environmental, plant productivity, and asset protection. Industry has become inundated with a multitude of programs focusing on safety, quality, and cost performance. This paper introduces a protective management system, which builds upon the work process identified in IEC 61511. Typical capital project phases are integrated with the management system to yield one comprehensive program to efficiently manage process risk. Finally, the paper highlights areas where internal practices or guidelines should be developed to improve program performance and cost effectiveness.

  11. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    NASA Astrophysics Data System (ADS)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-06-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning, spiral learning and peer assessment. Namely, the course is articulated during a semester through the structured (progressive and incremental) development of a sequence of four projects, whose duration, scope and difficulty of management increase as the student gains theoretical and instrumental knowledge related to planning, monitoring and controlling projects. Moreover, the proposal is complemented using peer assessment. The proposal has already been implemented and validated for the last 3 years in two different universities. In the first year, project-based learning and spiral learning methods were combined. Such a combination was also employed in the other 2 years; but additionally, students had the opportunity to assess projects developed by university partners and by students of the other university. A total of 154 students have participated in the study. We obtain a gain in the quality of the subsequently projects derived from the spiral project-based learning. Moreover, this gain is significantly bigger when peer assessment is introduced. In addition, high-performance students take advantage of peer assessment from the first moment, whereas the improvement in poor-performance students is delayed.

  12. PM Science Working Group Meeting on Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1997-01-01

    The EOS PM Science Working Group met on May 6, 1997, to examine the issue of spacecraft maneuvers. The meeting was held at NASA Goddard Space Flight Center and was attended by the Team Leaders of all four instrument science teams with instruments on the PM-1 spacecraft, additional representatives from each of the four teams, the PM Project management, and random others. The meeting was chaired by the PM Project Scientist and open to all. The meeting was called in order to untangle some of the concerns raised over the past several months regarding whether or not the PM-1 spacecraft should undergo spacecraft maneuvers to allow the instruments to obtain deep-space views. Two of the Science Teams, those for the Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES), had strongly expressed the need for deep-space views in order to calibrate their instruments properly and conveniently. The other two teams, those for the Advanced Microwave Scanning Radiometer (AMSR-E) and the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the Humidity Sounder for Brazil (HSB), had expressed concerns that the maneuvers involve risks to the instruments and undesired gaps in the data sets.

  13. One University's Approach to Student-Based Experiential Training With Spaceflight Hardware

    NASA Astrophysics Data System (ADS)

    Klumpar, D. M.

    2005-12-01

    Montana State University's interdisciplinary Space Science and Engineering Laboratory (SSEL) is in the fifth year of a program that is providing trained space experimentalists and space-savvy engineers for the nation's workforce. Through this program students learn, through first hand experience, the need for rigorous trade studies, documentation, design reviews, and procedures by which interdisciplinary teams conduct successful scientific satellite missions. The program differs from more traditional university student involvements in satellite instrumentation in that, rather than somewhat compartmentalized participation in a formal NASA space mission (or sounding rocket investigation) these students conceive, design, build, test, and fly their own missions. As a result of these projects being entirely student managed and student executed, the students experience all aspects of the complete mission development cycle, including full responsibility for project management. Contributing to the success of the MSU program has been the fact that the projects are ongoing and are carried on outside of the academic course based curriculum structure. Rather than merely taking a course of two and then moving on, individual students spend much of their university tenure associated with the laboratory as an extracurricular activity. The program is based on continuing professional development of the individual student by providing increasingly challenging tasks through increasingly sophisticated projects. The tiered program offers ground-based instruments, balloon-borne systems and payloads, rockets and rocket-based instruments, and earth orbiting satellites and their subsystems. Frequent opportunities to develop and test hardware throughout the long process of satellite design and development are provided by low-cost and frequent high-altitude balloon flights. Strategies that have been developed for dealing with student turnover, and the multitude of priorities that distract the students will be discussed.

  14. Total and Spectral Solar Irradiance Sensor (TSIS) Project Status

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace

    2018-01-01

    TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).

  15. Monthly paleostreamflow reconstruction from annual tree-ring chronologies

    Treesearch

    J. H. Stagge; D. E. Rosenberg; R. J. DeRose; T. M. Rittenour

    2018-01-01

    Paleoclimate reconstructions are increasingly used to characterize annual climate variability prior to the instrumental record, to improve estimates of climate extremes, and to provide a baseline for climate change projections. To date, paleoclimate records have seen limited engineering use to estimate hydrologic risks because water systems models and managers usually...

  16. 78 FR 35942 - Proposed Collection; Comment Request: Palliative Care: Conversations Matter Evaluation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... of Management and Budget (OMB) for review and approval. Written comments and/or suggestions from the... instruments, submit comments in writing, or request more information on the proposed project, contact Ms...) 496-0256, or Email your request, including your address to: [email protected] . Comments...

  17. Why do Economic Instruments Fail? The role of Water trading and Pricing at a River Basin Scale

    NASA Astrophysics Data System (ADS)

    Pérez-Blanco, C. D.; Gomez, C.; Loch, A. J.; Adamson, D. C.

    2016-12-01

    Water management problems stem from the mismatch between a multitude of individual decisions, on the one hand, and the current and projected status of water resources, on the other. Economics provides valuable information on the incentives that drive individual decisions and can be used to design instruments that address the problem. Yet, proposals from economists regarding instruments like water pricing or trading are mostly based upon basic and general principles of welfare economics that are not straightaway applicable to assets as complex as water. For example, while water markets clearly serve to the parts directly involved in the transaction, the unique characteristics of water often leads to Pareto inefficient allocations that affect the environment and related economic uses. The flaw in this approach lies in the understanding that water prices and water trading schemes may be good or bad on their own (e.g. finding the "right" price). This vision changes radically when we focus on the problem, instead of the instrument. In this case addressing water management challenges is equivalent to making the multitude of decisions people do about water compatible with collective water governance goals such as curbing degradation trends or building water security for the future. These ideas provide both the basis for assessing existing incentives such as pricing and trading schemes and reshaping economic instruments to serve the objectives of an integrated water resources management.

  18. Caater: Arat - Fokker 27, aircraft facility

    NASA Astrophysics Data System (ADS)

    Penazzi, G.; Joussaume, S.

    2003-04-01

    ARAT (Avion de Recherche Atmosphérique et de Télédétection), is owned and operated by IGN (Institut Géographique National) and managed by INSU, an institute of CNRS (Centre National de la Recherche Scientifique). ARAT is a versatile flying laboratory offering several scientific configurations: basic meteorological instrumentation, turbulent flux equipment, radiation measurement (Visible, Red, IR, UV, J(NO_2), radiance, ground temperature), microphysics sensors, in-situ and remote sensing chemistry instruments (NO-NO_2-NOy and PAN, Water Vapour and Ozone Lidars), Aerosol Lidar, Earth Observation Instrumentation (Visible, Microwave, POLDER), etc. Access to ARAT was offered through the EC-funded IHP-ARI contract, under a co-ordinated aircraft project (with MRF, U.K.; DLR, Germany and Meteo France) called CAATER (Co-ordinated Access to Aircraft for Transnational Environmental Research). Since 2000 access to ARAT has been offered to 6 research groups from different EU Member States for about 10 flight hours each. This project is a follow-on to STAAARTE (1996-2000), which gave access to ARAT to 14 user groups for about 8 flight hours per group. A new project, with new aircraft, within the frame of an Integrated Infrastructure Initiative of the Sixth Framework Programme is currently in preparation.

  19. The 1981 current research on aviation weather (bibliography)

    NASA Technical Reports Server (NTRS)

    Daniel, J.; Frost, W.

    1982-01-01

    Current and ongoing research programs related to various areas of aviation meteorology are presented. Literature searches of major abstract publications, were conducted. Research project managers of various government agencies involved in aviation meteorology research provided a list of current research project titles and managers, supporting organizations, performing organizations, the principal investigators, and the objectives. These are tabulated under the headings of advanced meteorological instruments, forecasting, icing, lightning and atmospheric electricity; fog, visibility, and ceilings; low level wind shear, storm hazards/severe storms, turbulence, winds, and ozone and other meteorological parameters. This information was reviewed and assembled into a bibliography providing a current readily useable source of information in the area of aviation meteorology.

  20. 2001 Mars Odyssey Project report

    NASA Technical Reports Server (NTRS)

    Spencer, D. A.; Gibbs, R. G.; Mase, R. A.; Plaut, J. J.; Saunders, R. S.

    2002-01-01

    The Mars Odyssey orbiter was launched on April 7, 2001, and arrived at Mars on October 24, 2001. The orbiter carries scientific instruments that will determine surface elemental composition, mineralogy and morphology, and measure the Mars radiation environment from orbit. In addition, the orbiter will serve as a data relay for future surface missions. This paper will present an overview of the Odyssey project, including the key elements of the spacecraft design, mission design and navigation, mission operations, and the science approach. The project's risk management process will be described. Initial findings of the science team will be summarized.

  1. Sovereign cat bonds and infrastructure project financing.

    PubMed

    Croson, David; Richter, Andreas

    2003-06-01

    We examine the opportunities for using catastrophe-linked securities (or equivalent forms of nondebt contingent capital) to reduce the total costs of funding infrastructure projects in emerging economies. Our objective is to elaborate on methods to reduce the necessity for unanticipated (emergency) project funding immediately after a natural disaster. We also place the existing explanations of sovereign-level contingent capital into a catastrophic risk management framework. In doing so, we address the following questions. (1) Why might catastrophe-linked securities be useful to a sovereign nation, over and above their usefulness for insurers and reinsurers? (2) Why are such financial instruments ideally suited for protecting infrastructure projects in emerging economies, under third-party sponsorship, from low-probability, high-consequence events that occur as a result of natural disasters? (3) How can the willingness to pay of a sovereign government in an emerging economy (or its external project sponsor), who values timely completion of infrastructure projects, for such instruments be calculated? To supplement our treatment of these questions, we use a multilayer spreadsheet-based model (in Microsoft Excel format) to calculate the overall cost reductions possible through the judicious use of catastrophe-based financial tools. We also report on numerical comparative statics on the value of contingent-capital financing to avoid project disruption based on varying costs of capital, probability and consequences of disasters, the feasibility of strategies for mid-stage project abandonment, and the timing of capital commitments to the infrastructure investment. We use these results to identify high-priority applications of catastrophe-linked securities so that maximal protection can be realized if the total number of catastrophe instruments is initially limited. The article concludes with potential extensions to our model and opportunities for future research.

  2. The Colorado Student Space Weather Experiment : A CubeSat for Space Physics

    NASA Astrophysics Data System (ADS)

    Palo, Scott; Li, Xinlin; Gerhardt, David; Turner, Drew; Hoxie, V.; Kohnert, Rick; Batiste, Susan

    Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A National Science Foundation supported 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental scientific questions relating to these high energy particles. Of key importance are the relation-ship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, operating in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and pro-tons in 10-40 MeV. The Colorado Student Space Weather Experiment cubesat will be designed, integrated and testing by students at the University of Colorado under the oversight of pro-fessional engineers with the Laboratory of Atmospheric and Space Physics who have extensive space hardware experience. Our design philosophy is to use commercially off the shelf (COTS) parts where available and only engage in detailed designed where COTS parts cannot meet the system needs. The top level science requirements for the mission have driven the system and subsystem level performance requirements and the specific design choices such as a passive magnetic attitude system and instrument design. In this paper we will present details of the CSSWE design and management approach. Specifically we will discuss the top level science requirements for the mission and show that these measurements are novel and will address open questions in the scientific community. The overall system architecture resulting from a flow-down of these requirements will be presented with a focus on the novel aspects of the system including the instrument design. Finally we will discuss how this project is organized and man-aged as part of the Department of Aerospace Engineering graduate projects course sequence along with the integration of professional engineers in the program. It is often underappreciated that the management of a student project, given the transient nature of the students in the program, is more challenging than many of the technical aspects. We will discuss our process to managing this project risk along with our pedagological philosophy for student learning and its relationship to a small satellite program.

  3. Performer: An Instrument for Multidisciplinary Courseware Teams to Share Knowledge and Experiences

    ERIC Educational Resources Information Center

    van Aalst, Jan-Willem; van der Mast, Charles

    2003-01-01

    One of the traditional problems in courseware development that is recognized as hard to solve, is the communication and co-operation between various disciplines in project teams that are working on a courseware product [Alber (1996) "Multimedia: a management perspective." California: Wadsworth; Boyle (1997) "Design for multimedia learning." UK:…

  4. Meeting the challenges of bringing a new base facility operation model to Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Nitta, Atsuko; Arriagada, Gustavo; Adamson, A. J.; Cordova, Martin; Nunez, Arturo; Serio, Andrew; Kleinman, Scot

    2016-08-01

    The aim of the Gemini Observatory's Base Facilities Project is to provide the capabilities to perform routine night time operations with both telescopes and their instruments from their respective base facilities without anyone present at the summit. Tightening budget constraints prompted this project as both a means to save money and an opportunity to move toward increasing remote operations in the future. We successfully moved Gemini North nighttime operation to our base facility in Hawaii in Nov., 2015. This is the first 8mclass telescope to completely move night time operations to base facility. We are currently working on implementing BFO to Gemini South. Key challenges for this project include: (1) This is a schedule driven project. We have to implement the new capabilities by the end of 2015 for Gemini North and end of 2016 for Gemini South. (2) The resources are limited and shared with operations which has the higher priority than our project. (3) Managing parallel work within the project. (4) Testing, commissioning and introducing new tools to operational systems without adding significant disruptions to nightly operations. (5) Staff buying to the new operational model. (6) The staff involved in the project are spread on two locations separated by 10,000km, seven time zones away from each other. To overcome these challenges, we applied two principles: "Bare Minimum" and "Gradual Descent". As a result, we successfully completed the project ahead of schedule at Gemini North Telescope. I will discuss how we managed the cultural and human aspects of the project through these concepts. The other management aspects will be presented by Gustavo Arriagada [2], the Project Manager of this project. For technical details, please see presentations from Andrew Serio [3] and Martin Cordova [4].

  5. Ames Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.

  6. Scientific and technological Challenges in the development of astronomical instrumentation: E-ELT & ALMA

    NASA Astrophysics Data System (ADS)

    Barrado, David; Gallego, Jesús

    2009-12-01

    The answers to the present astrophysical questions require the development of highly sophisticated instrumentation, which needs long-term scheduling and large assets of human and material resources, managed by consortia of several institutions. Spain has carried in the last years serious efforts in this direction (GTC, ESO, ESA), but there is still a notable offset between astronomical research at the theoretical and observational levels and the development of instrumentation. Now, the incorporation of new countries to ESO (in particular Spain) to ESO and several future big projects (ALMA, E-ELT, Cosmic Vision), raise the level of exigency. The goal of this workshop is to gather the scientific teams and the industries of the sector to expose their needs and projects, and share experiences. The workshop is aimed as well at serving as an echo to convince financing agencies and the astronomical community in general of the need to promote with decision the development of astrophysical instrumentation and the tools for the analysis of related data. The formation and acknowledgement of instrumentation astronomers will be a key factor for Spain to meet the requirements of its position in Astronomy in the next decades. Here, we present the contributions most closely related to the development of E-ELT, ALMA and ESA missions.

  7. Lidar Remote Sensing of Forests: New Instruments and Modeling Capabilities

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.

    2012-01-01

    Lidar instruments provide scientists with the unique opportunity to characterize the 3D structure of forest ecosystems. This information allows us to estimate properties such as wood volume, biomass density, stocking density, canopy cover, and leaf area. Structural information also can be used as drivers for photosynthesis and ecosystem demography models to predict forest growth and carbon sequestration. All lidars use time-in-flight measurements to compute accurate ranging measurements; however, there is a wide range of instruments and data types that are currently available, and instrument technology continues to advance at a rapid pace. This seminar will present new technologies that are in use and under development at NASA for airborne and space-based missions. Opportunities for instrument and data fusion will also be discussed, as Dr. Cook is the PI for G-LiHT, Goddard's LiDAR, Hyperspectral, and Thermal airborne imager. Lastly, this talk will introduce radiative transfer models that can simulate interactions between laser light and forest canopies. Developing modeling capabilities is important for providing continuity between observations made with different lidars, and to assist the design of new instruments. Dr. Bruce Cook is a research scientist in NASA's Biospheric Sciences Laboratory at Goddard Space Flight Center, and has more than 25 years of experience conducting research on ecosystem processes, soil biogeochemistry, and exchange of carbon, water vapor and energy between the terrestrial biosphere and atmosphere. His research interests include the combined use of lidar, hyperspectral, and thermal data for characterizing ecosystem form and function. He is Deputy Project Scientist for the Landsat Data Continuity Mission (LDCM); Project Manager for NASA s Carbon Monitoring System (CMS) pilot project for local-scale forest biomass; and PI of Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) airborne imager.

  8. How to Apply for and Secure EU Funding for Collaborative IBD Research Projects

    PubMed Central

    Satsangi, Jack; Kitten, Olivier; Chavez, Marcela; Kalla, Rahul; Prel, Nadege; Meuwis, Marie-Alice; Scott, Stephanie; Bonetti, Illaria; Ventham, Nicholas T.

    2016-01-01

    The European Union offers opportunities for high-level of funding of collaborative European research. Calls are regularly published: after the end of the FP7 funding programme the new round of Horizon 2020 calls started in 2015. Several topics are relevant to inflammatory bowel disease (IBD) challenges, including chronic disease management, biomarker discovery and new treatments developments. The aim of this Viewpoint article is to describe the new Horizon 2020 instrument and the project submission procedures, and to highlight these through the description of tips and tricks, taking advantage of four examples of successful projects in the field of IBD: the SADEL, IBD-BIOM, IBD Character and BIOCYCLE projects. PMID:26744440

  9. STS-3 MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC

    NASA Image and Video Library

    1982-03-26

    Mission Control Activities during the STS-3 Mission, Day-4 with: Maj. Gen. James A. Abrahamson, Associate Administrator of the Space Transportation System (STS), NASA Hdqs., conversing with Dr. Kraft; Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC, Aaron Cohen, Manager, Space Shuttle Orbiter Project Office; and, J. E. Conner, Ford Aerospace Engineer at the Instrumentation and Communications Officer (INCO) Console position. 1. Glynn S. Lunney 2. Major General James A. Abrahamson 3. Aaron Cohen 4. J. E. Conner 5. Dr. Christopher Kraft JSC, Houston, TX

  10. Requirements management for Gemini Observatory: a small organization with big development projects

    NASA Astrophysics Data System (ADS)

    Close, Madeline; Serio, Andrew; Cordova, Martin; Hardie, Kayla

    2016-08-01

    Gemini Observatory is an astronomical observatory operating two premier 8m-class telescopes, one in each hemisphere. As an operational facility, a majority of Gemini's resources are spent on operations however the observatory undertakes major development projects as well. Current projects include new facility science instruments, an operational paradigm shift to full remote operations, and new operations tools for planning, configuration and change control. Three years ago, Gemini determined that a specialized requirements management tool was needed. Over the next year, the Gemini Systems Engineering Group investigated several tools, selected one for a trial period and configured it for use. Configuration activities including definition of systems engineering processes, development of a requirements framework, and assignment of project roles to tool roles. Test projects were implemented in the tool. At the conclusion of the trial, the group determined that the Gemini could meet its requirements management needs without use of a specialized requirements management tool, and the group identified a number of lessons learned which are described in the last major section of this paper. These lessons learned include how to conduct an organizational needs analysis prior to pursuing a tool; caveats concerning tool criteria and the selection process; the prerequisites and sequence of activities necessary to achieve an optimum configuration of the tool; the need for adequate staff resources and staff training; and a special note regarding organizations in transition and archiving of requirements.

  11. The Integration of Word Processing with Data Processing in an Educational Environment. Final Report.

    ERIC Educational Resources Information Center

    Patterson, Lorna; Schlender, Jim

    A project examined the Office of the Future and determined trends regarding an integration of word processing and data processing. It then sought to translate those trends into an educational package to develop the potential information specialist. A survey instrument completed by 33 office managers and word processing and data processing…

  12. Lunar Atmosphere and Dust Environment Explorer Integration and Test

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.; McCormick, John L.; Hoffman, Richard G.

    2010-01-01

    Integration and test (I&T) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) is presented. A collaborative NASA project between Goddard Space Flight Center and Ames Research Center, LADEE's mission is to explore the low lunar orbit environment and exosphere for constituents. Its instruments include two spectrometers, a dust detector, and a laser communication technology demonstration. Although a relatively low-cost spacecraft, LADEE has I&T requirements typical of most planetary probes, such as prelaunch contamination control, sterilization, and instrument calibration. To lead to a successful mission, I&T at the spacecraft, instrument, and observatory level must include step-by-step and end-to-end functional, environmental, and performance testing. Due to its compressed development schedule, LADEE I&T planning requires adjusting test flows and sequences to account for long-lead critical-path items and limited spares. A protoflight test-level strategy is also baselined. However, the program benefits from having two independent but collaborative teams of engineers, managers, and technicians that have a wealth of flight project experience. This paper summarizes the LADEE I&T planning, flow, facilities, and probe-unique processes. Coordination of requirements and approaches to I&T when multiple organizations are involved is discussed. Also presented are cost-effective approaches to I&T that are transferable to most any spaceflight project I&T program.

  13. Mercator Projection of Huygens View

    NASA Image and Video Library

    2006-05-04

    This poster shows a flattened (Mercator) projection of the Huygens probe's view from 10 kilometers altitude (6 miles). The images that make up this view were taken on Jan. 14, 2005, with the descent imager/spectral radiometer onboard the European Space Agency's Huygens probe. The Huygens probe was delivered to Saturn's moon Titan by the Cassini spacecraft, which is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. NASA supplied two instruments on the probe, the descent imager/spectral radiometer and the gas chromatograph mass spectrometer. http://photojournal.jpl.nasa.gov/catalog/PIA08113

  14. Designing A Robust Command, Communications and Data Acquisition System For Autonomous Sensor Platforms Using The Data Transport Network

    NASA Astrophysics Data System (ADS)

    Valentic, T. A.

    2012-12-01

    The Data Transport Network is designed for the delivery of data from scientific instruments located at remote field sites with limited or unreliable communications. Originally deployed at the Sondrestrom Research Facility in Greenland over a decade ago, the system supports the real-time collection and processing of data from large instruments such as incoherent scatter radars and lidars. In recent years, the Data Transport Network has been adapted to small, low-power embedded systems controlling remote instrumentation platforms deployed throughout the Arctic. These projects include multiple buoys from the O-Buoy, IceLander and IceGoat programs, renewable energy monitoring at the Imnavait Creek and Ivotuk field sites in Alaska and remote weather observation stations in Alaska and Greenland. This presentation will discuss the common communications controller developed for these projects. Although varied in their application, each of these systems share a number of common features. Multiple instruments are attached, each of which needs to be power controlled, data sampled and files transmitted offsite. In addition, the power usage of the overall system must be minimized to handle the limited energy available from sources such as solar, wind and fuel cells. The communications links are satellite based. The buoys and weather stations utilize Iridium, necessitating the need to handle the common drop outs and high-latency, low-bandwidth nature of the link. The communications controller is an off-the-shelf, low-power, single board computer running a customized version of the Linux operating system. The Data Transport Network provides a Python-based software framework for writing individual data collection programs and supplies a number of common services for configuration, scheduling, logging, data transmission and resource management. Adding a new instrument involves writing only the necessary code for interfacing to the hardware. Individual programs communicate with the system services using XML-RPC. The scheduling algorithms have access the current position and power levels, allowing for instruments such as cameras to only be run during daylight hours or when sufficient power is available. The resource manager monitors the use of common devices such as the USB bus or Ethernet ports, and can power them down when they are not being used. This management lets us drop the power consumption from an average of 1W to 250mW.

  15. Systematic review of the effects of chronic disease management on quality-of-life in people with chronic obstructive pulmonary disease.

    PubMed

    Niesink, A; Trappenburg, J C A; de Weert-van Oene, G H; Lammers, J W J; Verheij, T J M; Schrijvers, A J P

    2007-11-01

    Chronic disease management for patients with chronic obstructive pulmonary disease (COPD) may improve quality, outcomes and access to care. To investigate effectiveness of chronic disease management programmes on the quality-of-life of people with COPD. Medline and Embase (1995-2005) were searched for relevant articles, and reference lists and abstracts were searched for controlled trials of chronic disease management programmes for patients with COPD. Quality-of-life was assessed as an outcome parameter. Two reviewers independently reviewed each paper for methodological quality and extracted the data. We found 10 randomized-controlled trials comparing chronic disease management with routine care. Patient populations, health-care professionals, intensity, and content of the intervention were heterogeneous. Different instruments were used to assess quality of life. Five out of 10 studies showed statistically significant positive outcomes on one or more domains of the quality of life instruments. Three studies, partly located in primary care, showed positive results. All chronic disease management projects for people with COPD involving primary care improved quality of life. In most of the studies, aspects of chronic disease management were applied to a limited extent. Quality of randomized-controlled trials was not optimal. More research is needed on chronic disease management programmes in patients with COPD across primary and secondary care.

  16. The Perkins Telescope in the 21st Century: An NSF PREST Project

    NASA Astrophysics Data System (ADS)

    Janes, K. A.; Buie, M. W.; Bosh, A. S.; Clemens, D. P.; Jackson, J. M.

    2005-12-01

    With the help of a grant under the NSF "Program for Research and Education with Small Telescopes (PREST)," Boston University and Lowell Observatory are engaged in a project to improve the performance of the 1.83-meter Perkins Telescope on Anderson Mesa near Flagstaff, Arizona. Our goal is to bring the Perkins Telescope into the 21st century, to create effective resources in support of the scientific and educational missions of our two institutions and the larger community. Over the past several years we have re-instrumented the telescope; two facility-class instruments, Mimir, a wide-field infrared imager, polarimeter and spectrometer and PRISM, an optical counterpart, are now in operation at the Perkins Telescope. The new instrumentation at the Perkins will give our partnership and visiting observers access to an important niche in "observation space" not readily available elsewhere. Wide-field polarimetry and imaging and multi-object low-resolution spectroscopy are now possible across the spectrum from the near uv to the thermal IR. We are well-placed for surveys and synoptic studies, ranging from monitoring polarization variations in blazars to mapping the galactic magnetic field to tracking Kuiper-belt objects. Our PREST project includes four components: Thermal management to improve the seeing at the telescope, upgrades to the instrumentation, productivity enhancements to the facility, and integration of the Boston University access to the telescope into our graduate and undergraduate educational programs. In the first year of the PREST grant we have set up a visitor program (see www.lowell.edu/VisitingObservers/), established a graduate-student-in-residence program, installed fans and ductwork around the telescope and dome to improve seeing, and completed a student-led project to construct an innovative grism for optical spectroscopy based on a volume-phase holographic grating.

  17. Spinoff 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Image-Capture Devices Extend Medicine's Reach; Medical Devices Assess, Treat Balance Disorders; NASA Bioreactors Advance Disease Treatments; Robotics Algorithms Provide Nutritional Guidelines; "Anti-Gravity" Treadmills Speed Rehabilitation; Crew Management Processes Revitalize Patient Care; Hubble Systems Optimize Hospital Schedules; Web-based Programs Assess Cognitive Fitness; Electrolyte Concentrates Treat Dehydration; Tools Lighten Designs, Maintain Structural Integrity; Insulating Foams Save Money, Increase Safety; Polyimide Resins Resist Extreme Temperatures; Sensors Locate Radio Interference; Surface Operations Systems Improve Airport Efficiency; Nontoxic Resins Advance Aerospace Manufacturing; Sensors Provide Early Warning of Biological Threats; Robot Saves Soldier's Lives Overseas (MarcBot); Apollo-Era Life Raft Saves Hundreds of Sailors; Circuits Enhance Scientific Instruments and Safety Devices; Tough Textiles Protect Payloads and Public Safety Officers; Forecasting Tools Point to Fishing Hotspots; Air Purifiers Eliminate Pathogens, Preserve Food; Fabrics Protect Sensitive Skin from UV Rays; Phase Change Fabrics Control Temperature; Tiny Devices Project Sharp, Colorful Images; Star-Mapping Tools Enable Tracking of Endangered Animals; Nanofiber Filters Eliminate Contaminants; Modeling Innovations Advance Wind Energy Industry; Thermal Insulation Strips Conserve Energy; Satellite Respondent Buoys Identify Ocean Debris; Mobile Instruments Measure Atmospheric Pollutants; Cloud Imagers Offer New Details on Earth's Health; Antennas Lower Cost of Satellite Access; Feature Detection Systems Enhance Satellite Imagery; Chlorophyll Meters Aid Plant Nutrient Management; Telemetry Boards Interpret Rocket, Airplane Engine Data; Programs Automate Complex Operations Monitoring; Software Tools Streamline Project Management; Modeling Languages Refine Vehicle Design; Radio Relays Improve Wireless Products; Advanced Sensors Boost Optical Communication, Imaging; Tensile Fabrics Enhance Architecture Around the World; Robust Light Filters Support Powerful Imaging Devices; Thermoelectric Devices Cool, Power Electronics; Innovative Tools Advance Revolutionary Weld Technique; Methods Reduce Cost, Enhance Quality of Nanotubes; Gauging Systems Monitor Cryogenic Liquids; Voltage Sensors Monitor Harmful Static; and Compact Instruments Measure Heat Potential.

  18. Prototype PBO Instrumentation of CALIPSO Project Captures World-Record Lava Dome Collapse on Montserrat Volcano

    NASA Astrophysics Data System (ADS)

    Mattioli, Glen S.; Young, Simon R.; Voight, Barry; Sparks, R. Steven J.; Shalev, Eylon; Selwyn, Sacks; Malin, Peter; Linde, Alan; Johnston, William; Hadayat, Dannie; Elsworth, Derek; Dunkley, Peter; Herd, Richard; Neuberg, Jurgen; Norton, Gillian; Widiwijayanti, Christina

    2004-08-01

    This article is an update on the status of an innovative new project designed to enhance generally our understanding of andesitic volcano eruption dynamics and, specifically, the monitoring and scientific infrastructure at the active Soufriàre Hills Volcano (SHV), Montserrat. The project has been designated as the Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory, known as CALIPSO. Its purpose is to investigate the dynamics of the entire SHV magmatic system using an integrated array of specialized instruments in four strategically located ~200-m-deep boreholes in concert with several shallower holes and surface sites. The project is unique, as it represents the first, and only, such borehole volcano-monitoring array deployed at an andesitic stratovolcano. CALIPSO may be considered as a prototype for planned Plate Boundary Observatory (PBO) installations at several volcanic targets in the western United States. Scientific objectives of the EarthScope Integrated Science Plan (ES-ISP) relevant to magmatic systems are to investigate (1) melt generation in the mantle; (2) melt migration from the mantle to and through the crust to the surface; (3) melt residence times at various deep reservoirs; and (4) delineation of characteristic patterns of surface deformation and seismicity, which may prove useful in eruption forecasting. The CALIPSO project shares most of the same scientific goals and has, moreover, the benefit of a rich existing geophysical context in its deployment at SHV. Our experience during instrument design, planning, drilling and installation, systems integration, and early operation of CALIPSO, moreover, may prove valuable to EarthScope and PBO managers.

  19. Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.

    2012-09-01

    Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.

  20. Managing large energy and mineral resources (EMR) projects in challenging environments

    NASA Astrophysics Data System (ADS)

    Chanmeka, Arpamart

    The viability of energy mineral resources (EMR) construction projects is contingent upon the state of the world economic climate. Oil sands projects in Alberta, Canada exemplify large EMR projects that are highly sensitive to fluctuations in the world market. Alberta EMR projects are constrained by high fixed production costs and are also widely recognized as one of the most challenging construction projects to successfully deliver due to impacts from extreme weather conditions, remote locations and issues with labor availability amongst others. As indicated in many studies, these hardships strain the industry's ability to execute work efficiently, resulting in declining productivity and mounting cost and schedule overruns. Therefore, to enhance the competitiveness of Alberta EMR projects, project teams are targeting effective management strategies to enhance project performance and productivity by countering the uniquely challenging environment in Alberta. The main purpose of this research is to develop industry wide benchmarking tailored to the specific constraints and challenges of Alberta. Results support quantitative assessments and identify the root causes of project performance and ineffective field productivity problems in the heavy industry sector capital projects. Customized metrics produced from the data collected through a web-based survey instrument were used to quantitatively assess project performance in the following dimensions: cost, schedule, change, rework, safety, engineering and construction productivity and construction practices. The system enables the industry to measure project performance more accurately, get meaningful comparisons, while establishing credible norms specific to Alberta projects. Data analysis to identify the root cause of performance problems was conducted. The analysis of Alberta projects substantiated lessons of previous studies to create an improved awareness of the abilities of Alberta-based companies to manage their unique projects. This investigation also compared Alberta-based projects with U.S. projects to point out the differences in project process and management strategies under different environments. The relative impact of factors affecting construction productivity were identified and validated by the input from industry experts. The findings help improve the work processes used by companies developing projects in Alberta.

  1. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm-hot intergalactic medium filament. Our goal is to continue the Faculty Fellowship effort with Center funds in succeeding summers.

  2. Unraveling the Process and Meaning of Problem-Based Learning Experiences

    ERIC Educational Resources Information Center

    Takahashi, Satoru; Saito, Eisuke

    2013-01-01

    This paper investigates the process and meaning of problem-based learning (PBL) that students may experience. The Project Cycle Management method was taught and utilised as an instrument of PBL at a Japanese women's college over a period of 5 years. The study closely examined what and how students learned in PBL from the perspectives of cognitive,…

  3. New Tools for New Missions - Unmanned Aircraft Systems Offer Exciting Capabilities

    NASA Astrophysics Data System (ADS)

    Bland, G.; Miles, T.; Pieri, D. C.; Coronado, P. L.; Fladeland, M. M.; Diaz, J. A.; Cione, J.; Maslanik, J. A.; Roman, M. O.; de Boer, G.; Argrow, B. M.; Novara, J.; Stachura, M.; Neal, D.; Moisan, J. R.

    2015-12-01

    There are numerous emerging possibilities for utilizing unmanned aircraft systems (UAS) to investigate a variety of natural hazards, both for prediction and analysis of specific events. Additionally, quick response capabilities will provide affordable, low risk support for emergency management teams. NASA's partnerships with commercial, university and other government agency teams are bringing new capabilities to research and emergency management communities. New technology platforms and instrument systems are gaining momentum for stand-off remote sensing observations, as well as penetration and detailed in-situ examination of natural and anthropogenic phenomena. Several pioneering investigations have provided the foundation for this development, including NASA projects with Aerosonde, Dragon Eye, and SIERRA platforms. With miniaturized instrument and platform technologies, these experiments demonstrated that previously unobtainable observations may significantly aid in the understanding, prediction, and assessment of natural hazards such as storms, volcanic eruptions, floods, and the potential impact of environmental changes. Remote sensing observations of storms and fires have also been successfully demonstrated through NASA's efforts with larger UAS such as the Global Hawk and Ikhana platforms. The future may unfold with new high altitude and/or long endurance capabilities, in some cases with less size and costs as payload capacity requirements are reduced through further miniaturization, and alternatively with expanded instrumentation and mission profiles. Several new platforms and instrument development projects are underway that will enable affordable, quick response observations. Additionally, distributed measurements that will provide near-simultaneous coverage at multiple locations will be possible - an exciting new mission concept that will greatly aid many observation scenarios. Partnerships with industry, academia, and other government agencies are all making significant contributions to these new capabilities.

  4. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNLmore » by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.« less

  5. The Terra Data Fusion Project: An Update

    NASA Astrophysics Data System (ADS)

    Di Girolamo, L.; Bansal, S.; Butler, M.; Fu, D.; Gao, Y.; Lee, H. J.; Liu, Y.; Lo, Y. L.; Raila, D.; Turner, K.; Towns, J.; Wang, S. W.; Yang, K.; Zhao, G.

    2017-12-01

    Terra is the flagship of NASA's Earth Observing System. Launched in 1999, Terra's five instruments continue to gather data that enable scientists to address fundamental Earth science questions. By design, the strength of the Terra mission has always been rooted in its five instruments and the ability to fuse the instrument data together for obtaining greater quality of information for Earth Science compared to individual instruments alone. As the data volume grows and the central Earth Science questions move towards problems requiring decadal-scale data records, the need for data fusion and the ability for scientists to perform large-scale analytics with long records have never been greater. The challenge is particularly acute for Terra, given its growing volume of data (> 1 petabyte), the storage of different instrument data at different archive centers, the different file formats and projection systems employed for different instrument data, and the inadequate cyberinfrastructure for scientists to access and process whole-mission fusion data (including Level 1 data). Sharing newly derived Terra products with the rest of the world also poses challenges. As such, the Terra Data Fusion Project aims to resolve two long-standing problems: 1) How do we efficiently generate and deliver Terra data fusion products? 2) How do we facilitate the use of Terra data fusion products by the community in generating new products and knowledge through national computing facilities, and disseminate these new products and knowledge through national data sharing services? Here, we will provide an update on significant progress made in addressing these problems by working with NASA and leveraging national facilities managed by the National Center for Supercomputing Applications (NCSA). The problems that we faced in deriving and delivering Terra L1B2 basic, reprojected and cloud-element fusion products, such as data transfer, data fusion, processing on different computer architectures, science, and sharing, will be presented with quantitative specifics. Results from several science-specific drivers for Terra fusion products will also be presented. We demonstrate that the Terra Data Fusion Project itself provides an excellent use-case for the community addressing Big Data and cyberinfrastructure problems.

  6. Highlights from 10 Years of NASA/KNMI/FMI Collaboration on UV Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2010-01-01

    The first joint meeting between NASA, KNMI and FMI scientists was held on 13 & 14 June, 2000, almost exactly 10 years ago. NASA had recently selected 14 US scientists to work on instrument calibration, science algorithms, and validation activities related to the Ozone Monitoring Instrument (OMI) that we being built by collaboration between the Netherlands and Finland for flight on NASA's EOS Aura satellite. The progress on this project had been remarkable for a space based instrument. Only two years before this meeting my colleague Ernest Hilsenrath and I had visited Netherlands at the invitation of Fokker Space to persuade KNMI management to collaborate with NASA on this mission. And only 4 years after the first science meeting was held OMI was lunched on the Aura spacecraft. Next month will be the 6 th anniversary of this launch and very successful operation of OMI. All this was possible because of the leadership from Dr. Hennie Kelder and KNMI management who in 1998 saw the opportunity for Netherlands in the mission and stepped up to the challenge by creating a young and talented team of scientists at KNMI under the leadership of Dr. Pieterenel Levelt. This vision has now put Netherlands as the leading country in the world in monitoring air quality from space. Recent selection of TROPOMI by ESA attests to the success of this vision. I will present some selected highlights of our very successful collaboration on this project over the past 10 years.

  7. Lunar Prospector: developing a very low cost planetary mission.

    NASA Astrophysics Data System (ADS)

    Hubbard, G. S.

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the lessons learned from managing a very low cost project. Insights into government-industry teaming, project management, contractual arrangements, schedule and budget reserve approach are discussed. The mission is conducting an orbital survey of the Moon's composition and structure. A mission overview and scientific data return is briefly described in the context of low cost mission development. The suite of five instruments is outlined: neutron spectrometer (NS), alpha particle spectrometer (APS), gamma ray spectrometer (GRS), magnetometer (MAG) and an electron reflectometer (ER). Scientific requirements and measurement approaches to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect gas release events and accurately map the Moon's gravitational and magnetic fields are described.

  8. Light Echo

    NASA Image and Video Library

    2017-12-08

    "Light Echo" Illuminates Dust Around Supergiant Star V838 Monocerotis (V838 Mon) Credit: NASA and The Hubble Heritage Team (AURA/STScI) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  9. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the module will be reconfigured for a pressurized core module configuration. Each year the HDU configurations will undergo testing at NASA's Desert Research and Technology Studies (D-RaTS) in Arizona [1]. As part of this project, a modular instrumentation system is developed to meet the monitoring needs of the HDU subsystems and to integrate with the current command and data handling infrastructure that has been developed for the project. The main objective of this study is to provide for the monitoring needs of the HDU. The requirements necessary to meet this objective are developed by working with the subsystem managers of the HDU to understand their monitoring needs. Additionally, the instrumentation system design leverages knowledge and lessons learned from previous studies, such as the inflatable habitat health monitoring system that was deployed in Antarctica [2], the integrated health monitoring system developed for NASA's Microhab [3], and the JSC Lunar Habitat Wireless Testbed to demonstrate a "standardsbased" approach to a wireless instrumentation system [4]. The HDU also requires flexibility in reconfiguration options, and it is necessary to demonstrate and evaluate a modular approach to an instrumentation system. Thus, the instrumentation system is designed in two parts: the primary system employs a standard WSN configuration, and the secondary system employs a wired USB hub. The WSN design provides for reconfiguration or replacement of sensors due to malfunctions or upgrades by using a wireless node that accepts ten instrument inputs and wirelessly transmits the data to the command and data handling system. The USB hub is necessary for those instruments that operate using a wired USB connection, although the design attempts to limit the amount of sensors that need to be wired connections.

  10. Data management for support of the Oregon Transect Ecosystem Research (OTTER) project

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Angelici, Gary L.

    1993-01-01

    Management of data collected during projects that involve large numbers of scientists is an often overlooked aspect of the experimental plan. Ecosystem science projects like the Oregon Transect Ecosystem Research (OTTER) Project that involve many investigators from many institutions and that run for multiple years, collect and archive large amounts of data. These data range in size from a few kilobytes of information for such measurements as canopy chemistry and meteorological variables, to hundreds of megabytes of information for such items as views from multi-band spectrometers flown on aircraft and scenes from imaging radiometers aboard satellites. Organizing and storing data from the OTTER Project, certifying those data, correcting errors in data sets, validating the data, and distributing those data to other OTTER investigators is a major undertaking. Using the National Aeronautics and Space Administration's (NASA) Pilot Land Data System (PLDS), a Support mechanism was established for the OTTER Project which accomplished all of the above. At the onset of the interaction between PLDS and OTTER, it was not certain that PLDS could accomplish these tasks in a manner that would aid researchers in the OTTER Project. This paper documents the data types that were collected under the auspices of the OTTER Project and the procedures implemented to store, catalog, validate, and certify those data. The issues of the compliance of investigators with data-management requirements, data use and certification, and the ease of retrieving data are discussed. We advance the hypothesis that formal data management is necessary in ecological investigations involving multiple investigators using many data gathering instruments and experimental procedures. The issues and experience gained in this exercise give an indication of the needs for data management systems that must be addressed in the coming decades when other large data-gathering endeavors are undertaken by the ecological science community.

