Sample records for instruments oscillations based

  1. Influence of oscillating and rotary cutting instruments with electric and turbine handpieces on tooth preparation surfaces.

    PubMed

    Geminiani, Alessandro; Abdel-Azim, Tamer; Ercoli, Carlo; Feng, Changyong; Meirelles, Luiz; Massironi, Domenico

    2014-07-01

    Rotary and nonrotary cutting instruments are used to produce specific characteristics on the axial and marginal surfaces of teeth being prepared for fixed restorations. Oscillating instruments have been suggested for tooth preparation, but no comparative surface roughness data are available. To compare the surface roughness of simulated tooth preparations produced by oscillating instruments versus rotary cutting instruments with turbine and electric handpieces. Different grit rotary cutting instruments were used to prepare Macor specimens (n=36) with 2 handpieces. The surface roughness obtained with rotary cutting instruments was compared with that produced by oscillating cutting instruments. The instruments used were as follows: coarse, then fine-grit rotary cutting instruments with a turbine (group CFT) or an electric handpiece (group CFE); coarse, then medium-grit rotary cutting instruments with a turbine (group CMT) or an electric handpiece (group CME); coarse-grit rotary cutting instruments with a turbine handpiece and oscillating instruments at a low-power (group CSL) or high-power setting (group CSH). A custom testing apparatus was used to test all instruments. The average roughness was measured for each specimen with a 3-dimensional optical surface profiler and compared with 1-way ANOVA and the Tukey honestly significant difference post hoc test for multiple comparisons (α=.05). Oscillating cutting instruments produced surface roughness values similar to those produced by similar grit rotary cutting instruments with a turbine handpiece. The electric handpiece produced smoother surfaces than the turbine regardless of rotary cutting instrument grit. Rotary cutting instruments with electric handpieces produced the smoothest surface, whereas the same instruments used with a turbine and oscillating instruments achieved similar surface roughness. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. A compact Dopplergraph/magnetograph suitable for space-based measurements of solar oscillations and magnetic fields

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.; Blamont, J.; Howard, R. F.; Dumont, P.; Smith, E. J.

    1984-01-01

    A compact Dopplergraph/magnetograph placed in a continuous solar-viewing orbit will allow us to make major advancements in our understanding of solar internal structure and dynamics. An international program is currently being conducted at JPL and Mt. Wilson to develop such an instrument. By combining a unique magneto-optical resonance filter with CID and CCD cameras we have been able to obtain full- and partial-disk Dopplergrams and magnetograms. Time series of the velocity images are converted into k-omega power spectra which show clear- the solar nonradial p-mode oscilations. Magnetograms suitable for studying the long-term evolution of solar active regions have also been obtained with this instrument. A flight instrument based on this concept is being studied for possible inclusion in the SOHO mission.

  3. Expandable and reconfigurable instrument node arrays

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Inventor); Deshpande, Manohar (Inventor)

    2012-01-01

    An expandable and reconfigurable instrument node includes a feature detection means and a data processing portion in communication with the feature detection means, the data processing portion configured and disposed to process feature information. The instrument node further includes a phase locked loop (PLL) oscillator in communication with the data processing portion, the PLL oscillator configured and disposed to provide PLL information to the processing portion. The instrument node further includes a single tone transceiver and a pulse transceiver in communication with the PLL oscillator, the single tone transceiver configured and disposed to transmit or receive a single tone for phase correction of the PLL oscillator and the pulse transceiver configured and disposed to transmit and receive signals for phase correction of the PLL oscillator. The instrument node further includes a global positioning (GPA) receiver in communication with the processing portion, the GPS receiver configured and disposed to establish a global position of the instrument node.

  4. Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms

    NASA Astrophysics Data System (ADS)

    Kallunki, J.; Riehokainen, A.

    2012-10-01

    In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.

  5. Prototype ultrasonic instrument for quantitative testing

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Dubois, J. L.; Kranz, P. R.

    1972-01-01

    A prototype ultrasonic instrument has been designed and developed for quantitative testing. The complete delivered instrument consists of a pulser/receiver which plugs into a standard oscilloscope, an rf power amplifier, a standard decade oscillator, and a set of broadband transducers for typical use at 1, 2, 5 and 10 MHz. The system provides for its own calibration, and on the oscilloscope, presents a quantitative (digital) indication of time base and sensitivity scale factors and some measurement data.

  6. The In-Flight Frequency Behavior of Two Ultra-Stable Oscillators Onboard the New Horizons Spacecraft

    DTIC Science & Technology

    2007-11-01

    the other is maintained in a “warm-boot” backup mode. The implementation of the transceiver for noncoherent navigation provides the opportunity for...frequency reference for the REX (Radio science Experiment) instrument and the master oscillator for the communications transceiver and the noncoherent ...byproduct of noncoherent Doppler based 79 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information

  7. Study of surface topography, roughness, and microleakage after dental preparation with different instrumentation.

    PubMed

    Solá-Ruiz, Ma Fernanda; Faus-Matoses, Ignacio; Del Rio Highsmith, Jamie; Fons-Font, Antonio

    2014-01-01

    The purpose of this study was to compare the differences in surface characteristics and roughness of teeth finished for porcelain veneer laminates using different instrumentation and to assess their influence on microleakage. Fifty-six extracted human maxillary central incisors were divided randomly into two groups: Group HsR teeth were finished with a high-speed handpiece with diamond burs; group SO teeth were finished with a sonic oscillating diamond instrument. Porcelain veneers were bonded to 24 teeth in each group. Microleakage was measured in the cervical area. Four remaining teeth in each group were examined using confocal laser-scanning microscopy and scanning electron microscopy. Oscillating instruments produced a rougher dentinal surface (Ra values; P = .029) than those finished with high-speed rotary technology. There is less microleakage when bonded restoration edges are situated over dentin that has been finished with sonic oscillating instrumentation (P = .006).

  8. Conduction cooled compact laser for the supercam Libsraman instrument

    NASA Astrophysics Data System (ADS)

    Durand, Eric; Derycke, C.; Boudjemaa, L.; Simon-Boisson, C.; Roucayrol, L.; Perez, R.; Faure, B.; Maurice, S.

    2017-09-01

    A new conduction cooled compact laser for SuperCam LIBS-RAMAN instrument aboard Mars 2020 Rover is presented. An oscillator generates 30mJ at 1µm with a good spatial quality. A Second Harmonic Generator (SHG) at the oscillator output generates 15 mJ at 532 nm. A RTP electro-optical switch, between the oscillator and SHG, allows the operation mode selection (LIBS or RAMAN). Qualification model of this laser has been built and characterised. Environmental testing of this model is also reported.

  9. A numerical study of self-sustained oscillations in wind instruments

    NASA Astrophysics Data System (ADS)

    Rendon, Pablo L.; Velasco-Segura, Roberto

    2017-11-01

    The study of sustained notes in wind musical instruments in realistic conditions requires consideration of both excitation and propagation mechanisms, and the manner in which these two interact. Further, to model adequately acoustic propagation inside the instrument, a variety of competing effects must be taken into account, such as nonlinearity, thermoviscous attenuation and radiation at the open end. Physical solutions also involve some degree of feedback at the excitation end, and here we propose the simplest boundary conditions possible at this end, given by a simple harmonic oscillator with fixed stiffness. By feeding single-frequency acoustic waves into the system we are able to study the formation of self-sustained oscillations, which are stationary states associated with resonance frequencies, and also to observe transitory states. Visualizations are presented of waves traveling in both directions. As expected, resonance frequencies are dependent on the stiffness parameter, and this dependence is examined. The full-wave simulation is performed in the time domain over a 2D spatial domain assuming axial symmetry, and it is based on a previously validated open source code, using a finite volume method (FiVoNAGI) implemented in a GPU [Velasco-Segura & Rendn, 2015]. The authors acknowledge the financial support of DGAPA-UNAM through project PAPIIT IG100717.

  10. Low frequency oscillations in total ozone measurements

    NASA Technical Reports Server (NTRS)

    Gao, X. H.; Stanford, J. L.

    1989-01-01

    Low frequency oscillations with periods of approximately one to two months are found in eight years of global grids of total ozone data from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The low frequency oscillations corroborate earlier analyses based on four years of data. In addition, both annual and seasonal one-point correlation maps based on the 8-year TOMS data are presented. The results clearly show a standing dipole in ozone perturbations, oscillating with 35 to 50 day periods over the equatorial Indian Ocean-west Pacific region. This contrasts with the eastward moving dipole reported in other data sets. The standing ozone dipole appears to be a dynamical feature associated with vertical atmospheric motions. Consistent with prior analyses based on lower stratospheric temperature fields, large-scale standing patterns are also found in the extratropics of both hemispheres, correlated with ozone fluctuations over the equatorial west Pacific. In the Northern Hemisphere, a standing pattern is observed extending from the tropical Indian Ocean to the north Pacific, across North America, and down to the equatorial Atlantic Ocean region. This feature is most pronounced in the NH summer.

  11. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    DOE PAGES

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This workmore » also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.« less

  12. Power spectra comparison between GOLF and spatially masked MDI velocity signals

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Ulrich, R. K.; Bertello, L.; Bogart, R. S.; Bush, R. I.; Scherrer, P. H.; Cortés, T. Roca; Turck-Chièze, S.

    1999-08-01

    The Global Oscillations at Low Frequency (GOLF) and the Michelson Doppler Imager (MDI) instruments aboard the Solar and Heliospheric Observatory (SOHO) give an excellent opportunity to search for solar low frequency oscillation modes previously undetected from ground based experiments. Presented here is a comparison of the velocity power spectra between the two instruments. In addition, this paper outlines work towards creating a GOLF-simulated signal utilizing MDI velocity images. The simulation of the GOLF signal is achieved by integrating spatially weighted masks with MDI full-disk Doppler images. The GOLF-simulated signal and a selection of additional spatially masked MDI velocity signals are compared with the observed GOLF signal for a 759 day period from May 25, 1996 through June 22, 1998. Ultimately, a cross-analysis process between GOLF and MDI signals could lead to an enhancement of our ability to detect low frequency solar oscillations. For low degree (l<= 3) and low frequency acoustic modes, the signal-to-background ratio between GOLF and the spatially masked MDI velocity data is compared here.

  13. Understanding the Theory and Practice of Molecular Spectroscopy: The Effects of Spectral Bandwidth

    ERIC Educational Resources Information Center

    Hirayama, Satoshi; Steer, Ronald P.

    2010-01-01

    The near-UV spectrum of benzene is used to illustrate the effects of variations in instrument spectral bandwidth on absorbance and molar absorptivity measurements and on the independence of values of quantities such as the oscillator strength that are based on integrated absorptivity. Excel-based computer simulations are provided that help develop…

  14. MicroMegascope.

    PubMed

    Canale, L; Laborieux, A; Mogane, A Aroul; Jubin, L; Comtet, J; Lainé, A; Bocquet, L; Siria, A; Niguès, A

    2018-08-31

    Atomic force microscopy (AFM) allows us to reconstruct the topography of surfaces with resolution in the nanometer range. The exceptional resolution attainable with the AFM makes this instrument a key tool in nanoscience and technology. The core of a standard AFM set-up relies on the detection of the change of the mechanical motion of a micro-oscillator when approaching the sample to image. This is despite the fact that AFM is nowadays a very common instrument for both fundamental and applied research. The fabrication of the micrometric scale mechanical oscillator is still a very complicated and expensive task requiring dedicated platforms. Being able to perform AFM with a macroscopic oscillator would make the instrument more versatile and accessible for an even larger spectrum of applications and audience. Here, we present atomic force imaging with a centimetric oscillator, an aluminum tuning fork of centimeter size as a sensor on which an accelerometer is glued on one prong to measure the oscillations. We show that it is possible to perform topographic images of nanometric resolution with a gram tuning fork. In addition to the stunning sensitivity, we show the high versatility of such an oscillator by imaging both in air and liquid. The set-up proposed here can be extended to numerous experiments where the probe has to be heavy and/or very complex, and so too the environment.

  15. Newton–Hooke-type symmetry of anisotropic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, P.M., E-mail: zhpm@impcas.ac.cn; Horvathy, P.A., E-mail: horvathy@lmpt.univ-tours.fr; Laboratoire de Mathématiques et de Physique Théorique, Université de Tours

    2013-06-15

    Rotation-less Newton–Hooke-type symmetry, found recently in the Hill problem, and instrumental for explaining the center-of-mass decomposition, is generalized to an arbitrary anisotropic oscillator in the plane. Conversely, the latter system is shown, by the orbit method, to be the most general one with such a symmetry. Full Newton–Hooke symmetry is recovered in the isotropic case. Star escape from a galaxy is studied as an application. -- Highlights: ► Rotation-less Newton–Hooke (NH) symmetry is generalized to an arbitrary anisotropic oscillator. ► The orbit method is used to find the most general case for rotation-less NH symmetry. ► The NH symmetry ismore » decomposed into Heisenberg algebras based on chiral decomposition.« less

  16. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    DOEpatents

    Brown, R.A.

    1994-04-19

    Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures.

  17. Toward a Reconstruction of the Atlantic Multidecadal Oscillation Using Shell-based Records from Coastal Northern Norway

    NASA Astrophysics Data System (ADS)

    Mette, M.; Wanamaker, A. D.; Carroll, M.; Ambrose, W. G., Jr.; Retelle, M.

    2016-02-01

    North Atlantic sea surface temperatures over the past 150 years have exhibited multidecadal variability, switching between relatively warm and cool periods, described by the Atlantic Multidecadal Oscillation (AMO). The influence, persistence, and causes of the AMO, however, are debated because instrumental records of North Atlantic sea surface temperatures only capture 2 cycles of this 60 to 80 year mode. Thus far, AMO reconstructions have been largely based on terrestrial archives despite the fact that the AMO is an oceanic mode. Proxy records from the marine realm are therefore necessary to better understand the behavior of the AMO over recent centuries. We present continuous, annual shell-based records of oxygen isotopes and growth from the long-lived marine bivalve Arctica islandica from coastal northern Norway (71 °N) from 1900-2012 that strongly relate to the instrumental AMO record (r = -0.59, p < 0.01). We performed calibration/verification analysis in order to assess the potential for these records to contribute to AMO reconstructions. We also compare our record with other proxy reconstructions of AMO variability over the past century. Our results show that extending shell-based records to past centuries will provide valuable information about AMO variability.

  18. Cross-Spectrum PM Noise Measurement, Thermal Energy, and Metamaterial Filters.

    PubMed

    Gruson, Yannick; Giordano, Vincent; Rohde, Ulrich L; Poddar, Ajay K; Rubiola, Enrico

    2017-03-01

    Virtually all commercial instruments for the measurement of the oscillator PM noise make use of the cross-spectrum method (arXiv:1004.5539 [physics.ins-det], 2010). High sensitivity is achieved by correlation and averaging on two equal channels, which measure the same input, and reject the background of the instrument. We show that a systematic error is always present if the thermal energy of the input power splitter is not accounted for. Such error can result in noise underestimation up to a few decibels in the lowest-noise quartz oscillators, and in an invalid measurement in the case of cryogenic oscillators. As another alarming fact, the presence of metamaterial components in the oscillator results in unpredictable behavior and large errors, even in well controlled experimental conditions. We observed a spread of 40 dB in the phase noise spectra of an oscillator, just replacing the output filter.

  19. Simulator study of conventional general aviation instrument displays in path-following tasks with emphasis on pilot-induced oscillations

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1980-01-01

    A study of the use of conventional general aviation instruments by general aviation pilots in a six degree of freedom, fixed base simulator was conducted. The tasks performed were tracking a VOR radial and making an ILS approach to landing. A special feature of the tests was that the sensitivity of the displacement indicating instruments (the RMI, CDI, and HSI) was kept constant at values corresponding to 5 n. mi. and 1.25 n. mi. from the station. Both statistical and pilot model analyses of the data were made. The results show that performance in path following improved with increases in display sensitivity up to the highest sensitivity tested. At this maximum test sensitivity, which corresponds to the sensitivity existing at 1.25 n. mi. for the ILS glide slope transmitter, tracking accuracy was no better than it was at 5 n. mi. from the station and the pilot aircraft system exhibited a marked reduction in damping. In some cases, a pilot induced, long period unstable oscillation occurred.

  20. Fiber Lasers and Amplifiers for Space-based Science and Exploration

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.; hide

    2012-01-01

    We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.

  1. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    PubMed

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.

  2. North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk

    NASA Astrophysics Data System (ADS)

    Schöne, Bernd R.; Oschmann, Wolfgang; Rössler, Jochen; Freyre Castro, Antuané D.; Houk, Stephen D.; Kröncke, Ingrid; Dreyer, Wolfgang; Janssen, Ronald; Rumohr, Heye; Dunca, Elena

    2003-12-01

    Existing reconstructions of the winter North Atlantic Oscillation (WNAO) are based on terrestrial proxies and historical documents. No direct high-resolution, long-term rec ords from marine settings are available for this major climate-dictating phenomenon, which severely affects a variety of economic aspects of our society. Here we present a 245 yr proxy WNAO index based on shells of the long-lived marine bivalve mollusk Arctica islandica. Variations in annual rates of shell growth are positively correlated with WNAO-related changes in the food supply. Maximum amplitudes in frequency bands of 7 9 and 5 7 yr fall exactly within the range of instrumental and other proxy WNAO indices. These estimates were obtained for specimens collected live, 2000 km apart, in the central North Sea and on the Norwegian Shelf. Hence, the WNAO influences hydrographic regimes of large regions of the ocean. Our study demonstrates that A. islandica can reliably reconstruct WNAO dynamics for time intervals and regions without instrumental records. Our new tool functions as a proxy for the WNAO index prior to the twentieth-century greenhouse forcing and has the potential to further validate other proxy-based WNAO records.

  3. A very high frequency radio interferometer for investigating ionospheric disturbances using geostationary satellites. Determination of changes in exospheric electron content by a comparison of group delay and Faraday rotation

    NASA Technical Reports Server (NTRS)

    Terry, R.; Flaherty, B. J.; Dubroff, R. E.

    1972-01-01

    The theory and development of a VHF correlation radio interferometer for investigating ionospheric disturbances are discussed. The system was developed to receive signals from the geostationary Applications Technology Satellites. Amplitude and phase variations of the signal passing through the ionosphere can be detected by this instrument. The system consists of two superheterodyne receivers separated by a distance known as the baseline of the system. Since the system is a phase sensitive instrument, the local oscillators of the two receivers must be phase coherent. This is accomplished by using phase-locked loops for generating the local oscillators. The two signals from the separate receivers are cross-correlated by multiplying the two signals together and then time averaging the result. The sensitivity of the instrument is increased by off-setting one of the local oscillators by a small amount.

  4. On-Wafer Measurement of a Silicon-Based CMOS VCO at 324 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Man Fung, King; Gaier, Todd; Huang, Daquan; Larocca, Tim; Chang, M. F.; Campbell, Richard; Andrews, Michael

    2008-01-01

    The world s first silicon-based complementary metal oxide/semiconductor (CMOS) integrated-circuit voltage-controlled oscillator (VCO) operating in a frequency range around 324 GHz has been built and tested. Concomitantly, equipment for measuring the performance of this oscillator has been built and tested. These accomplishments are intermediate steps in a continuing effort to develop low-power-consumption, low-phase-noise, electronically tunable signal generators as local oscillators for heterodyne receivers in submillimeter-wavelength (frequency > 300 GHz) scientific instruments and imaging systems. Submillimeter-wavelength imaging systems are of special interest for military and law-enforcement use because they could, potentially, be used to detect weapons hidden behind clothing and other opaque dielectric materials. In comparison with prior submillimeter- wavelength signal generators, CMOS VCOs offer significant potential advantages, including great reductions in power consumption, mass, size, and complexity. In addition, there is potential for on-chip integration of CMOS VCOs with other CMOS integrated circuitry, including phase-lock loops, analog- to-digital converters, and advanced microprocessors.

  5. Tunable, Highly Stable Lasers for Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Hale, Charley P.; EEpagnier, David M.

    2006-01-01

    Practical space-based coherent laser radar systems envisioned for global winds measurement must be very efficient and must contend with unique problems associated with the large platform velocities that the instruments experience in orbit. To compensate for these large platform-induced Doppler shifts in space-based applications, agile-frequency offset-locking of two single-frequency Doppler reference lasers was thoroughly investigated. Such techniques involve actively locking a frequency-agile master oscillator (MO) source to a comparatively static local oscillator (LO) laser, and effectively producing an offset between MO (the lidar slave oscillator seed source, typically) and heterodyne signal receiver LO that lowers the bandwidth of the receiver data-collection system and permits use of very high-quantum-efficiency, reasonably- low-bandwidth heterodyne photoreceiver detectors and circuits. Recent work on MO/LO offset locking has focused on increasing the offset locking range, improving the graded-InGaAs photoreceiver performance, and advancing the maturity of the offset locking electronics. A figure provides a schematic diagram of the offset-locking system.

  6. Reconstructing the history of the Atlantic Multidecadal Oscillation using high-resolution Mg/Ca paleothermometry from a Cariaco Basin core

    NASA Astrophysics Data System (ADS)

    Wurtzel, J. B.; Black, D. E.; Rahman, S.; Thunell, R.; Peterson, L. C.; Tappa, E.

    2010-12-01

    Instrumental and proxy-reconstructions show the existence of an approximately 70-year periodicity in Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO). The AMO is correlated with circum-tropical Atlantic climate phenomena such as Sahel and Nordeste rainfall, and Atlantic hurricane patterns. Though it has been suggested that the AMO is controlled by thermohaline circulation, much debate exists as to whether the SST fluctuations are a result of anthropogenic forcing or a natural climate mode, or even if the AMO is a true oscillation at all. Our ability to address this issue has been limited by instrumental SST records that rarely extend back more than 50-100 years and proxy reconstructions that are mostly terrestrial-based. Additionally, the modern instrumental variability likely contains an anthropogenic component that is not easily distinguished from the natural background of the system. From a marine sediment core taken in the Cariaco Basin, we have developed a high-resolution SST reconstruction for the past ca. 1500 years using Mg/Ca paleothermometry on seasonally-representative foraminifera, with the most recent data calibrated to the instrumental record. Previous studies have shown Cariaco Basin Mg/Ca-SSTs to be well-correlated to the Caribbean Sea and much of the western tropical Atlantic, which allows us to create a record that can be used to determine pre-anthropogenic rates and ranges of SST variability and observe how they change over time. Averaging the seasonal temperatures derived from the two foraminiferal species over the instrumental period yields a strong correlation to the AMO index from A. D. 1880 through 1970 (r = 0.44, p<0.0001). Wavelet analysis of the proxy average annual SST data indicates that modern AMO variability is not a consistent feature through time, and may be a function of warm-period climate.

  7. CMOS based capacitance to digital converter circuit for MEMS sensor

    NASA Astrophysics Data System (ADS)

    Rotake, D. R.; Darji, A. D.

    2018-02-01

    Most of the MEMS cantilever based system required costly instruments for characterization, processing and also has large experimental setups which led to non-portable device. So there is a need of low cost, highly sensitive, high speed and portable digital system. The proposed Capacitance to Digital Converter (CDC) interfacing circuit converts capacitance to digital domain which can be easily processed. Recent demand microcantilever deflection is part per trillion ranges which change the capacitance in 1-10 femto farad (fF) range. The entire CDC circuit is designed using CMOS 250nm technology. Design of CDC circuit consists of a D-latch and two oscillators, namely Sensor controlled oscillator (SCO) and digitally controlled oscillator (DCO). The D-latch is designed using transmission gate based MUX for power optimization. A CDC design of 7-stage, 9-stage and 11-stage tested for 1-18 fF and simulated using mentor graphics Eldo tool with parasitic. Since the proposed design does not use resistance component, the total power dissipation is reduced to 2.3621 mW for CDC designed using 9-stage SCO and DCO.

  8. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    DOEpatents

    Brown, Roger A.

    1994-01-01

    Circuitry for testing the ability of an intermediate range nuclear instrut to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on.

  9. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; hide

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  10. Fiber-based, trace-gas, laser transmitter technology development for space

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-09-01

    NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  11. Simultaneous infrasonic, seismic, magnetic and ionospheric observations in an earthquake epicentre

    NASA Astrophysics Data System (ADS)

    Laštovička, J.; Baše, J.; Hruška, F.; Chum, J.; Šindelářová, T.; Horálek, J.; Zedník, J.; Krasnov, V.

    2010-10-01

    Various pre-seismic and co-seismic effects have been reported in the literature in the solid Earth, hydrosphere, atmosphere, electric/magnetic field and in the ionosphere. Some of the effects observed above the surface, particularly some of the pre-seismic effects, are still a matter of debate. Here we analyze the co-seismic effects of a relatively weak earthquake of 28 October 2008, which was a part of an earthquake swarm in the westernmost region of the Czech Republic. Special attention is paid to unique measurements of infrasonic phenomena. As far as we know, these have been the first infrasonic measurements during earthquake in the epicentre zone. Infrasonic oscillations (˜1-12 Hz) in the epicentre region appear to be excited essentially by the vertical seismic oscillations. The observed oscillations are real epicentral infrasound not caused by seismic shaking of the instruments or by meteorological phenomena. Seismo-infrasonic oscillations observed 155 km apart from the epicentre were excited in situ by seismic waves. No earthquake-related infrasonic effects have been observed in the ionosphere. Necessity to make vibration tests of instruments is pointed out in order to be sure that observed effects are not effects of mechanical shaking of the instrument.

  12. Silicon-Germanium Voltage-Controlled Oscillator at 105 GHz

    NASA Technical Reports Server (NTRS)

    Wong, Alden; Larocca, Tim; Chang, M. Frank; Samoska, Lorene A.

    2011-01-01

    A group at UCLA, in collaboration with the Jet Propulsion Laboratory, has designed a voltage-controlled oscillator (VCO) created specifically for a compact, integrated, electronically tunable frequency generator useable for submillimeter- wave science instruments operating in extreme cold environments.

  13. Research and Development of Laser Diode Based Instruments for Applications in Space

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg

    1999-01-01

    Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.

  14. Neptune as a Mirror for the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    How would the Kepler mission see a star like the Sun? We now know the answer to this question due to a creative approach: a new study has used the Kepler K2 mission to detect signals from the Sun reflected off of the surface of Neptune.Asteroseismology uses different oscillation modes of a star to probe its internal structure and properties. [Tosaka]Information in OscillationsKeplers most glamorous work is in discovering new planets around other stars. To successfully do this, however, the spacecraft is also quietly doing a lot of very useful work in the background, characterizing the many stars in our vicinity that planets might be found around.One of the ways Kepler gets information about these stars is from oscillations of the stars intensities. In asteroseismology, we look at oscillatory modes that are caused by convection-driven pressure changes on the inside of the star. All stars with near-surface convection oscillate like this including the Sun and by measuring the oscillations in intensity of these stars, we can make inferences about the stars properties.A Planetary MirrorWe do this by first understanding our Suns oscillations especially well (made easier by the fact that its nearby!). Then we use asteroseimic scaling relations determined empirically that relate characteristics like mass and radius of other stars to those of the Sun, based on the relation between the stars oscillation properties to the Suns.The trouble is, those oscillation properties are difficult to measure, and different instruments often measure different values. For this reason, wed like to measure the Suns oscillations with the same instrument we use to measure other stars oscillations: Kepler.Top panel: Kepler K2 49-day light curve of Neptune. Bottom panel: power density spectrum as a function of frequency (grey). Neptunes rotation frequencies and harmonics appear toward the left side (blue); the excess power due to the solar modes is visible toward the bottom right. The green curve shows the direct observations of solar oscillations simultaneously made by VIRGO/SPM. [Gaulme et al. 2016]A team led by Patrick Gaulme (New Mexico State University, New Mexico Institute of Mining and Technology, and Apache Point Observatory) have now done this but not with direct Kepler observations of the Sun. Instead, Kepler was pointed at Neptune for a total of 49 days, during which time it measured the reflection of the Suns oscillations off of the planets surface. These observations mark the first indirect detection of solar oscillations in intensity.Measuring Solar PropertiesThe success of this technique for observing solar oscillations represents a remarkable technical performance. The oscillations the team observed by Kepler in the reflection from Neptune are consistent with the solar oscillations that were measured directly with programs like the Birmingham Solar Oscillations Network (BiSON) and SOHO/VIRGO/SPM.What can we learn from the oscillations? The authors treated the detection of the Sun as though it were any other star being observed: they used the asteroseismic scaling relations to estimate the stars mass and radius. Based on the oscillations they measured, they found a mass for the Sun between 1.11 0.05 and 1.16 0.09 solar masses, and a radius between 1.04 0.02 and 1.05 0.03 solar radii.The fact that these values are a little high (roughly 13.8% too high for mass and 4.3% for the radius) illustrates the highly stochastic nature of stellar oscillations. Still, it provides a useful reference point, and it also gives us a valuable look at how Kepler would see a star like the Sun.CitationP. Gaulme et al 2016 ApJL 833 L13. doi:10.3847/2041-8213/833/1/L13

  15. Assessment of Operation of EMK21 MEMS Silicon Oscillator Over Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2009-01-01

    Electronic control systems, data-acquisition instrumentation, and microprocessors require accurate timing signals for proper operation. Traditionally, ceramic resonators and crystal oscillators provided this clock function for the majority of these systems. Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to surface as commercial-off-the-shelf (COTS) parts by a few companies. These quartz-free, miniature silicon devices could easily replace the traditional crystal oscillators in providing the timing/clock function for many digital and analog circuits. They are reported to provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [ 1-2]. In addition, they are encapsulated in compact lead-free packages and cover a wide frequency range (1 MHz to 125 MHz). The small size of the MEMS oscillators along with their thermal stability make them ideal candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an Ecliptek Corporation MEMS silicon oscillator chip under extreme temperatures.

  16. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.

    PubMed

    Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  17. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device

    NASA Astrophysics Data System (ADS)

    Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  18. An oscillating microbalance for meteorological measurements of ice and volcanic ash accumulation from a weather balloon platform

    NASA Astrophysics Data System (ADS)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    A new, low cost, instrument has been developed for meteorological measurements of the accumulation of ice and volcanic ash that can be readily deployed using commercial radiosondes and weather balloons. It is based on principles used by [1], an instrument originally developed to measure supercooled liquid water profiles in clouds. This new instrument introduces numerous improvements in terms of reduced complexity and cost. It uses the oscillating microbalance principle, whereby a wire vibrating at its natural frequency is subjected to increased loading of the property to be measured. The increase in mass modifies the wire properties such that its natural frequency of oscillation changes. By measuring this frequency, the increase in mass can be inferred and transmitted to a ground base station through the radiosonde's UHF antenna via the PANDORA interface [2], which has been previously developed to provide power and connection to the radiosonde telemetry. The device consists of a simple circuit board controlled by an ATMEGA microcontroller. For calibration, the controller is capable of driving the wire at specified frequencies via excitation by a piezo sounder upon which the wire is mounted. The same piezo sounder is also used during active operation to measure the frequency of the wire in its non-driven state in order to infer the mass change on the wire. A phase-locked loop implemented on the board identifies when resonance occurs and the measured frequency is stable, prompting the microcontroller to send the measurement through the data interface. The device may be used for any application that requires the measurement of incremental mass variation e.g. ice accumulation, frosting, or particle accumulation such as dust and volcanic ash. For the solid particle accumulation, a low temperature, high-tack, adhesive may be applied to the wire prior to deployment to collect the material. In addition, the same instrument may be used for ground-based applications, such as ice accumulation, with direct monitoring via a serial connection or logged to removable storage media in the absence of the radiosonde. References [1] Hill, G.E. and Woffinden, D.S. (1980) Journal of Applied Meteorology, 19, 11, 1285-1292 [2] Harrison, R.G., et al. (2012) Rev. Sci. Instrum., 83, 3

  19. Momentum rate probe for use with two-phase flows

    NASA Astrophysics Data System (ADS)

    Bush, S. G.; Bennett, J. B.; Sojka, P. E.; Panchagnula, M. V.; Plesniak, M. W.

    1996-05-01

    An instrument for measuring the momentum rate of two-phase flows is described, and design and construction details are provided. The device utilizes a conelike body to turn the flow from the axial to the radial direction. The force resulting from the change in momentum rate of the turning flow is measured using a strain-gage-instrumented cantilevered beam. The instrument is applicable to a wide range of flows including nuclear reactor coolant streams, refrigerants in heating-ventilating air-conditioning equipment, impingement cooling of small scale electronic hardware (computer chips are one example), supercritical fuel injection (in Diesel engines, for instance), and consumer product sprays (such as hair-care product sprays produced using effervescent atomizers). The latter application is discussed here. Features of the instrument include sensitivity to a wide range of forces and the ability to damp oscillations of the deflection cone. Instrument sensitivity allows measurement of momentum rates considerably lower (below 0.01 N) than those that could be obtained using previous devices. This feature is a direct result of our use of precision strain gages, capable of sensing strains below 20 μm/m, and the damping of oscillations which can overwhelm the force measurements. Oscillation damping results from a viscous fluid damper whose resistance is easily varied by changing fluids. Data used to calibrate the instrument are presented to demonstrate the effectiveness of the technique. As an example of the instrument's utility, momentum rate data obtained using it will be valuable in efforts to explain entrainment of surrounding air into effervescent atomizer-produced sprays and also to model the effervescent atomization process.

  20. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    NASA Astrophysics Data System (ADS)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A.

    2013-05-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses.

  1. Investigation of Space Based Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2002-01-01

    This report describes the work performed over the period of October 1, 1997 through March 31, 2001. Under this contract, UAH/CAO participated in defining and designing the SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission, and developed the instrument's optical subsystem. This work was performed in collaborative fashion with NASA/MSFC engineers at both UAH/CAO and NASA/MSFC facilities. Earlier work by the UAH/CAO had produced a preliminary top-level system design for the Shuttle lidar instrument meeting the proposed mission performance requirements and the Space Shuttle Hitchhiker canister volume constraints. The UAH/CAO system design efforts had concentrated on the optical and mechanical designs of the instrument. The instrument electronics were also addressed, and the major electronic components and their interfaces defined. The instrument design concept was mainly based on the state of the transmitter and local oscillator laser development at NASA Langley Research Center and Jet Propulsion Laboratory, and utilized several lidar-related technologies that were either developed or evaluated by the NASA/MSFC and UAH/CAO scientists. UAH/CAO has developed a comprehensive coherent lidar numerical model capable of analyzing the performance of different instrument and mission concepts. This model uses the instrument configuration, atmospheric conditions and current velocity estimation theory to provide prediction of instrument performance during different phases of operation. This model can also optimize the design parameters of the instrument.

  2. THz Instrumentation for the Herschel Space Observatory's Heterodyne Instrument for Far Infrared

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Mehdi, I.; Ward, J. S.; Maiwald, F.; Ferber, R. R.; Leduc, H. G.; Schlecht, E. T.; Gill, J. J.; Hatch, W. A.; Kawamura, J. H.; hide

    2004-01-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-bapd Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.

  3. Precise Method for Investigation of Lissajous Generalized Figures

    ERIC Educational Resources Information Center

    Bednarek, Stanislaw

    2014-01-01

    This article describes the Lissajous generalized figure and the original instrument for its investigation. Two specially prepared electrodynamic loudspeakers--a horizontal and a vertical--cause oscillations in two mirrors. It is possible to precisely control the motion of the mirrors, achieve a high frequency of oscillation and investigate…

  4. Connections of Precipitable Water Vapor and Total Ozone Anomalies over European Russia with the North Atlantic Oscillation: Specific Features of Summer 2010

    NASA Astrophysics Data System (ADS)

    Sitnov, S. A.; Mokhov, I. I.; Bezverkhny, V. A.

    2017-12-01

    Based on the measurements of precipitable water vapor (PWV) and total column ozone (TCO) from the MODIS satellite instruments (Aqua/Terra platforms), the connections between the North Atlantic Oscillation (NAO) and the anomalies in PWV and TCO over European Russia (ER) in summer 2010 are analyzed. It is found that the PWV (TCO) anomalies over the northern ER in summer 2010 positively (negatively) correlated with the NAO, and the local correlations reached 0.68 (-0.55). The physical mechanisms of the correlations are discussed. A comparative analysis of the relationships between the NAO and the regional PWV and TCO anomalies over ER during the summer seasons of 2000-2015 is carried out.

  5. Precipitation, temperature, and teleconnection signals across the combined North American, Monsoon Asia, and Old World Drought Atlases

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Baek, S. H.; Coats, S.; Williams, P.; Cook, B.; Cook, E. R.; Seager, R.

    2017-12-01

    The tree-ring-based North American Drought Atlas (NADA), Monsoon Asia Drought Atlas (MADA), and Old World Drought Atlas (OWDA) collectively yield a near-hemispheric gridded reconstruction of hydroclimate variability over the last millennium. To test the robustness of the large-scale representation of hydroclimate variability across the drought atlases, the joint expression of seasonal climate variability and teleconnections in the NADA, MADA, and OWDA are compared against two global, observation-based PDSI products. Predominantly positive (negative) correlations are determined between seasonal precipitation (surface air temperature) and collocated tree-ring-based PDSI, with average Pearson's correlation coefficients increasing in magnitude from boreal winter to summer. For precipitation, these correlations tend to be stronger in the boreal winter and summer when calculated for the observed PDSI record, while remaining similar for temperature. Notwithstanding these differences, the drought atlases robustly express teleconnection patterns associated with the El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). These expressions exist in the drought atlas estimates of boreal summer PDSI despite the fact that these modes of climate variability are dominant in boreal winter, with the exception of the Atlantic Multidecadal Oscillation. ENSO and NAO teleconnection patterns in the drought atlases are particularly consistent with their well-known dominant expressions in boreal winter and over the OWDA domain, respectively. Collectively, our findings confirm that the joint Northern Hemisphere drought atlases robustly reflect large-scale patterns of hydroclimate variability on seasonal to multidecadal timescales over the 20th century and are likely to provide similarly robust estimates of hydroclimate variability prior to the existence of widespread instrumental data.

  6. The IRIS network site at the Wilcox Solar Observatory

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.; Scherrer, P. H.

    1991-01-01

    The site for the International Research on the Interior of the Sun (IRIS) instrument housed at the Wilcox Solar Observatory at Stanford University (near San Francisco, USA) is described together with the instrument operation procedure. The IRIS instrument, which measures global oscillations of the sun, operates continuously every clear day since it was installed in August 1987.

  7. Note: A miniature oscillating microbalance for sampling ice and volcanic ash from a small airborne platform.

    PubMed

    Airey, M W; Harrison, R G; Nicoll, K A; Williams, P D; Marlton, G J

    2017-08-01

    A lightweight and low power oscillating microbalance for in situ sampling of atmospheric ice and volcanic ash is described for airborne platforms. Using a freely exposed collecting wire fixed at only one end to a piezo transducer, the instrument collects airborne materials. Accumulated mass is determined from the change in natural frequency of the wire. The piezo transducer is used in a dual mode to both drive and detect the oscillation. Three independent frequency measurement techniques are implemented with an on-board microcontroller: a frequency sweep, a Fourier spectral method, and a phase-locked loop. These showed agreement to ±0.3 Hz for a 0.5 mm diameter collecting wire of 120 mm long, flown to 19 km altitude on a weather balloon. The instrument is well suited to disposable use with meteorological radiosondes, to provide high resolution vertical profiles of mass concentration.

  8. A Picea crassifolia Tree-Ring Width-Based Temperature Reconstruction for the Mt. Dongda Region, Northwest China, and Its Relationship to Large-Scale Climate Forcing.

    PubMed

    Liu, Yu; Sun, Changfeng; Li, Qiang; Cai, Qiufang

    2016-01-01

    The historical May-October mean temperature since 1831 was reconstructed based on tree-ring width of Qinghai spruce (Picea crassifolia Kom.) collected on Mt. Dongda, North of the Hexi Corridor in Northwest China. The regression model explained 46.6% of the variance of the instrumentally observed temperature. The cold periods in the reconstruction were 1831-1889, 1894-1901, 1908-1934 and 1950-1952, and the warm periods were 1890-1893, 1902-1907, 1935-1949 and 1953-2011. During the instrumental period (1951-2011), an obvious warming trend appeared in the last twenty years. The reconstruction displayed similar patterns to a temperature reconstruction from the east-central Tibetan Plateau at the inter-decadal timescale, indicating that the temperature reconstruction in this study was a reliable proxy for Northwest China. It was also found that the reconstruction series had good consistency with the Northern Hemisphere temperature at a decadal timescale. Multi-taper method spectral analysis detected some low- and high-frequency cycles (2.3-2.4-year, 2.8-year, 3.4-3.6-year, 5.0-year, 9.9-year and 27.0-year). Combining these cycles, the relationship of the low-frequency change with the Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Southern Oscillation (SO) suggested that the reconstructed temperature variations may be related to large-scale atmospheric-oceanic variations. Major volcanic eruptions were partly reflected in the reconstructed temperatures after high-pass filtering; these events promoted anomalous cooling in this region. The results of this study not only provide new information for assessing the long-term temperature changes in the Hexi Corridor of Northwest China, but also further demonstrate the effects of large-scale atmospheric-oceanic circulation on climate change in Northwest China.

  9. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  10. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Astrophysics Data System (ADS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-06-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  11. Dual physiological rate measurement instrument

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G. (Inventor)

    1990-01-01

    The object of the invention is to provide an instrument for converting a physiological pulse rate into a corresponding linear output voltage. The instrument which accurately measures the rate of an unknown rectangular pulse wave over an extended range of values comprises a phase-locked loop including a phase comparator, a filtering network, and a voltage-controlled oscillator, arranged in cascade. The phase comparator has a first input responsive to the pulse wave and a second input responsive to the output signal of the voltage-controlled oscillator. The comparator provides a signal dependent on the difference in phase and frequency between the signals appearing on the first and second inputs. A high-input impedance amplifier accepts an output from the filtering network and provides an amplified output DC signal to a utilization device for providing a measurement of the rate of the pulse wave.

  12. A new method of time difference measurement: The time difference method by dual phase coincidence points detection

    NASA Technical Reports Server (NTRS)

    Zhou, Wei

    1993-01-01

    In the high accurate measurement of periodic signals, the greatest common factor frequency and its characteristics have special functions. A method of time difference measurement - the time difference method by dual 'phase coincidence points' detection is described. This method utilizes the characteristics of the greatest common factor frequency to measure time or phase difference between periodic signals. It can suit a very wide frequency range. Measurement precision and potential accuracy of several picoseconds were demonstrated with this new method. The instrument based on this method is very simple, and the demand for the common oscillator is low. This method and instrument can be used widely.

  13. Sources of Differences in On-Orbit Total Solar Irradiance Measurements and Description of Proposed Laboratory Intercomparison

    NASA Technical Reports Server (NTRS)

    Butler, J.J.; Johnson, B. C.; Rice, J. P.; Shirley, E. L.; Barnes, R.A.

    2008-01-01

    There is a 5 W/sq m (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18-20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underEll the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here.

  14. Sources of Differences in On-Orbital Total Solar Irradiance Measurements and Description of a Proposed Laboratory Intercomparison

    PubMed Central

    Butler, J. J; Johnson, B. C; Rice, J. P; Shirley, E. L; Barnes, R. A

    2008-01-01

    There is a 5 W/m2 (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18–20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underfill the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here. PMID:27096120

  15. Experimental Evaluation of an Invasive Medical Instrument Based on a Displacement Measurement System.

    PubMed

    Fotiadis, Dimitris A; Astaras, Alexandros; Bamidis, Panagiotis D; Papathanasiou, Kostas; Kalfas, Anestis

    2015-09-01

    This paper presents a novel method for tracking the position of a medical instrument's tip. The system is based on phase locking a high frequency signal transmitted from the medical instrument's tip to a reference signal. Displacement measurement is established having the loop open, in order to get a low frequency voltage representing the medical instrument's movement; therefore, positioning is established by means of conventional measuring techniques. The voltage-controlled oscillator stage of the phase-locked loop (PLL), combined to an appropriate antenna, comprises the associated transmitter located inside the medical instrument tip. All the other low frequency PLL components, low noise amplifier and mixer, are located outside the human body, forming the receiver part of the system. The operating details of the proposed system were coded in Verilog-AMS. Simulation results indicate robust medical instrument tracking in 1-D. Experimental evaluation of the proposed position tracking system is also presented. The experiments described in this paper are based on a transmitter moving opposite a stationary receiver performing either constant velocity or uniformly accelerated movement, and also together with two stationary receivers performing constant velocity movement again. This latter setup is implemented in order to demonstrate the prototype's accuracy for planar (2-D) motion measurements. Error analysis and time-domain analysis are presented for system performance characterization. Furthermore, preliminary experimental assessment using a saline solution container to more closely approximate the human body as a radio frequency wave transmission medium has proved the system's capability of operating underneath the skin.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Prabhat Kumar; Rabehl, Roger

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.2 K), and the closed ends of these tubes are connected to the high temperature (300K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This work alsomore » studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location.« less

  17. Pacific and Atlantic influences on Mesoamerican climate over the past millennium

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Burnette, D. J.; Diaz, J. Villanueva; Heim, R. R.; Fye, F. K.; Paredes, J. Cerano; Soto, R. Acuna; Cleaveland, M. K.

    2012-09-01

    A new tree-ring reconstruction of the Palmer Drought Severity Index (PDSI) for Mesoamerica from AD 771 to 2008 identifies megadroughts more severe and sustained than any witnessed during the twentieth century. Correlation analyses indicate strong forcing of instrumental and reconstructed June PDSI over Mesoamerica from the El Niño/Southern Oscillation (ENSO). Spectral analyses of the 1,238-year reconstruction indicate significant concentrations of variance at ENSO, sub-decadal, bi-decadal, and multidecadal timescales. Instrumental and model-based analyses indicate that the Atlantic Multidecadal Oscillation is important to warm season climate variability over Mexico. Ocean-atmospheric variability in the Atlantic is not strongly correlated with the June PDSI reconstruction during the instrumental era, but may be responsible for the strong multidecadal variance detected in the reconstruction episodically over the past millennium. June drought indices in Mesoamerica are negatively correlated with gridded June PDSI over the United States from 1950 to 2005, based on both instrumental and reconstructed data. Interannual variability in this latitudinal moisture gradient is due in part to ENSO forcing, where warm events favor wet June PDSI conditions over the southern US and northern Mexico, but dryness over central and southern Mexico (Mesoamerica). Strong anti-phasing between multidecadal regimes of tree-ring reconstructed June PDSI over Mesoamerica and reconstructed summer (JJA) PDSI over the Southwest has also been detected episodically over the past millennium, including the 1950-1960s when La Niña and warm Atlantic SSTs prevailed, and the 1980-1990s when El Niño and cold Atlantic SSTs prevailed. Several Mesoamerican megadroughts are reconstructed when wetness prevailed over the Southwest, including the early tenth century Terminal Classic Drought, implicating El Niño and Atlantic SSTs in this intense and widespread drought that may have contributed to social changes in ancient Mexico.

  18. Cavitation measurement during sonic and ultrasonic activated irrigation.

    PubMed

    Macedo, Ricardo; Verhaagen, Bram; Rivas, David Fernandez; Versluis, Michel; Wesselink, Paul; van der Sluis, Luc

    2014-04-01

    The aims of this study were to quantify and to visualize the possible occurrence of transient cavitation (bubble formation and implosion) during sonic and ultrasonic (UAI) activated irrigation. The amount of cavitation generated around several endodontic instruments was measured by sonochemiluminescence dosimetry inside 4 root canal models of human dimensions and varying complexity. Furthermore, the spatial distribution of the sonochemiluminescence in the root canal was visualized with long-exposure photography. Instrument oscillation frequency, ultrasonic power, and file taper influenced the occurrence and amount of cavitation. In UAI, cavitation was distributed between the file and the wall extending beyond the file and inside lateral canals/isthmuses. In sonic activated irrigation, no cavitation was detected. Cavitation was shown to occur in UAI at clinically relevant ultrasonic power settings in both straight and curved canals but not around sonically oscillating instruments, driven at their highest frequency. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Calibrating 15 years of GOLF data

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; García, R. A.

    2011-12-01

    The GOLF resonant scattering spectrophotometer aboard SoHO has now provided 15 years of continuous high precision Sun-as-a-star radial-velocity measurements. This length of time series provides very high resolution in the frequency domain and is combined with very good long-term instrumental stability. These are the requirements for measuring the low-l low-frequency global oscillations of the Sun that will unlock the secrets of the solar core. However, before the scientifically interesting gravity and mixed modes of oscillation fully reveal themselves, a correction and calibration of the whole data set is required. Here we present work towards producing a 15 year GOLF data set corrected for instrumental ageing and thermal variation.

  20. Prediction of future falls in a community dwelling older adult population using instrumented balance and gait analysis.

    PubMed

    Bauer, C M; Gröger, I; Rupprecht, R; Marcar, V L; Gaßmann, K G

    2016-04-01

    The role of instrumented balance and gait assessment when screening for prospective fallers is currently a topic of controversial discussion. This study analyzed the association between variables derived from static posturography, instrumented gait analysis and clinical assessments with the occurrence of prospective falls in a sample of community dwelling older people. In this study 84 older people were analyzed. Based on a prospective occurrence of falls, participants were categorized into fallers and non-fallers. Variables derived from clinical assessments, static posturography and instrumented gait analysis were evaluated with respect to the association with the occurrence of prospective falls using a forward stepwise, binary, logistic regression procedure. Fallers displayed a significantly shorter single support time during walking while counting backwards, increased mediolateral to anteroposterior sway amplitude ratio, increased fast mediolateral oscillations and a larger coefficient (Coeff) of sway direction during various static posturography tests. Previous falls were insignificantly associated with the occurrence of prospective falls. Variables derived from posturography and instrumented gait analysis showed significant associations with the occurrence of prospective falls in a sample of community dwelling older adults.

  1. Spaceborne Gravity Gradiometers. Part 3: Instrument status and prospects

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Various technologies incorporated in the development of gravity gradiometers are demonstrated through descriptions of specific instruments. Concepts covered include: rotating, spherical, cryogenic, and superconducting gravity gradiometers with and without accelerometers. The application of superconducting cavity oscillators to mass-spring gradiometers, and cooperation of Italy's Piano Spaziale Nazionale with the Smithsonian Astrophysics Observatory in the design and development of a high sensitivity gradiometer are described. Schematics are provided for each instrument.

  2. Atmospheric methane measurement instrument using a Zeeman-split He-Ne laser

    NASA Technical Reports Server (NTRS)

    Mcmanus, J. Barry; Kebabian, Paul L.; Kolb, Charles E.

    1989-01-01

    The construction of an atmospheric methane measurement instrument based on a Zeeman-split IR He-Ne laser is reported. The laser has a tranverse magnetic field over about 2/3 of its gain length and can oscillate at an (unsplit) frequency (2947.91/cm) centered on a methane absorption line, or on either of two frequencies split by + or - 0.055/cm from the center, with low CH4 absorption. The laser is tuned to dwell sequentially at each frequency, giving two differential absorption measurements in each 46-ms tuning cycle. Atmospheric measurements are made using two multiple pass absorption cells, one with fast (0.75-s) and one with slow (5-s) flow response times. Fluctuations in ambient CH4 of about 20-ppb (rms, 1-s averaging) are detected, with interference fringe effects the dominant noise source. The instrument has operated in a field experiment (NASA GTE/ABLE-3A) in Alaska.

  3. The Small Angular Oscillations of Airplanes in Steady Flight

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1924-01-01

    This investigation was carried out by the National Advisory Committee for Aeronautics at the request of the Army Air Service to provide data concerning the small angular oscillations of several types of airplanes in steady flight under various atmospheric conditions. The data are of use in the design of bomb sights and other aircraft instruments. The method used consisted in flying the airplane steadily in one direction for at least one minute, while recording the angle of the airplane with the sun by means of a kymograph. The results show that the oscillations differ but little for airplanes of various types, but that the condition of the atmosphere is an important factor. The average angular excursion from the mean in smooth air is 0.8 degrees in pitch, 1.4 degrees in roll, and 0.9 degrees in yaw, without special instruments to aid the pilot in holding steady conditions. In bumpy air the values given above are increased about 50 per cent. (author)

  4. Large-amplitude Longitudinal Oscillations in a Solar Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S.

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based H α telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory . The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°–36°more » with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100–4400 s) have a spatial dependence, implying that the curvature radii ( R ) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4–133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s{sup −1}. Interestingly, the filament experienced mass drainage southward at a speed of ∼27 km s{sup −1}. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between −9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.« less

  5. Decaying and decayless transverse oscillations of a coronal loop

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Nakariakov, V. M.; Verwichte, E.