  11. The Development of an Instrument to Measure the Project Competences of College Students in Online Project-Based Learning

    ERIC Educational Resources Information Center

    Lin, Chien-Liang

    2018-01-01

    This study sought to develop a self-report instrument to be used in the assessment of the project competences of college students engaged in online project-based learning. Three scales of the KIPSSE instrument developed for this study, namely, the knowledge integration, project skills, and self-efficacy scales, were based on related theories and…

  12. SpaceX CRS-11 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-05-31

    Jason Mitchell, project manager for the Station Explorer for X-ray Timing and Navigation Technology, or SEXTANT, instrument, left, and Keith Gendreau, principle investigator for the Neutron star Interior Composition Explorer, or NICER, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the purpose of their experiments and instruments to be delivered to the International Space Station on SpaceX CRS-11. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  13. Topograph for inspection of engine cylinder walls.

    PubMed

    Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J

    1999-12-20

    The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.

  14. Multi-Mission Automated Task Invocation Subsystem

    NASA Technical Reports Server (NTRS)

    Cheng, Cecilia S.; Patel, Rajesh R.; Sayfi, Elias M.; Lee, Hyun H.

    2009-01-01

    Multi-Mission Automated Task Invocation Subsystem (MATIS) is software that establishes a distributed data-processing framework for automated generation of instrument data products from a spacecraft mission. Each mission may set up a set of MATIS servers for processing its data products. MATIS embodies lessons learned in experience with prior instrument- data-product-generation software. MATIS is an event-driven workflow manager that interprets project-specific, user-defined rules for managing processes. It executes programs in response to specific events under specific conditions according to the rules. Because requirements of different missions are too diverse to be satisfied by one program, MATIS accommodates plug-in programs. MATIS is flexible in that users can control such processing parameters as how many pipelines to run and on which computing machines to run them. MATIS has a fail-safe capability. At each step, MATIS captures and retains pertinent information needed to complete the step and start the next step. In the event of a restart, this information is retrieved so that processing can be resumed appropriately. At this writing, it is planned to develop a graphical user interface (GUI) for monitoring and controlling a product generation engine in MATIS. The GUI would enable users to schedule multiple processes and manage the data products produced in the processes. Although MATIS was initially designed for instrument data product generation,

  15. SISCAL project

    NASA Astrophysics Data System (ADS)

    Santer, Richard P.; Fell, Frank

    2003-05-01

    The first "ocean colour" sensor, Coastal Zone Color Scanner (CZCS), was launched in 1978. Oceanographers learnt a lot from CZCS but it remained a purely scientific sensor. In recent years, a new generation of satellite-borne earth observation (EO) instruments has been brought into space. These instruments combine high spectral and spatial resolution with revisiting rates of the order of one per day. More instruments with further increased spatial, spectral and temporal resolution will be available within the next years. In the meantime, evaluation procedures taking advantage of the capabilities of the new instruments were derived, allowing the retrieval of ecologically important parameters with higher accuracy than before. Space agencies are now able to collect and to process satellite data in real time and to disseminate them via the Internet. It is therefore meanwhile possible to envisage using EO operationally. In principle, a significant demand for EO data products on terrestrial or marine ecosystems exists both with public authorities (environmental protection, emergency management, natural resources management, national parks, regional planning, etc) and private companies (tourist industry, insurance companies, water suppliers, etc). However, for a number of reasons, many data products that can be derived from the new instruments and methods have not yet left the scientific community towards public or private end users. It is the intention of the proposed SISCAL (Satellite-based Information System on Coastal Areas and Lakes) project to contribute to the closure of the existing gap between space agencies and research institutions on one side and end users on the other side. To do so, we intend to create a data processor that automatically derives and subsequently delivers over the Internet, in Near-Real-Time (NRT), a number of data products tailored to individual end user needs. The data products will be generated using a Geographical Information System (GIS), combining satellite data, evaluation algorithms and value-adding ancillary digital information. This prevents the end user from investing funds into expensive equipment or to hire specialized personnel. The data processor shall be a generic tool, which may be applied to a large variety of operationally gathered satellite data. In the frame of SISCAL, the processor shall be applied to remotely sensed data of selected coastal areas and lakes in Central Europe and the Eastern Mediterranean, according to the needs of the end users within the SISCAL consortium. A number of measures are required to achieve the objective of the proposed project: (1) Identification and specification of the SISCAL end user needs for NRT water related data products accessible to EO techniques. (2) Selection of the most appropriate instruments, evaluation algorithms and ancillary data bases required to provide the identified data products. (3) Development of the actual Near-Real-Time data processor for the specified EO data products. (4) Development of the GIS processor adding ancillary digital information to the satellite images and providing the required geographical projections. (5) Development of a product retrieval and management system to handle ordering and distribution of data products between the SISCAL server and the end users, including payment and invoicing. (6) Evaluation of the derived data products in terms of accuracy and usefulness by comparison with available in-situ measurements and by making use of the local expertise of the end users. (7) Establishing an Internet server dedicated to internal communication between the consortium members as well as presenting the SISCAL project to a larger public. (8) Marketing activities, presentation of data processor to potential external customers, identification of their exact needs. The innovative aspect of the SISCAL project consists in the generation of NRT data products on water quality parameters from EO data. This article mainly deals with the identification of the end user requirements within the SISCAL consortium and the methods employed to realize them. Details on the technical implementation of the SISCAL processor are provided by Fell et al. (this issue).

  16. The Development of an Instrument to Measure the Project Competences of College Students in Online Project-Based Learning

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Liang

    2018-02-01

    This study sought to develop a self-report instrument to be used in the assessment of the project competences of college students engaged in online project-based learning. Three scales of the KIPSSE instrument developed for this study, namely, the knowledge integration, project skills, and self-efficacy scales, were based on related theories and the analysis results of three project advisor interviews. Those items of knowledge integration and project skill scales focused on the integration of different disciplines and technological skills separately. Two samples of data were collected from information technology-related courses taught with an online project-based learning strategy over different semesters at a college in southern Taiwan. The validity and reliability of the KIPSSE instrument were confirmed through item analysis and confirmatory factor analysis using structural equation modeling of two samples of students' online response sets separately. The Cronbach's alpha reliability coefficient for the entire instrument was 0.931; for each scale, the alpha ranged from 0.832 to 0.907. There was also a significant correlation ( r = 0.55, p < 0.01) between the KIPSSE instrument results and the students' product evaluation scores. The findings of this study confirmed the validity and reliability of the KIPSSE instrument. The confirmation process and related implications are also discussed.

  17. Effectiveness Monitoring Report, MWMF Tritium Phytoremediation Interim Measures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, Dan; Blake, John, I.

    2003-02-10

    This report describes and presents the results of monitoring activities during irrigation operations for the calendar year 2001 of the MWMF Interim Measures Tritium Phytoremediation Project. The purpose of this effectiveness monitoring report is to provide the information on instrument performance, analysis of CY2001 measurements, and critical relationships needed to manage irrigation operations, estimate efficiency and validate the water and tritium balance model.

  18. Teaching the Systems Approach to Water Resources Development. A Contribution to the International Hydrological Programme. UNESCO Technical Papers in Hydrology No. 25.

    ERIC Educational Resources Information Center

    Mostertman, L. J.

    Because of the uncertainty related to water resources development projects, and because of the multitude of factors influencing their performance, the systems analysis approach is often used as an instrument in the planning and design process. The approach will also yield good results in the programming of the maintenance and management of the…

  19. A Laboratory-Based System for Managing and Distributing Publically Funded Geochemical Data in a Collaborative Environment

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Brown, A.; Liffers, M.

    2015-12-01

    Publically funded laboratories have a responsibility to generate, archive and disseminate analytical data to the research community. Laboratory managers know however, that a long tail of analytical effort never escapes researchers' thumb drives once they leave the lab. This work reports on a research data management project (Digital Mineralogy Library) where integrated hardware and software systems automatically archive and deliver analytical data and metadata to institutional and community data portals. The scientific objective of the DML project was to quantify the modal abundance of heavy minerals extracted from key lithological units in Western Australia. The selected analytical platform was a TESCAN Integrated Mineral Analyser (TIMA) that uses EDS-based mineral classification software to image and quantify mineral abundance and grain size at micron scale resolution. The analytical workflow used a bespoke laboratory information management system (LIMS) to orchestrate: (1) the preparation of grain mounts with embedded QR codes that serve as enduring links between physical samples and analytical data, (2) the assignment of an International Geo Sample Number (IGSN) and Digital Object Identifier (DOI) to each grain mount via the System for Earth Sample Registry (SESAR), (3) the assignment of a DOI to instrument metadata via Research Data Australia, (4) the delivery of TIMA analytical outputs, including spatially registered mineralogy images and mineral abundance data, to an institutionally-based data management server, and (5) the downstream delivery of a final data product via a Google Maps interface such as the AuScope Discovery Portal. The modular design of the system permits the networking of multiple instruments within a single site or multiple collaborating research institutions. Although sharing analytical data does provide new opportunities for the geochemistry community, the creation of an open data network requires: (1) adopting open data reporting standards and conventions, (2) requiring instrument manufacturers and software developers to deliver and process data in formats compatible with open standards, and (3) public funding agencies to incentivise researchers, laboratories and institutions to make their data open and accessible to consumers.

  20. Project Cerberus: Flyby Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Sivier, K.; Koepke, A.; Humphrey, Theodore W.; Elbel, Jeffrey P.; Hackett, Bruce E.; Kennedy, Ralph G.; Leo, Donald J.; Zimmerman, Shery A.

    1990-01-01

    The goal of the Cerberus Project was to design a feasible and cost-effective unmanned flyby mission to Pluto. The requirements in the request for proposal for an unmanned probe to Pluto are presented and were met. The design stresses proven technology that will avoid show stoppers which could halt mission progress. Cerberus also utilizes the latest advances in the spacecraft industry to meet the stringent demands of the mission. The topics covered include: (1) mission management, planning, and costing; (2) structures; (3) power and propulsion; (4) attitude, articulation, and control; (5) command, control, and communication; and (6) scientific instrumentation.

  1. NASA Hydrogen Research for Spaceport and Space Based Applications

    NASA Technical Reports Server (NTRS)

    Anderson, Tim

    2006-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as hydrogen production, distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results form 15 research projects, education, and outreach activities, system and trade studies, and project management. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics, and aerospace applications.

  2. Work-Family Conflict, Perceived Organizational Support and Professional Commitment: A Mediation Mechanism for Chinese Project Professionals

    PubMed Central

    2018-01-01

    Projects are characterized by long working hours, complex tasks and being a kind of temporary organization. As such, work-family conflict is particularly prominent for project employees. This research examined whether and how work-family conflict affects professional commitment among Chinese project professionals. Research hypotheses were developed to explore the relationship between work-family conflict, professional commitment to the project and the mediating effects of perceived organizational support. Data were collected from 327 project managers or professionals working in construction enterprises in China; data were analyzed using structural equation modeling, applying the bootstrapping method. Results showed that there were three dimensions of work-family conflict: time-based conflict, strain-based conflict and behavior-based conflict. There were two dimensions of perceived organizational support: emotional support and instrumental support. The study also tested the negative effect of work-family conflict on professional commitment and the positive effect of perceived organizational support on professional commitment. Specifically, time-based conflict and emotional support had positive effects on professional commitment. Perceived organizational support had a total mediating effect between work-family conflict and professional commitment. The strain-based conflict dimension of work-family conflict had negative impacts on professional commitment through perceived emotional support and instrumental support. Overall, our findings extend a better understanding of work-family conflict and professional commitment in the project setting and verify the importance of social support in balancing work and family and improving employee mobility. PMID:29462860

  3. Work-Family Conflict, Perceived Organizational Support and Professional Commitment: A Mediation Mechanism for Chinese Project Professionals.

    PubMed

    Zheng, Junwei; Wu, Guangdong

    2018-02-15

    Projects are characterized by long working hours, complex tasks and being a kind of temporary organization. As such, work-family conflict is particularly prominent for project employees. This research examined whether and how work-family conflict affects professional commitment among Chinese project professionals. Research hypotheses were developed to explore the relationship between work-family conflict, professional commitment to the project and the mediating effects of perceived organizational support. Data were collected from 327 project managers or professionals working in construction enterprises in China; data were analyzed using structural equation modeling, applying the bootstrapping method. Results showed that there were three dimensions of work-family conflict: time-based conflict, strain-based conflict and behavior-based conflict. There were two dimensions of perceived organizational support: emotional support and instrumental support. The study also tested the negative effect of work-family conflict on professional commitment and the positive effect of perceived organizational support on professional commitment. Specifically, time-based conflict and emotional support had positive effects on professional commitment. Perceived organizational support had a total mediating effect between work-family conflict and professional commitment. The strain-based conflict dimension of work-family conflict had negative impacts on professional commitment through perceived emotional support and instrumental support. Overall, our findings extend a better understanding of work-family conflict and professional commitment in the project setting and verify the importance of social support in balancing work and family and improving employee mobility.

  4. Design and Requirements Creep In A Build-To-Print Mission

    NASA Technical Reports Server (NTRS)

    Peabody, Sharon A.; Otero, Veronica

    2017-01-01

    Build-to-Print designs, or rebuilds of flight proven designs, are attractive to mission stakeholders, as they give the appearance of minimal engineering development cost, risk, and schedule. The reality is that seldom is a project an exact duplicate of a predecessor. Mission reclassification, improvements in hardware, and science objective changes can all serve as a source of requirements and design creep and have ramifications often not fully anticipated during initial proposals. The Thermal Infrared Sensor Instrument (TIRS) was a late addition to the LandSat-8 program to provide infrared imaging to measure evapotranspiration for water cycle management. To meet the launch requirements for LandSat-8, instrument design life requirements were relaxed, the sensor development expedited, and technology development was minimized. Consequently, TIRS was designed as a higher risk instrument, with less redundancy than an instrument critical to mission success. After the successful LandSat-8 launch in 2013 and instrument performance, a rebuild of the instrument for the next LandSat spacecraft was included in the baseline mission success criteria. This paper discusses the technical challenges encountered during the rebuild of the TIRS-2 (Thermal Infrared Sensor 2) instrument and the resultant impacts on the thermal system design.

  5. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  6. DAS: A Data Management System for Instrument Tests and Operations

    NASA Astrophysics Data System (ADS)

    Frailis, M.; Sartor, S.; Zacchei, A.; Lodi, M.; Cirami, R.; Pasian, F.; Trifoglio, M.; Bulgarelli, A.; Gianotti, F.; Franceschi, E.; Nicastro, L.; Conforti, V.; Zoli, A.; Smart, R.; Morbidelli, R.; Dadina, M.

    2014-05-01

    The Data Access System (DAS) is a and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.

  7. Procurement of Shared Data Instruments for Research Electronic Data Capture (REDCap)

    PubMed Central

    Obeid, Jihad S; McGraw, Catherine A; Minor, Brenda L; Conde, José G; Pawluk, Robert; Lin, Michael; Wang, Janey; Banks, Sean R; Hemphill, Sheree A; Taylor, Rob; Harris, Paul A

    2012-01-01

    REDCap (Research Electronic Data Capture) is a web-based software solution and tool set that allows biomedical researchers to create secure online forms for data capture, management and analysis with minimal effort and training. The Shared Data Instrument Library (SDIL) is a relatively new component of REDCap that allows sharing of commonly used data collection instruments for immediate study use by 3 research teams. Objectives of the SDIL project include: 1) facilitating reuse of data dictionaries and reducing duplication of effort; 2) promoting the use of validated data collection instruments, data standards and best practices; and 3) promoting research collaboration and data sharing. Instruments submitted to the library are reviewed by a library oversight committee, with rotating membership from multiple institutions, which ensures quality, relevance and legality of shared instruments. The design allows researchers to download the instruments in a consumable electronic format in the REDCap environment. At the time of this writing, the SDIL contains over 128 data collection instruments. Over 2500 instances of instruments have been downloaded by researchers at multiple institutions. In this paper we describe the library platform, provide detail about experience gained during the first 25 months of sharing public domain instruments and provide evidence of impact for the SDIL across the REDCap consortium research community. We postulate that the shared library of instruments reduces the burden of adhering to sound data collection principles while promoting best practices. PMID:23149159

  8. System verification and validation: a fundamental systems engineering task

    NASA Astrophysics Data System (ADS)

    Ansorge, Wolfgang R.

    2004-09-01

    Systems Engineering (SE) is the discipline in a project management team, which transfers the user's operational needs and justifications for an Extremely Large Telescope (ELT) -or any other telescope-- into a set of validated required system performance characteristics. Subsequently transferring these validated required system performance characteris-tics into a validated system configuration, and eventually into the assembled, integrated telescope system with verified performance characteristics and provided it with "objective evidence that the particular requirements for the specified intended use are fulfilled". The latter is the ISO Standard 8402 definition for "Validation". This presentation describes the verification and validation processes of an ELT Project and outlines the key role System Engineering plays in these processes throughout all project phases. If these processes are implemented correctly into the project execution and are started at the proper time, namely at the very beginning of the project, and if all capabilities of experienced system engineers are used, the project costs and the life-cycle costs of the telescope system can be reduced between 25 and 50 %. The intention of this article is, to motivate and encourage project managers of astronomical telescopes and scientific instruments to involve the entire spectrum of Systems Engineering capabilities performed by trained and experienced SYSTEM engineers for the benefit of the project by explaining them the importance of Systems Engineering in the AIV and validation processes.

  9. The Airborne Research Instrumentation Testing Opportunity (ARISTO)

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Romashkin, P.; Lussier, L.; Baeuerle, B.; Stith, J. L.

    2016-12-01

    In 2015 the National Science Foundation (NSF) began a program to sponsor an annual flight campaign on one of its research aircraft (the C-130 and GV) operated by the National Center for Atmospheric Research (NCAR). The aircraft are managed by the Research Aviation Facility (RAF), which is part of the Earth Observing Laboratory (EOL) and responsible for planning and executing the campaigns. The purpose of this program, known as the Airborne Research Instrumentation Testing Opportunity or ARISTO, is to provide regular flight test opportunities for newly developed or highly modified instruments as part of their development effort. The NSF community has expressed a strong desire for regularly scheduled flight-testing programs to be able to test instrumentation, data systems, inlets, and software. ARISTO allows this testing in a low-pressure environment where any issues or problems will not affect the scientific goals of a large-scale field campaign. For this reason it is also a good experience for students who may be learning about the operation of an instrument or have not had previous exposure to a field project. They are also able to contribute to flight planning exercises and gain experience in acting as an instrument scientist during the program. A goal of the program is to incorporate students into the project operations to prepare the next generation of airborne researchers. ARISTO is conducted at the Research Aviation Facility at Rocky Mountain Metropolitan Airport in Broomfield, Colorado. The flight campaign consists of 20 flight hours, spread over three weeks. Flights are planned to allow the ARISTO participants to successfully test their instruments based on requirements they described in the initial application. Due to the limited hours most flights are focused in and around Colorado, though some have gone as far as Oklahoma and the Pacific Northwest to find the right conditions to meet testing requirements. Two ARISTO campaigns were successfully completed in 2015 and 2016, and a summary of these projects will be presented. Preparations for the 2017 campaign are underway, with flights scheduled to take place in February and March. The next ARISTO campaign is likely to occur in the summer of 2018, and details on the schedule and how to apply will be discussed.

  10. Automated water analyser computer supported system (AWACSS) Part I: Project objectives, basic technology, immunoassay development, software design and networking.

    PubMed

    Tschmelak, Jens; Proll, Guenther; Riedt, Johannes; Kaiser, Joachim; Kraemmer, Peter; Bárzaga, Luis; Wilkinson, James S; Hua, Ping; Hole, J Patrick; Nudd, Richard; Jackson, Michael; Abuknesha, Ram; Barceló, Damià; Rodriguez-Mozaz, Sara; de Alda, Maria J López; Sacher, Frank; Stien, Jan; Slobodník, Jaroslav; Oswald, Peter; Kozmenko, Helena; Korenková, Eva; Tóthová, Lívia; Krascsenits, Zoltan; Gauglitz, Guenter

    2005-02-15

    A novel analytical system AWACSS (automated water analyser computer-supported system) based on immunochemical technology has been developed that can measure several organic pollutants at low nanogram per litre level in a single few-minutes analysis without any prior sample pre-concentration nor pre-treatment steps. Having in mind actual needs of water-sector managers related to the implementation of the Drinking Water Directive (DWD) (98/83/EC, 1998) and Water Framework Directive WFD (2000/60/EC, 2000), drinking, ground, surface, and waste waters were major media used for the evaluation of the system performance. The instrument was equipped with remote control and surveillance facilities. The system's software allows for the internet-based networking between the measurement and control stations, global management, trend analysis, and early-warning applications. The experience of water laboratories has been utilised at the design of the instrument's hardware and software in order to make the system rugged and user-friendly. Several market surveys were conducted during the project to assess the applicability of the final system. A web-based AWACSS database was created for automated evaluation and storage of the obtained data in a format compatible with major databases of environmental organic pollutants in Europe. This first part article gives the reader an overview of the aims and scope of the AWACSS project as well as details about basic technology, immunoassays, software, and networking developed and utilised within the research project. The second part article reports on the system performance, first real sample measurements, and an international collaborative trial (inter-laboratory tests) to compare the biosensor with conventional anayltical methods.

  11. Ocean Colour Products from Remote Sensing Related to In-Situ Data for Supporting Management of Offshore Aquaculture

    NASA Astrophysics Data System (ADS)

    Fragoso, Bruno Dias Duarte; Icely, John; Moore, Gerald; Laanen, Marnix; Ghbrehiwot, Semhar

    2016-08-01

    The EU funded "AQUAculture USEr driven operational Remote Sensing information services project" (AQUA- USERS grant number 607325) is a user driven project for the aquaculture industry that aims at providing this industry with relevant and timely information based on the most recent satellite data and innovative optical in- situ measurements. The Water Insight Spectrometer (WISP-3) is a hand held instrument which can provide measurements of the optical parameters Chlorophyll-a (Chl-a), Total Suspended Matter (TSM), Coloured Dissolved Organic Matter (CDOM), and the Spectral Diffuse Attenuation Coefficient (Kd). Sampling campaigns were carried out between March 2014 and September 2015, to collect water samples at the same time as taking optical reading from the WISP-3 at an offshore aquaculture site off Sagres on the SW Portugal, operated by Finisterra Lda, one of the "users" in the project. The estimates from the WISP-3 for Chla and TSM have been compared with in-situ measurements from the water samples for these two variables, with the objective of calibrating the algorithms used by the WISP-3 for estimation of Chla and TSM. At a later stage in the project, it is expected that WISP-3 readings can be related to remote sensing products developed from the Ocean Land Coloured Instrument (OLCI) from the Sentinel-3 satellite. The key purpose of AQUA- Users is to develop, in collaboration with "users" from the aquaculture industry, a mobile phone application (app) that collates satellite information on optical water quality and temperature together with in-situ data of these variables to develop a decision support system for daily management of the aquaculture.

  12. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2006-01-01

    The presentation describes the recently awarded ACCESS project to provide data management of NASA remote sensing data for the Northern Eurasia Earth Science Partnership Initiative (NEESPI). The project targets integration of remote sensing data from MODIS, and other NASA instruments on board US-satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEP/NCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  13. Nanophotonic biosensor for space exploration (PBSA instrument)

    NASA Astrophysics Data System (ADS)

    Pantoja, S.; Parro, V.; Nestler, J.; Geidel, S.; Martins, R.; Cuesta, F.; Elvira, J. G.; Sousa, A.

    2017-11-01

    One of the biggest challenges of Astrobiology is the search for clear signs of present or past life on other planetary bodies. Thus, this poster will describe the project "Photonic Biosensor for Space Application" (PBSA, www.pbsa-fp7.eu) founded by the Directorate-General for Enterprise and Industry (DG ENTR) within the European Commission and managed by the Unit S2 (Space Research) of the Research European Agency (REA).

  14. Review of Defense Display Research Programs

    DTIC Science & Technology

    2001-01-01

    micromirror device (DMD) projection displays, or some future contender, such as organic light emitting diode displays (OLED)—will be installed via...Instruments (TI) digital micromirror device (DMD) technology, developed in an $11.3M research effort managed by the Air Force Research Laboratory from 1991...systems for simulator/trainer systems in the near-mid term and advanced cockpits in the far term. Such large area, curved display systems will require the

  15. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Potential commercial uses of EOS remote sensing products

    NASA Technical Reports Server (NTRS)

    Thompson, Leslie L.

    1991-01-01

    The instrument complement of the Earth Observing System (EOS) satellite system will generate data sets with potential interest to a variety of users who are now just beginning to develop geographic information systems tailored to their special applications and/or jurisdictions. Other users may be looking for a unique product that enhances competitive position. The generally distributed products from EOS will require additional value added processing to derive the unique products desired by specific users. Entrepreneurs have an opportunity to create these proprietary level 4 products from the EOS data sets. Specific instruments or collections of instruments could provide information for crop futures trading, mineral exploration, television and printed medium news products, regional and local government land management and planning, digital map directories, products for third world users, ocean fishing fleet probability of harvest forecasts, and other areas not even imagined at this time. The projected level 3 product are examined that will be available at launch from EOS instruments and commercial uses of the data after value added processing is estimated.

  17. DE-EE0006714 Final Report-Project Icebreaker™

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Lorry; Karpinski, David; Nagusky, Beth

    Project Icebreaker, a 20 Megawatt offshore wind project 8 miles north of Cleveland, OH in Lake Erie, has been under development by the Lake Erie Energy Development Corporation since 2009. Significant development efforts were completed prior to the award of DE-EE0006714 (December 2014). This report describes the status of the work performed under award DE-EE0006714. The work was organized into several categories or tasks. The report presents the status of that work in each of eleven (11) main tasks: 1) State and Federal Permits; 2) Mono Bucket Foundation Engineering; 3) Construction and Installation Engineering; 4) Cable Route Survey; 5) Electricalmore » System Design; 6) Power Off-take; 7) Project Costs and Risk Management; 8) Operations and Maintenance Planning; 9) Domestic Supply Chain Development; 10) Instrumentation Planning; and 11) Department of Energy Review.« less

  18. The Gemini 8-Meter Telescopes Project

    NASA Astrophysics Data System (ADS)

    Boroson, Todd A.

    1995-05-01

    The Gemini 8-Meter Telescopes Project is an international partnership to build and operate two 8-meter telescopes, one on Mauna Kea, Hawaii, and one on Cerro Pachon, Chile. The telescopes will be international facilities, open to the scientific communities of the six member countries, the United States (50%), the United Kingdom (25%), Canada (15%), Chile (5%), Argentina (2.5%), and Brazil (2.5%). The telescopes are designed to exploit the best atmospheric conditions at these excellent sites. Near diffraction limited performance will be delivered at 2.2 microns and longward, with minimal degradation of the best seeing conditions at shorter wavelengths. The telescopes and facilities are designed to achieve emissivity <4% (requirement) or <2% (goal) if silver coatings are used. The instrument complement is diverse, including near- and mid-IR imagers, and near-IR and optical spectrographs. Both telescopes are equipped with f/16 articulated secondaries, and a future upgrade path to a wide-field f/6 configuration is provided. The northern telescope also includes a natural-guide-star adaptive optics system. Up to five instruments can be mounted simultaneously on the Cassegrain instrument interface. Approximately 50% of the telescope time will be flexibly scheduled, allowing most efficient utilization of the times of best conditions and facilitating programs which are difficult to schedule, such as synoptic and target-of-opportunity. First light for the Mauna Kea telescope is expected in late 1998, and for the Cerro Pachon telescope in mid-2000. This talk will report on construction progress, the instrumental capabilities, and operations strategies being considered. The Gemini 8-meter Telescopes Project is managed by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation which serves as executive agency for the Gemini partner countries. U.S. participation in the project is through the U.S. Gemini Program, a division of the National Optical Astronomy Observatories. NOAO is operated by AURA, Inc. under cooperative agreement with the National Science Foundation.

  19. Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube

    DOEpatents

    Obermeyer, F.D.

    1993-11-16

    Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube, so that the threaded ends of the instrumentation tube do not unthread when subjected to vibration, such an instrumentation tube being suitable for use in a nuclear reactor pressure vessel. The instrumentation tube has a first member having a threaded end portion that has a plurality of first holes circumferentially around the outside surface thereof. The instrumentation tube also has a second member having a threaded end portion that has a plurality of second holes circumferentially around the outside surface thereof. The threads of the second member are caused to threadably engage the threads of the first member for defining a threaded joint there between. A sleeve having an inside surface surrounds the end portion of the first member and the end portion of the second member and thus surrounds the threaded joint. The sleeve includes a plurality of first projections and second projections that outwardly extend from the inside surface to engage the first holes and the second holes, respectively. The outside surface of the sleeve is crimped or swaged at the locations of the first projections and second projections such that the first projections and the second projections engage their respective holes. In this manner, independent rotation of the first member with respect to the second member is prevented, so that the instrumentation tube will not unthread at its threaded joint. 10 figures.

  20. Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube

    DOEpatents

    Obermeyer, Franklin D.

    1993-01-01

    Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube, so that the threaded ends of the instrumentation tube do not unthread when subjected to vibration, such an instrumentation tube being suitable for use in a nuclear reactor pressure vessel. The instrumentation tube has a first member having a threaded end portion that has a plurality of first holes circumferentially around the outside surface thereof. The instrumentation tube also has a second member having a threaded end portion that has a plurality of second holes circumferentially around the outside surface thereof. The threads of the second member are caused to threadably engage the threads of the first member for defining a threaded joint therebetween. A sleeve having an inside surface surrounds the end portion of the first member and the end portion of the second member and thus surrounds the threaded joint. The sleeve includes a plurality of first projections and second projections that outwardly extend from the inside surface to engage the first holes and the second holes, respectively. The outside surface of the sleeve is crimped or swaged at the locations of the first projections and second projections such that the first projections and the second projections engage their respective holes. In this manner, independent rotation of the first member with respect to the second member is prevented, so that the instrumentation tube will not unthread at its threaded joint.

  1. Fine Collimator Grids Using Silicon Metering Structure

    NASA Technical Reports Server (NTRS)

    Eberhard, Carol

    1998-01-01

    The project Fine Collimator Grids Using Silicon Metering Structure was managed by Dr. Carol Eberhard of the Electromagnetic Systems & Technology Department (Space & Technology Division) of TRW who also wrote this final report. The KOH chemical etching of the silicon wafers was primarily done by Dr. Simon Prussin of the Electrical Engineering Department of UCLA at the laboratory on campus. Moshe Sergant of the Superconductor Electronics Technology Department (Electronics Systems & Technology Division) of TRW and Dr. Prussin were instrumental in developing the low temperature silicon etching processes. Moshe Sergant and George G. Pinneo of the Microelectronics Production Department (Electronics Systems & Technology Division) of TRW were instrumental in developing the processes for filling the slots etched in the silicon wafers with metal-filled materials. Their work was carried out in the laboratories at the Space Park facility. Moshe Sergant is also responsible for the impressive array of Scanning Electron Microscope images with which the various processes were monitored. Many others also contributed their time and expertise to the project. I wish to thank them all.

  2. Managing Data, Provenance and Chaos through Standardization and Automation at the Georgia Coastal Ecosystems LTER Site

    NASA Astrophysics Data System (ADS)

    Sheldon, W.

    2013-12-01

    Managing data for a large, multidisciplinary research program such as a Long Term Ecological Research (LTER) site is a significant challenge, but also presents unique opportunities for data stewardship. LTER research is conducted within multiple organizational frameworks (i.e. a specific LTER site as well as the broader LTER network), and addresses both specific goals defined in an NSF proposal as well as broader goals of the network; therefore, every LTER data can be linked to rich contextual information to guide interpretation and comparison. The challenge is how to link the data to this wealth of contextual metadata. At the Georgia Coastal Ecosystems LTER we developed an integrated information management system (GCE-IMS) to manage, archive and distribute data, metadata and other research products as well as manage project logistics, administration and governance (figure 1). This system allows us to store all project information in one place, and provide dynamic links through web applications and services to ensure content is always up to date on the web as well as in data set metadata. The database model supports tracking changes over time in personnel roles, projects and governance decisions, allowing these databases to serve as canonical sources of project history. Storing project information in a central database has also allowed us to standardize both the formatting and content of critical project information, including personnel names, roles, keywords, place names, attribute names, units, and instrumentation, providing consistency and improving data and metadata comparability. Lookup services for these standard terms also simplify data entry in web and database interfaces. We have also coupled the GCE-IMS to our MATLAB- and Python-based data processing tools (i.e. through database connections) to automate metadata generation and packaging of tabular and GIS data products for distribution. Data processing history is automatically tracked throughout the data lifecycle, from initial import through quality control, revision and integration by our data processing system (GCE Data Toolbox for MATLAB), and included in metadata for versioned data products. This high level of automation and system integration has proven very effective in managing the chaos and scalability of our information management program.

  3. The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications

    NASA Technical Reports Server (NTRS)

    Johnston, William E.

    2002-01-01

    With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.

  4. Channeled Winds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03025 Channeled Winds

    This low resolution VIS image shows a large portion of etched terrain near the south pole of Mars.

    Image information: VIS instrument. Latitude 10S, Longitude 37.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Windstreak

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03287 Windstreak

    This beautiful windstreak is located on the lava flows from Arsia Mons.

    Image information: VIS instrument. Latitude -17.0N, Longitude 229.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Becquerel Crater

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03676 Linear Clouds

    This interesting deposit is located on the floor of Becquerel Crater.

    Image information: VIS instrument. Latitude 21.3N, Longitude 352.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Hydaspis Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Collapsed terrain in Hydapsis Chaos.

    This is the source terrain for several outflow channels. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    VIS Instrument. Latitude 3.2, Longitude 333.2 East. 19 meter/pixel resolution.

  8. Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02160 Landslide

    This large landslide is located within Ganges Chasma.

    Image information: VIS instrument. Latitude -7.6N, Longitude 315.8E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Crater Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06088 Crater Landslide

    This landslide occurs in an unnamed crater southeast of Millochau Crater.

    Image information: VIS instrument. Latitude -24.4N, Longitude 87.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03582 Landslide

    This landslide occurred in Coprates Chasma.

    Image information: VIS instrument. Latitude 12.6S, Longitude 296.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Ice Clouds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Heavy water ice clouds almost completely obscure the surface in Vastitas Borealis.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 69.5, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

  12. Storm and Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Yesterday's storm front was moving westward, today's moves eastward. Note the thick cloud cover and beautifully delineated cloud tops.

    Image information: VIS instrument. Latitude 72.1, Longitude 308.3 East (51.7 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. WE-G-BRB-00: NIH-Funded Research: Instrumental in the Pursuit of Clinical Trials and Technological Innovations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over the past 20 years the NIH has funded individual grants, program projects grants, and clinical trials which have been instrumental in advancing patient care. The ways that each grant mechanism lends itself to the different phases of translating research into clinical practice will be described. Major technological innovations, such as IMRT and proton therapy, have been advanced with R01-type and P01-type funding and will be discussed. Similarly, the role of program project grants in identifying and addressing key hypotheses on the potential of 3D conformal therapy, normal tissue-guided dose escalation and motion management will be described. An overview willmore » be provided regarding how these technological innovations have been applied to multi-institutional NIH-sponsored trials. Finally, the panel will discuss regarding which research questions should be funded by the NIH to inspire the next advances in radiation therapy. Learning Objectives: Understand the different funding mechanisms of the NIH Learn about research advances that have led to innovation in delivery Review achievements due to NIH-funded program project grants in radiotherapy over the past 20 years Understand example advances achieved with multi-institutional clinical trials NIH.« less

  14. Polar Textures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03638 Polar Textures

    This image illustrates the variety of textures that appear in the south polar region during late summer.

    Image information: VIS instrument. Latitude 80.5S, Longitude 57.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Galle Cr. Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03637 Galle Cr. Dunes

    These dunes are located on the floor of Galle Crater.

    Image information: VIS instrument. Latitude 51.5S, Longitude 329.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Final Report: MaRSPlus Sensor System Electrical Cable Management and Distributed Motor Control Computer Interface

    NASA Technical Reports Server (NTRS)

    Reil, Robin

    2011-01-01

    The success of JPL's Next Generation Imaging Spectrometer (NGIS) in Earth remote sensing has inspired a follow-on instrument project, the MaRSPlus Sensor System (MSS). One of JPL's responsibilities in the MSS project involves updating the documentation from the previous JPL airborne imagers to provide all the information necessary for an outside customer to operate the instrument independently. As part of this documentation update, I created detailed electrical cabling diagrams to provide JPL technicians with clear and concise build instructions and a database to track the status of cables from order to build to delivery. Simultaneously, a distributed motor control system is being developed for potential use on the proposed 2018 Mars rover mission. This system would significantly reduce the mass necessary for rover motor control, making more mass space available to other important spacecraft systems. The current stage of the project consists of a desktop computer talking to a single "cold box" unit containing the electronics to drive a motor. In order to test the electronics, I developed a graphical user interface (GUI) using MATLAB to allow a user to send simple commands to the cold box and display the responses received in a user-friendly format.

  17. NASA Researcher Andy Stofan Studying Fluid Sloshing

    NASA Image and Video Library

    1960-09-21

    Andy Stofan views a small-scale tank built to study the sloshing characteristics of liquid hydrogen at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Stofan was tasked with the study of propellant motion, or sloshing, in space vehicle propellant tanks. At the time, there was little knowledge of the behavior of fluids in microgravity or the effects of the launch on the propellant’s motion. Sloshing in the tank could alter a spacecraft’s trajectory or move the propellant away from the turbopump. Stofan became an expert and authored numerous technical reports on the subject. Stofan was assigned to the original Centaur Project Office in 1962 as a member of the Propellant Systems Section. Stofan was instrumental in solving a dynamic instability problem on the Centaur vehicle and served as the systems engineer for the development of the Centaur propellant utilization system. The solution was also applied to the upper-stages of Saturn. In 1966, Stofan was named Head of the Propellant Systems Section. Stofan continued rising through the managerial ranks at Lewis. In 1967 he became Project Manager of a test program that successfully demonstrated the use of a pressurization system for the Centaur vehicle; in 1969 the Assistant Project Manager on the Improved Centaur project; in 1970 Manager of the Titan/Centaur Project Office; in 1974 Director of the Launch Vehicles Division. In 1978, Stofan was appointed Deputy Associate Administrator for the Headquarters Office of Space Science. In 1982, he was named Director of Lewis Research Center.

  18. Study protocol for the translating research in elder care (TREC): building context – an organizational monitoring program in long-term care project (project one)

    PubMed Central

    Estabrooks, Carole A; Squires, Janet E; Cummings, Greta G; Teare, Gary F; Norton, Peter G

    2009-01-01

    Background While there is a growing awareness of the importance of organizational context (or the work environment/setting) to successful knowledge translation, and successful knowledge translation to better patient, provider (staff), and system outcomes, little empirical evidence supports these assumptions. Further, little is known about the factors that enhance knowledge translation and better outcomes in residential long-term care facilities, where care has been shown to be suboptimal. The project described in this protocol is one of the two main projects of the larger five-year Translating Research in Elder Care (TREC) program. Aims The purpose of this project is to establish the magnitude of the effect of organizational context on knowledge translation, and subsequently on resident, staff (unregulated, regulated, and managerial) and system outcomes in long-term care facilities in the three Canadian Prairie Provinces (Alberta, Saskatchewan, Manitoba). Methods/Design This study protocol describes the details of a multi-level – including provinces, regions, facilities, units within facilities, and individuals who receive care (residents) or work (staff) in facilities – and longitudinal (five-year) research project. A stratified random sample of 36 residential long-term care facilities (30 urban and 6 rural) from the Canadian Prairie Provinces will comprise the sample. Caregivers and care managers within these facilities will be asked to complete the TREC survey – a suite of survey instruments designed to assess organizational context and related factors hypothesized to be important to successful knowledge translation and to achieving better resident, staff, and system outcomes. Facility and unit level data will be collected using standardized data collection forms, and resident outcomes using the Resident Assessment Instrument-Minimum Data Set version 2.0 instrument. A variety of analytic techniques will be employed including descriptive analyses, psychometric analyses, multi-level modeling, and mixed-method analyses. Discussion Three key challenging areas associated with conducting this project are discussed: sampling, participant recruitment, and sample retention; survey administration (with unregulated caregivers); and the provision of a stable set of study definitions to guide the project. PMID:19671166

  19. Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment.

  20. Adaptable data management for systems biology investigations.

    PubMed

    Boyle, John; Rovira, Hector; Cavnor, Chris; Burdick, David; Killcoyne, Sarah; Shmulevich, Ilya

    2009-03-06

    Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community.

  1. Crab Nebula

    NASA Image and Video Library

    2017-12-08

    The Crab Nebula is a supernova remnant, all that remains of a tremendous stellar explosion. Observers in China and Japan recorded the supernova nearly 1,000 years ago, in 1054. Credit: NASA, ESA, J. Hester and A. Loll (Arizona State University) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  2. Carina Nebula Detail

    NASA Image and Video Library

    2017-12-08

    Carina Nebula Details: Great Clouds Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  3. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less

  4. Resource and energy management of synfuels production with hydrogen and oxygen requirements from electrolysis

    NASA Astrophysics Data System (ADS)

    Shannon, R. H.; Richardson, R. D.

    The Resource and Energy Management System (REM), which uses electrolytic H2 and O2 to produce synthetic crude and light oils from heavy hydrocarbons is described. The heavy hydrocarbon feedstocks include heavy oils, tar sand bitumens, heavy residual oils, oil shale kerogens, liquefied coal, and pyrolytically-extracted coal liquids. The system includes mini-upgraders, which can be implemented in modular form, to pump electrolytically-derived H2 into heavy oils to upgrade their energy content. Projected costs for the production of synthetic light oils using U.S. coal reserves with the REM process after liquefaction are $30-35/bbl, with the H2 costs being a controlling factor. The modular systems could be built in a much shorter time frame than much larger projects, and would be instrumental in establishing the electrolytic H2 production infrastructure needed for eventual full conversion to an H2-based economy.

  5. Current research on aviation weather (bibliography), 1979

    NASA Technical Reports Server (NTRS)

    Turkel, B. S.; Frost, W.

    1980-01-01

    The titles, managers, supporting organizations, performing organizations, investigators and objectives of 127 current research projects in advanced meteorological instruments, forecasting, icing, lightning, visibility, low level wind shear, storm hazards/severe storms, and turbulence are tabulated and cross-referenced. A list of pertinent reference material produced through the above tabulated research activities is given. The acquired information is assembled in bibliography form to provide a readily available source of information in the area of aviation meteorology.

  6. Applying workability in the Australian residential aged care context.

    PubMed

    Brooke, Elizabeth; Goodall, Joanne; Handrus, Maxwell; Mawren, Daveena

    2013-06-01

    The study is based on an innovative demonstration project which trialled the implementation of the Finnish 'workability' framework and research measures. It aimed, firstly, to test the applicability of the Workability Index (WAI) to the Australian residential aged care workforce, focusing on personal care assistants (PCAs), and secondly, to assess the effectiveness of actions aimed at improving workability. The facility manager implemented multidimensional 'actions' according to the workability framework. The Workability Survey (WAS) and WAI and intervention instruments were administered (n = 64). Completed responses to 'pre' and 'post' instruments formed matched pairs (n = 15). WAI scores increased significantly, by 3 points on average, after all 'actions' were implemented. The only significant 'action' was increasing the number of PCAs in high care. Workability provides a useful research workforce development instrument measuring interactions between aged care workers and organisational demands and the outcomes of 'actions'. © 2013 The Authors. Australasian Journal on Ageing © 2013 ACOTA.

  7. Data analysis of the COMPTEL instrument on the NASA gamma ray observatory

    NASA Technical Reports Server (NTRS)

    Diehl, R.; Bennett, K.; Collmar, W.; Connors, A.; Denherder, J. W.; Hermsen, W.; Lichti, G. G.; Lockwood, J. A.; Macri, J.; Mcconnell, M.

    1992-01-01

    The Compton imaging telescope (COMPTEL) on the Gamma Ray Observatory (GRO) is a wide field of view instrument. The coincidence measurement technique in two scintillation detector layers requires specific analysis methods. Straightforward event projection into the sky is impossible. Therefore, detector events are analyzed in a multi-dimensional dataspace using a gamma ray sky hypothesis convolved with the point spread function of the instrument in this dataspace. Background suppression and analysis techniques have important implications on the gamma ray source results for this background limited telescope. The COMPTEL collaboration applies a software system of analysis utilities, organized around a database management system. The use of this system for the assistance of guest investigators at the various collaboration sites and external sites is foreseen and allows different detail levels of cooperation with the COMPTEL institutes, dependent on the type of data to be studied.

  8. Authentic Performance in the Instrumental Analysis Laboratory: Building a Visible Spectrophotometer Prototype

    ERIC Educational Resources Information Center

    Wilson, Mark V.; Wilson, Erin

    2017-01-01

    In this work we describe an authentic performance project for Instrumental Analysis in which students designed, built, and tested spectrophotometers made from simple components. The project addressed basic course content such as instrument design principles, UV-vis spectroscopy, and spectroscopic instrument components as well as skills such as…

  9. Huygens is alive and well, in space

    NASA Astrophysics Data System (ADS)

    1997-10-01

    "It all went very smoothly, " said Jonh Dodsworth, ESOC's flight operations Director, "We had the option to continue checks on 26 October in case of difficulty, but we don't need to. That's good news". ESOC established connection with the Huygens probe at 10:09 hrs, Central European Time on 23 October, using NASA's link to Cassini. Thanks to ESOC's new flight operations system, engineers and scientists responsible for the mission could check quite quickly that Huygens is alive and well in all respects. ESA's project management team, and representatives of the contractors who built Huygens, were able to report that the engineering system and subsystems are all performing nominally. The principal investigators from Europe and the USA, in charge of the six instruments on Huygens, were also present for the tests. Each experiment was checked for functionality : * HASI to analyse Titan's atmosphere and weather - DWE to measure wind speeds during the descent - GCMS to analyse chemical compounds on Titan - ACP to break down aerosols for chemical analysis - DISR to produce images and spectra of Titan - SSP to determine the nature of Titan's surface. "Six experiments, six green lights", said Jean-Pierre Lebreton, ESA's project scientist. The project manager for Huygens is Hamid Hassan. In Darmstadt he too declared himself pleased with the check-out of the Huygens systems, subsystems and instruments. "We will now let Huygens go back to sleep, except for the planned six monthly checkouts" Hassan said. "The probe will remain in that condition for the seven-year journey to Saturn. But we now have every reason to expect a successful outcome to this unprecedented mission".

  10. Planning and conducting a multi-institutional project on fatigue.

    PubMed

    Nail, L M; Barsevick, A M; Meek, P M; Beck, S L; Jones, L S; Walker, B L; Whitmer, K R; Schwartz, A L; Stephen, S; King, M E

    1998-09-01

    To describe the process used in proposal development and study implementation for a complex multisite project on cancer treatment-related fatigue (CRF), identify strategies used to manage the project, and provide recommendations for teams planning multisite research. Information derived from project team meeting records, correspondence, proposals, and personal recollection. The project was built on preexisting relationships among the three site investigators who then built a team including faculty, research coordinators, staff nurses, and students. Study sites had a range of organizational models, and the proposal was designed to capitalize on the organizational and resource strengths of each setting. Three team members drawn from outside oncology nursing provided expertise in measurement and experience with fatigue in other populations. Planning meetings were critical to the success of the project. Conference calls, fax technology, and electronic mail were used for communication. Flexibility was important in managing crises and shifting responsibility for specific components of the work. The team documented and evaluated the process used for multisite research, completed a major instrumentation study, and developed a cognitive-behavioral intervention for CRF. Accomplishments during the one-year planning grant exceeded initial expectations. The process of conducting multisite research is complex, especially when the starting point is a planning grant with specific research protocols to be developed and implemented over one year. Explicit planning for decision-making processes to be used throughout the project, acknowledging the differences among the study settings and planning the protocols to capitalize upon those differences, and recruiting a strong research team that included a member with planning grant and team-building expertise were essential elements for success. Specific recommendations for others planning multisite research are related to team-building, team membership, communication, behavioral norms, role flexibility, resources, feedback, problem management, and shared recognition.

  11. Managing the Development of the Wide-Field Infrared Survey Explorer Mission

    NASA Technical Reports Server (NTRS)

    Irace, William; Cutri, Roc; Duval, Valerie; Eisenhardt, Peter; Elwell, John; Greanias, George; Heinrichsen, Ingolf; Howard, Joan; Liu, Feng-Chuan; Royer, Donald; hide

    2010-01-01

    The Wide-field Infrared Survey Explorer (WISE), a NASA Medium-Class Explorer (MIDEX) mission, is surveying the entire sky in four bands from 3.4 to 22 microns with a sensitivity hundreds to hundreds of thousands times better than previous all-sky surveys at these wavelengths. The single WISE instrument consists of a 40 cm three-mirror anastigmatic telescope, a two-stage solid hydrogen cryostat, a scan mirror mechanism, and reimaging optics giving 6" resolution (full-width-half-maximum). WISE was placed into a Sun-synchronous polar orbit on a Delta II 7320 launch vehicle on December 14, 2009. NASA selected WISE as a MIDEX in 2002 following a rigorous competitive selection process. To gain further confidence in WISE, NASA extended the development period one year with an option to cancel the mission if certain criteria were not met. MIDEX missions are led by the principal investigator who in this case delegated day-to-day management to the project manager. With a cost cap and relatively short development schedule, it was essential for all WISE partners to work seamlessly together. This was accomplished with an integrated management team representing all key partners and disciplines. The project was developed on budget and on schedule in spite of the need to surmount significant technical challenges. This paper describes our management approach, key challenges and critical decisions made. Results are described from a programmatic, technical and scientific point of view. Lessons learned are offered for projects of this type.

  12. Implementation of Risk Management Tools to improve Soil fertility in Ethiopian Agro Systems

    NASA Astrophysics Data System (ADS)

    García Moreno, Rosario; Ramos Fuentes, Natalia; Gameda, Samuel; Cruz Díaz Álvarez, M.; Selasie, Yihenew G.

    2013-04-01

    Agriculture is one of the activities with the highest degree of edaphoclimatic risk exposure in Ethiopia. The survival of 80The analysis showed that for most of the medium small farmers it is absolutely necessary the use of risk management tools to mitigate or prevent the consequences. A case that has been very interesting is the use of index insurance based on rain and temperature index as indicators of drought. But these projects have several limitations that make difficult its large-scale development. The main problem is to obtain meteorological data, both by the poor infrastructure and the lack of historical records in many parts of the country. The lack of a legal framework at a national level is also a great barrier for the development of these instruments. In addition, the need of further information on the knowledge and opinions of farmers is also fundamental, as well as the implementation of best soil management practices. The results of the project indicated the needs of obtaining information directed from producers, for that reason a questionnaire was developed according to universities working with the producers, introducing the need of doing a regular survey to get the basic information about the area where we plan to make management improvements. In any case, it was found that to get a better performance on the index insurance projects together with the introduction of best management practices at a large-scale, they must be accompanied by social protection programs. This project is financed by the Spanish Agency for International Development Cooperation (AECID), Ministry of Foreign Affairs and Cooperation, through the PCI funding AP/038205/11 and the economical support of the FES though the Program Angeles Alvariño 2013 of Xunta of Galicia

  13. The effects of a team-based continuous quality improvement intervention on the management of primary care: a randomised controlled trial

    PubMed Central

    Engels, Yvonne; van den Hombergh, Pieter; Mokkink, Henk; van den Hoogen, Henk; van den Bosch, Wil; Grol, Richard

    2006-01-01

    Aim To study the effects of a team-based model for continuous quality improvement (CQI) on primary care practice management. Design of study Randomised controlled trial. Setting Twenty-six intervention and 23 control primary care practices in the Netherlands. Method Practices interested in taking part in the CQI project were, after assessment of their practice organisation, randomly assigned to the intervention or control groups. During a total of five meetings, a facilitator helped the teams in the intervention group select suitable topics for quality improvement and follow a structured approach to achieve improvement objectives. Checklists completed by an outreach visitor, questionnaires for the GPs, staff and patients were used to assemble data on the number and quality of improvement activities undertaken and on practice management prior to the start of the intervention and 1 year later. Results Pre-test and post-test data were compared for the 26 intervention and 23 control practices. A significant intervention effect was found for the number of improvement objectives actually defined (93 versus 54, P<0.001) and successfully completed (80 versus 69% of the projects, P<0.001). The intervention group also improved on more aspects of practice management, as measured by our practice visit method, than the control group but none of these differences proved statistically significant. Conclusion The intervention exerted a significant effect on the number and quality of improvement projects undertaken and self-defined objectives met. Failure of the effects of the intervention on the other dimensions of practice management to achieve significance may be due to the topics selected for some of the improvement projects being only partly covered by the assessment instrument. PMID:17007709

  14. An automated performance budget estimator: a process for use in instrumentation

    NASA Astrophysics Data System (ADS)

    Laporte, Philippe; Schnetler, Hermine; Rees, Phil

    2016-08-01

    Current day astronomy projects continue to increase in size and are increasingly becoming more complex, regardless of the wavelength domain, while risks in terms of safety, cost and operability have to be reduced to ensure an affordable total cost of ownership. All of these drivers have to be considered carefully during the development process of an astronomy project at the same time as there is a big drive to shorten the development life-cycle. From the systems engineering point of view, this evolution is a significant challenge. Big instruments imply management of interfaces within large consortia and dealing with tight design phase schedules which necessitate efficient and rapid interactions between all the stakeholders to firstly ensure that the system is defined correctly and secondly that the designs will meet all the requirements. It is essential that team members respond quickly such that the time available for the design team is maximised. In this context, performance prediction tools can be very helpful during the concept phase of a project to help selecting the best design solution. In the first section of this paper we present the development of such a prediction tool that can be used by the system engineer to determine the overall performance of the system and to evaluate the impact on the science based on the proposed design. This tool can also be used in "what-if" design analysis to assess the impact on the overall performance of the system based on the simulated numbers calculated by the automated system performance prediction tool. Having such a tool available from the beginning of a project can allow firstly for a faster turn-around between the design engineers and the systems engineer and secondly, between the systems engineer and the instrument scientist. Following the first section we described the process for constructing a performance estimator tool, followed by describing three projects in which such a tool has been utilised to illustrate how such a tool have been used in astronomy projects. The three use-cases are; EAGLE, one of the European Extremely Large Telescope (E-ELT) Multi-Object Spectrograph (MOS) instruments that was studied from 2007 to 2009, the Multi-Object Optical and Near-Infrared Spectrograph (MOONS) for the European Southern Observatory's Very Large Telescope (VLT), currently under development and SST-GATE.

  15. East Meet West? U.S. and China: Strategies for Global Leadership

    DTIC Science & Technology

    2013-03-01

    construct to serve as a broader framework for this research project to describe instruments of national power in a constantly changing, resource...construct to serve as a broader framework for this research project to describe instruments of national power in a constantly changing, resource...for this research project to describe instruments of national power in a constantly changing, resource-constrained, geopolitical environment. This

  16. Dendrohydrology and water resources management in south-central Chile: lessons from the Río Imperial streamflow reconstruction

    NASA Astrophysics Data System (ADS)

    Fernández, Alfonso; Muñoz, Ariel; González-Reyes, Álvaro; Aguilera-Betti, Isabella; Toledo, Isadora; Puchi, Paulina; Sauchyn, David; Crespo, Sebastián; Frene, Cristian; Mundo, Ignacio; González, Mauro; Vignola, Raffaele

    2018-05-01

    Streamflow in south-central Chile (SCC, ˜ 37-42° S) is vital for agriculture, forestry production, hydroelectricity, and human consumption. Recent drought episodes have generated hydrological deficits with damaging effects on these activities. This region is projected to undergo major reductions in water availability, concomitant with projected increases in water demand. However, the lack of long-term records hampers the development of accurate estimations of natural variability and trends. In order to provide more information on long-term streamflow variability and trends in SCC, here we report findings of an analysis of instrumental records and a tree-ring reconstruction of the summer streamflow of the Río Imperial ( ˜ 37° 40' S-38° 50' S). This is the first reconstruction in Chile targeted at this season. Results from the instrumental streamflow record ( ˜ 1940 onwards) indicated that the hydrological regime is fundamentally pluvial with a small snowmelt contribution during spring, and evidenced a decreasing trend, both for the summer and the full annual record. The reconstruction showed that streamflow below the average characterized the post-1980 period, with more frequent, but not more intense, drought episodes. We additionally found that the recent positive phase of the Southern Annular Mode has significantly influenced streamflow. These findings agree with previous studies, suggesting a robust regional signal and a shift to a new hydrological scenario. In this paper, we also discuss implications of these results for water managers and stakeholders; we provide rationale and examples that support the need for the incorporation of tree-ring reconstructions into water resources management.

  17. FY94 CAG trip reports, CAG memos and other products: Volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-15

    The Yucca Mountain Site Characterization Project (YMP) of the US DOE is tasked with designing, constructing, and operating an Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada. The purpose of the YMP is to provide detailed characterization of the Yucca Mountain site for the potential mined geologic repository for permanent disposal of high-level radioactive waste. Detailed characterization of properties of the site are to be conducted through a wide variety of short-term and long-term in-situ tests. Testing methods require the installation of a large number of test instruments and sensors with a variety of functions. These instruments produce analog andmore » digital data that must be collected, processed, stored, and evaluated in an attempt to predict performance of the repository. The Integrated Data and Control System (IDCS) is envisioned as a distributed data acquisition that electronically acquires and stores data from these test instruments. IDCS designers are responsible for designing and overseeing the procurement of the system, IDCS Operation and Maintenance operates and maintains the installed system, and the IDCS Data Manager is responsible for distribution of IDCS data to participants. This report is a compilation of trip reports, interoffice memos, and other memos relevant to Computer Applications Group, Inc., work on this project.« less

  18. The development and validation of a novel questionnaire to measure patient and family satisfaction with end-of-life care: the Canadian Health Care Evaluation Project (CANHELP) Questionnaire.

    PubMed

    Heyland, Daren K; Cook, Deborah J; Rocker, Graeme M; Dodek, Peter M; Kutsogiannis, Demetrios J; Skrobik, Yoanna; Jiang, Xuran; Day, Andrew G; Cohen, S Robin

    2010-10-01

    The purpose of this study was to further validate a novel instrument to measure satisfaction with end-of-life care, called the Canadian Health Care Evaluation Project (CANHELP) questionnaire. Data were collected by a cross-sectional survey of patients who had advanced, life-limiting illnesses and their family caregivers, and who completed CANHELP, a global rating of satisfaction, and a quality of life questionnaire. We conducted factor analysis, assessed internal consistency using Cronbach's alpha, and evaluated construct validity by describing the correlation amongst CANHELP, global rating of satisfaction and the quality of life questionnaire scores. There were 361 patient and 193 family questionnaires available for analysis. In the factor analysis, we identified six easily interpretable factors which explained 55.4% and 60.2% of the variance for the patient and caregiver questionnaire, respectively. For the patient version, the subscales derived from these factors were Relationship with Doctors, Illness Management, Communication, Decision-Making, Role of the Family, and Your Well-being. For the family questionnaire, the factors were Relationship with Doctors, Characteristics of Doctors and Nurses, Illness Management, Communication and Decision-Making, Your Involvement, and Your Well-being. Each subscale for each questionnaire had acceptable to excellent internal consistency (Cronbach's alpha ranged from 0.69-0.94). We observed good correlations between the CANHELP overall satisfaction score and global rating of satisfaction (correlation coefficient 0.49 and 0.63 for patient and family, respectively) which was greater than the correlations between CANHELP and the quality of life instruments. We conclude that the CANHELP Questionnaire is a valid and internally consistent instrument to measure satisfaction with end-of-life care.

  19. Next Generation Astronomical Data Processing using Big Data Technologies from the Apache Software Foundation

    NASA Astrophysics Data System (ADS)

    Mattmann, Chris

    2014-04-01

    In this era of exascale instruments for astronomy we must naturally develop next generation capabilities for the unprecedented data volume and velocity that will arrive due to the veracity of these ground-based sensor and observatories. Integrating scientific algorithms stewarded by scientific groups unobtrusively and rapidly; intelligently selecting data movement technologies; making use of cloud computing for storage and processing; and automatically extracting text and metadata and science from any type of file are all needed capabilities in this exciting time. Our group at NASA JPL has promoted the use of open source data management technologies available from the Apache Software Foundation (ASF) in pursuit of constructing next generation data management and processing systems for astronomical instruments including the Expanded Very Large Array (EVLA) in Socorro, NM and the Atacama Large Milimetre/Sub Milimetre Array (ALMA); as well as for the KAT-7 project led by SKA South Africa as a precursor to the full MeerKAT telescope. In addition we are funded currently by the National Science Foundation in the US to work with MIT Haystack Observatory and the University of Cambridge in the UK to construct a Radio Array of Portable Interferometric Devices (RAPID) that will undoubtedly draw from the rich technology advances underway. NASA JPL is investing in a strategic initiative for Big Data that is pulling in these capabilities and technologies for astronomical instruments and also for Earth science remote sensing. In this talk I will describe the above collaborative efforts underway and point to solutions in open source from the Apache Software Foundation that can be deployed and used today and that are already bringing our teams and projects benefits. I will describe how others can take advantage of our experience and point towards future application and contribution of these tools.

  20. The DYNES Instrument: A Description and Overview

    NASA Astrophysics Data System (ADS)

    Zurawski, Jason; Ball, Robert; Barczyk, Artur; Binkley, Mathew; Boote, Jeff; Boyd, Eric; Brown, Aaron; Brown, Robert; Lehman, Tom; McKee, Shawn; Meekhof, Benjeman; Mughal, Azher; Newman, Harvey; Rozsa, Sandor; Sheldon, Paul; Tackett, Alan; Voicu, Ramiro; Wolff, Stephen; Yang, Xi

    2012-12-01

    Scientific innovation continues to increase requirements for the computing and networking infrastructures of the world. Collaborative partners, instrumentation, storage, and processing facilities are often geographically and topologically separated, as is the case with LHC virtual organizations. These separations challenge the technology used to interconnect available resources, often delivered by Research and Education (R&E) networking providers, and leads to complications in the overall process of end-to-end data management. Capacity and traffic management are key concerns of R&E network operators; a delicate balance is required to serve both long-lived, high capacity network flows, as well as more traditional end-user activities. The advent of dynamic circuit services, a technology that enables the creation of variable duration, guaranteed bandwidth networking channels, allows for the efficient use of common network infrastructures. These gains are seen particularly in locations where overall capacity is scarce compared to the (sustained peak) needs of user communities. Related efforts, including those of the LHCOPN [3] operations group and the emerging LHCONE [4] project, may take advantage of available resources by designating specific network activities as a “high priority”, allowing reservation of dedicated bandwidth or optimizing for deadline scheduling and predicable delivery patterns. This paper presents the DYNES instrument, an NSF funded cyberinfrastructure project designed to facilitate end-to-end dynamic circuit services [2]. This combination of hardware and software innovation is being deployed across R&E networks in the United States at selected end-sites located on University Campuses. DYNES is peering with international efforts in other countries using similar solutions, and is increasing the reach of this emerging technology. This global data movement solution could be integrated into computing paradigms such as cloud and grid computing platforms, and through the use of APIs can be integrated into existing data movement software.

  1. Phoenix Again Carries Soil to Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab Cell 1 delivery funnel on Sol 41, the 42nd Martian day after landing, or July 6, 2008, after a soil sample was delivered to the instrument.

    The instrument's Cell 1 is second one from the foreground of the image. The first cell, Cell 0, received a soil sample two weeks earlier.

    This image has been enhanced to brighten the scene.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Installation summary report : GRS instrumentation I-70 over Smith Road.

    DOT National Transportation Integrated Search

    2016-07-04

    This report presents a summary of the I-70 over Smith Road GRS Instrumentation Project (the project) in Aurora, Colorado. The report summarizes the instruments used, installation means and methods, and a discussion on the web-based data interface. CD...

  3. Funding of Geosciences: Coordinating National and International Resources

    NASA Astrophysics Data System (ADS)

    Bye, B.; Fontaine, K. S.

    2012-12-01

    Funding is an important element of national as well as international policy for Earth observations. The Group on Earth Observations (GEO) is coordinating efforts to build a Global Earth Observation System of Systems, or GEOSS. The lack of dedicated funding to support specific S&T activities in support of GEOSS is one of the most important obstacles to engaging the S&T communities in its implementation. This problem can be addressed by establishing explicit linkages between research and development programmes funded by GEO Members and Participating Organizations and GEOSS. In appropriate funding programs, these links may take the form of requiring explanations of how projects to be funded will interface with GEOSS and ensuring that demonstrating significant relevance for GEOSS is viewed as an asset of these proposals, requiring registration of Earth observing systems developed in these projects, or stipulating that data and products must adhere to the GEOSS Data Sharing Principles. Examples of Earth observations include: - Measurements from ground-based, in situ monitors; - Observations from Earth satellites; - Products and predictive capabilities from Earth system models, often using the capabilities of high-performance computers; - Scientific knowledge about the Earth system; and, - Data visualization techniques. These examples of Earth observations activities requires different types of resources, R&D top-down, bottom-up funding and programs of various sizes. Where innovation and infrastructure are involved different kind of resources are better suited, for developing countries completely other sources of funding are applicable etc. The European Commission funded Egida project is coordinating the development of a funding mechanism based on current national and international funding instruments such as the European ERANet, the new Joint Programming Initiatives, ESFRI as well as other European and non-European instruments. A general introduction to various strategies and fundings instruments on international and regional level will be presented together with a proposed first step of a particular funding mechanism for both the implementation and sustained operation of GEOSS. Resources and capacity building is an integral part of national science policy making and an important element in its implementations in societal applications such as disaster management, natural resources management etc. In particular, funding instruments have to be in place to facilitate free, open, authoritative sources of quality data and general scientific results for the benefit of society.

  4. Key and Driving Requirements for the Juno Payload of Instruments

    NASA Technical Reports Server (NTRS)

    Dodge, Randy; Boyles, Mark A.; Rasbach, Chuck E.

    2007-01-01

    The Juno Mission was selected in the summer of 2005 via NASA's New Frontiers competitive AO process (refer to http://www.nasa.gov/home/hqnews/2005/jun/HQ_05138_New_Frontiers_2.html). The Juno project is led by a Principle Investigator based at Southwest Research Institute [SwRI] in San Antonio, Texas, with project management based at the Jet Propulsion Laboratory [JPL] in Pasadena, California, while the Spacecraft design and Flight System Integration are under contract to Lockheed Martin Space Systems Company [LM-SSC] in Denver, Colorado. the payload suite consists of a large number of instruments covering a wide spectrum of experimentation. The science team includes a lead Co-investigator for each one of the following experiments: A Magnetometer experiment (consisting of both a FluxGate Magnetometer (FGM) built at Goddard Space Flight Center GSFC] and a Scalar Helium Magnetometer (SHM) built at JPL, a MicroWave Radiometer (MWR) also built at JPL, a Gravity Science experiment (GS) implemented via the telecom subsystem, two complementary particle instruments (Jovian Auroral Distribution Experiment, JADE developed by SwRI and Juno Energetic-particle Detector Instrument, JEDI from the Applied Physics Lab (APL)--JEDI and JADE both measure electrons and ions), an Ultraviolet Spectrometer (UVS) also developed at SwRI, and a radio and plasma (WAVES) experiment (from the University of Iowa). In addition, a visible camera (JunoCam) is included in the payload to facilitate education and public outreach (designed & fabricated by Malin Space Science Systems [MSSS]).

  5. Management of surgical instruments with radio frequency identification tags.

    PubMed

    Kusuda, Kaori; Yamashita, Kazuhiko; Ohnishi, Akiko; Tanaka, Kiyohito; Komino, Masaru; Honda, Hiroshi; Tanaka, Shinichi; Okubo, Takashi; Tripette, Julien; Ohta, Yuji

    2016-01-01

    To prevent malpractices, medical staff has adopted inventory time-outs and/or checklists. Accurate inventory and maintenance of surgical instruments decreases the risk of operating room miscounting and malfunction. In our previous study, an individual management of surgical instruments was accomplished using Radio Frequency Identification (RFID) tags. The purpose of this paper is to evaluate a new management method of RFID-tagged instruments. The management system of RFID-tagged surgical instruments was used for 27 months in clinical areas. In total, 13 study participants assembled surgical trays in the central sterile supply department. While using the management system, trays were assembled 94 times. During this period, no assembly errors occurred. An instrument malfunction had occurred after the 19th, 56th, and 73 th uses, no malfunction caused by the RFID tags, and usage history had been recorded. Additionally, the time it took to assemble surgical trays was recorded, and the long-term usability of the management system was evaluated. The system could record the number of uses and the defective history of each surgical instrument. In addition, the history of the frequency of instruments being transferred from one tray to another was recorded. The results suggest that our system can be used to manage instruments safely. Additionally, the management system was acquired of the learning effect and the usability on daily maintenance. This finding suggests that the management system examined here ensures surgical instrument and tray assembly quality.

  6. Identifying instruments to quantify financial management skills in adults with acquired cognitive impairments.

    PubMed

    Engel, Lisa; Bar, Yael; Beaton, Dorcas E; Green, Robin E; Dawson, Deirdre R

    2016-01-01

    Financial management skills-that is, the skills needed to handle personal finances such as banking and paying bills-are essential to a person's autonomy, independence, and community living. To date, no comprehensive review of financial management skills instruments exists, making it difficult for clinicians and researchers to choose relevant instruments. The objectives of this review are to: (a) identify all available instruments containing financial management skill items that have been used with adults with acquired cognitive impairments; (b) categorize the instruments by source (i.e., observation based, self-report, proxy report); and (c) describe observation-based performance instruments by populations, overarching concepts measured, and comprehensiveness of financial management items. Objective (c) focuses on observation-based performance instruments as these measures can aid in situations where the person with cognitive impairment has poor self-awareness or where the proxy has poor knowledge of the person's current abilities. Two reviewers completed two systematic searches of five databases. Instruments were categorized by reviewing published literature, copies of the instruments, and/or communication with instrument authors. Comprehensiveness of items was based on nine key domains of financial management skills developed by the authors. A total of 88 discrete instruments were identified. Of these, 44 were categorized as observation-based performance and 44 as self- and/or proxy-reports. Of the 44 observation-based performance instruments, 8 had been developed for acquired brain injury populations and 24 for aging and dementia populations. Only 7 of the observation-based performance instruments had items spanning 6 or more of the 9 financial management skills domains. The majority of instruments were developed for aging and dementia populations, and few were comprehensive. This review provides foundation for future instrument psychometric and clinimetric reviews. It a necessary first step in providing information to support decision making for clinicians and researchers selecting financial management skills instruments.

  7. Providing Data Management Support to NASA Airborne Field Studies through Streamlined Usability Design

    NASA Astrophysics Data System (ADS)

    Beach, A. L., III; Northup, E. A.; Early, A. B.; Chen, G.

    2016-12-01

    Airborne field studies are an effective way to gain a detailed understanding of atmospheric processes for scientific research on climate change and air quality relevant issues. One major function of airborne project data management is to maintain seamless data access within the science team. This allows individual instrument principal investigators (PIs) to process and validate their own data, which requires analysis of data sets from other PIs (or instruments). The project's web platform streamlines data ingest, distribution processes, and data format validation. In May 2016, the NASA Langley Research Center (LaRC) Atmospheric Science Data Center (ASDC) developed a new data management capability to help support the Korea U.S.-Air Quality (KORUS-AQ) science team. This effort is aimed at providing direct NASA Distributed Active Archive Center (DAAC) support to an airborne field study. Working closely with the science team, the ASDC developed a scalable architecture that allows investigators to easily upload and distribute their data and documentation within a secure collaborative environment. The user interface leverages modern design elements to intuitively guide the PI through each step of the data management process. In addition, the new framework creates an abstraction layer between how the data files are stored and how the data itself is organized(i.e. grouping files by PI). This approach makes it easy for PIs to simply transfer their data to one directory, while the system itself can automatically group/sort data as needed. Moreover, the platform is "server agnostic" to a certain degree, making deployment and customization more straightforward as hardware needs change. This flexible design will improve development efficiency and can be leveraged for future field campaigns. This presentation will examine the KORUS-AQ data portal as a scalable solution that applies consistent and intuitive usability design practices to support ingest and management of airborne data.

  8. Aerospace Vehicle Design, Spacecraft Section. Volume 3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Research results are presented for the following groups: Project Mars Airplane Vehicle and Reconnaissance Instrument Carrier (MAVRIC), ACME, ARES, Project ACRONYM, Mars Aircraft Recepticle with Technical Instruments, Aerobraking, and Navigation (MARTIAN), and NOMADS. Each project is described by the following areas of focus: mission planning and costs; aerobraking systems; structures and thermal control systems; attitude and articulation control systems; comman and data control systems; science instrumentation; and power and propulsion systems.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less

  10. Test What You Fly?

    NASA Technical Reports Server (NTRS)

    Margolies, Don

    2002-01-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  11. Test What You Fly?

    NASA Astrophysics Data System (ADS)

    Margolies, Don

    2002-10-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  12. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  13. HMI conventions for process control graphics.

    PubMed

    Pikaar, Ruud N

    2012-01-01

    Process operators supervise and control complex processes. To enable the operator to do an adequate job, instrumentation and process control engineers need to address several related topics, such as console design, information design, navigation, and alarm management. In process control upgrade projects, usually a 1:1 conversion of existing graphics is proposed. This paper suggests another approach, efficiently leading to a reduced number of new powerful process graphics, supported by a permanent process overview displays. In addition a road map for structuring content (process information) and conventions for the presentation of objects, symbols, and so on, has been developed. The impact of the human factors engineering approach on process control upgrade projects is illustrated by several cases.

  14. Project Developmental Continuity Evaluation: Implementation Rating Instrument.

    ERIC Educational Resources Information Center

    High/Scope Educational Research Foundation, Ypsilanti, MI.

    This instrument is part of a series of documents on the evaluation of Project Developmental Continuity (PDC), a Head Start demonstration program aimed at providing educational and developmental continuity between children's Head Start and primary school experiences. The Implementation Rating Instrument (IRI) was developed to provide a quantitative…

  15. The lightbulb project: New music for new percussion instruments

    NASA Astrophysics Data System (ADS)

    Baumbusch, Brian

    This thesis is about the process behind building, tuning, and composing music for a new set of metallophones called the "Lightbulb" instruments. This project began in 2011 and has continued to expand over the past two years: the first piece to be written for the instruments is titled Prana, and this thesis describes how the process of building and tuning the instruments informed the compositional process behind Prana. The premiere of Prana led to the formation of the Lightbulb Ensemble, which performs on these new instruments. The instruments and the group continue to develop.

  16. Methods and tools to simulate the effect of economic instruments in complex water resources systems. Application to the Jucar river basin.

    NASA Astrophysics Data System (ADS)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel

    2014-05-01

    The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water markets by economic optimization, without considering the potential effect of transaction costs. These methods and tools have been applied to the Jucar River basin (Spain). The results show the potential of economic instruments in setting incentives for a more efficient management of water resources systems. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536), SAWARES (Plan Nacional I+D+i 2008-2011, CGL2009-13238-C02-01 and C02-02), SCARCE (Consolider-Ingenio 2010 CSD2009-00065) of the Spanish Ministry of Economy and Competitiveness; and EC 7th Framework Project ENHANCE (n. 308438) Reference: Pulido-Velazquez, M., Alvarez-Mendiola, E., and Andreu, J., 2013. Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. J. Water Resour. Plann. Manage., 139(5): 583-592.

  17. Feedback to Managers: A Review and Comparison of Multi-Rater Instruments for Management Development. Third Edition.

    ERIC Educational Resources Information Center

    Leslie, Jean Brittain; Fleenor, John W.

    This volume describes 24 publicly available multiple-perspective management-assessment instruments that relate self-view to the views of others on multiple management and leadership domains. Each instrument also includes an assessment-for-development focus that scales managers along a continuum of psychometric properties, and "best…

  18. Adaptable data management for systems biology investigations

    PubMed Central

    Boyle, John; Rovira, Hector; Cavnor, Chris; Burdick, David; Killcoyne, Sarah; Shmulevich, Ilya

    2009-01-01

    Background Within research each experiment is different, the focus changes and the data is generated from a continually evolving barrage of technologies. There is a continual introduction of new techniques whose usage ranges from in-house protocols through to high-throughput instrumentation. To support these requirements data management systems are needed that can be rapidly built and readily adapted for new usage. Results The adaptable data management system discussed is designed to support the seamless mining and analysis of biological experiment data that is commonly used in systems biology (e.g. ChIP-chip, gene expression, proteomics, imaging, flow cytometry). We use different content graphs to represent different views upon the data. These views are designed for different roles: equipment specific views are used to gather instrumentation information; data processing oriented views are provided to enable the rapid development of analysis applications; and research project specific views are used to organize information for individual research experiments. This management system allows for both the rapid introduction of new types of information and the evolution of the knowledge it represents. Conclusion Data management is an important aspect of any research enterprise. It is the foundation on which most applications are built, and must be easily extended to serve new functionality for new scientific areas. We have found that adopting a three-tier architecture for data management, built around distributed standardized content repositories, allows us to rapidly develop new applications to support a diverse user community. PMID:19265554

  19. Instruments and Scoring Guide of the Experiential Education Evaluation Project.

    ERIC Educational Resources Information Center

    Conrad, Dan; Hedin, Diane

    As a result of the Experiential Education Evaluation Project the publication identifies instruments used to measure and assess experiential learning programs. The following information is given for each instrument: rationale for its inclusion in the study; precise issues or outcomes designed to measure, validity and reliability data; and…

  20. Instrumentation Technology. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Squires, Sheila S.

    This report provides results of Phase I of a project that researched the occupational area of instrumentation technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train instrumentation technicians. Section 1 contains general information: purpose of…

  1. 76 FR 2647 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Netherlands. Intended Use: The instrument will be used for a wide variety of research projects, including the..., the Netherlands. Intended Use: The instrument will be used for a wide variety of research projects including the study of artificial atoms, nanomagnetic research, and advanced semiconductor devices. The...

  2. Dunes in Darwin Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03039 Dunes in Darwin Crater

    The dunes and sand deposits in this image are located on the floor of Darwin Crater.

    Image information: VIS instrument. Latitude 57.4S, Longitude 340.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Ganges Features

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03285 Ganges Features

    This image shows part of Ganges Chasma. Several landslides occur at the top of the image, while dunes and canyon floor deposits are visible at the bottom of the image.

    Image information: VIS instrument. Latitude -6.8N, Longitude 312.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Elysium Winds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03283 Elysium Winds

    The multiple trends of yardangs in this image indicate that the winds in the Elysium region have changed direction several times.

    Image information: VIS instrument. Latitude 2.6N, Longitude 151.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. A Dust Devil Playground

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02185 A Dust Devil Playground

    Dust Devil activity in this region between Brashear and Ross Craters is very common. Large regions of dust devil tracks surround the south polar region of Mars.

    Image information: VIS instrument. Latitude -55.2N, Longitude 244.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Iani Chaos

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03200 Iani Chaos

    This VIS image of Iani Chaos shows the layered deposit that occurs on the floor. It appears that the layers were deposited after the chaos was formed.

    Image information: VIS instrument. Latitude 2.3S, Longitude 342.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Iani Chaos

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03046 Iani Chaos

    This image shows a small portion of Iani Chaos. The brighter floor material is being covered by sand, probably eroded from the mesas of the Chaos.

    Image information: VIS instrument. Latitude 1.7S, Longitude 341.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Olympus Mons Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image originated from the steep escarpment which surrounds the Olympus Mons volcano on Mars. This landslide is located on the northern side of the volcano.

    Image information: VIS instrument. Latitude 23.2, Longitude 223.9 East (136.1 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Melas Chasma Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03041 Dunes in Darwin Crater

    The landslide in the center of this image occurred in the Melas Chasma region of Valles Marineris.

    Image information: VIS instrument. Latitude 11S, Longitude 292.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Landslides

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The slumping of materials in the walls of this impact crater illustrate the continued erosion of the martian surface. Small fans of debris as well as larger landslides are observed throughout the THEMIS image.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 40.9, Longitude 120.5 East (239.5 West). 19 meter/pixel resolution.

  11. Terra Cimmeria Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Terra Cimmeria region of Mars. The unnamed crater hosting this image is just east of Molesworth Crater.

    Image information: VIS instrument. Latitude -27.7, Longitude 152 East (208 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Coprates Chasma Landslides in IR

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Today's daytime IR image is of a portion of Coprates Chasma, part of Valles Marineris. As with yesterday's image, this image shows multiple large landslides.

    Image information: IR instrument. Latitude -8.2, Longitude 300.2 East (59.8 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Landslide in a Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Elysium region of Mars. The unnamed crater is located at the margin of the volcanic flows from the Elysium Mons complex.

    Image information: VIS instrument. Latitude 1.2, Longitude 134 East (226 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Old and New Graben

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This image shows graben in the region between Arsia Mons and Syria Planum. The older northeast trending graben have been cut by the younger southeast trending graben.

    Image information: VIS instrument. Latitude -14.1, Longitude 249.8 East (110.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Alba Patera Graben

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image is on the southern flank of Alba Patera -- a large, old volcano. These graben likely formed as the volcano collaped into the empty magma chamber beneath the surface.

    Image information: VIS instrument. Latitude 31.9, Longitude 251.4 East (108.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Southern Clouds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03026 Southern Clouds

    This image shows a system of clouds just off the margin of the South Polar cap. Taken during the summer season, these clouds contain both water-ice and dust.

    Image information: VIS instrument. Latitude 80.2S, Longitude 57.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Wind and Water?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03284 Wind and Water?

    The deposits within this crater show evidence of erosion by both wind and water. The region outside the crater is dominated by wind erosion.

    Image information: VIS instrument. Latitude 1.4N, Longitude 204.1E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Cydonia Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Eroded mesas and secondary craters dot the landscape in this area of the Cydonia Mensae region. The single oval-shaped crater displays a 'butterfly' ejecta pattern, indicating that the crater formed from a low-angle impact.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 32.9, Longitude 343.8 East (16.2 West). 19 meter/pixel resolution.

  2. Southern Spots

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03092 Southern Spots

    This VIS image of the south polar region was collected during the summer season. The markings of the pole are very diverse and easy to see after the winter frost has been removed.

    Image information: VIS instrument. Latitude 79.7S, Longitude 56.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Frost-free Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03291 Frost-free Dunes

    These dark dunes are frost covered for most of the year. As southern summer draws to a close, the dunes have been completely defrosted.

    Image information: VIS instrument. Latitude -66.6N, Longitude 37.0E. 34 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Candor Chasma Mesa

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    A mantling layer of sediment slumps off the edge of a mesa in Candor Chasma producing a ragged pattern of erosion that hints at the presence of a volatile component mixed in with the sediment.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -6.7, Longitude 286.4 East (73.6 West). 19 meter/pixel resolution.

  5. Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipton, R.

    2013-01-01

    Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less

  6. Evaluative studies in nuclear medicine research: emission computed tomography assessment. Final report, January 1-December 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potchen, E.J.; Harris, G.I.; Gift, D.A.

    The report provides information on an assessment of the potential short and long term benefits of emission computed tomography (ECT) in biomedical research and patient care. Work during the past year has been augmented by the development and use of an opinion survey instrument to reach a wider representation of knowledgeable investigators and users of this technology. This survey instrument is reproduced in an appendix. Information derived from analysis of the opinion survey, and used in conjunction with results of independent staff studies of available sources, provides the basis for the discussions given in following sections of PET applications inmore » the brain, of technical factors, and of economic implications. Projections of capital and operating costs on a per study basis were obtained from a computerized, pro forma accounting model and are compared with the survey cost estimates for both research and clinical modes of application. The results of a cash-flow model analysis of the relationship between projected economic benefit of PET research to disease management and the costs associated with such research are presented and discussed.« less

  7. The COMPASS Project

    NASA Astrophysics Data System (ADS)

    Duley, A. R.; Sullivan, D.; Fladeland, M. M.; Myers, J.; Craig, M.; Enomoto, F.; Van Gilst, D. P.; Johan, S.

    2011-12-01

    The Common Operations and Management Portal for Airborne Science Systems (COMPASS) project is a multi-center collaborative effort to advance and extend the research capabilities of the National Aeronautics and Space Administration's (NASA) Airborne Science Program (ASP). At its most basic, COMPASS provides tools for visualizing the position of aircraft and instrument observations during the course of a mission, and facilitates dissemination, discussion, and analysis and of multiple disparate data sources in order to more efficiently plan and execute airborne science missions. COMPASS targets a number of key objectives. First, deliver a common operating picture for improved shared situational awareness to all participants in NASA's Airborne Science missions. These participants include scientists, engineers, managers, and the general public. Second, encourage more responsive and collaborative measurements between instruments on multiple aircraft, satellites, and on the surface in order to increase the scientific value of these measurements. Fourth, provide flexible entry points for data providers to supply model and advanced analysis products to mission team members. Fifth, provide data consumers with a mechanism to ingest, search and display data products. Finally, embrace an open and transparent platform where common data products, services, and end user components can be shared with the broader scientific community. In pursuit of these objectives, and in concert with requirements solicited by the airborne science research community, the COMPASS project team has delivered a suite of core tools intended to represent the next generation toolset for airborne research. This toolset includes a collection of loosely coupled RESTful web-services, a system to curate, register, and search, commonly used data sources, end-user tools which leverage web socket and other next generation HTML5 technologies to aid real time aircraft position and data visualization, and an extensible a framework to rapidly accommodate mission specific requirements and mission tools.