    2013-04-01

    Aims: We investigate kink oscillations of loops observed in an active region with the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory (SDO) spacecraft before and after a flare. Methods: The oscillations were depicted and analysed with time-distance maps, extracted from the cuts taken parallel or perpendicular to the loop axis. Moving loops were followed in time with steadily moving slits. The period of oscillations and its time variation were determined by best-fitting harmonic functions. Results: We show that before and well after the occurrence of the flare, the loops experience low-amplitude decayless oscillations. The flare and the coronal mass ejection associated to it trigger large-amplitude oscillations that decay exponentially in time. The periods of the kink oscillations in both regimes (about 240 s) are similar. An empirical model of the phenomenon in terms of a damped linear oscillator excited by a continuous low-amplitude harmonic driver and by an impulsive high-amplitude driver is found to be consistent with the observations. Two movies are available in electronic form at http://www.aanda.org

  6. Experimental Investigations in a Reactor Cavity Cooling System with Advanced Instrumentation for the Study of Instabilities, Oscillations, and Transients

    NASA Astrophysics Data System (ADS)

    Tompkins, Casey A.

    A research team at University of Wisconsin - Madison designed and constructed a 1/4 height scaled experimental facility to study two-phase natural circulation cooling in a water-based reactor cavity cooling system (WRCCS) for decay heat removal in an advanced high temperature reactor. The facility is capable of natural circulation operation scaled for simulated decay heat removal (up to 28.5 kW m-2 (45 kW) input power, which is equivalent to 14.25 kW m-2 (6.8 MW) at full scale) and pressurized up to 2 bar. The UW-WRCCS facility has been used to study instabilities and oscillations observed during natural circulation flow due to evaporation of the water inventory. During two-phase operation, the system exhibits flow oscillations and excursions, which cause thermal oscillations in the structure. This can cause degradation in the mechanical structure at welds and limit heat transfer to the coolant. The facility is equipped with wire mesh sensors (WMS) that enable high-resolution measurements of the void fraction and steam velocities in order to study the instability's and oscillation's growth and decay during transient operation. Multiple perturbations to the system's operating point in pressure and inlet throttling have shown that the oscillatory behavior present under normal two-phase operating conditions can be damped and removed. Furthermore, with steady-state modeling it was discovered that a flow regime transition instability is the primary cause of oscillations in the UW-WRCCS facility under unperturbed conditions and that proper orifice selection can move the system into a stable operating regime.

  7. An instrument for direct observations of seismic and normal-mode rotational oscillations of the Earth

    PubMed Central

    Cowsik, R.

    2007-01-01

    The rotations around the vertical axis associated with the normal mode oscillations of the Earth and those induced by the seismic and other disturbances have been very difficult to observe directly. Such observations will provide additional information for 3D modeling of the Earth and for understanding earthquakes and other underground explosions. In this paper, we describe the design of an instrument capable of measuring the rotational motions associated with the seismic oscillations of the Earth, including the lowest frequency normal mode at ν ≈ 3.7 × 10−4 Hz. The instrument consists of a torsion balance with a natural frequency of ν0 ≈ 1.6 × 10−4 Hz, which is observed by an autocollimating optical lever of high angular resolution and dynamic range. Thermal noise limits the sensitivity of the apparatus to amplitudes of ≈ 1.5 × 10−9 rad at the lowest frequency normal mode and the sensitivity improves as ν−3/2 with increasing frequency. Further improvements in sensitivity by about two orders of magnitude may be achieved by operating the balance at cryogenic temperatures. Alternatively, the instrument can be made more robust with a reduced sensitivity by increasing ν0 to ≈10−2 Hz. This instrument thus complements the ongoing effort by Igel and others to study rotational motions using ring laser gyroscopes and constitutes a positive response to the clarion call for developments in rotation seismology by Igel, Lee, and Todorovska [H. Igel, W.H.K. Lee and M.I. Todorovska, AGU Fall Meeting 2006, Rotational Seismology Sessions: S22A,S23B, Inauguration of the International Working Group on Rotational Seismology (IWGoRS)]. PMID:17438268

  8. THz frequency receiver instrumentation for Herschel's heterodyne instrument for far infrared (HIFI)

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Mehdi, Imran; Schlecht, Erich; Maiwald, Frank; Maestrini, Alain; Gill, John J.; Martin, Suzanne C.; Pukala, Dave; Ward, J.; Kawamura, Jonathan; McGrath, William R.; Hatch, William; Harding, Dennis G.; LeDuc, Henry G.; Stern, Jeffry A.; Bumble, Bruce; Samoska, Lorene A.; Gaier, Todd C.; Ferber, Robert; Miller, David; Karpov, Alexandre; Zmuidzinas, Jonas; Phillips, Thomas G.; Erickson, Neal R.; Swift, Jerry; Chung, Yun; Lai, Richard; Wang, Huei

    2003-03-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory is comprised of five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. Two fixed tuned local oscillator sub-bands are derived from a common synthesizer to provide the front-end frequency coverage for each channel. The local oscillator unti will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, and novel material systems in the SIS mixtures. The National Aeronautics and Space Administration's Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the highest frequency (1650-1910 GHz) HEB mixers, local oscillators for the three highest frequency receivers as well as W-band power amplifiers, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. The current state of the art for each of these devices is presented along with a programmatic view of the development effort.

  9. Dynamic Characteristics of Buildings from Signal Processing of Ambient Vibration

    NASA Astrophysics Data System (ADS)

    Dobre, Daniela; Sorin Dragomir, Claudiu

    2017-10-01

    The experimental technique used to determine the dynamic characteristics of buildings is based on records of low intensity oscillations of the building produced by various natural factors, such as permanent agitation type microseismic motions, city traffic, wind etc. The possibility of recording these oscillations is provided by the latest seismic stations (Geosig and Kinemetrics digital accelerographs). The permanent microseismic agitation of the soil is a complex form of stationary random oscillations. The building filters the soil excitation, selects and increases the components of disruptive vibrations corresponding to its natural vibration periods. For some selected buildings, with different instrumentation schemes for the location of sensors (in free-field, at basement, ground floor, roof level), a correlation between the dynamic characteristics resulted from signal processing of ambient vibration and from a theoretical analysis will be presented. The interpretation of recording results could highlight the behavior of the whole structure. On the other hand, these results are compared with those from strong motions, or obtained from a complex dynamic analysis, and they are quite different, but they are explicable.

  10. Investigating the 90-day oscillations using ground-based, satellite and TIME-GCM model simulation data

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Taylor, M.; Hagan, M. E.; Pautet, P. D.; Pugmire, J. R.; Pendleton, W. R., Jr.; Russell, J. M., III

    2016-12-01

    The Andes Lidar Observatory (ALO) is an upper atmospheric observatory located high in the Andes mountain range at Cerro Pachón, Chile (30.3°S, 70.7°W, 2530 m). The Utah State University (USU) Mesospheric Temperature Mapper (MTM) was deployed in August, 2009 collocated with a Na wind/temperature lidar and a meteor wind radar from University of Illinois at Urbana-Champaign (UIUC) as well as other optical instrumentation. In this presentation, we focus on the characteristics of a unique 90-day oscillation identified in the first 18 months in both the mesospheric wind and temperature data from ALO. This event appeared to be long-lived but transient, with similar amplitude to the AO and SAO at this location. Additional mesospheric temperature data from nearby El Leoncito Observatory (31.8°S, 69.3°W), Argentina also showed the same oscillation. The existence and extent of this oscillation are being further examined using SABER/TIMED temperature. The National Center for Atmosphere Research (NCAR) Thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulation of 2009/10 results are utilized to investigate the possible source of this event and the spatial structures are compared with the results from the SABER temperature data.

  11. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    NASA Astrophysics Data System (ADS)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (<10 years) frequency coupling using evidence across tropical, extratropical, and Pacific basin scales. We analyze observations and model simulations with a highly accurate method called Dominant Frequency State Analysis (DFSA) to provide evidence of stable ENSO features. The observational data sets of the Southern Oscillation Index (SOI), North Pacific Index Anomaly, and ENSO Sea Surface Temperature Anomaly, as well as a theoretical model all confirm the existence of long-term and short-term climatic cycles of the ENSO process with resonance frequencies of {2.5, 3.8, 5, 12-14, 61-75, 180} years. This fundamental result shows long-term and short-term signal coupling with mode locking across the dominant ENSO dynamics. These dominant oscillation frequency dynamics, defined as ENSO frequency states, contain a stable attractor with three frequencies in resonance allowing us to coin the term Heartbeat of the Southern Oscillation due to its characteristic shape. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.Plain Language SummaryThe Pacific El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future ENSO events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the ENSO climate breaking? We update the current theory of the ENSO process with a sophisticated analysis approach (Dominant Frequency State Analysis) to include long-term oscillations (up to 200 years) as well as tropical and extratropical interaction dynamics. The analysis uses instrumental and paleoproxy data records in combination with theoretical models of ENSO. This fundamental result that shows the ENSO phenomenon has a stable tropical Pacific attractor with El Niño and La Niña phases, tropical and extratropical coupling and an intermittency or longer-term form of chaos. We call this attractor the Heartbeat of the Southern Oscillation as the phenomenon is measurable in the Southern Oscillation. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013A%26A...560A.107A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013A%26A...560A.107A"><span>Decay-less kink oscillations in coronal loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anfinogentov, S.; Nisticò, G.; Nakariakov, V. M.</p> <p>2013-12-01</p> <p>Context. Kink oscillations of coronal loops in an off-limb active region are detected with the Imaging Assembly Array (AIA) instruments of the Solar Dynamics Observatory (SDO) at 171 Å. Aims: We aim to measure periods and amplitudes of kink oscillations of different loops and to determinate the evolution of the oscillation phase along the oscillating loop. Methods: Oscillating coronal loops were visually identified in the field of view of SDO/AIA and STEREO/EUVI-A: the loop length was derived by three-dimensional analysis. Several slits were taken along the loops to assemble time-distance maps. We identified oscillatory patterns and retrieved periods and amplitudes of the oscillations. We applied the cross-correlation technique to estimate the phase shift between oscillations at different segments of oscillating loops. Results: We found that all analysed loops show low-amplitude undamped transverse oscillations. Oscillation periods of loops in the same active region range from 2.5 to 11 min, and are different for different loops. The displacement amplitude is lower than 1 Mm. The oscillation phase is constant along each analysed loop. The spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We conclude that the observed behaviour is consistent with the empirical model in terms of a damped harmonic resonator affected by a non-resonant continuously operating external force. A movie is available in electronic form at http://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760037249&hterms=Singled&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSingled','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760037249&hterms=Singled&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DSingled"><span>Periodic variations in stratospheric-mesospheric temperature from 20-65 km at 80 N to 30 S</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nastrom, G. D.; Belmont, A. D.</p> <p>1975-01-01</p> <p>Results on large-scale periodic variations of the stratospheric-mesospheric temperature field based on Meteorological Rocket Network (MRN) measurements are reported for a long-term (12-year) mean, the quasi-biennial oscillation (QBO), and the first three harmonics of the annual wave (annual wave, semi-annual wave, and terannual wave or 4-month variation). Station-to-station comparisons are tabulated and charted for amplitude and phase of periodic variations in the temperature field. Masking and biasing factors, such as diurnal tides, solar radiation variations, mean monthly variations, instrument lag, aerodynamic heating, are singled out for attention. Models of the stratosphere will have to account for these oscillations of different periods in the thermal field and related properties of the wind fields, with multilayered horizontal stratification with height taken into account.-</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7670700','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7670700"><span>A novel ultrasonic aerosol generator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Davies, A; Hudson, N; Pirie, L</p> <p>1995-07-01</p> <p>An ultrasonic aerosol generator constructed from a domestic humidifier is described which has been used to produce liquid aerosols for physiological investigations. The instrument was constructed from a Pifco domestic humidifier modified to include an energy guide to direct the oscillations of the transducer through the coupling water, which would normally be aerosolized, onto a small membrane based sample chamber containing the liquid to be aerosolized. The size distribution of the aerosol produced was found to be between 2 and 6 mm, optimum for diffuse intrapulmonary deposition. Up to 4 ml/min of aqueous liquid was used; however the sample chamber could be made small enough to contain economic amounts of expensive material to administer by inhalation. The instrument has proved to be reliable over a period of three years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984army.reptS.....','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984army.reptS....."><span>Radar, target and ranging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>1984-09-01</p> <p>This Test Operations Procedure (TOP) provides conventional test methods employing conventional test instrumentation for testing conventional radars. Single tests and subtests designed to test radar components, transmitters, receivers, antennas, etc., and system performance are conducted with single item instruments such as meters, generators, attenuators, counters, oscillators, plotters, etc., and with adequate land areas for conducting field tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AmJPh..73..887T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AmJPh..73..887T"><span>A computer-based physics laboratory apparatus: Signal generator software</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thanakittiviroon, Tharest; Liangrocapart, Sompong</p> <p>2005-09-01</p> <p>This paper describes a computer-based physics laboratory apparatus to replace expensive instruments such as high-precision signal generators. This apparatus uses a sound card in a common personal computer to give sinusoidal signals with an accurate frequency that can be programmed to give different frequency signals repeatedly. An experiment on standing waves on an oscillating string uses this apparatus. In conjunction with interactive lab manuals, which have been developed using personal computers in our university, we achieve a complete set of low-cost, accurate, and easy-to-use equipment for teaching a physics laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890020518','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890020518"><span>Middle atmosphere thermal structure during MAP/WINE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Offermann, D.</p> <p>1989-01-01</p> <p>Middle atmosphere temperatures were measured during the MAP/WINE campaign by various ground-based techniques, by rocket instruments, and by satellites. Respective data were analyzed for atmospheric thermal mean state as well as for long and short period variations. A brief survey of the results is given. Monthly mean temperatures agree well with the new CIRA model. Long period (planetary) waves frequently exhibit peculiar vertical amplitude and phase structures, resembling those of standing waves. Short period oscillations tend to begin breaking well below the stratosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810892P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810892P"><span>"Ice out": the contribution of citizen scientists to our understanding of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patterson, R. Timothy; Swindles, Graeme T.</p> <p>2016-04-01</p> <p>Long-term trends in spring 'ice out' dates (1836-2013) for twelve lakes in Maine, New Brunswick and New Hampshire, in eastern North America reveal a remarkable coherency across the region (rs=0.462-0.933, p<0.01). These data have been compiled since the early 19th century, primarily by amateur citizen scientists, for a variety of purposes, including determining fishing seasons, estimating the spring opening of ferry boat routes, community contests, and general curiosity. Ice out dates correlate closely with late-winter/early-spring, March-April (MA), instrumental temperature records from across the region (rs=0.488-0.816, p<0.01). This correlation permits use of ice out dates as a proxy to extend the shorter MA instrumental record (1876-2013). Mean ice out dates trended progressively earlier during the recovery from the Little Ice Age through to the 1940s, and gradually became later again through to the late 1970s, when ice out dates had returned to values more typical of the late nineteenth century. Post-1970's ice out dates resumed trending toward earlier dates, with the twenty-first century being characterized by the earliest ice out dates on record. Spectral and wavelet time series analysis indicate that ice out is influenced by several teleconnections including the Quasi-biennial Oscillation, El Niño-Southern Oscillation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation as well as a significant correlation between inland lake records and the Arctic Oscillation. The relative influence of these teleconnections is variable with notable shifts occurring after ~1870, ~1925, and ~1980-2000. The intermittent expression of these cycles in the ice out and MA instrumental record is not only influenced by absolute changes in the intensity of the various teleconnections and other climate drivers, but by phase interference between teleconnections, which periodically damps the various signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8698294','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8698294"><span>Estimation of the breaking of rigor mortis by myotonometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vain, A; Kauppila, R; Vuori, E</p> <p>1996-05-31</p> <p>Myotonometry was used to detect breaking of rigor mortis. The myotonometer is a new instrument which measures the decaying oscillations of a muscle after a brief mechanical impact. The method gives two numerical parameters for rigor mortis, namely the period and decrement of the oscillations, both of which depend on the time period elapsed after death. In the case of breaking the rigor mortis by muscle lengthening, both the oscillation period and decrement decreased, whereas, shortening the muscle caused the opposite changes. Fourteen h after breaking the stiffness characteristics of the right and left m. biceps brachii, or oscillation periods, were assimilated. However, the values for decrement of the muscle, reflecting the dissipation of mechanical energy, maintained their differences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016477','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016477"><span>Magnetometer Based on Optoelectronic Microwave Oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey</p> <p>2005-01-01</p> <p>proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The microwave signal from the output of the photodiode would be amplified (if necessary, as explained below) and fed back into the EOM. This system would oscillate if the amplification in the closed loop exceeded the linear absorption of the loop. The microwave amplifier may be unnecessary to sustain stable oscillations, depending on the power of the laser radiation at the photodetector and on particular features of the modulator and optical delay line.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1144...91O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1144...91O"><span>Low energy high angular resolution neutral atom detection by means of micro-shuttering techniques: the BepiColombo SERENA/ELENA sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orsini, S.; di Lellis, A. M.; Milillo, A.; de Angelis, E.; Mura, A.; Selci, S.; Dandouras, I.; Cerulli-Irelli, P.; Leoni, R.; Mangano, V.; Massetti, S.; Mattioli, F.; Orfei, R.; Austin, C.; Medale, J.-L.; Vertolli, N.; di Giulio, D.</p> <p>2009-06-01</p> <p>The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E~20 eV up to E~5 keV, within 1-D (2°×76°). ELENA is a Time-of-Flight (TOF) system, based on oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical gratings: the incoming neutral particles directly impinge upon the entrance with a definite timing (START) and arrive to a STOP detector after a flight path. After a brief dissertation on the achievable scientific objectives, this paper describes the instrument, with the new design techniques approached for the neutral particles identification and the nano-techniques used for designing and manufacturing the nano-structure shuttering core of the ELENA sensor. The expected count-rates, based on the Hermean environment features, are shortly presented and discussed. Such design technologies could be fruitfully exported to different applications for planetary exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970004275','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970004275"><span>Dynamic Stability Instrumentation System (DSIS). Volume 3; User Manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daniels, Taumi S.; Boyden, Richmond P.; Dress, David A.; Jordan, Thomas L.</p> <p>1996-01-01</p> <p>The paper is an operating manual for the Dynamic Stability Instrumentation System in specific NASA Langley wind tunnels. The instrumentation system performs either a synchronous demodulation or a Fast Fourier Transform on dynamic balance strain gage signals, and ultimately computes aerodynamic coefficients. The dynamic balance converts sting motor rotation into pitch or yaw plane or roll axis oscillation, with timing information provided by a shaft encoder. Additional instruments control model attitude and balance temperature and monitor sting vibrations. Other instruments perform self-calibration and diagnostics. Procedures for conducting calibrations and wind-off and wind-on tests are listed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2840407','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2840407"><span>Instrument for determining the complex shear modulus of soft-tissue-like materials from 10 to 300 Hz</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Madsen, E L; Frank, G R; Hobson, M A; Lin-Gibson, S; Hall, T J; Jiang, J; Stiles, T A</p> <p>2010-01-01</p> <p>Accurate determination of the complex shear modulus of soft tissues and soft-tissue-like materials in the 10–300 Hz frequency range is very important to researchers in MR elastography and acoustic radiation force impulse (ARFI) imaging. A variety of instruments for making such measurements has been reported, but none of them is easily reproduced, and none have been tested to conform to causality via the Kramers–Kronig (K-K) relations. A promising linear oscillation instrument described in a previous brief report operates between 20 and 160 Hz, but results were not tested for conformity to the K-K relations. We have produced a similar instrument with our own version of the electronic components and have also accounted for instrumental effects on the data reduction, which is not addressed in the previous report. The improved instrument has been shown to conform to an accurate approximation of the K-K relations over the 10–300 Hz range. The K-K approximation is based on the Weichert mechanical circuit model. We also found that the sample thickness must be small enough to obtain agreement with a calibrated commercial rheometer. A complete description of the improved instrument is given, facilitating replication in other labs. PMID:18758002</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23579914','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23579914"><span>Mechanized instrumentation of root canals oscillating systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leonardo, Renato de Toledo; Puente, Carlos Garcia; Jaime, Alejandro; Jent, Carol</p> <p>2013-01-01</p> <p>Cleaning and shaping are important steps in the root canal treatment. Despite the technological advances in endodontics, K and Hedstroen files are still widely used. In an attempt to be more effective in preparing the root canals, faster and more cutting efficient kinematic, alloys and design alternatives utilizing mechanically oscillating or rotary files are proposed. Even with all these technological innovating alternatives, the preparation of root canals remains a challenge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880018657','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880018657"><span>Investigation of oscillating cascade aerodynamics by an experimental influence coefficient technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Buffum, Daniel H.; Fleeter, Sanford</p> <p>1988-01-01</p> <p>Fundamental experiments are performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate the torsion mode unsteady aerodynamics of a biconvex airfoil cascade at realistic values of the reduced frequency for all interblade phase angles at a specified mean flow condition. In particular, an unsteady aerodynamic influence coefficient technique is developed and utilized in which only one airfoil in the cascade is oscillated at a time and the resulting airfoil surface unsteady pressure distribution measured on one dynamically instrumented airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils oscillating at a specified interblade phase angle are then determined through a vector summation of these data. These influence coefficient determined oscillation cascade data are correlated with data obtained in this cascade with all airfoils oscillating at several interblade phase angle values. The influence coefficients are then utilized to determine the unsteady aerodynamics of the cascade for all interblade phase angles, with these unique data subsequently correlated with predictions from a linearized unsteady cascade model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PASA...31...29D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PASA...31...29D"><span>Correlated Oscillations Due to Similar Multipath Effects Seen in Two Widely Separated Radio Telescopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diep, P. N.; Phuong, N. T.; Darriulat, P.; Nhung, P. T.; Anh, P. T.; Dong, P. N.; Hoai, D. T.; Thao, N. T.</p> <p>2014-07-01</p> <p>A multipath mechanism similar to that used in Australia sixty years ago by the Sea-cliff Interferometer is shown to generate correlations between the periods of oscillations observed by two distant radio telescopes pointed to the Sun. The oscillations are the result of interferences between the direct wave detected in the main antenna lobe and its reflection on ground detected in a side lobe. A model is made of such oscillations in the case of two observatories located at equal longitudes and opposite tropical latitudes, respectively in Ha Noi (Viet Nam) and Learmonth (Australia), where similar radio telescopes are operated at 1.4 GHz. Simple specular reflection from ground is found to give a good description of the observed oscillations and to explain correlations that had been previously observed and for which no satisfactory interpretation, instrumental or other, had been found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.471.4677K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.471.4677K"><span>On the signatures of flare-induced global waves in the Sun: GOLF and VIRGO observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Brajesh; Mathur, Savita; García, Rafael A.; Jiménez, Antonio</p> <p>2017-11-01</p> <p>Recently, several efforts have been made to identify the seismic signatures of flares and magnetic activity in the Sun and Sun-like stars. In this work, we have analysed the disc-integrated velocity and intensity observations of the Sun obtained from the Global Oscillations at Low Frequencies (GOLF) and Variability of solar IRradiance and Gravity Oscillations/Sun photometers (VIRGO/SPM) instruments, respectively, on board the Solar and Heliospheric Observatory space mission covering several successive flare events, for the period from 2011 February 11 to 2011 February 17, of which 2011 February 11 remained a relatively quiet day and served as a `null test' for the investigation. Application of the spectral analysis to these disc-integrated Sun-as-a-star velocity and intensity signals indicates that there is enhanced power of the global modes of oscillations in the Sun during the flares, as compared to the quiet day. The GOLF instrument obtains velocity observations using the Na I D lines which are formed in the upper solar photosphere, while the intensity data used in our analysis are obtained by VIRGO/SPM instrument at 862 nm, which is formed within the solar photosphere. Despite the fact that the two instruments sample different layers of the solar atmosphere using two different parameters (velocity versus intensity), we have found that both these observations show the signatures of flare-induced global waves in the Sun. These results could suffice in identifying the asteroseismic signatures of stellar flares and magnetic activity in the Sun-like stars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21488970','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21488970"><span>Effect of plastic-covered ultrasonic scalers on titanium implant surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mann, M; Parmar, D; Walmsley, A D; Lea, S C</p> <p>2012-01-01</p> <p>Maintaining oral health around titanium implants is essential. The formation of a biofilm on the titanium surface will influence the continuing success of the implant. These concerns have led to modified ultrasonic scaler instruments that look to reduce implant damage while maximising the cleaning effect. This study aimed to assess the effect of instrumentation, with traditional and modified ultrasonic scalers, on titanium implant surfaces and to correlate this with the oscillations of the instruments. Two ultrasonic insert designs (metallic TFI-10 and a plastic-tipped implant insert) were selected. Each scaler probe was scanned using a scanning laser vibrometer, under loaded and unloaded conditions, to determine their oscillation characteristics. Loads were applied against a titanium implant (100g and 200 g) for 10 s. The resulting implant surfaces were then scanned using laser profilometry and scanning electron microscopy (SEM). Insert probes oscillated with an elliptical motion with the maximum amplitude at the probe tip. Laser profilometry detected defects in the titanium surface only for the metallic scaler insert. Defect widths at 200 g high power were significantly larger than all other load/power conditions (P<0.02). Using SEM, it was observed that modifications to the implant surface had occurred following instrumentation with the plastic-tipped insert. Debris was also visible around the defects. Metal scalers produce defects in titanium implant surfaces and load and power are important factors in the damage caused. Plastic-coated scaler probes cause minimal damage to implant surfaces and have a polishing action but can leave plastic deposits behind on the implant surface. © 2011 John Wiley & Sons A/S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhR...525..167J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhR...525..167J"><span>Self-oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenkins, Alejandro</p> <p>2013-04-01</p> <p>Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4979898','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4979898"><span>A Picea crassifolia Tree-Ring Width-Based Temperature Reconstruction for the Mt. Dongda Region, Northwest China, and Its Relationship to Large-Scale Climate Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Yu; Sun, Changfeng; Li, Qiang; Cai, Qiufang</p> <p>2016-01-01</p> <p>The historical May–October mean temperature since 1831 was reconstructed based on tree-ring width of Qinghai spruce (Picea crassifolia Kom.) collected on Mt. Dongda, North of the Hexi Corridor in Northwest China. The regression model explained 46.6% of the variance of the instrumentally observed temperature. The cold periods in the reconstruction were 1831–1889, 1894–1901, 1908–1934 and 1950–1952, and the warm periods were 1890–1893, 1902–1907, 1935–1949 and 1953–2011. During the instrumental period (1951–2011), an obvious warming trend appeared in the last twenty years. The reconstruction displayed similar patterns to a temperature reconstruction from the east-central Tibetan Plateau at the inter-decadal timescale, indicating that the temperature reconstruction in this study was a reliable proxy for Northwest China. It was also found that the reconstruction series had good consistency with the Northern Hemisphere temperature at a decadal timescale. Multi-taper method spectral analysis detected some low- and high-frequency cycles (2.3–2.4-year, 2.8-year, 3.4–3.6-year, 5.0-year, 9.9-year and 27.0-year). Combining these cycles, the relationship of the low-frequency change with the Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Southern Oscillation (SO) suggested that the reconstructed temperature variations may be related to large-scale atmospheric-oceanic variations. Major volcanic eruptions were partly reflected in the reconstructed temperatures after high-pass filtering; these events promoted anomalous cooling in this region. The results of this study not only provide new information for assessing the long-term temperature changes in the Hexi Corridor of Northwest China, but also further demonstrate the effects of large-scale atmospheric-oceanic circulation on climate change in Northwest China. PMID:27509206</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JMiMi..15.1369W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JMiMi..15.1369W"><span>Droplet-based micro oscillating-flow PCR chip</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Wei; Li, Zhi-Xin; Luo, Rong; Lü, Shu-Hai; Xu, Ai-Dong; Yang, Yong-Jun</p> <p>2005-08-01</p> <p>Polymerase chain reactions (PCR), thermally activated chemical reactions which are widely used for nucleic acid amplification, have recently received much attention in microelectromechanical systems and micro total analysis systems because a wide variety of DNA/RNA molecules can be enriched by PCR for further analyses. In the present work, a droplet-based micro oscillating-flow PCR chip was designed and fabricated by the silicon microfabrication technique. Three different temperature zones, which were stable at denaturation, extension and annealing temperatures and isolated from each other by a thin-wall linkage, were integrated with a single, simple and straight microchannel to form the chip's basic functional structure. The PCR mixture was injected into the chip as a single droplet and flowed through the three temperature zones in the main microchannel in an oscillating manner to achieve the temperature maintenance and transitions. The chip's thermal performance was theoretically analyzed and numerically simulated. The results indicated that the time needed for the temperature of the droplet to change to the target value is less than 1 s, and the root mean square error of temperature is less than 0.2 °C. A droplet of 1 µl PCR mixture with standard HPV (Human Papilloma Virus)-DNA sample inside was amplified by the present chip and the results were analyzed by slab gel electrophoresis with separation of DNA markers in parallel. The electrophoresis results demonstrated that the micro oscillating-flow PCR chip successfully amplified the HPV-DNA, with a processing time of about 15 min which is significantly reduced compared to that for the conventional PCR instrument.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A41H0163P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A41H0163P"><span>TEMPEST-D MM-Wave Radiometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Padmanabhan, S.; Gaier, T.; Reising, S. C.; Lim, B.; Stachnik, R. A.; Jarnot, R.; Berg, W. K.; Kummerow, C. D.; Chandrasekar, V.</p> <p>2016-12-01</p> <p>The TEMPEST-D radiometer is a five-frequency millimeter-wave radiometer at 89, 165, 176, 180, and 182 GHz. The direct-detection architecture of the radiometer reduces its power consumption and eliminates the need for a local oscillator, reducing complexity. The Instrument includes a blackbody calibrator and a scanning reflector, which enable precision calibration and cross-track scanning. The MMIC-based millimeter-wave radiometers take advantage of the technology developed under extensive investment by the NASA Earth Science Technology Office (ESTO). The five-frequency millimeter-wave radiometer is built by Jet Propulsion Laboratory (JPL), which has produced a number of state-of-the-art spaceborne microwave radiometers, such as the Microwave Limb Sounder (MLS), Advanced Microwave Radiometer (AMR) for Jason-2/OSTM, Jason-3, and the Juno Microwave Radiometer (MWR). The TEMPEST-D Instrument design is based on a 165 to 182 GHz radiometer design inherited from RACE and an 89 GHz receiver developed under the ESTO ACT-08 and IIP-10 programs at Colorado State University (CSU) and JPL. The TEMPEST reflector scan and calibration methodology is adapted from the Advanced Technology Microwave Sounder (ATMS) and has been validated on the Global Hawk unmanned aerial vehicle (UAV) using the High Altitude MMIC Sounding radiometer (HAMSR) instrument. This presentation will focus on the design, development and performance of the TEMPEST-D radiometer instrument. The flow-down of the TEMPEST-D mission objectives to instrument level requirements will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003BAMS...84.1037G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003BAMS...84.1037G"><span>Reconstruction of the Precipitation in the Canary Islands for the Period 1595-1836.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>García, Ricardo; Macias, Antonio; Gallego, David; Hernández, Emiliano; Gimeno, Luis; Ribera, Pedro</p> <p>2003-08-01</p> <p>Historical documentary sources in the Canary Islands have been used to construct cereal production series for the period 1595-1836. The cereal growth period in this region covers essentially the rainy season, making these crops adequate to characterize the annual precipitation. A proxy for the Islands' rainfall based on the historical series of wheat and barley production has been constructed and assessed by using two independent series of dry and wet years. The spectral analysis of the crop production reveals a strong non stationary behavior. This fact, along with the direct comparison with several reconstructed and instrumental North Atlantic Oscillation series, suggests the potential use of the reconstructed precipitation as a proxy for this climatic oscillation during preinstrumental times.This is an abridged version of the full-length article that is available online (10.1175/BAMS-84-8-García)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3144934','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3144934"><span>Imprint of the Atlantic Multidecadal Oscillation on Tree-Ring Widths in Northeastern Asia since 1568</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Xiaochun; Brown, Peter M.; Zhang, Yanni; Song, Laiping</p> <p>2011-01-01</p> <p>We present a new tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO) spanning 1568–2007 CE from northeast Asia. Comparison of the instrumental AMO index, an existing tree-ring based AMO reconstruction, and this new record show strongly similar annual to multidecadal patterns of variation over the last 440 years. Warm phases of the AMO are related to increases in growth of Scots pine trees and moisture availability in northeast China and central eastern Siberia. Multi-tape method (MTM) and cross-wavelet analyses indicate that robust multidecadal (∼64–128 years) variability is present throughout the new proxy record. Our results have important implications concerning the influence of North Atlantic sea surface temperatures on East Asian climate, and provide support for the possibility of an AMO signature on global multidecadal climate variability. PMID:21818380</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApSS..421..824S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApSS..421..824S"><span>Optical constants of electroplated gold from spectroscopic ellipsometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Synowicki, R. A.; Herzinger, Craig M.; Hall, James T.; Malingowski, Andrew</p> <p>2017-11-01</p> <p>The optical constants of an opaque electroplated gold film (Laser Gold from Epner Technology Inc.), were determined by spectroscopic ellipsometry at room temperature over the spectral range from 0.142 μm in the vacuum ultraviolet to 36 μm in the infrared (photon energy range 0.034-8.75 eV). Data from two separate ellipsometer instruments covering different spectral ranges were analyzed simultaneously. The optical constants n&k or ε1&ε2 were determined by fitting an oscillator dispersion model combining Drude, Gaussian, and Sellmeier dispersion functions to the experimental Ψ and Δ data. The data were analyzed using both an ideal bulk substrate model and a simple overlayer model to account for surface roughness. Including the optical surface roughness layer improved ellipsometric data fits in the UV, and using a separate Drude function for the surface layer improved fits in the infrared. The surface roughness was also characterized using an Atomic Force Microscope. Using an oscillator dispersion model for the optical constants determined in this work allows for more realistic extrapolation to longer infrared wavelengths. Extending optical constants out to 50 μm and beyond is important for calibrating far-infrared reflectance measurements. Applications include understanding the thermal performance of cryogenic space-based instruments, such as the James Webb Space Telescope (JWST).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760000156&hterms=Electronic+circuits&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DElectronic%2Bcircuits','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760000156&hterms=Electronic+circuits&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DElectronic%2Bcircuits"><span>Electronic circuits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1976-01-01</p> <p>Twenty-nine circuits and circuit techniques developed for communications and instrumentation technology are described. Topics include pulse-code modulation, phase-locked loops, data coding, data recording, detection circuits, logic circuits, oscillators, and amplifiers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA094792','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA094792"><span>Response of the Cardiovascular System to Vibration and Combined Stresses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-11-01</p> <p>flow meter ( Zepeda Instruments) and our di- mension meter (Schussler and Associates) resulted in two suggestions: ’) an outline of possible steps to take...tionally, the flowmeter gate was not adjustable, further limiting our timing ability. Given the features of the Zepeda flowmeter in design (square-wave...dimension meter clock pulse (divided down) as the flow oscillator, rather than capturing the flow oscillator as was necessary with the Zepeda meter. This</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ARep...54..948U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ARep...54..948U"><span>Bright points and ejections observed on the sun by the KORONAS-FOTON instrument TESIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.</p> <p>2010-10-01</p> <p>Five-second observations of the solar corona carried out in the FeIX 171 Å line by the KORONAS-FOTON instrument TESIS are used to study the dynamics of small-scale coronal structures emitting in and around coronal bright points. The small-scale structures of the lower corona display complex dynamics similar to those of magnetic loops located at higher levels of the solar corona. Numerous detected oscillating structures with sizes below 10 000 km display oscillation periods from 50 to 350 s. The period distributions of these structures are different for P < 150 s and P > 150 s, which implies that different oscillation modes are excited at different periods. The small-scale structures generate numerous flare-like events with energies 1024-1026 erg (nanoflares) and with a spatial density of one event per arcsecond or more observed over an area of 4 × 1011 km2. Nanoflares are not associated with coronal bright points, and almost uniformly cover the solar disk in the observation region. The ejections of solar material from the coronal bright points demonstrate velocities of 80-110 km/s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870032856&hterms=Solar+power+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSolar%2Bpower%2Bfilters','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870032856&hterms=Solar+power+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSolar%2Bpower%2Bfilters"><span>The 1984 solar oscillation program of the Mt. Wilson 60-foot tower</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven; Ulrich, Roger K.</p> <p>1986-01-01</p> <p>The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860002728','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860002728"><span>The 1984 solar oscillation program of the Mount Wilson 60-foot tower</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.</p> <p>1985-01-01</p> <p>The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060052468','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060052468"><span>Oscillator Strengths and Predissociation Widths for Rydberg Transitions in Carbon Monoxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Federman, Steven R.; Sheffer, Y.; Eidelsberg, Michele; Lemaire, Jean-Louis; Fillion, Jean-Hugues; Rostas, Francois; Ruiz, J.</p> <p>2006-01-01</p> <p>CO is used as a probe of astronomical environments ranging from planetary atmospheres and comets to interstellar clouds and the envelopes surrounding stars near the end of their lives. One of the processes controlling the CO abundance and the ratio of its isotopomers is photodissociation. Accurate oscillator strengths for Rydberg transitions are needed for modeling this process. Absorption bands were analyzed by synthesizing the profiles with codes developed independently in Meudon and Toledo. Each synthetic spectrum was adjusted to match the experimental one in a non-linear least-squares fitting procedure with the band oscillator strength, the line width (instrumental and predissociation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950048105&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dorbiting%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950048105&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dorbiting%2Bwind"><span>One- to two-month oscillations in SSMI surface wind speed in western tropical Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collins, Michael L.; Stanford, John L.; Halpern, David</p> <p>1994-01-01</p> <p>The 10-m wind speed over the ocean can be estimated from microwave brightness temperature measurements recorded by the Special Sensor Microwave Imager (SSMI) instrument mounted on a polar-orbiting spacecraft. Four-year (1988-1991) time series of average daily 1 deg x 1 deg SSMI wind speeds were analyzed at selected sites in the western tropical Pacific Ocean. One- to two-month period wind speed oscillations with amplitudes statistically significant at the 95% confidence level were observed near Kanton, Eniwetok, Guam, and Truk. This is the first report of such an oscillation in SSMI wind speeds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IzAOP..53..894V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IzAOP..53..894V"><span>Temporal Variability of Total Ozone in the Asian Region Inferred from Ground-Based and Satellite Measurement Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Visheratin, K. N.; Nerushev, A. F.; Orozaliev, M. D.; Zheng, Xiangdong; Sun, Shumen; Liu, Li</p> <p>2017-12-01</p> <p>This paper reports investigation data on the temporal variability of total ozone content (TOC) in the Central Asian and Tibet Plateau mountain regions obtained by conventional methods, as well as by spectral, cross-wavelet, and composite analyses. The data of ground-based observation stations located at Huang He, Kunming, and Lake Issyk-Kul, along with the satellite data obtained at SBUV/SBUV2 (SBUV merged total and profile ozone data, Version 8.6) for 1980-2013 and OMI (Ozone Monitoring Instrument) and TOU (Total Ozone Unit) for 2009-2013 have been used. The average relative deviation from the SBUV/SBUV2 data is less than 1% in Kunming and Issyk-Kul for the period of 1980-2013, while the Huang He Station is characterized by an excess of the satellite data over the ground-based information at an average deviation of 2%. According to the Fourier analysis results, the distribution of amplitudes and the periods of TOC oscillations within a range of over 14 months is similar for all series analyzed. Meanwhile, according to the cross-wavelet and composite analyses results, the phase relationships between the series may considerably differ, especially in the periods of 5-7 years. The phase of quasi-decennial oscillations in the Kunming Station is close to the 11-year oscillations of the solar cycle, while in the Huang He and Issyk-Kul stations the TOC variations go ahead of the solar cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008MNRAS.390..257F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008MNRAS.390..257F"><span>On the spectroscopic nature of the cool evolved Am star HD151878</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freyhammer, L. M.; Elkin, V. G.; Kurtz, D. W.</p> <p>2008-10-01</p> <p>Recently, Tiwari, Chaubey & Pandey detected the bright component of the visual binary HD151878 to exhibit rapid photometric oscillations through a Johnson B filter with a period of 6min (2.78mHz) and a high, modulated amplitude up to 22mmag peak-to-peak, making this star by far the highest amplitude rapidly oscillating Ap (roAp) star known. As a new roAp star, HD151878 is of additional particular interest as a scarce example of the class in the northern sky, and only the second known case of an evolved roAp star - the other being HD116114. We used the FIbre-fed Echelle Spectrograph at the Nordic Optical Telescope to obtain high time-resolution spectra at high dispersion to attempt to verify the rapid oscillations. We show here that the star at this epoch is spectroscopically stable to rapid oscillations of no more than a few tens of ms-1. The high-resolution spectra furthermore show the star to be of type Am rather than Ap and we show the star lacks most of the known characteristics for roAp stars. We conclude that this is an Am star that does not pulsate with a 6-min period. The original discovery of pulsation is likely to be an instrumental artefact. Based on observations collected at the Nordic Optical Telescope as part of programme 36-418. E-mail: lfreyham@gmail.com</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870032497&hterms=598&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D598','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870032497&hterms=598&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D598"><span>Instrumentation for submillimeter spectroscopy; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kollberg, Eric (Editor)</p> <p>1986-01-01</p> <p>The design and performance of spectroscopic instruments for submm-wave astronomy are discussed in reviews and reports. Topics examined include superconducting mixers, Schottky-diode mixers, local oscillators, antennas and quasi-optical components, spectrometry, and systems aspects. Special emphasis is given to candidate components for the 8-m heterodyne FIR and Submm Space Telescope being developed by ESA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028974','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028974"><span>Stability of landsat-4 thematic mapper outgassing models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Micijevic, E.; Chander, G.</p> <p>2006-01-01</p> <p>Oscillations in radiometric gains of the short wave infrared (SWIR) bands in Landsat-4 (L4) and Landsat-5 (L5) Thematic Mappers (TMs) are observed through an analysis of detector responses to the Internal Calibrator (IC) pulses. The oscillations are believed to be caused by an interference effect due to a contaminant film buildup on the window of the cryogenically cooled dewar that houses these detectors. This process of contamination, referred to as outgassing effects, has been well characterized using an optical thin-film model that relates detector responses to the accumulated film thickness and its growth rate. The current models for L4 TM are based on average detector responses to the second brightest IC lamp and have been derived from three data sets acquired during different times throughout the instrument's lifetime. Unlike in L5 TM outgassing characterization, it was found that the L4 TM responses to all three IC lamps can be used to provide accurate characterization and correction for outgassing effects. The analysis of single detector responses revealed an up to five percent difference in the estimated oscillating periods and also indicated a gradual variation of contaminant growth rate over the focal plane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8450E..44P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8450E..44P"><span>Comparing modelling techniques when designing VPH gratings for BigBOSS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poppett, Claire; Edelstein, Jerry; Lampton, Michael; Jelinsky, Patrick; Arns, James</p> <p>2012-09-01</p> <p>BigBOSS is a Stage IV Dark Energy instrument based on the Baryon Acoustic Oscillations (BAO) and Red Shift Distortions (RSD) techniques using spectroscopic data of 20 million ELG and LRG galaxies at 0.5<=z<=1.6 in addition to several hundred thousand QSOs at 0.5<=z<=3.5. When designing BigBOSS instrumentation, it is imperative to maximize throughput whilst maintaining a resolving power of between R=1500 and 4000 over a wavelength range of 360-980 nm. Volume phase Holographic (VPH) gratings have been identified as a key technology which will enable the efficiency requirement to be met, however it is important to be able to accurately predict their performance. In this paper we quantitatively compare different modelling techniques in order to assess the parameter space over which they are more capable of accurately predicting measured performance. Finally we present baseline parameters for grating designs that are most suitable for the BigBOSS instrument.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16583920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16583920"><span>Contribution to harmonic balance calculations of self-sustained periodic oscillations with focus on single-reed instruments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Farner, Snorre; Vergez, Christophe; Kergomard, Jean; Lizée, Aude</p> <p>2006-03-01</p> <p>The harmonic balance method (HBM) was originally developed for finding periodic solutions of electronical and mechanical systems under a periodic force, but has been adapted to self-sustained musical instruments. Unlike time-domain methods, this frequency-domain method does not capture transients and so is not adapted for sound synthesis. However, its independence of time makes it very useful for studying any periodic solution, whether stable or unstable, without care of particular initial conditions in time. A computer program for solving general problems involving nonlinearly coupled exciter and resonator, HARMBAL, has been developed based on the HBM. The method as well as convergence improvements and continuation facilities are thoroughly presented and discussed in the present paper. Applications of the method are demonstrated, especially on problems with severe difficulties of convergence: the Helmholtz motion (square signals) of single-reed instruments when no losses are taken into account, the reed being modeled as a simple spring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850036980&hterms=distribution+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddistribution%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850036980&hterms=distribution+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddistribution%2Btime"><span>High time resolution characteristics of intermediate ion distributions upstream of the earth's bow shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Potter, D. W.</p> <p>1985-01-01</p> <p>High time resolution particle data upstream of the bow shock during time intervals that have been identified as having intermediate ion distributions often show high amplitude oscillations in the ion fluxes of energy 2 and 6 keV. These ion oscillations, observed with the particle instruments of the University of California, Berkeley, on the ISEE 1 and 2 spacecraft, are at the same frequency (about 0.04 Hz) as the magnetic field oscillations. Typically, the 6-keV ion flux increases then the 2-keV flux increases followed by a decrease in the 2-keV flux and then the 6-keV flux decreases. This process repeats many times. Although there is no entirely satisfactory explanation, the presence of these ion flux oscillations suggests that distributions often are misidentified as intermediate ion distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AmJPh..85..587C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AmJPh..85..587C"><span>Measurements on a guitar string as an example of a physical nonlinear driven oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlà, Marcello; Straulino, Samuele</p> <p>2017-08-01</p> <p>An experimental study is described to characterize the oscillation of a guitar string around resonance. A periodic force was applied to the string, generated by the electromagnetic interaction between an alternating current flowing in the string and a magnetic field. The oscillation was studied by measuring the voltage induced in the string itself, which is proportional to the velocity. Accurate quantitative data were obtained for the velocity, both modulus and phase, with a time resolution of 3 ms, corresponding to the oscillation period. The measuring instrument was a personal computer with its sound card and an electronic amplifier, both used to generate the excitation current and record the velocity signal, while performing the required frequency sweep. The study covered an excitation force range more than two and half decades wide (51 dB). The experimental results showed very good agreement with the theoretical behavior of a Duffing oscillator with nonlinear damping over about two decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17792149','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17792149"><span>Plasma wave observations at comet giacobini-zinner.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scarf, F L; Coroniti, F V; Kennel, C F; Gurnett, D A; Ip, W H; Smith, E J</p> <p>1986-04-18</p> <p>The plasma wave instrument on the International Cometary Explorer (ICE) detected bursts of strong ion acoustic waves almost continuously when the spacecraft was within 2 million kilometers of the nucleus of comet Giacobini-Zinner. Electromagnetic whistlers and low-level electron plasma oscillations were also observed in this vast region that appears to be associated with heavy ion pickup. As ICE came closer to the anticipated location of the bow shock, the electromagnetic and electrostatic wave levels increased significantly, but even in the midst of this turbulence the wave instrument detected structures with familiar bow shock characteristics that were well correlated with observations of localized electron heating phenomena. Just beyond the visible coma, broadband waves with amplitudes as high as any ever detected by the ICE plasma wave instrument were recorded. These waves may account for the significant electron heating observed in this region by the ICE plasma probe, and these observations of strong wave-particle interactions may provide answers to longstanding questions concerning ionization processes in the vicinity of the coma. Near closest approach, the plasma wave instrument detected broadband electrostatic noise and a changing pattern of weak electron plasma oscillations that yielded a density profile for the outer layers of the cold plasma tail. Near the tail axis the plasma wave instrument also detected a nonuniform flux of dust impacts, and a preliminary profile of the Giacobini-Zinner dust distribution for micrometer-sized particles is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160008055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160008055"><span>Charge Analyzer Responsive Local Oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krause, Linda Habash; Thornton, Gary</p> <p>2015-01-01</p> <p>The first transatlantic radio transmission, demonstrated by Marconi in December of 1901, revealed the essential role of the ionosphere for radio communications. This ionized layer of the upper atmosphere controls the amount of radio power transmitted through, reflected off of, and absorbed by the atmospheric medium. Low-frequency radio signals can propagate long distances around the globe via repeated reflections off of the ionosphere and the Earth's surface. Higher frequency radio signals can punch through the ionosphere to be received at orbiting satellites. However, any turbulence in the ionosphere can distort these signals, compromising the performance or even availability of space-based communication and navigations systems. The physics associated with this distortion effect is analogous to the situation when underwater images are distorted by convecting air bubbles. In fact, these ionospheric features are often called 'plasma bubbles' since they exhibit some of the similar behavior as underwater air bubbles. These events, instigated by solar and geomagnetic storms, can cause communication and navigation outages that last for hours. To help understand and predict these outages, a world-wide community of space scientists and technologists are devoted to researching this topic. One aspect of this research is to develop instruments capable of measuring the ionospheric plasma bubbles. Figure 1 shows a photo of the Charge Analyzer Responsive to Local Oscillations (CARLO), a new instrument under development at NASA Marshall Space Flight Center (MSFC). It is a frequency-domain ion spectrum analyzer designed to measure the distributions of ionospheric turbulence from 1 Hz to 10 kHz (i.e., spatial scales from a few kilometers down to a few centimeters). This frequency range is important since it focuses on turbulence scales that affect VHF/UHF satellite communications, GPS systems, and over-the-horizon radar systems. CARLO is based on the flight-proven Plasma Local Anomalous Noise Environment (PLANE) instrument, previously flown on a U.S. Air Force low-Earth orbiting satellite, which successfully measured ion turbulence in five frequency decades from 0.1 Hz to 10 kHz (fig 2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4024311-design-instrumentation-pound-watkins-nuclear-magnetic-resonance-spectrometer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4024311-design-instrumentation-pound-watkins-nuclear-magnetic-resonance-spectrometer"><span>DESIGN AND INSTRUMENTATION OF A POUND-WATKINS NUCLEAR MAGNETIC-RESONANCE SPECTROMETER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Geiger, F.E. Jr.</p> <p></p> <p>Problems of instrumentation of a Pound-Watkins nuclear magnetic- resonance spectrometer were investigated. Experimertal data were collected for the sensitivity of the os cillator to a signal from a Watkins calibrator as a function of modulation frequencies from 30 cps to 5 kc and rf tank voltsges from 0.05 to 0.7v/sub rms/. The results confirm Watkins" oscillator theory. An expression was derived for the amount of frequency modulation of the rf oscillator by the Watkins calibrator. For representative values of rf circuit components, this frequency modulation is roughly 0.5 cps at 10 Mc. The rf sample probes constructed for this projectmore » are almost free of modulation pickup in modulation fields as high as 23.5 oersteds (280 cps) and a steady field of 7000 oersteds. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850009694','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850009694"><span>Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.</p> <p>1980-01-01</p> <p>A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.271a2049G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.271a2049G"><span>The acoustic low-degree modes of the Sun measured with 14 years of continuous GOLF & VIRGO measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>García, R. A.; Salabert, D.; Ballot, J.; Sato, K.; Mathur, S.; Jiménez, A.</p> <p>2011-01-01</p> <p>The helioseismic Global Oscillation at Low Frequency (GOLF) and the Variability of solar Irradiance and Gravity Oscillations (VIRGO) instruments onboard SoHO, have been observing the Sun continuously for the last 14 years. In this preliminary work, we characterize the acoustic modes over the entire p-mode range in both, Doppler velocity and luminosity, with a special care for the low-frequency modes taking advantage of the stability and the high duty cycle of space observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA080797','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA080797"><span>An Annotated Bibliography of Patents Related to Coastal Engineering. Volume III. 1974-1976. Appendix.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1979-11-01</p> <p>infrared detectors produce signals which are proportional to the detected reflected radia- tion at the wavelengths k, and A,. A processing channel is con...instrument including an oscillator for sup- T___ plying AC energy to a transducer. The oscillator is keyed on /I by a multvibrator which produces clock pulses... includes dams including such units when installed, and methods of damming water flow. o- 3.786.640 .MEANS AND METHOD FOR PRODUCING STEPPED CONCRETE SLOPE</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004SPIE.5498..486P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004SPIE.5498..486P"><span>THz instrumentation for the Herschel Space Observatory's heterodyne instrument for far infrared</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearson, John C.; Mehdi, Imran; Ward, John S.; Maiwald, Frank W.; Ferber, Robert R.; LeDuc, Henry G.; Schlecht, Erich T.; Gill, John J.; Hatch, William A.; Kawamura, Jonathan H.; Stern, Jeffrey A.; Gaier, Todd C.; Samoska, Lorene A.; Weinreb, Sander; Bumble, Bruce; Pukala, David M.; Javadi, Hamid H.; Finamore, Bradley P.; Lin, Robert H.; Dengler, Robert J.; Velebir, James R.; Luong, Edward M.; Tsang, Raymond; Peralta, Alejandro; Wells, Mary; Chun, William; Zmuidzinas, Jonas; Karpov, Alexandre; Phillips, Thomas; Miller, David; Maestrini, Alain E.; Erickson, Neal; Swift, Gerald; Liao, K. T.; Paquette, Michael</p> <p>2004-10-01</p> <p>The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480- 1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-band Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720004686','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720004686"><span>A rocket borne instrument to measure electric fields inside electrified clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruhnke, L. H.</p> <p>1971-01-01</p> <p>The development of a rocket borne instrument to measure electric fields in thunderstorms is described. Corona currents from a sharp needle atop a small rocket are used to sense the electric field. A high ohm resistor in series with the corona needle linearizes the relationship between corona current and electric field. The corona current feeds a relaxation oscillator, whose pulses trigger a transmitter which operates in the 395 to 410 MHz meteorological band. The instrument senses fields between 5 kV/m and 100 kV/m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010270','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010270"><span>Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.</p> <p>2010-01-01</p> <p>The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors that they produce.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930069132&hterms=soup&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsoup','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930069132&hterms=soup&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsoup"><span>Asteroseismology - The impact of solar space observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hudson, H. S.</p> <p>1993-01-01</p> <p>Observations from space relevant to solar global properties (oscillations, magnetic activity, etc.) are helpful both scientifically and technically in preparing for stellar observations. This paper summarizes the results from the main previous experiments (ACRIM, SOUP, and IPHIR), and also gives an initial technical report from the SXT instrument on board Yohkoh, launched in August 1991. The solar observations to date demonstrate the existence of several mechanisms for low-level variability: spots, faculae, the photospheric network, granulation, and p-mode oscillations. The observations of oscillations have been particularly helpful in setting limits on solar interior rotation. In addition to the solar processes, stars of other types may have different mechanisms of variability. These may include the analogs of coronal holes or solar flares, modes of oscillation not detected in the sun, collisions with small bodies, duplicity, and probably mechanisms not invented yet but related in interesting ways to stellar convection and magnetism.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037464','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037464"><span>Evidence of multidecadal climate variability and the Atlantic Multidecadal Oscillation from a Gulf of Mexico sea-surface temperature-proxy record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poore, R.Z.; DeLong, K.L.; Richey, J.N.; Quinn, T.M.</p> <p>2009-01-01</p> <p>A comparison of a Mg/Ca-based sea-surface temperature (SST)-anomaly record from the northern Gulf of Mexico, a calculated index of variability in observed North Atlantic SST known as the Atlantic Multidecadal Oscillation (AMO), and a tree-ring reconstruction of the AMO contain similar patterns of variation over the last 110 years. Thus, the multidecadal variability observed in the instrumental record is present in the tree-ring and Mg/Ca proxy data. Frequency analysis of the Gulf of Mexico SST record and the tree-ring AMO reconstruction from 1550 to 1990 found similar multidecadal-scale periodicities (???30-60 years). This multidecadal periodicity is about half the observed (60-80 years) variability identified in the AMO for the 20th century. The historical records of hurricane landfalls reveal increased landfalls in the Gulf Coast region during time intervals when the AMO index is positive (warmer SST), and decreased landfalls when the AMO index is negative (cooler SST). Thus, we conclude that alternating intervals of high and low hurricane landfall occurrences may continue on multidecadal timescales along the northern Gulf Coast. However, given the short length of the instrumental record, the actual frequency and stability of the AMO are uncertain, and additional AMO proxy records are needed to establish the character of multidecadal-scale SST variability in the North Atlantic. ?? 2009 US Government.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP42A..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP42A..04M"><span>Climatic and anthropogenic controls on Mississippi River floods: a multi-proxy palaeoflood approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Munoz, S. E.; Therrell, M. D.; Remo, J. W.; Giosan, L.; Donnelly, J. P.</p> <p>2017-12-01</p> <p>Over the last century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation, and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment budget and channel morphology, but the influence of these modifications on flood risk is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability prior to the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood risk on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO), but that artificial channelization has greatly amplified flood magnitudes over the last century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the last five hundred years that combines sedimentary, tree-ring, and instrumental records, reveal that the magnitude of the 100-year flood has increased by 20% over the period of record, with 75% of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood risk to levels that are unprecedented within the last five centuries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.812a2108M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.812a2108M"><span>Development of Reasoning Test Instruments Based on TIMSS Framework for Measuring Reasoning Ability of Senior High School Student on the Physics Concept</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muslim; Suhandi, A.; Nugraha, M. G.</p> <p>2017-02-01</p> <p>The purposes of this study are to determine the quality of reasoning test instruments that follow the framework of Trends in International Mathematics and Science Study (TIMSS) as a development results and to analyse the profile of reasoning skill of senior high school students on physics materials. This research used research and development method (R&D), furthermore the subject were 104 students at three senior high schools in Bandung selected by random sampling technique. Reasoning test instruments are constructed following the TIMSS framework in multiple choice forms in 30 questions that cover five subject matters i.e. parabolic motion and circular motion, Newton’s law of gravity, work and energy, harmonic oscillation, as well as the momentum and impulse. The quality of reasoning tests were analysed using the Content Validity Ratio (CVR) and classic test analysis include the validity of item, level of difficulty, discriminating power, reliability and Ferguson’s delta. As for the students’ reasoning skills profiles were analysed by the average score of achievements on eight aspects of the reasoning TIMSS framework. The results showed that reasoning test have a good quality as instruments to measure reasoning skills of senior high school students on five matters physics which developed and able to explore the reasoning of students on all aspects of reasoning based on TIMSS framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NPGeo..18..925D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NPGeo..18..925D"><span>Self-sustained vibrations in volcanic areas extracted by Independent Component Analysis: a review and new results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Lauro, E.; de Martino, S.; Falanga, M.; Palo, M.</p> <p>2011-12-01</p> <p>We investigate the physical processes associated with volcanic tremor and explosions. A volcano is a complex system where a fluid source interacts with the solid edifice so generating seismic waves in a regime of low turbulence. Although the complex behavior escapes a simple universal description, the phases of activity generate stable (self-sustained) oscillations that can be described as a non-linear dynamical system of low dimensionality. So, the system requires to be investigated with non-linear methods able to individuate, decompose, and extract the main characteristics of the phenomenon. Independent Component Analysis (ICA), an entropy-based technique is a good candidate for this purpose. Here, we review the results of ICA applied to seismic signals acquired in some volcanic areas. We emphasize analogies and differences among the self-oscillations individuated in three cases: Stromboli (Italy), Erebus (Antarctica) and Volcán de Colima (Mexico). The waveforms of the extracted independent components are specific for each volcano, whereas the similarity can be ascribed to a very general common source mechanism involving the interaction between gas/magma flow and solid structures (the volcanic edifice). Indeed, chocking phenomena or inhomogeneities in the volcanic cavity can play the same role in generating self-oscillations as the languid and the reed do in musical instruments. The understanding of these background oscillations is relevant not only for explaining the volcanic source process and to make a forecast into the future, but sheds light on the physics of complex systems developing low turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.S43B1887M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.S43B1887M"><span>Development of a Torsional Seismometer for measuring the rotational oscillations of the Earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madziwa-Nussino, T. G.; Cowsik, R.; Wagoner, K.</p> <p>2008-12-01</p> <p>The motivations for the development and characterization of instruments capable of recording the rotations associated with seismic activity and normal mode oscillations were detailed extensively at the 2006 Fall- meeting of the American Geophysical Union in 2006 and in a special workshop at USGS-Menlo Park in 2007. This paper describes the effort and progress we have made in building a new instrument to be used for such measurements. Our prototype has two basic subsystems; a torsional oscillator and an optical lever for angular measurements. The essential idea behind the design maybe briefly stated as follows: A mechanical torsional oscillator with a natural frequency significantly below the lowest normal mode frequencies will couple negligibly to the rotational motions of the earth, even though the housing of the oscillator is firmly fixed to the earth. A sensitive optical lever, fixed to the Earth, observing such a balance can therefore faithfully measure the rotational oscillations of the Earth. The challenges we face in this development are two-fold: (a) the development of a mechanical torsional oscillator with a low enough natural frequency ~10- 3Hz and the fabrication of an optical lever with an angular resolution better than ~10- 6rad·Hz-1/2; (b) to make the instrument robust and field-worthy for the study of near-field strong motions at frequencies higher than ~10-2Hz. The initial implemented design is as follows: the balance bob consists of a circular mirror of diameter ~ 40mm, with its normal in the horizontal plane. The mirror is mounted within an aluminum framework whose moment of inertia may be adjusted as required and also used for capacitive damping of unwanted torsional oscillations. The configuration has a mass of under 50g and a moment of inertia of ~150g·cm2 about the suspension axis. The suspension fiber is made of SS-304 alloy with a cross section of 7μm × 110μm and length ~5cm. The angular frequency of natural oscillations for this initial design is ~3×10-2 rad·s-1, which corresponds to a period of ~200s or a frequency of ~5×10-3Hz, i.e. significantly smaller than the frequencies of interest. The second subsystem is a robust yet sensitive optical lever which consists of a slit illuminated by a high intensity LED (50,000mcd) emitting in a forward cone of angle ~7°. The slit is located at the focal plane of a lens of aperture f=200mm. This optical design ensures that the image quality and the angular displacement of the image due to motions of the mirror are sensibly independent of changes in the temperature of the surroundings. The optical image falls on a position sensitive diode whose positional accuracy is ≈3×10-5 mm· Hz-1/2 which corresponds to an angular displacement of the mirror by ≈7.5×10-8 rad·Hz-1/2 Currently we are working to improve the seismometer by adding a position control system to help us acquire reliable data in the presence of torsional oscillations. We are also shielding the system from noise due to radiometric and convective currents. We will report on the performance of this balance operated in the basement of a building at the university.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9147E..0SF','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9147E..0SF"><span>The Dark Energy Spectroscopic Instrument (DESI)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flaugher, Brenna; Bebek, Chris</p> <p>2014-07-01</p> <p>The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29401646','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29401646"><span>SNDR Limits of Oscillator-Based Sensor Readout Circuits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cardes, Fernando; Quintero, Andres; Gutierrez, Eric; Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis</p> <p>2018-02-03</p> <p>This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPSJ...85d4402T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPSJ...85d4402T"><span>Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya</p> <p>2016-04-01</p> <p>We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [http://doi.org/10.1088/0169-5983/46/6/061411, Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [http://doi.org/10.1016/j.jsv.2012.01.026, J. Sound Vib. 331, 2558 (2012)].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPJWC..6800006N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPJWC..6800006N"><span>Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nur Rachmawati, Ro'fah; Irene; Budiharto, Widodo</p> <p>2014-03-01</p> <p>Option is one of derivative instruments that can help investors improve their expected return and minimize the risks. However, the Black-Scholes formula is generally used in determining the price of the option does not involve skewness factor and it is difficult to apply in computing process because it produces oscillation for the skewness values close to zero. In this paper, we construct option pricing formula that involve skewness by modified Black-Scholes formula using Shifted Poisson model and transformed it into the form of a Linear Approximation in the complete market to reduce the oscillation. The results are Linear Approximation formula can predict the price of an option with very accurate and successfully reduce the oscillations in the calculation processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97a2216O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97a2216O"><span>Optimal design of tweezer control for chimera states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard</p> <p>2018-01-01</p> <p>Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185082','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185082"><span>North Pacific decadal climate variability since 1661</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Biondi, Franco; Gershunov, Alexander; Cayan, Daniel R.</p> <p>2001-01-01</p> <p>Climate in the North Pacific and North American sectors has experienced interdecadal shifts during the twentieth century. A network of recently developed tree-ring chronologies for Southern and Baja California extends the instrumental record and reveals decadal-scale variability back to 1661. The Pacific decadal oscillation (PDO) is closely matched by the dominant mode of tree-ring variability that provides a preliminary view of multiannual climate fluctuations spanning the past four centuries. The reconstructed PDO index features a prominent bidecadal oscillation, whose amplitude weakened in the late l700s to mid-1800s. A comparison with proxy records of ENSO suggests that the greatest decadal-scale oscillations in Pacific climate between 1706 and 1977 occurred around 1750, 1905, and 1947.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987raas.work..195V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987raas.work..195V"><span>A hydrogen maser clock for space - Clocks in future possible and improbable applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vessot, Robert F. C.</p> <p></p> <p>The development of atomic-H maser clocks for space applications since 1967 is reviewed, with a focus on the 39-kg instrument built for a rocket-flight test of gravitational redshift in 1976. The stability of the oscillator and the instability of earth-space propagation in that test are described, and techniques for overcoming the latter effects are considered. More recent maser clocks employ an H sorption manifold rather than heavy ion pumps; their application to precise satellite position determination for space-based VLBI astronomy is discussed in detail. Extensive diagrams, drawings, and photographs are provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhTea..53..162E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhTea..53..162E"><span>Analyzing Oscillations of a Rolling Cart Using Smartphones and Tablets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Egri, Sándor; Szabó, Lóránt</p> <p>2015-03-01</p> <p>It is well known that "interactive engagement" helps students to understand basic concepts in physics.1 Performing experiments and analyzing measured data are effective ways to realize interactive engagement, in our view. Some experiments need special equipment, measuring instruments, or laboratories, but in this activity we advocate student use of mobile phones or tablets to take experimental data. Applying their own devices and measuring simple phenomena from everyday life can improve student interest, while still allowing precise analysis of data, which can give deeper insight into scientific thinking and provide a good opportunity for inquiry-based learning.2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033296&hterms=Groups+networks&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGroups%2Bnetworks','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033296&hterms=Groups+networks&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGroups%2Bnetworks"><span>The Global Oscillation Network Group site survey, 2: Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hill, Frank; Fischer, George; Forgach, Suzanne; Grier, Jennifer; Leibacher, John W.; Jones, Harrison P.; Jones, Patricia B.; Kupke, Renate; Stebbins, Robin T.; Clay, Donald W.</p> <p>1994-01-01</p> <p>The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile. Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable networks assembled from the individual site records is compared using a statistical principal components analysis. An accompanying paper descibes the analysis methods in detail; here we present the results of both the network and individual site analyses. The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 x 10(exp -4) with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22004573-flare-induced-seismicity-active-region-noaa-related-enhancement-global-waves-sun','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22004573-flare-induced-seismicity-active-region-noaa-related-enhancement-global-waves-sun"><span>ON THE FLARE-INDUCED SEISMICITY IN THE ACTIVE REGION NOAA 10930 AND RELATED ENHANCEMENT OF GLOBAL WAVES IN THE SUN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita</p> <p>2011-12-10</p> <p>A major flare (of class X3.4) occurred on 2006 December 13 in the active region NOAA 10930. This flare event has remained interesting to solar researchers for studies related to particle acceleration during the flare process and the reconfiguration of magnetic fields as well as fine-scale features in the active region. The energy released during flares is also known to induce acoustic oscillations in the Sun. Here, we analyze the line-of-sight velocity patterns in this active region during the X3.4 flare using the Dopplergrams obtained by the Global Oscillation Network Group (GONG) instrument. We have also analyzed the disk-integrated velocitymore » observations of the Sun obtained by the Global Oscillation at Low Frequency (GOLF) instrument on board the Solar and Heliospheric Observatory spacecraft as well as full-disk collapsed velocity signals from GONG observations during this flare to study any possible connection between the flare-related changes seen in the local and global velocity oscillations in the Sun. We apply wavelet transform to the time series of the localized velocity oscillations as well as the global velocity oscillations in the Sun spanning the flare event. The line-of-sight velocity shows significant enhancement in some localized regions of the penumbra of this active region during the flare. The affected region is seen to be away from the locations of the flare ribbons and the hard X-ray footpoints. The sudden enhancement of this velocity seems to be caused by the Lorentz force driven by the 'magnetic jerk' in the localized penumbral region. Application of wavelet analysis to these flare-induced localized seismic signals shows significant enhancement in the high-frequency domain (5 <{nu} < 8 mHz) and a feeble enhancement in the p-mode oscillations (2 <{nu} < 5 mHz) during the flare. On the other hand, the wavelet analysis of GOLF velocity data and the full-disk collapsed GONG velocity data spanning the flare event indicates significant post-flare enhancements in the high-frequency global velocity oscillations in the Sun, as evident from the wavelet power spectrum and the corresponding scale-average variance. The present observations of the flare-induced seismic signals in the active region in context of the driving force are different as compared to previous reports on such cases. We also find indications of a connection between flare-induced localized seismic signals and the excitation of global high-frequency oscillations in the Sun.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29028008','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29028008"><span>Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam</p> <p>2017-10-15</p> <p>We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.549a2003P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.549a2003P"><span>The new powder diffractometer D1B of the Institut Laue Langevin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puente Orench, I.; Clergeau, J. F.; Martínez, S.; Olmos, M.; Fabelo, O.; Campo, J.</p> <p>2014-11-01</p> <p>D1B is a medium resolution high flux powder diffractometer located at the Institut Laue Langevin, ILL. D1B a suitable instrument for studying a large variety of polycrystalline materials. D1B runs since 1998 as a CRG (collaborating research group) instrument, being exploited by the CNRS (Centre National de la Recherche Scientifique, France) and CSIC (Consejo Superior de Investigaciones Cientificas, Spain). In 2008 the Spanish CRG started an updating program which included a new detector and a radial oscillating collimator (ROC). The detector, which has a sensitive height of 100mm, covers an angular range of 128°. Its 1280 gold wires provide a neutron detection point every 0.1°. The ROC is made of 198 gadolinium- based absorbing collimation blades, regular placed every 0.67°. Here the present characteristics of D1B are reviewed and the different experimental performances will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..APR.T1016J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..APR.T1016J"><span>Christodoulou Memory of GW150914 - Prospects of Detection in LIGO and Future Detectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Aaron; Kapadia, Shasvath; Kennefick, Daniel</p> <p>2017-01-01</p> <p>The event GW150914 produced strains of the order 10-21 in the two instruments comprising the Laser Interferometric Gravitational Wave Observatory (LIGO). The event has been interpreted as originating in a coalescing black hole binary, with individual components of about 30 solar masses each. A striking aspect of the coalescence deduced from the signal is the emission of 3 solar masses of energy in the oscillating gravitational wave. Theory predicts a DC component of the gravitational signal associated with the emission of such large amounts of gravitational wave energy known as the Christodoulou memory. The memory, as a non-linear component of the signal, is expected to be an order of magnitude smaller than the amplitude of the primary AC component of the gravitational waves. We discuss the prospects of detecting the Christodoulou memory in similar future signals, both with LIGO and with other detectors, including future space-based instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5855138','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5855138"><span>SNDR Limits of Oscillator-Based Sensor Readout Circuits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis</p> <p>2018-01-01</p> <p>This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms. PMID:29401646</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850009695','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850009695"><span>Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandford, M. C.; Ricketts, R. H.; Watson, J. J.</p> <p>1981-01-01</p> <p>A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15333834','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15333834"><span>Direct measurement of light waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goulielmakis, E; Uiberacker, M; Kienberger, R; Baltuska, A; Yakovlev, V; Scrinzi, A; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F</p> <p>2004-08-27</p> <p>The electromagnetic field of visible light performs approximately 10(15) oscillations per second. Although many instruments are sensitive to the amplitude and frequency (or wavelength) of these oscillations, they cannot access the light field itself. We directly observed how the field built up and disappeared in a short, few-cycle pulse of visible laser light by probing the variation of the field strength with a 250-attosecond electron burst. Our apparatus allows complete characterization of few-cycle waves of visible, ultraviolet, and/or infrared light, thereby providing the possibility for controlled and reproducible synthesis of ultrabroadband light waveforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060042649&hterms=THz&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTHz','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060042649&hterms=THz&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTHz"><span>Observations in the 1.3 and 1.5 THz atmospheric windows with the Receiver Lab Telescope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marrone, Daniel P.; Blundell, Raymond; Tong, Edward; Paine, Scott N.; Loudkov, Denis; Kawamura, Jonathan H.; Luhr, Daniel; Barrientos, Claudio</p> <p>2005-01-01</p> <p>The Receiver Lab Telescope (RLT) is a groundbased terahertz telescope; it is currently the only instrument producing astronomical data between 1 and 2 THz. The capabilities of the RLT have been expanding since observations began in late 2002. Initial observations were limited to the 850 GHz and 1.03 THz windows due to the availability of solid state local oscillators. In the last year we have begun observations with new local oscillators for the 1.3 and 1.5 THz atmospheric windows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP51A2245H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP51A2245H"><span>Treating pre-instrumental data as "missing" data: using a tree-ring-based paleoclimate record and imputations to reconstruct streamflow in the Missouri River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ho, M. W.; Lall, U.; Cook, E. R.</p> <p>2015-12-01</p> <p>Advances in paleoclimatology in the past few decades have provided opportunities to expand the temporal perspective of the hydrological and climatological variability across the world. The North American region is particularly fortunate in this respect where a relatively dense network of high resolution paleoclimate proxy records have been assembled. One such network is the annually-resolved Living Blended Drought Atlas (LBDA): a paleoclimate reconstruction of the Palmer Drought Severity Index (PDSI) that covers North America on a 0.5° × 0.5° grid based on tree-ring chronologies. However, the use of the LBDA to assess North American streamflow variability requires a model by which streamflow may be reconstructed. Paleoclimate reconstructions have typically used models that first seek to quantify the relationship between the paleoclimate variable and the environmental variable of interest before extrapolating the relationship back in time. In contrast, the pre-instrumental streamflow is here considered as "missing" data. A method of imputing the "missing" streamflow data, prior to the instrumental record, is applied through multiple imputation using chained equations for streamflow in the Missouri River Basin. In this method, the distribution of the instrumental streamflow and LBDA is used to estimate sets of plausible values for the "missing" streamflow data resulting in a ~600 year-long streamflow reconstruction. Past research into external climate forcings, oceanic-atmospheric variability and its teleconnections, and assessments of rare multi-centennial instrumental records demonstrate that large temporal oscillations in hydrological conditions are unlikely to be captured in most instrumental records. The reconstruction of multi-centennial records of streamflow will enable comprehensive assessments of current and future water resource infrastructure and operations under the existing scope of natural climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011RScI...82c5119M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011RScI...82c5119M"><span>A new method for wideband characterization of resonator-based sensing platforms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Munir, Farasat; Wathen, Adam; Hunt, William D.</p> <p>2011-03-01</p> <p>A new approach to the electronic instrumentation for extracting data from resonator-based sensing devices (e.g., microelectromechanical, piezoelectric, electrochemical, and acoustic) is suggested and demonstrated here. Traditionally, oscillator-based circuitry is employed to monitor shift in the resonance frequency of the resonator. These circuits give a single point measurement at the frequency where the oscillation criterion is met. However, the resonator response itself is broadband and contains much more information than a single point measurement. Here, we present a method for the broadband characterization of a resonator using white noise as an excitation signal. The resonator is used in a two-port filter configuration, and the resonator output is subjected to frequency spectrum analysis. The result is a wideband spectral map analogous to the magnitude of the S21 parameters of a conventional filter. Compared to other sources for broadband excitation (e.g., frequency chirp, multisine, or narrow time domain pulse), the white noise source requires no design of the input signal and is readily available for very wide bandwidths (1 MHz-3 GHz). Moreover, it offers simplicity in circuit design as it does not require precise impedance matching; whereas such requirements are very strict for oscillator-based circuit systems, and can be difficult to fulfill. This results in a measurement system that does not require calibration, which is a significant advantage over oscillator circuits. Simulation results are first presented for verification of the proposed system, followed by measurement results with a prototype implementation. A 434 MHz surface acoustic wave (SAW) resonator and a 5 MHz quartz crystal microbalance (QCM) are measured using the proposed method, and the results are compared to measurements taken by a conventional bench-top network analyzer. Maximum relative differences in the measured resonance frequencies of the SAW and QCM resonators are 0.0004% and 0.002%, respectively. The ability to track a changing sensor response is demonstrated by inducing temperature variations and measuring resonance frequency simultaneously using the proposed technique in parallel with a network analyzer. The relative difference between the two measurements is about 5.53 ppm, highlighting the impressive accuracy of the proposed system. Using commercially available digital signal processors (DSPs), we believe that this technique can be implemented as a system-on-a-chip solution resulting in a very low cost, easy to use, portable, and customizable sensing system. In addition, given the simplicity of the signal and circuit design, and its immunity to other common interface concerns (injection locking, oscillator interference, and drift, etc.), this method is better suited to accommodating array-based systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38..211O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38..211O"><span>Climatology of equatorial stratosphere over Lagos, Nigeria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oyekola, Oyedemi Samuel</p> <p></p> <p>We have used 12 complete calendar years (January 1993-December 2004) of monthly averages of measurements made by the Dobson spectrophotometer instrument over an urban site, Lagos (6.6oN, 3.3oE), southwest Nigeria, to study equatorial stratospheric column ozone variations and trends. Our results indicate that the time-averaged total column ozone has a seasonal cy-cle, which maximizes in June and July with a value of 259 Dobson units (DU) and minimizes in February with a magnitude of 250 DU. Statistical analysis of the climatological mean monthly total Dobson O3 record for 1993-2004 show that the local trend is approximately +0.041±0.0011 DU/year (+0.49±0.013% per decade). Spectral analysis was applied to the monthly averages series. The significant periodicity at 95% confidence level demonstrate prominent spectra peaks near 1.9 and 3.6 years, representative of quasi-biennial oscillation (QBO) and quasi-triennial oscillation (QTO), respectively. Signal due to semiannual variation is also identified at Lagos sounding site. Comparison with the ozone observations from Total Ozone Mapping Spectrom-eter (TOMS) on board the Earth-Probe (EP) satellite for the period from 1997 to 2002 reveal that EP/TOMS instrument consistently larger than the ground-based measurement from Dob-son station. Percentage mean relative disparity ranges from -11% to 15%. The root mean square error (RMSE) between satellite and ground-based observations over Lagos ranges be-tween ˜35-83 DU with largest and lowest variability occurring during the ascending phase of solar activity (1999, 10.7 cm radio flux, F10.7 equals 154 flux units) and during the peak phase of solar activity (2001, F10.7 equals 181), respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E2294N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E2294N"><span>Observations of decay-less low-amplitude kink oscillations of EUV coronal loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nisticò, Giuseppe; Nakariakov, Valery; Anfinogentov, Sergey</p> <p></p> <p>The high spatial and temporal resolution observations at Extreme Ultra-Violet (EUV) wavelengths from the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) reveal new features in kink oscillations of coronal loops. We show that, in addition to the well-known rapidly decaying oscillations, a new type of kink waves is present, characterized by low-amplitude and undamped oscillations, that we define as decay-less. Typical periods range from 2.5 to 12 min in both regimes and are different for different loops, increasing with the loop length. Estimates of the loop lengths are supported by three dimensional reconstruction of the loop geometry. The amplitude for the decay-less regime is about 1 Mm, close to the spatial resolution of the AIA instruments. The oscillation phase, measured by the cross-correlation method, is found to be constant along each analysed loop, and the spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We show that the observed behaviours are consistent with the empirical model of a damped linear oscillator excited by a continuous low-amplitude harmonic driver, in addition to an eventual impulsive high-amplitude driver. The observed life-time of the oscillations is likely to be determined by the observational conditions rather than any physical damping. However, the balance between the driving and damping is a necessary ingredient of this model. The properties of this type of transverse oscillations make them interesting object of study in the framework of resonant absorption theory and coronal heating process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.8001E..1QI','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.8001E..1QI"><span>Review of optoelectronic oscillators based on modelocked lasers and resonant tunneling diode optoelectronics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ironside, C. N.; Haji, Mohsin; Hou, Lianping; Akbar, Jehan; Kelly, Anthony E.; Seunarine, K.; Romeira, Bruno; Figueiredo, José M. L.</p> <p>2011-05-01</p> <p>Optoelectronic oscillators can provide low noise oscillators at radio frequencies in the 0.5-40 GHz range and in this paper we review two recently introduced approaches to optoelectronic oscillators. Both approaches use an optical fibre feedback loop. One approach is based on passively modelocked laser diodes and in a 40 GHz oscillator achieves up to 30 dB noise reduction. The other approach is based on resonant tunneling diode optoelectronic devices and in a 1.4 GHz oscillator can achieve up to 30 dB noise reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AeoRe..32...42S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AeoRe..32...42S"><span>Field and laboratory comparison of PM10 instruments in high winds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharratt, Brenton; Pi, Huawei</p> <p>2018-06-01</p> <p>Instruments capable of measuring PM10 (particulate matter ≤10 μm in aerodynamic diameter) concentrations may vary in performance as a result of different technologies utilized in measuring PM10. Therefore, the performance of five instruments capable of measuring PM10 concentrations above eroding soil surfaces was tested during high wind events at field sites in the Columbia Plateau and inside a wind tunnel. Comparisons among the Big Spring Number Eight (BSNE) sampler, DustTrak monitor, E-sampler, High-Volume sampler, and Tapered Element Oscillating Microbalance (TEOM) monitor were made at field sites during nine wind erosion events and inside a wind tunnel at two wind speeds (7 and 12 m s-1) and two ambient PM10 concentrations (2 and 50 mg m-3). PM10 concentrations were similar for the High-Volume sampler and TEOM monitor as well as for the BSNE samplers and DustTrak monitors but higher for the High-Volume sampler and TEOM monitor than the E-sampler during field erosion events. Based upon wind tunnel experiments, the TEOM monitor measured the highest PM10 concentration while the DustTrak monitor typically measured the lowest PM10 concentration as compared with other instruments. In addition, PM10 concentration appeared to lower for all instruments at a wind speed of 12 as compared with 7 m s-1 inside the wind tunnel. Differences in the performance of instruments in measuring PM10 concentration poses risks in comparing PM10 concentration among different instrument types or using multiple instrument types to jointly measure concentrations in the field or laboratory or even the same instrument type subject to different wind speeds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110003012','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110003012"><span>A Sub-Hertz, Low-Frequency Vibration Isolation Platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio</p> <p>2011-01-01</p> <p>One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The struts ends are connected in pairs to the base and to the platform, forming an octahedron. The six struts provide the vibration isolation due to the properties of mechanical oscillators that behave as second-order lowpass filters for frequencies above the resonance. At high frequency, the ideal second-order low-pass filter response is spoiled by the distributed mass and the internal modes of membrane and of the platform with its payload.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4530V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4530V"><span>Sea level oscillations over minute timescales: a global perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vilibic, Ivica; Sepic, Jadranka</p> <p>2016-04-01</p> <p>Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJBC...2750182C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJBC...2750182C"><span>Discrete-Time Mapping for an Impulsive Goodwin Oscillator with Three Delays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Churilov, Alexander N.; Medvedev, Alexander; Zhusubaliyev, Zhanybai T.</p> <p></p> <p>A popular biomathematics model of the Goodwin oscillator has been previously generalized to a more biologically plausible construct by introducing three time delays to portray the transport phenomena arising due to the spatial distribution of the model states. The present paper addresses a similar conversion of an impulsive version of the Goodwin oscillator that has found application in mathematical modeling, e.g. in endocrine systems with pulsatile hormone secretion. While the cascade structure of the linear continuous part pertinent to the Goodwin oscillator is preserved in the impulsive Goodwin oscillator, the static nonlinear feedback of the former is substituted with a pulse modulation mechanism thus resulting in hybrid dynamics of the closed-loop system. To facilitate the analysis of the mathematical model under investigation, a discrete mapping propagating the continuous state variables through the firing times of the impulsive feedback is derived. Due to the presence of multiple time delays in the considered model, previously developed mapping derivation approaches are not applicable here and a novel technique is proposed and applied. The mapping captures the dynamics of the original hybrid system and is instrumental in studying complex nonlinear phenomena arising in the impulsive Goodwin oscillator. A simulation example is presented to demonstrate the utility of the proposed approach in bifurcation analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160005761','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160005761"><span>Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fahey, Molly E.; Li, Steven X.; Yu, Anthony W.; Getty, Stephanie A.</p> <p>2016-01-01</p> <p>Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4080288','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4080288"><span>Individual differences in bodily freezing predict emotional biases in decision making</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ly, Verena; Huys, Quentin J. M.; Stins, John F.; Roelofs, Karin; Cools, Roshan</p> <p>2014-01-01</p> <p>Instrumental decision making has long been argued to be vulnerable to emotional responses. Literature on multiple decision making systems suggests that this emotional biasing might reflect effects of a system that regulates innately specified, evolutionarily preprogrammed responses. To test this hypothesis directly, we investigated whether effects of emotional faces on instrumental action can be predicted by effects of emotional faces on bodily freezing, an innately specified response to aversive relative to appetitive cues. We tested 43 women using a novel emotional decision making task combined with posturography, which involves a force platform to detect small oscillations of the body to accurately quantify postural control in upright stance. On the platform, participants learned whole body approach-avoidance actions based on monetary feedback, while being primed by emotional faces (angry/happy). Our data evidence an emotional biasing of instrumental action. Thus, angry relative to happy faces slowed instrumental approach relative to avoidance responses. Critically, individual differences in this emotional biasing effect were predicted by individual differences in bodily freezing. This result suggests that emotional biasing of instrumental action involves interaction with a system that controls innately specified responses. Furthermore, our findings help bridge (animal and human) decision making and emotion research to advance our mechanistic understanding of decision making anomalies in daily encounters as well as in a wide range of psychopathology. PMID:25071491</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040068224','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040068224"><span>THIS: A Next Generation Tuneable Heterodyne Infrared Spectrometer for SOFIA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sonnabend, Guido; Wirtz, Daniel; Schieder, Rudolf</p> <p>2004-01-01</p> <p>A new infrared heterodyne instrument has been developed which allows the use of both tuneable diode lasers (TDL) and quantum cascade lasers (QCL) as local oscillators (LO). The current frequency tuning range of our system extends from 900 to 1100/cm depending on the availability of lasers but is planned to be extended to 600/cm soon. The IF-bandwidth is 1.4 GHz using an acousto-optical spectrometer (AOS). The frequency resolution and stability of the system is approximately 10(exp 7). Currently, mercury-cadmium-telluride (MCT) detectors are used as mixers while new devices like quantum-well-infrared-photodetectors (QWIP) and hot-electron-bolometers (HEB) are investigated. The IF-bandwidth can be extended to about 3 GHz by using a new broadband acousto-optical spectrometer presently under development. The instrument is fully transportable and can be attached to any infrared or optical telescope. The semiconductor laser is stabilized to a Fabry-Perot ring-resonator, which is also used as an efficient diplexer to superimpose the local-oscillator and the signal radiation. As a first step measurements of trace gases in Earth's atmosphere and non-LTE emission from Venus' atmosphere were carried out as well as observations of molecular features in sunspots. Further astronomical observations from ground-based telescopes and the airborne observatory SOFIA are planned for the future. Of particular interest are molecules without a permanent dipole moment like H2, CH4, C2H2 etc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511494O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511494O"><span>The BepiColombo Serena/ELENA instrument: performances and testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orsini, Stefano; De Angelis, Elisabetta; Selci, Stefano; Di Lellis, Andrea; Leoni, Roberto; Rispoli, Rosanna; Colasanti, Luca; Vertolli, Nello; Mura, Alessandro; Milillo, Anna; D'Alessandro, Marco; Mattioli, Francesco; Maschietti, Daniele; Brienza, Daniele; Scheer, Juergen; Wurz, Peter</p> <p>2013-04-01</p> <p>The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E ~20 eV up to E~5 keV, within 1-D (4.5°x76°). ELENA is a Time of Flight instrument, based on the novel concept of ultra-sonic oscillating shutter as Start section and MCP detector with 32 discrete anodes as a direct Stop section. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury allowing to investigate the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface via solar wind-induced ion sputtering (<1eV - >100 eV) as well as Hydrogen back-scattered at hundreds eV. The results of ELENA performance test, will be presented: the innovative Shutter system (Start section) operating at requested frequencies (around 43kHz), the ion rejection capability of double deflection system, the Stop detector, the electronic boards, the validation test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.4613O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.4613O"><span>The BepiColombo SERENA/ELENA sensor. Approaching final delivery: sensor description and recent results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orsini, S.; Selci, S.; Di Lellis, A. M.; Mura, A.; De Angelis, E.; Milillo, A.; Leoni, R.; Dandouras, I.; Scheer, J.; Wurz, P.</p> <p>2012-04-01</p> <p>The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E ~20 eV up to E~5 keV, within 1-D (4.5°x76°). ELENA is a Time-of-Flight (TOF) system, based on oscillating shutter (operated at frequencies up to 50 kHz) and mechanical gratings: the incoming neutral particles directly impinge upon the entrance with a definite timing (START) and arrive to a STOP detector after a flight path. In this way the low-energy neutral particles are directly detected, without using elements of interaction. The new results of the development of the BepiColombo SERENA/ELENA instrument are presented in the frame of the scientific items (instrument simulations, laboratory testing, etc.). In particular, the actual status of the ELENA TOF sections (shuttering system and MCPs) are reported in the light of recent testing results. The sensor performances are investigated, as well as their capability to accomplish the scientific requirements (new deflector system, shuttering functionality test, MCP efficiency, piezo driver and proximity boards, etc.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980009745&hterms=design+experiments+Engineering&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddesign%2Bexperiments%2BEngineering','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980009745&hterms=design+experiments+Engineering&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddesign%2Bexperiments%2BEngineering"><span>Trends in Performance and Characteristics of Ultra-Stable Oscillators for Deep Space Radio Science Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Asmar, Sami</p> <p>1997-01-01</p> <p>Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23837594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23837594"><span>A comparative study of the incidence of Schneiderian membrane perforations during maxillary sinus augmentation with a sonic oscillating handpiece versus a conventional turbine handpiece.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geminiani, Alessandro; Weitz, Daniel S; Ercoli, Carlo; Feng, Changyong; Caton, Jack G; Papadimitriou, Dimitrios E V</p> <p>2015-04-01</p> <p>Sonic instruments may reduce perforation rates of the schneiderian membrane during lateral window sinus augmentation procedures. This study compares the incidence of membrane perforations using a sonic handpiece with an oscillating diamond insert versus a turbine handpiece with a conventional rotary diamond stone during lateral window sinus augmentation procedures. A retrospective chart analysis identified all lateral window sinus augmentation procedures done during a defined period. Among these procedures, those performed with a sonic handpiece and an oscillating diamond insert (experimental) and those performed with a conventional turbine and rotary diamond stone (conventional) were selected for this study. Reported occurrences of sinus membrane perforations during preparation of the osteotomy and elevation of the sinus membrane, as well as postoperative complications, were recorded and compared between treatment groups. Ninety-three consecutive patients were identified for a total of 130 sinus augmentation procedures (51 conventional, 79 experimental). Schneiderian membrane perforations were noted during preparation of the lateral window osteotomy in 27.5% of the sinuses in the conventional group and 12.7% of sinuses in the experimental group. During membrane elevation, perforations were noted in 43.1% of the sinuses in the conventional group and 25.3% of sinuses in the experimental group. Both differences in perforation rates were statistically significant (p < .05). There was no statistically significant difference in postoperative complications. In this study, the use of a sonic instrument to prepare the lateral window osteotomy during sinus elevation procedures resulted in a reduced perforation rate of the Schneiderian membrane compared with the conventional turbine instrument. © 2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760020144','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760020144"><span>Instrumentation for measuring aircraft noise and sonic boom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zuckerwar, A. J. (Inventor)</p> <p>1976-01-01</p> <p>Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850008522','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850008522"><span>Steady- and unsteady-pressure measurements on a supercritical-wing model with oscillating control surfaces at subsonic and transonic speeds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandford, M. C.; Ricketts, R. H.</p> <p>1983-01-01</p> <p>A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static pressure orifices and 164 in situ dynamic pressure gages for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Results from the present test (the third in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60, 0.78, and 0.86 and are presented in tabular form.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150008536&hterms=THz&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DTHz','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150008536&hterms=THz&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DTHz"><span>High Power Local Oscillator Sources for 1-2 THz</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mehdi, Imran; Thomas, Bertrand; Lin, Robert; Maestrini, Alain; Ward, John; Schlecht, Erich; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Maiwald, Frank</p> <p>2010-01-01</p> <p>Recent results from the Heterodyne Instrument for Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore the current status of tunable local oscillator sources beyond HIFI and provide demonstration of how power combining of GaAs Schottky diodes can be used to increase both power and upper operating frequency for heterodyne receivers. Availability of power levels greater than 1 watt in the W-band now makes it possible to design a 1900 GHz source with more than 100 microwatts of expected output power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19700000587','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19700000587"><span>Microbalance accurately measures extremely small masses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Patashnick, H.</p> <p>1970-01-01</p> <p>Oscillating fiber microbalance has a vibrating quartz fiber as balance arm to hold the mass to be weighed. Increasing fiber weight decreases its resonant frequency. Scaler and timer measure magnitude of the shift. This instrument withstands considerable physical abuse and has calibration stability at normal room temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060035881&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060035881&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation"><span>Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.</p> <p>1996-01-01</p> <p>We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000840','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000840"><span>Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David</p> <p>2015-01-01</p> <p>The mass properties of an aerospace vehicle are required by multiple disciplines in the analysis and prediction of flight behavior. Pendulum oscillation methods have been developed and employed for almost a century as a means to measure mass properties. However, these oscillation methods are costly, time consuming, and risky. The NASA Armstrong Flight Research Center has been investigating the Dynamic Inertia Measurement, or DIM method as a possible alternative to oscillation methods. The DIM method uses ground test techniques that are already applied to aerospace vehicles when conducting modal surveys. Ground vibration tests would require minimal additional instrumentation and time to apply the DIM method. The DIM method has been validated on smaller test articles, but has not yet been fully proven on large aerospace vehicles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033295&hterms=Groups+networks&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGroups%2Bnetworks','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033295&hterms=Groups+networks&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGroups%2Bnetworks"><span>The Global Oscillation Network Group site survey. 1: Data collection and analysis methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hill, Frank; Fischer, George; Grier, Jennifer; Leibacher, John W.; Jones, Harrison B.; Jones, Patricia P.; Kupke, Renate; Stebbins, Robin T.</p> <p>1994-01-01</p> <p>The Global Oscillation Network Group (GONG) Project is planning to place a set of instruments around the world to observe solar oscillations as continuously as possible for at least three years. The Project has now chosen the sites that will comprise the network. This paper describes the methods of data collection and analysis that were used to make this decision. Solar irradiance data were collected with a one-minute cadence at fifteen sites around the world and analyzed to produce statistics of cloud cover, atmospheric extinction, and transparency power spectra at the individual sites. Nearly 200 reasonable six-site networks were assembled from the individual stations, and a set of statistical measures of the performance of the networks was analyzed using a principal component analysis. An accompanying paper presents the results of the survey.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930019877','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930019877"><span>Program for an improved hypersonic temperature-sensing probe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reilly, Richard J.</p> <p>1993-01-01</p> <p>Under a NASA Dryden-sponsored contract in the mid 1960s, temperatures of up to 2200 C were successfully measured using a fluid oscillator. The current program, although limited in scope, explores the problem areas which must be solved if this technique is to be extended to 10,000 R. The potential for measuring extremely high temperatures, using fluid oscillator techniques, stems from the fact that the measuring element is the fluid itself. The containing structure of the oscillator need not be brought to equilibrium temperature with with the fluid for temperature measurement, provided that a suitable calibration can be arranged. This program concentrated on review of high-temperature material developments since the original program was completed. Other areas of limited study included related pressure instrumentation requirements, dissociation, rarefied gas effects, and analysis of sensor time response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010002835&hterms=thermal+noise&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthermal%2Bnoise','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010002835&hterms=thermal+noise&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthermal%2Bnoise"><span>Thermal Noise Reduction of Mechanical Oscillators by Actively Controlled External Dissipative Forces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liang, Shoudan; Medich, David; Czajkowsky, Daniel M.; Sheng, Sitong; Yuan, Jian-Yang; Shao, Zhifeng</p> <p>1999-01-01</p> <p>We show that the thermal fluctuations of very soft mechanical oscillators, such as the cantilever in an atomic force microscope (AFM), can be reduced without changing the stiffness of the spring or having to lower the environment temperature. We derive a theoretical relationship between the thermal fluctuations of an oscillator and an actively external-dissipative force. This relationship is verified by experiments with an AFM cantilever where the external active force is coupled through a magnetic field. With simple instrumentation, we have reduced the thermal noise amplitude of the cantilever by a factor of 3.4, achieving an apparent temperature of 25 K with the environment at 295K. This active noise reduction approach can significantly improve the accuracy of static position or static force measurements in a number of practical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThApC.123..733S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThApC.123..733S"><span>Analysis of monthly, winter, and annual temperatures in Zagreb, Croatia, from 1864 to 2010: the 7.7-year cycle and the North Atlantic Oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sen, Asok K.; Ogrin, Darko</p> <p>2016-02-01</p> <p>Long instrumental records of meteorological variables such as temperature and precipitation are very useful for studying regional climate in the past, present, and future. They can also be useful for understanding the influence of large-scale atmospheric circulation processes on the regional climate. This paper investigates the monthly, winter, and annual temperature time series obtained from the instrumental records in Zagreb, Croatia, for the period 1864-2010. Using wavelet analysis, the dominant modes of variability in these temperature series are identified, and the time intervals over which these modes may persist are delineated. The results reveal that all three temperature records exhibit low-frequency variability with a dominant periodicity at around 7.7 years. The 7.7-year cycle has also been observed in the temperature data recorded at several other stations in Europe, especially in Northern and Western Europe, and may be linked to the North Atlantic Oscillation (NAO) and/or solar/geomagnetic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/443008-weld-pool-oscillation-during-pulsed-gta-welding','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/443008-weld-pool-oscillation-during-pulsed-gta-welding"><span>Weld pool oscillation during pulsed GTA welding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aendenroomer, A.J.R.; Ouden, G. den</p> <p>1996-12-31</p> <p>This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Undermore » these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9796E..1ZS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9796E..1ZS"><span>A low complexity, low spur digital IF conversion circuit for high-fidelity GNSS signal playback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Fei; Ying, Rendong</p> <p>2016-01-01</p> <p>A low complexity high efficiency and low spur digital intermediate frequency (IF) conversion circuit is discussed in the paper. This circuit is key element in high-fidelity GNSS signal playback instrument. We analyze the spur performance of a finite state machine (FSM) based numerically controlled oscillators (NCO), by optimization of the control algorithm, a FSM based NCO with 3 quantization stage can achieves 65dB SFDR in the range of the seventh harmonic. Compare with traditional lookup table based NCO design with the same Spurious Free Dynamic Range (SFDR) performance, the logic resource require to implemented the NCO is reduced to 1/3. The proposed design method can be extended to the IF conversion system with good SFDR in the range of higher harmonic components by increasing the quantization stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP23A0950A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP23A0950A"><span>Tilt Current Meter Field Validation in the Surf Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anarde, K.; Myres, H.; Figlus, J.</p> <p>2016-12-01</p> <p>Tilt current meters (TCMs) are a low-cost way of measuring current velocities in coastal waters. They consist of a slightly buoyant floater, tilt sensor assembly, and internal logger tethered to a fixed base. TCMs measure the tilt of the sensor induced by the forces of the flowing water to infer local current velocity. They have been successfully deployed to measure unidirectional flows in rivers and slowly oscillating flows in tidally influenced bodies of water where the inertia of the instrument does not create a problem. Here we attempt to validate an array of TCMs for use in the surf zone where waves, wave bores, and alongshore currents dominate the hydrodynamics in relatively shallow water (0.3 - 2.0 m) with relatively high oscillatory frequencies. A series of test deployments using seven measuring pods outfitted with TCMs and pressure transducers were conducted in the surf zone off Galveston Island, Texas. Field experiments were supported by laboratory tests of the instrument assemblies in a moveable-bed wave flume. Instrument pod design was optimized over the series of tests to minimize issues caused by scouring, sedimentation, and overturning. The end design consists of a low-profile concrete base plate secured to the bed by sand stakes. Field measurements of tilt and bearing were calibrated against co-located acoustic Doppler velocimeter (ADV) and wave-current profiler (ADCP) measurements as well as laboratory-supplied calibration curves. While optimization of the setup is ongoing, the initial field studies show good correlation between instrument pairs. If successfully validated, the TCMs will be used as part of an instrument array designed to measure overland flow dynamics during extreme storms. Other potential uses include detailed analysis of spatial and temporal gradients in nearshore hydrodynamics such as the complex flow scenarios through tidal inlets and around barrier islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100031217&hterms=time+travel&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtime%2Btravel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100031217&hterms=time+travel&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtime%2Btravel"><span>Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, T. L., Jr.; Parchevsky, K.; Scherrer, P. H.</p> <p>2009-01-01</p> <p>The Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time-distance helioseismology pipeline has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time-distance helioseismology: a Gabor wavelet fitting (Kosovichev and Duvall, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, 2002), and a linearized version of the minimization method (Gizon and Birch, 2004). Using Doppler velocity data from the Michelson Doppler Imager (MDI) instrument on board SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet Sun region, the method of Gizon and Birch (2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (1997) and Gizon and Birch (2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors they produce</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMNG31A0855P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMNG31A0855P"><span>Study of Low-Frequency Earth motions from Earthquakes and a Hurricane using a Modified Standard Seismometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peters, R. D.</p> <p>2004-12-01</p> <p>The modification of a WWSSN Sprengnether vertical seismometer has resulted in significantly improved performance at low frequencies. Instead of being used as a velocity detector as originally designed, the Faraday subsystem is made to function as an actuator to provide a type of force feedback. Added to the instrument to detect ground motions is an array form of the author's symmetric differential capacitive (SDC) sensor. The feedback circuit is not conventional, but rather is used to eliminate long-term drift by placing between sensor and actuator an operational amplifier integrator having a time constant of several thousand seconds. Signal to noise ratio at low frequencies is increased, since the modified instrument does not suffer from the 20dB/decade falloff in sensitivity that characterizes conventional force-feedback seismometers. A Hanning-windowed FFT algorithm is employed in the analysis of recorded earthquakes, including that of the very large Indonesia earthquake (M 7.9) of 25 July 2004. The improved low frequency response allows the study of the free oscillations of the Earth that accompany large earthquakes. Data will be provided showing oscillations with spectral components in the vicinity of 1 mHz, that frequently have been observed with this instrument to occur both before as well as after an earthquake. Additionally, microseisms and other interesting data will be shown from records collected by the instrument as Hurricane Charley moved across Florida and up the eastern seaboard.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S42B..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S42B..02M"><span>Normal Mode Analysis of Ambient-Noise Induced Free Oscillations of a Slender Medieval Masonry Tower in Bologna (Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morelli, A.; Azzara, R. M.; Cavaliere, A.; Zaccarelli, L.</p> <p>2014-12-01</p> <p>Analysis of the oscillations of buildings — either excited by earthquakes or by ambient noise — has become an effective tool to evaluate the response of such structures to strong ground motion, and hence to assess their seismic vulnerability. Response to small-amplitude ground motion may also provide crucial information on the elastic and anelastic properties of a structure — essential in the case of historical buildings — and constrain numerical full dynamic structural analyses. We report about an analysis carried out for a tall medieval monumental building in the urban center of the Norther Italian city of Bologna. Seismic monitoring, carried on for six months using field seismic instrumentation, has revealed the response to ambient noise, and has allowed to reconstruct, with high detail, the free oscillation modes of the tower. At 97 meters, the XII-century tower of the Asinelli is the tallest masonry building in Europe, and the most slender. We measured the fundamental, and several higher-order, flexural normal modes of oscillation, as well as the fundamental torsional mode. Asymmetry due to non-coincidence of centers of mass and of stiffness produces slightly different modal frequencies of oscillation in two orthogonal directions, consistently with dynamical modeling. Horizontal particle-motion polarization plots show the cyclic energy transfer between two degrees of freedom of the system. The Asinelli spectral signature can also be easily recognized in the motion recorded at the base of nearby Garisenda. We verify that there is correlation of spectral amplitudes with time of the day — in agreement with expected time-variance of anthropic disturbance —- but also with wind velocity and, intriguingly, with temperature variations inside the buidings. We are using these data to adjust the numerical dynamical models of the buildings, to examine time variations of behavior, and to identify the origin of anthropogenic sources of vibration in view of their possible mitigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007319','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007319"><span>Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu</p> <p>2011-01-01</p> <p>The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually following the oscillating biases, resulting in movement of the spacecraft on the order of plus or minus 20 arcsec. Though this level of error met the ACS attitude knowledge requirement of [35, 70, 70] arcsec, 3 sigma, the desire of the ACS and instrument teams was to remove as much of the oscillation as possible. The Kearfott IRUs have an internal temperature controller, designed to maintain the IRU temperature at a constant temperature of approximately 70 C, thus minimizing the change in the bias drift and scale factors of the mechanical gyros. During ground testing of the observatory, it was discovered that the 83-Hz control cycle of the IRU heaters put a tremendous amount of stress on the spacecraft battery. Analysis by the power systems team indicated that the constant charge/discharge on the battery due to the IRU thermal control cycle could potentially limit the life of the battery. After much analysis, the decision was made not to run the internal IRU heaters. Analysis of on orbit data revealed that the oscillations in the IRU bias had a connection to the temperature of the IRU; changes in IRU temperature resulted in changes in the amplitude and period of the IRU biases. Several mitigating solutions were investigated, the result of which was to tune the KF with larger IRU noise assumptions which allows the KF to follow and correct for the time-varying IRU biases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985RpEEE.......60A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985RpEEE.......60A"><span>Instrument for measuring dispersional distortions in optical fibers and cables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alishev, Y. V.; Maryenko, A. A.; Smirnov, Y. V.; Uryadov, V. N.; Sinkevich, V. I.</p> <p>1985-03-01</p> <p>An instrument was developed and built for measuring the dispersional distortions in optical fibers and cables on the basis of pulse widening. The instrument consists of a laser as a light source, a master oscillator, an optical transmitter, an optical shunt with mode mixer, an optical receiver, a fiber length measuring device, a smoothly adjustable delay line, and a stroboscopic oscillograph. The optical transmitter contains a semiconductor laser with GaAs-GaAlAs diheterostructure and modulator with pulse generating avalanche-breakdown transistors. The optical receiver contains a germanium photodiode with internal amplification and photoreceiver amplifier with microwave bipolar germanium transistors. Matching of the instrument to the tested fiber line is done by passing radiation into the latter from an auxiliary small He-Ne laser through a directional coupler.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100040616','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100040616"><span>Development of the Global Ozone Lidar Demonstrator (GOLD) Instrument for Deployment on the NASA Global Hawk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hair, Jonathan W.; Browell, Edward V.; McGee, Thomas; Butler, Carolyn; Fenn, Marta; Os,ao (. Sued); Notari, Anthony; Collins, James; Cleckner, Craig; Hostetler, Chris</p> <p>2010-01-01</p> <p>A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4290602','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4290602"><span>Object-based attentional selection modulates anticipatory alpha oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Knakker, Balázs; Weiss, Béla; Vidnyánszky, Zoltán</p> <p>2015-01-01</p> <p>Visual cortical alpha oscillations are involved in attentional gating of incoming visual information. It has been shown that spatial and feature-based attentional selection result in increased alpha oscillations over the cortical regions representing sensory input originating from the unattended visual field and task-irrelevant visual features, respectively. However, whether attentional gating in the case of object based selection is also associated with alpha oscillations has not been investigated before. Here we measured anticipatory electroencephalography (EEG) alpha oscillations while participants were cued to attend to foveal face or word stimuli, the processing of which is known to have right and left hemispheric lateralization, respectively. The results revealed that in the case of simultaneously displayed, overlapping face and word stimuli, attending to the words led to increased power of parieto-occipital alpha oscillations over the right hemisphere as compared to when faces were attended. This object category-specific modulation of the hemispheric lateralization of anticipatory alpha oscillations was maintained during sustained attentional selection of sequentially presented face and word stimuli. These results imply that in the case of object-based attentional selection—similarly to spatial and feature-based attention—gating of visual information processing might involve visual cortical alpha oscillations. PMID:25628554</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22692713','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22692713"><span>An underwater blood pressure measuring device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sieber, Arne; Kuch, Benjamin; L'abbate, Antonio; Wagner, Matthias; Dario, Paolo; Bedini, Remo</p> <p>2008-09-01</p> <p>Measurement of arterial blood pressure is an important vital sign for monitoring the circulation. However, up to now no instrument has been available that enables the measurement of blood pressure underwater. The present paper details a novel, oscillometric, automatic digital blood pressure (BP) measurement device especially designed for this purpose. It consists mainly of analogue and digital electronics in a lexan housing that is rated to a depth of up to 200 metres' sea water, a cuff and a solenoid for inflation of the cuff with air supplied from a scuba tank. An integrated differential pressure sensor, exposed to the same ambient pressure as the cuff, allows accurate BP measurement. Calculation of systolic and diastolic pressures is based on the analysis of pressure oscillations recorded during the deflation. In hyperbaric chamber tests to pressures up to 405 kPa, BP measurements taken with the prototype were comparable to those obtained with established manual and automated methods. Swimming pool tests confirmed the correct functioning of the system underwater. The quality of the recorded pressure oscillations was very good even at 10 metres' fresh water, and allowed determination of diastolic and systolic pressure values. Based on these results we envisage that this device will lead to a better understanding of human cardiovascular physiology in underwater and hyperbaric environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005IJCli..25.1715G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005IJCli..25.1715G"><span>A mid-shelf, mean wave direction climatology for southeastern Australia, and its relationship to the El Niño - Southern Oscillation since 1878 A.D.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodwin, Ian D.</p> <p>2005-11-01</p> <p>Coastal systems behave on timescales from days to centuries. Shelf and coastal wave climatological data from the Tasman Sea are only available for the past few decades. Hence, the records are too short to investigate inter- and multidecadal variability and their impact on coastal systems. A method is presented to hindcast monthly mid-shelf mean wave direction (MWD) for southeastern Australia, based on the monthly, trans-Tasman mean sea-level pressure (MSLP) difference between northern NSW (Yamba) and the north island of New Zealand (Auckland). The MSLP index is calibrated to instrumental (Waverider buoy) MWD data for the Sydney shelf and coast. Positive/negative trans-Tasman MSLP difference is significantly correlated to southerly/easterly Sydney MWD, and to long/short mean wave periods. The 124-year Sydney annual (MWD) time series displays multidecadal variability, and identifies a significant period of more southerly annual MWD during 1884 to 1914 than in the period since 1915. The Sydney MWD is significantly correlated to the Southern Oscillation Index (SOI). The correlation with the SOI is enhanced during periods when the Interdecadal Pacific Oscillation (IPO) is in its negative state and warm SST anomalies occur in the southwest Pacific region. The Sydney MWD was found to be associated with Pacific basin-wide climate fluctuations associated with the El Niño-Southern Oscillation (ENSO). Southerly/easterly Sydney MWD is correlated with low/high MSLP anomalies over New Zealand and the central Pacific Ocean. Southerly/easterly Sydney MWD is also correlated with cool/warm SST anomalies in the southwest Pacific, particularly in the eastern Coral Sea and Tasman Sea. Copyright</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995RScI...66.4073G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995RScI...66.4073G"><span>A tunable, double-wavelength heterodyne detection interferometer with frequency-locked diode-pumped Nd:YAG sources for absolute measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gelmini, E.; Minoni, U.; Docchio, F.</p> <p>1995-08-01</p> <p>A double heterodyne interferometric instrument using a tunable synthetic wavelength for the absolute measurements of distance and position is presented. The optical synthetic wavelength is generated by a pair of PZT-tunable diode-pumped Nd:YAG lasers operating at 1.064 μm. Based on a closed-loop scheme, a suitable electronic circuit has been developed to implement the frequency locking of the two lasers. A digital frequency comparator provides an error signal, used to control the slave laser, by comparing the laser beat frequency to a reference oscillator. Demodulation of the superheterodyne signals is obtained by a rf detector followed by low-pass filtering. Distance measurements are obtained by a digital phase meter gauging the phase difference between the demodulated signals from a measuring interferometer and from a reference interferometer. The paper presents the optical and the electronic layouts of the instrument as well as experimental results from a laboratory prototype.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJWC.11604008C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJWC.11604008C"><span>Predicted sensitivity of the KM3NeT/ARCA detector to a diffuse flux of cosmic neutrinos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coniglione, R.; Fusco, L. A.; Stransky, D.</p> <p>2016-04-01</p> <p>The KM3NeT Collaboration has started the construction of a research infrastructure hosting a network of underwater neutrino detectors in the Mediterranean Sea. Two instruments based on the same technology are being built: KM3NeT/ORCA to measure the neutrino mass hierarchy and to study atmospheric neutrino oscillations and KM3NeT/ARCA to detect high-energy cosmic neutrinos both in diffuse and point source mode. The excellent angular resolution of the ARCA detector, with an instrumented volume of about one Gton, will allow for an unprecedented exploration of the neutrino sky searching for neutrinos coming from defined sources of sky regions, like the Galactic Plane and the Fermi Bubbles. It will also look for diffuse high energy neutrino fluxes following the indication provided by the IceCube signal. This contribution will report on the sensitivity of the KM3NeT/ARCA telescope with particular attention to the region of the Galactic Plane. Comparisons with theoretical expectations are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100042213','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100042213"><span>Power Amplifier Module with 734-mW Continuous Wave Output Power</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara</p> <p>2010-01-01</p> <p>Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930091468','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930091468"><span>A New Principle of Sound Frequency Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Theodorsen, Theodore</p> <p>1932-01-01</p> <p>In connection with the study of aircraft and propeller noises, the National Advisory Committee for Aeronautics has developed an instrument for sound-frequency analysis which differs fundamentally from previous types, and which, owing to its simplicity of principle, construction, and operation, has proved to be of value in this investigation. The method is based on the well-known fact that the Ohmic loss in an electrical resistance is equal to the sum of the losses of the harmonic components of a complex wave, except for the case in which any two components approach or attain vectorial identity, in which case the Ohmic loss is increased by a definite amount. The principle of frequency analysis has been presented mathematically and a number of distinct advantages relative to previous methods have been pointed out. An automatic recording instrument embodying this principle is described in detail. It employs a beat-frequency oscillator as a source of variable frequency. A large number of experiments have verified the predicted superiority of the method. A number of representative records are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJWC.11611008S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJWC.11611008S"><span>KM3NeT/ORCA status and plans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samtleben, Dorothea F. E.</p> <p>2016-04-01</p> <p>Neutrinos created in interactions of cosmic rays with the atmosphere can serve as a powerful tool to unveil the neutrino mass hierarchy (NMH). At low energies, around a few GeV, matter effects from the transition through the Earth are expected to imprint a distinct but also subtle signature on the oscillation pattern, specific to the ordering of the neutrino masses. KM3NeT/ORCA (Oscillations Research with Cosmics in the Abyss), a densely instrumented building block of the upcoming KM3NeT neutrino telescope, will be designated to measuring this signature in the Mediterranean Sea. Using detailed simulations the sensitivity towards this signature has been evaluated. The multi-PMT detectors allow in the water for an accurate reconstruction of GeV neutrino event signatures and distinction of neutrino flavours. For the determination of the mass hierarchy a median significance of 2-6σ has been estimated for three years of data taking, depending on the actual hierarchy and the oscillation parameters. At the same time the values of several oscillation parameters like θ23 will be determined to unprecedented precision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960014420&hterms=golf&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgolf','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960014420&hterms=golf&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgolf"><span>VIRGO: Experiment for helioseismology and solar irradiance monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Froehlich, Claus; Andersen, Bo N.</p> <p>1995-01-01</p> <p>The scientific objectives of the variability of solar irradiance and gravity oscillations (VIRGO) experiment are as follows: to determine the characteristics of pressure and internal gravity oscillations by observing irradiance and radiance variations; to measure the solar total and spectral irradiance, and to quantify their variability. Helioseismological methods can be applied to these data in order to probe the solar interior. Certain convection characteristics and their interaction with magnetic fields will be studied from the results of the irradiance monitoring and from the comparison of the amplitudes and phases of the oscillations as observed from the brightness by VIRGO and from velocity by the global oscillations at low frequency (GOLF) experiment. The VIRGO experiment contains two active-cavity radiometers that monitor the solar constant, two three-channel sunphotometers that measure the spectral irradiance, and a low resolution imager with 12 pixels that measures the radiance distribution over the solar disk at 500 nm. The scientific objectives of VIRGO are presented, the instruments and the data acquisition and control system are described, and their measured performances are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..302a2041B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..302a2041B"><span>Burnishing Systems: a Short Survey of the State-of-the-art</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bobrovskij, I. N.</p> <p>2018-01-01</p> <p>The modern technological solutions allowing to implement a new technology of surface plastic deformation are considered. The technological device allowing to implement the technology of hyper productive surface plastic deformation or wide burnishing (machining time is up to 2-3 revolutions of workpiece) is presented. The device provides the constant force of instruments regardless the beating, non-roundness and other surface shape defects; usable and easily controlled force adjustment; precise installation of instruments and holders toward the along the worpieces axis; automation of the supply and retraction of instruments. Also the device allowing to implement the technology of nanostructuring burnishing is presented. The design of the device allows to eliminate the effect of auto-oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760000452&hterms=automatic+braking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dautomatic%2Bbraking','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760000452&hterms=automatic+braking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dautomatic%2Bbraking"><span>Doppler extraction with a digital VCO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Starner, E. R.; Nossen, E. J.</p> <p>1977-01-01</p> <p>Digitally controlled oscillator in phased-locked loop may be useful for data communications systems, or may be modified to serve as information extraction component of microwave or optical system for collision avoidance or automatic braking. Instrument is frequency-synthesizing device with output specified precisely by digital number programmed into frequency register.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=interest+AND+simple&pg=2&id=EJ1056945','ERIC'); return false;" href="https://eric.ed.gov/?q=interest+AND+simple&pg=2&id=EJ1056945"><span>Analyzing Oscillations of a Rolling Cart Using Smartphones and Tablets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Egri, Sandor; Szabo, Lorant</p> <p>2015-01-01</p> <p>It is well known that "interactive engagement" helps students to understand basic concepts in physics. Performing experiments and analyzing measured data are effective ways to realize interactive engagement, in our view. Some experiments need special equipment, measuring instruments, or laboratories, but in this activity we advocate…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=displacement&pg=3&id=EJ1090076','ERIC'); return false;" href="https://eric.ed.gov/?q=displacement&pg=3&id=EJ1090076"><span>Understanding the Damped SHM without ODEs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ng, Chiu-king</p> <p>2016-01-01</p> <p>Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007095','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007095"><span>Lifetest of the High Output Maximum Efficiency Resonator (HOMER) Laser for the SAFFIRE Instrument on NASA's DESDynI Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stysley, Paul R.; Coyle, D. Barry; Kay, Richard B.; Frederickson, Robert; Poulios, Demetrios; Blair, Bryan; Scott, Stan; Arnold, Ed</p> <p>2011-01-01</p> <p>We update the status of a diode-pumped, Nd:YAG oscillator that is the prototype laser for NASA's DESDynI mission. After completing TRL-6 testing, this laser has fired over 5.5 billion shots in lifetesting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160011966&hterms=soil&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsoil','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160011966&hterms=soil&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsoil"><span>The Mexican Drought Atlas: Tree-Ring Reconstructions of the Soil Moisture Balance During the Late Pre-Hispanic, Colonial, and Modern Eras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stahle, David W.; Cook, Edward R.; Burnette, Dorian J.; Villanueva, Jose; Cerano, Julian; Burns, Jordan N.; Griffin, Daniel; Cook, Benjamin I.; Acuna, Rodolfo; Torbenson, Max C. A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160011966'); toggleEditAbsImage('author_20160011966_show'); toggleEditAbsImage('author_20160011966_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160011966_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160011966_hide"></p> <p>2016-01-01</p> <p>Mexico has suffered a long history and prehistory of severe sustained drought. Drought over Mexico is modulated by ocean-atmospheric variability in the Atlantic and Pacific, raising the possibility for long-range seasonal climate forecasting, which could help mediate the economic and social impacts of future dry spells. The instrumental record of Mexican climate is very limited before 1920, but tree-ring chronologies developed from old-growth forests in Mexico can provide an excellent proxy representation of the spatial pattern and intensity of past moisture regimes useful for the analysis of climate dynamics and climate impacts. The Mexican Drought Atlas (MXDA) has been developed from an extensive network of 252 climate sensitive tree-ring chronologies in and near Mexico. The MXDA reconstructions extend from 1400 CE-2012 and were calibrated with the instrumental summer (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) on a 0.5deg latitude/longitude grid extending over land areas from 14 to 34degN and 75-120degW using Ensemble Point-by-Point Regression (EPPR) for the 1944-1984 period. The grid point reconstructions were validated for the period 1920-1943 against instrumental gridded scPDSI values based on the fewer weather station observations available during that interval. The MXDA provides a new spatial perspective on the historical impacts of moisture extremes over Mexico during the past 600-years, including the Aztec Drought of One Rabbit in 1454, the drought of El Ano de Hambre in 1785-1786, and the drought that preceded the Mexican Revolution of 1909-1910. The El Nino/Southern Oscillation (ENSO) is the most important ocean-atmospheric forcing of moisture variability detected with the MXDA. In fact, the reconstructions suggest that the strongest central equatorial Pacific sea surface temperature (SST) teleconnection to the soil moisture balance over North America may reside in northern Mexico. This ENSO signal has stronger and more time-stable correlations than computed for either the Atlantic Multidecadal Oscillation or Pacific Decadal Oscillation. The extended Multivariate ENSO Index is most highly correlated with reconstructed scPDSI over northern Mexico, where warm events favor moist conditions during the winter, spring, and early summer. This ENSO teleconnection to northern Mexico has been strong over the past 150 years, but it has been comparatively weak and non-stationary in the MXDA over central and southern Mexico where eastern tropical Pacific and Caribbean/tropical Atlantic SSTs seem to be more important. The ENSO teleconnection to northern Mexico is weaker in the available instrumental PDSI, but analyses based on the millennium climate simulations with the Community Earth System Model suggest that the moisture balance during the winter, spring, and early summer over northern Mexico may indeed be particularly sensitive to ENSO forcing. Nationwide drought is predicted to become more common with anthropogenic climate change, but the MXDA reconstructions indicate that intense "All Mexico" droughts have been rare over the past 600 years and their frequency does not appear to have increased substantially in recent decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..149...34S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..149...34S"><span>The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stahle, David W.; Cook, Edward R.; Burnette, Dorian J.; Villanueva, Jose; Cerano, Julian; Burns, Jordan N.; Griffin, Daniel; Cook, Benjamin I.; Acuña, Rodolfo; Torbenson, Max C. A.; Szejner, Paul; Howard, Ian M.</p> <p>2016-10-01</p> <p>Mexico has suffered a long history and prehistory of severe sustained drought. Drought over Mexico is modulated by ocean-atmospheric variability in the Atlantic and Pacific, raising the possibility for long-range seasonal climate forecasting, which could help mediate the economic and social impacts of future dry spells. The instrumental record of Mexican climate is very limited before 1920, but tree-ring chronologies developed from old-growth forests in Mexico can provide an excellent proxy representation of the spatial pattern and intensity of past moisture regimes useful for the analysis of climate dynamics and climate impacts. The Mexican Drought Atlas (MXDA) has been developed from an extensive network of 252 climate sensitive tree-ring chronologies in and near Mexico. The MXDA reconstructions extend from 1400 CE-2012 and were calibrated with the instrumental summer (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) on a 0.5° latitude/longitude grid extending over land areas from 14 to 34°N and 75-120°W using Ensemble Point-by-Point Regression (EPPR) for the 1944-1984 period. The grid point reconstructions were validated for the period 1920-1943 against instrumental gridded scPDSI values based on the fewer weather station observations available during that interval. The MXDA provides a new spatial perspective on the historical impacts of moisture extremes over Mexico during the past 600-years, including the Aztec Drought of One Rabbit in 1454, the drought of El Año de Hambre in 1785-1786, and the drought that preceded the Mexican Revolution of 1909-1910. The El Niño/Southern Oscillation (ENSO) is the most important ocean-atmospheric forcing of moisture variability detected with the MXDA. In fact, the reconstructions suggest that the strongest central equatorial Pacific sea surface temperature (SST) teleconnection to the soil moisture balance over North America may reside in northern Mexico. This ENSO signal has stronger and more time-stable correlations than computed for either the Atlantic Multidecadal Oscillation or Pacific Decadal Oscillation. The extended Multivariate ENSO Index is most highly correlated with reconstructed scPDSI over northern Mexico, where warm events favor moist conditions during the winter, spring, and early summer. This ENSO teleconnection to northern Mexico has been strong over the past 150 years, but it has been comparatively weak and non-stationary in the MXDA over central and southern Mexico where eastern tropical Pacific and Caribbean/tropical Atlantic SSTs seem to be more important. The ENSO teleconnection to northern Mexico is weaker in the available instrumental PDSI, but analyses based on the millennium climate simulations with the Community Earth System Model suggest that the moisture balance during the winter, spring, and early summer over northern Mexico may indeed be particularly sensitive to ENSO forcing. Nationwide drought is predicted to become more common with anthropogenic climate change, but the MXDA reconstructions indicate that intense "All Mexico" droughts have been rare over the past 600 years and their frequency does not appear to have increased substantially in recent decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSSP...99..345K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSSP...99..345K"><span>Modelling vertical human walking forces using self-sustained oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Prakash; Kumar, Anil; Racic, Vitomir; Erlicher, Silvano</p> <p>2018-01-01</p> <p>This paper proposes a model of a self-sustained oscillator which can generate reliably the vertical contact force between the feet of a healthy pedestrian and the supporting flat rigid surface. The model is motivated by the self-sustained nature of the walking process, i.e. a pedestrian generates the required inner energy to sustain its repetitive body motion. The derived model is a fusion of the well-known Rayleigh, Van der Pol and Duffing oscillators. Some additional nonlinear terms are added to produce both the odd and even harmonics observed in the experimentally measured force data. The model parameters were derived from force records due to twelve pedestrians walking on an instrumented treadmill at ten speeds using a linear least square technique. The stability analysis was performed using the energy balance method and perturbation method. The results obtained from the model show a good agreement with the experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019679','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019679"><span>Response of hot element flush wall gauges in oscillating laminar flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Giddings, T. A.; Cook, W. J.