  8. Integrating High-Throughput Parallel Processing Framework and Storage Area Network Concepts Into a Prototype Interactive Scientific Visualization Environment for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Smuga-Otto, M. J.; Garcia, R. K.; Knuteson, R. O.; Martin, G. D.; Flynn, B. M.; Hackel, D.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) is developing tools to help scientists realize the potential of high spectral resolution instruments for atmospheric science. Upcoming satellite spectrometers like the Cross-track Infrared Sounder (CrIS), experimental instruments like the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and proposed instruments like the Hyperspectral Environmental Suite (HES) within the GOES-R project will present a challenge in the form of the overwhelmingly large amounts of continuously generated data. Current and near-future workstations will have neither the storage space nor computational capacity to cope with raw spectral data spanning more than a few minutes of observations from these instruments. Schemes exist for processing raw data from hyperspectral instruments currently in testing, that involve distributed computation across clusters. Data, which for an instrument like GIFTS can amount to over 1.5 Terabytes per day, is carefully managed on Storage Area Networks (SANs), with attention paid to proper maintenance of associated metadata. The UW-SSEC is preparing a demonstration integrating these back-end capabilities as part of a larger visualization framework, to assist scientists in developing new products from high spectral data, sourcing data volumes they could not otherwise manage. This demonstration focuses on managing storage so that only the data specifically needed for the desired product are pulled from the SAN, and on running computationally expensive intermediate processing on a back-end cluster, with the final product being sent to a visualization system on the scientist's workstation. Where possible, existing software and solutions are used to reduce cost of development. The heart of the computing component is the GIFTS Information Processing System (GIPS), developed at the UW- SSEC to allow distribution of processing tasks such as conversion of raw GIFTS interferograms into calibrated radiance spectra, and retrieving temperature and water vapor content atmospheric profiles from these spectra. The hope is that by demonstrating the capabilities afforded by a composite system like the one described here, scientists can be convinced to contribute further algorithms in support of this model of computing and visualization.

  9. A Wet Chemistry Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Entry Descent and Landing Workshop Proceedings. Volume 1; Cost Drivers

    NASA Technical Reports Server (NTRS)

    Wright, Henry

    2015-01-01

    Provide some perspective on characteristics or features which drive the cost of the EDL Instrumentation. Using MEDLI, MEDLI2, EFT1, and Ares I-X as case studies. Need to consider what program is funding the effort and how that program likes to manage projects. Need to define the limits of the measurement subsystem - what is being provided and implemented - and by whom. The yearly end of fiscal year drama will always introduce uncertainty which will impact the cost - and cost phasing.

  11. SUPERTANK Laboratory Data Collection Project. Volume 1. Main Text

    DTIC Science & Technology

    1994-01-01

    gauge elec- tronics housing and sensing wire were pre- drilled with 1/8-in.- (3.2-mm-) diameter holes spaced every 2 in. (5.08 cm). This support rod...wave gauges and current meters were sampled at 16 Hz and other instruments were sampled at 10 Hz, shorter runs gave data files that were manageable in...Chapter 1 Introduction to SUPERTANK Figure 1-1. Wide-area view of LWT channel and control room during SUPERTANK (capacitance wave gauges in foreground

  12. Ground facility for information reception, processing, dissemination and scientific instruments management setup in the CORONAS-PHOTON space project

    NASA Astrophysics Data System (ADS)

    Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.

    2011-06-01

    This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.

  13. NASA Aerosciences Perspective on Proposed De-Scope of Ares I-X Development Flight Instrumentation

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2009-01-01

    This position paper is written as a result of a number of emails and a presentation that have recently been circulated concerning the potential reduction of Development Flight Instrumentation (DFI) to be included on the Ares I-X flight test vehicle. A reduction in instrumentation has been proposed presumably to reduce project costs and relieve project schedule pressures. This proposal has generated a significant amount of discussion on both sides of the issue, primarily from those within the project. The intention here is to provide a perspective on this issue from outside the mainline project.

  14. WE-G-BRB-02: The Role of Program Project Grants in Study of 3D Conformal Therapy, Dose Escalation and Motion Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraass, B.

    2015-06-15

    Over the past 20 years the NIH has funded individual grants, program projects grants, and clinical trials which have been instrumental in advancing patient care. The ways that each grant mechanism lends itself to the different phases of translating research into clinical practice will be described. Major technological innovations, such as IMRT and proton therapy, have been advanced with R01-type and P01-type funding and will be discussed. Similarly, the role of program project grants in identifying and addressing key hypotheses on the potential of 3D conformal therapy, normal tissue-guided dose escalation and motion management will be described. An overview willmore » be provided regarding how these technological innovations have been applied to multi-institutional NIH-sponsored trials. Finally, the panel will discuss regarding which research questions should be funded by the NIH to inspire the next advances in radiation therapy. Learning Objectives: Understand the different funding mechanisms of the NIH Learn about research advances that have led to innovation in delivery Review achievements due to NIH-funded program project grants in radiotherapy over the past 20 years Understand example advances achieved with multi-institutional clinical trials NIH.« less

  15. Thirty Years Supporting Portable Arrays: The IRIS Passcal Instrument Center

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. C.; Anderson, K. R.; Bilek, S. L.; Woodward, R.

    2014-12-01

    Thirty years have passed since establishment of the IRIS Program for the Array Seismic Studies of the Continental Lithosphere (PASSCAL). PASSCAL was part of a coordinated plan proposed to the National Science Foundation (NSF) defining the instrumentation, data collection and management structure to support a wide range of research in seismology. The PASSCAL program has surpassed the early goal of 6000 data acquisition channels with a current inventory of instrumentation capable of imaging from the near surface to the inner core. Here we present the evolution of the PASSCAL program from instrument depot to full service community resource. PASSCAL has supported close to 1100 PI driven seismic experiments since its inception. Instruments from PASSCAL have covered the globe and have contributed over 7400 SEED stations and 242 assembled data sets to the IRIS Data Management Center in Seattle. Since the combination in 1998 of the Stanford and Lamont instrument centers into the single PASSCAL Instrument Center (PIC) at New Mexico Tech, the facility has grown in scope by adding the EarthScope Array Operations Facility in 2005, the incorporation of the EarthScope Flexible Array, and a Polar support group in 2006. The polar support group enhances portable seismic experiments in extremely harsh polar environments and also extends to special projects such as the Greenland Ice Sheet Monitoring Network (GLISN) and the recent development effort for Geophysical Earth Observatory for Ice Covered Environments (GEOICE). Through these support efforts the PIC has established itself as a resource for field practices, engineered solutions for autonomous seismic stations, and a pioneer in successful seismic recording in polar environments. We are on the cusp of a new generation of instrumentation driven in part by the academic community's desire to record unaliased wavefields in multiple frequency bands and industry's interest in utilizing lower frequency data. As part of the recently funded IRIS proposal to NSF for support of Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE), IRIS is developing plans for this new instrumentation that will ensure that the PASSCAL program continues to provide state-of-the-art observing capabilities into the coming decades.

  16. Personality Dimensions as Assessed by Projective and Verbal Instruments

    ERIC Educational Resources Information Center

    Rimoldi, H. J.; And Others

    1975-01-01

    This study aimed to define personality dimensions when assessed by projective and verbal instruments. The Holtzman Inkblot Test was selected to represent projective tests. The 18 scales of the California Personality Inventory (CPI) and the Rokeach Dogmatism Scale (RDS) were the objective tests used. (Author/RK)

  17. Reducing software security risk through an integrated approach research initiative model based verification of the Secure Socket Layer (SSL) Protocol

    NASA Technical Reports Server (NTRS)

    Powell, John D.

    2003-01-01

    This document discusses the verification of the Secure Socket Layer (SSL) communication protocol as a demonstration of the Model Based Verification (MBV) portion of the verification instrument set being developed under the Reducing Software Security Risk (RSSR) Trough an Integrated Approach research initiative. Code Q of the National Aeronautics and Space Administration (NASA) funds this project. The NASA Goddard Independent Verification and Validation (IV&V) facility manages this research program at the NASA agency level and the Assurance Technology Program Office (ATPO) manages the research locally at the Jet Propulsion Laboratory (California institute of Technology) where the research is being carried out.

  18. Incorporating Data Link Messaging into a Multi-function Display for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Adams, Catherine A.; Murdoch, Jennifer L.

    2006-01-01

    One objective of the Small Aircraft Transportation System (SATS) Project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated system and separation responsibilities to general aviation (GA) pilots. This paper describes the development of a research multi-function display (MFD) to support the interaction between pilots and an automated Airport Management Module (AMM). Preliminary results of simulation and flight tests indicate that adding the responsibility of monitoring other traffic for self-separation does not increase pilots subjective workload levels. Pilots preferred using the enhanced MFD to execute flight procedures, reporting improved situation awareness over conventional instrument flight rules (IFR) procedures.

  19. Towards a Methodology for Managing Competencies in Virtual Teams - A Systemic Approach

    NASA Astrophysics Data System (ADS)

    Schumacher, Marinita; Stal-Le Cardinal, Julie; Bocquet, Jean-Claude

    Virtual instruments and tools are future trends in Engineering which are a response to the growing complexity of engineering tasks, the facility of communication and strong collaborations on the international market. Outsourcing, off-shoring, and the globalization of organisations’ activities have resulted in the formation of virtual product development teams. Individuals who are working in virtual teams must be equipped with diversified competencies that provide a basis for virtual team building. Thanks to the systemic approach of the functional analysis our paper responds to the need of a methodology of competence management to build virtual teams that are active in virtual design projects in the area of New Product Development (NPD).

  20. [Instruments of management accounting in german hospitals - potentials for competitive advantage and status quo].

    PubMed

    Berens, W; Lachmann, M; Wömpener, A

    2011-03-01

    The aim of this study is to provide an analysis of the status quo for the usage of instruments of management accounting in German hospitals. 600 managing directors of German hospitals were asked to answer a questionnaire about the usage of management accounting instruments in their hospitals. We obtained 121 usable datasets, which are evaluated in this study. A significant increase in the usage of management accounting instruments can be observed over time. The respondents have an overall positive perception of the usage of these instruments. Cost accounting and information systems are among the most widely used instruments, while widely discussed concepts like the balanced scorecard or clinical pathways show surprisingly low usage rates. © Georg Thieme Verlag KG Stuttgart · New York.

  1. A Compact Airborne System for SO2 and DMS Measurements for Use on Future GTE Missions Aboard the P-3 or DC-8

    NASA Technical Reports Server (NTRS)

    Saltzman, Eric S.; DeBruyn, Warren J.

    2000-01-01

    This project involved the design and construction of a new instrument for airborne measurement of DMS and SO2. The instrument is intended for use on field missions to study the global atmospheric sulfur cycle. The ultimate scientific goal is to provide insight into the mechanisms of atmospheric transport and transformations impacting both natural and anthropogenic sulfur emissions. This report summarizes the progress made to date and the goals for future work on the project. The PI's for this project have recently relocated from the University of Miami to the University of California, Irvine, and a request has been made to transfer remaining funds to UCI. All equipment associated with this project has been transferred to UCI. The instrument design goal was to develop an instrument roughly one quarter the size and weight of currently available airborne instrumentation used for DMS and S02 measurements. Another goal was full automation, to allow unattended operation for the duration of a P-3 or DC-8 flight. The original performance design specifications for the instrument are given.

  2. KSC-02pd1655

    NASA Image and Video Library

    2002-10-26

    KENNEDY SPACE CENTER, FLA. -- A truck containing the Solar Radiation and Climate Experiment (SORCE) spacecraft arrives at KSC. The spacecraft will undergo final processing for launch. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  3. The NSF Cybersecurity Center of Excellence: Translating Identity Management and Cybersecurity into Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Welch, V.

    2016-12-01

    Scientists care deeply about their collaborations: who is a member, who can access, produce, and correct data, and manager instruments critical to their science missions. The communities of cybersecurity and identity management professionals develop tools to support collaborations and the undertaking of trustworthy science, but there are large cultural and linguistic gaps between these communities and the scientists they service. The National Science Foundation has recently funded a NSF Cybersecurity Center of Excellence to help its community of projects by providing leadership and addressing the challenges of trustworthy science. A key goal of this NSF Center has been translating between the goals of the science community into requirements and risks understood by identity management and cybersecurity communities. This talk will give an update on the Center's efforts and other services it provides to the NSF community to bridge these cultures.

  4. The Role of Flight Experiments in the Development of Cryogenic Fluid Management Technologies

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2006-01-01

    This paper reviews the history of cryogenic fluid management technology development and infusion into both the Saturn and Centaur vehicles. Ground testing and analysis proved inadequate to demonstrate full scale performance. As a consequence flight demonstration with a full scale vehicle was required by both the Saturn and Centaur programs to build confidence that problems were addressed. However; the flight vehicles were highly limited on flight instrumentation and the flight demonstration locked-in the design without challenging the function of design elements. Projects reviewed include: the Aerobee Sounding Rocket Cryogenic Fluid Management (CFM) tests which served as a valuable stepping stone to flight demonstration and built confidence in the ability to handle hydrogen in low gravity; the Saturn IVB Fluid Management Qualification flight test; the Atlas Centaur demonstration flights to develop two burn capability; and finally the Titan Centaur two post mission flight tests.

  5. White Light Stray Light Test of the SOHO UVCS

    NASA Technical Reports Server (NTRS)

    Gardner, L. N.; Gardner, L. N.; Fineschi, S.

    1998-01-01

    During the late stages of the integration phase of the Ultraviolet Coronagraph Spectrometer (UVCS) instrument for the Solar and Heliospheric Observatory (SOHO) at MATRA-Marconi in Toulouse, France, SOHO Project management at Goddard Space Flight Center (GSFC) became concerned that the elaborate stray light rejection system for the instrument had not been tested and might possibly be misaligned such that the instrument could not deliver promised scientific returns. A white light stray light test, which would place an upper bound on the value of UVCS's stray light rejection capability, was commissioned, conceived, and carried out. This upper bound value would be indicative of the weakest coronal features the spectrometer would be capable of discerning. The test was rapidly developed at GSFC in coordination with science team members from Harvard-Smithsonian Center for Astrophysics (CFA) and was carried out at MATRA in late February 1995. The outcome of this test helped to justify similar, much desired tests with visible and far ultraviolet light at CFA in a facility specifically designed to perform such testing.

  6. NASA SBIR product catalog, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This catalog is a partial list of products of NASA SBIR (Small Business Innovation Research) projects that have advanced to some degree into Phase 3. While most of the products evolved from work conducted during SBIR Phase 1 and 2, a few advanced to commercial status solely from Phase 1 activities. The catalog presents information provided to NASA by SBIR contractors who wished to have their products exhibited at Technology 2001, a NASA-sponsored technology transfer conference held in San Jose, California, on December 4, 5, and 6, 1991. The catalog presents the product information in the following technology areas: computer and communication systems; information processing and AI; robotics and automation; signal and image processing; microelectronics; electronic devices and equipment; microwave electronic devices; optical devices and lasers; advanced materials; materials processing; materials testing and NDE; materials instrumentation; aerodynamics and aircraft; fluid mechanics and measurement; heat transfer devices; refrigeration and cryogenics; energy conversion devices; oceanographic instruments; atmosphere monitoring devices; water management; life science instruments; and spacecraft electromechanical systems.

  7. [Construction and validation of the "La Salle Instrument" to evaluate the ethical aspects in biomedical research on human beings].

    PubMed

    Valdivia-Gómez, Gilberto Guzmán; Velasco-Jiménez, María Teresa; Domínguez-González, Alejandro; Meneses-Ruíz, Dulce María; Padilla-García, Raúl Amauri

    2017-01-01

    Research projects must demonstrate not only a rigorous scientific methodology, but also the ethical aspects that require profound reflection of the reviewers. Current regulations establish criteria for research projects on human health, but many of these aspects are subjective. How can the evaluation of such projects be standardized? This is the main subject of the current project. This project comprises two phases. First, the design and construction of an instrument of evaluation based on the fundamental principles of bioethics, which are autonomy, beneficence, non-maleficence, and justice, and other aspects. The second phase consists of content validation through expert. During the phase of reviewing the instrument, it was necessary to make changes by adding, removing, or changing the concepts or criteria, which lead to the construction of the second version of the format. This new instrument was reviewed and analyzed by using the AGREE II instrument, and this version was validated by experts by greater than 95%. There are some recommendations to analyze the ethical aspects in research protocols involving human subjects, but they define the concepts and criteria to be evaluated. By presenting the criteria to be evaluated individually, the "La Salle instrument" allows the evaluation to be more objective and standardized.

  8. Simulation technology used for risky assessment in deep exploration project in China

    NASA Astrophysics Data System (ADS)

    jiao, J.; Huang, D.; Liu, J.

    2013-12-01

    Deep exploration has been carried out in China for five years in which various heavy duty instruments and equipments are employed for gravity, magnetic, seismic and electromagnetic data prospecting as well as ultra deep drilling rig established for obtaining deep samples, and so on. The deep exploration is a large and complex system engineering crossing multiple subjects with great investment. It is necessary to employ advanced technical means technology for verification, appraisal, and optimization of geographical prospecting equipment development. To reduce risk of the application and exploration, efficient and allegeable management concept and skills have to be enhanced in order to consolidate management measure and workflow to benefit the ambitious project. Therefore, evidence, prediction, evaluation and related decision strategies have to be taken into accouter simultaneously to meet practical scientific requests and technique limits and extendable attempts. Simulation technique is then proposed as a tool that can be used to carry out dynamic test on actual or imagined system. In practice, it is necessary to combine the simulation technique with the instruments and equipment to accomplish R&D tasks. In this paper, simulation technique is introduced into the R&D process of heavy-duty equipment and high-end engineering project technology. Based on the information provided by a drilling group recently, a digital model is constructed by combination of geographical data, 3d visualization, database management, and visual reality technologies together. It result in push ahead a R&D strategy, in which data processing , instrument application, expected result and uncertainty, and even operation workflow effect environment atmosphere are simulated systematically or simultaneously, in order to obtain an optimal consequence as well as equipment updating strategy. The simulation technology is able to adjust, verify, appraise and optimize the primary plan due to changing in the real world or process, which can provide new insight to the equipment to meet requests from application and construction process and facilitates by means of direct perception and understanding of installation, debugging and experimental process of key equipment for deep exploration. Finally, the objective of project cost conservation and risk reduction can be reasonably approached. Risk assessment can be used to quantitatively evaluate the possible degree of the impact. During the research and development stage, information from the installation, debugging and simulation demonstration of the experiment process of the key instrument and equipment are used to evaluate the fatigue and safety of the device. It needs fully understanding the controllable and uncontrollable risk factors during the process, and then adjusting and improving the unsafe risk factors in the risk assessment and prediction. With combination with professional Geo software to process and interpret the environment to obtain evaluation parameters, simulation modeling is more likely close to exploration target which need more details of evaluations. From micro and macro comprehensive angles to safety and risk assessment can be achieved to satisfy the purpose of reducing the risk of equipment development, and to avoid unnecessary loss on the way of the development.

  9. A competency framework for librarians involved in systematic reviews.

    PubMed

    Townsend, Whitney A; Anderson, Patricia F; Ginier, Emily C; MacEachern, Mark P; Saylor, Kate M; Shipman, Barbara L; Smith, Judith E

    2017-07-01

    The project identified a set of core competencies for librarians who are involved in systematic reviews. A team of seven informationists with broad systematic review experience examined existing systematic review standards, conducted a literature search, and used their own expertise to identify core competencies and skills that are necessary to undertake various roles in systematic review projects. The team identified a total of six competencies for librarian involvement in systematic reviews: "Systematic review foundations," "Process management and communication," "Research methodology," "Comprehensive searching," "Data management," and "Reporting." Within each competency are the associated skills and knowledge pieces (indicators). Competence can be measured using an adaptation of Miller's Pyramid for Clinical Assessment, either through self-assessment or identification of formal assessment instruments. The Systematic Review Competencies Framework provides a standards-based, flexible way for librarians and organizations to identify areas of competence and areas in need of development to build capacity for systematic review integration. The framework can be used to identify or develop appropriate assessment tools and to target skill development opportunities.

  10. Development of a Portable, Ground-Based Ozone Lidar Instrument for Tropospheric Ozone Research and Educational Training

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas; Zenker, Thomas

    1998-01-01

    The objective of this project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This prototype instrument is intended to operate at remote field sites and to serve as the basic unit for monitoring projects requiring multi-instrument networks, such as that discussed in the science plan for the Global Tropospheric Ozone Project (GTOP). This instrument will be based at HU for student training in lidar technology as well as atmospheric ozone data analysis and interpretation. It will be also available for off-site measurement campaigns and will serve as a test bed for further instrument development. Later development beyond this grant to extend the scientific usefulness of the instrument may include incorporation of an aerosol channel and upgrading the laser to make stratospheric ozone measurements. Undergraduate and graduate students have been and will be active participants in this research effort.

  11. Advances in handheld FT-IR instrumentation

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Cardillo, Len; Judge, Kevin; Frayer, Maxim; Frunzi, Michael; Hetherington, Paul; Levy, Dustin; Oberndorfer, Kyle; Perec, Walter; Sauer, Terry; Stein, John; Zuidema, Eric

    2012-06-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenges of ConOps (Concepts of Operation) in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the advances resulting from a project designed to overcome the challenges associated with miniaturizing FT-IR instruments. The project team developed a disturbance-corrected permanently aligned cube corner interferometer for improved robustness and optimized opto-mechanical design to maximize optical throughput and signal-to-noise ratios. Thermal management and heat flow were thoroughly modeled and studied to isolate sensitive components from heat sources and provide the widest temperature operation range. Similarly, extensive research on mechanical designs and compensation techniques to protect against shock and vibration will be discussed. A user interface was carefully created for military and emergency response applications to provide actionable information in a visual, intuitive format. Similar to the HazMatID family of products, state-of-the-art algorithms were used to quickly identify the chemical composition of complex samples based on the spectral information. This article includes an overview of the design considerations, tests results, and performance validation of the mechanical ruggedness, spectral, and thermal performance.

  12. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  13. Organisational culture and change: implementing person-centred care.

    PubMed

    Carlström, Eric D; Ekman, Inger

    2012-01-01

    The purpose of this paper is to explore the connection between organisational cultures and the employee's resistance to change at five hospital wards in Western Sweden. Staff had experienced extensive change during a research project implementing person-centred care (PCC) for patients with chronic heart failure. Surveys were sent out to 170 nurses. The survey included two instruments--the Organisational Values Questionnaire (OVQ) and the Resistance to Change Scale (RTC). The results indicate that a culture with a dominating focus on social competence decreases "routine seeking behaviour", i.e. tendencies to uphold stable routines and a reluctance to give up old habits. The results indicate that a culture of flexibility, cohesion and trust negatively covariate with the overall need for a stable and well-defined framework. An instrument that pinpoints the conditions of a particular healthcare setting can improve the results of a change project. Managers can use instruments such as the ones used in this study to investigate and plan for change processes. Earlier studies of organisational culture and its impact on the performance of healthcare organisations have often investigated culture at the highest level of the organisation. In this study, the culture of the production units--i.e. the health workers in different hospital wards--was described. Hospital wards develop their own culture and the cultures of different wards are mirrored in the hospital.

  14. SWE-based Observation Data Delivery from the Instrument to the User - Sensor Web Technology in the NeXOS Project

    NASA Astrophysics Data System (ADS)

    Jirka, Simon; del Rio, Joaquin; Toma, Daniel; Martinez, Enoc; Delory, Eric; Pearlman, Jay; Rieke, Matthes; Stasch, Christoph

    2017-04-01

    The rapidly evolving technology for building Web-based (spatial) information infrastructures and Sensor Webs, there are new opportunities to improve the process how ocean data is collected and managed. A central element in this development is the suite of Sensor Web Enablement (SWE) standards specified by the Open Geospatial Consortium (OGC). This framework of standards comprises on the one hand data models as well as formats for measurement data (ISO/OGC Observations and Measurement, O&M) and metadata describing measurement processes and sensors (OGC Sensor Model Language, SensorML). On the other hand the SWE standards comprise (Web service) interface specifications for pull-based access to observation data (OGC Sensor Observation Service, SOS) and for controlling or configuring sensors (OGC Sensor Planning Service, SPS). Also within the European INSPIRE framework the SWE standards play an important role as the SOS is the recommended download service interface for O&M-encoded observation data sets. In the context of the EU-funded Oceans of Tomorrow initiative the NeXOS (Next generation, Cost-effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) project is developing a new generation of in-situ sensors that make use of the SWE standards to facilitate the data publication process and the integration into Web based information infrastructures. This includes the development of a dedicated firmware for instruments and sensor platforms (SEISI, Smart Electronic Interface for Sensors and Instruments) maintained by the Universitat Politècnica de Catalunya (UPC). Among other features, SEISI makes use of OGC SWE standards such OGC-PUCK, to enable a plug-and-play mechanism for sensors based on SensorML encoded metadata. Thus, if a new instrument is attached to a SEISI-based platform, it automatically configures the connection to these instruments, automatically generated data files compliant with the ISO/OGC Observations and Measurements standard and initiates the data transmission into the NeXOS Sensor Web infrastructure. Besides these platform-related developments, NeXOS has realised the full path of data transmission from the sensor to the end user application. The conceptual architecture design is implemented by a series of open source SWE software packages provided by 52°North. This comprises especially different SWE server components (i.e. OGC Sensor Observation Service), tools for data visualisation (e.g. the 52°North Helgoland SOS viewer), and an editor for providing SensorML-based metadata (52°North smle). As a result, NeXOS has demonstrated how the SWE standards help to improve marine observation data collection. Within this presentation, we will present the experiences and findings of the NeXOS project and will provide recommendation for future work directions.

  15. Sharpening policy instruments with catchment evaluations and the water quality continuum

    NASA Astrophysics Data System (ADS)

    Jordan, P.; Melland, A. R.; Mellander, P.-E.; Murphy, P.; Shortle, G.; Wall, D.; Mechan, S.; Shine, O.

    2012-04-01

    There is a scale dichotomy in water quality management in European agricultural catchments due to the fact that impacts identified at river basin scale are mitigated by management that is typically asserted from research at field or plot scale and implemented at farm scale. Evaluations of management impact are then undertaken back at the river basin scale. The policy instruments in place to mitigate water quality impacts are also based on the integration of scientific research and stakeholder negotiations and can sometimes be blunt compromises. Nevertheless, expectations of accruing water quality benefits remain high and sometimes unchallenged. Evaluating all catchment components of a pollution transfer continuum from source to impact enables important elements such as lag time between policy implementation and water quality response, water body sampling frequency and allocation of correct dose-response mechanisms to be assessed. These points are particularly important in complex agricultural catchments where multiple nutrient pollution sources have variable impacts on different water body types - and at different times of year. The tools of catchment water quality policy evaluation are diverse and include metrics of natural resource management, soil and water chemistry, hydrology, ecology and palaeolimnology. Used in combination and with river basin scale and site-specific data inventories, they can provide a powerful suite of evidence for further iterations of water quality policy and projecting realistic expectations of policy success.

  16. [Effect of using an instrument for continuous evaluation of nursing quality in terms of employment satisfaction and of their affective implications].

    PubMed

    Maes, Blandine; Fontanaud, Nelly; Pronost, Anne-Marie

    2010-09-01

    Medical staff are directly concerned by improving the quality of care. The goal of this study is to assess qualitatively the effects of the application of a Global Assessment Instrument for the Quality of Care on thirty nurses divided in two groups: an experimental group--who participated in the IGE-QSI--and another "witness" group--who participated in another project. The theory developed with the research involves the affective implication and satisfaction at work. Affective implication is the emotional attachment of the employee vis-a-vis the hospital. Satisfaction at work is a positive answer of the worker to their professional environment. The results of the research show that satisfaction in the workplace could be the result of professional experience and maturity. Hence, there could be a link between personal values and attitude that could encourage the implication of the staff in management. Responsibilities, recognition and the feeling of belonging to a group are part of the positive incentives and help develop management objectives.

  17. Comprehensive change management concepts. Development of a participatory approach.

    PubMed

    Zink, Klaus J; Steimle, Ulrich; Schröder, Delia

    2008-07-01

    During the last years, many change projects in organizations did not have the planned success. Therefore at first, the causes for these failures and the success factors contributing to organizational change have to be discussed. To get better results, a comprehensive change management concept has been developed and tested in an ongoing research project. By using concepts for an integrated assessment and design of organizations, an approach for analyzing the current situation has been elaborated to identify "lack of integration" in the change initiatives of a company. To realize an integrated overall approach of modernization by harmonizing different methods and concepts, first, one has to prove their relationship to policy and strategy (vertical harmonization). The second step is to take into account the fact that there has to be a logical fit between the single concepts (horizontal harmonization). But even if all elements are logically coherent, that does not mean that the people working in the company also see this coherence. Therefore, in addition to the "logical fit", one has to examine the "psychological fit". In the end, a concept for analyzing the status quo in an organization as a result of "objective data" and "subjective data" originated. Subsequently, instruments for harmonizing different modernizing concepts have been applied. As part of the comprehensive change management concept participatory ergonomic approaches have been used during the project. The present study shows this approach in the case of one company.

  18. Translation of an instrument. The US-Nordic Family Dynamics Nursing Research Project.

    PubMed

    White, M; Elander, G

    1992-01-01

    Translation of a research instrument questionnaire from English to another language is analyzed in relation to principles involved, procedures followed, and problems confronted by nurse researchers from the US-Nordic Family Dynamics Nursing Research Project. Of paramount importance in translation are translation equivalency, congruent value orientation, and careful use of colloquialisms. It is important to recognize that copyright guidelines apply in the translation of an instrument. Approaches to solving instrument translation problems are discussed.

  19. ASTER Waves

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

  20. Improving the accuracy of total quality management instruments.

    PubMed

    Bechtel, G A; Wood, D

    1996-03-01

    Total quality management (TQM) instruments are essential tools in defining concepts identified in an Ishikawa or ¿cause-and-effect¿ diagram. Collecting meaningful and accurate data using TQM instruments is imperative if productivity and quality of care are to be enhanced. This article provides managers with techniques and guidelines that will enhance the reliability and validity of TQM instruments, thereby promoting organization efficiency and customer satisfaction.

  1. Collaborative engineering and design management for the Hobby-Eberly Telescope tracker upgrade

    NASA Astrophysics Data System (ADS)

    Mollison, Nicholas T.; Hayes, Richard J.; Good, John M.; Booth, John A.; Savage, Richard D.; Jackson, John R.; Rafal, Marc D.; Beno, Joseph H.

    2010-07-01

    The engineering and design of systems as complex as the Hobby-Eberly Telescope's* new tracker require that multiple tasks be executed in parallel and overlapping efforts. When the design of individual subsystems is distributed among multiple organizations, teams, and individuals, challenges can arise with respect to managing design productivity and coordinating successful collaborative exchanges. This paper focuses on design management issues and current practices for the tracker design portion of the Hobby-Eberly Telescope Wide Field Upgrade project. The scope of the tracker upgrade requires engineering contributions and input from numerous fields including optics, instrumentation, electromechanics, software controls engineering, and site-operations. Successful system-level integration of tracker subsystems and interfaces is critical to the telescope's ultimate performance in astronomical observation. Software and process controls for design information and workflow management have been implemented to assist the collaborative transfer of tracker design data. The tracker system architecture and selection of subsystem interfaces has also proven to be a determining factor in design task formulation and team communication needs. Interface controls and requirements change controls will be discussed, and critical team interactions are recounted (a group-participation Failure Modes and Effects Analysis [FMEA] is one of special interest). This paper will be of interest to engineers, designers, and managers engaging in multi-disciplinary and parallel engineering projects that require coordination among multiple individuals, teams, and organizations.

  2. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-07-01

    This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  3. Design review of the Brazilian Experimental Solar Telescope

    NASA Astrophysics Data System (ADS)

    Dal Lago, A.; Vieira, L. E. A.; Albuquerque, B.; Castilho, B.; Guarnieri, F. L.; Cardoso, F. R.; Guerrero, G.; Rodríguez, J. M.; Santos, J.; Costa, J. E. R.; Palacios, J.; da Silva, L.; Alves, L. R.; Costa, L. L.; Sampaio, M.; Dias Silveira, M. V.; Domingues, M. O.; Rockenbach, M.; Aquino, M. C. O.; Soares, M. C. R.; Barbosa, M. J.; Mendes, O., Jr.; Jauer, P. R.; Branco, R.; Dallaqua, R.; Stekel, T. R. C.; Pinto, T. S. N.; Menconi, V. E.; Souza, V. M. C. E. S.; Gonzalez, W.; Rigozo, N.

    2015-12-01

    The Brazilian's National Institute for Space Research (INPE), in collaboration with the Engineering School of Lorena/University of São Paulo (EEL/USP), the Federal University of Minas Gerais (UFMG), and the Brazilian's National Laboratory for Astrophysics (LNA), is developing a solar vector magnetograph and visible-light imager to study solar processes through observations of the solar surface magnetic field. The Brazilian Experimental Solar Telescope is designed to obtain full disk magnetic field and line-of-sight velocity observations in the photosphere. Here we discuss the system requirements and the first design review of the instrument. The instrument is composed by a Ritchey-Chrétien telescope with a 500 mm aperture and 4000 mm focal length. LCD polarization modulators will be employed for the polarization analysis and a tuning Fabry-Perot filter for the wavelength scanning near the Fe II 630.25 nm line. Two large field-of-view, high-resolution 5.5 megapixel sCMOS cameras will be employed as sensors. Additionally, we describe the project management and system engineering approaches employed in this project. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in advancing scientific knowledge in this field. In particular, the Brazilian's Space Weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is to progressively acquire the know-how to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms.

  4. Conditions for addressing environmental determinants of health behavior in intersectoral policy networks: A fuzzy set Qualitative Comparative Analysis.

    PubMed

    Peters, D T J M; Verweij, S; Grêaux, K; Stronks, K; Harting, J

    2017-12-01

    Improving health requires changes in the social, physical, economic and political determinants of health behavior. For the realization of policies that address these environmental determinants, intersectoral policy networks are considered necessary for the pooling of resources to implement different policy instruments. However, such network diversity may increase network complexity and therefore hamper network performance. Network complexity may be reduced by network management and the provision of financial resources. This study examined whether network diversity - amidst the other conditions - is indeed needed to address environmental determinants of health behavior. We included 25 intersectoral policy networks in Dutch municipalities aimed at reducing overweight, smoking, and alcohol/drugs abuse. For our fuzzy set Qualitative Comparative Analysis we used data from three web-based surveys among (a) project leaders regarding network diversity and size (n = 38); (b) project leaders and project partners regarding management (n = 278); and (c) implementation professionals regarding types of environmental determinants addressed (n = 137). Data on budgets were retrieved from project application forms. Contrary to their intentions, most policy networks typically addressed personal determinants. If the environment was addressed too, it was mostly the social environment. To address environmental determinants of health behavior, network diversity (>50% of the actors are non-public health) was necessary in networks that were either small (<16 actors) or had small budgets (<€183,172), when both were intensively managed. Irrespective of network diversity, environmental determinants also were addressed by small networks with large budgets, and by large networks with small budgets, when both provided network management. We conclude that network diversity is important - although not necessary - for resource pooling to address environmental determinants of health behavior, but only effective in the presence of network management. Our findings may support intersectoral policy networks in improving health behaviors by addressing a variety of environmental determinants. Copyright © 2017. Published by Elsevier Ltd.

  5. [Valuating public health in some zoos in Colombia. Phase 1: designing and validating instruments].

    PubMed

    Agudelo-Suárez, Angela N; Villamil-Jiménez, Luis C

    2009-10-01

    Designing and validating instruments for identifying public health problems in some zoological parks in Colombia, thereby allowing them to be evaluated. Four instruments were designed and validated along with the participation of five zoos. The instruments were validated regarding appearance, content, sensitivity to change, reliability tests and determining the tools' usefulness. An evaluation scale was created which assigned a maximum of 400 points, having the following evaluation intervals: 350-400 points meant good public health management, 100-349 points for regular management and 0-99 points for deficient management. The instruments were applied to the five zoos as part of the validation, forming a base-line for future evaluation of public health in them. Four valid and useful instruments were obtained for evaluating public health in zoos in Colombia. The five zoos presented regular public health management. The base-line obtained when validating the instruments led to identifying strengths and weaknesses regarding public health management in the zoos. The instruments obtained generally and specifically evaluated public health management; they led to diagnosing, identifying, quantifying and scoring zoos in Colombia in terms of public health. The base-line provided a starting point for making comparisons and enabling future follow-up of public health in Colombian zoos.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  7. Lessons Learned From the Analysis of the SAFOD Downhole Instrument Package.

    NASA Astrophysics Data System (ADS)

    Johnson, Wade; Mencin, David; Mattioli, Glen

    2013-04-01

    In September of 2008 a downhole instrument package (DIP) consisting of a string of seismometers and tilt meters in isolated pressure vessels (PODs) was installed in the SAFOD main borehole. This package was designed to protect the sensors from the corrosive borehole environment and to operate for two years. The SAFOD borehole is not sealed at the bottom allowing borehole gasses and fluids infiltratration. Previous short-term installations of instruments in the SAFOD main borehole had also failed as a result of corrosion of the wireline cable head. The average failure time for these installations was two weeks. The use of stainless steel tubing connected to the pressure vessels through gas tight fittings was designed to block borehole fluid and gas infiltration of the individual instruments within the PODs. Unfortunately, the DIP completely failed within a month of its installation. In October of 2010, the DIP was removed from the borehole and a failure analysis was performed. This analysis involved to following steps: 1. Analysis of data to understand timeline of failure 2. Remove instrument safely, maintaining integrity of spliced section and documenting any external clues. Test instrument at surface 3. Open PODs in a way that allows for sampling and avoids damaging instruments. 4. Chemical analysis of fluids recovered from splices and PODs. 5. Instrument failure analysis by the instrument manufacturers. The analysis found that there were several design flaws in the DIP. This included the use of motor oil to take up air space in the individual PODs, use of a large number of gas tight seals, lack of internal seals, poorly done solder joints, use of non-temperature rated sensors, and lack of management oversight. The lessons learned from the attempts to instrument the SAFOD borehole are critical to the success of future deep borehole projects.

  8. LIMS for Lasers 2015 for achieving long-term accuracy and precision of δ2H, δ17O, and δ18O of waters using laser absorption spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I

    2015-01-01

    Although laser absorption spectrometry (LAS) instrumentation is easy to use, its incorporation into laboratory operations is not easy, owing to extensive offline manipulation of comma-separated-values files for outlier detection, between-sample memory correction, nonlinearity (δ-variation with water amount) correction, drift correction, normalization to VSMOW-SLAP scales, and difficulty in performing long-term QA/QC audits. METHODS: A Microsoft Access relational-database application, LIMS (Laboratory Information Management System) for Lasers 2015, was developed. It automates LAS data corrections and manages clients, projects, samples, instrument-sample lists, and triple-isotope (δ(17) O, δ(18) O, and δ(2) H values) instrumental data for liquid-water samples. It enables users to (1) graphically evaluate sample injections for variable water yields and high isotope-delta variance; (2) correct for between-sample carryover, instrumental drift, and δ nonlinearity; and (3) normalize final results to VSMOW-SLAP scales. RESULTS: Cost-free LIMS for Lasers 2015 enables users to obtain improved δ(17) O, δ(18) O, and δ(2) H values with liquid-water LAS instruments, even those with under-performing syringes. For example, LAS δ(2) HVSMOW measurements of USGS50 Lake Kyoga (Uganda) water using an under-performing syringe having ±10 % variation in water concentration gave +31.7 ± 1.6 ‰ (2-σ standard deviation), compared with the reference value of +32.8 ± 0.4 ‰, after correction for variation in δ value with water concentration, between-sample memory, and normalization to the VSMOW-SLAP scale. CONCLUSIONS: LIMS for Lasers 2015 enables users to create systematic, well-founded instrument templates, import δ(2) H, δ(17) O, and δ(18) O results, evaluate performance with automatic graphical plots, correct for δ nonlinearity due to variable water concentration, correct for between-sample memory, adjust for drift, perform VSMOW-SLAP normalization, and perform long-term QA/QC audits easily.

  9. Project SUN (Students Understanding Nature)

    NASA Technical Reports Server (NTRS)

    Curley, T.; Yanow, G.

    1995-01-01

    Project SUN is part of NASA's 'Mission to Planet Earth' education outreach effort. It is based on development of low cost, scientifi- cally accurate instrumentation and computer interfacing, coupled with Apple II computers as dedicated data loggers. The project is com- prised of: instruments, interfacing, software, curriculum, a detailed operating manual, and a system of training at the school sites.

  10. Automatic performance budget: towards a risk reduction

    NASA Astrophysics Data System (ADS)

    Laporte, Philippe; Blake, Simon; Schmoll, Jürgen; Rulten, Cameron; Savoie, Denis

    2014-08-01

    In this paper, we discuss the performance matrix of the SST-GATE telescope developed to allow us to partition and allocate the important characteristics to the various subsystems as well as to describe the process in order to verify that the current design will deliver the required performance. Due to the integrated nature of the telescope, a large number of parameters have to be controlled and effective calculation tools must be developed such as an automatic performance budget. Its main advantages consist in alleviating the work of the system engineer when changes occur in the design, in avoiding errors during any re-allocation process and recalculate automatically the scientific performance of the instrument. We explain in this paper the method to convert the ensquared energy (EE) and the signal-to-noise ratio (SNR) required by the science cases into the "as designed" instrument. To ensure successful design, integration and verification of the next generation instruments, it is of the utmost importance to have methods to control and manage the instrument's critical performance characteristics at its very early design steps to limit technical and cost risks in the project development. Such a performance budget is a tool towards this goal.