</p> <p>1986-01-01</p> <p>The time dependent response characteristics of flush-mounted hot element gauges used as instruments to measure wall shear stress in unsteady periodic air flows were investigated. The study was initiated because anomalous results were obtained from the gauges in oscillating turbulent flows for the phase relation of the wall shear stress variation, indicating possible gauge response problems. Flat plate laminar oscillating turbulent flows characterized by a mean free stream velocity with a superposed sinusoidal variation were performed. Laminar rather than turbulent flows were studied, because a numerical solution for the phase angle between the free stream velocity and the wall shear stress variation that is known to be correct can be obtained. The focus is on comparing the phase angle indicated by the hot element gauges with corresponding numerical prediction for the phase angle, since agreement would indicate that the hot element gauges faithfully follow the true wall shear stress variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JASS...16..149W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JASS...16..149W"><span>Observations of Terrestrial Nightglow (Meinel Bands) at King</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Won, Young-In; Cho, Young-Min; Lee, Bang Yong; Kim, Jhoon; Chung, Jong Kyun; Kim, Yong Ha</p> <p>1999-12-01</p> <p>A Fourier Transform Spectrometer was used to study upper mesospheric thermodynamic by observing the hydroxyl(OH) emission. Rocket-born and satellited-born photometers place the peak emission near 87 μm. The instrument was installed in February 1999 at King Sejong station (62.22 deg S,301.25 deg E), Antarctica and has been in routine operation since then. An intensive operational effort has resulted in a substantial data between April and June, 1999. A harmonic analysis was carried out to examine information on the tidal characteristics. The measured amplitudes of the 12-hour oscillation are in the range of 2.4-3.7 K, which are in resonable agreement with theoretical model outputs. The harmonic analysis also revealed 8-hour oscillation which is not expected from the traditional theoretical studies. In addition, the observed 8-hour oscillations are apparent and sometimes dominate the temperature variation in the upper mesosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750011542','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750011542"><span>Instrumentation for measurement of aircraft noise and sonic boom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zuckerwar, A. J. (Inventor)</p> <p>1975-01-01</p> <p>A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17784093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17784093"><span>Lightning and plasma wave observations from the galileo flyby of venus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gurnett, D A; Kurth, W S; Roux, A; Gendrin, R; Kennel, C F; Bolton, S J</p> <p>1991-09-27</p> <p>During the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900061730&hterms=viking+lander&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dviking%2Blander','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900061730&hterms=viking+lander&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dviking%2Blander"><span>Observations of Martian surface winds at the Viking Lander 1 site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murphy, James R.; Leovy, Conway B.; Tillman, James E.</p> <p>1990-01-01</p> <p>Martian surface winds at the Viking Lander 1 have been reconstructed using signals from partially failed wind instrumentation. Winds during early summer were controlled by regional topography, and then underwent a transition to a regime controlled by the Hadley circulation. Diurnal wind oscillations were controlled primarily by regional topography and boundary layer forcing, although a global mode may have been influencing them during two brief episodes. Semidiurnal wind oscillations were controlled by the westward-propagating semidiurnal tide from sol 210 onward. Comparison of the synoptic variations at the two sites suggests that the same eastward propagating wave trains were present at both sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910069531&hterms=environnement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Denvironnement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910069531&hterms=environnement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Denvironnement"><span>Lightning and plasma wave observations from the Galileo flyby of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gurnett, D. A.; Kurth, W. S.; Roux, A.; Gendrin, R.; Kennel, C. F.; Bolton, S. J.</p> <p>1991-01-01</p> <p>Durig the Galileo flyby of Venus the plasma wave instrument was used to search for impulsive radio signals from lightning and to investigate locally generated plasma waves. A total of nine events were detected in the frequency range from 100 kilohertz to 5.6 megahertz. Although the signals are weak, lightning is the only known source of these signals. Near the bow shock two types of locally generated plasma waves were observed, low-frequency electromagnetic waves from about 5 to 50 hertz and electron plasma oscillation at about 45 kilohertz. The plasma oscillations have considerable fine structure, possibly because of the formation of soliton-like wave packets.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988ApL%26C..27..141T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988ApL%26C..27..141T"><span>Correlation lifetimes of quiet and magnetic granulation from the SOUP instrument on Spacelab 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.; Ferguson, S.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.; Pope, T.; Reeves, R.; Rehse, R.; Shine, R.; Simon, G.; Harvey, J.; Leibacher, J.; Livingston, W.; November, L.; Zirker, J.</p> <p></p> <p>The time sequences of diffraction limited granulation images obtained by the Solar Optical Universal Polarimeter on Spacelab 2 are presented. The uncorrection autocorrelation limetime in magnetic regions is dominated by the 5-min oscillation. The removal of this oscillation causes the autocorrelation lifetime to increase by more than a factor of 2. The results suggest that a significant fraction of granule lifetimes are terminated by nearby explosions. Horizontal displacements and transverse velocities in the intensity field are measured. Lower limits to the lifetime in the quiet and magnetic sun are set at 440 s and 950 s, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890051521&hterms=soup&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3Dsoup','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890051521&hterms=soup&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3Dsoup"><span>Correlation lifetimes of quiet and magnetic granulation from the SOUP instrument on Spacelab 2. [Solar Optical Universal Polarimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Title, A.; Tarbell, T.; Topka, K.; Acton, L.; Duncan, D.</p> <p>1988-01-01</p> <p>The time sequences of diffraction limited granulation images obtained by the Solar Optical Universal Polarimeter on Spacelab 2 are presented. The uncorrection autocorrelation limetime in magnetic regions is dominated by the 5-min oscillation. The removal of this oscillation causes the autocorrelation lifetime to increase by more than a factor of 2. The results suggest that a significant fraction of granule lifetimes are terminated by nearby explosions. Horizontal displacements and transverse velocities in the intensity field are measured. Lower limits to the lifetime in the quiet and magnetic sun are set at 440 s and 950 s, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007CoAst.150..300G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007CoAst.150..300G"><span>Stellar Oscillations Network Group</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grundahl, F.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Arentoft, T.; Frandsen, S.</p> <p>2007-06-01</p> <p>Stellar Oscillations Network Group (SONG) is an initiative aimed at designing and building a network of 1m-class telescopes dedicated to asteroseismology and planet hunting. SONG will have 8 identical telescope nodes each equipped with a high-resolution spectrograph and an iodine cell for obtaining precision radial velocities and a CCD camera for guiding and imaging purposes. The main asteroseismology targets for the network are the brightest (V < 6) stars. In order to improve performance and reduce maintenance costs the instrumentation will only have very few modes of operation. In this contribution we describe the motivations for establishing a network, the basic outline of SONG and the expected performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770028810&hterms=Pendulum&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPendulum','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770028810&hterms=Pendulum&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPendulum"><span>A high-sensitivity torsional pendulum for polymeric films and fibres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aghili-Kermani, H.; Obrien, T.; Armeniades, C. D.; Roberts, J. M.</p> <p>1976-01-01</p> <p>A free oscillation torsion pendulum is described, which has been designed to measure accurately the dynamic shear modulus and logarithmic decrement of polymeric thin films and fibers, at frequencies of 0.1 to 10 Hz and a temperature range of 4.2 to 450 K. The instrument can also provide in situ tensile deformations of up to 5%. The specimen geometry necessary to obtain reliable modulus measurements with thin films is discussed, and typical data are presented which exhibit hitherto unreported relaxation processes, discernible by this instrument.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17800437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17800437"><span>Jupiter plasma wave observations: an initial voyager 1 overview.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scarf, F L; Gurnett, D A; Kurth, W S</p> <p>1979-06-01</p> <p>The Voyager I plasma wave instrument detected low-frequency radio emissions, ion acoustic waves, and electron plasma oscillations for a period of months before encountering Jupiter's bow shock. In the outer magnetosphere, measurements of trapped radio waves were used to derive an electron density profile. Near and within the Io plasma torus the instrument detected high-frequency electrostatic waves, strong whistler mode turbulence, and discrete whistlers, apparently associated with lightning. Some strong emissions in the tail region and some impulsive signals have not yet been positively identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ16001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ16001S"><span>Internal Fluid Dynamics and Frequency Scaling of Sweeping Jet Fluidic Oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seo, Jung Hee; Salazar, Erik; Mittal, Rajat</p> <p>2017-11-01</p> <p>Sweeping jet fluidic oscillators (SJFOs) are devices that produce a spatially oscillating jet solely based on intrinsic flow instability mechanisms without any moving parts. Recently, SJFOs have emerged as effective actuators for flow control, but the internal fluid dynamics of the device that drives the oscillatory flow mechanism is not yet fully understood. In the current study, the internal fluid dynamics of the fluidic oscillator with feedback channels has been investigated by employing incompressible flow simulations. The study is focused on the oscillation mechanisms and scaling laws that underpin the jet oscillation. Based on the simulation results, simple phenomenological models that connect the jet deflection to the feedback flow are developed. Several geometric modifications are considered in order to explore the characteristic length scales and phase relationships associated with the jet oscillation and to assess the proposed phenomenological model. A scaling law for the jet oscillation frequency is proposed based on the detailed analysis. This research is supported by AFOSR Grant FA9550-14-1-0289 monitored by Dr. Douglas Smith.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20130001864&hterms=atomic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Datomic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20130001864&hterms=atomic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Datomic"><span>Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.</p> <p>2012-01-01</p> <p>A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7168E..0TB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7168E..0TB"><span>Validation of nonlinear interferometric vibrational imaging as a molecular OCT technique by the use of Raman microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benalcazar, Wladimir A.; Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B.; Boppart, Stephen A.</p> <p>2009-02-01</p> <p>We validate a molecular imaging technique called Nonlinear Interferometric Vibrational Imaging (NIVI) by comparing vibrational spectra with those acquired from Raman microscopy. This broadband coherent anti-Stokes Raman scattering (CARS) technique uses heterodyne detection and OCT acquisition and design principles to interfere a CARS signal generated by a sample with a local oscillator signal generated separately by a four-wave mixing process. These are mixed and demodulated by spectral interferometry. Its confocal configuration allows the acquisition of 3D images based on endogenous molecular signatures. Images from both phantom and mammary tissues have been acquired by this instrument and its spectrum is compared with its spontaneous Raman signatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28749940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28749940"><span>Upregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yildirim, Vehpi; Vadrevu, Suryakiran; Thompson, Benjamin; Satin, Leslie S; Bertram, Richard</p> <p>2017-07-01</p> <p>Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly, when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and relatively normal blood glucose levels are maintained. Compensation must therefore occur to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study, we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP) because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets have an upregulated inward rectifying K+ current that helps to compensate for the loss of K(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels. We used mathematical modeling to determine whether an ionic current having the biophysical characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to those of wild-type islets. By experimentally testing a key model prediction we suggest that Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets from mice deficient in K(ATP) channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820052881&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2Bfilter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820052881&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2Bfilter"><span>Ground-based mm-wave emission spectroscopy for the detection and monitoring of stratospheric ozone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parrish, A.; Dezafra, R.; Solomon, P.</p> <p>1981-01-01</p> <p>The molecular rotational spectrum of ozone is quite rich in the mm-wave region from 50 to 300 GHz. An apparatus, which was developed primarily for detection and measurement of stratospheric ClO and other trace molecules, is found to be well suited also for the observation of ozone lines. The collecting antenna of the apparatus is a simple mm-waveguide feedhorn. The detector is a superheterodyne mixer using a special high frequency Schottky diode and a klystron local oscillator. The spectrometer is a 256 channel filter bank with 1 MHz resolution per channel. The apparatus is believed to be the first ground-based mm-wave instrument having the capability of obtaining data of sufficient quality to make use of the inversion technique. The ground based radio technique is most sensitive to changes in vertical distribution in the region above 25 km, a region which is difficult to sample by other techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10512E..11M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10512E..11M"><span>Compact 1 mJ fiber MOPA for space-based laser-ablation resonant ionization mass spectrometry (LARIMS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mu, Xiaodong; Crain, William; Nguyen, Can; Ionov, Pavel; Steinvurzel, Paul; Dotan, Yaniv; Karuza, Petras; Lotshaw, William; Rose, Todd; Beck, Steven; Anderson, F. Scott</p> <p>2018-02-01</p> <p>A 1064 nm, 1 mJ pulsed fiber MOPA module, housed in 16"x14"x2.5" package for application in a lunar and planetary in-situ surface dating instrument is demonstrated. The module is based on a three-stage MOPA with a 60 μm core tapered fiber terminal amplifier. The master oscillator and first two preamplifier stages, which generate 20 μJ pulses, are all contained on a 13"x11"x1" board. Several improvements to the electronic signal control were instrumental to the laser development, including bipolar drive of the phase modulator for SBS suppression, shaping of the seed pulse to compensate pulse steepening, and pulsed operation of the power amplifier pump to reduce spontaneous emission at low pulse repetition frequency. The packaged laser runs at a repetition rate of 10 kHz and generates 10 ns pulses at 1 mJ with a 40 GHz linewidth, an M2 1.2 beam quality, and an 18 dB polarization extinction ratio. The modular design enables seven independent lasers to be stacked in a 20"x18"x16.25" enclosure, supporting a path towards a fiber laser based LARIMS for advanced materials characterization and chronological dating in harsh and remote environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000056852','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000056852"><span>THz Spectroscopy of the Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pickett, Herbert M.</p> <p>2000-01-01</p> <p>THz spectroscopy of the atmosphere has been driven by the need to make remote sensing measurements of OH. While the THz region can be used for sensitive detection on many atmospheric molecules, the THz region is the best region for measuring the diurnal behavior of stratospheric OH by remote sensing. The infrared region near 3 microns suffers from chemiluminescence and from spectral contamination due to water. The ultraviolet region near 300 nm requires solar illumination. The three techniques for OH emission measurements in the THz region include Fourier Transform interferometry, Fabry-Perot interferometry, and heterodyne radiometry. The first two use cryogenic direct detectors while the last technique uses a local oscillator and a mixer to down convert the THz signal to GHz frequencies. All techniques have been used to measure stratospheric OH from balloon platforms. OH results from the Fabry-Perot based FILOS instrument will be given. Heterodyne measurement of OH at 2.5 THz has been selected to be a component of the Microwave Limb Sounder on the Earth Observing System CHEM-1 polar satellite. The design of this instrument will be described. A balloon-based prototype heterodyne 2.5 THz radiometer had its first flight on, 24 May 1998. Results form this flight will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11..809G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11..809G"><span>Ground based mid-IR heterodyne spectrometer concept for planetary atmospheres observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garamov, V.; Benderov, O.; Semenov, V.; Spiridonov, M.; Rodin, A.; Stepanov, B.</p> <p>2017-09-01</p> <p>We present a heterodyne spectrometer concept based on distributed feedback (DFB) quantum cascade lasers (QCL) operated in midle infrared region (MIR). The instrument is assumed to be mount on the Russian infrared observatories. The core features of the concept are compact design, utilizing a novel mid-IR fiber optical components and dynamic local oscillator frequency locking using reference molecule absorption line. The instrument characteristics are similar to modern heterodyne devices THIS (Cologne University, Germany) and MILAHI (Tohoku University, Japan) in terms of fundamental parameters, including spectral resolution, spectral coverage in a single observation. At present moment we created laboratory setup including all necessary elements of MIR heterodyne spectrometer. We have studied different components of noises of our system and found optimal value of LO power. The measured signal to noise ratio (SNR) with MCT PD was about 10 times greater than LO's shot noise (theoretical limit of heterodyne technique SNR) and limited by QCL relative intensity noise (RIN). However, applying additional filtering it is possible to reduce this value better than 5 shot noise level, which is typical to TEC cooled MCT PD. Also we demonstrate heterodyne signal measurements using laboratory black body with temperature of 400 oC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GPC...131...82S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GPC...131...82S"><span>Tree-ring based February-April precipitation reconstruction for the lower reaches of the Yangtze River, southeastern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Jiangfeng; Lu, Huayu; Li, Jinbao; Shi, Shiyuan; Wu, Shuangye; Hou, Xinyuan; Li, Lingling</p> <p>2015-08-01</p> <p>February-April drought strongly affects agriculture and socio-economics in southeastern China, yet its long-term variability has not been assessed due to the shortness of instrumental records. In this study, we reported a 168-year tree-ring width chronology from a steep, low-elevation site with thin soil layers in the Xianxia Mountains, southeastern China. Contrary to the existing chronologies that are mostly temperature sensitive, this chronology contained a strong February-April precipitation signal, indicating great potential for tree-ring based precipitation reconstructions in southeastern China. The reconstruction explained 47.8% of the instrumental variance during 1951-2012. The full reconstruction indicated that there were 3 dry periods (1873-1896, 1924-1971, 1995-2012) and 2 wet periods (1856-1872, 1972-1994) during 1856-2013. The extreme drought in 2011 was not unprecedented for the past 168 years, and the recent severe droughts may be part of interdecadal variations in regional February-April precipitation. Our results also suggested that February-April precipitation in southeastern China was highly influenced by the tropical Pacific climate system, in particular El Niño-Southern Oscillation (ENSO).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060043365&hterms=oscillator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Doscillator','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060043365&hterms=oscillator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Doscillator"><span>EDFA-based coupled opto-electronic oscillator and its phase noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salik, Ertan; Yu, Nan; Tu, Meirong; Maleki, Lute</p> <p>2004-01-01</p> <p>EDFA-based coupled opto-electronic oscillator (COEO), an integrated optical and microwave oscillator that can generate picosecond optical pulses, is presented. the phase noise measurements of COEO show better performance than synthesizer-driven mode-locked laser.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50..845B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50..845B"><span>Reconstructing El Niño Southern Oscillation using data from ships' logbooks, 1815-1854. Part I: methodology and evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrett, Hannah G.; Jones, Julie M.; Bigg, Grant R.</p> <p>2018-02-01</p> <p>The meteorological information found within ships' logbooks is a unique and fascinating source of data for historical climatology. This study uses wind observations from logbooks covering the period 1815 to 1854 to reconstruct an index of El Niño Southern Oscillation (ENSO) for boreal winter (DJF). Statistically-based reconstructions of the Southern Oscillation Index (SOI) are obtained using two methods: principal component regression (PCR) and composite-plus-scale (CPS). Calibration and validation are carried out over the modern period 1979-2014, assessing the relationship between re-gridded seasonal ERA-Interim reanalysis wind data and the instrumental SOI. The reconstruction skill of both the PCR and CPS methods is found to be high with reduction of error skill scores of 0.80 and 0.75, respectively. The relationships derived during the fitting period are then applied to the logbook wind data to reconstruct the historical SOI. We develop a new method to assess the sensitivity of the reconstructions to using a limited number of observations per season and find that the CPS method performs better than PCR with a limited number of observations. A difference in the distribution of wind force terms used by British and Dutch ships is found, and its impact on the reconstruction assessed. The logbook reconstructions agree well with a previous SOI reconstructed from Jakarta rain day counts, 1830-1850, adding robustness to our reconstructions. Comparisons to additional documentary and proxy data sources are provided in a companion paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhB..25a4207W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhB..25a4207W"><span>Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wen-Long, Tian; Zhao-Hua, Wang; Jiang-Feng, Zhu; Zhi-Yi, Wei</p> <p>2016-01-01</p> <p>We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. Two MgO doped periodically poled lithium niobates (MgO:PPLN) with grating periods of 28.5-31.5 μm in steps of 0.5 μm and 19.5-21.3 μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 mW at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 mW at 1628 nm. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Key Scientific Instruments Development Program of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant Nos. 61205130 and 11174361), and the Key Deployment Project of Chinese Academy of Sciences (Grant No. KJZD-EW-L11-03).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820007439','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820007439"><span>High temperature electronics applications in space exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jurgens, R. F.</p> <p>1981-01-01</p> <p>The extension of the range of operating temperatures of electronic components and systems for planetary exploration is examined. In particular, missions which utilize balloon-borne instruments to study the Venusian and Jovian atmospheres are discussed. Semiconductor development and devices including power sources, ultrastable oscillators, transmitters, antennas, electromechanical devices, and deployment systems are addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-part29-appB.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-part29-appB.pdf"><span>14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>.... Dynamic stability. (a) Any oscillation having a period of less than 5 seconds must damp to 1/2 amplitude... achieve double amplitude in less than 9 seconds. VII. Stability Augmentation System (SAS) (a) If a SAS is... control system must be considered. In addition— (i) The controllability and maneuverability requirements...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830000257&hterms=fusion+heat+melting+point&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfusion%2Bheat%2Bmelting%2Bpoint','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830000257&hterms=fusion+heat+melting+point&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfusion%2Bheat%2Bmelting%2Bpoint"><span>Stabilizing Crystal Oscillators With Melting Metals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stephens, J. B.; Miller, C. G.</p> <p>1984-01-01</p> <p>Heat of fusion provides extended period of constant temperature and frequency. Crystal surrounded by metal in spherical container. As outside temperature rises to melting point of metal, metal starts to liquefy; but temperature stays at melting point until no solid metal remains. Potential terrestrial applications include low-power environmental telemetering transmitters and instrumentation transmitters for industrial processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=vibration&pg=7&id=EJ679193','ERIC'); return false;" href="https://eric.ed.gov/?q=vibration&pg=7&id=EJ679193"><span>Building a Copper Pipe "Xylophone."</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lapp, David R.</p> <p>2003-01-01</p> <p>Explains how to use the equation for frequency of vibration of a transversely oscillating bar or pipe with both ends free to vibrate to build a simple and inexpensive xylophone from a 3-meter section of copper pipe. The instrument produces a full major scale and can be used to investigate various musical intervals. (Author/NB)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ASAJ..115.2450C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ASAJ..115.2450C"><span>Acoustical studies of the American reed organ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cottingham, James P.</p> <p>2004-05-01</p> <p>The reed organ enjoyed a period of great popularity in North America which reached a peak in the late 19th century, when thousands of instruments per year were manufactured and sold in the United States and Canada. Displaced by the emergence of the upright piano, the reed organ had very much fallen out of favor by 1929. In the past decade a number of acoustical investigations have been undertaken on the instrument known as the American reed organ. Observations of reed motion and velocity have been made with electronic proximity sensors and a laser vibrometer system. The variation of the frequency and amplitude of reed vibration as a function of blowing pressure has been explored in some detail and the results compared with predictions of a simple theoretical model. Measurements have been made of the spectrum of the near-field sound including the effects of changes in dimensions of the reed cell. While most treatments of free reed oscillation approximate the reed vibration as a sinusoidal oscillation of a cantilever beam in the fundamental transverse mode, recently some evidence of higher transverse modes and torsional modes of vibration have been observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016170','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016170"><span>Cryogenic Behavior of the High Temperature Crystal Oscillator PX-570</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Patterson, Richard; Hammoud, Ahmad; Scherer, Steven</p> <p>2011-01-01</p> <p>Microprocessors, data-acquisition systems, and electronic controllers usually require timing signals for proper and accurate operation. These signals are, in most cases, provided by circuits that utilize crystal oscillators due to availability, cost, ease of operation, and accuracy. Stability of these oscillators, i.e. crystal characteristics, is usually governed, amongst other things, by the ambient temperature. Operation of these devices under extreme temperatures requires, therefore, the implementation of some temperature-compensation mechanism either through the manufacturing process of the oscillator part or in the design of the circuit to maintain stability as well as accuracy. NASA future missions into deep space and planetary exploration necessitate operation of electronic instruments and systems in environments where extreme temperatures along with wide-range thermal swings are countered. Most of the commercial devices are very limited in terms of their specified operational temperature while very few custom-made and military-grade parts have the ability to operate in a slightly wider range of temperature. Thus, it is becomes mandatory to design and develop circuits that are capable of operation efficiently and reliably under the space harsh conditions. This report presents the results obtained on the evaluation of a new (COTS) commercial-off-the-shelf crystal oscillator under extreme temperatures. The device selected for evaluation comprised of a 10 MHz, PX-570-series crystal oscillator. This type of device was recently introduced by Vectron International and is designed as high temperature oscillator [1]. These parts are fabricated using proprietary manufacturing processes designed specifically for high temperature and harsh environment applications [1]. The oscillators have a wide continuous operating temperature range; making them ideal for use in military and aerospace industry, industrial process control, geophysical fields, avionics, and engine control. They exhibit low jitter and phase noise, consume little power, and are suited for high shock and vibration applications. The unique package design of these crystal oscillators offers a small ceramic package footprint, as well as providing both through-hole mounting and surface mount options.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22687330','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22687330"><span>Phase computations and phase models for discrete molecular oscillators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suvak, Onder; Demir, Alper</p> <p>2012-06-11</p> <p>Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3410817','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3410817"><span>Phase computations and phase models for discrete molecular oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2012-01-01</p> <p>Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.469.4268B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.469.4268B"><span>High-cadence spectroscopy of M-dwarfs - II. Searching for stellar pulsations with HARPS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berdiñas, Z. M.; Rodríguez-López, C.; Amado, P. J.; Anglada-Escudé, G.; Barnes, J. R.; MacDonald, J.; Zechmeister, M.; Sarmiento, L. F.</p> <p>2017-08-01</p> <p>Stellar oscillations appear all across the Hertzsprung-Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (I.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ˜0.5 m s-1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ChPhB..27c0702H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ChPhB..27c0702H"><span>Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong</p> <p>2018-03-01</p> <p>The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhCS.598a2033V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhCS.598a2033V"><span>ORCA: measuring the neutrino mass hierarchy with atmospheric neutrinos in the Mediterranean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Elewyck, Véronique; KM3NeT Collaboration</p> <p>2015-04-01</p> <p>Since the measurement of the mixing angle θ13, the determination of the neutrino mass hierarchy has become a central challenge of neutrino physics. Recent studies have pointed out that it could reveal itself in the atmospheric neutrino sector, where oscillations are affected by Earth matter effects. This contribution reports on the ORCA feasibility study for such a measurement with an underwater Cherenkov detector based on the technology developed for the KM3NeT neutrino telescope. The baseline performances are discussed for a reference detector with 50 instrumented lines. Preliminary projections, based on the muon channel only, indicate that a 3 — 5σ significance measurement is within reach of a detector with an exposure of the order of 20 Mton years. Further improvement is expected to come from the electron channel, which is currently under study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19725669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19725669"><span>The design and application of virtual ion meter based on LABVIEW 8.0.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meng, Hu; Li, Jiangyuan; Tang, Yonghuai</p> <p>2009-08-01</p> <p>The virtual ion meter is developed based on LABVIEW 8.0 by homemade adjusting circuit, data acquisition (DAQ) board, and computer. This note provides details of the structure of testing system and flow chart of DAQ program. This virtual instrument system is applied to multitask testing such as determining rate constant of second-order reaction by pX, pX potentiometric titration, determining oscillating reaction by potential, etc. The result of application indicates that this test system not only has function of real-time data acquiring, displaying, storage, but also realizes remote monitoring and controlling test-control spots through internet, automatic analyzing and processing of data, reporting of result according to the different testing task; moreover, the veracity and repeatability of data processing result are higher than the results of manual data processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860048805&hterms=water+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dwater%2Bfilters','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860048805&hterms=water+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dwater%2Bfilters"><span>Seasonal variability of mesospheric water vapor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwartz, P. R.; Bevilacqua, R. M.; Wilson, W. J.; Ricketts, W. B.; Howard, R. J.</p> <p>1985-01-01</p> <p>Ground-based spectral line measurements of the 22.2 GHz atmospheric water vapor line in emission were made at the JPL in order to obtain data in a dry climate, and to confirm similar measurements made at the Haystack Observatory. The results obtained from March 1984 to July 1984 and from December 1984 to May 1985, were based on data recorded by a HP9816 microcomputer. The instrument spectrometer was a 64 channel, 62.5 kHz resolution filter bank. Data indicates the existence of a seasonal variation in the abundance of water vapor in the upper mesosphere, with mixing ratios higher in summer than in spring. This is consistent with recent theoretical and observational results. In the area of semiannual oscillation, Haystack data are more consistent than those of JPL, indicating an annual cycle with abundances at maximum in summer and minimum in winter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5474111','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5474111"><span>Knee stiffness and viscosity: New implementation and perspectives in prosthesis development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bohinc, Klemen; Vantur, Nejc; Torkar, Drago; Lampe, Tomaž; Hribernik, Marija; Jakovljević, Miroljub</p> <p>2017-01-01</p> <p>The pendulum test is a method applied to measure passive resistance of the knee. A new and simple pendulum test with instrumentation based on infrared camera was used to evaluate knee stiffness and viscosity on a female human cadaver. The stiffness and viscosity were calculated based on the kinetic data. During the measurements, the periarticular and intraarticular soft tissue of the knee was gradually removed to determine the stiffness and viscosity as a function of the tissue removal rate. The measurements showed that the removal of tissue around the joint reduces the damping of leg oscillation, and therefore decreases the stiffness and viscosity. The contribution to knee joint damping was 10% for the skin, 20% for ligaments, and 40% for muscles and tendons. Tissue removal has a very large impact on the knee stiffness and viscosity. PMID:28422623</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28422623','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28422623"><span>Knee stiffness and viscosity: New implementation and perspectives in prosthesis development.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bohinc, Klemen; Vantur, Nejc; Torkar, Drago; Lampe, Tomaž; Hribernik, Marija; Jakovljević, Miroljub</p> <p>2017-05-20</p> <p>The pendulum test is a method applied to measure passive resistance of the knee. A new and simple pendulum test with instrumentation based on infrared camera was used to evaluate knee stiffness and viscosity on a female human cadaver. The stiffness and viscosity were calculated based on the kinetic data. During the measurements, the periarticular and intraarticular soft tissue of the knee was gradually removed to determine the stiffness and viscosity as a function of the tissue removal rate. The measurements showed that the removal of tissue around the joint reduces the damping of leg oscillation, and therefore decreases the stiffness and viscosity. The contribution to knee joint damping was 10% for the skin, 20% for ligaments, and 40% for muscles and tendons. Tissue removal has a very large impact on the knee stiffness and viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=nucleation&id=EJ546511','ERIC'); return false;" href="https://eric.ed.gov/?q=nucleation&id=EJ546511"><span>A Computer Model for Soda Bottle Oscillations: "The Bottelator".</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Soltzberg, Leonard J.; And Others</p> <p>1997-01-01</p> <p>Presents a model to explain the behavior of oscillatory phenomena found in the soda bottle oscillator. Describes recording the oscillations, and the design of the model based on the qualitative explanation of the oscillations. Illustrates a variety of physiochemical concepts including far-from-equilibrium oscillations, feedback, solubility and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830059897&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830059897&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwave%2Boscillation"><span>Upstream electron oscillations and ion overshoot at an interplanetary shock wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Potter, D. W.; Parks, G. K.</p> <p>1983-01-01</p> <p>During the passage of a large interplanetary shock on Oct. 13, 1981, the ISEE-1 and -2 spacecraft were in the solar wind outside of the upstream region of the bow shock. The high time resolution data of the University of California particle instruments allow pinpointing the expected electron spike as occurring just before the magnetic ramp. In addition, two features that occur at this shock have not been observed before: electron oscillations associated with low frequency waves upstream of the shock and sharp 'overshoot' (about 1 sec) in the ion fluxes that occur right after the magnetic ramp. This interplanetary shock exhibits many of the same characteristics that are observed at the earth's bow shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.888a2113T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.888a2113T"><span>A search for sterile neutrinos with IceCube DeepCore</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Terliuk, Andrii; IceCube Collaboration</p> <p>2017-09-01</p> <p>The DeepCore detector is a densely instrumented part of the IceCube Neutrino Observatory that lowers the neutrino detection threshold down to approximately 10 GeV resulting in the ability to measure atmospheric neutrino oscillations. The standard three neutrino mixing scenario can be tested by searching for an additional light sterile neutrino state, which does not interact via the standard weak interaction, but mixes with the three active neutrino states. This leads to an impact on the atmospheric neutrino oscillations below 100 GeV. We present improved limits to the sterile mixing element |U τ4|2 using three years of the DeepCore data taken during 2011-2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18263453','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18263453"><span>Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campbell, S; Wang, D</p> <p>1996-01-01</p> <p>A network of Wilson-Cowan (WC) oscillators is constructed, and its emergent properties of synchronization and desynchronization are investigated by both computer simulation and formal analysis. The network is a 2D matrix, where each oscillator is coupled only to its neighbors. We show analytically that a chain of locally coupled oscillators (the piecewise linear approximation to the WC oscillator) synchronizes, and we present a technique to rapidly entrain finite numbers of oscillators. The coupling strengths change on a fast time scale based on a Hebbian rule. A global separator is introduced which receives input from and sends feedback to each oscillator in the matrix. The global separator is used to desynchronize different oscillator groups. Unlike many other models, the properties of this network emerge from local connections that preserve spatial relationships among components and are critical for encoding Gestalt principles of feature grouping. The ability to synchronize and desynchronize oscillator groups within this network offers a promising approach for pattern segmentation and figure/ground segregation based on oscillatory correlation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3431800','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3431800"><span>The effects of ion channel blockers validate the conductance-based model of saccadic oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shaikh, Aasef G.; Zee, David S.; Optican, Lance M.; Miura, Kenichiro; Ramat, Stefano; Leigh, R. John</p> <p>2012-01-01</p> <p>Conductance-based models of reciprocally inhibiting burst neurons suggest that intrinsic membrane properties and postinhibitory rebound (PIR) determine the amplitude and frequency of saccadic oscillations. Reduction of the low-threshold calcium currents (IT) in the model decreased the amplitude but increased the frequency of the simulated oscillations. Combined reduction of hyperpolarization-activated cation current (Ih) and IT in the model abolished the simulated oscillations. We measured the effects of a selective blocker of IT (ethosuximide) in healthy subjects on the amplitude and frequency of saccadic oscillations evoked by eye closure and of a nonselective blocker of Ih and IT (propronolol) in a patient with microsaccadic oscillation and limb tremor syndrome (mSOLT). Ethosuximide significantly reduced the amplitude but increased the frequency of the saccadic oscillations during eye closure in healthy subjects. Propranolol abolished saccadic oscillations in the mSOLT patient. These results support the hypothetical role of postinhibitory rebound, Ih, and IT, in generation of saccadic oscillations and determining their kinematic properties. PMID:21950976</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1942f0008K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1942f0008K"><span>Mixed-mode oscillations in memristor emulator based Liénard system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kingston, S. Leo; Suresh, K.; Thamilmaran, K.</p> <p>2018-04-01</p> <p>We report the existence of mixed-mode oscillations in memristor emulator based Liénard system which is externally driven by sinusoidal force. The charge and flux relationship of memristor emulator device explored based on the smooth cubic nonlinear element. The system exhibits the successive period adding sequences of mixed-mode oscillations in the wide parameter region. The electronics circuit of the memristor emulator is successfully implemented through PSpice simulation and mixed mode oscillations are observed through PSpice experiment and the obtained results are qualitatively matches with the numerical simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29757167','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29757167"><span>Understanding photoluminescence of metal nanostructures based on an oscillator model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Yuqing; Zhang, Weidong; Zhao, Jingyi; Wen, Te; Hu, Aiqin; Gong, Qihuang; Lu, Guowei</p> <p>2018-08-03</p> <p>Scattering and absorption properties of metal nanostructures have been well understood based on the classic oscillator theory. Here, we demonstrate that photoluminescence of metal nanostructures can also be explained based on a classic model. The model shows that inelastic radiation of an oscillator resembles its resonance band after external excitation, and is related to the photoluminescence from metallic nanostructures. The understanding based on the classic oscillator model is in agreement with that predicted by a quantum electromagnetic cavity model. Moreover, by correlating a two-temperature model and the electron distributions, we demonstrate that both one-photon and two-photon luminescence of the metal nanostructures undergo the same mechanism. Furthermore, the model explains most of the emission characteristics of the metallic nanostructures, such as quantum yield, spectral shape, excitation polarization and power dependence. The model based on an oscillator provides an intuitive description of the photoluminescence process and may enable rapid optimization and exploration of the plasmonic properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.16005012G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.16005012G"><span>Seismology of Giant Planets: General Overview and Results from the Kepler K2 Observations of Neptune</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaulme, Patrick</p> <p>2017-10-01</p> <p>For this invited contribution, I was asked to give an overview about the application of helio and aster-oseismic techniques to study the interior of giant planets, and to specifically present the recent observations of Neptune by Kepler K2. Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light reflected by planetary atmospheres, and ring seismology in the specific case of Saturn. The current decade has been promising thanks to the detection of Jupiter's acoustic oscillations with the ground-based imaging-spectrometer SYMPA and indirect detection of Saturn's f-modes in its rings by the NASA Cassini orbiter. This has motivated new projects of ground-based and space-borne instruments that are under development. The K2 observations represented the first opportunity to search for planetary oscillations with visible photometry. Despite the excellent quality of K2 data, the noise level of the power spectrum of the light curve was not low enough to detect Neptune's oscillations. The main results from the K2 observations are the clear detection of the well-known differential rotation of Neptune, measured for the first time through the rotational modulation of its photometry, and the detection of the Sun's oscillations, for the first time in an indirect way in intensity measurements.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1083222','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1083222"><span>Chemical sensor with oscillating cantilevered probe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Adams, Jesse D</p> <p>2013-02-05</p> <p>The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6884374-quantitative-measuring-system-combustible-gas-audible-tick-rate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6884374-quantitative-measuring-system-combustible-gas-audible-tick-rate"><span>Quantitative measuring system for combustible gas with audible tick rate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Batz, J.E.</p> <p>1979-09-04</p> <p>Northern Illinois Gas Co.'s new gas-detection instrument is lightweight, portable, easy to use, and in compliance with industry standards as an intrinsically safe device. The instrument uses a semiconductor gas-sensor element energyzed with the regulated voltage source. Placed in the atmosphere to be tested, the detector generates a signal representative of the concentration of natural gas in the air. A meter displays the signal to determine whether the area is hazardous; a variable-repetition-rate blocking oscillator feeding a speaker responds to the signal, generating an audible tick rate useful in locating a leak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000SPIE.3916..331Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000SPIE.3916..331Z"><span>Comparison possibilities of ultrasound and its combination with laser in surgery and therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zharov, Vladimir P.; Menyaev, Yulian A.; Kabisov, Ruslan K.; Alkov, Sergey V.; Nesterov, A. V.; Loshchilov, Vladimir I.; Suen, James Y.</p> <p>2000-05-01</p> <p>This article presents the further developments of combined laser-ultrasound medical technologies with paying attention the possibility ultrasound in surgery and therapy. The analyses of main effects at the low frequency ultrasonic treatment of biotissues including cavitation, acoustic streams, acoustic pressure, mechanical influence etc are analyzed. The main promising areas of application of low frequency ultrasound are considered including bactericidal treatment of infections wounds, spray treatment of wounds in head and neck surgery, tumor treatment etc. In particular the clinical result of using ultrasonic devices based on imposing ultrasonic oscillations in a range of 22-66 kHz on a cutting instrument with a special form, radiation intensity up to 10 W/cm2 and oscillation amplitude up to 40-60 micrometers with respect to oncology for halt bleeding from a tumor, liquidating pain, acoustic denervation are presented. Some limitation of medical application of ultrasound are discussed and perspective combination with laser for increasing efficiency of new combined technologies are found. Among them: combination photodynamic therapy and ultrasonic treatment of tumors, laser-ultrasonic treatment of infections wounds including using spray, laser-ultrasonic drug delivery. The preliminary result of experimental study of some of above-mentioned technologies are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAESc.115..298L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAESc.115..298L"><span>Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Na; Liu, Yu; Bao, Guang; Bao, Ming; Wang, Yanchao; Zhang, Lizhi; Ge, Yuxiang; Bao, Wurigen; Tian, Heng</p> <p>2016-01-01</p> <p>A tree-ring width chronology covering the period 1780-2013 AD was developed from Pinus sylvestris var. mongolica for the eastern Hulun Buir steppe, a region located on the edge of the eastern Mongolian Plateau, China. Climate-growth response analysis revealed drought stress to be the primary limiting factor for tree growth. Therefore, the mean February-July standardized precipitation evapotranspiration index (SPEI) was reconstructed over the period 1819-2013, where the reconstruction could account for 32.8% of the variance in the instrumental record over the calibration period 1953-2011. Comparison with other tree-ring-based moisture sequences from nearby areas confirmed a high degree of confidence in our reconstruction. Severe drought intervals since the late 1970s in our study area consisted with the weakening East Asian summer monsoon, which modulating regional moisture conditions in semi-arid zone over northern China. Drought variations in the study area significantly correlated with sea surface temperatures (SSTs) in North Pacific Ocean, suggesting a possible connection of regional hydroclimatic variations to the Pacific Decadal Oscillation (PDO). The potential influence associated with El Niño-Southern Oscillation (ENSO) was primarily analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT.......206C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT.......206C"><span>Studies of the polar MLT region using SATI airglow measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, Youngmin</p> <p></p> <p>To investigate atmospheric dynamics of the MLT (Mesosphere and Lower Thermosphere) region, a ground-based instrument called SATI (Spectral Airglow Temperature Imager) was developed at York University. The rotational temperatures and emission rates of the OH (6-2) Meinel band and the O2 (0-1) Atmospheric band have been measured in the MLT region by the SATI instrument at Resolute Bay (74.68°N, 94.90°W) since November, 2001, and at the King Sejong station (62.22°S, 58.75°W) since February, 2002. The MLT measurements are examined for periodic oscillations in the ambient temperature and airglow emission rate. A dominant and coherent 4-hr oscillation is seen in both the OH and O2 temperature and emission rate at Resolute Bay in November, 2001. Tidal variation with a 12 hour period is shown in hourly averaged temperatures of the season 2001--2002 and the season 2003--2004. In addition, planetary waves with periods of 3 and 4.5 days are also seen in a longer interval. The observations at high latitudes have revealed that temperatures and emission rates are higher around the winter solstice. MLT cooling events were found at Resolute Bay in December, 2001 and February, 2002. They are compared with the UKMO (UK Meteorological Office) stratospheric assimilated data, and the MLT coolings coincide in time with the stratospheric warmings. A consistent inverse relationship of the OH temperatures and temperatures at 0.316 hPa is presented in the comparison. In previous studies of wave perturbations, the background (mean) values were normally subtracted from the instantaneous signal, but in the present investigation this was not done, allowing the long-term relationship to be examined. A positive relationship of the temperature and emission rate is seen from the SATI measurements for both short and long-term variations, suggesting that similar dynamical processes are responsible for both. This relationship is supported by satellite data from the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument. The correlation is compared with the result of a simple atmospheric model based on the dynamical and chemical processes involved in the diurnal tide, and the model results are in good agreement with the observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910071893&hterms=deming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddeming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910071893&hterms=deming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddeming"><span>A solar infrared photometer for space flight application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kostiuk, Theodor; Deming, Drake</p> <p>1991-01-01</p> <p>A photometer concept which is capable of nearly simultaneous measurements of solar radiation from 1.6 to 200 microns in seven wavelength bands is described. This range of wavelengths can probe the solar photosphere from below the level of unit optical depth in the visible to the temperature minimum, about 500 km above it. An instrument package including a 20-cm Gregorian telescope and a filter wheel photometer utilizing noncryogenic pyroelectric infrared detectors is described. Approaches to the rejection of the visible solar spectrum in the instrument, the availability of optical and mechanical components, and the expected instrumental sensitivity are discussed. For wavelengths below 35 microns, the projected instrumental sensitivity is found to be adequate to detect the intensity signature of solar p-mode oscillations during 5 min of integration. For longer wavelengths, clear detection is expected through Fourier analysis of modest data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780050054&hterms=1055&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231055','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780050054&hterms=1055&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231055"><span>The LPSP instrument on OSO 8. II - In-flight performance and preliminary results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bonnet, R. M.; Lemaire, P.; Vial, J. C.; Artzner, G.; Gouttebroze, P.; Jouchoux, A.; Vidal-Madjar, A.; Leibacher, J. W.; Skumanich, A.</p> <p>1978-01-01</p> <p>The paper describes the in-flight performance for the first 18 months of operation of the LPSP (Laboratoire de Physique Stellaire et Planetaire) instrument incorporated in the OSO 8 launched June 1975. By means of the instrument, an absolute pointing accuracy of nearly one second was achieved in orbit during real-time operations. The instrument uses a Cassegrain telescope and a spectrometer simultaneously observing six wavelengths. In-flight performance is discussed with attention to angular resolution, spectral resolution, dispersion and grating mechanism (spectral scanner) stability, scattered light background and dark current, photometric standardization, and absolute calibration. Real-time operation and problems are considered with reference to pointing system problems, target acquisition, and L-alpha modulation. Preliminary results involving the observational program, quiet sun and chromospheric studies, quiet chromospheric oscillation and transients, sunspots and active regions, prominences, and aeronomy investigations are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24718227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24718227"><span>Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen</p> <p>2014-04-07</p> <p>Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940008331','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940008331"><span>The MRIS feasibility study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Neece, Robert T.; Cross, Aubrey E.; Schrader, James H.</p> <p>1993-01-01</p> <p>The Microwave Reflectometer Ionization Sensor (MRIS) is an instrument being developed for use in detecting and ranging of electron density layers in the reentry plasma of a space transfer vehicle. The rationale for the selection of the Double Sideband Suppressed Carrier (DSBSC) system used in the feasibility study for the MRIS is presented. A 25 GHz single-oscillator system and a 220 GHz double-oscillator system are described. The 25 GHz system was constructed and tested in the laboratory and test results are presented. As developed, the system employs a sideband spacing of 160 MHz. Based on an estimated electromagnetic wave velocity in the plasma, a round-trip phase shift measurement accuracy of +/- 7.6 degrees was required for the desired +/- 1/2 cm distance measurement accuracy. The interaction of parallel ground and reflecting planes produces interference that prevents the basic DSBSC system from meeting the accuracy goal so a frequency modulation was added to the system to allow averaging of the measured phase deviation. With an FM deviation of +/- 1 GHz, laboratory measurements were made for distances from 5 to 61 cm tip free space. Accounting for the plasma velocity factor, 82 percent of the data were equal to or better than the desired accuracy. Based on this measured result a sideband spacing to 250 MHz could be expected to yield data approximately 96 percent within the accuracy goal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL39006B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL39006B"><span>Fluid Mechanics Experiments as a Unifying Theme in the Physics Instrumentation Laboratory Course</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borrero-Echeverry, Daniel</p> <p>2017-11-01</p> <p>We discuss the transformation of a junior-level instrumentation laboratory course from a sequence of cookbook lab exercises to a semester-long, project-based course. In the original course, students conducted a series of activities covering the usual electronics topics (amplifiers, filters, oscillators, logic gates, etc.) and learned basic LabVIEW programming for data acquisition and analysis. Students complained that these topics seemed disconnected and not immediately applicable to ``real'' laboratory work. To provide a unifying theme, we restructured the course around the design, construction, instrumentation of a low-cost Taylor-Couette cell where fluid is sheared between rotating coaxial cylinders. The electronics labs were reworked to guide students from fundamental electronics through the design and construction of a stepper motor driver, which was used to actuate the cylinders. Some of the legacy labs were replaced with a module on computer-aided design (CAD) in which students designed parts for the apparatus, which they then built in the departmental machine shop. Signal processing topics like spectral analysis were introduced in the context of time-series analysis of video data acquired from flow visualization. The course culminated with a capstone project in which students conducted experiments of their own design on a variety of topics in rheology and nonlinear dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.111c2405D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.111c2405D"><span>Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Divinskiy, B.; Demidov, V. E.; Kozhanov, A.; Rinkevich, A. B.; Demokritov, S. O.; Urazhdin, S.</p> <p>2017-07-01</p> <p>We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices exhibit single-frequency auto-oscillations at current densities comparable to those for in-plane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29695951','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29695951"><span>Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan</p> <p>2018-01-01</p> <p>In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5904287','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5904287"><span>Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L.; Aziz, Tipu Z.; Wang, Shouyan</p> <p>2018-01-01</p> <p>In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations. PMID:29695951</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1349026','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1349026"><span>Oscillation Baselining and Analysis Tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p></p> <p></p> <p>PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10567E..1DD','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10567E..1DD"><span>Conduction cooled compact laser for the chemcam instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durand, E.; Derycke, C.; Simon-Boisson, C.; Muller, S.; Faure, B.; Saccoccio, M.; Maurice, M.</p> <p>2017-11-01</p> <p>A new conduction cooled compact laser for laser induced spectroscopy on the Mars Science Laboratory (MSL) to be launched in 2009 is presented. An oscillator combined to amplifiers generates 30mJ at 1μm with a good spatial quality. Development prototype of this laser has been built and characterized. Environmental testing of this prototype is also reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800005925','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800005925"><span>Phase-locked telemetry system for rotary instrumentation of turbomachinery, phase 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adler, A.; Hoeks, B.</p> <p>1978-01-01</p> <p>A telemetry system for use in making strain and temperature measurements on the rotating components of high speed turbomachines employs phase locked transmitters, which offer greater measurement channel capacity and reliability than existing systems which employ L-C carrier oscillators. A prototype transmitter module was tested at 175 C combined with 40,000 g's acceleration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46447','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46447"><span>Tree-ring reconstruction of the level of Great Salt Lake, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker</p> <p>2014-01-01</p> <p>Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMPP42A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMPP42A..01G"><span>The North Atlantic Oscillation Reconstructed at Bermuda for 220 Years Using Sr/Ca Ratios in Diploria labyrinthiformis (brain coral)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodkin, N. F.; Hughen, K. A.; Cohen, A. L.; Curry, W. B.; Doney, S. C.</p> <p>2006-12-01</p> <p>The North Atlantic Oscillation (NAO) is a meridional oscillation in atmospheric mass measured by pressure anomalies between Iceland (65°N, 23°W) and the Azores (38°N, 26°W) (Hurrell, 1995). Changes between the positive and negative phase of the NAO strongly influence weather patterns across the US, Europe and the Middle East. A shift in recent decades toward a sustained positive NAO has raised questions about the influence of greenhouse gas emissions on this system. Unfortunately, instrumental records are too short to identify the natural baseline variability of the NAO, and NAO reconstructions generally encompass only land-based proxies, excluding ocean processes. Winter-time sea surface temperatures (SST) in the Sargasso Sea have previously been shown to correlate to the NAO (Visbeck et al., 2001), and thus a long winter SST record based on proxy data could be used to reconstruct NAO variability back in time. Here we present an annually resolved winter-time strontium to calcium ratio (Sr/Ca) record from a 220-year old brain coral (Diploria labyrinthiformis) collected from the south shore of Bermuda. Brain coral is prevalent in Bermuda and shows distinct annual banding in its skeleton providing precise age models. Winter-time coral Sr/Ca has previously been shown to accurately record winter SST free from growth rate influences (Goodkin et al., 2005), and that relationship is confirmed here. Cross-spectral analysis between winter-time coral Sr/Ca and four instrumental and proxy records of the NAO (Hurrell, 1995, Jones et al., 1997, Luterbacher et al., 2001, Cook et al., 2002) show two frequencies of coherence with >95% confidence. At periods greater than 20 years and between 3 and 5 years, the coral Sr/Ca effectively captures the NAO variability. Filtering the coral record to these frequencies and comparing to the instrumental and proxy records, including another marine-based NAO reconstruction from the North and Norwegian Seas (Schoene et al., 2003), show strong agreement and provide information about the differences between high and low frequency responses to the NAO. At high frequencies, SST at Bermuda shows a positive correlation to the NAO, as predicted by the tri-pole SST response (Visbeck et al., 2001), and succeeds well at capturing amplitude variability. At low frequencies, however, Bermuda SST shows a negative correlation to the NAO, different than the response predicted by the high frequency tri-pole pattern. One possible explanation for this shift is a response to changes in the meridional overturning circulation (MOC), which is believed to show variability at lower frequencies (Curry et al., 2003) and which may be driving changes in both SST and the NAO. Over 50 years during the late 20th century warming (1950-1999), the amplitude of the Sr/Ca-based NAO record at 3-5 year periods is 20% greater than that found during an equivalent interval at the end of the LIA (1800- 1849). Low-frequency (20-50 year) variability also appears larger during the second half of the 20th century, compared to the LIA. These results indicate a change in NAO variability at different mean temperatures, with larger amplitude changes during warmer climates. However, a sustained positive NAO during the late LIA does not appear to support the hypothesis of a linear relationship between mean NAO and mean hemispheric temperature, as observed during the late 20th century warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005OptCo.247..141M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005OptCo.247..141M"><span>Magnetometer based on the opto-electronic microwave oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsko, Andrey B.; Strekalov, Dmitry; Maleki, Lute</p> <p>2005-03-01</p> <p>We present a scheme for an all-optical self-oscillating magnetometer based on the opto-electronic oscillator stabilized with an atomic vapor cell. We demonstrate a proof of the principle with DC magnetic field measurements characterized by 2 × 10-7 G sensitivity and 1-1000 mG dynamic range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005MNRAS.356.1371Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005MNRAS.356.1371Z"><span>Dynamics of oscillating relativistic tori around Kerr black holes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zanotti, Olindo; Font, José A.; Rezzolla, Luciano; Montero, Pedro J.</p> <p>2005-02-01</p> <p>We present a comprehensive numerical study of the dynamics of relativistic axisymmetric accretion tori with a power-law distribution of specific angular momentum orbiting in the background space-time of a Kerr black hole. By combining general relativistic hydrodynamics simulations with a linear perturbative approach we investigate the main dynamical properties of these objects over a large parameter space. The astrophysical implications of our results extend and improve two interesting results that have been recently reported in the literature. First, the induced quasi-periodic variation of the mass quadrupole moment makes relativistic tori of nuclear matter densities, as those formed during the last stages of binary neutron star mergers, promising sources of gravitational radiation, potentially detectable by interferometric instruments. Secondly, p-mode oscillations in relativistic tori of low rest-mass densities could be used to explain high-frequency quasi-periodic oscillations observed in X-ray binaries containing a black hole candidate under conditions more generic than those considered so far.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981AdSpR...1...29H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981AdSpR...1...29H"><span>Artificial plasma jet in the ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haerendel, G.; Sagdeev, R. Z.</p> <p></p> <p>The dynamics of an artificially injected plasma beam in the near-earth space are analyzed in terms of the beam structure, its propagation across the magnetic field, and the resulting wave phenomena (Porcupine Project, flight 4, March 31, 1979). Out of the four ejectable canisters attached to the main payload, two were instrumented by the U.S., one by the USSR (the Xenon plasma beam experiment), and one by West Germany (carrying a barium ion jet experiment). The propagation of the plasma seems to occur in three stages, with high-frequency broad-band oscillations mainly localized in the 'core' of the jet, while low-frequency oscillations were spatially separated from it. The generation region of LF oscillations was found to be much wider than the jet core. As a result of the interaction between the plasma beam and the ambient medium a heating of electrons, up to energies of about 20 eV, associated with LF noise was observed. The behavior of high-energy ions and the observed HF wave phenomena need further analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AdSpR..27.1165W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AdSpR..27.1165W"><span>Observations of OH(3,1) airglow emission using a Michelson interferometer at 62° S</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Won, Young-In; Cho, Young-Min; Niciejewski, Rick J.; Kim, Jhoon</p> <p></p> <p>A Michelson interferometer was used to observe the hydroxyl (OH) emission in the upper mesosphere at the King Sejong Station (62.22° S, 301.25° E), Antarctica. The instrument was installed in February 1999 and has been in routine operation since then. An intensive operational effort has resulted in a substantial data set between April and June, 1999. A spectral analysis was performed on individual data to examine the information of dominant waves. A harmonic analysis was also carried out on the monthly average data to investigate the characteristics of the major low frequency oscillations. The 12-hr temperature oscillations exhibit a striking agreement with a theoretical tidal model, supporting the tidal (migrating) origin. The 8-hr wave is found to be persistent and dominant, reflecting its major role in the upper mesospheric dynamics at the given latitude. The 6-hr oscillation is observed only in May with its value close to the prediction for zonally symmetric tides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900049911&hterms=Storm+Japan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DStorm%2BJapan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900049911&hterms=Storm+Japan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DStorm%2BJapan"><span>Toroidal standing waves excited by a storm sudden commencement - DE 1 observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cahill, L. J., Jr.; Lin, N. G.; Engebretson, M. J.; Waite, J. H.; Sugiura, M.</p> <p>1990-01-01</p> <p>A 74-nT sudden commencement on July 13, 1982, was observed in the magnetosphere, with instruments on the Dynamics Explorer 1 satellite. Inbound, near L = 4.5, the satellite was located at 1524 magnetic local time and 20 deg magnetic latitude. The sudden commmencement established a strong, east-west oscillation, with 100-s period, which was observed in the magnetic field, the electric field, and the plasma flow velocity records. There was also a compressional component of this 100-s oscillation and a rapidly damped 300-s compressional pulsation. The compressional oscillations may be an evidence of cavity resonances, excited by the sudden commencement. The cavity waves may, in turn, couple to toroidal waves in field line resonance at the satellite location. In addition, the sudden commencement caused the onset of waves with frequencies from 0.1 up to at least 0.5 Hz. The observations are compared with similar reports from earlier pulsations related to sudden commencements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910053683&hterms=Quasi+experiment&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DQuasi%2Bexperiment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910053683&hterms=Quasi+experiment&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DQuasi%2Bexperiment"><span>Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zawodny, Joseph M.; Mccormick, M. P.</p> <p>1991-01-01</p> <p>The first measurements ever to show a quasi-biennial oscillation (QBO) in NO2 have been made by the Stratospheric Aerosol and Gas Experiment II) (SAGE II) and are presented in this work along with observations of the well-known QBO in stratospheric ozone. The SAGE II instrument was launched aboard the Earth Radiation Budget satellite near the end of 1984. Measurements of ozone and nitrogen dioxide through early 1990 are analyzed for the presence of a quasi-biennial oscillation. The measurements show the global extent of both the O3 and NO2 QBO in the 25- to 40-km region of the stratosphere. The SAGE II QBO results for ozone compare favorably to theory and previous measurements. The QBO in NO2 is found to be consistent with the vertical and horizontal transport of NOy. Both species exhibit a QBO at extratropical latitudes consistent with strong meridional transport into the winter hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17984032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17984032"><span>Modelling vortex-induced fluid-structure interaction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benaroya, Haym; Gabbai, Rene D</p> <p>2008-04-13</p> <p>The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26193283','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26193283"><span>A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan</p> <p>2015-07-17</p> <p>Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541942','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541942"><span>A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan</p> <p>2015-01-01</p> <p>Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS. PMID:26193283</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptEn..55i0504C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptEn..55i0504C"><span>Phase noise analysis of a 10-GHz optical injection-locked vertical-cavity surface-emitting laser-based optoelectronic oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coronel, Juan; Varón, Margarita; Rissons, Angélique</p> <p>2016-09-01</p> <p>The optical injection locking (OIL) technique is proposed to reduce the phase noise of a carrier generated for a vertical-cavity surface-emitting laser (VCSEL)-based optoelectronic oscillator. The OIL technique permits the enhancement of the VCSEL direct modulation bandwidth as well as the stabilization of the optical noise of the laser. A 2-km delay line, 10-GHz optical injection-locked VCSEL-based optoelectronic oscillator (OILVBO) was implemented. The internal noise sources of the optoelectronic oscillator components were characterized and analyzed to understand the noise conversion of the system into phase noise in the oscillator carrier. The implemented OILVBO phase noise was -105.7 dBc/Hz at 10 kHz from the carrier; this value agrees well with the performed simulated analysis. From the computed and measured phase noise curves, it is possible to infer the noise processes that take place inside the OILVBO. As a second measurement of the oscillation quality, a time-domain analysis was done through the Allan's standard deviation measurement, reported for first time for an optoelectronic oscillator using the OIL technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17571810','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17571810"><span>Reduced transposed flicker noise in microwave oscillators using gaas-based feedforward amplifiers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Everard, Jeremy K A; Broomfield, Carl D</p> <p>2007-06-01</p> <p>Transposed flicker noise reduction and removal is demonstrated in 7.6 GHz microwave oscillators for offsets greater than 10 kHz. This is achieved by using a GaAs-based feedforward power amplifier as the oscillation-sustaining stage and incorporating a limiter and resonator elsewhere in the loop. 20 dB noise suppression is demonstrated at 12.5 kHz offset when the error correcting amplifier is switched on. Three oscillator pairs have been built. A transmission line feedback oscillator with a Qo of 180 and two sapphire-based, dielectric resonator oscillators (DROs) with a Qo of 44,500. The difference between the two DROs is a change in the limiter threshold power level of 10 dB. The phase noise rolls-off at (1/f)(2) for offsets greater than 10 kHz for the transmission line oscillator and is set by the thermal noise to within 0-1 dB of the theoretical minimum. The noise performance of the DROs is within 6-12 dB of the theory. Possible reasons for this discrepancy are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21950976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21950976"><span>The effects of ion channel blockers validate the conductance-based model of saccadic oscillations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shaikh, Aasef G; Zee, David S; Optican, Lance M; Miura, Kenichiro; Ramat, Stefano; Leigh, R John</p> <p>2011-09-01</p> <p>Conductance-based models of reciprocally inhibiting burst neurons suggest that intrinsic membrane properties and postinhibitory rebound (PIR) determine the amplitude and frequency of saccadic oscillations. Reduction of the low-threshold calcium currents (I(T)) in the model decreased the amplitude but increased the frequency of the simulated oscillations. Combined reduction of hyperpolarization-activated cation current (I(h)) and I(T) in the model abolished the simulated oscillations. We measured the effects of a selective blocker of I(T) (ethosuximide) in healthy subjects on the amplitude and frequency of saccadic oscillations evoked by eye closure and of a nonselective blocker of I(h) and I(T) (propronolol) in a patient with microsaccadic oscillation and limb tremor syndrome (mSOLT). Ethosuximide significantly reduced the amplitude but increased the frequency of the saccadic oscillations during eye closure in healthy subjects. Propranolol abolished saccadic oscillations in the mSOLT patient. These results support the hypothetical role of postinhibitory rebound, I(h), and I(T) , in generation of saccadic oscillations and determining their kinematic properties. © 2011 New York Academy of Sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007MsT..........3J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007MsT..........3J"><span>Hydraulophones: Acoustic musical instruments and expressive user interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janzen, Ryan E.