  11. Factor analyses of an Adult Epilepsy Self-Management Measurement Instrument (AESMMI).

    PubMed

    Escoffery, Cam; Bamps, Yvan; LaFrance, W Curt; Stoll, Shelley; Shegog, Ross; Buelow, Janice; Shafer, Patricia; Thompson, Nancy J; McGee, Robin E; Hatfield, Katherine

    2015-09-01

    The purpose of this study was to test the psychometric properties of an enhanced Adult Epilepsy Self-Management Measurement Instrument (AESMMI). An instrument of 113 items, covering 10 a priori self-management domains, was generated through a multiphase process, based on a review of the literature, validated epilepsy and other chronic condition self-management scales and expert input. Reliability and exploratory factor analyses were conducted on data collected from 422 adults with epilepsy. The instrument was reduced to 65 items, converging on 11 factors: Health-care Communication, Coping, Treatment Management, Seizure Tracking, Social Support, Seizure Response, Wellness, Medication Adherence, Safety, Stress Management, and Proactivity. Exploratory factors supported the construct validity for 6 a priori domains, albeit with significant changes in the retained items or in their scope and 3 new factors. One a priori domain was split in 2 subscales pertaining to treatment. The configuration of the 11 factors provides additional insight into epilepsy self-management behaviors. Internal consistency reliability of the 65-item instrument was high (α=.935). Correlations with independent measures of health status, quality of life, depression, seizure severity, and life impact of epilepsy further validated the instrument. This instrument shows potential for use in research and clinical settings and for assessing intervention outcomes and self-management behaviors in adults with epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Single-Pilot Workload Management in Entry-Level Jets

    DTIC Science & Technology

    2013-09-01

    under Instrument Flight Rules ( IFR ) in a Cessna Citation Mustang ELJ level 5 flight training device at CAMI. Eight of the pilots were Mustang owner...Instrument Landing System IFR ............Instrument Flight Rules IMC ...........Instrument Meteorological Conditions ISA...pilots flew an experimental flight with two legs involving high workload management under Instrument Flight Rules ( IFR ) in a Cessna Citation Mustang

  13. Breckinridge Project, initial effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Report V, Volume 4 provides descriptions, data, and drawings pertaining to Instrument and Plant Air Systems (Plant 36), Telecommunication Systems (Plant 37), Inert Gas Systems (Plant 38), Purge and Flush Oil Systems (Plant 39), Site Development and Roads (Plant 40), Buildings (Plant 41), Solid Waste Management (Plant 42), and Landfill (Plant 44). Instrument and Plant Air Systems (Plant 36) includes all equipment and piping necessary to supply instrument and utility air to the process plants and offsite facilities. Telecommunication Systems (Plant 37) includes the equipment and wiring for: communication throughout the facility; communication between plant data processing systems and offsitemore » computing facilities; and communication with transportation carriers. Inert Gas Systems (Plant 38) provides high purity and low purity nitrogen streams for plant startup and normal operation. Purge and Flush Oil Systems (Plant 39) provides purge and flush oils to various plants. Site Development and Roads (Plant 40) provides site leveling, the addition of roads, fencing, and drainage, and the placement of fills, pilings, footings, and foundations for plants. Buildings (Plant 41) provides buildings for equipment and for personnel, including utilities, lighting, sanitary facilities, heating, air conditioning, and ventilation. Solid Waste Management (Plant 42) identifies, characterizes, segregates, and transports the various types of solid wastes to either Landfill (Plant 44) or outside disposal sites. Landfill (Plant 44) provides disposal of both nonhazardous and hazardous solid wastes. Information is included (as applicable) for each of the eight plants described.« less

  14. KSC-05PD-0375

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker inside the Multi-Purpose Logistics Module Raffaello is ready for installation of the Human Research Facility-2 (HRF-2) science rack. Raffaello will fly on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  15. KSC-05PD-0369

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers prepare the Human Research Facility-2 (HRF-2) science rack for installation into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  16. KSC-05PD-0372

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Rack Insertion Device moves the Human Research Facility-2 (HRF-2) science rack toward the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  17. KSC-05PD-0368

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Human Research Facility-2 (HRF-2) science rack sits on a stand waiting to be installed into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  18. Training evaluation final report

    NASA Technical Reports Server (NTRS)

    Sepulveda, Jose A.

    1992-01-01

    In the area of management training, 'evaluation' refers both to the specific evaluation instrument used to determine whether a training effort was considered effective, and to the procedures followed to evaluate specific training requests. This report recommends to evaluate new training requests in the same way new procurement or new projects are evaluated. This includes examining training requests from the perspective of KSC goals and objectives, and determining expected ROI of proposed training program (does training result in improved productivity, through savings of time, improved outputs, and/or personnel reduction?). To determine whether a specific training course is effective, a statement of what constitutes 'good performance' is required. The user (NOT the Training Branch) must define what is 'required level of performance'. This 'model' will be the basis for the design and development of an objective, performance-based, training evaluation instrument.

  19. KSC-02pd1657

    NASA Image and Video Library

    2002-10-26

    KENNEDY SPACE CENTER, FLA. -- A container with the Solar Radiation and Climate Experiment (SORCE) spacecraft inside is offloaded at the Multi-Purpose Processing Facility at KSC. The spacecraft will undergo final processing for launch. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  20. KSC-02pd1659

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility at KSC, workers unpack the Solar Radiation and Climate Experiment (SORCE) spacecraft. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  1. KSC-02pd1662

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Purpose Processing Facility at KSC help guide the Solar Radiation and Climate Experiment (SORCE) spacecraft onto a workstand. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  2. KSC-02pd1665

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Purpose Processing Facility at KSC look over the Solar Radiation and Climate Experiment (SORCE) spacecraft. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  3. The Climaware project: Impacts of climate change on water resources management - regional strategies and European view

    NASA Astrophysics Data System (ADS)

    Thirel, Guillaume; D'Agostino, Daniela; Démerliac, Stéphane; Dorchies, David; Flörke, Martina; Jay-Allemand, Maxime; Jost, Claudine; Kehr, Katrin; Perrin, Charles; Scardigno, Alessandra; Schneider, Christof; Theobald, Stephan; Träbing, Klaus

    2014-05-01

    Climate projections produced with CMIP5 and applied by the Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report indicate that changes in precipitation and temperature are expected to occur throughout Europe in the 21th century, with a likely decrease of water availability in many regions. Besides, water demand is also expected to increase, in link with these expected climate modifications, but also due to socio-economic and demographic changes. In this respect, the use of future freshwater resources may not be sustainable from the current water management perspective. Therefore adaptation strategies will most likely be needed to cope with these evolutions. In this context, the main objective of the ClimAware project (2010-2013 - www.uni-kassel.de/fb14/wasserbau/CLIMAWARE/, a project implemented within the IWRM-NET Funding Initiative) was to analyse the impacts of climate change (CC) on freshwater resources at the continental and regional scales and to identify efficient adaptation strategies to improve water management for various socio-economic sectors. This should contribute to a more effective implementation of the Water Framework Directive (WFD) and its instruments (river basin management plans, programmes of measures). The project developed integrated measures for improved freshwater management under CC constraints. More specifically, the objectives of the ClimAware project were to: • elaborate quantitative projections of changes in river flows and consequences such as flood frequency, drought occurrence and sectorial water uses. • analyse the effect of CC on the hydromorphological reference conditions of rivers and therefore the definition of "good status". • define management rules/strategies concerning dam management and irrigation practices on different time perspectives. • investigate uncertainties in climate model - scenario combinations. The research approach considered both European and regional perspectives, to get an integrated analysis across different spatial scales. To fulfil the objectives of the ClimAware project, the following modelling methodology was implemented. Starting from a European modelling approach of water availability and use based on the WaterGAP3 model, the changes in the hydrologic regimes and water use of different sectors were analysed. Subsequently three case studies were used to investigate the impacts of CC at a regional scale. Regional models from three different countries and focusing on three types of water management issues were developed: • Hydromorphology (Eder basin, Germany): By using different scenarios, the influence of CC on the hydromorphological characteristics of the River Weser according to the WFD was evaluated and proposals for implementation were given. The objective was to examine, on typical river sections, how the WFD objectives can be implemented under CC constraints. • Dam management (Seine basin, France): Water management on the River Seine for water supply and flood alleviation is partly based on the management of artificial reservoirs. The case study developed scenarios linking the impact of CC on water resources and the expected change on the uses and on the management of the system. • Agricultural water use (Apulia region, Italy): In this region, economic and demographic changes cause an increase in the demand for good-quality municipal and industrial water. Besides, changes in the agricultural practices increase the demand for water in the agricultural sector. Since water is scarce in this region, the study focuses on the agricultural sector, which has the largest water saving potential. The final assessment comprises a cross-scale integration between the European and regional modelling frameworks in order to facilitate knowledge transfer and to help establishing sustainable and integrated water resources management plans.

  4. A systematic review of motivational values and conservation success in and around protected areas.

    PubMed

    Cetas, Elijah R; Yasué, Maï

    2017-02-01

    In conservation projects in and around protected areas (PAs), a suite of policy instruments are used to promote conservation behavior in local people. Few studies have related psychological research on motivational values to conservation in PAs. We conducted a systematic review of 120 peer-reviewed articles to assess the relative frequencies of policy instruments that aimed to foster intrinsic versus extrinsic motivations to conserve. We examined how the type of motivation engendered by the instrument (i.e., intrinsic or extrinsic motivation and based on the description of how the project was designed and implemented) influenced the ecological, economic, and social success of the project. We assessed the success of the project in only the case studies that included a quantitative or qualitative analysis of success. Projects designed to foster at least one intrinsically motivating instrument were 3 times more likely to meet socioeconomic or ecological goals. Although certain types of instruments such as payments or fines tended to be based on extrinsic motivators more often than education or monitoring programs, several successful projects involving payments or fines were linked to intrinsic motivation in the local community. Thus, our results suggest that rather than debating the relative merits of specific types of policy instruments, conservationists may have more success by focusing on how different motivators, suited to specific contexts, can better empower local communities to conserve. Broadly, our results suggest the current emphasis on social justice and well-being of local communities is a positive step toward protecting the world's remaining biodiversity. © 2016 Society for Conservation Biology.

  5. Development of the evaluation instrument use CIPP on the implementation of project assessment topic optik

    NASA Astrophysics Data System (ADS)

    Asfaroh, Jati Aurum; Rosana, Dadan; Supahar

    2017-08-01

    This research aims to develop an evaluation instrument models CIPP valid and reliable as well as determine the feasibility and practicality of an evaluation instrument models CIPP. An evaluation instrument models CIPP to evaluate the implementation of the project assessment topic optik to measure problem-solving skills of junior high school class VIII in the Yogyakarta region. This research is a model of development that uses 4-D. Subject of product trials are students in class VIII SMP N 1 Galur and SMP N 1 Sleman. Data collection techniques in this research using non-test techniques include interviews, questionnaires and observations. Validity in this research was analyzed using V'Aikens. Reliability analyzed using ICC. This research uses 7 raters are derived from two lecturers expert (expert judgment), two practitioners (science teacher) and three colleagues. The results of this research is the evaluation's instrument model of CIPP is used to evaluate the implementation of the implementation of the project assessment instruments. The validity result of evaluation instrument have V'Aikens values between 0.86 to 1, which means a valid and 0.836 reliability values into categories so well that it has been worth used as an evaluation instrument.

  6. Polar Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02153 Polar Layers

    This image of the south polar region shows layered material. It is not known if the layers are formed yearly or if they form over the period of 10s to 100s of years or more.

    Image information: VIS instrument. Latitude -80.3N, Longitude 296.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Acidalia Planitia

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The small mounds with summit depressions in the northern portion of this image have an unknown origin. Some scientists think they may be cinder cones, while others think they may be pseudocraters, formed by the interaction of lava and ice. These features are also observed in other areas of Mars' northern plains, such as Isidis Planitia.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude XX, Longitude XX East (XX West). 19 meter/pixel resolution.

  8. Tharsis Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in the VIS image occurs in the Tharsis region of Mars, just north of Hebes Chasma. The volcanic flows forming the lower surface in the image have a platy texture. The landslide is younger than the volcanic flow, as the landslide sits on top of the flow surface.

    Image information: VIS instrument. Latitude 5, Longitude 282.4 East (77.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Ganges Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03681 Ganges Landslide

    Two large landslides dominate this image of part of Ganges Chasma. The eroded surface of an old landslide covers the north half of the image, while a more recent landslide occurs to the south.

    Image information: VIS instrument. Latitude -6.7N, Longitude 310.4E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Eos Chasma Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows several landslides within Eos Chasma. Many very large landslides have occurred within different portions of Valles Marineris. Note where the northern wall has failed in a upside-down bowl shape, releasing the material that formed the landslide deposit.

    Image information: VIS instrument. Latitude -8, Longitude 318.6 East (41.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Isidis Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater located south of the Isidis Planitia region of Mars. As with the previous unnamed crater landslide, this one formed due to slope failure of the inner crater rim.

    Image information: VIS instrument. Latitude -2.9, Longitude 90.8 East (269.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Channel Wall Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation.

    Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Xanthe Terra Landslide in IR

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This is a daytime IR image of a chaos region within Xanthe Terra. As with earlier images, the landslide in this image is caused by the failure of steep slopes releasing material to form the landslide deposit.

    Image information: IR instrument. Latitude 3.1, Longitude 309.7 East (50.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This image shows clouds and one of the many storm fronts common in the north polar region during spring and early summer. Note the linear nature of the clouds towards the top of the image, and the appearance of a large crater barely visible beneath the cloud cover.

    Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Arsia Mons Lava Flows at Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This nighttime IR image is of lava flows from Arsia Mons. The different tones of brightness in the nighttime IR are indicative of the relative ages of the flows in the images. The small circular features are impact craters.

    Image information: IR instrument. Latitude -5.7, Longitude 243.5 East (116.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Erosion Effects

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The impact crater in this THEMIS image is a model illustration to the effects of erosion on Mars. The degraded crater rim and several landslides observed in crater walls is evidence to the mass wasting of materials. Layering in crater walls also suggests the presence of materials that erode at varying rates.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 31.6, Longitude 44.3 East (315.7 West). 19 meter/pixel resolution.

  17. Martian Braille

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Just north of the hematite deposit in Meridiani Planum, the remnants of a formerly extensive layer of material remain as isolated knobs and buttes. Note the transition from north to south in the size and frequency of these features, a reflection of the decreasing elevation along this trend.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -0, Longitude 353 East (7 West). 19 meter/pixel resolution.

  18. Tader Valles

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 18 July 2003

    Tader Valles, an ancient name for the present Segura River in Spain, is a set of small channels at mid-southern latitudes that is filled by smooth material with rounded margins. It is possible that this material is snow covered by a mantle of dust or dirt.

    Image information: VIS instrument. Latitude -49.4, Longitude 208.6 East (151.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Mare Chromium Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This crater, located in Mare Chromium, shows evidence of exterior modification, with little interior modification. While the rim is still visible, the ejecta blanket has been removed or covered. There is some material at the bottom of the crater, but the interior retains the bowl shape from the initial formation of the crater.

    Image information: VIS instrument. Latitude -34.4, Longitude 174.4 East (185.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. A Program to Improve Social Studies Instruction in the Ottumwa Community Schools. Surveys, Grades 3-12, Measurement Instruments, Project #1009.

    ERIC Educational Resources Information Center

    Ahrens, Willis

    As part of a social studies instruction improvement program, measurement instruments were developed to measure attitudes of and evaluate courses for teachers and students in grades 3-12. The measurement instruments presented are surveys used in the social studies program. The purposes of the improvement project are to use the multimedia approach…

  1. Total and Spectral Solar Irradiance Sensor (TSIS) Project Overview

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Wedge, Ronnice; Wu, Dong; Stello, Harry; Robinson, Renee

    2015-01-01

    The main objective of the Total and Spectral solar Irradiance Sensor (TSIS) is to acquire measurements to determine the direct and indirect effects of solar radiation on climate. TSIS total solar irradiance measurements will extend a 37-year long uninterrupted measurement record of incoming solar radiation, the dominant energy source driving the Earths climate and the most precise indicator of changes in the Suns energy output. TSIS solar spectral irradiance measurements will determine the regions of the Earths multi-layered atmosphere that are affected by solar variability, from which the solar forcing mechanisms causing changes in climate can be quantified. TSIS includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload. The TSIS TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. TSIS was originally planned for the nadir-pointing National Polar-orbiting Operational Environmental Satellite System (NPOESS) spacecraft. The TSIS instrument passed a Critical Design Review (CDR) for NPOESS in December 2009. In 2010, TSIS was re-planned for the Joint Polar Satellite System (JPSS) Polar Free Flyer (PFF). The TSIS TIM, SIM, and associated electronics were built, tested, and successfully completed pre-ship review as of December 2013.In early 2014, NOAA and NASA agreed to fly TSIS on the International Space Station (ISS). In the FY16 Presidents Budget, NASA assumes responsibility for the TSIS mission on ISS. The TSIS project includes requirements, interface, design, build and test of the TSIS payload, including an updated pointing system, for accommodation on the ISS. It takes advantage of the prior development of the TSIS sensors and electronics. The International Space Station (ISS) program contributions include launch services and robotic installation of the TSIS payload onto an ISS Express Logistics Carrier, mission operations, and communications. Total and Spectral solar irradiance data products will be produced, calibrated, and made publically available through the Goddard Earth Science Data and Information Services Center (GES DISC).The NASA GSFC TSIS project at GSFC is responsible for project management, system engineering, safety and mission assurance, and engineering oversight for the TSIS payload. The TSIS project has contracted with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS, support for ISS integration, science operations of the TSIS instrument, data processing, data evaluation and delivery to the GES DISC. TSIS will be delivered to Kennedy Space Center for integration in 2017, with launch and installation onto ISS planned for late 2017-early 2018. After a 90-day check-out period, NASA plans five years of TSIS operations.

  2. 14. Photocopy of engineering drawing. PROJECT WS315A: INSTRUMENTATION TRENCH DETAILSSTRUCTURAL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of engineering drawing. PROJECT WS-315A: INSTRUMENTATION TRENCH DETAILS-STRUCTURAL, 17, APRIL 1956. - Cape Canaveral Air Station, Launch Complex 17, Facility 28401, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  3. Stakeholders and public involvement in river management: heterogeneous acceptance of participatory processes among Swiss institutions.

    NASA Astrophysics Data System (ADS)

    Buletti, Nora; Utz, Stephan; Ejderyan, Olivier; Graefe, Olivier; Lane, Stuart; Reynard, Emmanuel

    2014-05-01

    This research explores participatory processes in the domain of river management in Switzerland. The main objective is to better understand how participatory processes are incorporated into river management practice. Switzerland being a federal state, river management is a cantonal (regional) responsibility, under the supervision (and co-funding) of the State (a Confederation). The federal funding includes the opportunity to fund additional participatory activities to aid river management, not least because the federal authorities consider the involvement of wider stakeholders and the public in decision-making as a means of aiding the progression of projects. This is a particularly important goal in a Swiss setting where direct democracy (the possibility of calling the decision of any level of government into question through a popular vote) means that a reasonable level of project acceptance is a necessary element of project progression. River management in Switzerland now includes both flood protection and river restoration objectives, which has served to increase its controversy: river corridors contain competing interests with different objectives (e.g. ecological enhancement, protection of agricultural land, flood risk reduction). We were asked by the Confederation to evaluate participatory processes it sponsored and one element of this evaluation aimed to develop a typology of stakeholder participation. We conducted interviews with the 26 cantonal officers in charge of river management. These interviews were based upon thematically structured open ended questions, with the responses analyzed qualitatively. We have identified significant divergence in the implementation of participatory processes between the cantons. These appear to be related to two factors: (1) the canton's historical experience of river management; and (2) the methods used to select stakeholders for inclusion in the decisional process. Cantons that refer to guidelines or pre-established handbooks for the selection of stakeholders often conduct instrumental participation, limited to information dissemination. On the other hand, in some cantons participatory processes characterized by normative rationales take place. Here the goals of participatory processes are not limited to outcomes (e.g. acceptance of the project), but value the process of participation in itself. In these cantons actors are selected via social connections and the claimed 'common sense' of cantonal project officers. Here, the opportunity of public debate opens up, the inclusion of actors often start earlier in the decision-making processes and objectives are defined publicly and collectively. Cantonal authorities involved in river management do not all consider participatory processes as important. The acknowledgment of participatory processes is less related to an authority's recognition of the importance of participation and more to specific local experience.

  4. Building A Cloud Based Distributed Active Data Archive Center

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Baynes, Katie; Murphy, Kevin

    2017-01-01

    NASA's Earth Science Data System (ESDS) Program facilitates the implementation of NASA's Earth Science strategic plan, which is committed to the full and open sharing of Earth science data obtained from NASA instruments to all users. The Earth Science Data information System (ESDIS) project manages the Earth Observing System Data and Information System (EOSDIS). Data within EOSDIS are held at Distributed Active Archive Centers (DAACs). One of the key responsibilities of the ESDS Program is to continuously evolve the entire data and information system to maximize returns on the collected NASA data.

  5. NuSTAR Briefing

    NASA Image and Video Library

    2012-05-30

    Yunjin Kim, NuSTAR project manager at the Jet Propulsion Laborartory (JPL), talks about NASA's Spectroscopic Telescope Array (NuStar) during a briefing, Wednesday, May 30, 2012, at NASA Headquarters in Washington. Imaging light in the high-energy, short-wavelength X-ray range, the telescope will aim to study how black holes form and evolve along with galaxies. The instrument, packed aboard an Orbital Sciences Pegasus XL rocket is set to launch from a plane in midair no earlier than June 13 from Kwajalein Atoll in the Marshall Islands. Photo Credit: (NASA/Paul E. Alers)

  6. KSC-97PC1027

    NASA Image and Video Library

    1997-07-08

    The complete remote sensing pallet is lowered by technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology to mate with the Cassini spacecraft in the Payload Hazardous Servicing Facility at KSC in July. A four-year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA

  7. KSC-97PC1026

    NASA Image and Video Library

    1997-07-08

    Technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology lift the remote sensing pallet in the Payload Hazardous Servicing Facility at KSC in July prior to installation on the Cassini spacecraft. A four- year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA

  8. A new approach for instrument software at Gemini

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Nunez, Arturo; Dunn, Jennifer

    2008-07-01

    Gemini Observatory is now developing its next generation of astronomical instruments, the Aspen instruments. These new instruments are sophisticated and costly requiring large distributed, collaborative teams. Instrument software groups often include experienced team members with existing mature code. Gemini has taken its experience from the previous generation of instruments and current hardware and software technology to create an approach for developing instrument software that takes advantage of the strengths of our instrument builders and our own operations needs. This paper describes this new software approach that couples a lightweight infrastructure and software library with aspects of modern agile software development. The Gemini Planet Imager instrument project, which is currently approaching its critical design review, is used to demonstrate aspects of this approach. New facilities under development will face similar issues in the future, and the approach presented here can be applied to other projects.

  9. Instruments to measure cancer management knowledge of rural health care providers.

    PubMed

    Elliott, T E; Regal, R R; Renier, C M; Crouse, B J; Gangeness, D E; Pharmd; Elliott, B A; Witrak, M

    2001-01-01

    Instruments to measure cancer management knowledge of rural physicians, nurses, and pharmacists were needed to evaluate the effect of an educational intervention. Since such instruments did not exist, the authors designed and validated a new instrument for each discipline. The design and validation process for these instruments are described. These three instruments were shown to be practical and to have high content and construct validity. Content validation demonstrated that all items were rated as essential or useful by 90% or more of the respondents. Construct validation show highly significant differences in mean scores among several levels of learners and practitioners as expected. These instruments may be useful to other investigators for measuring cancer management knowledge of rural physicians, nurses, and pharmacists.

  10. 17 CFR 240.3b-14 - Definition of cash management securities activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... derivative instruments or other financial instruments; (b) Cash management, in connection with any securities... § 240.15a-1 or any non-securities activities that involve eligible OTC derivative instruments or other... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Definition of cash management...

  11. CLOUDCLOUD : general-purpose instrument monitoring and data managing software

    NASA Astrophysics Data System (ADS)

    Dias, António; Amorim, António; Tomé, António

    2016-04-01

    An effective experiment is dependent on the ability to store and deliver data and information to all participant parties regardless of their degree of involvement in the specific parts that make the experiment a whole. Having fast, efficient and ubiquitous access to data will increase visibility and discussion, such that the outcome will have already been reviewed several times, strengthening the conclusions. The CLOUD project aims at providing users with a general purpose data acquisition, management and instrument monitoring platform that is fast, easy to use, lightweight and accessible to all participants of an experiment. This work is now implemented in the CLOUD experiment at CERN and will be fully integrated with the experiment as of 2016. Despite being used in an experiment of the scale of CLOUD, this software can also be used in any size of experiment or monitoring station, from single computers to large networks of computers to monitor any sort of instrument output without influencing the individual instrument's DAQ. Instrument data and meta data is stored and accessed via a specially designed database architecture and any type of instrument output is accepted using our continuously growing parsing application. Multiple databases can be used to separate different data taking periods or a single database can be used if for instance an experiment is continuous. A simple web-based application gives the user total control over the monitored instruments and their data, allowing data visualization and download, upload of processed data and the ability to edit existing instruments or add new instruments to the experiment. When in a network, new computers are immediately recognized and added to the system and are able to monitor instruments connected to them. Automatic computer integration is achieved by a locally running python-based parsing agent that communicates with a main server application guaranteeing that all instruments assigned to that computer are monitored with parsing intervals as fast as milliseconds. This software (server+agents+interface+database) comes in easy and ready-to-use packages that can be installed in any operating system, including Android and iOS systems. This software is ideal for use in modular experiments or monitoring stations with large variability in instruments and measuring methods or in large collaborations, where data requires homogenization in order to be effectively transmitted to all involved parties. This work presents the software and provides performance comparison with previously used monitoring systems in the CLOUD experiment at CERN.

  12. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  13. Management aspects of Gemini's base facility operations project

    NASA Astrophysics Data System (ADS)

    Arriagada, Gustavo; Nitta, Atsuko; Adamson, A. J.; Nunez, Arturo; Serio, Andrew; Cordova, Martin

    2016-08-01

    Gemini's Base Facilities Operations (BFO) Project provided the capabilities to perform routine nighttime operations without anyone on the summit. The expected benefits were to achieve money savings and to become an enabler of the future development of remote operations. The project was executed using a tailored version of Prince2 project management methodology. It was schedule driven and managing it demanded flexibility and creativity to produce what was needed, taking into consideration all the constraints present at the time: Time available to implement BFO at Gemini North (GN), two years. The project had to be done in a matrix resources environment. There were only three resources assigned exclusively to BFO. The implementation of new capabilities had to be done without disrupting operations. And we needed to succeed, introducing the new operational model that implied Telescope and instrumentation Operators (Science Operations Specialists - SOS) relying on technology to assess summit conditions. To meet schedule we created a large number of concurrent smaller projects called Work Packages (WP). To be reassured that we would successfully implement BFO, we initially spent a good portion of time and effort, collecting and learning about user's needs. This was done through close interaction with SOSs, Observers, Engineers and Technicians. Once we had a clear understanding of the requirements, we took the approach of implementing the "bare minimum" necessary technology that would meet them and that would be maintainable in the long term. Another key element was the introduction of the "gradual descent" concept. In this, we increasingly provided tools to the SOSs and Observers to prevent them from going outside the control room during nighttime operations, giving them the opportunity of familiarizing themselves with the new tools over a time span of several months. Also, by using these tools at an early stage, Engineers and Technicians had more time for debugging, problem fixing and systems usage and servicing training as well.

  14. Making climate change projections relevant to water management: opportunities and challenges in the Colorado River basin (Invited)

    NASA Astrophysics Data System (ADS)

    Vano, J. A.

    2013-12-01

    By 2007, motivated by the ongoing drought and release of new climate model projections associated with the IPCC AR4 report, multiple independent studies had made estimates of future Colorado River streamflow. Each study had a unique approach, and unique estimate for the magnitude for mid-21st century streamflow change ranging from declines of only 6% to declines of as much as 45%. The differences among studies provided for interesting scientific debates, but to many practitioners this appeared to be just a tangle of conflicting predictions, leading to the question 'why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted?' In response, a group of scientists from academic and federal agencies, brought together through a NOAA cross-RISA project, set forth to identify the major sources of disparities and provide actionable science and guidance for water managers and decision makers. Through this project, four major sources of disparities among modeling studies were identified that arise from both methodological and model differences. These differences, in order of importance, are: (1) the Global Climate Models (GCMs) and emission scenarios used; (2) the ability of land surface hydrology and atmospheric models to simulate properly the high elevation runoff source areas; (3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and (4) the methods used to statistically downscale GCM scenarios. Additionally, reconstructions of pre-instrumental streamflows provided further insights about the greatest risk to Colorado River streamflow of a multi-decadal drought, like those observed in paleo reconstructions, exacerbated by a steady reduction in flows due to climate change. Within this talk I will provide an overview of these findings and insights into the opportunities and challenges encountered in the process of striving to make climate change projections more useful to water managers and decision makers.

  15. Converging Redundant Sensor Network Information for Improved Building Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tiller; D. Phil; Gregor Henze

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-planmore » office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.« less

  16. Long-term archives of land surface albedo products through the EUMETSAT/LSA-SAF and ECMWF/C3S projects: status and project development plan

    NASA Astrophysics Data System (ADS)

    Carrer, D.; Pinault, F.; Ceamanos, X.; Meurey, C.; Moparthy, S.; Swinnen, E.; Trigo, I.

    2017-12-01

    The two space programs of EUMETSAT (project CDOP3, LSA-SAF) and ECMWF (the Copernicus Climate Change Service; C3S_312a Lot9) provide (or will provide) added-value satellite products for the meteorological and environmental science communities, especially in the fields of climate modeling, environmental management, natural hazards management, and climate change detection. The EUMETSAT/LSA-SAF project started in 1999 with research and development activities. The Third Continuous Development and Operations Phase (CDOP-3) starts in March 2017 and will end in 2022. This project uses instruments on board European satellites that were, or will be, launched between 2004 and 2022. Unlike the LSA-SAF, the COPERNICUS/C3S_312a project has no NRT constraint. Its first phase started in november 2016. One of the major objective of the COPERNICUS/C3S_312a project is to harmonize datasets from various sensors in order to provide consistent and continuous ECV products from the 80's until now.Presently, the delivered operational products comprise several surface albedo products using data from various space missions (METEOSAT, NOAA, METOP, …). We present here the portfolio of the surface albedo products that are disseminated with an operational status. Their characteristics and accuracy are detailed here after. Also we will present the development plan to produce long-term re-analysis and to prepare the arrival of the next generation of satellite (MTG, EPS-SG, ...). This work will lead in 2018 to 40 years of products characterizing the albedo properties of the surface. These programs provide a great opportunity to monitor and identify human-induced climate change since consistent production of data sets is guaranteed until at least 2022.

  17. Management Approach for Earth Venture Instrument

    NASA Technical Reports Server (NTRS)

    Hope, Diane L.; Dutta, Sanghamitra

    2013-01-01

    The Earth Venture Instrument (EVI) element of the Earth Venture Program calls for developing instruments for participation on a NASA-arranged spaceflight mission of opportunity to conduct innovative, integrated, hypothesis or scientific question-driven approaches to pressing Earth system science issues. This paper discusses the EVI element and the management approach being used to manage both an instrument development activity as well as the host accommodations activity. In particular the focus will be on the approach being used for the first EVI (EVI-1) selected instrument, Tropospheric Emissions: Monitoring of Pollution (TEMPO), which will be hosted on a commercial GEO satellite and some of the challenges encountered to date and corresponding mitigations that are associated with the management structure for the TEMPO Mission and the architecture of EVI.

  18. The development and psychometrical evaluation of a set of instruments to evaluate the effectiveness of diabetes patient education.

    PubMed

    Duprez, Veerle; De Pover, Marleen; De Spiegelaere, Marc; Beeckman, Dimitri

    2014-02-01

    To develop a set of psychometrically sound instruments to assess knowledge, self-management and self-efficacy of diabetic patients. Furthermore, a survey to evaluate the satisfaction about diabetes education for patients was developed and tested. Treatment and secondary prevention of diabetes require a complex combination of care components. Patients' education has been accepted to improve diabetes knowledge, self-management and self-efficacy. Psychometrically sound instruments are needed to measure these patient-centred outcomes. Psychometric instrument validation. The first phase included a systematic literature review to develop the instruments. Content validity was evaluated using a two-round Delphi procedure involving diabetes experts. The content validity of the instruments was excellent. In a second phase, a convenience sample of 188 diabetic patients in two hospitals in one specific care region in Belgium participated in the psychometric evaluation. The criterion-related validity and internal consistency reliability were evaluated. The study produced a 21-item knowledge instrument, reflecting knowledge about 'glycemic control' and 'medico-social management aspects'. The self-management instrument included 32 statements, reflecting 'treatment and compliance' and 'general lifestyle'. The self-efficacy instrument included 30 items, reflecting 'nutrition', 'treatment' and 'regimen'. The patient satisfaction survey included 36 items, reflecting satisfaction about the relationship among the diabetes specialist, the diabetes educator, podiatrist and dietician. An instrument set with sound psychometric characteristics was developed to assess knowledge, self-management and self-efficacy of diabetic patients. Future studies should focus on the association between the instrument outcomes and clinical patient outcomes. The current instrument can support the design of educational interventions and training programmes and reduce inconsistencies in the information that patients receive. Furthermore, the instruments can be used for benchmarking the quality of diabetic patient education. © 2013 Blackwell Publishing Ltd.

  19. Designing an ICT self-management service: suggestions from persons with type 2 diabetes.

    PubMed

    Gardsten, Cecilia; Mörtberg, Christina; Blomqvist, Kerstin

    2017-01-01

    This paper reports the wishes and needs of people with type 2 diabetes (T2DM) for a future information and communication technology (ICT) self-management service to help manage their condition and their everyday life. Diabetes is a chronic disease affecting more and more people and placing increasing demands on health care. The self-management of diabetes includes instrumental and, decision-making skills and skills in managing daily activities, which may be supported by an ICT service. In this study we used a participatory design including two sessions of Future Workshop (FW) as part of a larger research project on the self-management of diabetes. Adults with type 2 diabetes participated in two FW sessions in which their expressed wishes and needs for an ICT service all fell under the broad category of Acceptance of the diagnosis, with three other suggestions; Trust in partnerships, Communication, and Individualized information. The participants' experience of the FW as a democratic process and their appreciation of mutual learning contributed to these results, which are consistent with the aims of person-centred care.

  20. Rich Support for Heterogeneous Polar Data in RAMADDA

    NASA Astrophysics Data System (ADS)

    McWhirter, J.; Crosby, C. J.; Griffith, P. C.; Khalsa, S.; Lazzara, M. A.; Weber, W. J.

    2013-12-01

    Difficult to navigate environments, tenuous logistics, strange forms, deeply rooted cultures - these are all experiences shared by Polar scientist in the field as well as the developers of the underlying data management systems back in the office. Among the key data management challenges that Polar investigations present are the heterogeneity and complexity of data that are generated. Polar regions are intensely studied across many science domains through a variety of techniques - satellite and aircraft remote sensing, in-situ observation networks, modeling, sociological investigations, and extensive PI-driven field project data collection. While many data management efforts focus on large homogeneous collections of data targeting specific science domains (e.g., satellite, GPS, modeling), multi-disciplinary efforts that focus on Polar data need to be able to address a wide range of data formats, science domains and user communities. There is growing use of the RAMADDA (Repository for Archiving, Managing and Accessing Diverse Data) system to manage and provide services for Polar data. RAMADDA is a freely available extensible data repository framework that supports a wide range of data types and services to allow the creation, management, discovery and use of data and metadata. The broad range of capabilities provided by RAMADDA and its extensibility makes it well-suited as an archive solution for Polar data. RAMADDA can run in a number of diverse contexts - as a centralized archive, at local institutions, and can even run on an investigator's laptop in the field, providing in-situ metadata and data management services. We are actively developing archives and support for a number of Polar initiatives: - NASA-Arctic Boreal Vulnerability Experiment (ABoVE): ABoVE is a long-term multi-instrument field campaign that will make use of a wide range of data. We have developed an extensive ontology of program, project and site metadata in RAMADDA, in support of the ABoVE Science Definition Team and Project Office. See: http://above.nasa.gov - UNAVCO Terrestrial Laser Scanning (TLS): UNAVCO's Polar program provides support for terrestrial laser scanning field projects. We are using RAMADDA to archive these field projects, with over 40 projects ingested to date. - NASA-IceBridge: As part of the NASA LiDAR Access System (NLAS) project, RAMADDA supports numerous airborne and satellite LiDAR data sets - GLAS, LVIS, ATM, Paris, McORDS, etc. - Antarctic Meteorological Research Center (AMRC): Satellite and surface observation network - Support for numerous other data from AON-ACADIS, Greenland GC-Net, NOAA-GMD, AmeriFlux, etc. In this talk we will discuss some of the challenges that Polar data brings to geoinformatics and describe the approaches we have taken to address these challenges in RAMADDA.

  1. MicroMAPS: Leveraging Federal and Universities' Resources for Atmospheric Sciences Research and Education

    NASA Astrophysics Data System (ADS)

    Sandy, M.; Companion, J. A.; Connors, V. S.

    2007-05-01

    NASA Langley Research Center approached the Virginia Space Grant Consortium, a NASA-sponsored coalition of universities, NASA research centers and state agencies with the opportunity to develop a scientific mission and flight opportunities for an un-flown atmospheric composition remote sensor, MicroMAPS. The resulting partnership led to new life for this instrument from a space-borne carbon monoxide remote sensor to an high altitude airborne instrument that measures tropospheric carbon monoxide in the near infrared portion of the spectrum. The five year effort to date has leveraged the existing instrument with work by student teams overseen by faculty and NASA advisors, with both NASA and industry contributions. The result is a viable instrument system that has flown in four international scientific field campaigns aboard the Scaled Composites Proteus aircraft, generating 300 plus hours of CO data to date over North America, Italy, the Mediterranean, England, the North Sea, Darwin, Northern Australia, the Atlantic Ocean, the Indian Ocean, and the Pacific Ocean between Australia and California. A relatively small investment by NASA and contributions by 56 students and nine faculty members, both active and retired NASA engineers and scientists, as well as a Canadian aerospace research company (which designed and built the MicroMAPS instrument) yielded successful results that go well beyond the instrument and data retrieved. The effort provided a valuable educational research experience for students from three universities whose work included contributions in: 1) Development of the instrument system and pod design for the Proteus flights; 2) Development of assessment strategy and analysis of instrument performance; 3) Development of the operations and data management strategy; 4) Contributions to development of design, implementation, and analysis of sensor calibration at Resonance Ltd., Barrie, Canada 5) Development of a new data reduction strategy for the airborne configuration over northern mid-latitudes and tropical regions. 6) Development of the instrument system and pod design for possible flights on Altair (a unmanned airborne vehicle managed at the NASA Dryden Flight Center) and 7) Geo-referencing of MicroMAPS data. An overview of the MicroMAPS project partnership will be presented and the potential for collaboration between federal laboratories and industry with National Space Grant Consortia and their Space Grant universities on similar partnerships will be described.

  2. Integrated instrumentation & computation environment for GRACE

    NASA Astrophysics Data System (ADS)

    Dhekne, P. S.

    2002-03-01

    The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.

  3. Mission Analysis for Using Preventive Radiological/Nuclear Detection Equipment for Consequence Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buddemeier, Brooke R.; Wood-Zika, Annmarie R.; Haynes, Daniel

    The overall objective of this project is to research, evaluate, and test first responder preventive radiological/nuclear detection (PRND) equipment to provide state and local agencies with scientific guidance on how to effectively use this equipment for response after a radiological/nuclear release or detonation. While the equipment being tested in this effort has been specifically designed by technology manufacturers and purchased by responders for preventive detection and source interdiction operations, the fleet of PRND equipment can help fill critical needs for radiological instrumentation should a consequence management (CM) response take place, as it is currently the most widely available and fieldedmore » radiological instrumentation by state and local agencies. This effort will provide scientific guidance on the most effective way to utilize this class of equipment for consequence management missions. Gaining a better understanding of how PRND equipment can operate and perform for these missions will allow for recommendations on the tactical approach responders can use for consequence management operations. PRND equipment has been placed into service by federal, state, and local agencies throughout the nation. If the equipment capability and limitations are taken into account, this large inventory can be leveraged to support the emergency response in the aftermath of a radiological or nuclear event. With several hundred makes and models of PRND equipment, often with significantly different detection capabilities that do not align with their nominal PRND equipment type, development of a streamlined categorization scheme with respect to consequence management missions was the first step to identifying safe and effective uses of PRND equipment for radiological/nuclear incident response.« less

  4. [Outcome quality in rehabilitation of children and adolescents: results of project aiming at the development of a quality assurance programme].

    PubMed

    Farin, E; Gustke, M; Widera, T; Matthies, S

    2012-06-01

    This study reports on the results of a project that was initiated by the German pension fund and the statutory health insurers and conducted in 2009 to 2010 with the goal of developing, arranging and testing instruments for quality assurance for the outcome (including patient satisfaction) in inpatient medical rehabilitation centres for children and adolescents. After a 6-month concept phase in which instruments were developed using value benefit analyses, expert consensus procedures, surveys of centres, and qualitative (cognitive interviews) and quantitative (psychometric tests) pre-studies, data were collected in 23 child and adolescent rehabilitation centres using the instruments that had been developed. The project was limited to the following 4 main diagnoses: obesity, bronchial asthma, atopic eczema, and hyperkinetic disorders as well as related disorders (ICD: F90-F94). Children and adolescents over the age of 12 years were interviewed themselves, for younger children, the parents were interviewed. It was decided to include 7 constructs that can be considered as indicators of the quality of the outcome or of patient satisfaction: generic and disease-specific quality of life, perceived change in health, body function parameters (e. g., blood pressure), disease-related self-management, satisfaction of the children/adolescents with rehabilitation, and parent satisfaction. With respect to quality of life, blood pressure, Munich fitness test and lung function parameters, low to medium effects were achieved; with respect to body mass index, SCORAD score and disease-related self-management, the effects were strong. The results can be summarised to the effect that rehabilitation generally achieves noticeable effects in the areas where the impairment is pronounced. In both the parent and the rehabilitation patient survey, there was a high level of satisfaction. The parents of rehab patients under the age of 12 years gave the centres an average assessment of 1.6 to 1.8; rehab patients over the age of 12 years gave the centres an average grade of 2.0 (1=very good to 5=very bad). The differences among the centres were very low after risk adjustment, especially for outcome quality. The strengths of the instruments that were developed are that a scientifically demanding quality measurement was conducted (e. g., combination of indirect and direct measurement of change, several methodological approaches to measuring results, wide range of endpoints analysed, homogeneous comparison groups, elaborate risk adjustment process). There are limitations, especially with respect to the rather great effort needed and not particularly high power for the comparison of centres. The German pension fund and the statutory health insurers are now discussing on the basis of the results of the project the routine implementation of quality assurance in children/adolescent rehabilitation and concrete steps that can be taken to implement it in routine health care. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Lean Management as an Instrument of Sustainable Development of Enterprises

    NASA Astrophysics Data System (ADS)

    Sikora, Marcin; Kwiatkowski, Maciej; Prosół, Hanna; Nowicka, Daria; Lorenc, Karolina; Pham, Laurena

    2016-03-01

    The aim of the paper is to present the philosophy of Lean Management as an instrument of improving sustainable management of enterprises. The article presents the origins, characteristics of the broadly understood concept of Lean Management and describes the idea of Sustainable Development (SD). At the same time implications for the application and development of the instruments which operationalize the assumptions of SD at the level of enterprises are discussed. The paper specifies those areas of functioning of contemporary companies in which Lean Management can be implemented and compares them with the features of traditional management in particular subjects.

  6. International Energy Agency instrumented facilities survey for solar assisted low energy dwellings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-02-01

    Compiled are surveys outlining the instrumentation of 38 active and passive solar projects in 9 countries (Denmark, Italy, Japan, Netherlands, Sweden, Switzerland, United Kingdom, United States, and West Germany). After the surveys themselves are presented, the data are rearranged to compare answers from similar survey questions for each of the projects. These questions address building, solar system and instrumentation descriptions and meteorological, solar system and building system instrumentatation capabilities. (LEW)

  7. High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  8. Large Instrument Development for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  9. Crisis Team Management in a Scarce Resource Setting: Angkor Hospital for Children in Siem Reap, Cambodia.