</p> <p></p> <p>Fluid flow creates an expansive range of acoustic possibilities, particularly in the case of water, which has unique turbulence and vortex shedding properties as compared with the air of ordinary wind instruments. Sound from water flow is explained with reference to a new class of musical instruments, hydraulophones, in which oscillation originates directly from matter in its liquid state. Several hydraulophones which were realized in practical form are described. A unique user-interface consisting of a row of water jets is presented, in terms of its expressiveness, tactility, responsiveness to derivatives and integrals of displacement, and in terms of the direct physical interaction between a user and the physical process of sound production. Signal processing algorithms are introduced, which extract further information from turbulent water flow, for industrial applications as well as musical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999SPIE.3783..352G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999SPIE.3783..352G"><span>Imaging strategies for the study of gas turbine spark ignition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gord, James R.; Tyler, Charles; Grinstead, Keith D., Jr.; Fiechtner, Gregory J.; Cochran, Michael J.; Frus, John R.</p> <p>1999-10-01</p> <p>Spark-ignition systems play a critical role in the performance of essentially all gas turbine engines. These devices are responsible for initiating the combustion process that sustains engine operation. Demanding applications such as cold start and high-altitude relight require continued enhancement of ignition systems. To characterize advanced ignition systems, we have developed a number of laser-based diagnostic techniques configured for ultrafast imaging of spark parameters including emission, density, temperature, and species concentration. These diagnostics have been designed to exploit an ultrafast- framing charge-coupled-device (CCD) camera and high- repetition-rate laser sources including mode-locked Ti:sapphire oscillators and regenerative amplifiers. Spontaneous-emission and laser-shlieren measurements have been accomplished with this instrumentation and the result applied to the study of a novel Unison Industries spark igniter that shows great promise for improved cold-start and high-altitude-relight capability as compared to that of igniters currently in use throughout military and commercial fleets. Phase-locked and ultrafast real-time imaging strategies are explored, and details of the imaging instrumentation, particularly the CCD camera and laser sources, are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...744772V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...744772V"><span>A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien</p> <p>2017-03-01</p> <p>With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28322262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28322262"><span>A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien</p> <p>2017-03-21</p> <p>With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices' non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5359582','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5359582"><span>A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien</p> <p>2017-01-01</p> <p>With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing. PMID:28322262</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H13I1686K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H13I1686K"><span>The Changing Nature of Drought Risk in South-east Australia Over the Past Two Millennia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiem, A.; Ho, M. W.; Verdon-Kidd, D.</p> <p>2015-12-01</p> <p>The Murray-Darling Basin (MDB) is one of the most important food and fibre regions in Australia, producing one-third of the national food supply and exporting produce to many other countries. In total, the Basin contains about 40% of Australia's farms and 70% of Australia's irrigated land area. However, the MDB is also one of the most spatially and temporally variable river systems in the world, with severe droughts a regular occurrence over the ~100 years of instrumental record and decadal-scale droughts (e.g. "Federation" (~1895-1902), "World War II" (~1937-1945) and "Millennium" or "Big Dry" (~1997-2010) droughts) matched by flood dominated epochs (e.g. 1950s, 1970s). The accurate estimation of drought risk in the MDB is hampered by relatively short instrumental records and also by the complexity of the region's climate teleconnections with several large-scale ocean-atmospheric processes in the Pacific (El Niño Southern Oscillation, Interdecadal Pacific Oscillation), the Indian (Indian Ocean Dipole) and Southern Oceans (Southern Annular Mode). Climate-sensitive paleoclimate records provide an opportunity to resolve hydroclimatic variability over long time periods prior to the availability of instrumental records and therefore offer the potential for improved quantification of risks associated with hydroclimatic extremes. However, the MDB, as with many regions in Australia, currently lacks suitable in situ proxies necessary to do this. Therefore, remote paleoclimate rainfall proxies in the Australasian region spanning are used to develop new reconstructions of MDB rainfall over the Common Era (CE) (i.e. approximately the past 2000 years). The nature of MDB dry epochs from 749BCE to 1981CE are then compared with the frequency and duration of droughts recorded in instrumental records (i.e. approximately the past 100 years). Importantly, the results show that the probability of decadal scale droughts is three times greater than instrumental records suggest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2689615','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2689615"><span>Vocal tract resonances in speech, singing, and playing musical instruments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wolfe, Joe; Garnier, Maëva; Smith, John</p> <p>2009-01-01</p> <p>In both the voice and musical wind instruments, a valve (vocal folds, lips, or reed) lies between an upstream and downstream duct: trachea and vocal tract for the voice; vocal tract and bore for the instrument. Examining the structural similarities and functional differences gives insight into their operation and the duct-valve interactions. In speech and singing, vocal tract resonances usually determine the spectral envelope and usually have a smaller influence on the operating frequency. The resonances are important not only for the phonemic information they produce, but also because of their contribution to voice timbre, loudness, and efficiency. The role of the tract resonances is usually different in brass and some woodwind instruments, where they modify and to some extent compete or collaborate with resonances of the instrument to control the vibration of a reed or the player’s lips, and∕or the spectrum of air flow into the instrument. We give a brief overview of oscillator mechanisms and vocal tract acoustics. We discuss recent and current research on how the acoustical resonances of the vocal tract are involved in singing and the playing of musical wind instruments. Finally, we compare techniques used in determining tract resonances and suggest some future developments. PMID:19649157</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19649157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19649157"><span>Vocal tract resonances in speech, singing, and playing musical instruments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wolfe, Joe; Garnier, Maëva; Smith, John</p> <p>2009-01-01</p> <p>IN BOTH THE VOICE AND MUSICAL WIND INSTRUMENTS, A VALVE (VOCAL FOLDS, LIPS, OR REED) LIES BETWEEN AN UPSTREAM AND DOWNSTREAM DUCT: trachea and vocal tract for the voice; vocal tract and bore for the instrument. Examining the structural similarities and functional differences gives insight into their operation and the duct-valve interactions. In speech and singing, vocal tract resonances usually determine the spectral envelope and usually have a smaller influence on the operating frequency. The resonances are important not only for the phonemic information they produce, but also because of their contribution to voice timbre, loudness, and efficiency. The role of the tract resonances is usually different in brass and some woodwind instruments, where they modify and to some extent compete or collaborate with resonances of the instrument to control the vibration of a reed or the player's lips, andor the spectrum of air flow into the instrument. We give a brief overview of oscillator mechanisms and vocal tract acoustics. We discuss recent and current research on how the acoustical resonances of the vocal tract are involved in singing and the playing of musical wind instruments. Finally, we compare techniques used in determining tract resonances and suggest some future developments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5639895','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5639895"><span>Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wintenberg, A.L.</p> <p>1985-04-01</p> <p>An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15/sup 0/. Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, andmore » produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989MiJo...32..315C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989MiJo...32..315C"><span>Efficient optical injection locking of electronic oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cochran, S. R.; Wang, S. Y.</p> <p>1989-05-01</p> <p>The paper presents techniques for direct optical injection locking of electronic oscillators and analyzes the problem of direct optical injection locking of a common-source FET oscillator using a high impedance optoelectronic transducer. A figure-of-merit for optically injection locked oscillators is defined, and an experimental oscillator based on the design criteria was fabricated. The oscillator achieved efficient, high power operation and moderate locking bandwidth with small locking signal magnitude. The experimental results are consistent with the theoretical model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27023201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27023201"><span>Quantification of sound instability in embouchure tremor based on the time-varying fundamental frequency.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, André; Voget, Jakob; Furuya, Shinichi; Morise, Masanori; Altenmüller, Eckart</p> <p>2016-05-01</p> <p>Task-specific tremor in musicians is an involuntary oscillating muscular activity mostly of the hand or the embouchure, which predominantly occurs while playing the instrument. In contrast to arm or hand tremors, which have been examined and objectified based on movement kinematics and muscular activity, embouchure tremor has not yet been investigated. To quantify and describe embouchure tremor we analysed sound production and investigated the fluctuation of the time-varying fundamental frequency of sustained notes. A comparison between patients with embouchure tremor and healthy controls showed a significantly higher fluctuation of the fundamental frequency for the patients in the high pitch with a tremor frequency range between 3 and 8 Hz. The present findings firstly provide further information about a scarcely described movement disorder and secondly further evaluate a new quantification method for embouchure tremor, which has recently been established for embouchure dystonia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100035090','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100035090"><span>Flagging and Correction of Pattern Noise in the Kepler Focal Plane Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kolodziejczak, Jeffery J.; Caldwell, Douglas A.; VanCleve, Jeffrey E.; Clarke, Bruce D.; Jenkins, Jon M.; Cote, Miles T.; Klaus, Todd C.; Argabright, Vic S.</p> <p>2010-01-01</p> <p>In order for Kepler to achieve its required less than 20 PPM photometric precision for magnitude 12 and brighter stars, instrument-induced variations in the CCD readout bias pattern (our "2D black image"), which are either fixed or slowly varying in time, must be identified and the corresponding pixels either corrected or removed from further data processing. The two principle sources of these readout bias variations are crosstalk between the 84 science CCDs and the 4 fine guidance sensor (FGS) CCDs and a high frequency amplifier oscillation on less than 40% of the CCD readout channels. The crosstalk produces a synchronous pattern in the 2D black image with time-variation observed in less than 10% of individual pixel bias histories. We will describe a method of removing the crosstalk signal using continuously-collected data from masked and over-clocked image regions (our "collateral data"), and occasionally-collected full-frame images and reverse-clocked readout signals. We use this same set to detect regions affected by the oscillating amplifiers. The oscillations manifest as time-varying moir pattern and rolling bands in the affected channels. Because this effect reduces the performance in only a small fraction of the array at any given time, we have developed an approach for flagging suspect data. The flags will provide the necessary means to resolve any potential ambiguity between instrument-induced variations and real photometric variations in a target time series. We will also evaluate the effectiveness of these techniques using flight data from background and selected target pixels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29715868','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29715868"><span>Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fleyer, Michael; Horowitz, Moshe</p> <p>2018-04-02</p> <p>We demonstrate, theoretically and experimentally, a new method to measure small changes in the cavity length of oscillators. The method is based on the high sensitivity of the phase of forced delay-line oscillators to changes in their cavity length. The oscillator phase is directly detected by mixing the oscillator output with the injected signal. We describe a comprehensive theoretical model for studying the signal and the noise at the output of a general forced delay-line oscillator with an instantaneous gain saturation and an amplitude-to-phase conversion. The results indicate that the magnitude and the bandwidth of the oscillator response to a small perturbation can be controlled by adjusting the injection ratio and the injected frequency. For signals with a frequency that is smaller than the device bandwidth, the oscillator noise is dominated by the noise of the injected signal. This noise is highly suppressed by mixing the oscillator output with the injected signal. Hence, the device sensitivity at frequencies below its bandwidth is limited only by the internal noise that is added in a single roundtrip in the oscillator cavity. We demonstrate the use of a forced oscillator as an acoustic fiber sensor in an optoelectronic oscillator. A good agreement is obtained between theory and experiments. The magnitude of the output signal can be controlled by adjusting the injection ratio while the noise power at low frequencies is not enhanced as in sensors that are based on a free-running oscillator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008CoAst.157...92T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008CoAst.157...92T"><span>Asteroseismology of Red Giant stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarrant, N. J.; Chaplin, W. J.; Elsworth, Y. P.; Spreckley, S. A.; Stevens, I. R.</p> <p>2008-12-01</p> <p>Sun-like oscillations, that is p-modes excited stochastically by convective noise, have now been observed in a number of Red Giant stars. Compared to those seen in the Sun, these modes are of large amplitude and long period, making the oscillations attractive prospects for observation. However, the low Q-factor of these modes, and issues relating to the rising background at low frequencies, present some interesting challenges for identifying modes and determining the related asteroseismic parameters. We report on the analysis procedure adopted for peak-bagging by our group at Birming- ham, and the techniques used to robustly ensure these are not a product of noise. I also show results from a number of giants extracted from multi-year observations with the SMEI instrument</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20130000026&hterms=multi+universe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmulti%2Buniverse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20130000026&hterms=multi+universe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmulti%2Buniverse"><span>Local Oscillator Sub-Systems for Array Receivers in the 1-3 THz Range</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mehdi, Imran; Siles, Jose V.; Maestrini, Alain; Lin, Robert; Lee, Choonsup; Schlecht, Erich; Chattopadhyay, Goutam</p> <p>2012-01-01</p> <p>Recent results from the Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore the current status of tunable local oscillator sources with emphasis on building a multi-pixel LO subsystem for the scientifically important CII line around 1908 GHz. Recent results have shown that over 50 microwatts of output power at 1.9 THz are possible with an optimized single pixel LO chain. These power levels are now sufficient to pump array receivers in this frequency range. Further power enhancement can be obtained by cooling the chain to 120 K or by utilizing in-phase power combining technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987JGR....9212203B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987JGR....9212203B"><span>Plasma and field observations of a compressional Pc 5 wave event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baumjohann, W.; Sckopke, N.; LaBelle, J.; Klecker, B.; Lühr, H.; Glassmeier, K. H.</p> <p>1987-11-01</p> <p>The full complement of data obtained by all the instruments on board the AMPTE/IRM satellite during a Pc 5 wave event on October 24, 1984 is analyzed. Both energetic proton and electron fluxes were anticorrelated with the compressional magnetic field oscillations, indicating that the event belongs to the class of 'in-phase events'. The energetic proton data also exhibited a new feature: flux minima and maxima at low energies were observed somewhat later than those at higher energies. The magnetic and plasma pressure oscillations satisfy the pressure balance equation for the drift mirror mode much better than that for drift compressional Alfven waves. However, the classical criterion for the onset of the mirror instability is not satisfied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19149233','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19149233"><span>Application of a novel bone osteotomy plate leads to reduction in heat-induced bone tissue necrosis in sheep.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bekić, Marijo; Davila, Slavko; Hrskanović, Mato; Bekić, Marijana; Seiwerth, Sven; Erdeljić, Viktorija; Capak, Darko; Butković, Vladimir</p> <p>2008-12-01</p> <p>Previous studies have shown substantial effect thermal damage can have on new bone formation following osteotomy. In this study we evaluated the extent of thermal damage which occurs in four different methods of osteotomy and the effects it can have on bone healing. We further wanted to test whether a special osteotomy plate we constructed can lead to diminished heat generation during osteotomy and enhanced bone healing. The four methods evaluated included osteotomy performed by chisel, a newly constructed osteotomy plate, Gigly and oscillating saw. Twelve adult sheep underwent osteotomy performed on both tibiae. Bone fragments were stabilized using a fixation plate. Callus size was assessed using standard radiographs. Densitometry and histological evaluation were performed at 8 weeks following osteotomy. Temperature measurements were performed both in vivo during the operation, and ex vivo on explanted tibiae. The defects healed without complications and showed typical course of secondary fracture healing with callus ingrowth into the osteotomy gap. Radiographic examination of bone healing showed a tendency towards more callus formation in bones osteotomized using Gigly and oscillating saw, but this difference lacked significance. Use of Gigly and oscillating saw elicited much higher temperatures at the bone cortex surface, which subsequently lead to slightly impaired bone healing according to histological analysis. BMD was equal among all bones. In conclusion, the time required for complete healing of the defect differed depended greatly on the instruments used. The newly constructed osteotomy plate showed best results based on histological findings of capillary and osteoblast density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJMPB..3250103L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJMPB..3250103L"><span>Weak photoacoustic signal detection based on the differential duffing oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Chenjing; Xu, Xuemei; Ding, Yipeng; Yin, Linzi; Dou, Beibei</p> <p>2018-04-01</p> <p>In view of photoacoustic spectroscopy theory, the relationship between weak photoacoustic signal and gas concentration is described. The studies, on the principle of Duffing oscillator for identifying state transition as well as determining the threshold value, have proven the feasibility of applying the Duffing oscillator in weak signal detection. An improved differential Duffing oscillator is proposed to identify weak signals with any frequency and ameliorate the signal-to-noise ratio. The analytical methods and numerical experiments of the novel model are introduced in detail to confirm its superiority. Then the signal detection system of weak photoacoustic based on differential Duffing oscillator is constructed, it is the first time that the weak signal detection method with differential Duffing oscillator is applied triumphantly in photoacoustic spectroscopy gas monitoring technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMMM..452..188Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMMM..452..188Z"><span>Weak-field precession of nano-pillar spin-torque oscillators using MgO-based perpendicular magnetic tunnel junction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Changxin; Fang, Bin; Wang, Bochong; Zeng, Zhongming</p> <p>2018-04-01</p> <p>This paper presents a steady auto-oscillation in a spin-torque oscillator using MgO-based magnetic tunnel junction (MTJ) with a perpendicular polarizer and a perpendicular free layer. As the injected d.c. current varied from 1.5 to 3.0 mA under a weak magnetic field of 290 Oe, the oscillation frequency decreased from 1.85 to 1.3 GHz, and the integrated power increased from 0.1 to 74 pW. A narrow linewidth down to 7 MHz corresponding to a high Q factor of 220 was achieved at 2.7 mA, which was ascribed to the spatial coherent procession of the free layer magnetization. Moreover, the oscillation frequency was quite sensitive to the applied field, about 3.07 MHz/Oe, indicating the potential applications as a weak magnetic field detector. These results suggested that the MgO-based MTJ with perpendicular magnetic easy axis could be helpful for developing spin-torque oscillators with narrow-linewidth and high sensitive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023572','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023572"><span>NASA Tech Briefs, February 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>opics covered include: Integrated Electrode Arrays for Neuro-Prosthetic Implants; Eroding Potentiometers; Common/Dependent-Pressure-Vessel Nickel-Hydrogen Batteries; 120-GHz HEMT Oscillator With Surface-Wave-Assisted Antenna; 80-GHz MMIC HEMT Voltage-Controlled Oscillator; High-Energy-Density Capacitors; Microscale Thermal-Transpiration Gas Pump; Instrument for Measuring Temperature of Water; Improved Measurement of Coherence in Presence of Instrument Noise; Compact Instruments Measure Helium-Leak Rates; Irreversible Entropy Production in Two-Phase Mixing Layers; Subsonic and Supersonic Effects in Bose-Einstein Condensate; Nanolaminate Mirrors With "Piston" Figure-Control Actuators; Mixed Conducting Electrodes for Better AMTEC Cells; Process for Encapsulating Protein Crystals; Lightweight, Self-Deployable Wheels; Grease-Resistant O Rings for Joints in Solid Rocket Motors; LabVIEW Serial Driver Software for an Electronic Load; Software Computes Tape-Casting Parameters; Software for Tracking Costs of Mars Projects; Software for Replicating Data Between X.500 and LDAP Directories; The Technical Work Plan Tracking Tool; Improved Multiple-DOF SAW Piezoelectric Motors; Propulsion Flight-Test Fixture; Mechanical Amplifier for a Piezoelectric Transducer; Swell Sleeves for Testing Explosive Devices; Linear Back-Drive Differentials; Miniature Inchworm Actuators Fabricated by Use of LIGA; Using ERF Devices to Control Deployments of Space Structures; High-Temperature Switched-Reluctance Electric Motor; System for Centering a Turbofan in a Nacelle During Tests; Fabricating Composite-Material Structures Containing SMA Ribbons; Optimal Feedback Control of Thermal Networks; Artifacts for Calibration of Submicron Width Measurements; Navigating a Mobile Robot Across Terrain Using Fuzzy Logic; Designing Facilities for Collaborative Operations; and Quantitating Iron in Serum Ferritin by Use of ICP-MS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160013416','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160013416"><span>How to Interactively Operate the Global Hawk UAS NOAA/NASA ENSO Payload, from Your Armchair, Five Thousand Kilometers Away</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sullivan, Don</p> <p>2016-01-01</p> <p>This paper will describe the information technologies developed by NASA and NOAA for the February 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) El Niño Southern Oscillation (ENSO) Campaign. The air vehicle is a NASA Global Hawk UAS, with a primary payload of four instruments, two developed by NASA, two developed by NOAA. The aircraft is based at the NASA Armstrong Flight Research Center, Edwards Air Force Base, California. The payload components are remotely operated by scientists at various facilities, and the data collected downloaded over satellite links in real time for analysis and collaboration. NOAA: Advanced Vertical Atmospheric Profiling System (AVAPS), developed by NCAR, which deploys dozens of dropsondes at altitudes up to 65,000 ft to collect high vertical resolution measurements of the temperature, pressure, relative humidity, and wind speed and direction. NASA: High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), a radar designed to examine the factors of storm intensity: formation, structure and intensification. NOAA: O3 Photometer (UAS-O3), designed specifically for autonomous, precise, and accurate O3 measurements in the upper troposphere and lower stratosphere (UT/LS). NASA JPL: High Altitude MMIC Sounding Radiometer (HAMSR), an atmospheric microwave temperature and humidity sounder instrument that looks at the microwave spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026590','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026590"><span>Structure and Rotation of the Solar Interior: Initial Results from the MDI Medium-L Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Bogart, R. S.; Bush, R. I.; Hoeksema, J. T.; Aloise, J.; Bacon, L.; Burnette, A.; DeForest, C.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19970026590'); toggleEditAbsImage('author_19970026590_show'); toggleEditAbsImage('author_19970026590_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19970026590_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19970026590_hide"></p> <p>1997-01-01</p> <p>The medium-l program of the Michelson Doppler Imager instrument on board SOHO provides continuous observations of oscillation modes of angular degree, l, from 0 to approximately 300. The data for the program are partly processed on board because only about 3% of MDI observations can be transmitted continuously to the ground. The on-board data processing, the main component of which is Gaussian-weighted binning, has been optimized to reduce the negative influence of spatial aliasing of the high-degree oscillation modes. The data processing is completed in a data analysis pipeline at the SOI Stanford Support Center to determine the mean multiplet frequencies and splitting coefficients. The initial results show that the noise in the medium-l oscillation power spectrum is substantially lower than in ground-based measurements. This enables us to detect lower amplitude modes and, thus, to extend the range of measured mode frequencies. This is important for inferring the Sun's internal structure and rotation. The MDI observations also reveal the asymmetry of oscillation spectral lines. The line asymmetries agree with the theory of mode excitation by acoustic sources localized in the upper convective boundary layer. The sound-speed profile inferred from the mean frequencies gives evidence for a sharp variation at the edge of the energy-generating core. The results also confirm the previous finding by the GONG (Gough et al., 1996) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. Inverting the multiplet frequency splittings from MDI, we detect significant rotational shear in this thin layer. This layer is likely to be the place where the solar dynamo operates. In order to understand how the Sun works, it is extremely important to observe the evolution of this transition layer throughout the 11-year activity cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S34A..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S34A..07C"><span>Detection of very long period solar free oscillations in ambient seismic array noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caton, R.; Pavlis, G. L.; Thomson, D. J.; Vernon, F.</p> <p>2017-12-01</p> <p>For nearly two decades long-period seismologists have been aware that the Earth's free oscillations are in a constant state of excitement, even in the absence of large earthquakes. This phenomenon is now called the "Earth's hum," and much research has been done to determine what generates this hum. Here we examine a hypothesis first put forward by Thomson et al. in 2007 that a portion of the hum's energy comes from the sun. They hypothesized that solar free oscillations couple into the solid Earth, likely through electromagnetic processes, and produce signals that are observable in the frequency domain. If this is true, then at least some measurement of helioseismic oscillations may be possible using relatively cheap, ground-based instruments rather than spacecraft. In this project we attempt to improve upon previous studies by producing spectra from seismic arrays, rather than a single station. We use data from two arrays: The Homestake Mine 3D array in Lead, SD, and the Pinyon Flats array, which has seismometers in boreholes drilled into bedrock. Both have exceptionally low noise levels at ultra long periods and show easily visible earth tides on horizontal component data filtered to below the microseism band. In the Homestake data, below 500 μHz we have found evidence of what we suggest may be closely spaced solar g-mode lines. Such modes are produced by a density inversion at the top of the solar core. There is no sign of these modes in the Pinyon Flats data, but we find this is likely due to the signal-to-noise ratio of those data, which is significantly lower than Homestake. Significance tests of bands below 500 μHz indicate with probability levels as high as 40σ that these lines are not the result of random processes. Critical examination of our processing steps for sources of bias indicate that the observed line structure is not a processing artifact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002DPS....34.1301O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002DPS....34.1301O"><span>A Cold Hole at the Pole of Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orton, G. S.; Fisher, B. M.; Baines, K. H.; Momary, T. W.; Fox, O. D.</p> <p>2002-09-01</p> <p>The temperature field of Jupiter's arctic region reveals a prominent cold airmass in both the stratosphere ( ~30 mbar) and the troposphere (100-400 mbar), as seen in thermal images taken at the NASA Infrared Telescope Facility between July and October, 1999. This discrete airmass is some 3 - 5 Kelvins colder than the lower-latitude regions in both the troposphere and the stratosphere. At both vertical levels, the latitude boundaries of this cold airmass oscillate as a function of longitude with principal wavenumber 5 - 6, with stratospheric oscillations often ostensibly larger than those in the troposhere. This longitudinal oscillation is similar to the oscillation of the boundary of the thick (inner) ``polar hood'' that is detectable in reflected sunlight that is sensitive to particles around Jupiter's tropopause ( 100 mbar pressure), using IRTF 2.3-micron and HST WFPC2 890-nm images. These boundaries slowly rotate prograde with a speed of 5 degrees of longitude per day with respect to System III. The proximity and similarity of the thermal and particle boundaries suggests that the phenomenon is a classical polar vortex of the same type as seen in the polar regions of the Earth, Venus, Mars and possibly Titan. Analysis of ground-based thermal images from a telescope larger then the 3-m IRTF would improve the positional uncertainties arising from the diffraction-limited angular resolution. Further, the testing of possible gaseous entrainment within the vortex area would verify or refute similarities with other polar vortices. Such studies would be relevant to studies of terrestrial meteorology by showing the extent to which stratospheric phenomena can drive tropospheric properties. Detailed studies of Jupiter's polar regions might be most easily accomplished from appropriate remote sensing instrumentation on a polar orbiter mission as a result of optimized spatial resolution. The work reported here was supported by funds from NASA to the Jet Propulsion Laboratory, California Institute of Technology. Ori Fox was supported by the Undergraduate Student Research Program (USRP).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhRvL..87g8102T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhRvL..87g8102T"><span>Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takamatsu, Atsuko; Tanaka, Reiko; Yamada, Hiroyasu; Nakagaki, Toshiyuki; Fujii, Teruo; Endo, Isao</p> <p>2001-08-01</p> <p>Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11497921','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11497921"><span>Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takamatsu, A; Tanaka, R; Yamada, H; Nakagaki, T; Fujii, T; Endo, I</p> <p>2001-08-13</p> <p>Spatiotemporal patterns in rings of coupled biological oscillators of the plasmodial slime mold, Physarum polycephalum, were investigated by comparing with results analyzed by the symmetric Hopf bifurcation theory based on group theory. In three-, four-, and five-oscillator systems, all types of oscillation modes predicted by the theory were observed including a novel oscillation mode, a half period oscillation, which has not been reported anywhere in practical systems. Our results support the effectiveness of the symmetric Hopf bifurcation theory in practical systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070030937&hterms=oscillator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Doscillator','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070030937&hterms=oscillator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Doscillator"><span>Magnetometer Based on the Opto-Electronic Oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matsko, Andrey B.; Strekalov, Dmitry; Maleki, Lute</p> <p>2005-01-01</p> <p>We theoretically propose and discuss properties of two schemes of an all-optical self-oscillating magnetometer based on an opto-electronic oscillator stabilized with an atomic vapor cell. Proof of the principle DC magnetic field measurements characterized with 2 x 10(exp -7) G sensitivity and 1 - 1000 mG dynamic range in one of the schemes are demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28303802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28303802"><span>Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H</p> <p>2017-04-18</p> <p>In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude-especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Nanot..28o5701C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Nanot..28o5701C"><span>Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Kun; Zhang, Xiaoni; Shi, Jiao; Qin, Qing H.</p> <p>2017-04-01</p> <p>In recent years, carbon-nanotube (CNT)-based gigahertz oscillators have been widely used in numerous areas of practical engineering such as high-speed digital, analog circuits, and memory cells. One of the major challenges to practical applications of the gigahertz oscillator is generating a stable oscillation process from the gigahertz oscillators and then maintaining the stable process for a specified period of time. To address this challenge, an oscillator from a triple-walled CNT-based rotary system is proposed and analyzed numerically in this paper, using a molecular dynamics approach. In this system, the outer tube is fixed partly as a stator. The middle tube, with a constant rotation, is named Rotor 2 and runs in the stator. The inner tube acts as Rotor 1, which can rotate freely in Rotor 2. Due to the friction between the two rotors when they have relative motion, the rotational frequency of Rotor 1 increases continuously and tends to converge with that of Rotor 2. During rotation, the oscillation of Rotor 1 may be excited owing to both a strong end barrier at Rotor 2 and thermal vibration of atoms in the tubes. From the discussion on the effects of length of Rotor 1, temperature, and input rotational frequency of Rotor 2 on the dynamic response of Rotor 1, an effective way to control the oscillation of Rotor 1 is found. Being much longer than Rotor 2, Rotor 1 will have perfect oscillation, i.e., with both stable (or nearly constant) period and amplitude—especially at relatively low temperature. This discovery can be taken as a useful guidance for the design of an oscillator from CNTs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17747781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17747781"><span>Preliminary meteorological results on Mars from the viking 1 lander.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hess, S L; Henry, R M; Leovy, C B; Ryan, J A; Tillman, J E; Chamberlain, T E; Cole, H L; Dutton, R G; Greene, G C; Simon, W E; Mitchell, J L</p> <p>1976-08-27</p> <p>The results from the meteorology instruments on the Viking 1 lander are presented for the first 4 sols of operation. The instruments are working satisfactorily. Temperatures fluctuated from a low of 188 degrees K to an estimated maximum of 244 degrees K. The mean pressure is 7.65 millibars with a diurnal variation of amplitude 0.1 millibar. Wind speeds averaged over several minutes have ranged from essentially calm to 9 meters per second. Wind directions have exhibited a remarkable regularity which may be associated with nocturnal downslope winds and gravitational oscillations, or to tidal effects of the diurnal pressure wave, or to both.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7233943-preliminary-meteorological-results-mars-from-viking-lander','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7233943-preliminary-meteorological-results-mars-from-viking-lander"><span>Preliminary meteorological results on Mars from the Viking 1 lander</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hess, S.L.; Henry, R.M.; Leovy, C.B.</p> <p>1976-08-27</p> <p>The results from the meteorology instruments on the Viking 1 lander are presented for the first 4 sols of operation. The instruments are working satisfactorily. Temperatures fluctuated from a low of 188/sup 0/K to an estimated maximum of 244/sup 0/K. The mean pressure is 7.65 millibars with a diurnal variation of amplitude 0.1 millibar. Wind speeds averaged over several minutes have ranged from essentially calm to 9 meters per second. Wind directions have exhibited a remarkable regularity which may be associated with nocturnal downslope winds and gravitational oscillations, or to tidal effects of the diurnal pressure wave, or to both.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1159518','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1159518"><span>Frequency stabilization in nonlinear MEMS and NEMS oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Lopez, Omar Daniel; Antonio, Dario</p> <p>2014-09-16</p> <p>An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023034','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023034"><span>The Potential of Spaced-based High-Energy Neutrino Measurements via the Airshower Cherenkov Signal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krizmanic, John F.; Mitchell, John W.</p> <p>2011-01-01</p> <p>Future space-based experiments, such as (Orbiting Wide-angle Light Collectors (OWL) and JEM-EUSO, view large atmospheric and terrestrial neutrino targets. With energy thresholds slightly above 10(exp 19) eV for observing airshowers via air fluorescence, the potential for observing the cosmogenic neutrino flux associated with the GZK effect is limited. However, the forward Cherenkov signal associated with the airshower can be observed at much lower energies. A simulation was developed to determine the Cherenkov signal strength and spatial extent at low-Earth orbit for upward-moving airshowers. A model of tau neutrino interactions in the Earth was employed to determine the event rate of interactions that yielded a tau lepton which would induce an upward-moving airshower observable by a space-based instrument. The effect of neutrino attenuation by the Earth forces the viewing of the Earth's limb to observe the vT-induced Cherenkov airshower signal at above the OWL Cherenkov energy threshold of approximately 10(exp 16.5) eV for limb-viewed events. Furthermore, the neutrino attenuation limits the effective terrestrial neutrino target area to approximately 3 x 10(exp 5) square km at 10(exp 17) eV, for an orbit of 1000 km and an instrumental full Field-of-View of 45 deg. This translates into an observable cosmogenic neutrino event rate of approx. l/year based upon two different models of the cosmogenic neutrino flux, assuming neutrino oscillations and a 10% duty cycle for observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009240','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009240"><span>Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steel, Emily; McLinden, Matthew</p> <p>2012-01-01</p> <p>This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and <1 ppbv for CH4. In addition to producing a standalone ground measurement product, this instrument could be used to calibrate/validate four Earth observing missions: ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons), OCO-2 (Orbiting Carbon Observatory), OCO-3, and GOSAT (Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited due to the high cost and extreme size of these instruments (these occupy small buildings and require personnel for operation). The LHR/AERONET instrument offers a significantly smaller (carry-on luggage size) autonomous instrument that can be incorporated into AERONET s much larger (450 instruments) global network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4726245','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4726245"><span>Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chestnov, Igor Yu.; Demirchyan, Sevak S.; Alodjants, Alexander P.; Rubo, Yuri G.; Kavokin, Alexey V.</p> <p>2016-01-01</p> <p>We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators. PMID:26790534</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26790534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26790534"><span>Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chestnov, Igor Yu; Demirchyan, Sevak S; Alodjants, Alexander P; Rubo, Yuri G; Kavokin, Alexey V</p> <p>2016-01-21</p> <p>We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27294928','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27294928"><span>RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan</p> <p>2016-06-09</p> <p>Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system's starting oscillation is determined, and the simulation results of the system's response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020034981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020034981"><span>Atmospheric Excitation of Planetary Normal Modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tanimoto, Toshiro</p> <p>2001-01-01</p> <p>The objectives of this study were to: (1) understand the phenomenon of continuous free oscillations of the Earth and (2) examine the idea of using this phenomenon for planetary seismology. We first describe the results on (1) and present our evaluations of the idea (2) in the final section. In 1997, after almost forty years since the initial attempt by Benioff et al, continuous free oscillations of the Earth were discovered. Spheroidal fundamental modes between 2 and 7 millihertz are excited continuously with acceleration amplitudes of about 0.3-0.5 nanogals. The signal is now commonly found in virtually all data recorded by STS-1 type broadband seismometers at quiet sites. Seasonal variation in amplitude and the existence of two coupled modes between the atmosphere and the solid Earth support that these oscillations are excited by the atmosphere. Stochastic excitation due to atmospheric turbulence is a favored mechanism, providing a good match between theory and data. The atmosphere has ample energy to support this theory because excitation of these modes require only 500-10000 W whereas the atmosphere contains about 117 W of kinetic energy. An application of this phenomenon includes planetary seismology, because other planets may be oscillating due to atmospheric excitation. The interior structure of planets could be learned by determining the eigenfrequencies in the continuous free oscillations. It is especially attractive to pursue this idea for tectonically quiet planets, since quakes may be too infrequent to be recorded by seismic instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AstBu..72..266D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AstBu..72..266D"><span>Parameters of oscillation generation regions in open star cluster models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danilov, V. M.; Putkov, S. I.</p> <p>2017-07-01</p> <p>We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19017036','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19017036"><span>Three-dimensional analyses of ultrasonic scaler oscillations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lea, Simon C; Felver, Bernhard; Landini, Gabriel; Walmsley, A Damien</p> <p>2009-01-01</p> <p>It is stated that the oscillation patterns of dental ultrasonic scalers are dependent upon whether the instrument is of a magnetostrictive or piezoelectric design. These patterns are then linked to differences in root surface debridement in vitro. Piezoelectric (A, P) and magnetostrictive (Slimline, TFI-3) ultrasonic scalers (three of each) were evaluated, loaded (100 g/200 g) and unloaded with a 3D laser vibrometer. Loads were applied to the probe tips via teeth mounted in a load-measuring device. Elliptical motion was demonstrated for all probes under loaded and unloaded conditions. Loading flattened the elliptical motion along the length of the probe. Unloaded, Slimline tip 1 was significantly different to tips 2 and 3 (p<0.0001). There were no differences between the A-tips (p>0.207). All TFI-3 tips were different to each other (p<0.0001). P-tips 1 and 2 were different to each other (p=0.046). Loaded, Slimline tips were different to each other (p<0.001). There were no differences between the P probes (p>0.867). Generator power increased all Slimline and P tip vibrations (p<0.0001). Probe oscillation patterns are independent of ultrasound production mechanism and are dependent upon probe shape and generator power. Loaded probes oscillated with an elliptical pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5423656','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5423656"><span>Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>S, Shiju</p> <p>2017-01-01</p> <p>Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to explain the morning and evening oscillators. The proposed dual oscillator model based on Daan's hypothesis supports per1 and per2 playing the role of morning and evening oscillators respectively and this may be the first step towards the understanding of the core molecular mechanism responsible for encoding the day length. PMID:28486525</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28486525','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28486525"><span>Hypothesis driven single cell dual oscillator mathematical model of circadian rhythms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>S, Shiju; Sriram, K</p> <p>2017-01-01</p> <p>Molecular mechanisms responsible for 24 h circadian oscillations, entrainment to external cues, encoding of day length and the time-of-day effects have been well studied experimentally. However, it is still debated from the molecular network point of view whether each cell in suprachiasmatic nuclei harbors two molecular oscillators, where one tracks dawn and the other tracks dusk activities. A single cell dual morning and evening oscillator was proposed by Daan et al., based on the molecular network that has two sets of similar non-redundant per1/cry1 and per2/cry2 circadian genes and each can independently maintain their endogenous oscillations. Understanding of dual oscillator dynamics in a single cell at molecular level may provide insight about the circadian mechanisms that encodes day length variations and its response to external zeitgebers. We present here a realistic dual oscillator model of circadian rhythms based on the series of hypotheses proposed by Daan et al., in which they conjectured that the circadian genes per1/cry1 track dawn while per2/cry2 tracks dusk and they together constitute the morning and evening oscillators (dual oscillator). Their hypothesis also provides explanations about the encoding of day length in terms of molecular mechanisms of per/cry expression. We frame a minimal mathematical model with the assumption that per1 acts a morning oscillator and per2 acts as an evening oscillator and to support and interpret this assumption we fit the model to the experimental data of per1/per2 circadian temporal dynamics, phase response curves (PRC's), and entrainment phenomena under various light-dark conditions. We also capture different patterns of splitting phenomena by coupling two single cell dual oscillators with neuropeptides vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) as the coupling agents and provide interpretation for the occurrence of splitting in terms of ME oscillators, though they are not required to explain the morning and evening oscillators. The proposed dual oscillator model based on Daan's hypothesis supports per1 and per2 playing the role of morning and evening oscillators respectively and this may be the first step towards the understanding of the core molecular mechanism responsible for encoding the day length.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007819','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007819"><span>Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heaps, William S.; Georgieva, Elena M.; McComb, Timothy S.; Cheung, Eric C.; Hassell, Frank R.; Baldauf, Brian K.</p> <p>2011-01-01</p> <p>Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...743680K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...743680K"><span>Homodyne detection of short-range Doppler radar using a forced oscillator model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote</p> <p>2017-03-01</p> <p>This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...578A..90S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...578A..90S"><span>Black hole spin inferred from 3:2 epicyclic resonance model of high-frequency quasi-periodic oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Šrámková, E.; Török, G.; Kotrlová, A.; Bakala, P.; Abramowicz, M. A.; Stuchlík, Z.; Goluchová, K.; Kluźniak, W.</p> <p>2015-06-01</p> <p>Estimations of black hole spin in the three Galactic microquasars GRS 1915+105, GRO J1655-40, and XTE J1550-564 have been carried out based on spectral and timing X-ray measurements and various theoretical concepts. Among others, a non-linear resonance between axisymmetric epicyclic oscillation modes of an accretion disc around a Kerr black hole has been considered as a model for the observed high-frequency quasi-periodic oscillations (HF QPOs). Estimates of spin predicted by this model have been derived based on the geodesic approximation of the accreted fluid motion. Here we assume accretion flow described by the model of a pressure-supported torus and carry out related corrections to the mass-spin estimates. We find that for dimensionless black hole spin a ≡ cJ/GM2 ≲ 0.9, the resonant eigenfrequencies are very close to those calculated for the geodesic motion. Their values slightly grow with increasing torus thickness. These findings agree well with results of a previous study carried out in the pseudo-Newtonian approximation. The situation becomes different for a ≳ 0.9, in which case the resonant eigenfrequencies rapidly decrease as the torus thickness increases. We conclude that the assumed non-geodesic effects shift the lower limit of the spin, implied for the three microquasars by the epicyclic model and independently measured masses, from a ~ 0.7 to a ~ 0.6. Their consideration furthermore confirms compatibility of the model with the rapid spin of GRS 1915+105 and provides highly testable predictions of the QPO frequencies. Individual sources with a moderate spin (a ≲ 0.9) should exhibit a smaller spread of the measured 3:2 QPO frequencies than sources with a near-extreme spin (a ~ 1). This should be further examined using the large amount of high-resolution data expected to become available with the next generation of X-ray instruments, such as the proposed Large Observatory for X-ray Timing (LOFT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987CPL...138..327T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987CPL...138..327T"><span>A new halogen-free chemical oscillator: the reaction between permanganate ion and ninhydrin in a continuously stirred tank reactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treindl, Ľudovít; Nagy, Arpád</p> <p>1987-07-01</p> <p>The reaction between permanganate ion and ninhydrin in the presence of phosphoric acid in aqueous solution shows sustained oscillations in a continuously stirred tank reactor (CSTR). It exhibits a kinetic bistability between an oscillatory and a stationary state. Our new oscillating system seems to be a second permanganate chemical oscillator, thus broadening the small group of non-halogen-based chemical oscillators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1999/0361/pdf/of99-361.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1999/0361/pdf/of99-361.pdf"><span>McVCO handbook 1999</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McChesney, P.J.</p> <p>1999-01-01</p> <p>McVCO is a microcontroller-based frequency generator that replaces the voltage controlled oscillator (VCO) used in the analog telemetry of seismic data. It accepts low-level signals from a seismometer and produces a frequency modulated subcarrier suitable for radio or telephone links to a data collection site. McVCO was designed for the purpose of improving the analog telemetry of signals within the Pacific Northwest Seismograph Network (PNSN). Its development received support from the University of Washington Geophysics Program, and both the Volcano Hazards and Earthquake Hazards programs of the United States Geological Survey (USGS). This handbook covers operation of McVCO, provides a technical reference for those who require a closer look at how McVCO works, and covers a collection of topics that need explicit treatment or that spring from deployment of the instrument.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1413922','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1413922"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Xu; Shen, Fuwang; Wang, Shuai</p> <p></p> <p>The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper,more » the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhB..25b4205Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhB..25b4205Z"><span>Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei</p> <p>2016-02-01</p> <p>We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....3627D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....3627D"><span>Results of the SOLCON FREESTAR Total Solar Irradiance measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dewitte, S.; Joukoff, A.; Crommelynck, D.</p> <p>2003-04-01</p> <p>The measurement of the Total Solar Irradiance from space is ongoing since 1978. A long term series requires the combination of the time limited measurements of individual measurements. The accuracy of the long term series is limited by the absolute accuracy of the instruments, and by their ageing in space, due to exposure to UV radiation. As a reference for the combination of the different instruments, we use the measurements of the SOLar CONstant (SOLCON) instrument, which is flown regularly on the space shuttle. In this paper we will present the results of the most recent SOLCON flight, which is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) flight foreseen from 16 Jan. 2003 to 1 Feb. 2003. The anticipated results are: 1) comparison of SOLCON with the new instruments Active Cavity Radiometer Irradiance Monitor (ACRIM) III, and 2) the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE) satellite, 3) verification of the ageing of the Variability of IRradiance and Gravity Oscillations (VIRGO) radiometers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=oscillator&pg=7&id=EJ518849','ERIC'); return false;" href="https://eric.ed.gov/?q=oscillator&pg=7&id=EJ518849"><span>The Coupled Harmonic Oscillator: Not Just for Seniors Anymore.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Preyer, Norris W.</p> <p>1996-01-01</p> <p>Presents experiments that use Microcomputer Based Laboratory (MBL) techniques to enable freshmen physics students to investigate complex systems, such as nonlinear oscillators or coupled harmonic oscillators, at a level appropriate for an independent project. (JRH)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080047460','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080047460"><span>A 1 GHz Oscillator-Type Active Antenna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jordan, Jennifer L.; Scardelletti, Maximilian; Ponchak, George E.</p> <p>2008-01-01</p> <p>Wireless sensors are desired for monitoring aircraft engines, automotive engines, industrial machinery, and many other applications. The most important requirement of sensors is that they do not interfere with the environment that they are monitoring. Therefore, wireless sensors must be small, which demands a high level of integration. Sensors that modulate an oscillator active antenna have advantages of small size, high level of integration, and lower packaging cost. Several types of oscillator active antennas have been reported. Ip et al. demonstrated a CPW line fed patch antenna with a feedback loop [1]. No degradation in performance was noticed without a ground plane. A GaAs FET was used in an amplifier/oscillator-based active antenna [2]. An oscillator based on a Cree SiC transistor was designed and characterized in [3]. This paper reports the integration of the SiC Clapp oscillator to a slotline loop antenna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JEE....65..189P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JEE....65..189P"><span>Cost-Efficient Phase Noise Measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perić, Ana; Bjelica, Milan</p> <p>2014-05-01</p> <p>In this paper, an automated system for oscillator phase noise measurement is described. The system is primarily intended for use in academic institutions, such as smaller university or research laboratories, as it deploys standard spectrum analyzer and free software. A method to compensate the effect of instrument intrinsic noise is proposed. Through series of experimental tests, good performances of our system are verified and compliance to theoretical expectations is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10003E..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10003E..05D"><span>Tropical forest heterogeneity from TanDEM-X InSAR and lidar observations in Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Grandi, Elsa Carla; Mitchard, Edward</p> <p>2016-10-01</p> <p>Fires exacerbated during El Niño Southern Oscillation are a serious threat in Indonesia leading to the destruction and degradation of tropical forests and emissions of CO2 in the atmosphere. Forest structural changes which occurred due to the 1997-1998 El Niño Southern Oscillation in the Sungai Wain Protection Forest (East Kalimantan, Indonesia), a previously intact forest reserve have led to the development of a range of landcover from secondary forest to areas dominated by grassland. These structural differences can be appreciated over large areas by remote sensing instruments such as TanDEM-X and LiDAR that provide information that are sensitive to vegetation vertical and horizontal structure. One-point statistics of TanDEM-X coherence (mean and CV) and LiDAR CHM (mean, CV) and derived metrics such as vegetation volume and canopy cover were tested for the discrimination between 4 landcover classes. Jeffries-Matusita (JM) separability was high between forest classes (primary or secondary forest) and non-forest (grassland) while, primary and secondary forest were not separable. The study tests the potential and the importance of potential of TanDEM-X coherence and LiDAR observations to characterize structural heterogeneity based on one-point statistics in tropical forest but requires improved characterization using two-point statistical measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006MNRAS.367.1417R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006MNRAS.367.1417R"><span>Reduction of time-resolved space-based CCD photometry developed for MOST Fabry Imaging data*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reegen, P.; Kallinger, T.; Frast, D.; Gruberbauer, M.; Huber, D.; Matthews, J. M.; Punz, D.; Schraml, S.; Weiss, W. W.; Kuschnig, R.; Moffat, A. F. J.; Walker, G. A. H.; Guenther, D. B.; Rucinski, S. M.; Sasselov, D.</p> <p>2006-04-01</p> <p>The MOST (Microvariability and Oscillations of Stars) satellite obtains ultraprecise photometry from space with high sampling rates and duty cycles. Astronomical photometry or imaging missions in low Earth orbits, like MOST, are especially sensitive to scattered light from Earthshine, and all these missions have a common need to extract target information from voluminous data cubes. They consist of upwards of hundreds of thousands of two-dimensional CCD frames (or subrasters) containing from hundreds to millions of pixels each, where the target information, superposed on background and instrumental effects, is contained only in a subset of pixels (Fabry Images, defocused images, mini-spectra). We describe a novel reduction technique for such data cubes: resolving linear correlations of target and background pixel intensities. This step-wise multiple linear regression removes only those target variations which are also detected in the background. The advantage of regression analysis versus background subtraction is the appropriate scaling, taking into account that the amount of contamination may differ from pixel to pixel. The multivariate solution for all pairs of target/background pixels is minimally invasive of the raw photometry while being very effective in reducing contamination due to, e.g. stray light. The technique is tested and demonstrated with both simulated oscillation signals and real MOST photometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27870609','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27870609"><span>Time Series Decomposition into Oscillation Components and Phase Estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matsuda, Takeru; Komaki, Fumiyasu</p> <p>2017-02-01</p> <p>Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24182009','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24182009"><span>Chemical oscillator as a generalized Rayleigh oscillator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghosh, Shyamolina; Ray, Deb Shankar</p> <p>2013-10-28</p> <p>We derive the conditions under which a set of arbitrary two dimensional autonomous kinetic equations can be reduced to the form of a generalized Rayleigh oscillator which admits of limit cycle solution. This is based on a linear transformation of field variables which can be found by inspection of the kinetic equations. We illustrate the scheme with the help of several chemical and bio-chemical oscillator models to show how they can be cast as a generalized Rayleigh oscillator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150018631','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150018631"><span>A Study of the Free Oscillations of the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>MacDonald, Gordon J. F.; Ness, Norman F.</p> <p>1961-01-01</p> <p>Published observations on the toroidal oscillations of the earth are critically reviewed. A supplementary analysis of the record obtained by the Lamont strain seismometer is presented. Eleven toroidal modes are identified, and it is concluded that the periods are known to within 1 per cent. A perturbation scheme involving the ratio of the angular velocity of the earth to the resonant frequency is used in calculating the effects due to the rotation of the earth on the resonant frequency. The free oscillations are viewed as a superposition of traveling waves. In a nonrotating system two traveling waves combine to produce a stationary standing wave. In a rotating system, the rotation distinguishes between waves that travel in the direction of rotation and those that travel in the opposite direction. Rotation removes a degeneracy and results in a splitting of a spectral peak of order l into 2 times l plus 1 peaks. The fractional displacement in frequency for the lowest-order toroidal oscillations is 1/206 and of the same order as the Q of the peak, so that splitting will probably not be observed in the toroidal oscillations. Viewed locally, rotation causes a particle to precess about a direction parallel to the axis of rotation. This precession will cause a variation of amplitude with time if the motion is recorded by an instrument with an anisotropic response function. Care is therefore needed in studying the time decay of a given spectral peak. Rotation also couples the normal coordinates so that a motion that is initially purely horizontal will develop a vertical component. It is expected that vertical seismometers should record particle motion with the toroidal frequencies. The perturbations of the toroidal oscillations due to core-mantle interaction are treated in detail. An exact expression is obtained for the rate of energy dissipated by a finitely conducting plate oscillating across a magnetic field. The energy dissipated at the core-mantle boundary due to viscous and hydromagnetic coupling is shown to be insignificant as compared with the energy dissipated within the mantle. The toroidal magnetic field leaking into the lower mantle combines with the dipole field, resulting in a stress on the mantle, tending to stiffen the lower boundary. The stress is of sufficient magnitude to produce a displacement toward higher frequency in the lower-order toroidal oscillations. Observations on the (sub 0) T (sub 2) oscillations lead to an estimate of the toroidal magnetic field in the lower mantle. A calculation of elastic energy in the low-order oscillations suggests a value of 10 (sup 18) ergs per cycles per hour for the energy density at low frequencies in the Chilean earthquake. Each mode of oscillation has a characteristic radial distribution of elastic energy associated with it. This distribution determines which parts of the earth contribute most heavily in determining a particular resonant frequency. The distribution of energy for the lower 17 modes for a homogeneous and a Gutenberg model earth is calculated. The resonant frequencies for models of the earth based on the Gutenberg and Lehmann distribution of elastic properties are presented. It is shown that the Gutenberg model earth fits the observations more closely than the Lehmann model and that a slight alteration of the Gutenberg model gives a significantly better fit to the observations. The alteration involves a lower shear-wave velocity in the lower mantle while the Gutenberg velocity distribution is maintained in the upper mantle. Various studies of the earth's oscillations coupled with surface-wave investigations substantiate Gutenberg's hypothesis of a layer of low velocity in the upper mantle. The physical conditions required for the formation of a region of low velocity are examined in detail. The results confirm Birch's earlier statement that a temperature gradient in excess of 6 degrees to 7 degrees per kilometer is needed to produce a decrease in velocity. The low-velocity layer does not require that the temperature approach or exceed the melting temperature. If tile upper mantle is homogeneous, the region of lower velocity should commence at the base of the crust and extend to 150 kilometers under the oceans and about 100 kilometers under continental regions. The distribution of thermal conductivity and radioactivity consistent with the low-velocity layer is also considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4888952','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4888952"><span>Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta</p> <p>2016-01-01</p> <p>It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ~500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010022236','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010022236"><span>MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.</p> <p>2001-01-01</p> <p>The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119p8301B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119p8301B"><span>Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bick, Christian; Sebek, Michael; Kiss, István Z.</p> <p>2017-10-01</p> <p>We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934270','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934270"><span>RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan</p> <p>2016-01-01</p> <p>Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured. PMID:27294928</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060042935&hterms=oscillator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Doscillator','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060042935&hterms=oscillator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Doscillator"><span>Frequency-stabilization of mode-locked laser-based photonic microwave oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute</p> <p>2005-01-01</p> <p>In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10082E..1HL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10082E..1HL"><span>FULAS: Design and test results of a novel laser platform for future LIDAR missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luttmann, Jörg; Klein, Jürgen; Plum, Heinz-Dieter; Hoffmann, Hans-Dieter; Hahn, Sven; Bode, Markus</p> <p>2017-03-01</p> <p>Spaceborne atmospheric LIDAR instruments enable the global measurement of aerosols, wind and greenhouse gases like CO2, Methane and Water. These LIDAR instruments require a pulsed single frequency laser source with emission at a specific wavelength. Pulse energies in the 10 mJ or 100 mJ range are required at bandwidth limited pulse durations in the multi-10 ns range. Pulse repetition rate requirements are typically around 100 Hz but may range from 10 Hz to some kHz. High efficiency is mandatory. Building complex laser sources providing the performance, reliability and lifetime necessary to operate such instruments in space has been recognized to be still very challenging. To overcome this, in the frame of the FULAS technology development project - funded by ESA and supported by the German Aerospace Center DLR - a versatile platform for LIDAR sources has been developed. For demonstration the requirements of the laser source in the ATLID instrument have been chosen. The design is based on a single frequency seeded, actively Q-switched, diode pumped Nd:YAG laser oscillator and an InnoSlab power amplifier with frequency tripling. The laser architecture pays special attention on Laser Induced Contamination by avoiding critical organic and outgassing materials. Soldering technologies for mounting and alignment of optics provide high mechanical stability and superior reliability. The FULAS infrared section has been assembled and integrated into a pressurized housing. The optical performance at 1064 nm has been demonstrated and thermal vacuum tests have been carried out successfully providing relevant data for the French-German climate mission MERLIN.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1174504','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1174504"><span>Active shunt capacitance cancelling oscillator circuit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Wessendorf, Kurt O.</p> <p>2003-09-23</p> <p>An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27781441','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27781441"><span>Chaos in generically coupled phase oscillator networks with nonpairwise interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bick, Christian; Ashwin, Peter; Rodrigues, Ana</p> <p>2016-09-01</p> <p>The Kuramoto-Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling-including three and four-way interactions of the oscillator phases-that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22596589-chaos-generically-coupled-phase-oscillator-networks-nonpairwise-interactions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22596589-chaos-generically-coupled-phase-oscillator-networks-nonpairwise-interactions"><span>Chaos in generically coupled phase oscillator networks with nonpairwise interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bick, Christian; Ashwin, Peter; Rodrigues, Ana</p> <p></p> <p>The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamicsmore » in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhRvE..88e2709Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhRvE..88e2709Y"><span>Global dynamics of a stochastic neuronal oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamanobe, Takanobu</p> <p>2013-11-01</p> <p>Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24329298','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24329298"><span>Global dynamics of a stochastic neuronal oscillator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamanobe, Takanobu</p> <p>2013-11-01</p> <p>Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5333100','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5333100"><span>Homodyne detection of short-range Doppler radar using a forced oscillator model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote</p> <p>2017-01-01</p> <p>This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JaJAP..32L.414C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JaJAP..32L.414C"><span>Interferometric Phase-Locking of Two Electronic Oscillators Based on a Cascade Electro-Optic Modulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chien, Pie-Yau; Chao, Chen-Hsing</p> <p>1993-03-01</p> <p>An optical phase-locked loop system based on a triangular phase-modulated cascade Mach-Zehnder modulator is demonstrated. A reference oscillator of 10 MHz is multiplied such that it can be used to lock a target oscillator of 120 MHz. The phase error of \\varDeltaθe≤2.0× 10-4 rad/Hz1/2 has been implemented in this system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850021584&hterms=vector+fields&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dvector%2Bfields','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850021584&hterms=vector+fields&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dvector%2Bfields"><span>The inference of vector magnetic fields from polarization measurements with limited spectral resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lites, B. W.; Skumanich, A.</p> <p>1985-01-01</p> <p>A method is presented for recovery of the vector magnetic field and thermodynamic parameters from polarization measurement of photospheric line profiles measured with filtergraphs. The method includes magneto-optic effects and may be utilized on data sampled at arbitrary wavelengths within the line profile. The accuracy of this method is explored through inversion of synthetic Stokes profiles subjected to varying levels of random noise, instrumental wave-length resolution, and line profile sampling. The level of error introduced by the systematic effect of profile sampling over a finite fraction of the 5 minute oscillation cycle is also investigated. The results presented here are intended to guide instrumental design and observational procedure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97r4408T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97r4408T"><span>Phase dynamics of oscillating magnetizations coupled via spin pumping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taniguchi, Tomohiro</p> <p>2018-05-01</p> <p>A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050060642','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050060642"><span>High Temperature Performance of a SiC MESFET Based Oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwartz, Zachary D.; Ponchak, George E.</p> <p>2005-01-01</p> <p>A hybrid, UHF-Band differential oscillator based on 10 w SiC RF Power Metal Semiconductor Field Effect Transistor (MESFET) has been designed, fabricated and characterized through 475 C. Circuit is fabricated on an alumina substrate with thin film spiral inductors, chip capacitors, chip resistors, and wire bonds for all crossovers and interconnectors. The oscillator delivers 15.7 dBm at 515 MHz into a 50 Ohm load at 125 C with a DC to RF conversion efficiency of 2,8%. After tuning the load impedance, the oscillator delivers 18.8 dBm at 610 MHz at 200 C with a DC to RF conversion efficiency of 5.8%. Finally, by tuning the load and bias conditions, the oscillator delivers 4.9 dBm at 453 MHz at 475 C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..301a2083Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..301a2083Z"><span>Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing</p> <p>2018-01-01</p> <p>In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51F2127W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51F2127W"><span>O3 variability/trends in the troposphere from IASI observations in 2008-2017</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wespes, C.; Hurtmans, D.; Clerbaux, C.; Pierre-Francois, C.</p> <p>2017-12-01</p> <p>In this study, we describe the recent changes in the tropospheric ozone (O3) columns (TOCs) measured by the Infrared Atmospheric Sounding Interferometer (IASI) onboard the Metop satellites during the first ten years of the IASI operation (2008-2017). The instrument provides a unique dataset of vertically-resolved O3 profiles with a twice daily global coverage and a fairly good vertical resolution allowing us to monitor the year-to-year variability in the troposphere. The retrievals are performed using the FORLI software, a fast radiative transfer model based on the optimal estimation method, set up for near real time and large scale processing of IASI data. We differentiate trend characteristics from the seasonal and non-seasonal O3 variations captured by IASI in the troposphere by applying appropriate annual and seasonal multivariate regression models, which include important geophysical drivers of O3 variation (e.g. quasi biennial oscillations - QBO, El Niño/Southern Oscillation - ENSO, North Atlantic Oscillation-NAO) and a linear trend term, on time series of spatially gridded averaged O3. The performances of the regression models (annual vs seasonal) are first investigated. Given the large contribution of the interannual variability, we will then describe the effects of the main contributing O3 proxies (e.g. positive - or negatives - ENSO indexes measured during moderate to intense El Niño - or La Niña - episodes in the tropics) in addition to the adjusted O3 trend patterns. A special focus will be given over the Northern Hemisphere which is characterized by decreasing O3 precursor emissions (mainly over Europe and the US). FORLI O3-CO correlations patterns will also be discussed to evaluate the continental influence on the tropospheric O3 trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/938896','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/938896"><span>Accelerator-based neutrino oscillation experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Harris, Deborah A.; /Fermilab</p> <p>2007-12-01</p> <p>Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use,more » or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22492199-quantized-impedance-dealing-damping-behavior-one-dimensional-oscillator','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22492199-quantized-impedance-dealing-damping-behavior-one-dimensional-oscillator"><span>Quantized impedance dealing with the damping behavior of the one-dimensional oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhu, Jinghao; Zhang, Jing; Li, Yuan</p> <p>2015-11-15</p> <p>A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is themore » mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPA....5k7217Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPA....5k7217Z"><span>Quantized impedance dealing with the damping behavior of the one-dimensional oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide; Li, Erping</p> <p>2015-11-01</p> <p>A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070022263','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070022263"><span>2.5 MHz Line-Width High-energy, 2 Micrometer Coherent Wind Lidar Transmitter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.; Reithmaier, Karl</p> <p>2007-01-01</p> <p>2 micron solid-state lasers are the primary choice for coherent Doppler wind detection. As wind lidars, they are used for wake vortex and clear air turbulence detection providing air transport safety. In addition, 2 micron lasers are one of the candidates for CO2 detection lidars. The rich CO2 absorption line around 2 micron, combined with the long upper state life of time, has made Ho based 2 micron lasers a viable candidate for CO2 sensing DIAL instrument. The design and fabrication of a compact coherent laser radar transmitter for Troposphere wind sensing is under way. This system is hardened for ground as well as airborne applications. As a transmitter for a coherent wind lidar, this laser has stringent spectral line width and beam quality requirements. Although the absolute wavelength does not have to be fixed for wind detection, to maximize return signal, the output wavelength should avoid atmospheric CO2 and H2O absorption lines. The base line laser material is Ho:Tm:LuLF which is an isomorph of Ho:Tm:YLF. LuLF produces 20% more output power than Ho:Tm:YLF. In these materials the Tm absorption cross-section, the Ho emission cross-section, the Tm to Ho energy transfer parameters and the Ho (sup 5) I (sub 7) radiative life time are all identical. However, the improved performance of the LuLF is attributed to the lower thermal population in the (sup 5) I (sub 8) manifold. It also provides higher normal mode to Q-switch conversion than YLF at high pump energy indicating a lower up-conversion. The laser architecture is composed of a seed laser, a ring oscillator, and a double pass amplifier. The seed laser is a single longitudinal mode with a line width of 13 KHz. The 100mJ class oscillator is stretched to 3 meters to accommodate the line-width requirement without compromising the range resolution of the instrument. The amplifier is double passed to produce greater than 300mJ energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..121d2018Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..121d2018Q"><span>Security region-based small signal stability analysis of power systems with FSIG based wind farm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong</p> <p>2018-02-01</p> <p>Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5794059','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5794059"><span>A novel optogenetically tunable frequency modulating oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2018-01-01</p> <p>Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour. PMID:29389936</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29389936','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29389936"><span>A novel optogenetically tunable frequency modulating oscillator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mahajan, Tarun; Rai, Kshitij</p> <p>2018-01-01</p> <p>Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22591695-multi-ghz-chaotic-optoelectronic-oscillator-based-laser-terminal-voltage','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22591695-multi-ghz-chaotic-optoelectronic-oscillator-based-laser-terminal-voltage"><span>A multi-GHz chaotic optoelectronic oscillator based on laser terminal voltage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chang, C. Y., E-mail: cychang@gatech.edu; UMI 2958 Georgia Tech-CNRS, Georgia Tech Lorraine, 2 Rue Marconi, F-57070 Metz; Choi, Daeyoung</p> <p>2016-05-09</p> <p>A multi-GHz chaotic optoelectronic oscillator based on an external cavity semiconductor laser (ECL) is demonstrated. Unlike the standard optoelectronic oscillators for microwave applications, we do not employ the dynamic light output incident on a photodiode to generate the microwave signal, but instead generate the microwave signal directly by measuring the terminal voltage V(t) of the laser diode of the ECL under constant-current operation, thus obviating the photodiode entirely.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJP..131...44S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJP..131...44S"><span>Continuum modeling investigation of gigahertz oscillators based on a C60 fullerene inside cyclic peptide nanotubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadeghi, F.; Ansari, R.; Darvizeh, M.</p> <p>2016-02-01</p> <p>Research concerning the fabrication of nano-oscillators with operating frequency in the gigahertz (GHz) range has become a focal point in recent years. In this paper, a new type of GHz oscillators is introduced based on a C60 fullerene inside a cyclic peptide nanotube (CPN). To study the dynamic behavior of such nano-oscillators, using the continuum approximation in conjunction with the 6-12 Lennard-Jones (LJ) potential function, analytical expressions are derived to determine the van der Waals (vdW) potential energy and interaction force between the two interacting molecules. Employing Newton's second law, the equation of motion is solved numerically to arrive at the telescopic oscillatory motion of a C60 fullerene inside CPNs. It is shown that the fullerene molecule exhibits different kinds of oscillation inside peptide nanotubes which are sensitive to the system parameters. Furthermore, for the precise evaluation of the oscillation frequency, a novel semi-analytical expression is proposed based on the conservation of the mechanical energy principle. Numerical results are presented to comprehensively study the effects of the number of peptide units and initial conditions (initial separation distance and velocity) on the oscillatory behavior of C60 -CPN oscillators. It is found out that for peptide nanotubes comprised of one unit, the maximum achievable frequency is obtained when the inner core oscillates with respect to its preferred positions located outside the tube, while for other numbers of peptide units, such frequency is obtained when the inner core oscillates with respect to the preferred positions situated in the space between the two first or the two last units. It is further found out that four peptide units are sufficient to obtain the optimal frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA627471','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA627471"><span>Muscle Sympathetic Nerve Activity During Intense Lower Body Negative Pressure to Presyncope in Humans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-08-24</p> <p>frequency rhythms. Arterial pressure oscillations increase with reductions in central blood volume induced by haemorrhage (Guyton & Harris, 1951), head...a finger cuff to record beat-by-beat finger arterial pressure (Finometer Blood Pressure Monitor, TNO-TPD Biomedical Instrumentation, Amsterdam, The...experienced reductions in arterial pressure at presyncope. The lowest blood pressures recorded for each subject are shown in the upper right of each</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA265591','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA265591"><span>Properties of Interfacial Tribo-Films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-06-01</p> <p>cf these rods is such as to have the center of gravity of or the attraction of water into the re-entrant peripheral gap the whole sample as close as...difference between the fluid dynamics, acoustic effects in stringed musical static and the kinetic friction coefficients increases with instruments...interfacial fluid molecules to static minimize oscillations, the center of gravity of the sample friction have been explored and, in this regard, adsorbed</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070036046&hterms=THz&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTHz','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070036046&hterms=THz&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTHz"><span>THz Sources for Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, Peter H.; Ward, John; Maiwald, Frank; Mehdi, Imran</p> <p>2007-01-01</p> <p>Terahertz is the primary frequency for line and continuum radiation from cool (5-100K) gas (atoms and molecules) and dust. This viewgraph presentation reviews the reasons for the interest in Terahertz Space Applications; the Terahertz Space Missions: in the past, present and planned for the future, Terahertz source requirements and examples of some JPL instruments; and a case study for a flight deliverable: THz Local Oscillators for ESA s Herschel Space Telescope</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRA..117.2305H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRA..117.2305H"><span>Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hao, Y. Q.; Xiao, Z.; Zhang, D. H.</p> <p>2012-02-01</p> <p>In this paper, evidence of quake-excited infrasonic waves is provided first by a multi-instrument observation of Japan's Tohoku earthquake. The observations of co-seismic infrasonic waves are as follows: 1, effects of surface oscillations are observed by local infrasonic detector, and it seems these effects are due to surface oscillation-excited infrasonic waves instead of direct influence of seismic vibration on the detector; 2, these local excited infrasonic waves propagate upwards and correspond to ionospheric disturbances observed by Doppler shift measurements and GPS/TEC; 3, interactions between electron density variation and currents in the ionosphere caused by infrasonic waves manifest as disturbances in the geomagnetic field observed via surface magnetogram; 4, within 4 hours after this strong earthquake, disturbances in the ionosphere related to arrivals of Rayleigh waves were observed by Doppler shift sounding three times over. Two of the arrivals were from epicenter along the minor arc of the great circle (with the second arrival due to a Rayleigh wave propagating completely around the planet) and the other one from the opposite direction. All of these seismo-ionospheric effects observed by HF Doppler shift appear after local arrivals of surface Rayleigh waves, with a time delay of 8-10 min. This is the time required for infrasonic wave to propagate upwards to the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMPP23C1424M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMPP23C1424M"><span>Holocene Decadal to Multidecadal Hydrologic Variability in the Everglades: Climate and Implications for Ecosystem Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moses, C. S.; Anderson, W. T.; Saunders, C.; Rebenack, C.</p> <p>2009-12-01</p> <p>The Florida Everglades are a complex, unique ecosystem. Adding to the complexity, a system of canals and gates control the flow of waters from central Florida southward into the Everglades, and ultimately Florida Bay and the Gulf of Mexico. With south Florida’s distinct wet and dry seasons, the hydrology has driven ecosystem evolution over the last 4-5 kya. However, since the 1920s the water content of the Everglades has largely been anthropogenically modulated, with the exception of the natural variability of evaporation and precipitation over the large area south of the Tamiami Trail. Because of the incredibly flat nature of the Everglades, small changes in the freshwater balance have substantial impacts on the diversity and distribution of organisms. Decadal and multidecadal variability in precipitation, hurricane incidence, and sea level rise all have important effects on the ecosystem. During the instrumental record, the natural precipitation across south Florida has been strongly influenced by combinations of the Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and ENSO. Here we discuss evidence of natural climate variability impacts on the ecosystem beyond the anthropogenic hydrological controls. Proxy environmental data from seeds, charcoal, and trees, plus the sparse, but available, instrumental records provide evidence of changes in the ecosystem over the Holocene, and suggest considerations for future management.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ASAJ..113.1724D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ASAJ..113.1724D"><span>Simplified models of flue instruments: Influence of mouth geometry on the sound source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dequand, S.; Willems, J. F. H.; Leroux, M.; Vullings, R.; van Weert, M.; Thieulot, C.; Hirschberg, A.</p> <p>2003-03-01</p> <p>Flue instruments such as the recorder flute and the transverse flute have different mouth geometries and acoustical response. The effect of the mouth geometry is studied by considering the aeroacoustical response of a simple whistle. The labium of a transverse flute has a large edge angle (60°) compared to that of a recorder flute (15°). Furthermore, the ratio W/h of the mouth width W to the jet thickness h can be varied in the transverse flute (lips of the musician) while it is fixed to a value W/h~4 in a recorder flute. A systematic experimental study of the steady oscillation behavior has been carried out. Results of acoustical pressure measurements and flow visualization are presented. The sharp edge of the recorder provides a sound source which is rich in harmonics at the cost of stability. The larger angle of the labium of the flute seems to be motivated by a better stability of the oscillations for thick jets but could also be motivated by a reduction of broadband turbulence noise. We propose two simplified sound source models which could be used for sound synthesis: a jet-drive model for W/h>2 and a discrete-vortex model for W/h<2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.9068I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.9068I"><span>Uncertainty in regional temperatures inferred from sparse global observations: Application to a probabilistic classification of El Niño</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilyas, Maryam; Brierley, Christopher M.; Guillas, Serge</p> <p>2017-09-01</p> <p>Instrumental records showing increases in surface temperature are some of the robust and iconic evidence of climate change. But how much should we trust regional temperature estimates interpolated from sparse observations? Here we quantify the uncertainty in the instrumental record by applying multiresolution lattice kriging, a recently developed interpolation technique that leverages the multiple spatial scales of temperature anomalies. The probability of monthly anomalies across the globe is represented by an ensemble, based on HadCRUT4 and accounting for observational and coverage uncertainties. To demonstrate the potential of these new data, we investigate the area-averaged temperature anomalies over the Niño 3.4 region in the equatorial Pacific. Having developed a definition of the El Niño-Southern Oscillation (ENSO) able to cope with probability distribution functions, we classify the ENSO state for each year since 1851. We find that for many years it is ambiguous as to whether there was an El Niño or not from the Niño 3.4 region alone. These years are mainly before 1920, but also just after World War II.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150011464','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150011464"><span>Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ku, Jentung; Garrison, Matthew; Patel, Deepak; Robinson, Franklin; Ottenstein, Laura</p> <p>2015-01-01</p> <p>The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7229E..0OH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7229E..0OH"><span>2.49 GHz low phase-noise optoelectronic oscillator using 1.55μm VCSEL for avionics and aerospace applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayat, Ahmad; Bacou, Alexandre; Rissons, Angelique; Mollier, Jean-Claude</p> <p>2009-02-01</p> <p>We present here a 1.55 μm single mode Vertical-Cavity Surface-Emitting Laser (VCSEL) based low phasenoise ring optoelectronic (OEO) oscillator operating at 2.49 GHz for aerospace, avionics and embedded systems applications. Experiments using optical fibers of different lengths have been carried out to obtain optimal results. A phase-noise measurement of -107 dBc/Hz at an offset of 10 kHz from the carrier is obtained. A 3-dB linewidth of 16 Hz for this oscillator signal has been measured. An analysis of lateral mode spacing or Free Spectral Range (FSR) as a function of fiber length has been carried out. A parametric comparison with DFB Laser-based and multimode VCSEL-based opto-electronic oscillators is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvA..92d3821T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvA..92d3821T"><span>Quantum correlation in degenerate optical parametric oscillators with mutual injections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takata, Kenta; Marandi, Alireza; Yamamoto, Yoshihisa</p> <p>2015-10-01</p> <p>We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive P representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes p ̂ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5464160','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5464160"><span>Method of forming calthrate ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hino, T.; Gorski, A.J.</p> <p>1985-09-30</p> <p>A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultransonically so that small crystals are formed in the liquid. Thes small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866331','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866331"><span>Method of forming clathrate ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hino, Toshiyuki; Gorski, Anthony J.</p> <p>1987-01-01</p> <p>A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhRvB..76s5315W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhRvB..76s5315W"><span>Far-infrared-induced magnetoresistance oscillations in GaAs/AlxGa1-xAs -based two-dimensional electron systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wirthmann, André; McCombe, Bruce D.; Heitmann, Detlef; Holland, Steffen; Friedland, Klaus-Jürgen; Hu, Can-Ming</p> <p>2007-11-01</p> <p>We report on photoresistance and magnetotransport measurements in a moderate mobility two-dimensional electron system subject to far-infrared (terahertz) radiation. The photoresistance shows radiation induced 1/B -periodic oscillations, which we identify as the terahertz analog of microwave-induced resistance oscillations (MIROs). The MIRO-analog oscillations show a sign reversal in the low-field, high current regime. We simultaneously observe magnetoplasmons and MIRO-analog oscillations with no apparent coupling between them. Using a meandering Hall-bar geometry allows us to greatly enhance sensitivity and detect these oscillations even at elevated temperatures and moderate mobilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25314482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25314482"><span>Emergence of self-sustained oscillations in excitable Erdös-Rényi random networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qian, Yu</p> <p>2014-09-01</p> <p>We investigate the emergence of self-sustained oscillations in excitable Erdös-Rényi random networks (EERRNs). Interestingly, periodical self-sustained oscillations have been found at a moderate connection probability P. For smaller or larger P, the system evolves into a homogeneous rest state with distinct mechanisms. One-dimensional Winfree loops are discovered as the sources to maintain the oscillations. Moreover, by analyzing these oscillation sources, we propose two criteria to explain the spatiotemporal dynamics obtained in EERRNs. Finally, the two critical connection probabilities for which self-sustained oscillations can emerge are approximately predicted based on these two criteria.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24760146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24760146"><span>Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ueki, Takeshi; Yoshida, Ryo</p> <p>2014-06-14</p> <p>Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1611G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1611G"><span>U.S. Hail Frequency and the Global Wind Oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gensini, Vittorio A.; Allen, John T.</p> <p>2018-02-01</p> <p>Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15351129','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15351129"><span>Oscillatory network with self-organized dynamical connections for synchronization-based image segmentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kuzmina, Margarita; Manykin, Eduard; Surina, Irina</p> <p>2004-01-01</p> <p>An oscillatory network of columnar architecture located in 3D spatial lattice was recently designed by the authors as oscillatory model of the brain visual cortex. Single network oscillator is a relaxational neural oscillator with internal dynamics tunable by visual image characteristics - local brightness and elementary bar orientation. It is able to demonstrate either activity state (stable undamped oscillations) or "silence" (quickly damped oscillations). Self-organized nonlocal dynamical connections of oscillators depend on oscillator activity levels and orientations of cortical receptive fields. Network performance consists in transfer into a state of clusterized synchronization. At current stage grey-level image segmentation tasks are carried out by 2D oscillatory network, obtained as a limit version of the source model. Due to supplemented network coupling strength control the 2D reduced network provides synchronization-based image segmentation. New results on segmentation of brightness and texture images presented in the paper demonstrate accurate network performance and informative visualization of segmentation results, inherent in the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001APS..MAR.V6003G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001APS..MAR.V6003G"><span>Weak Perturbations of Biochemical Oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gailey, Paul</p> <p>2001-03-01</p> <p>Biochemical oscillators may play important roles in gene regulation, circadian rhythms, physiological signaling, and sensory processes. These oscillations typically occur inside cells where the small numbers of reacting molecules result in fluctuations in the oscillation period. Some oscillation mechanisms have been reported that resist fluctuations and produce more stable oscillations. In this paper, we consider the use of biochemical oscillators as sensors by comparing inherent fluctuations with the effects of weak perturbations to one of the reactants. Such systems could be used to produce graded responses to weak stimuli. For example, a leading hypothesis to explain geomagnetic navigation in migrating birds and other animals is based on magnetochemical reactions. Because the magnitude of magnetochemical effects is small at geomagnetic field strengths, a sensitive, noise resistant detection scheme would be required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29716318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29716318"><span>Deployment of quasi-digital sensor for high temperature molten salt level measurement in pyroprocessing plants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sanga, Ramesh; Agarwal, Sourabh; Sivaramakrishna, M; Rao, G Prabhakara</p> <p>2018-04-01</p> <p>Development of a liquid molten salt level sensor device that can detect the level of liquid molten salt in the process vessels of pyrochemical reprocessing of spent metallic fuels is detailed. It is proposed to apply a resistive-type pulsating sensor-based level measurement approach. There are no commercially available sensors due to limitations of high temperature, radiation, and physical dimensions. A compact, simple, rugged, low power, and high precise pulsating sensor-based level probe and simple instrumentation for the molten salt liquid level sensor to work in the extreme conditions has been indigenously developed, with high precision and accuracy. The working principle, design concept, and results have been discussed. This level probe is mainly composed of the variable resistor made up of ceramic rods. This resistor constitutes the part of resistance-capacitance-type Logic Gate Oscillator (LGO). A change in the molten salt level inside the tank causes a small change in the resistance which in turn changes the pulse frequency of the LGO. Thus the frequency, the output of the instrument that is displayed on the LCD of an embedded system, is a function of molten salt level. In the present design, the range of level measurement is about 10 mm. The sensitivity in position measurement up to 10 mm is ∼2.5 kHz/mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RScI...89d5007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RScI...89d5007S"><span>Deployment of quasi-digital sensor for high temperature molten salt level measurement in pyroprocessing plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanga, Ramesh; Agarwal, Sourabh; Sivaramakrishna, M.; Rao, G. Prabhakara</p> <p>2018-04-01</p> <p>Development of a liquid molten salt level sensor device that can detect the level of liquid molten salt in the process vessels of pyrochemical reprocessing of spent metallic fuels is detailed. It is proposed to apply a resistive-type pulsating sensor-based level measurement approach. There are no commercially available sensors due to limitations of high temperature, radiation, and physical dimensions. A compact, simple, rugged, low power, and high precise pulsating sensor-based level probe and simple instrumentation for the molten salt liquid level sensor to work in the extreme conditions has been indigenously developed, with high precision and accuracy. The working principle, design concept, and results have been discussed. This level probe is mainly composed of the variable resistor made up of ceramic rods. This resistor constitutes the part of resistance-capacitance-type Logic Gate Oscillator (LGO). A change in the molten salt level inside the tank causes a small change in the resistance which in turn changes the pulse frequency of the LGO. Thus the frequency, the output of the instrument that is displayed on the LCD of an embedded system, is a function of molten salt level. In the present design, the range of level measurement is about 10 mm. The sensitivity in position measurement up to 10 mm is ˜2.5 kHz/mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920014998','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920014998"><span>Oscillating flow loss test results in Stirling engine heat exchangers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.</p> <p>1990-01-01</p> <p>The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940006154','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940006154"><span>Correlated states of a quantum oscillator acted by short pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manko, O. V.</p> <p>1993-01-01</p> <p>Correlated squeezed states for a quantum oscillator are constructed based on the method of quantum integrals of motion. The quantum oscillator is acted upon by short duration pulses. Three delta-kickings of frequency are used to model the pulses' dependence upon the time aspects of the frequency of the oscillator. Additionally, the correlation coefficient and quantum variances of operations of coordinates and momenta are written in explicit form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=oscillator&pg=4&id=EJ681927','ERIC'); return false;" href="https://eric.ed.gov/?q=oscillator&pg=4&id=EJ681927"><span>Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gauthier, N.</p> <p>2004-01-01</p> <p>An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998SPIE.3388..245P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998SPIE.3388..245P"><span>Mechanism of triple-color phase oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pun, Kwok C.</p> <p>1998-08-01</p> <p>A realistic model has been developed for a barium titanate triple-color phase oscillator based on the mechanism of polarizabililty and quantum mechanics. It helps to explain some of the difficult phenomena of the phase oscillator. As a result, with the clear understanding, we can seek betterment of the oscillator as a photonic switch as well as a one color writing and another color displaying no cross talk advance information exchanger.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28298263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28298263"><span>A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin</p> <p></p> <p>Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of a closed-loop DBS controller. A DBS controller based on a fuzzy expert system was devised to automatically control DBS according to the predicted physiological marker via a set of rules. The simulated experimental results demonstrate that the ceDBS based on the closed-loop control architecture not only reduced power consumption using the predictive physiological marker, but also achieved a desired level of physiological marker through the DBS controller. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100023385','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100023385"><span>Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Radisic, Vesna; Deal, W. R.; Mei, X. B.; Yoshida, Wayne; Liu, P. H.; Uyeda, Jansen; Lai, Richard; Samoska, Lorene; Fung, King Man; Gaier, Todd; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20100023385'); toggleEditAbsImage('author_20100023385_show'); toggleEditAbsImage('author_20100023385_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20100023385_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20100023385_hide"></p> <p>2010-01-01</p> <p>In this work, radial transitions have been successfully mated with a HEMT-based MMIC (high-electron-mobility-transistor-based monolithic microwave integrated circuit) oscillator circuit. The chip has been assembled into a WR2.2 waveguide module for the basic implementation with radial E-plane probe transitions to convert the waveguide mode to the MMIC coplanar waveguide mode. The E-plane transitions have been directly integrated onto the InP substrate to couple the submillimeter-wave energy directly to the waveguides, thus avoiding wire-bonds in the RF path. The oscillator demonstrates a measured 1.7 percent DC-RF efficiency at the module level. The oscillator chip uses 35-nm-gate-length HEMT devices, which enable the high frequency of oscillation, creating the first demonstration of a packaged waveguide oscillator that operates over 300 GHz and is based on InP HEMT technology. The oscillator chip is extremely compact, with dimensions of only 1.085 x 320 sq mm for a total die size of 0.35 sq mm. This fully integrated, waveguide oscillator module, with an output power of 0.27 mW at 330 GHz, can provide low-mass, low DC-power-consumption alternatives to existing local oscillator schemes, which require high DC power consumption and large mass. This oscillator module can be easily integrated with mixers, multipliers, and amplifiers for building high-frequency transmit and receive systems at submillimeter wave frequencies. Because it requires only a DC bias to enable submillimeter wave output power, it is a simple and reliable technique for generating power at these frequencies. Future work will be directed to further improving the applicability of HEMT transistors to submillimeter wave and terahertz applications. Commercial applications include submillimeter-wave imaging systems for hidden weapons detection, airport security, homeland security, and portable low-mass, low-power imaging systems</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780065580&hterms=oso&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Doso','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780065580&hterms=oso&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Doso"><span>OSO 8 observations of wave propagation in the solar chromosphere and transition region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chipman, E. G.</p> <p>1978-01-01</p> <p>The University of Colorado instrument on OSO 8 has been used to observe relative phases of the 300-s intensity variation between the temperature-minimum region and several emission lines formed in the solar chromosphere and chromosphere-corona transition region. The lines used are due to Fe II, Si II, C II, Si IV, and C IV. The scattered light in the spectrograph, which originates almost entirely in the spectral region between 1700 and 1900 A, was used as a probe of the temperature-minimum region. The lines of Fe II, Si II, and C II show almost identical delays of approximately 30 s relative to the temperature minimum, while the intensity oscillations of the lines of Si IV and C IV appear to lead the temperature-minimum intensity oscillations by about 10 s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000ITMTT..48..683K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000ITMTT..48..683K"><span>Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'Tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.</p> <p>2000-04-01</p> <p>In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is Trx=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO ≈ 1 microwatt. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040015005','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040015005"><span>A Madden-Julian Oscillation in Tropospheric Ozone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ziemke, J. R.; Chandra, S.</p> <p>2003-01-01</p> <p>This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5-10 Dobson Unit (DU) peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800012752','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800012752"><span>Analysis of time dependent phenomena observed with the LPSP OSO-8 instrument. [solar chromosphere and photosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leibacher, J. W.</p> <p>1979-01-01</p> <p>Data obtained by the Laboratoire de Physique Stellaire et Planetaire's ultraviolet spectrometer onboard the OSO-8 spacecraft were analyzed in an effort to dynamically model the solar chromosphere as an aid in enhancing knowledge of the dynamical processes themselves and of spectral line formation in the dynamic chromosphere. Repeated spectral scans of strong, optically thick resonance lines formed in the solar chromosphere were examined for indications of oscillatory velocities and intensities among other indications of velocity which were studied, the blue peak is reasonably well defined, and the position of a parabolic filter fitted by the least squares method was used to define it. Observed chromospheric oscillation periods are discussed as well as the variations in altitude of the emitting region which result primarily from the motion up and down during the oscillation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26625066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26625066"><span>Stable integrated hyper-parametric oscillator based on coupled optical microcavities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick</p> <p>2015-12-01</p> <p>We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1399389-armax-based-transfer-function-model-identification-using-wide-area-measurement-adaptive-coordinated-damping-control','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1399389-armax-based-transfer-function-model-identification-using-wide-area-measurement-adaptive-coordinated-damping-control"><span>ARMAX-Based Transfer Function Model Identification Using Wide-Area Measurement for Adaptive and Coordinated Damping Control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liu, Hesen; Zhu, Lin; Pan, Zhuohong; ...</p> <p>2015-09-14</p> <p>One of the main drawbacks of the existing oscillation damping controllers that are designed based on offline dynamic models is adaptivity to the power system operating condition. With the increasing availability of wide-area measurements and the rapid development of system identification techniques, it is possible to identify a measurement-based transfer function model online that can be used to tune the oscillation damping controller. Such a model could capture all dominant oscillation modes for adaptive and coordinated oscillation damping control. our paper describes a comprehensive approach to identify a low-order transfer function model of a power system using a multi-input multi-outputmore » (MIMO) autoregressive moving average exogenous (ARMAX) model. This methodology consists of five steps: 1) input selection; 2) output selection; 3) identification trigger; 4) model estimation; and 5) model validation. The proposed method is validated by using ambient data and ring-down data in the 16-machine 68-bus Northeast Power Coordinating Council system. Our results demonstrate that the measurement-based model using MIMO ARMAX can capture all the dominant oscillation modes. Compared with the MIMO subspace state space model, the MIMO ARMAX model has equivalent accuracy but lower order and improved computational efficiency. The proposed model can be applied for adaptive and coordinated oscillation damping control.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850042464&hterms=cause+selective+attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcause%2Bselective%2Battention','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850042464&hterms=cause+selective+attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcause%2Bselective%2Battention"><span>Solar-induced oscillations in the stratosphere - A myth or reality?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chandra, S.</p> <p>1985-01-01</p> <p>Chandra (1984) has provided an assessment of the solar cycle ozone relationship based on seven years of Nimbus 4 BUV (backscattered ultraviolet) data. It was found that the globally averaged ozone in the upper stratosphere, when corrected for the changes in instrument sensitivity, decreased from 1970 to 1976 by 3-4 percent. This decrease is in accordance with the current estimates of solar UV variability over a solar cycle. The present investigation has the objective to determine if measured changes in ozone and temperature in the upper stratosphere on a time scale of a solar rotation are of solar origin, i.e., directly induced by changes in solar irradiance. The conducted study is based on the first two years (1970-1972) of ozone and temperature data obtained from the Nimbus 4 BUV and the Selective Chopper Radiometer (SCR) experiments. Attention is given to the response of the stratosphere to changes in solar activity associated with the 27-day solar rotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12703718','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12703718"><span>Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Vries, Martinus P; Hamburg, Marc C; Schutte, Harm K; Verkerke, Gijsbertus J; Veldman, Arthur E P</p> <p>2003-04-01</p> <p>Surgical removal of the larynx results in radically reduced production of voice and speech. To improve voice quality a voice-producing element (VPE) is developed, based on the lip principle, called after the lips of a musician while playing a brass instrument. To optimize the VPE, a numerical model is developed. In this model, the finite element method is used to describe the mechanical behavior of the VPE. The flow is described by two-dimensional incompressible Navier-Stokes equations. The interaction between VPE and airflow is modeled by placing the grid of the VPE model in the grid of the aerodynamical model, and requiring continuity of forces and velocities. By applying and increasing pressure to the numerical model, pulses comparable to glottal volume velocity waveforms are obtained. By variation of geometric parameters their influence can be determined. To validate this numerical model, an in vitro test with a prototype of the VPE is performed. Experimental and numerical results show an acceptable agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850016749','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850016749"><span>Solar Seismology from Space. a Conference at Snowmass, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ulrich, R. K.; Harvey, J.; Rhodes, E. J., Jr.; Toomre, J.</p> <p>1984-01-01</p> <p>The quality of the ground based observing environment suffers from several degrading factors: diurnal interruptions and thermal variations, atmospheric seeing and transparency fluctuations and adverse weather interruptions are among the chief difficulties. The limited fraction of the solar surface observable from only one vantage point is also a potential limitation to the quality of the data available without going to space. Primary conference goals were to discuss in depth the scientific return from current observations and analyses of solar oscillations, to discuss the instrumental and site requirements for realizing the full potential of the seismic analysis method, and to help bring new workers into the field by collecting and summarizing the key background theory. At the conclusion of the conference there was a clear consensus that ground based observation would not be able to provide data of the quality required to permit a substantial analysis of the solar convection zone dynamics or to permit a full deduction of the solar interior structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28539421','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28539421"><span>Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ross, Bernhard; Barat, Masihullah; Fujioka, Takako</p> <p>2017-06-14</p> <p>Auditory and sensorimotor brain areas interact during the action-perception cycle of sound making. Neurophysiological evidence of a feedforward model of the action and its outcome has been associated with attenuation of the N1 wave of auditory evoked responses elicited by self-generated sounds, such as talking and singing or playing a musical instrument. Moreover, neural oscillations at β-band frequencies have been related to predicting the sound outcome after action initiation. We hypothesized that a newly learned action-perception association would immediately modify interpretation of the sound during subsequent listening. Nineteen healthy young adults (7 female, 12 male) participated in three magnetoencephalographic recordings while first passively listening to recorded sounds of a bell ringing, then actively striking the bell with a mallet, and then again listening to recorded sounds. Auditory cortex activity showed characteristic P1-N1-P2 waves. The N1 was attenuated during sound making, while P2 responses were unchanged. In contrast, P2 became larger when listening after sound making compared with the initial naive listening. The P2 increase occurred immediately, while in previous learning-by-listening studies P2 increases occurred on a later day. Also, reactivity of β-band oscillations, as well as θ coherence between auditory and sensorimotor cortices, was stronger in the second listening block. These changes were significantly larger than those observed in control participants (eight female, five male), who triggered recorded sounds by a key press. We propose that P2 characterizes familiarity with sound objects, whereas β-band oscillation signifies involvement of the action-perception cycle, and both measures objectively indicate functional neuroplasticity in auditory perceptual learning. SIGNIFICANCE STATEMENT While suppression of auditory responses to self-generated sounds is well known, it is not clear whether the learned action-sound association modifies subsequent perception. Our study demonstrated the immediate effects of sound-making experience on perception using magnetoencephalographic recordings, as reflected in the increased auditory evoked P2 wave, increased responsiveness of β oscillations, and enhanced connectivity between auditory and sensorimotor cortices. The importance of motor learning was underscored as the changes were much smaller in a control group using a key press to generate the sounds instead of learning to play the musical instrument. The results support the rapid integration of a feedforward model during perception and provide a neurophysiological basis for the application of music making in motor rehabilitation training. Copyright © 2017 the authors 0270-6474/17/375948-12$15.00/0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Nanot..27t5501M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Nanot..27t5501M"><span>Sustaining GHz oscillation of carbon nanotube based oscillators via a MHz frequency excitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Motevalli, Benyamin; Taherifar, Neda; Zhe Liu, Jefferson</p> <p>2016-05-01</p> <p>There have been intensive studies to investigate the properties of gigahertz nano-oscillators based on multi-walled carbon nanotubes (MWCNTs). Many of these studies, however, revealed that the unique telescopic translational oscillations in such devices would damp quickly due to various energy dissipation mechanisms. This challenge remains the primary obstacle against its practical applications. Herein, we propose a design concept in which a GHz oscillation could be re-excited by a MHz mechanical motion. This design involves a triple-walled CNT, in which sliding of the longer inner tube at a MHz frequency can re-excite and sustain a GHz oscillation of the shorter middle tube. Our molecular dynamics (MD) simulations prove this design concept at ˜10 nm scale. A mathematical model is developed to explore the feasibility at a larger size scale. As an example, in an oscillatory system with the CNT’s length above 100 nm, the high oscillatory frequency range of 1.8-3.3 GHz could be excited by moving the inner tube at a much lower frequency of 53.4 MHz. This design concept together with the mechanical model could energize the development of GHz nano-oscillators in miniaturized electro-mechanical devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Physics%3a+AND+Motion+AND+Forces&pg=5&id=EJ1156518','ERIC'); return false;" href="https://eric.ed.gov/?q=Physics%3a+AND+Motion+AND+Forces&pg=5&id=EJ1156518"><span>Small Oscillations via Conservation of Energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Troy, Tia; Reiner, Megan; Haugen, Andrew J.; Moore, Nathan T.</p> <p>2017-01-01</p> <p>The work describes an analogy-based small oscillations analysis of a standard static equilibrium lab problem. In addition to force analysis, a potential energy function for the system is developed, and by drawing out mathematical similarities to the simple harmonic oscillator, we are able to describe (and experimentally verify) the period of small…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=oscillator&pg=2&id=EJ823781','ERIC'); return false;" href="https://eric.ed.gov/?q=oscillator&pg=2&id=EJ823781"><span>The Rotating Morse-Pekeris Oscillator Revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zuniga, Jose; Bastida, Adolfo; Requena, Alberto</p> <p>2008-01-01</p> <p>The Morse-Pekeris oscillator model for the calculation of the vibration-rotation energy levels of diatomic molecules is revisited. This model is based on the realization of a second-order exponential expansion of the centrifugal term about the minimum of the vibrational Morse oscillator and the subsequent analytical resolution of the resulting…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..357a2032P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..357a2032P"><span>Effect of section shape on frequencies of natural oscillations of tubular springs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pirogov, S. P.; Chuba, A. Yu; Cherentsov, D. A.</p> <p>2018-05-01</p> <p>The necessity of determining the frequencies of natural oscillations of manometric tubular springs is substantiated. Based on the mathematical model and computer program, numerical experiments were performed that allowed us to reveal the effect of geometric parameters on the frequencies of free oscillations of manometric tubular springs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CliPD..11.5549H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CliPD..11.5549H"><span>Was the Little Ice Age more or less El Niño-like than the Mediaeval Climate Anomaly? Evidence from hydrological and temperature proxy data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henke, L. M. K.; Lambert, F. H.; Charman, D. J.</p> <p>2015-11-01</p> <p>The El Niño-Southern Oscillation (ENSO), an ocean-atmosphere coupled oscillation over the equatorial Pacific, is the most important source of global climate variability on inter-annual time scales. It has substantial environmental and socio-economic consequences such as devastation of South American fish populations and increased forest fires in Indonesia. The instrumental ENSO record is too short for analysing long-term trends and variability, hence proxy data is used to extend the record. However, different proxy sources have produced varying reconstructions of ENSO, with some evidence for a temperature-precipitation divergence in ENSO trends over the past millennium, in particular during the Mediaeval Climate Anomaly (MCA; AD 800-1300) and the Little Ice Age (LIA; AD 1400-1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using EOF-based weighting to create two new large-scale ENSO reconstructions derived independently from precipitation proxies and temperature proxies respectively. The method is developed and validated using pseudoproxy experiments that address the effects of proxy dating error, resolution and noise to improve uncertainty estimations. The precipitation ENSO reconstruction displays a significantly more El Niño-like state during the LIA than the MCA, while the temperature reconstruction shows no significant difference. The trends shown in the precipitation ENSO reconstruction are relatively robust to variations in the precipitation EOF pattern. However, the temperature reconstruction suffers significantly from a lack of high-quality, favourably located proxy records, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite and model representations of ENSO are needed to fully resolve the discrepancies found among proxy records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23481986','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23481986"><span>Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lim, Jinkang; Chen, Hung-Wen; Chang, Guoqing; Kärtner, Franz X</p> <p>2013-02-25</p> <p>Laser frequency combs are normally based on mode-locked oscillators emitting ultrashort pulses of ~100-fs or shorter. In this paper, we present a self-referenced frequency comb based on a narrowband (5-nm bandwidth corresponding to 415-fs transform-limited pulses) Yb-fiber oscillator with a repetition rate of 280 MHz. We employ a nonlinear Yb-fiber amplifier to both amplify the narrowband pulses and broaden their optical spectrum. To optimize the carrier envelope offset frequency (fCEO), we optimize the nonlinear pulse amplification by pre-chirping the pulses at the amplifier input. An optimum negative pre-chirp exists, which produces a signal-to-noise ratio of 35 dB (100 kHz resolution bandwidth) for the detected fCEO. We phase stabilize the fCEO using a feed-forward method, resulting in 0.64-rad (integrated from 1 Hz to 10 MHz) phase noise for the in-loop error signal. This work demonstrates the feasibility of implementing frequency combs from a narrowband oscillator, which is of particular importance for realizing large line-spacing frequency combs based on multi-GHz oscillators usually emitting long (>200 fs) pulses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15181804','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15181804"><span>Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Xiao; Xu, Rong-Qing; Chen, Jian-Ping; Shen, Zhong-Hua; Jian, Lu; Ni, Xiao-Wu</p> <p>2004-06-01</p> <p>A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27410558','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27410558"><span>High power, diffraction limited picosecond oscillator based on Nd:GdVO<sub>4</sub> bulk crystal with σ polarized in-band pumping.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Hua; Guo, Jie; Gao, Peng; Yu, Hai; Liang, Xiaoyan</p> <p>2016-06-27</p> <p>We report on a high power passively mode-locked picosecond oscillator based on Nd:GdVO<sub>4</sub> crystal with σ polarized in-band pumping. Thermal gradient and thermal aberration was greatly decreased with proposed configuration. Maximum output power of 37 W at 81 MHz repetition rate with 19.3 ps pulse duration was achieved directly from Nd:GdVO<sub>4</sub> oscillator, corresponding to 51% optical efficiency. The oscillator maintained diffraction limited beam quality of M<sup>2</sup> < 1.05 at different output coupling with pulse duration between 11.2 ps to 19.3 ps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.8960E..10L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.8960E..10L"><span>Spectrally pure RF photonic source based on a resonant optical hyper-parametric oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, W.; Eliyahu, D.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.</p> <p>2014-03-01</p> <p>We demonstrate a free running 10 GHz microresonator-based RF photonic hyper-parametric oscillator characterized with phase noise better than -60 dBc/Hz at 10 Hz, -90 dBc/Hz at 100 Hz, and -150 dBc/Hz at 10 MHz. The device consumes less than 25 mW of optical power. A correlation between the frequency of the continuous wave laser pumping the nonlinear resonator and the generated RF frequency is confirmed. The performance of the device is compared with the performance of a standard optical fiber based coupled opto-electronic oscillator of OEwaves.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhD...47T5204W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhD...47T5204W"><span>Investigation of molten pool oscillation during GMAW-P process based on a 3D model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, L. L.; Lu, F. G.; Cui, H. C.; Tang, X. H.</p> <p>2014-11-01</p> <p>In order to better reveal the oscillation mechanism of the pulsed gas metal arc welding (GMAW-P) process due to an alternately varied welding current, arc plasma and molten pool oscillation were simulated through a self-consistent three-dimensional model. Based on an experimental analysis of the dynamic variation of the arc plasma and molten pool captured by a high-speed camera, the model was validated by comparison of the measured and predicted results. The calculated results showed that arc pressure was the key factor causing the molten pool to oscillate. The variation in arc size and temperature from peak time to base time resulted in a great difference in the heat input and arc pressure acting on the molten pool. The surface deformation of the molten pool due to the varying degrees of arc pressure induced alternate displacement and backflow in the molten metal. The periodic iteration of deeper and shallower surface deformation, drain and backflow of molten metal caused the molten pool to oscillate at a certain frequency. In this condition, the arc pressure at the peak time is more than six times higher than that at the base time, and the maximum surface depression is 1.4 mm and 0.6 mm, respectively, for peak time and base time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996SPIE.2844....9M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996SPIE.2844....9M"><span>New class of optoelectronic oscillators (OEO) for microwave signal generation and processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maleki, Lute; Yao, X. S.</p> <p>1996-11-01</p> <p>A new class of oscillators based on photonic devices is presented. These opto-electronic oscillators (OEO's) generate microwave oscillation by converting continuous energy from a light source using a feedback circuit which includes a delay element, an electro-optic switch, and a photodetector. Different configurations of OEO's are presented, each of which may be applied to a particular application requiring ultra-high performance, or low cost and small size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28147502','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28147502"><span>Memcapacitor model and its application in chaotic oscillator with memristor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Guangyi; Zang, Shouchi; Wang, Xiaoyuan; Yuan, Fang; Iu, Herbert Ho-Ching</p> <p>2017-01-01</p> <p>Memristors and memcapacitors are two new nonlinear elements with memory. In this paper, we present a Hewlett-Packard memristor model and a charge-controlled memcapacitor model and design a new chaotic oscillator based on the two models for exploring the characteristics of memristors and memcapacitors in nonlinear circuits. Furthermore, many basic dynamical behaviors of the oscillator, including equilibrium sets, Lyapunov exponent spectrums, and bifurcations with various circuit parameters, are investigated theoretically and numerically. Our analysis results show that the proposed oscillator possesses complex dynamics such as an infinite number of equilibria, coexistence oscillation, and multi-stability. Finally, a discrete model of the chaotic oscillator is given and the main statistical properties of this oscillator are verified via Digital Signal Processing chip experiments and National Institute of Standards and Technology tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhRvE..87c2722W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhRvE..87c2722W"><span>Strong feedback limit of the Goodwin circadian oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woller, Aurore; Gonze, Didier; Erneux, Thomas</p> <p>2013-03-01</p> <p>The three-variable Goodwin model constitutes a prototypical oscillator based on a negative feedback loop. It was used as a minimal model for circadian oscillations. Other core models for circadian clocks are variants of the Goodwin model. The Goodwin oscillator also appears in many studies of coupled oscillator networks because of its relative simplicity compared to other biophysical models involving a large number of variables and parameters. Because the synchronization properties of Goodwin oscillators still remain difficult to explore mathematically, further simplifications of the Goodwin model have been sought. In this paper, we investigate the strong negative feedback limit of Goodwin equations by using asymptotic techniques. We find that Goodwin oscillations approach a sequence of decaying exponentials that can be described in terms of a single-variable leaky integrated-and-fire model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JAP...110d4502D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JAP...110d4502D"><span>Frequency hopping due to acousto-electric interaction in ZnO based surface acoustic wave oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dasgupta, Daipayan; Sreenivas, K.</p> <p>2011-08-01</p> <p>A 36 MHz surface acoustic wave delay line based oscillator has been used to study the effect of acousto-electric interaction due to photo generated charge carriers in rf sputtered ZnO film under UV illumination (λ = 365 nm, 20-100 μW/cm2). Design aspects for developing a delay line based SAW oscillator are specified. The observed linear downshift in frequency (2.2 to 19.0 kHz) with varying UV intensity (20-100 μW/cm2) is related to the fractional velocity change due to acousto-electric interaction. UV illumination level of 100 μW/cm2 leads to a characteristic frequency hopping behavior arising due to a change in the oscillation criteria, and is attributed to the complex interplay between the increased attenuation and velocity shift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5367085','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5367085"><span>Communication between Brain Areas Based on Nested Oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kastner, Sabine</p> <p>2017-01-01</p> <p>Abstract Unraveling how brain regions communicate is crucial for understanding how the brain processes external and internal information. Neuronal oscillations within and across brain regions have been proposed to play a crucial role in this process. Two main hypotheses have been suggested for routing of information based on oscillations, namely communication through coherence and gating by inhibition. Here, we propose a framework unifying these two hypotheses that is based on recent empirical findings. We discuss a theory in which communication between two regions is established by phase synchronization of oscillations at lower frequencies (<25 Hz), which serve as temporal reference frame for information carried by high-frequency activity (>40 Hz). Our framework, consistent with numerous recent empirical findings, posits that cross-frequency interactions are essential for understanding how large-scale cognitive and perceptual networks operate. PMID:28374013</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1174314','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1174314"><span>Oscillating side-branch enhancements of thermoacoustic heat exchangers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Swift, Gregory W.</p> <p>2003-05-13</p> <p>A regenerator-based engine or refrigerator has a regenerator with two ends at two different temperatures, through which a gas oscillates at a first oscillating volumetric flow rate in the direction between the two ends and in which the pressure of the gas oscillates, and first and second heat exchangers, each of which is at one of the two different temperatures. A dead-end side branch into which the gas oscillates has compliance and is connected adjacent to one of the ends of the regenerator to form a second oscillating gas flow rate additive with the first oscillating volumetric flow rate, the compliance having a volume effective to provide a selected total oscillating gas volumetric flow rate through the first heat exchanger. This configuration enables the first heat exchanger to be configured and located to better enhance the performance of the heat exchanger rather than being confined to the location and configuration of the regenerator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28208319','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28208319"><span>Robustness and fragility in coupled oscillator networks under targeted attacks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Tianyu; Aihara, Kazuyuki; Tanaka, Gouhei</p> <p>2017-01-01</p> <p>The dynamical tolerance of coupled oscillator networks against local failures is studied. As the fraction of failed oscillator nodes gradually increases, the mean oscillation amplitude in the entire network decreases and then suddenly vanishes at a critical fraction as a phase transition. This critical fraction, widely used as a measure of the network robustness, was analytically derived for random failures but not for targeted attacks so far. Here we derive the general formula for the critical fraction, which can be applied to both random failures and targeted attacks. We consider the effects of targeting oscillator nodes based on their degrees. First we deal with coupled identical oscillators with homogeneous edge weights. Then our theory is applied to networks with heterogeneous edge weights and to those with nonidentical oscillators. The analytical results are validated by numerical experiments. Our results reveal the key factors governing the robustness and fragility of oscillator networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22488575-oscillation-characteristics-zero-field-spin-transfer-oscillators-field-like-torque','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22488575-oscillation-characteristics-zero-field-spin-transfer-oscillators-field-like-torque"><span>Oscillation characteristics of zero-field spin transfer oscillators with field-like torque</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn; Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024</p> <p>2015-05-15</p> <p>We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties onmore » the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhyE...70...35Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhyE...70...35Z"><span>Liquid in a tube oscillating along its axis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhdanov, Vladimir P.; Kasemo, Bengt</p> <p>2015-06-01</p> <p>The Quartz Crystal Microbalance with Dissipation (QCM-D) sensing technique has become widely used to study various supported thin films and adsorption of biological macromolecules, nanoparticles, aggregates, and cells. Such sensing, based on tracking shear oscillations of a piezoelectric crystal, can be employed in situations which are far beyond conventional ones. For example, one can deposit tubes on the surface of a sensor, orient them along the direction of the sensor surface oscillations, and study liquid oscillations inside the oscillating tubes. Herein, we illustrate and classify theoretically the regimes of liquid oscillations in this case. In particular, we identify and scrutinize the transition from the regime with appreciable gradients along the radial coordinate, which are qualitatively similar to those near the oscillating flat interface, to the regime where the liquid oscillates nearly coherently in the whole tube. The results are not only of relevance for the specific case of nanotubes but also for studies of certain mesoporous samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007CMMPh..47.1622Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007CMMPh..47.1622Z"><span>Numerical simulation of the transition to chaos in a dissipative Duffing oscillator with two-frequency excitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zavrazhina, T. V.</p> <p>2007-10-01</p> <p>A mathematical modeling technique is proposed for oscillation chaotization in an essentially nonlinear dissipative Duffing oscillator with two-frequency excitation on an invariant torus in ℝ2. The technique is based on the joint application of the parameter continuation method, Floquet stability criteria, bifurcation theory, and the Everhart high-accuracy numerical integration method. This approach is used for the numerical construction of subharmonic solutions in the case when the oscillator passes to chaos through a sequence of period-multiplying bifurcations. The value of a universal constant obtained earlier by the author while investigating oscillation chaotization in dissipative oscillators with single-frequency periodic excitation is confirmed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060044322&hterms=Photonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPhotonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060044322&hterms=Photonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPhotonics"><span>Recent progress in opto-electronic oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maleki, Lute</p> <p>2005-01-01</p> <p>The optoelectronic oscillator (OEO) is a unique device based on photonics techniques to generate highly spectrally pure microwave signals [1]. The development of the OEO was motivated by the need for high performance oscillators in the frequency range larger than 10 GHz, where conventional electronic oscillators have a number of limitations. These limitations typically stem from the product of fQ, where f is the oscillator frequency and Q is the quality factor of the resonator in the oscillator. In conventional resonators, whether electromagnetic or piezoelectric, this product is usually a constant. Thus, as the oscillator frequency is pushed higher, the quality factor degrades, resulting in degradation of the phase noise of the oscillator. An approach to mitigate the problem is to start with a very high quality signal in the 5 to 100 MHz range generated by a quartz oscillator and multiply the frequency to achieve the desired microwave signal. Here again, frequency multiplication also results in an increase of the phase noise by a factor of 2010gN, where N is the multiplication factor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910067030&hterms=1092&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231092','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910067030&hterms=1092&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231092"><span>The optical emission from oscillating white dwarf radiative shock waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Imamura, James N.; Rashed, Hussain; Wolff, Michael T.</p> <p>1991-01-01</p> <p>The hypothesis that quasi-periodic oscillations (QPOs) are due to the oscillatory instability of radiative shock waves discovered by Langer et al. (1981, 1092) is examined. The time-dependent optical spectra of oscillating radiative shocks produced by flows onto magnetic white dwarfs are calculated. The results are compared with the observations of the AM Her QPO sources V834 Cen, AN UMa, EF Eri, and VV Pup. It is found that the shock oscillation model has difficulties with aspects of the observations for each of the sources. For VV Pup, AN UMa, and V834 Cen, the cyclotron luminosities for the observed magnetic fields of these systems, based on our calculations, are large. The strong cyclotron emission probably stabilizes the shock oscillations. For EF Eri, the mass of the white dwarf based on hard X-ray observations is greater than 0.6 solar mass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhRvE..79d6105S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhRvE..79d6105S"><span>Entraining the topology and the dynamics of a network of phase oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.</p> <p>2009-04-01</p> <p>We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES..100a2186H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES..100a2186H"><span>A new kind of metal detector based on chaotic oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Wenjing</p> <p>2017-12-01</p> <p>The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhyU...40..773G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhyU...40..773G"><span>REVIEWS OF TOPICAL PROBLEMS: The nature of neutrino mass and the phenomenon of neutrino oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gershtein, Semen S.; Kuznetsov, E. P.; Ryabov, Vladimir A.</p> <p>1997-08-01</p> <p>Various aspects of the neutrino mass problem are discussed in the light of existing model predictions and extensive experimental data. Generation mechanisms are considered and possible gauge-theory neutrino mass hierarchies, in particular the most popular 'flipped see-saw' models, are discussed. Based on the currently available astrophysical data on the integral density of matter in the Universe and on the spectral anisotropy of the relic cosmic radiation, the cosmological implications of a non-zero neutrino mass are described in detail. Results from various mass-measuring methods are presented. Considerable attention is given to heavy neutrino oscillations. Oscillation mechanisms both in vacuum and in matter are considered in detail. Experiments on oscillations at low and high energies and new generation large-flight-base facilities are described. The present state of research into oscillations of solar and atmospheric neutrinos is reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA267288','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA267288"><span>Ocean, Platform, and Signal Processing Effects on Synthetic Aperture Sonar Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-02-01</p> <p>Canadian Reginald A. Fessenden , of the Submarine Signal Company, Boston, MA during the period from 1912 to 1914 [Fay, c. 19441. Fessenden’s invention...usually referred to as the Fessenden oscillator. It was conceived by Fessenden as an instrument for underwater communication from ship to ship, and more...accident it was observed that the ocean depth could also be measured. In these landmark experiments, Fessenden showed telemetry, echolocation and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.891a2323B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.891a2323B"><span>Precision measurements of thermodynamic parameters of heavy alkali metals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blagonravov, L. A.; Modenov, A. A.</p> <p>2017-11-01</p> <p>On the temperature dependences of a number of one-component liquids, regions of anomalous behavior in the form of kinks and also in the form of limited areas of forced growth have been previously observed (LA Blagonravov, LA Orlov, et al., TVT 2000, vol. 38, No. 4, p.566-572). However, the interpretation of these anomalies is complicated by the small magnitude of the effects themselves (the magnitude of the observed effect was 5%, a random error of 2-3%). An increase in the accuracy of measurements is required for a more confident determination of the detailed shape of the anomalies. In the proposed work, thermodynamic parameters are studied using a technique that uses the elastic-thermal effect. The adiabatic thermal coefficient of pressure (a.t.p.c.) is measured: χ = (1/T)(∂T/∂p)S. An installation in which the pressure change is carried out in a periodic mode is used for measurements. The software allows simultaneous averaging of the values of the amplitude of pressure oscillations and the amplitude of temperature response oscillations with the subsequent determination of their ratio. The facility uses an advanced pressure modulator, which allows creating pressure oscillations of the shape close to sinusoidal (the value of the second harmonic is not more than 10%) and a precision SR-810 nanovoltmeter with a synchronous digital detector. The currently used technique provides an acceptable measurement accuracy (error in the region of 0.5-1%). However, to further increase the accuracy, it was decided to make changes in the measuring path. Namely, by developing and applying a scheme of a precision low-noise preamplifier based on the instrument amplifier INA333, a circuit allowing simultaneous measurement of not only the two above parameters but also the current temperature of the sample (to exclude the effect of temperature drift.) Preliminary results of measurements of the temperature dependence of the a.t.p.c. of liquid cesium in the temperature range up to 500 K. Measurements were made at a frequency of pressure oscillations of 2.51 Hz. The measurements of a.t.p.c. of rubidium are also planned.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvP...8f4014S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvP...8f4014S"><span>Resonant Spin-Transfer-Torque Nano-Oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran</p> <p>2017-12-01</p> <p>Spin-transfer-torque nano-oscillators are potential candidates for replacing the traditional inductor-based voltage-controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions, which have the disadvantages of low power outputs and poor conversion efficiencies. We theoretically propose using resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present viable device designs geared toward a high microwave output power and an efficient conversion of the dc input power. We attribute these robust qualities to the resulting nontrivial spin-current profiles and the ultrahigh tunnel magnetoresistance, both of which arise from resonant spin filtering. The device designs are based on the nonequilibrium Green's-function spin-transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation and Poisson's equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around 1150% and an efficiency enhancement of over 1100% compared to typical trilayer designs. We rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. We also demonstrate the robustness of our structures against device design fluctuations and elastic dephasing. This work sets the stage for pentalyer spin-transfer-torque nano-oscillator device designs that ameliorate major issues associated with typical trilayer designs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20040430','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20040430"><span>1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zuo, Chengjie; Van der Spiegel, Jan; Piazza, Gianluca</p> <p>2010-01-01</p> <p>This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-microm complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001312','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001312"><span>Science Accomplishments from a Decade of Aura OMI/MLS Tropospheric Ozone Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ziemke, Jerald R.; Douglass, Anne R.; Joiner, Joanna; Duncan, Bryan N.; Olsen, Mark A.; Oman, Luke D.; Witte, Jacquelyn C.; Liu, X.; Wargan, K.; Schoeberl, Mark R.