    PubMed

    Henker, Richard Alynn; Henker, Hiroko; Eng, Hor; O'Donnell, John; Jirativanont, Tachawan

    2017-01-01

    A crisis team management (CTM) simulation course was developed by volunteers from Health Volunteers Overseas for physicians and nurses at Angkor Hospital for Children (AHC) in Siem Reap, Cambodia. The framework for the course was adapted from crisis resource management (1, 2), crisis team training (3), and TeamSTEPPs© models (4). The CTM course focused on teaching physicians and nurses on the development of team performance knowledge, skills, and attitudes. Challenges to providing this course at AHC included availability of simulation equipment, cultural differences in learning, and language barriers. The purpose of this project was to evaluate the impact of a CTM simulation course at AHC on attitudes and perceptions of participants on concepts related to team performance. Each of the CTM courses consisted of three lectures, including team performance concepts, communication, and debriefing followed by rotation through four simulation scenarios. The evaluation instrument used to evaluate the AHC CTM course was developed for Cambodian staff at AHC based on TeamSTEPPs© instruments evaluating attitude and perceptions of team performance (5). CTM team performance concepts included in lectures, debriefing sessions, and the evaluation instrument were: team structure, leadership, situation monitoring, mutual support, and communication. The Wilcoxon signed-rank test was used to analyze pre- and post-test paired data from participants in the course. Of the 54 participants completing the three CTM courses at AHC, 27 were nurses, 6 were anesthetists, and 21 were physicians. Attitude and perception scores were found to significantly improve ( p  < 0.05) for team structure, leadership, situation monitoring, and communication. Team performance areas that improved the most were: discussion of team performance, communication, and exchange of information. Teaching of non-technical skills can be effective in a setting with scarce resources in a Southeastern Asian country.

  10. The Australian Replacement Research Reactor

    NASA Astrophysics Data System (ADS)

    Kennedy, Shane; Robinson, Robert

    2004-03-01

    The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has "space" for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in July 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 7 out of 8 instruments have been specified and costed. At present the instrumentation project carries 10contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments.

  11. Supervision of tunnelling constructions and software used for their evaluation

    NASA Astrophysics Data System (ADS)

    Caravanas, Aristotelis; Hilar, Matous

    2017-09-01

    Supervision is a common instrument for controlling constructions of tunnels. In order to suit relevant project’s purposes a supervision procedure is modified by local conditions, habits, codes and ways of allocating of a particular tunnelling project. The duties of tunnel supervision are specified in an agreement with the client and they can include a wide range of activities. On large scale tunnelling projects the supervision tasks are performed by a high number of people of different professions. Teamwork, smooth communication and coordination are required in order to successfully fulfil supervision tasks. The efficiency and quality of tunnel supervision work are enhanced when specialized software applications are used. Such applications should allow on-line data management and the prompt evaluation, reporting and sharing of relevant construction information and other aspects. The client is provided with an as-built database that contains all the relevant information related to a construction process, which is a valuable tool for the claim management as well as for the evaluation of structure defects that can occur in the future. As a result, the level of risks related to tunnel constructions is decreased.

  12. Methods to Develop the Eye-tem Bank to Measure Ophthalmic Quality of Life.

    PubMed

    Khadka, Jyoti; Fenwick, Eva; Lamoureux, Ecosse; Pesudovs, Konrad

    2016-12-01

    There is an increasing demand for high-standard, comprehensive, and reliable patient-reported outcome (PRO) instruments in all the disciplines of health care including in ophthalmology and optometry. Over the past two decades, a plethora of PRO instruments have been developed to assess the impact of eye diseases and their treatments. Despite this large number of instruments, significant shortcomings exist for the measurement of ophthalmic quality of life (QoL). Most PRO instruments are short-form instruments designed for clinical use, but this limits their content coverage often poorly targeting any study population other than that which they were developed for. Also, existing instruments are static paper and pencil based and unable to be updated easily leading to outdated and irrelevant item content. Scores obtained from different PRO instruments may not be directly comparable. These shortcomings can be addressed using item banking implemented with computer-adaptive testing (CAT). Therefore, we designed a multicenter project (The Eye-tem Bank project) to develop and validate such PROs to enable comprehensive measurement of ophthalmic QoL in eye diseases. Development of the Eye-tem Bank follows four phases: Phase I, Content Development; Phase II, Pilot Testing and Item Calibration; Phase III, Validation; and Phase IV, Evaluation. This project will deliver technologically advanced comprehensive QoL PROs in the form of item banking implemented via a CAT system in eye diseases. Here, we present a detailed methodological framework of this project.

  13. ECOSPACE : a pre-operational satellite system and services for ocean colour monitoring

    NASA Astrophysics Data System (ADS)

    Morel, André; Cerutti-Maori, Guy; Morel, Michel

    2017-11-01

    A permanent monitoring of the oceanic algal biomass (phytoplankton), of its photosynthetic activity, ecological and biogeochemical impact, or of its long-term response to changing physical and climatic conditions, is a crucial goal of scientific programmes (such as JGOFS, GLOBEC, LOICZ), as well as of international observing systems (such as GOOS, GCOS, IGOS). After a decade without ocean colour satellite-borne sensor, several instruments have been, or will be launched. They are increasingly sophisticated in their design and operation. Their complexity results from constraints for multipurpose mission (involving not only ocean, but also land and atmosphere), or from requirements for exploratory research projects and development of new methodologies for improved ocean colour interpretation and "advanced" products. In contrast, the proposed specific ECOSPACE mission is an ocean colour dedicated instrument, with a global monitoring vocation. It relies on known algorithms for accurate atmospheric corrections and aerosol load estimate over open ocean (about 96% of the whole ocean), and known algorithms for a meaningful quantification of the oceanic algal biomass (in terms of Chlorophyll concentration). The coastal zones are observed as well, and their particular features delineated : however, detailed studies that imply high ground resolution and more spectral channels are out of the scope of the present proposal. The ECOSPACE mission represents a feasibility demonstration ; more precisely it is a first step toward the setting up of an operational Satellite System and Services for a future continuous supply of stable, compatible, easy-to-merge ocean colour date products. In essence, such a Service would be similar to those already existing for meteorology and for some oceanic variables (e.g. sea level). Although new approaches to management and implementation over a short time scale are needed, the ECOSPACE project relies essentially on existing scientific and technological experience developed in particular under ESA funding in the frame of the MERIS project, including sensor simulation and processor, and instrument building. Indeed, most of the ECOSPACE components are already available or in final approval processes ; costly activities on the critical path for a traditional satellite system will be greatly reduced, when not totally cancelled by use of developed µsatellite platform : PROBA from ESA or µSAT from CNES. The same argument holds true for the ground segment, algorithm architecture, and data management. These platforms are compatible of piggy back on ARIANE 5 Launcher.

  14. Engaging recreational fishers in management and conservation: global case studies.

    PubMed

    Granek, E F; Madin, E M P; Brown, M A; Figueira, W; Cameron, D S; Hogan, Z; Kristianson, G; de Villiers, P; Williams, J E; Post, J; Zahn, S; Arlinghaus, R

    2008-10-01

    Globally, the number of recreational fishers is sizeable and increasing in many countries. Associated with this trend is the potential for negative impacts on fish stocks through exploitation or management measures such as stocking and introduction of non-native fishes. Nevertheless, recreational fishers can be instrumental in successful fisheries conservation through active involvement in, or initiation of, conservation projects to reduce both direct and external stressors contributing to fishery declines. Understanding fishers' concerns for sustained access to the resource and developing methods for their meaningful participation can have positive impacts on conservation efforts. We examined a suite of case studies that demonstrate successful involvement of recreational fishers in conservation and management activities that span developed and developing countries, temperate and tropical regions, marine and freshwater systems, and open- and closed-access fisheries. To illustrate potential benefits and challenges of involving recreational fishers in fisheries management and conservation, we examined the socioeconomic and ecological contexts of each case study. We devised a conceptual framework for the engagement of recreational fishers that targets particular types of involvement (enforcement, advocacy, conservation, management design [type and location], research, and monitoring) on the basis of degree of stakeholder stewardship, scale of the fishery, and source of impacts (internal or external). These activities can be enhanced by incorporating local knowledge and traditions, taking advantage of leadership and regional networks, and creating collaborations among various stakeholder groups, scientists, and agencies to maximize the probability of recreational fisher involvement and project success.

  15. Large-Scale Science Observatories: Building on What We Have Learned from USArray

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R.; Detrick, R. S.; Frassetto, A.

    2015-12-01

    With the NSF-sponsored EarthScope USArray observatory, the Earth science community has built the operational capability and experience to tackle scientific challenges at the largest scales, such as a Subduction Zone Observatory. In the first ten years of USArray, geophysical instruments were deployed across roughly 2% of the Earth's surface. The USArray operated a rolling deployment of seismic stations that occupied ~1,700 sites across the USA, made co-located atmospheric observations, occupied hundreds of sites with magnetotelluric sensors, expanded a backbone reference network of seismic stations, and provided instruments to PI-led teams that deployed thousands of additional seismic stations. USArray included a comprehensive outreach component that directly engaged hundreds of students at over 50 colleges and universities to locate station sites and provided Earth science exposure to roughly 1,000 landowners who hosted stations. The project also included a comprehensive data management capability that received, archived and distributed data, metadata, and data products; data were acquired and distributed in real time. The USArray project was completed on time and under budget and developed a number of best practices that can inform other large-scale science initiatives that the Earth science community is contemplating. Key strategies employed by USArray included: using a survey, rather than hypothesis-driven, mode of observation to generate comprehensive, high quality data on a large-scale for exploration and discovery; making data freely and openly available to any investigator from the very onset of the project; and using proven, commercial, off-the-shelf systems to ensure a fast start and avoid delays due to over-reliance on unproven technology or concepts. Scope was set ambitiously, but managed carefully to avoid overextending. Configuration was controlled to ensure efficient operations while providing consistent, uniform observations. Finally, community governance structures were put in place to ensure a focus on science needs and goals, to provide an informed review of the project's results, and to carefully balance consistency of observations with technical evolution. We will summarize lessons learned from USArray and how these can be applied to future efforts such as SZO.

  16. KSC management training system project

    NASA Technical Reports Server (NTRS)

    Sepulveda, Jose A.

    1993-01-01

    The stated objectives for the summer of 1993 were: to review the Individual Development Plan Surveys for 1994 in order to automate the analysis of the Needs Assessment effort; and to develop and implement evaluation methodologies to perform ongoing program-wide course-to-course assessment. This includes the following: to propose a methodology to develop and implement objective, performance-based assessment instruments for each training effort; to mechanize course evaluation forms and develop software to facilitate the data gathering, analysis, and reporting processes; and to implement the methodology, forms, and software in at lease one training course or seminar selected among those normally offered in the summer at KSC. Section two of this report addresses the work done in regard to the Individual Development Plan Surveys for 1994. Section three presents the methodology proposed to develop and implement objective, performance-based assessment instruments for each training course offered at KSC.

  17. KSC-05PD-0371

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, the Human Research Facility-2 (HRF-2) science rack is attached to the Rack Insertion Device that will install it into the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  18. KSC-05PD-0374

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker watches as the Rack Insertion Device slowly moves the Human Research Facility-2 (HRF-2) science rack into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  19. KSC-05PD-0370

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, workers prepare to attach the Human Research Facility-2 (HRF-2) science rack onto the Rack Insertion Device. HRF-2 will be installed into the Multi-Purpose Logistics Module Raffaello (at left) for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  20. KSC-05PD-0373

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, a worker stands by as the Rack Insertion Device slowly moves the Human Research Facility-2 (HRF-2) science rack into the Multi-Purpose Logistics Module Raffaello for flight on Space Shuttle Discoverys Return to Flight mission, STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF-1, installed on the U.S. Lab since May 2001, contains an ultrasound unit and gas analyzer. Both racks provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U.S. Laboratory, Destiny. NASA Kennedy Space Center and their prime contractor responsible for ISS element processing, The Boeing Company, prepared the rack for installation. The HRF Project is managed by NASA Johnson Space Center and implemented through contract with Lockheed Martin, Houston, Texas.

  1. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Soil on Phoenix Deck

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by the Surface Stereo Imager (SSI) of NASA's Phoenix Lander, shows Martian soil piled on top of the spacecraft's deck and some of its instruments. Visible in the upper-left portion of the image are several wet chemistry cells of the lander's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The instrument on the lower right of the image is the Thermal and Evolved-Gas Analyzer. The excess sample delivered to the MECA's sample stage can be seen on the deck in the lower left portion of the image.

    This image was taken on Martian day, or sol, 142, on Saturday, Oct. 19, 2008. Phoenix landed on Mars' northern plains on May 25, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. KSC-02pd1661

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Purpose Processing Facility at KSC lift the Solar Radiation and Climate Experiment (SORCE) spacecraft to move it to a workstand. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  4. KSC-02pd1664

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Purpose Processing Facility at KSC, the Solar Radiation and Climate Experiment (SORCE) spacecraft rests in a horizontal position on a workstand after rotation and removal of its outer covering. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  5. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  6. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  7. Final Report on the Multicultural/Diversity Assessment Project.

    ERIC Educational Resources Information Center

    Ambrosio, Anthony L.

    The Emporia State University Multicultural/Diversity Project developed a set of assessment instruments and a model evaluation plan to assess multicultural/diversity (MCD) outcomes in teacher education and general education programs. Assessment instruments and techniques were constructed to evaluate the impact of coursework on student attitudes,…

  8. 78 FR 44164 - Notice of Intent To Seek Approval To Establish an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ..., and published literature; qualitative and quantitative analyses of surveys and interviews with.... This information collection request will include a survey instrument for principal investigators of past and current AISL projects, a survey instrument for project evaluators, and protocols for follow-up...

  9. Monitoring and sustainable management of oil polluting wrecks and chemical munitions dump sites in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hassellöv, Ida-Maja; Tengberg, Anders

    2017-04-01

    The Baltic Sea region contains a dark legacy of about 100 000 tons of dumped chemical warfare agents. As time passes the gun shells corrode and the risks of release of contaminants increase. A major goal of the EU-flagship project Daimon is to support governmental organisations with case-to-case adapted methods for sustainable management of dumped toxic munitions. At the Chalmers University of Technology, a partner of Daimon, a unique ISO 31000 adapted method was developed to provide decision support regarding potentially oilpolluting shipwrecks. The method is called VRAKA and is based on probability calculations. It includes site-specific information as well as expert knowledge. VRAKA is now being adapted to dumped chemical munitions. To estimate corrosion potential of gun shells and ship wrecks along with sediment re-suspension and transport multiparameter instruments are deployed at dump sites. Parameters measured include Currents, Salinity, Temperature, Oxygen, Depth, Waves and Suspended particles. These measurements have revealed how trawling at dump sites seems to have large implications in spreading toxic substances (Arsenic) over larger areas. This presentation will shortly describe the decision support model, the used instrumentation and discuss some of the obtain results.

  10. Incorporating Data Link Features into a Multi-Function Display to Support Self-Separation and Spacing Tasks for General Aviation Pilots

    NASA Technical Reports Server (NTRS)

    Adams, Catherine A.; Murdoch, Jennifer L.; Consiglio, Maria C.; WIlliams, Daniel M.

    2005-01-01

    One objective of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated Airport Management Module (AMM) and separation responsibilities to general aviation (GA) pilots. Implementation of this concept required the development of a research Multi-Function Display (MFD) to support the interactive communications between pilots and the AMM. The interface also had to accommodate traffic awareness, self-separation, and spacing tasks through dynamic messaging and symbology for flight path conformance and conflict detection and alerting (CDA). The display served as the mechanism to support the examination of the viability of executing instrument operations designed for SATS designated airports. Results of simulation and flight experiments conducted at the National Aeronautics and Space Administration's (NASA) Langley Research Center indicate that the concept, as facilitated by the research MFD, did not increase pilots subjective workload levels or reduce their situation awareness (SA). Post-test usability assessments revealed that pilots preferred using the enhanced MFD to execute flight procedures, reporting improved SA over conventional instrument flight rules (IFR) procedures.

  11. A case study on the feasibility and performance of an UWB-AoA real time location system for resources management of civil construction projects

    NASA Astrophysics Data System (ADS)

    Mok, Esmond; Xia, Linyuan; Retscher, Guenther; Tian, Hui

    2010-06-01

    The application of integrated satellite and modern wireless positioning technologies for ubiquitous real-time resources management in large scale civil engineering projects can greatly optimize the time and cost in the construction process, and is now the trend for modern construction project management. As the outdoor conditions of most civil construction sites are open to sky, satellite positioning with the popularly used Global Positioning System (GPS) has been proved to be very efficient and effective. However, the condition in indoor and underground construction site is very complicated due to the fact that different construction activities would be carried out in different congested areas, involving heavy construction plant, equipment, professionals and technical personnel. Nowadays different emerging technologies such as Wi-Fi and ZigBee can be adopted for position and tracking in indoor environments. Nevertheless, under the very complicated construction site conditions these technologies may fail due to movement of human resources and construction plant, variation of metrological conditions, and serious multipath effects of signals. It is considered that Ultra Wide Band (UWB) technology is more suitable for indoor construction site environments. In this paper, a case study on the attempt of integrating GPS with Ubisense Real-time Location System (RTLS) for resources management in an underground railway construction site is discussed. Laboratory and field tests have shown that the RTLS can provide better resources management capability in terms of positioning accuracy and stability than Wi-Fi and ZigBee technologies under complicated construction environments. The test results show that the system can normally achieve better than 15 cm accuracy, and better than 1 m under adverse geometrical site condition. However, the high instrumental set up cost and the requirement for high quality data transmission cable for high precision time synchronization between sensors may deter wide application of similar system for resources management in construction sites.

  12. Measurement instruments for automatically monitoring the water chemistry of reactor coolant at nuclear power stations equipped with VVER reactors. Selection of measurement instruments and experience gained from their operation at Russian and foreign NPSs

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. A.

    2007-12-01

    An analytical review is given of Russian and foreign measurement instruments employed in a system for automatically monitoring the water chemistry of the reactor coolant circuit and used in the development of projects of nuclear power stations equipped with VVER-1000 reactors and the nuclear station project AES 2006. The results of experience gained from the use of such measurement instruments at nuclear power stations operating in Russia and abroad are presented.

  13. Annual ADP planning document

    NASA Technical Reports Server (NTRS)

    Mogilevsky, M.

    1973-01-01

    The Category A computer systems at KSC (Al and A2) which perform scientific and business/administrative operations are described. This data division is responsible for scientific requirements supporting Saturn, Atlas/Centaur, Titan/Centaur, Titan III, and Delta vehicles, and includes realtime functions, Apollo-Soyuz Test Project (ASTP), and the Space Shuttle. The work is performed chiefly on the GEL-635 (Al) system located in the Central Instrumentation Facility (CIF). The Al system can perform computations and process data in three modes: (1) real-time critical mode; (2) real-time batch mode; and (3) batch mode. The Division's IBM-360/50 (A2) system, also at the CIF, performs business/administrative data processing such as personnel, procurement, reliability, financial management and payroll, real-time inventory management, GSE accounting, preventive maintenance, and integrated launch vehicle modification status.

  14. Incorporating data link messaging into a multi-function display to support the Small Aircraft Transportation System (SATS) and the self-separation of general aviation aircraft.

    PubMed

    Adams, Catherine A; Murdoch, Jennifer L; Consiglio, Maria C; Williams, Daniel M

    2007-07-01

    One objective of the Small Aircraft Transportation System (SATS) Project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated system and separation responsibilities to general aviation (GA) pilots. This paper describes the development of a research multi-function display (MFD) to support the interaction between pilots and an automated Airport Management Module (AMM). Preliminary results of simulation and flight tests indicate that adding the responsibility of monitoring other traffic for self-separation does not increase pilots' subjective workload levels. Pilots preferred using the enhanced MFD to execute flight procedures, reporting improved situation awareness (SA) over conventional instrument flight rules (IFR) procedures.

  15. Systems budgets architecture and development for the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Mignot, Shan; Flagey, Nicolas; Szeto, Kei; Murowinski, Rick; McConnachie, Alan

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project is an enterprise to upgrade the existing Canada-France- Hawaii observatory into a spectroscopic facility based on a 10 meter-class telescope. As such, the project relies on engineering requirements not limited only to its instruments (the low, medium and high resolution spectrographs) but for the whole observatory. The science requirements, the operations concept, the project management and the applicable regulations are the basis from which these requirements are initially derived, yet they do not form hierarchies as each may serve several purposes, that is, pertain to several budgets. Completeness and consistency are hence the main systems engineering challenges for such a large project as MSE. Special attention is devoted to ensuring the traceability of requirements via parametric models, derivation documents, simulations, and finally maintaining KAOS diagrams and a database under IBM Rational DOORS linking them together. This paper will present the architecture of the main budgets under development and the associated processes, expand to highlight those that are interrelated and how the system, as a whole, is then optimized by modelling and analysis of the pertinent system parameters.

  16. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... instrumentation whenever any physical condition that might affect the stability of a project structure has been discovered or is anticipated. The instrumentation must be satisfactory to the Regional Engineer and may...

  17. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... instrumentation whenever any physical condition that might affect the stability of a project structure has been discovered or is anticipated. The instrumentation must be satisfactory to the Regional Engineer and may...

  18. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... instrumentation whenever any physical condition that might affect the stability of a project structure has been discovered or is anticipated. The instrumentation must be satisfactory to the Regional Engineer and may...

  19. MO-F-211-01: Methods for Completing Practice Quality Improvement (PQI).

    PubMed

    Johnson, J; Brown, K; Ibbott, G; Pawlicki, T

    2012-06-01

    Practice Quality Improvement (PQI) is becoming an expected part of routine practice in healthcare as an approach to provide more efficient, effective and high quality care. Additionally, as part of the ABR's Maintenance of Certification (MOC) pathway, medical physicists are now expected to complete a PQI project. This session will describe the history behind and benefits of the ABR's MOC program, provide details of quality improvement methods and how to successfully complete a PQI project. PQI methods include various commonly used engineering and management tools. The Plan-Do-Study-Act (PDSA) cycle will be presented as one project planning and implementation tool. Other PQI analysis instruments such as flowcharts, Pareto charts, process control charts and fishbone diagrams will also be explained with examples. Cause analysis, solution development and implementation, and post-implementation measurement will be presented. Project identification and definition as well as appropriate measurement tool selection will be offered. Methods to choose key quality metrics (key quality indicators) will also be addressed. Several sample PQI projects and templates available through the AAPM and other organizations will be described. At least three examples of completed PQI projects will be shared. 1. Identify and define a PQI project 2. Identify and select measurement methods/techniques for use with the PQI project 3. Describe example(s) of completed projects. © 2012 American Association of Physicists in Medicine.

  20. Infection with spinal instrumentation: Review of pathogenesis, diagnosis, prevention, and management

    PubMed Central

    Kasliwal, Manish K.; Tan, Lee A.; Traynelis, Vincent C.

    2013-01-01

    Background: Instrumentation has become an integral component in the management of various spinal pathologies. The rate of infection varies from 2% to 20% of all instrumented spinal procedures. Every occurrence produces patient morbidity, which may adversely affect long-term outcome and increases health care costs. Methods: A comprehensive review of the literature from 1990 to 2012 was performed utilizing PubMed and several key words: Infection, spine, instrumentation, implant, management, and biofilms. Articles that provided a current review of the pathogenesis, diagnosis, prevention, and management of instrumented spinal infections over the years were reviewed. Results: There are multiple risk factors for postoperative spinal infections. Infections in the setting of instrumentation are more difficult to diagnose and treat due to biofilm. Infections may be early or delayed. C Reactive Protein (CRP) and Magnetic Resonance Imaging (MRI) are important diagnostic tools. Optimal results are obtained with surgical debridement followed by parenteral antibiotics. Removal or replacement of hardware should be considered in delayed infections. Conclusions: An improved understanding of the role of biofilm and the development of newer spinal implants has provided insight in the pathogenesis and management of infected spinal implants. This literature review highlights the mechanism, pathogenesis, prevention, and management of infection after spinal instrumentation. It is important to accurately identify and treat postoperative spinal infections. The treatment is often multimodal and prolonged. PMID:24340238

  1. Development and validation of a short version of the Partnership Self-Assessment Tool (PSAT) among professionals in Dutch disease-management partnerships.

    PubMed

    Cramm, Jane M; Strating, Mathilde Mh; Nieboer, Anna P

    2011-06-30

    The extent to which partnership synergy is created within quality improvement programmes in the Netherlands is unknown. In this article, we describe the psychometric testing of the Partnership Self-Assessment Tool (PSAT) among professionals in twenty-two disease-management partnerships participating in quality improvement projects focused on chronic care in the Netherlands. Our objectives are to validate the PSAT in the Netherlands and to reduce the number of items of the original PSAT while maintaining validity and reliability. The Dutch version of the PSAT was tested in twenty-two disease-management partnerships with 218 professionals. We tested the instrument by means of structural equation modelling, and examined its validity and reliability. After eliminating 14 items, the confirmatory factor analyses revealed good indices of fit with the resulting 15-item PSAT-Short version (PSAT-S). Internal consistency as represented by Cronbach's alpha ranged from acceptable (0.75) for the 'efficiency' subscale to excellent for the 'leadership' subscale (0.87). Convergent validity was provided with high correlations of the partnership dimensions and partnership synergy (ranged from 0.512 to 0.609) and high correlations with chronic illness care (ranged from 0.447 to 0.329). The psychometric properties and convergent validity of the PSAT-S were satisfactory rendering it a valid and reliable instrument for assessing partnership synergy and its dimensions of partnership functioning.

  2. [Structured medication management in primary care - a tool to promote medication safety].

    PubMed

    Mahler, Cornelia; Freund, Tobias; Baldauf, Annika; Jank, Susanne; Ludt, Sabine; Peters-Klimm, Frank; Haefeli, Walter Emil; Szecsenyi, Joachim

    2014-01-01

    Patients with chronic disease usually need to take multiple medications. Drug-related interactions, adverse events, suboptimal adherence, and self-medication are components that can affect medication safety and lead to serious consequences for the patient. At present, regular medication reviews to check what medicines have been prescribed and what medicines are actually taken by the patient or the structured evaluation of drug-related problems rarely take place in Germany. The process of "medication reconciliation" or "medication review" as developed in the USA and the UK aim at increasing medication safety and therefore represent an instrument of quality assurance. Within the HeiCare(®) project a structured medication management was developed for general practice, with medical assistants playing a major role in the implementation of the process. Both the structured medication management and the tools developed for the medication check and medication counselling will be outlined in this article; also, findings on feasibility and acceptance in various projects and experiences from a total of 200 general practices (56 HeiCare(®), 29 HiCMan,115 PraCMan) will be described. The results were obtained from questionnaires and focus group discussions. The implementation of a structured medication management intervention into daily routine was seen as a challenge. Due to the high relevance of medication reconciliation for daily clinical practice, however, the checklists - once implemented successfully - have been applied even after the end of the project. They have led to the regular review and reconciliation of the physicians' documentation of the medicines prescribed (medication chart) with the medicines actually taken by the patient. Copyright © 2013. Published by Elsevier GmbH.

  3. Reengineering observatory operations for the time domain

    NASA Astrophysics Data System (ADS)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  4. A compiler and validator for flight operations on NASA space missions

    NASA Astrophysics Data System (ADS)

    Fonte, Sergio; Politi, Romolo; Capria, Maria Teresa; Giardino, Marco; De Sanctis, Maria Cristina

    2016-07-01

    In NASA missions the management and the programming of the flight systems is performed by a specific scripting language, the SASF (Spacecraft Activity Sequence File). In order to perform a check on the syntax and grammar it is necessary a compiler that stress the errors (eventually) found in the sequence file produced for an instrument on board the flight system. In our experience on Dawn mission, we developed VIRV (VIR Validator), a tool that performs checks on the syntax and grammar of SASF, runs a simulations of VIR acquisitions and eventually finds violation of the flight rules of the sequences produced. The project of a SASF compiler (SSC - Spacecraft Sequence Compiler) is ready to have a new implementation: the generalization for different NASA mission. In fact, VIRV is a compiler for a dialect of SASF; it includes VIR commands as part of SASF language. Our goal is to produce a general compiler for the SASF, in which every instrument has a library to be introduced into the compiler. The SSC can analyze a SASF, produce a log of events, perform a simulation of the instrument acquisition and check the flight rules for the instrument selected. The output of the program can be produced in GRASS GIS format and may help the operator to analyze the geometry of the acquisition.

  5. Instrumenting caves to collect hydrologic and geochemical data: case study from James Cave, Virginia

    USGS Publications Warehouse

    Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.

    2015-01-01

    Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and geochemical datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for geochemical analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and geochemical monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.

  6. Reducing construction waste: A study of urban infrastructure projects.

    PubMed

    de Magalhães, Ruane Fernandes; Danilevicz, Ângela de Moura Ferreira; Saurin, Tarcisio Abreu

    2017-09-01

    The construction industry is well-known for producing waste detrimental to the environment, and its impacts have increased with the development process of cities. Although there are several studies focused on the environmental impact of residential and commercial buildings, less knowledge is available regarding decreasing construction waste (CW) generation in urban infrastructure projects. This study presents best practices to reduce waste in the said projects, stressing the role of decision-making in the design stage and the effective management of construction processes in public sector. The best practices were identified from literature review, document analysis in 14 projects of urban infrastructure, and both qualitative and quantitative survey with 18 experts (architects and engineers) playing different roles on those projects. The contributions of these research are: (i) the identification of the main building techniques related to the urban design typologies analyzed; (ii) the identification of cause-effect relationships between the design choices and the CW generation diagnosis; (iii) the proposal of a checklist to support the decision-making process, that can be used as a control and evaluation instrument when developing urban infrastructure designs, focused on the construction waste minimization (CWM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  8. Arsinoes Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    At the easternmost end of Valles Marineris, a rugged, jumbled terrain known as chaos displays a stratigraphy that could be described as precarious. Perched on top of the jumbled blocks is another layer of sedimentary material that is in the process of being eroded off the top. This material is etched by the wind into yardangs before it ultimately is stripped off to reveal the existing chaos.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -7.8, Longitude 19.1 East (340.9 West). 19 meter/pixel resolution.

  9. Freedom Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Freedom crater, located in Acidalia Planitia, exhibits a concentric ring pattern in its interior, suggesting that there has been some movement of these materials towards the center of the crater. Slumping towards the center may have been caused by the presence of ground ice mixed in with the sediments. The origin for the scarps on the western edge of the interior deposit is unknown.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 43.3, Longitude 351.3 East (8.7 West). 19 meter/pixel resolution.

  10. Old Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    The large crater in the center of this image is older than all the smaller craters in the rest of the VIS image. The crater no longer has any visible rim or ejecta, and is simply a circular smooth floored basin. The interior has been further modified by both impact and the process that formed the darker markings. This image is from the region near Naktong Vallis.

    Image information: VIS instrument. Latitude -1, Longitude 30.7 East (329.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Relative Dating Via Fractures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image of the eastern part of the Tharsis region illustrates how fractures can be used in relative dating of a surface. The fractured materials on the right side of the image are embayed by younger volcanic flows originating to the west of the image. Note how the younger flows cover the ends of the fractures, and are not at all fractured themselves.

    Image information: VIS instrument. Latitude 43.2, Longitude 269.4 East (90.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Nighttime IR Channels

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This night time IR image shows Parana Vallis. Parana Vallis is one of many channels located in the Martian highlands SE of Eos Chasma (the eastern end of Valles Marineris). Parana Vallis is likely to have been formed by fluvial activity.

    NOTE: in nighttime images North is to the bottom of the image.

    Image information: IR instrument. Latitude -24.6, Longitude 349.7 East (10.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Crater At Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This nighttime IR image is dominated by a large crater. The crater no longer has any visible ejecta, and retains only it's rim - seen here as a varigated black/gray semi-circle surrounding a brighter floor. The smaller craters in the image have bright rings representing their rocky rims. This crater is located just south of Syrtis Major.

    Image information: IR instrument. Latitude 2.8, Longitude 76.4 East (283.6 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Central Peak

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 8 September 2003

    The degraded remains of this crater central peak have a surface cover that is characteristic of high latitudes. This type of surface material is thought to be a mixture of dust and ice. The nameless crater that this central peak is found in is approximately 150 km in diameter and is located in the southern highlands.

    Image information: VIS instrument. Latitude -51.6, Longitude 231.4 East (128.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Cross-Cutting Relationships

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 25 August 2003

    The several linear cross-cutting grabens and collapse features observed in this THEMIS image illustrate the relative timing of a series of complex geologic processes as more recent events produce features that overlap and intersect older ones. Some impact craters are observed to be cut grabens, suggesting an older impact event compared to impact craters that appear fresh and unmodified.

    Image information: VIS instrument. Latitude 14.1, Longitude 236.3 East (123.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Polar Layers in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image again illustrates the oranger/bluer nature of the polar layers.

    Image information: VIS instrument. Latitude 80.6, Longitude 70.2 East (289.8 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Blue Polar Dunes In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    The small dunes in this image are 'bluer' than the rest of the layered ice/dust units to the left.

    Image information: VIS instrument. Latitude 84.5, Longitude 206.6 East (153.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. North Polar False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This full resolution image contains dunes, and small areas of 'blue' which may represent fresh (ie. not dust covered) frost or ice.

    Image information: VIS instrument. Latitude 85, Longitude 235.8 East (124.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Remnants of Lost Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    In eastern Arabia Terra, remnants of a once vast layered terrain are evident as isolated buttes, mesas, and deeply-filled craters. The origin of the presumed sediments that created the layers is unknown, but those same sediments, now eroded, may be the source of the thick mantle of dust that covers much of Arabia Terra today.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 20.5, Longitude 50 East (310 West). 19 meter/pixel resolution.

  20. Huygens Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 15 July 2003

    The floor of the 450 km diameter crater named after Dutch astronomer Christian Huygens (1629-1695) shows an unusual texture. Smooth-topped mesas are scattered across a more rugged surface. The mesas are testament to a former smooth layer of material that is in the process of eroding away.

    Image information: VIS instrument. Latitude -16.2, Longitude 54.5 East (305.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. KSC-04pd2107

    NASA Image and Video Library

    2004-10-08

    KENNEDY SPACE CENTER, FLA. - Project managers Mike Miller and Rex Eberhardt stand in front of the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. Swift has been wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  2. KSC-97PC1028

    NASA Image and Video Library

    1997-07-08

    The complete remote sensing pallet is lowered by technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology and mated at the interface with the Cassini spacecraft in the Payload Hazardous Servicing Facility at KSC in July. A four-year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA

  3. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Phoenix Carries Soil to Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab delivery funnel on Sol 29, the 29th Martian day after landing, or June 24, 2008. The soil will be delivered to the instrument on Sol 30.

    This image has been enhanced to brighten the scene.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Psychometric instrumentation: reliability and validity of instruments used for clinical practice, evidence-based practice projects and research studies.

    PubMed

    Mayo, Ann M

    2015-01-01

    It is important for CNSs and other APNs to consider the reliability and validity of instruments chosen for clinical practice, evidence-based practice projects, or research studies. Psychometric testing uses specific research methods to evaluate the amount of error associated with any particular instrument. Reliability estimates explain more about how well the instrument is designed, whereas validity estimates explain more about scores that are produced by the instrument. An instrument may be architecturally sound overall (reliable), but the same instrument may not be valid. For example, if a specific group does not understand certain well-constructed items, then the instrument does not produce valid scores when used with that group. Many instrument developers may conduct reliability testing only once, yet continue validity testing in different populations over many years. All CNSs should be advocating for the use of reliable instruments that produce valid results. Clinical nurse specialists may find themselves in situations where reliability and validity estimates for some instruments that are being utilized are unknown. In such cases, CNSs should engage key stakeholders to sponsor nursing researchers to pursue this most important work.

  7. Progress on quality management in the German health system – a long and winding road

    PubMed Central

    Breckenkamp, Juergen; Wiskow, Christiane; Laaser, Ulrich

    2007-01-01

    The interest in quality management in health care has increased in the last decades as the financial crises in most health systems generated the need for solutions to contain costs while maintaining quality of care. In Germany the development of quality management procedures has been closely linked with health care reforms. Starting in the early nineties quality management issues gained momentum in reform legislation only 10 years later. This review summarizes recent developments in medical quality management as related to the federal reform legislation in Germany. It provides an overview on the infrastructure, actors and on the current discussion concerning quality management in medical care. Germany had to catch up on implementing quality management in the health system compared to other countries. Considerable progress has been made, however, it is recognized that the full integration of quality management will require long-term commitment in developing methods, instruments and communication procedures. The most ambitious project at present is the development of a comprehensive comparative quality management system for hospitals at national level, including public reporting. For the time being medical quality management in Germany is dealt with as a technical and professional issue while the aspects of patient orientation and transparency need further advancement. PMID:17550593

  8. Program control on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Pennington, Dorothy J.; Majerowicw, Walter

    1994-01-01

    The Tropical Rainfall Measuring Mission (TRMM), an integral part of NASA's Mission to Planet Earth, is the first satellite dedicated to measuring tropical rainfall. TRMM will contribute to an understanding of the mechanisms through which tropical rainfall influences global circulation and climate. Goddard Space Flight Center's (GSFC) Flight Projects Directorate is responsible for establishing a Project Office for the TRMM to manage, coordinate, and integrate the various organizations involved in the development and operation of this complex satellite. The TRMM observatory, the largest ever developed and built inhouse at GSFC, includes state-of-the-art hardware. It will carry five scientific instruments designed to determine the rate of rainfall and the total rainfall occurring between the north and south latitudes of 35 deg. As a secondary science objective, TRMM will also measure the Earth's radiant energy budget and lightning.

  9. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  10. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  11. KSC-2011-7547

    NASA Image and Video Library

    2011-10-26

    VANDENBERG AIR FORCE BASE, Calif. -- Ken Schwer, NPP project manager, Goddard Space Flight Center, Greenbelt, Md., participates in the prelaunch news conference at Vandenberg Air Force Base, Calif., for NASA’s National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft. NPP represents a critical first step in building the next-generation of Earth-observing satellites. NPP will carry the first of the new sensors developed for this satellite fleet, now known as the Joint Polar Satellite System (JPSS), to be launched in 2016. NPP is the bridge between NASA's Earth Observing System (EOS) satellites and the forthcoming series of JPSS satellites. The mission will test key technologies and instruments for the JPSS missions. NPP is targeted to launch Oct. 28 from Space Launch Complex-2 aboard a United Launch Alliance Delta II rocket. For more information, visit http://www.nasa.gov/NPP. Photo credit: NASA/VAFB

  12. Merging Old and New: An Instrumentation-Based Introductory Analytical Laboratory

    ERIC Educational Resources Information Center

    Jensen, Mark B.

    2015-01-01

    An instrumentation-based laboratory curriculum combining traditional unknown analyses with student-designed projects has been developed for an introductory analytical chemistry course. In the first half of the course, students develop laboratory skills and instrumental proficiency by rotating through six different instruments performing…

  13. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  14. [Project for the Creation of a Medical or Hospital Ethical Committee at a Local Level in the San Miguel Arcangel Hospital, District of San Miguelito, Province of Panama. Year 2013].

    PubMed

    Díaz Rivera, Yashiro A

    2015-01-01

    The next project was based on the design on the creation of a medical ethical Committee at a hospital. It was developed at the San Miguel Arcangel Hospital, District of San Miguelito, Province of Panama, in 2013. Insomuch as the creation of social projects requires unified international parameters, format is taken from the Unesco's guides for the establishing and working of bioethics committees; adapted to the socio-economic, political and cultural context of the San Miguelito District, Panama Province. Furthermore to adapting to socio-ecological aspect where the research project is carried out, the theoretical aspect includes from the ontological personalistic bioethics, where the cornerstone is the dignity of the human person. A study of perceptions of medical staff and nursing was developed on the management of the most common ethical dilemmas in the Hospital San Miguel Arcángel. The instrument used was a previously validated perception survey through a pilot test. Reliability was measured using Cronbach's alpha coefficient, and validity was obtained from the content. Satisfactory statistical results, that verify the working hypotheses on the recognition of the importance of autonomy, confidentiality, protection of vulnerable population, occupational health staff welfare and integration of bioethics at the institutional agenda, were obtained. However, there were particular aspects that indicate some doubt as to the management of some realities that are presented in the context of health care.

  15. Technical basis for implementation of remote reading capabilities for radiological control instruments at tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PIERSON, R.M.

    1999-10-27

    This document provides the technical basis for use of remote reading capabilities with radiological control instruments at River Protection Project facilities. The purpose of this document is to evaluate applications of remote reading capabilities with Radiological Control instrumentation to allow continuous monitoring of radiation dose rates at River Protection Project (RPP) facilities. In addition this document provides a technical basis and implementing guidelines for remote monitoring of dose rates and their potential contribution to maintaining radiation exposures ALARA.

  16. Between school and university: The study of the historical scientific instruments collection of the Liceo Maffei in Verona

    NASA Astrophysics Data System (ADS)

    Marcon, F.

    2017-03-01

    Since 2014 the Museum of the History of Physics of the University of Padua has been working on the study and valorisation of the collection of historical scientific instruments kept at the high school "Scipione Maffei" in Verona, one of the oldest high schools in Italy. The Cabinet of Physics of "Liceo Maffei", founded in 1802, currently consists of about 550 instruments, acquired until the 1960s. Besides the Museum's staff, the project has involved two physics teachers and a group of students, who participated in different phases of the work on the collection. This article intends to present the collection, the project, and the results achieved so far. We also aim at highlighting the potentialities and possible future developments of the project, a project which can become a model for other schools.

  17. Researchers' experience with project management in health and medical research: Results from a post-project review

    PubMed Central

    2011-01-01

    Background Project management is widely used to deliver projects on time, within budget and of defined quality. However, there is little published information describing its use in managing health and medical research projects. We used project management in the Alcohol and Pregnancy Project (2006-2008) http://www.ichr.uwa.edu.au/alcoholandpregnancy and in this paper report researchers' opinions on project management and whether it made a difference to the project. Methods A national interdisciplinary group of 20 researchers, one of whom was the project manager, formed the Steering Committee for the project. We used project management to ensure project outputs and outcomes were achieved and all aspects of the project were planned, implemented, monitored and controlled. Sixteen of the researchers were asked to complete a self administered questionnaire for a post-project review. Results The project was delivered according to the project protocol within the allocated budget and time frame. Fifteen researchers (93.8%) completed a questionnaire. They reported that project management increased the effectiveness of the project, communication, teamwork, and application of the interdisciplinary group of researchers' expertise. They would recommend this type of project management for future projects. Conclusions Our post-project review showed that researchers comprehensively endorsed project management in the Alcohol and Pregnancy Project and agreed that project management had contributed substantially to the research. In future, we will project manage new projects and conduct post-project reviews. The results will be used to encourage continuous learning and continuous improvement of project management, and provide greater transparency and accountability of health and medical research. The use of project management can benefit both management and scientific outcomes of health and medical research projects. PMID:21635721

  18. 36 CFR 228.109 - Bonds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authorized Forest officer determines the financial instrument held by the Bureau of Land Management is not... give the operator the option of either increasing the financial instrument held by the Bureau of Land Management or filing a separate instrument with the Forest Service in the amount deemed adequate by the...

  19. Magnetometer instrument team studies for the definition phase of the outer planets grand tour

    NASA Technical Reports Server (NTRS)

    Coleman, P. J., Jr.

    1972-01-01

    The objectives of magnetic field investigations on missions to the outer planets were defined as well as an instrumentation system, a program of studies and instrument development tasks was proposed for the mission definition phase of the Outer Planets Grand Tour project. A report on the status of this program is given. Requirements were also established for the spacecraft and the mission which would insure their compatibility with the magnetic field investigation proposed for the outer planets missions and developed figures of merit for encounter trajectories. The spacecraft-instrumentation interface and the on-board data handling system were defined in various reports by the Project Team and in the reports by the Science Steering Group. The defining program for exploring the outer planets within the more restrictive constraints of the Mariner Jupiter-Saturn project included defining a limited magnetic field investigation.

  20. Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Sromovsky, Lawrence A.

    1997-01-01

    This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground- based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section (11) provides background information on the NFR instrument.

  1. Mobile MAX-DOAS and in situ measurements of NO2 and SO2

    NASA Astrophysics Data System (ADS)

    Wittrock, Folkard; Peters, Enno; Seyler, André; Mathieu-Üffing, Barbara; Kattner, Lisa; Richter, Andreas; Burrows, John P.

    2017-04-01

    The project MeSMarT (Measurements of shipping emissions in the marine troposphere) has been established as a cooperation between the University of Bremen and the German Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency) to estimate the influence of shipping emissions on the chemistry of the atmospheric boundary layer and to establish a monitoring system for main shipping routes. As part of the project in 2015 a mobile lab has been set up, which includes among other instrumentation for air pollution and meteorological parameters a scientific-grade MAX-DOAS system as well as in situ instruments for nitrogen oxides and sulfur dioxide (trace level). Focusing on NO2 and SO2 we present intercomparison results between the different instruments onboard the mobile lab as well as comparisons to standard instrumentation used at different sites in Northern Germany within the project.

  2. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter

    2010-07-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.

  3. Network models for solving the problem of multicriterial adaptive optimization of investment projects control with several acceptable technologies

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.; Butsenko, E. V.

    2017-10-01

    This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.

  4. An Approach for Implementation of Project Management Information Systems

    NASA Astrophysics Data System (ADS)

    Běrziša, Solvita; Grabis, Jānis

    Project management is governed by project management methodologies, standards, and other regulatory requirements. This chapter proposes an approach for implementing and configuring project management information systems according to requirements defined by these methodologies. The approach uses a project management specification framework to describe project management methodologies in a standardized manner. This specification is used to automatically configure the project management information system by applying appropriate transformation mechanisms. Development of the standardized framework is based on analysis of typical project management concepts and process and existing XML-based representations of project management. A demonstration example of project management information system's configuration is provided.

  5. Bioecological Theory, Early Child Development and the Validation of the Population-Level Early Development Instrument

    ERIC Educational Resources Information Center

    Guhn, Martin; Goelman, Hillel

    2011-01-01

    The Early Development Instrument (EDI; Janus and Offord in "Canadian Journal of Behavioural Science" 39:1-22, 2007) project is a Canadian population-level, longitudinal research project, in which teacher ratings of Kindergarten children's early development and wellbeing are linked to health and academic achievement variables at the…

  6. 78 FR 117 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Interchangeable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... research project. Membership in this group research project remains open, and Interchangeable Virtual...

  7. 76 FR 16820 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Interchangeable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... research project. Membership in this group research project remains open, and Interchangeable Virtual...

  8. Assessment Component of the California New Teacher Project: Second Year Report.

    ERIC Educational Resources Information Center

    Estes, Gary D.; And Others

    The California New Teacher Project (CNTP) commissioned pilot tests of assessment instruments during 1990. This document is the final report and analysis of the administration and scoring of these assessment instruments. The document, organized into 11 chapters, begins with an introduction describing research on new and experienced teachers,…

  9. Bringing in the Bard: Shakespearean Plays as Context for Instrumental Analysis Projects

    ERIC Educational Resources Information Center

    Kloepper, Kathryn D.

    2015-01-01

    Scenes from the works of William Shakespeare were incorporated into individual and group projects for an upper-level chemistry class, instrumental analysis. Students read excerpts from different plays and then viewed a corresponding video clip from a stage or movie production. Guided-research assignments were developed based on these scenes. These…

  10. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  11. Divulgación del Programa Consolider-GTC

    NASA Astrophysics Data System (ADS)

    Ruiz Zelmanovitch, N.; Mass Hesse, M.; Alfaro, E.

    2013-05-01

    The Gran Telescopio Canarias (GTC) is the biggest telescope of its class in the world. The CONSOLIDER INGENIO 2010-GTC project, First Science with the GTC: Spanish Astron- omy on the Forefront of the European Astronomy, funded by the Spanish Ministry of Science and Innovation, MICINN (now the Ministry of Economy and competitiveness, MINECO) has used the GTC to: (i) obtain leading science with its data, (ii) increase the involvement of the Spanish astronomical community in developing astronomical instrumentation, (iii) get an important Spanish participation in the new extremely large telescopes generation (ELTs), and (iv) make outreach and communicating to the society the main results. The project CONSOLIDER INGENIO 2010-GTC is structured and defined by objectives: 1) GTC: To optimize the GTC and its instruments; 2) SCIENCE: To develop leading science with the GTC; 3) E-ELT: To take advantage of the technological experience obtained with the GTC for the new generation of giant telescopes; 4) INSTRUMENTATION: To promote the Spanish participation in the new instrument developments for the GTC, VLT and the future ELTs; 5) EDUCATION: International School for Advanced Instrumentation (IScAI); and 6) OUTREACH: Outreach and communication of the project scientific results. This poster resumes five years of science communication around the Consolider-GTC project.

  12. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    NASA Astrophysics Data System (ADS)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  13. Empowering European communities to improve natural resource management for human well-being: the OPPLA web portal & communities of practice

    NASA Astrophysics Data System (ADS)

    Metzger, M.; Brown, C.; Pérez-Soba, M.; Rounsevell, M.; Verweij, P.; Delbaere, B.; Cojocaru, G.; Saarikoski, H.; Harrison, P.; Zellmer, K.

    2014-12-01

    The ecosystem services concept is seen by many as a useful paradigm to support decision-making at the complex interface between science, policy and practice. However, to be successful, it requires a strong willingness for collaboration and joint understanding. In support of this aspiration, OPPLA is being developed as a web portal to enable European communities to better manage ecosystems for human well-being and livelihoods. OPPLA will provide access to a variety of online resources such as tools, case studies, lessons learned, videos, manuals and training and educational materials. It will also provide expert forums and spaces for discussions between researchers, practitioners and decision makers. Hence a critical aspect of the success of OPPLA is the co-evolution of communities of practice. An example of a community of practice is the recently launched Ecosystem Services Community - Scotland (ESCom-Scotland; escomscotland.wordpress.com). ESCom-Scotland aims to support better management of Scotland's natural resources by helping to establish a community of practice between individuals and groups involved in the science, policy and practice behind sustainable ecosystem management. It aspires to encourage the sharing of ideas, increase collaboration and to initiate a support network for those engaging with the ecosystem services concept and it will use the OPPLA resources to support these activities. OPPLA is currently at the developmental stage and was instigated by two large European Commission funded research projects: OPERAs (www.operas-project.eu) and OpenNESS (www.openness-project.eu), with a combined budget of ca. €24m. These projects aim to improve understanding of how ecosystem services contribute to human well-being in different social-ecological systems. Research will establish whether, how and under what conditions the ecosystem services concept can move beyond the academic domain towards practical implementation in support of sustainable ecosystem management. New insights, and improved or novel tools and instruments, will be tested in practice in case studies that cover a range of socio-ecological systems across locales, sectors, scales and time. This presentation will discuss the development of OPPLA and the communities of practice that are emerging around it.

  14. Development of a WebGIS-based monitoring and environmental protection and preservation system for the Black Sea: The ECO-Satellite project

    NASA Astrophysics Data System (ADS)

    Tziavos, Ilias N.

    2013-04-01

    The ECO-Satellite project has been approved in the frame of the Joint Operational Program "Black Sea Basin 2007-2013" and it is co-financed by the European Union through the European Neighborhood and Partnership Instrument and the Instrument for Pre-Accession Assistance and National Funds. The overall objective of the project is to contribute to the protection and preservation of the water system of the Black Sea, with its main emphasis given to river deltas and protected coastal regions at the seaside. More specifically, it focuses on the creation of an environmental monitoring system targeting the marine, coastal and wetland ecosystems of the Black Sea, thus strengthening the development of common research among the involved partners and increasing the intraregional knowledge for the corresponding coastal zones. This integrated multi-level system is based on the technological assets provided by satellite Earth observation data and Geo-Informatics innovative tools and facilities, as well as on the development of a unified, easy to update geodatabase including a wide range of appropriately selected environmental parameters. Furthermore, a Web-GIS system is under development aiming in principle to support environmental decision and policy making by monitoring the state of marine, coastal and wetland ecosystems of the Black Sea and managing all the aforementioned data sources and derived research results. The system is designed in a way that is easily expandable and adaptable for environmental management in local, regional national and trans-national level and as such it will increase the capacity of decision makers who are related to Black Sea environmental policy. Therefore, it is expected that administrative authorities, scientifically related institutes and environmental protection bodies in all eligible areas will show interest in the results and applications of the information system, since the ECO-Satellite project could serve as a support tool for the environmental monitoring, protection and preservation of the Black Sea system. In this presentation the design and development of the system architecture along with the innovative technologies for environmental monitoring implemented in the Web-GIS system of the ECO-Satellite project are presented and analyzed. Additionally, the collection and processing of current and historical data and the design and structure of the developed geodatabase are described. Finally, the testing of system components and geodatabase levels in different demonstration sites are also discussed in the frame of a variety of environmentally oriented project applications.

  15. Managed Behavioral Health Care: An Instrument to Characterize Critical Elements of Public Sector Programs

    PubMed Central

    Ridgely, M Susan; Giard, Julienne; Shern, David; Mulkern, Virginia; Burnam, M Audrey

    2002-01-01

    Objective To develop an instrument to characterize public sector managed behavioral health care arrangements to capture key differences between managed and “unmanaged” care and among managed care arrangements. Study Design The instrument was developed by a multi-institutional group of collaborators with participation of an expert panel. Included are six domains predicted to have an impact on access, service utilization, costs, and quality. The domains are: characteristics of the managed care plan, enrolled population, benefit design, payment and risk arrangements, composition of provider networks, and accountability. Data are collected at three levels: managed care organization, subcontractor, and network of service providers. Data Collection Methods Data are collected through contract abstraction and key informant interviews. A multilevel coding scheme is used to organize the data into a matrix along key domains, which is then reviewed and verified by the key informants. Principal Findings This instrument can usefully differentiate between and among Medicaid fee-for-service programs and Medicaid managed care plans along key domains of interest. Beyond documenting basic features of the plans and providing contextual information, these data will support the refinement and testing of hypotheses about the impact of public sector managed care on access, quality, costs, and outcomes of care. Conclusions If managed behavioral health care research is to advance beyond simple case study comparisons, a well-conceptualized set of instruments is necessary. PMID:12236386

  16. NASA Astrophysics Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Strategic Technology Development Program

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Seery, Bernard D.

    2015-01-01

    The COR and PCOS Program Offices (PO) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions.The PO is guided by the National Research Council's 'New Worlds, New Horizons in Astronomy and Astrophysics' Decadal Survey report, and NASA's Astrophysics Implementation Plan. Strategic goals include dark energy; gravitational waves; X-ray observatories, e.g., US participation in ATHENA; Inflation probe; and a large UV/Visible telescope.To date, 51 COR and 65 PCOS SAT proposals have been received, of which 11 COR and 18 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2 that allowed measurement of B-mode polarization in the CMB signal, a possible signature of Inflation; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects. These include five newly selected projects, kicking off in FY 2015.For more information, visit the COR Program website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  17. Students' Target

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03648 Ascraeus Mons

    After examining numerous THEMIS images and using the JMars targeting software, eighth grade students from Charleston Middle School in Charleston, IL, selected the location of -8.37N and 276.66E for capture by the THEMIS visible camera during Mars Odyssey's sixth orbit of Mars on Nov. 22, 2005. The students are investigating relationships between channels, craters, and basins on Mars. The Charleston Middle School students participated in the Mars Student Imaging Project (MSIP) and submitted a proposal to use the THEMIS visible camera.

    Image information: VIS instrument. Latitude 8.8S, Longitude 279.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. LIMS for Lasers 2015 for achieving long-term accuracy and precision of δ2H, δ17O, and δ18O of waters using laser absorption spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I

    2015-01-01

    RationaleAlthough laser absorption spectrometry (LAS) instrumentation is easy to use, its incorporation into laboratory operations is not easy, owing to extensive offline manipulation of comma-separated-values files for outlier detection, between-sample memory correction, nonlinearity (δ-variation with water amount) correction, drift correction, normalization to VSMOW-SLAP scales, and difficulty in performing long-term QA/QC audits.MethodsA Microsoft Access relational-database application, LIMS (Laboratory Information Management System) for Lasers 2015, was developed. It automates LAS data corrections and manages clients, projects, samples, instrument-sample lists, and triple-isotope (δ17O, δ18O, and δ2H values) instrumental data for liquid-water samples. It enables users to (1) graphically evaluate sample injections for variable water yields and high isotope-delta variance; (2) correct for between-sample carryover, instrumental drift, and δ nonlinearity; and (3) normalize final results to VSMOW-SLAP scales.ResultsCost-free LIMS for Lasers 2015 enables users to obtain improved δ17O, δ18O, and δ2H values with liquid-water LAS instruments, even those with under-performing syringes. For example, LAS δ2HVSMOW measurements of USGS50 Lake Kyoga (Uganda) water using an under-performing syringe having ±10 % variation in water concentration gave +31.7 ± 1.6 ‰ (2-σ standard deviation), compared with the reference value of +32.8 ± 0.4 ‰, after correction for variation in δ value with water concentration, between-sample memory, and normalization to the VSMOW-SLAP scale.ConclusionsLIMS for Lasers 2015 enables users to create systematic, well-founded instrument templates, import δ2H, δ17O, and δ18O results, evaluate performance with automatic graphical plots, correct for δ nonlinearity due to variable water concentration, correct for between-sample memory, adjust for drift, perform VSMOW-SLAP normalization, and perform long-term QA/QC audits easily. Published in 2015. This article is a U.S. Government work and is in the public domain in the USA.

  19. The Project Manager Who Saved His Country

    NASA Technical Reports Server (NTRS)

    Baniszewski, John

    2008-01-01

    George Meade defeated Robert E. Lee, one of the greatest military leaders of all time. How did he do it? By using the skills he had learned as a project manager and outperforming Lee in all aspects of project management. Most project managers are familiar with the Project Management Institute's "Guide to the Project Management Body of Knowledge" (PMBOK), which identifies the skills and knowledge crucial to successful project management. Project managers need to make sure that all the elements of a project work together. They must develop and execute plans and coordinate changes to those plans. A project manager must define the scope of the work, break it into manageable pieces, verify and control what work is being done, and make sure that the work being done is essential to the project. Every project manager knows the challenges of schedule and the value of schedule slack. Project managers must get the resources they need and use them effectively. Project managers get the people they need and use their talents to achieve mission success. Projects generate huge amounts of information. A key to project success is getting sufficient and accurate information to the people who need it when they need it. Project managers must identify and quantify the risks that jeopardize project success and make plans for dealing with them. Studying Meade and Lee's performances at Gettysburg can help modern project managers appreciate, develop, and use the skills they need to be good project managers. The circumstances may be different, but the basic principles are the same. This dramatic event in American history shows how the skills of project management can be used in almost any situation. Former project manager George Meade used those skills to change the tide of the Civil War.

  20. 78 FR 41290 - Establishment of Class E Airspace; Elbow Lake, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ...) Standard Instrument Approach Procedures at Elbow Lake Municipal--Pride of the Prairie Airport. The FAA is taking this action to enhance the safety and management of Instrument Flight Rule (IFR) operations at the... instrument approach procedures at the airport. This action enhances the safety and management of IFR...

  1. A Database Management Assessment Instrument

    ERIC Educational Resources Information Center

    Landry, Jeffrey P.; Pardue, J. Harold; Daigle, Roy; Longenecker, Herbert E., Jr.

    2013-01-01

    This paper describes an instrument designed for assessing learning outcomes in data management. In addition to assessment of student learning and ABET outcomes, we have also found the instrument to be effective for determining database placement of incoming information systems (IS) graduate students. Each of these three uses is discussed in this…

  2. MED-SUV final strategic issues

    NASA Astrophysics Data System (ADS)

    Spampinato, Letizia; Puglisi, Giuseppe; Sangianantoni, Agata

    2016-04-01

    Aside the scientific, technical and financial aspects managed by the "Project Management" Work Package (WP1), the great challenge and more time consuming task of this WP has surely been the definition and application of some strategic guidelines crucial to trace the project right path to its final success and for the project outcome sustainability after month 36. In particular, given that one of the main objectives of MED-SUV is that to be compliant with the GEO initiative, particularly concerning the data sharing, great efforts have been made by WP1 at first to define the MED-SUV Data Policy Guidelines, and currently to make it suitable for the EU Supersites. At present, WP1 is also dealing with the exploitation of the achieved foreground among the project's participant and to define a Memorandum of Understanding to sustain the monitoring systems and e-infrastructure developed in the project framework. Whilst the Data Policy guidelines document was implemented in the first year of MED-SUV, WP1 is now focused on the last deliverable 'Strategic and Legal deliverables', which includes the remaining issues. To the aim, WP1 has strategically separated the Exploitation of Foreground document preparation from the Memorandum of Understanding definition. The Exploitation of Foreground process has regarded the identification of Foreground, the exploitable results, the purpose of such Foreground, the collection of information from either the scientific community of MED-SUV or industrial participants; to this aim WP1 circulated an ad hoc questionnaire to put together information on (the) every kind of MED-SUV outcome, on their owners, on the kind of ownership (single/joint), on the outcome exploitation, and on proposals for its sustainability. While the first information will allow us to prepare the final Exploitation Agreement among the project's participant, the information on the exploitation of the outcome and likely sustainability proposals will contribute to the definition of the project Memorandum of Understanding for the maintenance of the developed instrumentation and of the MED-SUV e-infrastructure following the project end.

  3. CITYZER - Services for effective decision making and environmental resilience

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Turtiainen, Heikki; Turpeinen, Jani; Viitala, Erkki; Janka, Kauko; Palonen, Henry; Rönkkö, Topi; Laiho, Tiina; Laitinen, Teija; Haukka, Harri; Schmidt, Walter; Nousiainen, Timo

    2016-04-01

    The CITYZER project develops new digital services and products to support decision making processes related to weather and air quality in cities. This includes, e.g., early warnings and forecasts (0-24 h), which allow for avoiding weather-related accidents, mitigate human distress and costs from weather-related damage and bad air quality, and generally improve the resilience and safety of the society. The project takes advantage of the latest scientific know-how and directly exploits the expertise obtained from, e.g., Tekes-funded (MMEA [1], RAVAKE) and EU-funded (HAREN, EDHIT [2]) projects. Central to the project is the Observation Network Manager NM10 [3] developed by Vaisala Oyj within the Tekes/MMEA project, on which CITYZER defines and builds new commercial services and connects new sensor networks (e.g., air quality). The target groups of the services and products (e.g., public sector, real estate and energy companies, and distributors) and related business models will be analyzed and developed in collaboration with local player (e.g., Asia, South America) taking advantage of the pre-existing contacts by the Haaga-Helia, Vaisala Oyj and CLIC Innovation. Service models are designed to account for and adapt to the special needs of different areas and customers. The developed services will be scalable (most common platforms) and responsive. CITYZER project partners include Vaisala Oyj (observation instrumentation, systems and products), Sasken Ltd (mobile products), Emtele Ltd (Portable IoT ICT Service Operation Center/Environment and remote intelligent cabinet for sensor network-GW and connections), HSY (urban services), Haaga-Helia University of Applied Sciences (service business models including digital services), Finnish Meteorological Institute (implementation of and scientific research on meteorological & air quality products), and the Tampere University of Technology (definition of and scientific research on air quality products), Pegasor Ltd (support for air quality instrumentation and products), INNO-W Ltd (providing business services support), as well as the CLIC Innovation Ltd as a subcontractor for arranging cooperation with international partners and project information dissemination, as well as composing the consortium agreement and other legal issues. Additional project partners are welcomed to join the project and current consortium encourage all potential partners to contact project management for further details. The business impact of this project to existing markets is estimated to be substantial and it will also create totally new markets especially for weather information related services. The existing whole target market size at this point is estimated to be several billion USD and the size of the market is growing steadily. The key CITYZER outcomes are the piloted services and products with envisaged great commercial and export potential. Development of the services will be managed by Sasken, Emtele, Pegasor and Vaisala and supported by INNO-W. The user profiling and market assessment, including the most potential market area either from Asia or South America, will be led by Haaga-Helia and supported by industrial partners. FMI, Vaisala and Pegasor will use their expertise and current business relations to those foreign markets to speed up and guide the user and market evaluation. Essential potential players are local actors in e.g. Brazil, China and India that will be subcontracted to bring in local expertise in the user profiling and market assessment processes. This three year project is scheduled such that, overall, the first two years focus on implementing the technical basis as well as customer and market analyses. Throughout the course of the project a CityzerDemo test bed environment will be developed in the Helsinki metropolitan area, demonstrating the observational and modeling system and services built on them. In addition, the services and business models will be evaluated. Acknowledgements The project has received funding from TEKES, the Finnish Funding Agency for Innovation. References [1] http://mmea.fi/ [2] http://edhit.eu/ [3] http://www.vaisala.com/en/products/metdatamanagementsystems/Pages/NM10.aspx

  4. Guidelines for Project Management

    NASA Technical Reports Server (NTRS)

    Ben-Arieh, David

    2001-01-01

    Project management is an important part of the professional activities at Kennedy Space Center (KSC). Project management is the means by which many of the operations at KSC take shape. Moreover, projects at KSC are implemented in a variety of ways in different organizations. The official guidelines for project management are provided by NASA headquarters and are quite general. The project reported herein deals with developing practical and detailed project management guidelines in support of the project managers. This report summarizes the current project management effort in the Process Management Division and presents a new modeling approach of project management developed by the author. The report also presents the Project Management Guidelines developed during the summer.

  5. EMSODEV and EPOS-IP: key findings for effective management of EU research infrastructure projects

    NASA Astrophysics Data System (ADS)

    Materia, Paola; Bozzoli, Sabrina; Beranzoli, Laura; Cocco, Massimo; Favali, Paolo; Freda, Carmela; Sangianantoni, Agata

    2017-04-01

    EMSO (European Multidisciplinary Seafloor and water-column Observatory, http://www.emso-eu.org) and EPOS (European Plate Observing System, https://www.epos-ip.org) are pan-European Research Infrastructures (RIs) in the ESFRI 2016 Roadmap. EMSO has recently become an ERIC (European Research Infrastructure Consortium), whilst EPOS application is in progress. Both ERICs will be hosted in Italy and the "Representing Entity" is INGV. EMSO consists of oceanic environment observation systems spanning from the Arctic through the Atlantic and Mediterranean, to the Black Sea for long-term, high-resolution, real-time monitoring of natural and man-induced processes such as hazards, climate, and marine ecosystems changes to study their evolution and interconnections. EPOS aims at creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. EPOS will enable innovative multidisciplinary research for a better understanding of Earth's physical and chemical processes controlling earthquakes, volcanic eruptions, ground instability, tsunami, and all those processes driving tectonics and Earth's surface dynamics. Following the conclusion of their Preparatory Phases the two RIs are now in their Implementation Phase still supported by the EC through the EMSODEV and EPOS-IP projects, both run by dedicated Project Management Offices at INGV with sound experience in EU projects. EMSODEV (H2020 project, 2015-2018) involves 11 partners and 9 associate partners and aims at improving the harmonization among the EMSO ERIC observation systems through the realization of EMSO Generic Instrument Modules (EGIMs), and a Data Management Platform (DMP) to implement interoperability and standardization. The DMP will provide access to data from all EMSO nodes, providing a unified, homogeneous, infrastructure-scale and user-oriented platform integrated with the increased measurement capabilities and functions provided by the EGIMs. EPOS IP (H2020 project, 2015-2019) is a project of 47 partners, 6 associate partners and several international organizations for a total of 25 countries involved. EPOS IP is a key step in EPOS' mission of a pan-European Earth science integrated platform. It will deliver not only a suite of domain-specific and multidisciplinary data and services in one platform, but also the legal, governance and financial frameworks to ensure the infrastructure future operation and sustainability (EPOS ERIC). INGV experience over the years indicates that effective management of EU RIs projects should contain 5 basic elements: 1.Defined life cycle and milestones: Map of phases, deliverables, key milestones and sufficiency criteria for each group involved in the project using project management tools and software. 2.Shared organization, systems, roles: Defined roles for team members and responsibilities for functional managers are crucial. Similarly, a system of communication and team involvement is essential to success. Leadership and interpersonal/organizational skills are also important. 3.Quality assurance: Quality dimension should be aligned to the project objectives and specific criteria should be identified for each phase of the project. 4.Tracking and variance analysis: Regular reports and periodic meetings of the teams are crucial to identify when things are off target. Schedule slips, cost overruns, open issues, new risks and problems must be dealt with as early as possible. 5.Impact assessment by monitoring the achievement of results and socio-economic impact.

  6. The Canadian Rheumatology Association/ Spondyloarthritis Research Consortium of Canada treatment recommendations for the management of spondyloarthritis: a national multidisciplinary stakeholder project.

    PubMed

    Maksymowych, Walter P; Gladman, Dafna; Rahman, Proton; Boonen, Annelies; Bykerk, Vivien; Choquette, Denis; Dimond, Sherry; Fortin, Paul; Karsh, Jacob; Klinkhoff, Alice V; Mosher, Dianne; Mulholland, Ken; Olszynski, Wojciech P; Russell, Anthony S; Savage, Laurie; Shanner, Laura; Shojania, Kam; Starr, Michael; Thomson, Glen; Zummer, Michel; Inman, Robert

    2007-11-01

    Development of treatment recommendations for arthritis has traditionally relied on the compilation of evidence-based data by experts in the field despite recommendations by various bodies for broad stakeholder input. Our objectives were: (1) To develop evidence-based treatment recommendations for the management of spondyloarthritis (SpA) in Canada that also incorporate the perspective of multiple stakeholders. (2) To generate a procedural template for the multidisciplinary development of treatment recommendations. The process was directed by a steering committee comprising the SPARCC Executive, rheumatologists from academic and community-based practice, patient consumers, and a representative from the John Dossetor Health Ethics Centre. Guidelines established by EULAR and stipulated in the AGREE instrument were followed. First, a working document was drafted that included a referenced summary of the evidence-based data and the 12 national arthritis care standards developed by the Alliance for the Canadian Arthritis Program. Second, a Web-based survey was conducted among patient consumers to address the relevance to patients of 2 primary outcome instruments that assess the effectiveness of treatment. Third, a list of questions was generated for drafting propositions by the ethics consultant. A Delphi consensus exercise was then conducted. Consensus was generated on a final list of 38 treatment recommendations categorized under the subject headings of general management principles, ethical considerations, target groups, definition of target disease, disease monitoring, and specific management recommendations. Using broad stakeholder input, we provide treatment recommendations to guide clinical practice and access to care for patients with SpA in Canada.

  7. The Unmanned Research Airplane Facility at the Cyprus Institute: Advanced Atmospheric Observations

    NASA Astrophysics Data System (ADS)

    Lange, Manfred A.; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos

    2014-05-01

    Unmanned Aerial Systems (UASs) have been established as versatile tools for different applications, providing data and observations for atmospheric and Earth-Systems research. They provide an urgently needed link between in-situ ground based measurements and satellite remote sensing observations and are distinguished by significant versatility, flexibility and moderate operational costs. Building on an earlier project (Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project; APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute (APAESO is co-financed by the European Development Fund and the Republic of Cyprus through the Cyprus Research Promotion Foundation), we have built up an Unmanned Research Aircraft Facility at The Cyprus Institute (CyI-URAF). The basic components of this facility comprise four CRUISERS airplanes (ET-Air, Slovakia) as UAS platforms, a substantial range of scientific instruments to be flown on these platforms, a mobile Ground Control Station and a well-equipped workshop and calibration laboratory. The APAESO platforms are suitable to carrying out atmospheric and earth-surface observations in the (Eastern) Mediterranean (and elsewhere). They enable 3D measurements for determining physical, chemical and radiative atmospheric properties, aerosol and dust concentrations and atmospheric dynamics as well as 2D investigations into land management practices, vegetation and agricultural mapping, contaminant detection and the monitoring and assessment of hydrological parameters and processes of a given region at high spatial resolution. We will report on some of the essential modifications of the platforms and some of the instrumentation that were instrumental in preparing the research airplanes for a variety of collaborative research projects with. The first scientific mission involved the employment of a DOAS-system (Differential Optical Absorption Spectroscopy) in cooperation with colleagues from Heidelberg and Mainz, Germany and test flights that have been successfully completed. We also engaged in a new research project aimed at measuring vertical profiles of aerosols in the Eastern Mediterranean. This is being achieved in field campaigns employing an innovative aerosol sampler in close collaboration with colleagues from the University of Frankfurt, Germany as well as with colleagues from the Universities of Tel Aviv and the Weizmann Institute (Israel). More recently, we have started to prepare our platforms to carry out research missions in the context of the newly funded EU-BACCHUS project.

  8. Enough Is Enough

    NASA Technical Reports Server (NTRS)

    Barrowman, James

    2003-01-01

    The spacecraft was nearly integrated and had passed some of its early mechanical and electrical testing. One of its instruments, the Proportional Counter Array (PCA), had a gas leak in one of the five proportional counter modules that made up the array. The science division where the instrument was being developed wanted a gas replenishment system added to assure the PCA would last for the entire mission. Adding a gas replenishment system would mean interrupting spacecraft integration and testing; developing a new subsystem and integrating it onto the spacecraft; modifying all the PCA modules; including a complex integration of the instrument onto the spacecraft; and implementing a more complex performance and environmental test process. It was the wrong answer because it made a simple design more complex and added little value to the mission at a major cost in time and dollars. Our mission couldn't afford the additional budget and schedule risks. XTE was the latest of a long line of projects being managed by my Explorer Program Office, but it was unique in being the first project we had agreed to do for a fixed price. NASA HQ agreed, in return, to provide us with the funding profile we needed to make it happen. We were both trying to break the unhealthy spiral in the Explorer program that saw current missions overrunning and pushing subsequent missions downstream to the point where their science was becoming marginal. The science community was upset and wanted better performance from NASA. I summarized my arguments to the director. The Engineering Directorate had taken responsibility for the spacecraft development when we established XTE as an in-house project at Goddard Space Flight Center, and also was supporting the PCA development. "It adds complexity," I reiterated. "It's a significant cost impact for only a marginal reliability increase". His response was music to my ears, "Jim, I won't stand in your way, but you'll have to convince the scientists and engineers."

  9. A new instrument for measuring atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Jacobs, Danny C.; Edwards, Brett; Stelly, Zak; Gorgievska, Ivana; Westpfahl, David J.; Klinglesmith, Daniel A., III; Creech-Eakman, Michelle J.

    2004-10-01

    The Magdalena Ridge Observatory is a congressionally funded project to deliver a state-of-the-art observatory on the Magdalena Ridge in New Mexico to provide astronomical research, educational and outreach programs to the state. In this paper we report results from one of our undergraduate projects being run at New Mexico Tech. This project focuses on the design and characterization of a novel instrument for sensing the atmospheric flow instabilities related to seeing at the observatory site. The instrument attempts to find the power of turbulence on millisecond time scales by measuring a voltage difference between two active microphones. The principles behind the instrument are explored here and a description of the limitations of the current experimental implementation is given. Initial results from the experiment are presented and compared with simultaneous measurements from a co-located Differential Image Motion Monitor. The instrument is shown to be a valuable and robust tool for monitoring the atmospheric conditions during site testing campaigns, but further data will be needed to confirm the precise nature of the correlation between measurements made with this system and more conventional seeing metrics.

  10. Phased Array Feeds

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Bradley, Richard F.; Brisken, Walter F.; Cotton, William D.; Emerson, Darrel T.; Kerr, Anthony R.; Lacasse, Richard J.; Morgan, Matthew A.; Napier, Peter J.; Norrod, Roger D.; Payne, John M.; Pospieszalski, Marian W.; Symmes, Arthur; Thompson, A. Richard; Webber, John C.

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  11. ExplorinG frailty and mild cognitive impairmEnt in kidney tRansplantation to predict biomedicAl, psychosocial and health cost outcomeS (GERAS): protocol of a nationwide prospective cohort study.

    PubMed

    Mauthner, Oliver; Claes, Veerle; Walston, Jeremy; Engberg, Sandra; Binet, Isabelle; Dickenmann, Michael; Golshayan, Déla; Hadaya, Karine; Huynh-Do, Uyen; Calciolari, Stefano; De Geest, Sabina

    2017-03-01

    To present the rationale, design and methodology of the GERAS project, which examines whether assessment of frailty and mild cognitive impairment could enhance risk prediction for biomedical, psychosocial outcomes and foster efficient resource allocation in kidney transplantation. For the burgeoning cohort of older patients considered for kidney transplantation, evidence gaps regarding frailty and mild cognitive impairment limit clinical decision-making and medical management. As known risk factors for 'hard' clinical outcomes in chronic illness, both require further study in transplantation. Integrating these and other bio-psychosocial factors into a comprehensive pre-transplant patient assessment will provide insights regarding economic implications and may improve risk prediction. A nation-wide multi-centre prospective cohort study nested in the Swiss Transplant Cohort Study. Our nationally representative convenience sample includes 250 adult kidney transplant recipients. Data sources include the Swiss Transplant Cohort Study and primary data collected at time of transplantation, 6 months, 1 and 2 years post-transplant via established measures (the Montreal Cognitive Assessment, Psychosocial Questionnaire, Fried Frailty Instrument and a blood analysis), investigator-developed instruments and datasets compiled by hospitals' management control units, sickness funds, the Swiss Federal Statistical Office and the European Renal Association. Descriptive, competing risk survival and mixed effects analyses will be performed. Research Ethics Committee approval was obtained in January 2016. This pioneering project jointly examines frailty and mild cognitive impairment from bio-psychosocial and health economic perspectives. Results may significantly inform risk prediction, care tailoring and resource optimization to improve health outcomes in the ageing kidney transplant cohort. © 2016 John Wiley & Sons Ltd.

  12. Oceans 2.0 API: Programmatic access to Ocean Networks Canada's sensor data.

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Ross, R.; Hoeberechts, M.; Pirenne, B.; MacArthur, M.; Jeffries, M. A.; Morley, M. G.

    2017-12-01

    Ocean Networks Canada (ONC) is a not-for-profit society that operates and manages innovative cabled observatories on behalf of the University of Victoria. These observatories supply continuous power and Internet connectivity to various scientific instruments located in coastal, deep-ocean and Arctic environments. The data from the instruments are relayed to the University of Victoria where they are archived, quality-controlled and made freely available to researchers, educators, and the public. The Oceans 2.0 data management system currently contains over 500 terabytes of data collected over 11 years from thousands of sensors. In order to facilitate access to the data, particularly for large datasets and long-time series of high-resolution data, a project was started in 2016 create a comprehensive Application Programming Interface, the "Oceans 2.0 API," to provide programmatic access to all ONC data products. The development is part of a project entitled "A Research Platform for User-Defined Oceanographic Data Products," funded through CANARIE, a Canadian organization responsible for the design and delivery of digital infrastructure for research, education and innovation [1]. Providing quick and easy access to ONC Data Products from within custom software solutions, allows researchers, modelers and decision makers to focus on what is important: solving their problems, answering their questions and making informed decisions. In this paper, we discuss how to access ONC's vast archive of data programmatically, through the Oceans 2.0 API. In particular we discuss the following: Access to ONC Data Products Access to ONC sensor data in near real-time Programming language support Use Cases References [1] CANARIE. Internet: https://www.canarie.ca/; accessed March 6, 2017.

  13. The Data Processor of the JEM-EUSO pathfinders

    NASA Astrophysics Data System (ADS)

    Scotti, V.; Osteria, G.

    2014-06-01

    JEM-EUSO is a wide-angle refractive UV telescope being proposed for attachment to the Japanese Experiment Module on ISS. The main goal of the mission is to study Extreme Energy Cosmic Rays. Two pathfinder mission are now in progress: EUSO-TA and EUSO-Balloon. The EUSO-TA project foresees the installation of a telescope prototype in the Telescope Array site. The aim of this project is to calibrate the telescope with the TA fluorescence detector. An initial run of one year starting from 2013 is foreseen. EUSO-Balloon is a pathfinder mission in which a prototype telescope will be mounted on a stratospheric balloon. The main aim of this mission is to perform a end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the global detection chain. EUSO-Balloon will measure the UV background fundamental for the development of the simulations. EUSO-Balloon has the potential to detect Extensive Air Showers from above, paving the way for any future space-based EECR observatory. We will present the Data Processor of the pathfinders. The DP is the component of the Electronics System which performs data management and instrument control. The DP controls front-end electronics, performs 2nd level trigger filtering, tags events with arrival time and payload position through a GPS system, manages mass memory for data storage, measures live and dead time of the telescope, provides signals for time synchronization of the event, performs housekeeping monitor and handles interface to the telemetry system. We will describe the main components of the DP, the state-of-the-art and the results of the tests carried out.

  14. Applicability of market-based instruments for safeguarding water quality in coastal waterways: Case study for Darwin Harbour, Australia

    NASA Astrophysics Data System (ADS)

    Greiner, Romy

    2014-02-01

    Water pollution of coastal waterways is a complex problem due to the cocktail of pollutants and multiplicity of polluters involved and pollution characteristics. Pollution control therefore requires a combination of policy instruments. This paper examines the applicability of market-based instruments to achieve effective and efficient water quality management in Darwin Harbour, Northern Territory, Australia. Potential applicability of instruments is examined in the context of biophysical and economic pollution characteristics, and experience with instruments elsewhere. The paper concludes that there is potential for inclusion of market-based instruments as part of an instrument mix to safeguard water quality in Darwin Harbour. It recommends, in particular, expanding the existing licencing system to include quantitative pollution limits for all significant point polluters; comprehensive and independent pollution monitoring across Darwin Harbour; public disclosure of water quality and emissions data; positive incentives for landholders in the Darwin Harbour catchment to improve land management practices; a stormwater offset program for greenfield urban developments; adoption of performance bonds for developments and operations which pose a substantial risk to water quality, including port expansion and dredging; and detailed consideration of a bubble licensing scheme for nutrient pollution. The paper offers an analytical framework for policy makers and resource managers tasked with water quality management in coastal waterways elsewhere in Australia and globally, and helps to scan for MBIs suitable in any given environmental management situation.

  15. Integrating Chemistry Laboratory Instrumentation into the Industrial Internet: Building, Programming, and Experimenting with an Automatic Titrator

    ERIC Educational Resources Information Center

    Famularo, Nicole; Kholod, Yana; Kosenkov, Dmytro

    2016-01-01

    This project is designed to improve physical chemistry and instrumental analysis laboratory courses for undergraduate students by employing as teaching tools novel technologies in electronics and data integration using the industrial Internet. The project carried out by upper-division undergraduates is described. Students are exposed to a complete…

  16. Management of the camera electronics programme for the World Space Observatory ultraviolet WUVS instrument

    NASA Astrophysics Data System (ADS)

    Patel, Gayatri; Clapp, Matthew; Salter, Mike; Waltham, Nick; Beardsley, Sarah

    2016-08-01

    World Space Observatory Ultraviolet (WSO-UV) is a major international collaboration led by Russia and will study the universe at ultraviolet wavelengths between 115 nm and 320 nm. The WSO Ultraviolet Spectrograph (WUVS) subsystem is led by a consortium of Russian institutes and consists of three spectrographs. RAL Space is contracted by e2v technologies Ltd to provide the CCD readout electronics for each of the three WUVS channels. The programme involves the design, manufacturing, assembly and testing of each Camera Electronics Box (CEB), its associated Interconnection Module (ICM), Electrical Ground Support Equipment (EGSE) and harness. An overview of the programme will be presented, from the initial design phase culminating in the development of an Engineering Model (EM) through qualification whereby an Engineering Qualification Model (EQM) will undergo environmental testing to characterize the performance of the CEB against the space environment, to the delivery of the Flight Models (FMs). The paper will discuss the challenges faced managing a large, dynamic project. This includes managing significant changes in fundamental requirements mid-programme as a result of external political issues which forced a complete re-design of an existing CEB with extensive space heritage but containing many ITAR controlled electronic components to a new, more efficient solution, free of ITAR controlled parts. The methodology and processes used to ensure the demanding schedule is maintained through each stage of the project will be presented including an insight into planning, decision-making, communication, risk management, and resource management; all essential to the continued success of the programme.

  17. KSC-2009-3074

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – In the Firing Room at NASA's Kennedy Space Center in Florida, Steven Hoyle, left, and Russ Brucker, center, receive a VIP award for their efforts associated with the STS-125 mission and NASA's Hubble Space Telescope. Hoyle is the payload test operations manager with NASA's Goddard Space Flight Center; Brucker is the Atlantis payload project manager with United Space Alliance. A crew of seven launched today on space shuttle Atlantis to service Hubble. Liftoff was on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Kim Shiflett

  18. KSC-06pd0755

    NASA Image and Video Library

    2006-04-28

    VANDENBERG AIR FORCE BASE, CALIF. - CloudSat and CALIPSO ¯ Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations ¯ thunders skyward after launch at approximately 6:02 a.m. EDT atop a Boeing Delta II rocket. The two satellites will eventually circle approximately 438 miles above Earth in a sun-synchronous polar orbit, which means they will always cross the equator at the same local time. Their technologies will enable scientists to study how clouds and aerosols form, evolve and interact. CloudSat is managed by NASA's Jet Propulsion Laboratory, in Pasadena, Calif. JPL developed the radar instrument with hardware contributions from the Canadian Space Agency. CALIPSO is collaboration between NASA and France's Centre National d'Etudes Spatiales (CNES). Langley Research Center, in Hampton, Va., is leading the CALIPSO mission and providing overall project management, systems engineering, and payload mission operations. Photo credit: Boeing/Thom Baur

  19. Space-assisted irrigation management: an operational perspective

    NASA Astrophysics Data System (ADS)

    Calera Belmonte, Alfonso; Jochum, Anne M.; Cuesta Garcia, Andres

    2004-10-01

    Irrigation Advisory Services (IAS) are the natural management instruments to achieve a better efficiency in the use of water for irrigation. IAS help farmers to apply water according to the actual crop water requirements and thus, to optimize production and cost-effectiveness. The project DEMETER (DEMonstration of Earth observation TEchnologies in Routine irrigation advisory services) aims at assessing and demonstrating how the performance and cost-effectiveness of IAS is substantially improved by the incorporation of Earth observation (EO) techniques and Information Society Technology (IT) into their day-to-day operations. EO allows for efficiently monitoring crop water requirements of each field in extended areas. The incorporation of IT in the generation and distribution of information makes that information easily available to IAS and to its associated farmers (the end-users) in a personalized way. This paper describes the methodology and selected results.

  20. Development of a Pattern Recognition Methodology for Determining Operationally Optimal Heat Balance Instrumentation Calibration Schedules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Beran; John Christenson; Dragos Nica

    2002-12-15

    The goal of the project is to enable plant operators to detect with high sensitivity and reliability the onset of decalibration drifts in all of the instrumentation used as input to the reactor heat balance calculations. To achieve this objective, the collaborators developed and implemented at DBNPS an extension of the Multivariate State Estimation Technique (MSET) pattern recognition methodology pioneered by ANAL. The extension was implemented during the second phase of the project and fully achieved the project goal.

  1. Concept of Science Data Management for the Korea Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon

    2016-10-01

    South Korea has a plan to explore the Moon in 2018 or 2019. For the plan, the Korea Aerospace Research Institute which is a government funded research institute kicked off the Korea Lunar Exploration Development Program in January, 2016 in support of Ministry of Science, ICT and Future Planning, South Korea.As the 1st stage mission of the program, named as the Korea Pathfinder Lunar Orbiter(KPLO), will perform acquisition of high resolution images and science data for investigation of lunar environment as well as the core technology demonstration and validation for space explorations. The scientific instruments consists of three Korean domestic developed science instruments except an imaging instrument and several foreign provided instruments. We are developing a science data management plan to encourage scientific activities using science data acquired by the science instruments.I introduce the Korean domestic developed science instruments and present concept of the science data management plan for data delivery, processing, and distribution for the science instruments.

  2. Basic Wind Tech Course - Lesson Plans and Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swapp, Andy

    2011-07-01

    The funds from this project were used to purchase tools and instrumentation to help replicate actual on-the-job wind energy scenarios which provided the students with the practical or applied components of wind energy jobs. This project enhanced the educational experiences provided for the students in terms of engineering and science components of wind energy by using electronics, control systems, and electro-mechanical instrumentation to help students learn standardized wind-specific craftsman skills. In addition the tools and instrumentation helped the students learn the safety necessary to work in the wind industry.

  3. Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.

    2018-01-01

    The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.

  4. Measuring mechanisms for quality assurance in primary care systems in transition: test of a new instrument in Slovenia and Uzbekistan.

    PubMed

    Kringos, Dionne Sofia; Boerma, Wienke; Pellny, Martina

    2009-01-01

    This World Health Organization (WHO) study aimed to develop and field test an instrument to assess the availability of structures and mechanisms for managing quality in primary care in countries in transition. The instrument is based on a literature study, consensus meetings with experts, and observations in these countries. It consists of three parts: a semi-structured questionnaire on national policies and mechanisms; a structured questionnaire for general practitioners (GPs); and a structured questionnaire for use with managers of primary care facilities. The instrument has been field tested in 2007 in Slovenia and Uzbekistan. In Slovenia, leadership on quality improvement was weak and local managers reported few incentives and resources to control quality. There was a lack of external support for quality improvement activities. Availability and use of clinical guidelines for GPs were not optimal. GPs found teamwork and communication with patients inadequate. In Uzbekistan, primary care quality and standards in health centres were extensively regulated and laid down in numerous manuals, instructions and other documents. Managers, however, indicated the need for more financial and non-financial levers for quality improvement and they wanted to know more about modern healthcare management. GPs reported strong involvement in activities such as peer review and clinical audit, and reported frequent use of clinical guidelines. Overall, the information gathered with the provisional instrument has resulted in policy recommendations. At the same time, the pilot resulted in improvements to the instrument. Application of the instrument helps decision makers to identify improvement areas in the infrastructure for managing the quality of primary care.

  5. Next Generation Polar Seismic Instrumentation Challenges

    NASA Astrophysics Data System (ADS)

    Parker, T.; Beaudoin, B. C.; Gridley, J.; Anderson, K. R.

    2011-12-01

    Polar region logistics are the limiting factor for deploying deep field seismic arrays. The IRIS PASSCAL Instrument Center, in collaboration with UNAVCO, designed and deployed several systems that address some of the logistical constraints of polar deployments. However, continued logistics' pressures coupled with increasingly ambitious science projects require further reducing the logistics required for deploying both summer and over winter stations. Our focus is to reduce station power requirements and bulk, thereby minimizing the time and effort required to deploy these arrays. We will reduce the weight of the battery bank by incorporating the most applicable new high energy-density battery technology. Using these batteries will require a completely new power management system along with an appropriate smart enclosure. The other aspect will be to integrate the digitizing system with the sensor. Both of these technologies should reduce the install time and shipping volume plus weight while reducing some instrument costs. We will also continue work on an effective Iridium telemetry solution for automated data return. The costs and limitations of polar deep-field science easily justifies a specialized development effort but pays off doubly in that we will continue to leverage the advancements in reduced logistics and increased performance for the benefit of low-latitude seismic research.

  6. Operational radiological support for the US manned space program

    NASA Technical Reports Server (NTRS)

    Golightly, Michael J.; Hardy, Alva C.; Atwell, William; Weyland, Mark D.; Kern, John; Cash, Bernard L.

    1993-01-01

    Radiological support for the manned space program is provided by the Space Radiation Analysis Group at NASA/JSC. This support ensures crew safety through mission design analysis, real-time space environment monitoring, and crew exposure measurements. Preflight crew exposure calculations using mission design information are used to ensure that crew exposures will remain within established limits. During missions, space environment conditions are continuously monitored from within the Mission Control Center. In the event of a radiation environment enhancement, the impact to crew exposure is assessed and recommendations are provided to flight management. Radiation dosimeters are placed throughout the spacecraft and provided to each crewmember. During a radiation contingency, the crew could be requested to provide dosimeter readings. This information would be used for projecting crew dose enhancements. New instrumentation and computer technology are being developed to improve the support. Improved instruments include tissue equivalent proportional counter (TEPC)-based dosimeters and charged particle telescopes. Data from these instruments will be telemetered and will provide flight controllers with unprecedented information regarding the radiation environment in and around the spacecraft. New software is being acquired and developed to provide 'smart' space environmental data displays for use by flight controllers.

  7. Mathematics Screening: The Development and Pilot Study of a Mathematics Screening Instrument for K-2 Grades

    ERIC Educational Resources Information Center

    Anderson, Stephen A.

    2010-01-01

    This paper summarizes an action research project to develop a math screening instrument that would be effective (valid and reliable) and efficient (time for administration). An instrument was developed after review of the mathematics assessment and mathematics disabilities literature. The instrument was administered to kindergarten, first, and…

  8. Development of an Assessment for Entrustable Professional Activity (EPA) 10: Emergent Patient Management.

    PubMed

    Thompson, Laura R; Leung, Cynthia G; Green, Brad; Lipps, Jonathan; Schaffernocker, Troy; Ledford, Cynthia; Davis, John; Way, David P; Kman, Nicholas E

    2017-01-01

    Medical schools in the United States are encouraged to prepare and certify the entrustment of medical students to perform 13 core entrustable professional activities (EPAs) prior to graduation. Entrustment is defined as the informed belief that the learner is qualified to autonomously perform specific patient-care activities. Core EPA-10 is the entrustment of a graduate to care for the emergent patient. The purpose of this project was to design a realistic performance assessment method for evaluating fourth-year medical students on EPA-10. First, we wrote five emergent patient case-scenarios that a medical trainee would likely confront in an acute care setting. Furthermore, we developed high-fidelity simulations to realistically portray these patient case scenarios. Finally, we designed a performance assessment instrument to evaluate the medical student's performance on executing critical actions related to EPA-10 competencies. Critical actions included the following: triage skills, mustering the medical team, identifying causes of patient decompensation, and initiating care. Up to four students were involved with each case scenario; however, only the team leader was evaluated using the assessment instruments developed for each case. A total of 114 students participated in the EPA-10 assessment during their final year of medical school. Most students demonstrated competence in recognizing unstable vital signs (97%), engaging the team (93%), and making appropriate dispositions (92%). Almost 87% of the students were rated as having reached entrustment to manage the care of an emergent patient (99 of 114). Inter-rater reliability varied by case scenario, ranging from moderate to near-perfect agreement. Three of five case-scenario assessment instruments contained items that were internally consistent at measuring student performance. Additionally, the individual item scores for these case scenarios were highly correlated with the global entrustment decision. High-fidelity simulation showed good potential for effective assessment of medical student entrustment of caring for the emergent patient. Preliminary evidence from this pilot project suggests content validity of most cases and associated checklist items. The assessments also demonstrated moderately strong faculty inter-rater reliability.

  9. Multiple stressors threatening the future of the Baltic Sea-Kattegat marine ecosystem: implications for policy and management actions.

    PubMed

    Jutterström, S; Andersson, H C; Omstedt, A; Malmaeus, J M

    2014-09-15

    The paper discusses the combined effects of ocean acidification, eutrophication and climate change on the Baltic Sea and the implications for current management strategies. The scientific basis is built on results gathered in the BONUS+ projects Baltic-C and ECOSUPPORT. Model results indicate that the Baltic Sea is likely to be warmer, more hypoxic and more acidic in the future. At present management strategies are not taking into account temporal trends and potential ecosystem change due to warming and/or acidification, and therefore fulfilling the obligations specified within the Marine Strategy Framework Directive, OSPAR and HELCOM conventions and national environmental objectives may become significantly more difficult. The paper aims to provide a basis for a discussion on the effectiveness of current policy instruments and possible strategies for setting practical environmental objectives in a changing climate and with multiple stressors. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Flow monitoring along the western Tamiami Trail between County Road 92 and State Road 29 in support of the Comprehensive Everglades Restoration Plan, 2007-2010

    USGS Publications Warehouse

    Booth, Amanda C.; Soderqvist, Lars E.; Berry, Marcia C.

    2014-01-01

    The construction of U.S. Highway 41 (Tamiami Trail), the Southern Golden Gate Estates development, and the Barron River Canal has altered the flow of freshwater to the Ten Thousand Islands estuary of Southwest Florida. Two restoration projects, the Picayune Strand Restoration Project and the Tamiami Trail Culverts Project, both associated with the Comprehensive Everglades Restoration Plan, were initiated to address this issue. Quantifying the flow of freshwater to the estuary is essential to assessing the effectiveness of these projects. The U.S. Geological Survey conducted a study between March 2006 and September 2010 to quantify the freshwater flowing under theTamiami Trail between County Road 92 and State Road 29 in southwest Florida, excluding the Faka Union Canal (which is monitored by South Florida Water Management District). The study period was after the completion of the Tamiami Trail Culverts Project and prior to most of the construction related to the Picayune Restoration Project. The section of the Tamiami Trail that was studied contains too many structures (35 bridges and 16 culverts) to cost-effectively measure each structure on a continuous basis, so the area was divided into seven subbasins. One bridge within each of the subbasins was instrumented with an acoustic Doppler velocity meter. The index velocity method was used to compute discharge at the seven instrumented bridges. Periodic discharge measurements were made at all structures, using acoustic Doppler current profilers at bridges and acoustic Doppler velocity meters at culverts. Continuous daily mean values of discharge for the uninstrumented structures were calculated on the basis of relations between the measured discharge at the uninstrumented stations and the discharge and stage at the instrumented bridge. Estimates of daily mean discharge are available beginning in 2006 or 2007 through September 2010 for all structures. Subbasin comparison is limited to water years 2008–2010. The Faka Union Canal contributed more than half (on average 60 percent) of the flow under the Tamiami Trail between State Road 29 and County Road 92 during water years 2008–2010. During water years 2008–2010, an average 9 percent of the flow through the study area came from west of the Faka Union Canal and an average 31 percent came from east of the Faka Union Canal. Flow data provided by this study serve as baseline information about the seasonal and spatial distribution of freshwater flow under the Tamiami Trail between County Road 92 and State Road 29, and study results provide data to evaluate restoration efforts.

  11. Hosting and pulishing astronomical data in SQL databases

    NASA Astrophysics Data System (ADS)

    Galkin, Anastasia; Klar, Jochen; Riebe, Kristin; Matokevic, Gal; Enke, Harry

    2017-04-01

    In astronomy, terabytes and petabytes of data are produced by ground instruments, satellite missions and simulations. At Leibniz-Institute for Astrophysics Potsdam (AIP) we host and publish terabytes of cosmological simulation and observational data. The public archive at AIP has now reached a size of 60TB and growing and helps to produce numerous scientific papers. The web framework Daiquiri offers a dedicated web interface for each of the hosted scientific databases. Scientists all around the world run SQL queries which include specific astrophysical functions and get their desired data in reasonable time. Daiquiri supports the scientific projects by offering a number of administration tools such as database and user management, contact messages to the staff and support for organization of meetings and workshops. The webpages can be customized and the Wordpress integration supports the participating scientists in maintaining the documentation and the projects' news sections.

  12. The Scientific Status of Projective Techniques.

    PubMed

    Lilienfeld, S O; Wood, J M; Garb, H N

    2000-11-01

    Although projective techniques continue to be widely used in clinical and forensic settings, their scientific status remains highly controversial. In this monograph, we review the current state of the literature concerning the psychometric properties (norms, reliability, validity, incremental validity, treatment utility) of three major projective instruments: Rorschach Inkblot Test, Thematic Apperception Test (TAT), and human figure drawings. We conclude that there is empirical support for the validity of a small number of indexes derived from the Rorschach and TAT. However, the substantial majority of Rorschach and TAT indexes are not empirically supported. The validity evidence for human figure drawings is even more limited. With a few exceptions, projective indexes have not consistently demonstrated incremental validity above and beyond other psychometric data. In addition, we summarize the results of a new meta-analysis intended to examine the capacity of these three instruments to detect child sexual abuse. Although some projective instruments were better than chance at detecting child sexual abuse, there were virtually no replicated findings across independent investigative teams. This meta-analysis also provides the first clear evidence of substantial file drawer effects in the projectives literature, as the effect sizes from published studies markedly exceeded those from unpublished studies. We conclude with recommendations regarding the (a) construction of projective techniques with adequate validity, (b) forensic and clinical use of projective techniques, and (c) education and training of future psychologists regarding projective techniques. © 2000 Association for Psychological Science.

  13. 78 FR 17431 - Antitrust Division

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Production Act of 1993--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Interchangeable Virtual Instruments Foundation, Inc. has filed... in this group research project remains open, and Interchangeable Virtual Instruments Foundation, Inc...

  14. 49 CFR 633.27 - Implementation of a project management plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Implementation of a project management plan. 633... TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.27 Implementation of a project management plan. (a) Upon approval of a project management plan by...

  15. Agile Project Management for e-Learning Developments

    ERIC Educational Resources Information Center

    Doherty, Iain

    2010-01-01

    We outline the project management tactics that we developed in praxis in order to manage elearning projects and show how our tactics were enhanced through implementing project management techniques from a formal project management methodology. Two key factors have contributed to our project management success. The first is maintaining a clear…

  16. 49 CFR 633.25 - Contents of a project management plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Contents of a project management plan. 633.25... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.25 Contents of a project management plan. At a minimum, a recipient's project management plan shall include...

  17. 49 CFR 633.25 - Contents of a project management plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Contents of a project management plan. 633.25... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.25 Contents of a project management plan. At a minimum, a recipient's project management plan shall include...

  18. 49 CFR 633.25 - Contents of a project management plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Contents of a project management plan. 633.25... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.25 Contents of a project management plan. At a minimum, a recipient's project management plan shall include...

  19. 49 CFR 633.27 - Implementation of a project management plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Implementation of a project management plan. 633... TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.27 Implementation of a project management plan. (a) Upon approval of a project management plan by...

  20. 49 CFR 633.27 - Implementation of a project management plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Implementation of a project management plan. 633... TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.27 Implementation of a project management plan. (a) Upon approval of a project management plan by...

  1. 49 CFR 633.27 - Implementation of a project management plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Implementation of a project management plan. 633... TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.27 Implementation of a project management plan. (a) Upon approval of a project management plan by...

  2. 49 CFR 633.25 - Contents of a project management plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Contents of a project management plan. 633.25... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.25 Contents of a project management plan. At a minimum, a recipient's project management plan shall include...

  3. 49 CFR 633.27 - Implementation of a project management plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Implementation of a project management plan. 633... TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.27 Implementation of a project management plan. (a) Upon approval of a project management plan by...

  4. The CHORDS Portal: Lowering the Barrier for Internet Collection, Archival and Distribution of Real-Time Geophysical Observations

    NASA Astrophysics Data System (ADS)

    Martin, C.; Dye, M. J.; Daniels, M. D.; Keiser, K.; Maskey, M.; Graves, S. J.; Kerkez, B.; Chandrasekar, V.; Vernon, F.

    2015-12-01

    The Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) project tackles the challenges of collecting and disseminating geophysical observational data in real-time, especially for researchers with limited IT budgets and expertise. The CHORDS Portal is a component that allows research teams to easily configure and operate a cloud-based service which can receive data from dispersed instruments, manage a rolling archive of the observations, and serve these data to any client on the Internet. The research group (user) creates a CHORDS portal simply by running a prepackaged "CHORDS appliance" on Amazon Web Services. The user has complete ownership and management of the portal. Computing expenses are typically very small. RESTful protocols are employed for delivering and fetching data from the portal, which means that any system capable of sending an HTTP GET message is capable of accessing the portal. A simple API is defined, making it straightforward for non-experts to integrate a diverse collection of field instruments. Languages with network access libraries, such as Python, sh, Matlab, R, IDL, Ruby and JavaScript (and most others) can retrieve structured data from the portal with just a few lines of code. The user's private portal provides a browser-based system for configuring, managing and monitoring the health of the integrated real-time system. This talk will highlight the design goals, architecture and agile development of the CHORDS Portal. A running portal, with operational data feeds from across the country, will be presented.

  5. Development and validation of a short version of the Partnership Self-Assessment Tool (PSAT) among professionals in Dutch disease-management partnerships

    PubMed Central

    2011-01-01

    Background The extent to which partnership synergy is created within quality improvement programmes in the Netherlands is unknown. In this article, we describe the psychometric testing of the Partnership Self-Assessment Tool (PSAT) among professionals in twenty-two disease-management partnerships participating in quality improvement projects focused on chronic care in the Netherlands. Our objectives are to validate the PSAT in the Netherlands and to reduce the number of items of the original PSAT while maintaining validity and reliability. Methods The Dutch version of the PSAT was tested in twenty-two disease-management partnerships with 218 professionals. We tested the instrument by means of structural equation modelling, and examined its validity and reliability. Results After eliminating 14 items, the confirmatory factor analyses revealed good indices of fit with the resulting 15-item PSAT-Short version (PSAT-S). Internal consistency as represented by Cronbach's alpha ranged from acceptable (0.75) for the 'efficiency' subscale to excellent for the 'leadership' subscale (0.87). Convergent validity was provided with high correlations of the partnership dimensions and partnership synergy (ranged from 0.512 to 0.609) and high correlations with chronic illness care (ranged from 0.447 to 0.329). Conclusion The psychometric properties and convergent validity of the PSAT-S were satisfactory rendering it a valid and reliable instrument for assessing partnership synergy and its dimensions of partnership functioning. PMID:21714931

  6. Feedback to Managers, Volume II: A Review and Comparison of Sixteen Multi-Rater Feedback Instruments.

    ERIC Educational Resources Information Center

    Van Velsor, Ellen; Leslie, Jean Brittain

    "Feedback to Managers" is a two-volume report. Volume 2 compares 16 of the better feedback instruments available. The following are the instruments: (1) ACUMEN Group Feedback; (2) BENCHMARKS; (3) the Campbell Leadership Index; (4) COMPASS: the Managerial Practices Survey; (5) the Executive Success Profile; (6) Leader Behavior Analysis…

  7. The Extreme Ultraviolet Explorer science instruments development - Lessons learned

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Battel, S.

    1991-01-01

    The science instruments development project for the Extreme Ultraviolet Explorer (EUVE) satellite is reviewed. Issues discussed include the philosophical basis of the program, the establishment of a tight development team, the approach to planning and phasing activities, the handling of the most difficult technical problems, and the assessment of the work done during the preimplemntation period of the project.

  8. Psychometric evaluation of a new instrument to measure disease self-management of the early stage chronic kidney disease patients.

    PubMed

    Lin, Chiu-Chu; Wu, Chia-Chen; Wu, Li-Min; Chen, Hsing-Mei; Chang, Shu-Chen

    2013-04-01

    This study aims to develop a valid and reliable chronic kidney disease self-management instrument (CKD-SM) for assessing early stage chronic kidney disease patients' self-management behaviours. Enhancing early stage chronic kidney disease patients' self-management plays a key role in delaying the progression of chronic kidney disease. Healthcare provider understanding of early stage chronic kidney disease patients' self-management behaviours can help develop effective interventions. A valid and reliable instrument for measuring chronic kidney disease patients' self-management behaviours is needed. A cross-sectional descriptive study collected data for principal components analysis with oblique rotation. Mandarin- or Taiwanese-speaking adults with chronic kidney disease (n=252) from two medical centres and one regional hospital in Southern Taiwan completed the CKD-SM. Construct validity was evaluated by exploratory factor analysis. Internal consistency and test-retest reliability were estimated by Cronbach's alpha and Pearson correlation coefficients. Four factors were extracted and labelled self-integration, problem-solving, seeking social support and adherence to recommended regimen. The four factors accounted for 60.51% of the total variance. Each factor showed acceptable internal reliability with Cronbach's alpha from 0.77-0.92. The test-retest correlations for the CKD-SM was 0.72. The psychometric quality of the CKD-SM instrument was satisfactory. Research to conduct a confirmatory factor analysis to further validate this new instrument's construct validity is recommended. The CKD-SM instrument is useful for clinicians who wish to identify the problems with self-management among chronic kidney disease patients early. Self-management assessment will be helpful to develop intervention tailored to the needs of the chronic kidney disease population. © 2013 Blackwell Publishing Ltd.

  9. A New Tool for Effective and Efficient Project Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willett, Jesse A

    2011-12-01

    Organizations routinely handle thousands of projects per year, and it is difficult to manage all these projects concurrently. Too often, projects do not get the attention they need when they need it. Management inattention can lead to late projects or projects with less than desirable content and/or deliverables. This paper discusses the application of Visual Project Management (VPM) as a method to track and manage projects. The VPM approach proved to be a powerful management tool without the overhead and restrictions of traditional management methods.

  10. The NetQuakes Project - Research-quality Seismic Data Transmitted via the Internet from Citizen-hosted Instruments (Invited)

    NASA Astrophysics Data System (ADS)

    Luetgert, J. H.; Oppenheimer, D. H.; Hamilton, J.

    2010-12-01

    The USGS seeks accelerograph spacing of 5-10 km in selected urban areas of the US to obtain spatially un-aliased recordings of strong ground motions during large earthquakes. These dense measurements will improve our ability to make rapid post-earthquake assessments of expected damage and contribute to the continuing development of engineering standards for construction. To achieve this goal the USGS and its university partners are deploying “NetQuakes” seismographs, designed to record moderate to large earthquakes from the near field to about 100 km. The instruments have tri-axial Colibrys 2005SF MEMS sensors, clip at 3g, and have 18-bit resolution. These instruments are uniquely designed for deployment in private homes, businesses, public buildings and schools where there is an existing Broadband connection to the Internet. The NetQuakes instruments connect to a local network using WiFi and then via the Internet to USGS servers to a) upload triggered accelerograms in miniSEED format, P arrival times, and computed peak ground motion parameters immediately after an earthquake; b) download software updates; c) respond to requests for log files, execute UNIX scripts, and upload waveforms from long-term memory for quakes with peak motions below the trigger threshold; d) send state-of-health (SOH) information in XML format every 10 minutes; and e) synchronize instrument clocks to 1ms accuracy using the Network Time Protocol. NetQuakes instruments cost little to operate and save about $600/yr/site compared to instruments that transmit data via leased telemetry. After learning about the project through press releases, thousands of citizens have registered to host an instrument at http://earthquake.usgs.gov/netquakes using a Google Map interface that depicts where we seek instrument sites. The website also provides NetQuakes hosts access to waveform images recorded by instruments installed in their building. Since 3/2009, the NetQuakes project has installed over 100 instruments in the San Francisco Bay area, over 30 in the Seattle region, and 20 elsewhere in the US. Five instruments are also deployed in the San Francisco Bay region on San Pablo Dam, operated by the East Bay Municipal Utility District (EBMUD). These instruments provide cost-effective monitoring for EBMUD through free Internet telemetry, and because the USGS monitors instrument SOH, performs all data processing and archiving, and transmits recorded shaking levels to the dam operators via ShakeCast. EBMUD allows the strong motion data from their instruments to be freely available for use by the seismological and engineering communities. The NetQuakes project expects to install 350 instruments by the end of 2011.

  11. Ground-based & satellite DOAS measurements integration for air quality evaluation/forecast management in the frame of QUITSAT Project.

    NASA Astrophysics Data System (ADS)

    Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa

    The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis stresses on the specificity of the satellite and ground-based observations and the importance of the right choice of appropriate scenario for correlative studies.

  12. Scientific and Technical Support for the Galileo Net Flux Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Sromovsky, Lawrence A.

    1997-01-01

    This report describes work in support of the Galileo Net Flux Radiometer (NFR), an instrument mounted on the Galileo probe, a spacecraft designed for entry into and direct measurements of Jupiter's atmosphere. Tasks originally proposed for the post launch period covered by NCC 2-854 are briefly as follows: attend and support PSG (Project Science Group) and other project science meetings; support in-flight checkouts; maintain and keep safe the spare instrument and GSE (Ground Support Equipment); organize and maintain documentation; finish NFR calibration measurements, documentation, and analysis; characterize and diagnose instrument anomalies; develop descent data analysis tools; and science data analysis and publication. Because we had the capability to satisfy a project support need we also subsequently proposed and were funded to make ground-based observations of Jupiter during the period surrounding the Galileo arrival at Jupiter, using the Swedish Solar Telescope at La Palma, Canary Islands. The following section provides background information on the NFR instrument. Section 3 contains the final report of work done.

  13. Development and Implementation of Culturally Tailored Offline Mobile Health Surveys.

    PubMed

    McIntosh, Scott; Pérez-Ramos, José; Demment, Margaret M; Vélez Vega, Carmen; Avendaño, Esteban; Ossip, Deborah J; Dye, Timothy D

    2016-06-02

    In low and middle income countries (LMICs), and other areas with low resources and unreliable access to the Internet, understanding the emerging best practices for the implementation of new mobile health (mHealth) technologies is needed for efficient and secure data management and for informing public health researchers. Innovations in mHealth technology can improve on previous methods, and dissemination of project development details and lessons learned during implementation are needed to provide lessons learned to stakeholders in both the United States and LMIC settings. The aims of this paper are to share implementation strategies and lessons learned from the development and implementation stages of two survey research projects using offline mobile technology, and to inform and prepare public health researchers and practitioners to implement new mobile technologies in survey research projects in LMICs. In 2015, two survey research projects were developed and piloted in Puerto Rico and pre-tested in Costa Rica to collect face-to-face data, get formative evaluation feedback, and to test the feasibility of an offline mobile data collection process. Fieldwork in each setting involved survey development, back translation with cultural tailoring, ethical review and approvals, data collector training, and piloting survey implementation on mobile tablets. Critical processes and workflows for survey research projects in low resource settings were identified and implemented. This included developing a secure mobile data platform tailored to each survey, establishing user accessibility, and training and eliciting feedback from data collectors and on-site LMIC project partners. Formative and process evaluation strategies are necessary and useful for the development and implementation of survey research projects using emerging mHealth technologies in LMICs and other low resource settings. Lessons learned include: (1) plan institutional review board (IRB) approvals in multiple countries carefully to allow for development, implementation, and feedback, (2) in addition to testing the content of survey instruments, allow time and consideration for testing the use of novel mHealth technology (hardware and software), (3) incorporate training for and feedback from project staff, LMIC partner staff, and research participants, and (4) change methods accordingly, including content, as mHealth technology usage influences and is influenced by the content and structure of the survey instrument. Lessons learned from early phases of LMIC research projects using emerging mHealth technologies are critical for informing subsequent research methods and study designs.

  14. Total On-line Access Data System (TOADS): Phase II Final Report for the Period August 2002 - August 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuracko, K. L.; Parang, M.; Landguth, D. C.

    2004-09-13

    TOADS (Total On-line Access Data System) is a new generation of real-time monitoring and information management system developed to support unattended environmental monitoring and long-term stewardship of U.S. Department of Energy facilities and sites. TOADS enables project managers, regulators, and stakeholders to view environmental monitoring information in realtime over the Internet. Deployment of TOADS at government facilities and sites will reduce the cost of monitoring while increasing confidence and trust in cleanup and long term stewardship activities. TOADS: Reliably interfaces with and acquires data from a wide variety of external databases, remote systems, and sensors such as contaminant monitors, areamore » monitors, atmospheric condition monitors, visual surveillance systems, intrusion devices, motion detectors, fire/heat detection devices, and gas/vapor detectors; Provides notification and triggers alarms as appropriate; Performs QA/QC on data inputs and logs the status of instruments/devices; Provides a fully functional data management system capable of storing, analyzing, and reporting on data; Provides an easy-to-use Internet-based user interface that provides visualization of the site, data, and events; and Enables the community to monitor local environmental conditions in real time. During this Phase II STTR project, TOADS has been developed and successfully deployed for unattended facility, environmental, and radiological monitoring at a Department of Energy facility.« less

  15. Development of an Intelligent Monitoring System for Geological Carbon Sequestration (GCS) Systems

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Jeong, H.; Xu, W.; Hovorka, S. D.; Zhu, T.; Templeton, T.; Arctur, D. K.

    2016-12-01

    To provide stakeholders timely evidence that GCS repositories are operating safely and efficiently requires integrated monitoring to assess the performance of the storage reservoir as the CO2 plume moves within it. As a result, GCS projects can be data intensive, as a result of proliferation of digital instrumentation and smart-sensing technologies. GCS projects are also resource intensive, often requiring multidisciplinary teams performing different monitoring, verification, and accounting (MVA) tasks throughout the lifecycle of a project to ensure secure containment of injected CO2. How to correlate anomaly detected by a certain sensor to events observed by other devices to verify leakage incidents? How to optimally allocate resources for task-oriented monitoring if reservoir integrity is in question? These are issues that warrant further investigation before real integration can take place. In this work, we are building a web-based, data integration, assimilation, and learning framework for geologic carbon sequestration projects (DIAL-GCS). DIAL-GCS will be an intelligent monitoring system (IMS) for automating GCS closed-loop management by leveraging recent developments in high-throughput database, complex event processing, data assimilation, and machine learning technologies. Results will be demonstrated using realistic data and model derived from a GCS site.

  16. SpaceX CRS-10 "What's On Board" Science Briefing

    NASA Image and Video Library

    2017-02-17

    Mike Cisewski, Stratospheric Aerosol and Gas Experiment (SAGE) III Project manager at NASA’s Langley Research Center in Hampton, Virginia, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on instruments to be delivered to the International Space Station on the SpaceX CRS-10 mission. Cisewski explained that the SAGE III is designed to study ozone in the atmosphere. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.

  17. Landsat: A Global Land-Imaging Project

    USGS Publications Warehouse

    Headley, Rachel

    2010-01-01

    Across nearly four decades since 1972, Landsat satellites continuously have acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space; consequently, NASA develops remote-sensing instruments and spacecraft, then launches and validates the satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground-data reception, archiving, product generation, and distribution. The result of this program is a visible, long-term record of natural and human-induced changes on the global landscape.

  18. Rasp Tool on Phoenix Robotic Arm Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This close-up photograph taken at the Payload Interoperability Testbed at the University of Arizona, Tucson, shows the motorized rasp protruding from the bottom of the scoop on the engineering model of NASA's Phoenix Mars Lander's Robotic Arm.

    The rasp will be placed against the hard Martian surface to cut into the hard material and acquire an icy soil sample for analysis by Phoenix's scientific instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Restoring Redundancy to the MAP Propulsion System

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE). Due to the MAP project's limited mass, power, and financial resources, a traditional reliability concept including fully redundant components was not feasible. The MAP design employs selective hardware redundancy, along with backup software modes and algorithms, to improve the odds of mission success. In particular, MAP's propulsion system, which is used for orbit maneuvers and momentum management, uses eight thrusters positioned and oriented in such a way that its thruster-based attitude control modes can maintain three-axis attitude control in the event of the failure of any one thruster.

  20. Helium and Sulfur Hexafluoride in Musical Instruments

    NASA Astrophysics Data System (ADS)

    Forinash, Kyle; Dixon, Cory L.

    2014-11-01

    The effects of inhaled helium on the human voice were investigated in a recent article in The Physics Teacher.1 As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular. However, there appears to be little information available on the effects of either of these gases on musical instruments.2 We describe here the results of a student project that involved measuring the frequency shifts in an organ pipe, a trumpet, and a trombone as the result of filling the instruments with these two gases. The project was one of several possible end-of-semester projects required in an elective science of sound course for non-science majors.

  1. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Johnson, James; Lewis, Hilton A.; Martin, Christopher; McLean, Ian S.; Wizinowich, Peter

    2012-09-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph.

  2. Pilot project and evaluation of delivering diabetes work-based education using video conferencing.

    PubMed

    Maltinsky, W; Hall, S; Grant, L; Simpson, K; MacRury, S

    2013-01-01

    Diabetes is a chronic long-term disease with an increasing incidence. There is a need to increase access to effective care and to ensure such care is delivered as locally as possible. The geographical spread of NHS Highland Scotland presents additional challenges to ensuring a skilled workforce given education is normally work-based tuition and assessment. The aim of this pilot project was to deliver teleconferenced diabetes training to healthcare and allied healthcare professionals who provide basic level care for, and management of, people with diabetes and to evaluate this training. Work-based diabetes education was designed to be delivered by a diabetes educator through videoconferencing or face to face (F2F) for healthcare professionals in peripheral settings in the Scottish Highlands region over two half-days. The education covered theoretical and practical training in diabetes. The evaluation of the project was through post-course questionnaires and assessment instruments to capture views of the content and delivery mode, as well as student performance. Feedback from participants indicated that the educational content was relevant and that the use of videoconferencing (VC) could provide accessibility to training where distance, cost and other issues may make access difficult. Student performance on the assessment instruments did not differ between those who received the training through video conferencing and those who received the training through F2F delivery. Video conferencing can counteract the difficulties of accessing training for clinical peripherally based professionals. Training through VC did not compromise student acquisition of learning outcomes. Feedback indicates that VC can reduce the interactive nature of the learning and teaching experience.

  3. Eroded Surfaces

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 19 August 2003

    The knobby terrain and eroded impact crater observed in this THEMIS image of the Eumenides Dorsum region are evidence to a surface that has been heavily modified and stripped over time. Variable layering of material within the impact crater suggest a succession of events which eroded the surface and exposed possibly different units. Slope streaks and dust avalanches are also observed within the impact crater and point to recent and continued modification of the surface.

    Image information: VIS instrument. Latitude 4.9, Longitude 203.6 East (156.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Tinto Vallis Fluvial Channel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    <

    [figure removed for brevity, see original site]

    This night time IR image shows a small fluvial channel located near Tinto Vallis. These channels are northeast of Tyrrhena Patera and its related lava flows. Tyrrhena Patera is one of the larger volcanic complexs in the southern hemisphere of Mars. Small channels are easy to see in nighttime IR, with the cold channel floor (dark) contrasting from the warmer (bright) surroundings.

    NOTE: in nighttime images North is to the bottom of the image.

    Image information: IR instrument. Latitude -24.6, Longitude 349.7 East (10.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Olympus Mons at Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This nighttime IR image is of a portion of the flank of Olympus Mons. In last week's Arsia Mons flow images, it was easy to delineate lava flows. While this image is also of a region of extensive flows, it is nearly impossible to identify any flows. This illustrates one of the problems imaging high altitudes in nighttime IR, the surface is almost as cold as the atmosphere and is emitting very little signal back to the IR camera.

    Image information: IR instrument. Latitude 16.4, Longitude 230.6 East (129.4 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Solar Storms, Devils, Dunes, and Gullies

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 12 December 2003

    Man, there sure is a lot going on here! This image was acquired during the peak of the late October record breaking solar storm outbursts. The white dots in this image were in fact caused when the charged particles from the sun hit our camera. One can also see the enigmatic gullies, dark barchan sand dunes and numerous dust devil tracks. This image is in the Noachis region of the heavily cratered southern hemisphere.

    Image information: VIS instrument. Latitude -42.1, Longitude 328.2 East (31.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Valles Marineris Landforms

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 20 August 2003

    The steep canyon walls and ridge forming layers of Valles Marineris are on display in this THEMIS picture. Landslides and gullies observed throughout the image are evidence to the continued mass wasting of the martian surface. Upon close examination of the canyon floor, small ripples that are likely migrating sand dunes are seen on the surface. Some slopes also display an interesting raked-like appearance that may be due to a combination of aeolian and gully forming processes.

    Image information: VIS instrument. Latitude -7.4, Longitude 274.2 East (85.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Dusty Ejecta Blanket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    The large crater in this nighttime IR image had its ejecta emplaced in a semifluidized state, creating an outer rampart at the distal ends of the ejecta blanket. This wall can act as a trap for fine wind blown materials. It is likely that part of the darker/cooler materials surrounding the crater are wind blown materials such as dust and sand. This crater is located north of the Meridiani region of Mars.

    Image information: IR instrument. Latitude 1.9, Longitude 359.1 East (0.89999999999998 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Wind, Water, and Lava

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 18 June 2003

    The three main geological agents acting on the Martian surface are visible in this image, within an outflow channel to the east of the Tharsis volcanos and north of Valles Marineris. In a wide channel previously eroded by water, linear features have been eroded into the rock by the wind. Later, lava flows embayed the streamlined rocks. A second, younger flow lobe is visible at the bottom of the image.

    Image information: VIS instrument. Latitude 17, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Cutting Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 12 November 2003

    The rims of two old and degraded impact craters are intersected by a graben in this THEMIS image taken near Mangala Fossa. Yardangs and low-albedo wind streaks are observed at the top of the image as well as interesting small grooves on the crater floor. The origin of these enigmatic grooves may be the result of mud or lava and volatile interactions. Variable surface textures observed in the bottom crater floor are the result of different aged lava flows.

    Image information: VIS instrument. Latitude -15.2, Longitude 219.2 East (140.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Ice Layer Cross-Section In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image of shows a cross sectional view of the ice layers. Note the subtle peach banding on the left side of the image. The time variation that the bands represent is not yet understood.

    Image information: VIS instrument. Latitude 83.5, Longitude 118.2 East (241.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Dunes and Clouds in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    The small greenish features in this image are sand dunes. The white feature on the right side is likely an ice cloud.

    Image information: VIS instrument. Latitude 84.6, Longitude 203.1 East (156.9 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Sand Sea in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This image is of part of the northern sand sea. The small dunes in the image are bluer than the ice/dust filled central crater.

    Image information: VIS instrument. Latitude 73.7, Longitude 323 East (37 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. False Color Bands

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    In a gray scale image, the suble variations seen in this false color image are almost impossible to identify. Note the orange band in the center of the frame, and the bluer bands to either side of it.

    Image information: VIS instrument. Latitude 87, Longitude 65.5 East (294.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. A Frosty Rim In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    Our final image combines the features of the past two days, with a dust covered frosty crater rim and the bluer sand dunes of the north polar region.

    Image information: VIS instrument. Latitude 70.1, Longitude 351.8 East (8.2 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Butterfly Ejecta

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 4 September 2003

    In the heavily cratered southern highlands of Mars, the type of crater seen in this THEMIS visible image is relatively rare. Elliptical craters with 'butterfly' ejecta patterns make up roughly 5% of the total crater population of Mars. They are caused by impactors which hit the surface at oblique, or very shallow angles. Similar craters are also seen in about the same abundance on the Moon and Venus.

    Image information: VIS instrument. Latitude -24.6, Longitude 41 East (319 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Nirgal Vallis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 16 September 2003

    Upper reaches of Nirgal Vallis. This valley network is one of the longest on Mars and this image captures the sapping morphology (alcoves, stubby tributaries) associated with this channel. However, it is not clear how this channel formed (ground water sapping vs rain/snowmelt surface runoff). The last geomorphic process to occur is the one best preserved but it should be noted that earlier processes may have been modified and or wiped out.

    Image information: VIS instrument. Latitude -27.4, Longitude 314.4 East (45.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Ridges swimming in a sea of dust

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The muted terrain of northern Acidalia Planitia testifies to the fact that the region is heavily mantled with dust. The most interesting features in this image are the small terraces located along the flanks of the ridges and the patterned ground seen at the base of the largest ridge (upper right). These features appear to be classic examples of periglacial landforms and may indicate the presence of shallow subsurface ice.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 54.9, Longitude 351 East (9 West). 19 meter/pixel resolution.

  19. Drought events in the Czech Republic: past, present, future

    NASA Astrophysics Data System (ADS)

    Brázdil, Rudolf; Trnka, Miroslav; Mikšovský, Jiří; Tolasz, Radim; Dobrovolný, Petr; Řezníčková, Ladislava; Dolák, Lukáš

    2017-04-01

    Droughts are, together with floods, the most important natural extremes in the Czech Republic. In the last c. 20 years even some irregular alternations of years with severe droughts on the one hand (2000, 2003, 2007, 2011-2012, 2014-2015) and severe floods on the other (1997, 1998, 2002, 2005, 2009, 2010, 2013), reflecting greater variability of the water cycle, can be observed. Great attention devoted to the study of past, present and future of droughts in the Czech Republic in a few last years allowed to obtain basic knowledge related to long-term spatial-temporal variability of droughts, combining dendrochronological, documentary and instrumental data, synoptic causes and climate forcings of droughts, case studies of important drought anomalies with significant social-economic consequences (like drought of 1947), impacts of droughts in agriculture, forestry or water management, and future droughts according to model estimates. Basic results obtained are summarised and documented by several typical examples. Such level of drought knowledge became a basis for formulation of the new research project, trying to analyse the climate forcings and triggers involved in the occurrence, course and severity of drought events in the Czech Republic in the context of Central Europe and explanations of their physical mechanisms, based on a 515-year series of drought indices reconstructed from documentary and instrumental data. Presentation of this new project for 2017-2019 is included in the second part of the paper. (This work was supported by Czech Science Foundation, project no. 17-10026S "Drought events in the Czech Republic and their causes".)

  20. Niger Vallis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 24 September 2003

    Named for a great river in Africa, the martian version is a system of eroding channels that empties into the Hellas impact basin. One style of erosion is evident in this image, where the upper branches of the Niger are merging. Some process weakens the crust until it founders, producing large slump blocks that continue to erode. This process enlarges the channels and ultimately may lead to a single upper channel.

    Image information: VIS instrument. Latitude -34.7, Longitude 92.6 East (267.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Top