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150001312'); toggleEditAbsImage('author_20150001312_show'); toggleEditAbsImage('author_20150001312_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150001312_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150001312_hide"></p> <p>2014-01-01</p> <p>Measurements of tropospheric ozone from combined Aura OMI and MLS instruments have yielded a large number of new and important science discoveries over the last decade. These discoveries have generated a much greater understanding of biomass burning, lightning NO, and stratosphere-troposphere exchange sources of tropospheric ozone, ENSO dynamics and photochemistry, intra-seasonal variability-Madden-Julian Oscillation including convective transport, radiative forcing, measuring ozone pollution from space, improvements to ozone retrieval algorithms, and evaluation of chemical-transport and chemistry-climate models. The OMI-MLS measurements have been instrumental in giving us better understanding of the dynamics and chemistry involving tropospheric ozone and the many drivers affecting the troposphere in general. This discussion will provide an overview focusing on our main science results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........35K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........35K"><span>Instrumentation, Techniques, and Evaluation of ePTV for Particle Manipulation Studies Using Micro-Scale Oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kafashi, Sajad</p> <p></p> <p>A need for dynamic micro-particle manipulation is the ability to position fragile particles without damaging them, for instance biological particles like blood cells, stem cells, neurons, pancreatic ? cells, DNA, chromosomes, for repeated measurement without altering their behavior. An oscillating fiber will induce vortices in a slurry of particles, subsequently the vortex force created by this oscillation attracts and traps the particles located at steady streaming micro-eddies. If multiple oscillatory fibers are placed inside the slurry, depending on frequency and timing of oscillation this method can be used for contact-free particle shepherding and sorting and for transporting particles from one location to another. Due to the complicated dynamics of particles traveling in the fluid and the presence of noise, and significant number of particles, attempts to use commercial PIV softwares to track individual particle paths could not discriminate real particles from noise interference. To enhance identification and tracking of individual particles a novel encoded-particle tracking velocimetry (ePTV) technique is developed in this dissertation work and used in the experiments to track the particle trajectories. An analytic model is developed to determine the number of lost particles due to the finite image size based on a calculation of the probability that imaged particles of a specific mean velocity or having a uniform velocity distribution and encoding pattern will exit the field of view. The encoded pulse technique has been implemented in experiments for which images containing 100-200 objects including encoded trajectories have been measured. Using the developed ePTV algorithm approximately 30 % of the identified objects were classified as an encoded particle trajectory. Two types of oscillation mechanism are used in the experimental component of this study, a PZT flexure-based macro-probe driven at frequencies around 250 Hz and higher frequency dynamic-absorber, quartz-based, micro-probes driven at frequencies around 32 kHz. Two models for predicting the frequency response of micro-scale oscillatory probes are developed in this dissertation. In these studies, the attached fibers were either 75 mum diameter tungsten or 7 mum diameter carbon with lengths ranging from around 1 to 15 mm. The oscillators used in these experiments were commercial 32.768 kHz quartz tuning forks. Theoretical predictions of the values of the natural frequencies for different vibration modes show an asymptotic relationship with the length and a linear relationship with the diameter of the attached fiber. Similar results are observed from experiment, one with a tungsten probe having an initial fiber length of 14.11 mm incrementally etched down to 0.83 mm, and another tungsten probe of length 8.16 mm incrementally etched in diameter, in both cases using chronocoulometry to determine incremental volumetric material removal. Of particular relevance is that, when a 'zero' is observed in the response of the tine, one mode of the fiber is matched to the tine frequency and is acting as an absorber. This represents an optimal condition for contact sensing and for transferring energy to the fiber for fluid mixing, touch sensing and surface modification applications. Consequently the parametric models developed in this dissertation can be utilized for designing probes of arbitrary sizes thereby eliminating the empirical trial and error previously used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940028286','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940028286"><span>Oscillating-flow loss test results in rectangular heat exchanger passages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, J. Gary</p> <p>1991-01-01</p> <p>Test results of oscillating flow losses in rectangular heat exchanger passages of various aspect ratios are given. This work was performed in support of the design of a free-piston Stirling engine (FPSE) for a dynamic space power conversion system. Oscillating flow loss testing was performed using an oscillating flow rig, which was based on a variable stroke and variable frequency linear drive motor. Tests were run over a range of oscillating flow parameters encompassing the flow regimes of the proposed engine design. Test results are presented in both tabular and graphical form and are compared against analytical predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.7936E..0AS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.7936E..0AS"><span>Fiber ring resonator based opto-electronic oscillator: phase noise optimisation and thermal stability study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saleh, K.; Bouchier, A.; Merrer, P. H.; Llopis, O.; Cibiel, G.</p> <p>2011-03-01</p> <p>In the microwave domain and among many other advantages, optics represents an elegant solution to increase the quality Q factor in a system. Different types of optical resonators lead to Q factors above 109, and these resonators can be used as an alternative to optical delay lines to set up the frequency in optoelectronic oscillators (OEO). However, microwave-optics is also a complex field, and if the use of optical resonators in high spectral purity frequency generation systems like OEO has been already demonstrated, many aspects of these OEOs are still incompletely understood, especially the contribution to the oscillator phase noise of the different optical and microwave elements used in the oscillator system. In order to improve the phase noise of a fiber ring resonator based OEO, this oscillator has been theoretically studied in term of white frequency noise. In this paper, we present a theoretical study that has lead us to optimize a fiber ring resonator and the experimental phase noise results obtained for an OEO based on an optimized optical resonator. The OEO thermal stability is also investigated in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...421..334E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...421..334E"><span>Evaluation of aerodynamic forces acting on oscillating cantilever beams based on the study of the damped flexural vibration of aluminium test samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Egorov, A. G.; Kamalutdinov, A. M.; Nuriev, A. N.</p> <p>2018-05-01</p> <p>The paper is devoted to study of the aerodynamic forces acting on flat cantilever beams performing flexural vibrations in a viscous fluid. Original method for the force evaluation is presented based on analysis of experimental measurements of a logarithmic decrement of vibrations and relative variation in frequency of duralumin test specimens. The theoretical core of the method is based on the classical theory of bending beam oscillations and quasi-two dimensional model of interaction between a beam and a gas. Using the proposed method, extensive series of experiments for a wide range of oscillations parameters were carried out. The processing of the experimental data allowed to establish the global influence of the aerodynamic effects on beam oscillations and the local force characteristics of each cross-section of the beam in the form of universal functions of dimensionless amplitude and dimensionless frequency of oscillation. The obtained estimates of the drag and added mass forces showed a good correspondence with the available numerical and experimental data practically in the entire range of the investigated parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8546E..0KR','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8546E..0KR"><span>Infrared hyperspectral imaging for chemical vapour detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruxton, K.; Robertson, G.; Miller, W.; Malcolm, G. P. A.; Maker, G. T.; Howle, C. R.</p> <p>2012-10-01</p> <p>Active hyperspectral imaging is a valuable tool in a wide range of applications. One such area is the detection and identification of chemicals, especially toxic chemical warfare agents, through analysis of the resulting absorption spectrum. This work presents a selection of results from a prototype midwave infrared (MWIR) hyperspectral imaging instrument that has successfully been used for compound detection at a range of standoff distances. Active hyperspectral imaging utilises a broadly tunable laser source to illuminate the scene with light at a range of wavelengths. While there are a number of illumination methods, the chosen configuration illuminates the scene by raster scanning the laser beam using a pair of galvanometric mirrors. The resulting backscattered light from the scene is collected by the same mirrors and focussed onto a suitable single-point detector, where the image is constructed pixel by pixel. The imaging instrument that was developed in this work is based around an IR optical parametric oscillator (OPO) source with broad tunability, operating in the 2.6 to 3.7 μm (MWIR) and 1.5 to 1.8 μm (shortwave IR, SWIR) spectral regions. The MWIR beam was primarily used as it addressed the fundamental absorption features of the target compounds compared to the overtone and combination bands in the SWIR region, which can be less intense by more than an order of magnitude. We show that a prototype NCI instrument was able to locate hydrocarbon materials at distances up to 15 metres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10000E..0UT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10000E..0UT"><span>Application of new techniques in the calibration of the TROPOMI-SWIR instrument (Conference Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tol, Paul; van Hees, Richard; van Kempen, Tim; Krijger, Matthijs; Cadot, Sidney; Aben, Ilse; Ludewig, Antje; Dingjan, Jos; Persijn, Stefan; Hoogeveen, Ruud</p> <p>2016-10-01</p> <p>The Tropospheric Monitoring Instrument (TROPOMI) on-board the Sentinel-5 Precursor satellite is an Earth-observing spectrometer with bands in the ultraviolet, visible, near infrared and short-wave infrared (SWIR). It provides daily global coverage of atmospheric trace gases relevant for tropospheric air quality and climate research. Three new techniques will be presented that are unique for the TROPOMI-SWIR spectrometer. The retrieval of methane and CO columns from the data of the SWIR band requires for each detector pixel an accurate instrument spectral response function (ISRF), i.e. the normalized signal as a function of wavelength. A new determination method for Earth-observing instruments has been used in the on-ground calibration, based on measurements with a SWIR optical parametric oscillator (OPO) that was scanned over the whole TROPOMI-SWIR spectral range. The calibration algorithm derives the ISRF without needing the absolute wavelength during the measurement. The same OPO has also been used to determine the two-dimensional stray-light distribution for each SWIR pixel with a dynamic range of 7 orders. This was achieved by combining measurements at several exposure times and taking saturation into account. The correction algorithm and data are designed to remove the mean stray-light distribution and a reflection that moves relative to the direct image, within the strict constraints of the available time for the L01b processing. A third new technique is an alternative calibration of the SWIR absolute radiance and irradiance using a black body at the temperature of melting silver. Unlike a standard FEL lamp, this source does not have to be calibrated itself, because the temperature is very stable and well known. Measurement methods, data analyses, correction algorithms and limitations of the new techniques will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940029774','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940029774"><span>Analysis of DE-1 PWI electric field data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weimer, Daniel</p> <p>1994-01-01</p> <p>The measurement of low frequency electric field oscillations may be accomplished with the Plasma Wave Instrument (PWI) on DE 1. Oscillations at a frequency around 1 Hz are below the range of the conventional plasma wave receivers, but they can be detected by using a special processing of the quasi-static electric field data. With this processing it is also possible to determine if the electric field oscillations are predominately parallel or perpendicular to the ambient magnetic field. The quasi-static electric field in the DE 1 spin/orbit plane is measured with a long-wire 'double probe'. This antenna is perpendicular to the satellite spin axis, which in turn is approximately perpendicular to the geomagnetic field in the polar magnetosphere. The electric field data are digitally sampled at a frequency of 16 Hz. The measured electric field signal, which has had phase reversals introduced by the rotating antenna, is multiplied by the sine of the rotation angle between the antenna and the magnetic field. This is called the 'perpendicular' signal. The measured time series is also multiplied with the cosine of the angle to produce a separate 'parallel' signal. These two separate time series are then processed to determine the frequency power spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990040548','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990040548"><span>Investigation of Tropical Transport with UARS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dunkerton, Timothy J.</p> <p>1999-01-01</p> <p>Measurements of trace constituents obtained by instruments aboard the Upper Atmosphere Research Satellite (UARS) have been used to study transport processes associated with the quasi-biennial oscillation, laterally propagating Rossby waves, and upward propagating Kelvin waves in the tropical and subtropical upper troposphere and stratosphere. Mean vertical motions, vertical diffusivities and in-mixing rates were inferred from observations of the 'tape recorder' signal in near-equatorial stratospheric water vapor. The effect of the quasi-biennial oscillation (QBO) on tracer distributions in the upper half of the stratosphere was seen in a spectacular 'staircase' pattern, predominantly in the winter hemisphere, revealing the latitudinally asymmetric nature of QBO transport due to induced mean meridional circulations and modulation of lateral mixing associated with planetary Rossby waves. The propagation of Rossby waves across the equator in the westerly phase of the QBO was seen in tracer fields and corroborating United Kingdom Meteorological Office (UKMO) analyses; a modeling study of the effect of these waves on typical QBO wind profiles was performed. Water vapor in the upper troposphere and lower stratosphere was found to exhibit signatures of the tropical intraseasonal oscillation (TIO) and faster Kelvin waves in the two regions, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040141212&hterms=inversion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dinversion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040141212&hterms=inversion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dinversion"><span>A Comparison of Solar p-Mode Parameters from MDI and Gong: Mode Frequencies and Structure Inversions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Basu, S.; Christensen-Dalsgaard, J.; Howe, R.; Schou, J.; Thompson, M. J.; Hill, F.; Komm, R.</p> <p>2003-01-01</p> <p>Helioseismic analysis of solar global oscillations allows investigation of the internal structure of the Sun. One important test of the reliability of the inferences from helioseismology is that the results from independent sets of contemporaneous data are consistent with one another. Here we compare mode frequencies from the Global Oscillation Network Group and Michelson Doppler Imager on board SOHO and resulting inversion results on the Sun's internal structure. The average relative differences between the data sets are typically less than 1 x 10(exp -5) substantially smaller than the formal errors in the differences; however, in some cases the frequency differences show a systematic behavior that might nonetheless influence the inversion results. We find that the differences in frequencies are not a result of instrumental effects but are almost entirely related to the data pipeline software. Inversion of the frequencies shows that their differences do not result in any significant effects on the resulting inferences on solar structure. We have also experimented with fitting asymmetric profiles to the oscillation power spectra and find that, compared with the symmetric fits, this causes no significant change in the inversion results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28611600','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28611600"><span>Changes in Alpha Frequency and Power of the Electroencephalogram during Volatile-Based General Anesthesia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hight, Darren; Voss, Logan J; Garcia, Paul S; Sleigh, Jamie</p> <p>2017-01-01</p> <p>Oscillations in the electroencephalogram (EEG) at the alpha frequency (8-12 Hz) are thought to be ubiquitous during surgical anesthesia, but the details of how this oscillation responds to ongoing changes in volatile anesthetic concentration have not been well characterized. It is not known how often alpha oscillations are absent in the clinical context, how sensitively alpha frequency and power respond to changes in anesthetic concentration, and what effect increased age has on alpha frequency. Bipolar EEG was recorded frontally from 305 patients undergoing surgery with sevoflurane or desflurane providing general anesthesia. A new method of detecting the presence of alpha oscillations based on the stability of the rate of change of the peak frequency in the alpha range was developed. Linear concentration-response curves were fitted to assess the sensitivity of alpha power and frequency measures to changing levels of anesthesia. Alpha oscillations were seen to be inexplicably absent in around 4% of patients. Maximal alpha power increased with increasing volatile anesthetic concentrations in half of the patients, and decreased in the remaining patients. Alpha frequency decreased with increasing anesthetic concentrations in near to 90% of patients. Increasing age was associated with decreased sensitivity to volatile anesthesia concentrations, and with decreased alpha frequency, which sometimes transitioned into the theta range (5-7 Hz). While peak alpha frequency shows a consistent slowing to increasing volatile concentrations, the peak power of the oscillation does not, suggesting that frequency might be more informative of depth of anesthesia than traditional power based measures during volatile-based anesthesia. The alpha oscillation becomes slower with increasing age, even when the decreased anesthetic needs of older patients were taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AAS...204.0213L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AAS...204.0213L"><span>Remarkable Low Temperature Emission of the 4 November 2003 Limb Flare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leibacher, J. W.; Harvey, J. W.; Kopp, G.; Hudson, H.; GONG Team</p> <p>2004-05-01</p> <p>Strong (> 1.5 times normal intensity) continuum and photospheric line emission of the 4 November 2003 X28 flare was recorded simultaneously by three widely separated GONG instruments. Emission was seen from on the disk to > 20" above the limb for nearly one hour, likely making this event the longest duration white light flare observed to date. GONG observations are one-minute duration integrations of intensity averaged across a Lyot filter bandpass of about 90 pm FWHM centered on the Ni I line at 676.8 nm with 2.5" instrument pixel size. Spatial resolution is limited by diffraction and seeing to greater than 5". Additional measurements include the Doppler shift and strength of the spectrum line. These latter measurements indicate that continuum and line emission contributed about equally to the observed intensity signal. Light curves and images of the flare show a notable two-kernel disk event starting at about 19:33 UTC followed by a much stronger event that peaked at about 19:44. Rare, white-light prominences were visible above the limb after 19:34. Comparison of total solar irradiance measurements from the TIM instrument on board the SORCE spacecraft with full-disk integrated GONG intensities shows the global five-minute oscillation and the white light flare. The latter is much weaker in the GONG data, suggesting that most of the TIM flare signal arises from other, most likely shorter, wavelengths. This work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. SORCE is supported by NASA NAS5-97045</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH21B..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH21B..03G"><span>Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurnett, D. A.</p> <p>2017-12-01</p> <p>Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9645E..0UR','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9645E..0UR"><span>A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, Iain; Jack, James W.; Rae, Cameron F.; Moncrieff, John B.</p> <p>2015-10-01</p> <p>We report the development of a differential absorption lidar instrument (DIAL) designed and built specifically for the measurement of anthropogenic greenhouse gases in the atmosphere. The DIAL is integrated into a commercial astronomical telescope to provide high-quality receiver optics and enable automated scanning for three-dimensional lidar acquisition. The instrument is portable and can be set up within a few hours in the field. The laser source is a pulsed optical parametric oscillator (OPO) which outputs light at a wavelength tunable near 1.6 μm. This wavelength region, which is also used in telecommunications devices, provides access to absorption lines in both carbon dioxide at 1573 nm and methane at 1646 nm. To achieve the critical temperature stability required for a laserbased field instrument the four-mirror OPO cavity is machined from a single aluminium block. A piezoactuator adjusts the cavity length to achieve resonance and this is maintained over temperature changes through the use of a feedback loop. The laser output is continuously monitored with pyroelectric detectors and a custom-built wavemeter. The OPO is injection seeded by a temperature-stabilized distributed feedback laser diode (DFB-LD) with a wavelength locked to the absorption line centre (on-line) using a gas cell containing pure carbon dioxide. A second DFB-LD is tuned to a nearby wavelength (off-line) to provide the reference required for differential absorption measurements. A similar system has been designed and built to provide the injection seeding wavelengths for methane. The system integrates the DFB-LDs, drivers, locking electronics, gas cell and balanced photodetectors. The results of test measurements of carbon dioxide are presented and the development of the system is discussed, including the adaptation required for the measurement of methane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482301-desynchronization-stochastically-synchronized-chemical-oscillators','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482301-desynchronization-stochastically-synchronized-chemical-oscillators"><span>Desynchronization of stochastically synchronized chemical oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Snari, Razan; Tinsley, Mark R., E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh</p> <p></p> <p>Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61..759P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61..759P"><span>Fundamental (f) oscillations in a magnetically coupled solar interior-atmosphere system - An analytical approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pintér, Balázs; Erdélyi, R.</p> <p>2018-01-01</p> <p>Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω =√{ gk }), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to gain further insight into solar magnetic structures by means of solar magneto-seismology, and could provide further insight into the role of magnetism in solar oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..155..100L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..155..100L"><span>Two millennia of Mesoamerican monsoon variability driven by Pacific and Atlantic synergistic forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lachniet, Matthew S.; Asmerom, Yemane; Polyak, Victor; Bernal, Juan Pablo</p> <p>2017-01-01</p> <p>The drivers of Mesoamerican monsoon variability over the last two millennia remain poorly known because of a lack of precisely-dated and climate-calibrated proxy records. Here, we present a new high resolution (∼2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval. The reconstruction is quantitatively calibrated to instrumental rainfall variations in the Basin of Mexico. Comparisons to proxy indices of ocean-atmosphere circulation show a synergistic forcing by the North Atlantic and El Niño/Southern Oscillations, whereby monsoon strengthening coincided with a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Our data suggest that weak monsoon intervals are associated with a strong North Atlantic subtropical high pressure system and a weak Intertropical convergence zone in the eastern Pacific Ocean. Population expansions at three major highland Mexico civilization of Teotihuacan, Tula, and Aztec Tenochtitlan were all associated with drought to pluvial transitions, suggesting that urban population growth was favored by increasing freshwater availability in the semi-arid Mexican highlands, and that this hydroclimatic change was controlled by Pacific and Atlantic Ocean forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20130000016&hterms=Administration+Global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DAdministration%2BGlobal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20130000016&hterms=Administration+Global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DAdministration%2BGlobal"><span>Global and Regional Seasonal Variability of Mid-Tropospheric CO2 as Measured by the Atmospheric Infrared Sounder (AIRS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai</p> <p>2012-01-01</p> <p>The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25768172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25768172"><span>Optically controlled low-power on-off mode resonant tunneling oscillator with a heterojunction phototransistor switch.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Kiwon; Park, Jaehong; Lee, Jooseok; Yang, Kyounghoon</p> <p>2015-03-15</p> <p>We report an optically controlled low-power on-off mode oscillator based on a resonant tunneling diode (RTD) that is monolithically integrated with a heterojunction phototransistor (HPT) optical switch. In order to achieve a low-power operation at a wavelength of 1.55 μm an InP-based quantum-effect tunneling diode is used for microwave signal generation based on a unique negative differential conductance (NDC) characteristic of the RTD at a low applied voltage. In addition, the high-gain HPT is used for converting incident optical data to an electrical data signal. The fabricated on-off mode oscillator shows a low-power consumption of 5 mW and a high-data-rate of 1  Gb/s at an oscillation frequency of 4.7 GHz. A good energy efficiency of 5  pJ/bit has been obtained due to the low DC power consumption along with high-data-rate performance of the RTD-based optoelectronic integration scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27128057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27128057"><span>Wideband-frequency tunable optoelectronic oscillator based on injection locking to an electronic oscillator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fleyer, Michael; Sherman, Alexander; Horowitz, Moshe; Namer, Moshe</p> <p>2016-05-01</p> <p>We experimentally demonstrate a wideband-frequency tunable optoelectronic oscillator (OEO) based on injection locking of the OEO to a tunable electronic oscillator. The OEO cavity does not contain a narrowband filter and its frequency can be tuned over a broad bandwidth of 1 GHz. The injection locking is based on minimizing the injected power by adjusting the frequency of one of the OEO cavity modes to be approximately equal to the frequency of the injected signal. The phase noise that is obtained in the injection-locked OEO is similar to that obtained in a long-cavity self-sustained OEO. Although the cavity length of the OEO was long, the spurious modes were suppressed due to the injection locking without the need to use a narrowband filter. The spurious level was significantly below that obtained in a self-sustained OEO after inserting a narrowband electronic filter with a Q-factor of 720 into the cavity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhRvE..74b1912L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhRvE..74b1912L"><span>Large-scale oscillation of structure-related DNA sequence features in human chromosome 21</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Wentian; Miramontes, Pedro</p> <p>2006-08-01</p> <p>Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7905J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7905J"><span>Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Guoying; Wang, Wenbin; Xu, Jiyao; Yue, Jia; Burns, Alan G.; Lei, Jiuhou; Mlynczak, Martin G.; Rusell, James M., III</p> <p>2015-04-01</p> <p>Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere IonosphereMesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research-thermosphere-ionosphere-mesosphere electrodynamics-general circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100-120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to ~105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere temperature, and the contribution from solar EUV variations is minor. Furthermore, we also found that consecutive coronal mass ejection events could cause long-duration enhancements in the lower thermospheric temperature that strengthen the 9 day and 13.5 day signals, and this kind of phenomenon mostly occurred between 2002 and 2005 during the declining phase of solar cycle 23.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRA..119.4841J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRA..119.4841J"><span>Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Guoying; Wang, Wenbin; Xu, Jiyao; Yue, Jia; Burns, Alan G.; Lei, Jiuhou; Mlynczak, Martin G.; Rusell, James M.</p> <p>2014-06-01</p> <p>Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research-thermosphere-ionosphere-mesosphere electrodynamics-general circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100-120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to 105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere temperature, and the contribution from solar EUV variations is minor. Furthermore, we also found that consecutive coronal mass ejection events could cause long-duration enhancements in the lower thermospheric temperature that strengthen the 9 day and 13.5 day signals, and this kind of phenomenon mostly occurred between 2002 and 2005 during the declining phase of solar cycle 23.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22164037','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22164037"><span>Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau</p> <p>2011-01-01</p> <p>This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm(2) in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22489303-frequency-control-spin-torque-oscillator-using-magnetostrictive-anisotropy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22489303-frequency-control-spin-torque-oscillator-using-magnetostrictive-anisotropy"><span>Frequency control of a spin-torque oscillator using magnetostrictive anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Park, Min Gyu Albert; Lee, Seok-Hee, E-mail: bgpark@kaist.ac.kr, E-mail: shlee@kaist.edu; Baek, Seung-heon Chris</p> <p>2016-01-11</p> <p>We report the working principle of a spin-torque oscillator, of which the frequency is efficiently controlled by manipulating the magnetostrictive anisotropy. To justify the scheme, we simulate a conventional magnetic-tunnel junction-based oscillator which is fabricated on a piezoelectric material. By applying mechanical stress to a free layer using a piezoelectric material, the oscillation frequency can be controlled to ensure a broad tuning range without a significant reduction of the dynamic resistance variation. Such controllability, which appears in the absence of an external magnetic field, will not only enable the integration of spin-torque oscillators and conventional complimentary metal-oxide semiconductor technology butmore » will also broaden the applicability of spin-torque oscillators.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Chaos..26i4812S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Chaos..26i4812S"><span>On controlling networks of limit-cycle oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skardal, Per Sebastian; Arenas, Alex</p> <p>2016-09-01</p> <p>The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1339556-self-sustained-micro-mechanical-oscillator-linear-feedback','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1339556-self-sustained-micro-mechanical-oscillator-linear-feedback"><span>Self-sustained micro mechanical oscillator with linear feedback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chen, Changyao; Zanette, Damian H.; Guest, Jeffrey R.; ...</p> <p>2016-07-01</p> <p>Autonomous oscillators, such as clocks and lasers, produce periodic signals without any external frequency reference. In order to sustain stable periodic motions, there needs to be external energy supply as well as nonlinearity built into the oscillator to regulate the amplitude. Usually, nonlinearity is provided by the sustaining feedback mechanism, which also supplies energy, whereas the constituent resonator that determines the output frequency stays linear. Here we propose a new self-sustaining scheme that relies on the nonlinearity originating from the resonator itself to limit the oscillation amplitude, while the feedback remains linear. We introduce a model to describe the workingmore » principle of the self-sustained oscillations and validate it with experiments performed on a nonlinear microelectromechanical (MEMS) based oscillator.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT.......142M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT.......142M"><span>Fire history and fire-climate relationships in upper elevation forests of the southwestern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Margolis, Ellis Quinn</p> <p></p> <p>Fire history and fire-climate relationships of upper elevation forests of the southwestern United States are imperative for informing management decisions in the face of increased crown fire occurrence and climate change. I used dendroecological techniques to reconstruct fires and stand-replacing fire patch size in the Madrean Sky Islands and Mogollon Plateau. Reconstructed patch size (1685-1904) was compared with contemporary patch size (1996-2004). Reconstructed fires at three sites had stand-replacing patches totaling > 500 ha. No historical stand-replacing fire patches were evident in the mixed conifer/aspen forests of the Sky Islands. Maximum stand-replacing fire patch size of modern fires (1129 ha) was greater than that reconstructed from aspen (286 ha) and spruce-fir (521 ha). Undated spruce-fir patches may be evidence of larger (>2000ha) stand-replacing fire patches. To provide climatological context for fire history I used correlation and regionalization analyses to document spatial and temporal variability in climate regions, and El-Nino Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO) teleconnections using 273 tree-ring chronologies (1732-1979). Four regions were determined by common variability in annual ring width. The component score time series replicate spatial variability in 20th century droughts (e.g., 1950's) and pluvials (e.g., 1910's). Two regions were significantly correlated with instrumental SOI and AMO, and three with PDO. Sub-regions within the southwestern U.S. varied geographically between the instrumental (1900-1979) and the pre-instrumental periods (1732-1899). Mapped correlations between ENSO, PDO and AMO, and tree-ring indices illustrate detailed sub-regional variability in the teleconnections. I analyzed climate teleconnections, and fire-climate relationships of historical upper elevation fires from 16 sites in 8 mountain ranges. I tested for links between Palmer Drought Severity Index and tree-ring reconstructed ENSO, PDO and AMO phases (1905-1978 and 1700-1904). Upper elevation fires (115 fires, 84 fire years, 1623-1904) were compared with climate indices. ENSO, PDO, and AMO affected regional PDSI, but AMO and PDO teleconnections changed between periods. Fire occurrence was significantly related to inter-annual variability in PDSI, precipitation, ENSO, and phase combinations of ENSO and PDO, but not AMO (1700-1904). Reduced upper elevation fire (1785-1840) was coincident with a cool AMO phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvD..94f3005C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvD..94f3005C"><span>Gravitational wave-Gauge field oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caldwell, R. R.; Devulder, C.; Maksimova, N. A.</p> <p>2016-09-01</p> <p>Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multidimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22412577-critical-current-linewidth-reduction-spin-torque-nano-oscillators-delayed-self-injection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22412577-critical-current-linewidth-reduction-spin-torque-nano-oscillators-delayed-self-injection"><span>Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khalsa, Guru, E-mail: guru.khalsa@nist.gov; Stiles, M. D.; Grollier, J.</p> <p>2015-06-15</p> <p>Based on theoretical models, the dynamics of spin-torque nano-oscillators can be substantially modified by re-injecting the emitted signal to the input of the oscillator after some delay. Numerical simulations for vortex magnetic tunnel junctions show that with reasonable parameters this approach can decrease critical currents as much as 25% and linewidths by a factor of 4. Analytical calculations, which agree well with simulations, demonstrate that these results can be generalized to any kind of spin-torque oscillator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522069-testing-gravity-quasi-periodic-oscillations-from-accreting-black-holes-case-einsteindilatongaussbonnet-theory','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522069-testing-gravity-quasi-periodic-oscillations-from-accreting-black-holes-case-einsteindilatongaussbonnet-theory"><span>TESTING GRAVITY WITH QUASI-PERIODIC OSCILLATIONS FROM ACCRETING BLACK HOLES: THE CASE OF THE EINSTEIN–DILATON–GAUSS–BONNET THEORY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Maselli, Andrea; Gualtieri, Leonardo; Ferrari, Valeria</p> <p></p> <p>Quasi-periodic oscillations (QPOs) observed in the X-ray flux emitted by accreting black holes are associated with phenomena occurring near the horizon. Future very large area X-ray instruments will be able to measure QPO frequencies with very high precision, thus probing this strong-field region. Using the relativistic precession model, we show the way in which QPO frequencies could be used to test general relativity (GR) against those alternative theories of gravity which predict deviations from the classical theory in the strong-field and high-curvature regimes. We consider one of the best-motivated high-curvature corrections to GR, namely, the Einstein–Dilaton–Gauss–Bonnet theory, and show thatmore » a detection of QPOs with the expected sensitivity of the proposed ESA M-class mission LOFT would set the most stringent constraints on the parameter space of this theory.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810016816','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810016816"><span>Design and analysis of a torsion braid pendulum displacement transducer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, E.; Bryant, E. L.</p> <p>1981-01-01</p> <p>The dynamic properties at various temperatures of braids impregnated with polymer can be measured by using the braid as the suspension of a torsion pendulum. This report describes the electronic and mechanical design of a torsional braid pendulum displacement transducer which is an advance in the state of the art. The transducer uses a unique optical design consisting of refracting quartz windows used in conjunction with a differential photocell to produce a null signal. The release mechanism for initiating free torsional oscillation of the pendulum has also been improved. Analysis of the precision and accuracy of the transducer indicated that the maximum relative error in measuring torsional amplitude was approximately 0. A serious problem inherent in all instruments which use a torsional suspension was analyzed: misalignment of the physical and torsional axes of the torsional member which results in modulation of the amplitude of the free oscillation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29710861','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29710861"><span>A CMOS Self-Contained Quadrature Signal Generator for SoC Impedance Spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Márquez, Alejandro; Pérez-Bailón, Jorge; Calvo, Belén; Medrano, Nicolás; Martínez, Pedro A</p> <p>2018-04-30</p> <p>This paper presents a low-power fully integrated quadrature signal generator for system-on-chip (SoC) impedance spectroscopy applications. It has been designed in a 0.18 μm-1.8 V CMOS technology as a self-contained oscillator, without the need for an external reference clock. The frequency can be digitally tuned from 10 to 345 kHz with 12-bit accuracy and a relative mean error below 1.7%, thus supporting a wide range of impedance sensing applications. The proposal is experimentally validated in two impedance spectrometry examples, achieving good magnitude and phase recovery results compared to the results obtained using a commercial LCR-meter. Besides the wide frequency tuning range, the proposed programmable oscillator features a total power consumption lower than 0.77 mW and an active area of 0.129 mm², thus constituting a highly suitable choice as stimulation module for instrument-on-a-chip devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780006444','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780006444"><span>Optical timing receiver for the NASA laser ranging system. Part 2: High precision time interval digitizer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leskovar, B.; Turko, B.</p> <p>1977-01-01</p> <p>The development of a high precision time interval digitizer is described. The time digitizer is a 10 psec resolution stop watch covering a range of up to 340 msec. The measured time interval is determined as a separation between leading edges of a pair of pulses applied externally to the start input and the stop input of the digitizer. Employing an interpolation techniques and a 50 MHz high precision master oscillator, the equivalent of a 100 GHz clock frequency standard is achieved. Absolute accuracy and stability of the digitizer are determined by the external 50 MHz master oscillator, which serves as a standard time marker. The start and stop pulses are fast 1 nsec rise time signals, according to the Nuclear Instrument means of tunnel diode discriminators. Firing level of the discriminator define start and stop points between which the time interval is digitized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23616942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23616942"><span>Determining cantilever stiffness from thermal noise.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael</p> <p>2013-01-01</p> <p>We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f n , quality factor Q n and specifically the stiffness k n of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine k n from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMMM..427...85S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMMM..427...85S"><span>The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo</p> <p>2017-04-01</p> <p>Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090020168&hterms=comprehensive+review&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DThis%2Bcomprehensive%2Breview%2Bwill','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090020168&hterms=comprehensive+review&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DThis%2Bcomprehensive%2Breview%2Bwill"><span>Coupled Oscillator Based Agile Beam Transmitters and Receivers: A Review of Work at JPL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pogorzelski, Ronald J.</p> <p>2006-01-01</p> <p>This is a review of the work done at Caltech's Jet Propulsion Laboratory during the past decade on development of the coupled oscillator technology in phased array applications to spacecraft telecommunications. First, some historical background is provided to set the work in context. However, this is by no means intended to be a comprehensive review of all work in this area. Rather, the focus is on the JPL contribution with some mention of other work which provided either insight or motivation. In the mid 1990's, R. A. York, and collaborators proposed that an array of mutually injection locked electronic oscillators could provide appropriately phased signals to the radiating elements of an array antenna such that the radiated beam could be steered merely by tuning the end or perimeter oscillators of the array. York, et al. also proposed a receiving system based on such oscillator arrays in which the oscillators provide properly phased local oscillator signals to be mixed with the signals received by the array elements to remove the phase due to angle of arrival of the incident wave. These concepts were viewed as a promising simplification of the beam steering control system that could result in significant cost, mass, and prime power reduction and were therefore attractive for possible space application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT........22G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT........22G"><span>Synthesis of a fully-integrated digital signal source for communications from chaotic dynamics-based oscillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glenn, Chance Michael, Sr.</p> <p></p> <p>This work is the conceptualization, derivation, analysis, and fabrication of a fully practical digital signal source designed from a chaotic oscillator. In it we show how a simple electronic circuit based upon the Colpitts oscillator, can be made to produce highly complex signals capable of carrying digital information. We show a direct relationship between the continuous-time chaotic oscillations produced by the circuit and the logistic map, which is discrete-time, one-dimensional map that is a fundamental paradigm for the study of chaotic systems. We demonstrate the direct encoding of binary information into the oscillations of the chaotic circuit. We demonstrate a new concept in power amplification, called syncrodyne amplification , which uses fundamental properties of chaotic oscillators to provide high-efficiency, high gain amplification of standard communication waveforms as well as typical chaotic oscillations. We show modeling results of this system providing nearly 60-dB power gain and 80% PAE for communications waveforms conforming to GMSK modulation. Finally we show results from a fabricated syncrodyne amplifier circuit operating at 2 MHz, providing over 40-dB power gain and 72% PAE, and propose design criteria for an 824--850 MHz circuit utilizing heterojunction bipolar transistors (HBTs), providing the basis for microwave frequency realization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...610A..61P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...610A..61P"><span>Search for quasi-periodic signals in magnetar giant flares. Bayesian inspection of SGR 1806-20 and SGR 1900+14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pumpe, Daniel; Gabler, Michael; Steininger, Theo; Enßlin, Torsten A.</p> <p>2018-02-01</p> <p>Quasi-periodic oscillations (QPOs) discovered in the decaying tails of giant flares of magnetars are believed to be torsional oscillations of neutron stars. These QPOs have a high potential to constrain properties of high-density matter. In search for quasi-periodic signals, we study the light curves of the giant flares of SGR 1806-20 and SGR 1900+14, with a non-parametric Bayesian signal inference method called D3PO. The D3PO algorithm models the raw photon counts as a continuous flux and takes the Poissonian shot noise as well as all instrument effects into account. It reconstructs the logarithmic flux and its power spectrum from the data. Using this fully noise-aware method, we do not confirm previously reported frequency lines at ν ≳ 17 Hz because they fall into the noise-dominated regime. However, we find two new potential candidates for oscillations at 9.2 Hz (SGR 1806-20) and 7.7 Hz (SGR 1900+14). If these are real and the fundamental magneto-elastic oscillations of the magnetars, current theoretical models would favour relatively weak magnetic fields B̅ 6× 1013-3 × 1014 G (SGR 1806-20) and a relatively low shear velocity inside the crust compared to previous findings. Data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A61</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25705810','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25705810"><span>pH-regulated chemical oscillators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Orbán, Miklós; Kurin-Csörgei, Krisztina; Epstein, Irving R</p> <p>2015-03-17</p> <p>The hydrogen ion is arguably the most ubiquitous and important species in chemistry. It also plays a key role in nearly every biological process. In this Account, we discuss systems whose behavior is governed by oscillations in the concentration of hydrogen ion. The first chemical oscillators driven by changes in pH were developed a quarter century ago. Since then, about two dozen new pH oscillators, systems in which the periodic variation in pH is not just an indicator but an essential prerequisite of the oscillatory behavior, have been discovered. Mechanistic understanding of their behavior has grown, and new ideas for their practical application have been proposed and, in some cases, tested. Here we present a catalog of the known pH oscillators, divide them into mechanistically based categories based on whether they involve a single oxidant and reductant or an oxidant and a pair of reductants, and describe general mechanisms for these two major classes of systems. We also describe in detail the chemistry of one example from each class, hydrogen peroxide-sulfide and ferricyanide-iodate-sulfite. Finally, we consider actual and potential applications. These include using pH oscillators to induce oscillation in species that would otherwise be nonoscillatory, creating novel spatial patterns, generating periodic transitions between vesicle and micelle states, stimulating switching between folded and random coil states of DNA, building molecular motors, and designing pulsating drug delivery systems. We point out the importance for future applications of finding a batch pH oscillator, one that oscillates in a closed system for an extended period of time, and comment on the progress that has been made toward that goal.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29332230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29332230"><span>A cardioid oscillator with asymmetric time ratio for establishing CPG models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fu, Q; Wang, D H; Xu, L; Yuan, G</p> <p>2018-01-13</p> <p>Nonlinear oscillators are usually utilized by bionic scientists for establishing central pattern generator models for imitating rhythmic motions by bionic scientists. In the natural word, many rhythmic motions possess asymmetric time ratios, which means that the forward and the backward motions of an oscillating process sustain different times within one period. In order to model rhythmic motions with asymmetric time ratios, nonlinear oscillators with asymmetric forward and backward trajectories within one period should be studied. In this paper, based on the property of the invariant set, a method to design the closed curve in the phase plane of a dynamic system as its limit cycle is proposed. Utilizing the proposed method and considering that a cardioid curve is a kind of asymmetrical closed curves, a cardioid oscillator with asymmetric time ratios is proposed and realized. Through making the derivation of the closed curve in the phase plane of a dynamic system equal to zero, the closed curve is designed as its limit cycle. Utilizing the proposed limit cycle design method and according to the global invariant set theory, a cardioid oscillator applying a cardioid curve as its limit cycle is achieved. On these bases, the numerical simulations are conducted for analyzing the behaviors of the cardioid oscillator. The example utilizing the established cardioid oscillator to simulate rhythmic motions of the hip joint of a human body in the sagittal plane is presented. The results of the numerical simulations indicate that, whatever the initial condition is and without any outside input, the proposed cardioid oscillator possesses the following properties: (1) The proposed cardioid oscillator is able to generate a series of periodic and anti-interference self-exciting trajectories, (2) the generated trajectories possess an asymmetric time ratio, and (3) the time ratio can be regulated by adjusting the oscillator's parameters. Furthermore, the comparison between the simulated trajectories by the established cardioid oscillator and the measured angle trajectories of the hip angle of a human body show that the proposed cardioid oscillator is fit for imitating the rhythmic motions of the hip of a human body with asymmetric time ratios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12699155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12699155"><span>Analysis and design of negative resistance oscillators using surface transverse wave-based single port resonators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Avramov, Ivan D</p> <p>2003-03-01</p> <p>This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=capacitors&id=EJ825952','ERIC'); return false;" href="https://eric.ed.gov/?q=capacitors&id=EJ825952"><span>The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lee, Keeyung</p> <p>2009-01-01</p> <p>The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1666m0003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1666m0003H"><span>Future long-baseline neutrino oscillations: View from Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayato, Yoshinari</p> <p>2015-07-01</p> <p>Accelerator based long-baseline neutrino oscillation experiments have been playing important roles in revealing the nature of neutrinos. However, it turned out that the current experiments are not sufficient to study two major remaining problems, the CP violation in the lepton sector and the mass hierarchy of neutrinos. Therefore, several new experiments have been proposed. Among of them, two accelerator based long-baseline neutrino oscillation experiments, the J-PARC neutrino beam and Hyper-Kamiokande, and MOMENT, have been proposed in Asia. These two projects are reviewed in this article.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28605352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28605352"><span>Asymmetry in Signal Oscillations Contributes to Efficiency of Periodic Systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bae, Seul-A; Acevedo, Alison; Androulakis, Ioannis P</p> <p>2016-01-01</p> <p>Oscillations are an important feature of cellular signaling that result from complex combinations of positive- and negative-feedback loops. The encoding and decoding mechanisms of oscillations based on amplitude and frequency have been extensively discussed in the literature in the context of intercellular and intracellular signaling. However, the fundamental questions of whether and how oscillatory signals offer any competitive advantages-and, if so, what-have not been fully answered. We investigated established oscillatory mechanisms and designed a study to analyze the oscillatory characteristics of signaling molecules and system output in an effort to answer these questions. Two classic oscillators, Goodwin and PER, were selected as the model systems, and corresponding no-feedback models were created for each oscillator to discover the advantage of oscillating signals. Through simulating the original oscillators and the matching no-feedback models, we show that oscillating systems have the capability to achieve better resource-to-output efficiency, and we identify oscillatory characteristics that lead to improved efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhyA..391.1900A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhyA..391.1900A"><span>Collective behavior of coupled nonuniform stochastic oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Assis, Vladimir R. V.; Copelli, Mauro</p> <p>2012-02-01</p> <p>Theoretical studies of synchronization are usually based on models of coupled phase oscillators which, when isolated, have constant angular frequency. Stochastic discrete versions of these uniform oscillators have also appeared in the literature, with equal transition rates among the states. Here we start from the model recently introduced by Wood et al. [K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Universality of synchrony: critical behavior in a discrete model of stochastic phase-coupled oscillators, Phys. Rev. Lett. 96 (2006) 145701], which has a collectively synchronized phase, and parametrically modify the phase-coupled oscillators to render them (stochastically) nonuniform. We show that, depending on the nonuniformity parameter 0≤α≤1, a mean field analysis predicts the occurrence of several phase transitions. In particular, the phase with collective oscillations is stable for the complete graph only for α≤α‧<1. At α=1 the oscillators become excitable elements and the system has an absorbing state. In the excitable regime, no collective oscillations were found in the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvP...8f4011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvP...8f4011S"><span>Integer, Fractional, and Sideband Injection Locking of a Spintronic Feedback Nano-Oscillator to a Microwave Signal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Hanuman; Konishi, K.; Bhuktare, S.; Bose, A.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.</p> <p>2017-12-01</p> <p>In this paper we demonstrate the injection locking of a recently demonstrated spintronic feedback nano-oscillator to microwave magnetic fields at integers (n =1 , 2, 3) as well as fractional multiples (f =1 /2 , 3 /2 , and 5 /2 ) of its auto-oscillation frequency. Feedback oscillators have delay as a new "degree of freedom" which is absent for spin-transfer torque-based oscillators, which gives rise to side peaks along with a main peak. We show that it is also possible to lock the oscillator on its sideband peaks, which opens an alternative avenue to phase-locked oscillators with large frequency differences. We observe that for low driving fields, sideband locking improves the quality factor of the main peak, whereas for higher driving fields the main peak is suppressed. Further, measurements at two field angles provide some insight into the role of the symmetry of oscillation orbit in determining the fractional locking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28562213','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28562213"><span>Multivariate Time Series Decomposition into Oscillation Components.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matsuda, Takeru; Komaki, Fumiyasu</p> <p>2017-08-01</p> <p>Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA106395','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA106395"><span>Determination of Atomic and Molecular Excited-State Lifetimes Using an Opto-electronic Cross-Correlation Method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-10-07</p> <p>new instrument (cf. Fig. 1) is simply a four - quadrant ring-diode multi- 5 plier (Fig. 2). The reference frequency (RF) and local oscillator (LO) inputs...movement, and scan speed of the corner-cube. Other Components. A rotating-sector chopper modulates the laser pulse train at a frequency of approximately 50...the cross-correlation experiment. In this application, the detection bandpass is simply displaced from DC to the chopper frequency; problems arising</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA204669','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA204669"><span>Joint Services Electronics Program: Electronics Research at the University of Texas at Austin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-12-31</p> <p>structures. This system is also used routinely as an in-situ measure of alloy composition. We have shown that significant changes in the principal...RHEED streak intensity and shape are produced by very small changes in adatom coverage and that the profile is noticeably different for Ga and As...characteristic impedance measurement instruments. The oscillation frequency in the waveguide circuit could be varied from 8 to 12 GHz by changing the dc bias</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA246942','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA246942"><span>Assessment and Computerized Modeling of the Environmental Deposition of Military Smokes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-10-05</p> <p>assumption of randomness implies that past knowl- I edge has no bearing on the occurrence of any f, ture event1, the probability distribution of finding...of these levels, the wind speed was measured with a Gill three-cup anemometer. This anemometer consists of a vertical bearing -mounted spindle with...first class of instruments we have the ý-gage, the piezoelectric microbalance, and the tapered element oscillating microbalance. Other types of real-time</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSV...383..265R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSV...383..265R"><span>Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rajabi, Majid; Mojahed, Alireza</p> <p>2016-11-01</p> <p>In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27935286','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27935286"><span>Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Butzin, Nicholas C; Hochendoner, Philip; Ogle, Curtis T; Mather, William H</p> <p>2017-03-17</p> <p>Internal chemical oscillators (chemical clocks) direct the behavior of numerous biological systems, and maintenance of a given period and phase among many such oscillators may be important for their proper function. However, both environmental variability and fundamental molecular noise can cause biochemical oscillators to lose coherence. One solution to maintaining coherence is entrainment, where an external signal provides a cue that resets the phase of the oscillators. In this work, we study the entrainment of gene networks by a queueing interaction established by competition between proteins for a common proteolytic pathway. Principles of queueing entrainment are investigated for an established synthetic oscillator in Escherichia coli. We first explore this theoretically using a standard chemical reaction network model and a map-based model, both of which suggest that queueing entrainment can be achieved through pulsatile production of an additional protein competing for a common degradation pathway with the oscillator proteins. We then use a combination of microfluidics and fluorescence microscopy to verify that pulse trains modulating the production rate of a fluorescent protein targeted to the same protease (ClpXP) as the synthetic oscillator can entrain the oscillator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034543','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034543"><span>Improved outgassing models for the Landsat-5 thematic mapper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Micijevic, E.; Chander, G.; Hayes, R.W.</p> <p>2007-01-01</p> <p>The Landsat-5 (L5) Thematic Mapper (TM) detectors of the short wave infrared (SWIR) bands 5 and 7 are maintained on cryogenic temperatures to minimize thermal noise and allow adequate detection of scene energy. Over the instrument's lifetime, gain oscillations are observed in these bands that are caused by an ice-like contaminant that gradually builds up on the window of a dewar that houses these bands' detectors. This process of icing, an effect of material outgassing in space, is detected and characterized through observations of Internal Calibrator (IC) data. Analyses of IC data indicated three to five percent uncertainty in absolute gain estimates due to this icing phenomenon. The thin-film interference lifetime models implemented in the image product generation systems at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) successfully remove up to 80 percent of the icing effects for the image acquisition period from the satellite's launch in 1984 until 2001; however, their correction ability was found to be much lower for the time thereafter. This study concentrates on improving the estimates of the contaminant film growth rate and the associated change in the period of gain oscillations. The goal is to provide model parameters with the potential to correct 70 to 80 percent of gain uncertainties caused by outgassing effects in L5 TM bands 5 and 7 over the instrument's entire lifetime. ?? 2007 IEEE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031825','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031825"><span>Improved outgassing models for the Landsat-5 thematic mapper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Micijevic, E.; Chander, G.; Hayes, R.W.</p> <p>2008-01-01</p> <p>The Landsat-5 (L5) Thematic Mapper (TM) detectors of the short wave infrared (SWIR) bands 5 and 7 are maintained on cryogenic temperatures to minimize thermal noise and allow adequate detection of scene energy. Over the instrument's lifetime, gain oscillations are observed in these bands that are caused by an ice-like contaminant that gradually builds up on the window of a dewar that houses these bands' detectors. This process of icing, an effect of material outgassing in space, is detected and characterized through observations of Internal Calibrator (IC) data. Analyses of IC data indicated three to five percent uncertainty in absolute gain estimates due to this icing phenomenon. The thin-film interference lifetime models implemented in the image product generation systems at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) successfully remove up to 80 percent of the icing effects for the image acquisition period from the satellite's launch in 1984 until 2001; however, their correction ability was found to be much lower for the time thereafter. This study concentrates on improving the estimates of the contaminant film growth rate and the associated change in the period of gain oscillations. The goal is to provide model parameters with the potential to correct 70 to 80 percent of gain uncertainties caused by outgassing effects in L5 TM bands 5 and 7 over the instrument's entire lifetime. ?? 2007 IEEE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25004537','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25004537"><span>Modeling nonlinearities in MEMS oscillators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A</p> <p>2013-08-01</p> <p>We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...582A.120S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...582A.120S"><span>Damped transverse oscillations of interacting coronal loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soler, Roberto; Luna, Manuel</p> <p>2015-10-01</p> <p>Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29041706','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29041706"><span>Ultrafast optical pulse convertor caused by oscillations of the energy level structure in the conjugated polymer poly(p-phenylenevinylene).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yusong; Chen, Weikang; Lin, Zhe; Li, Sheng; George, Thomas F</p> <p>2017-08-21</p> <p>For a conjugated polymer irradiated by two optical pulses, the whole process of excitation, involving lattice oscillations, oscillations of the energy level structure, and evolution of the electron cloud, is investigated. Localization of the electron cloud appears in the first 100 fs of irradiation, which in turn induces vibrations of lattice of the polymer chain as well as oscillations of the band gap. These oscillations filter the absorption of the external optical field inversely and convert the original optical field to an ultrafast light field whose intensity varies with a certain period. Based on the mechanism, oscillations of the energy level structure, induced by the external excitation, can be designed as an ultrafast response optical convertor that is able to change the external optical pulse into a new effective light field with a certain oscillation period. This helps provide new insight into designing nanostructures for polymeric optoelectronics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060039955&hterms=erickson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Derickson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060039955&hterms=erickson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Derickson"><span>A 1.5 THz hot-electron bolometer mixer operated by a planar diode based local oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tong, C. Y. E.; Meledin, D.; Blundell, R.; Erickson, N.; Mehdi, I.; Goltsman, G.</p> <p>2003-01-01</p> <p>We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is oprated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1413922-design-implementation-wire-tension-measurement-system-mwpcs-used-star-itpc-upgrade','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1413922-design-implementation-wire-tension-measurement-system-mwpcs-used-star-itpc-upgrade"><span>Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, Xu; Shen, Fuwang; Wang, Shuai; ...</p> <p>2017-04-06</p> <p>The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper,more » the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394923','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1394923"><span>Global and Hemispheric Annual Temperature Variations Between 1854 and 1991 (revised 1994) (NDP-022)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Jones, P. D. [University of East Anglia, Norwich, United Kingdom; Wigley, T. M. L. [University of East Anglia, Norwich, United Kingdom; Wright, P. B. [University of East Anglia, Norwich, United Kingdom</p> <p>1994-01-01</p> <p>This data set contains estimates of global and hemispheric annual temperature variations, relative to a 1950 through 1979 reference period, for 1861 through 1991. The estimates are based on corrected land and ocean data. Land data were derived from meteorological data and fixed-position weather-ship data that were corrected for nonclimatic errors, such as station shifts and/or instrument changes. The marine data used were those in the Comprehensive Ocean-Atmosphere Data Set (COADS) compilation, which with updates covers to 1986. Updates to 1991 were made with hemispheric sea-surface temperature estimates produced by the U.K. Meteorological Office. Each record includes year and six annual temperature variations: one estimate each for the globe, the Northern Hemisphere, and the Southern Hemisphere and another estimate each that reflects an adjustment to account for the influence of El Niño/Southern Oscillation events. The data are in one file of 13 kB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPA.859...90W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPA.859...90W"><span>Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xu; Shen, Fuwang; Wang, Shuai; Feng, Cunfeng; Li, Changyu; Lu, Peng; Thomas, Jim; Xu, Qinghua; Zhu, Chengguang</p> <p>2017-07-01</p> <p>The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper, the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770010029','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770010029"><span>Experiment S-213 selenocentric geodetic reference system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Doyle, F. J.; Elassal, A. A.; Lucas, J. R.</p> <p>1976-01-01</p> <p>Development and implementation of a photogrammetric system was undertaken to provide accurate selenodetic positions and topographic mapping of all areas overflown by orbital spacecraft. The system was installed in the scientific instrument module (SIM) bay of the Apollo command service module (CSM). In theory, this system provided everything a photogrammetrist could want: the position of each exposure station would be obtained from Earth-based tracking; the orientation of each photograph could be computed from the synchronized stellar exposure and the lock-angles determined by preflight calibration; and the scale of each stereomodel would be obtained directly from the altimeter data. Operationally, the data acquisition was adequate, but less than optimum. Systematic errors are believed to be the result of the primitive orbit determination procedures in use at the time of the Apollo 15 mission, inadequate models of the lunar gravity field, and spacecraft oscillations induced by uncoupled thrusting and various activities of the astronauts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850009590&hterms=limitation+duration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlimitation%2Bduration','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850009590&hterms=limitation+duration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlimitation%2Bduration"><span>Atmospheric Limitations in Stellar Seismology: Should One Measure Radial Velocity or Brightness Fluctuations?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fossat, E.</p> <p>1984-01-01</p> <p>Low degree p-modes of the Sun have been measured in spatially integrated sunlight (the Sun as a star) both in Doppler shift and in intensity fluctuations. These observations are a good starting point for the discussion of the best way to collect equivalent data on other stars. It is assumed that the Sun is removed far enough in space to become an ordinary star of magnitude zero to one. Evidently another star will oscillate with different frequencies and different amplitudes, but some reference must be made to start with. Using this scheme, a detailed investigation of the limitations of observational accuracy in the search for global p-modes is made. The sources of noise stand in the Sun itself, in the instrumentation, in the observing time duration, in the corpuscular nature of the light and mostly in the Earth atmosphere in the case of ground based observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8763E..37W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8763E..37W"><span>A closed-loop system for frequency tracking of piezoresistive cantilever sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin</p> <p>2013-05-01</p> <p>A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1358110','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1358110"><span>First Neutrino Oscillation Results from the NOvA experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sachdev, Kanika</p> <p>2016-11-29</p> <p>NOvA is a long-baseline neutrino oscillation experiment on the NuMI muon neutrino beam at Fermilab. It consists of two functionally identical, nearly fully-active liquid-scintillator tracking calorimeters. The Near Detector (ND) at Fermilab is used to study the neutrino beam spectrum and composition before oscillations occur. The Far Detector in northern Minnesota, 810 km away, observes the oscillated beam and is used to extract the oscillation parameters. NOvA is designed to observe oscillations in two channels: disappearance channel ( ν μ → ν μ ) and ν e appearance channel ( ν μ → ν e ). This paper reports themore » measurements of both these channels based on the first NOvA data taken from February 16, 2014 till May 15, 2015« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352722-impact-high-pv-penetration-inter-area-oscillations-eastern-interconnection','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352722-impact-high-pv-penetration-inter-area-oscillations-eastern-interconnection"><span>Impact of High PV Penetration on the Inter-Area Oscillations in the U.S. Eastern Interconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>You, Shutang; Kou, Gefei; Liu, Yong; ...</p> <p>2017-03-31</p> <p>Our study explores the impact of high-photovoltaic (PV) penetration on the inter-area oscillation modes of large-scale power grids. A series of dynamic models with various PV penetration levels are developed based on a detailed model representing the U.S. Eastern Interconnection (EI). Transient simulations are performed to investigate the change of inter-area oscillation modes with PV penetration. The impact of PV control strategies and parameter settings on inter-area oscillations is studied. This paper finds that as PV increases, the damping of the dominant oscillation mode decreases monotonically. We also observed that the mode shape varies with the PV control strategy andmore » new oscillation modes may emerge under inappropriate parameter settings in PV plant controls.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10568E..14B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10568E..14B"><span>Optical distribution of local oscillators in future telecommunication satellite payloads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benazet, Benoît; Sotom, Michel; Maignan, Michel; Berthon, Jacques</p> <p>2017-11-01</p> <p>The distribution of high spectral purity reference signals over optical fibre in future telecommunication satellite payloads is presented. Several types of applications are considered, including the distribution of a reference frequency at 10 MHz (Ultra-Stable Reference Oscillator) as well as the distribution of a radiofrequency oscillator around 800 MHz (Master Local Oscillator). The results of both experimental and theoretical studies are reported. In order to meet phase noise requirements for the USRO distribution, the use of an optimised receiver circuit based on an optically synchronised oscillator is investigated. Finally, the optical distribution of microwave local oscillators at frequencies exceeding 20 GHz is described. Such a scheme paves the way to more advanced sub-systems involving optical frequency-mixing and optical transmission of microwave signals, with applications to multiple-beam active antennas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23173034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23173034"><span>Oscillatory threshold logic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Borresen, Jon; Lynch, Stephen</p> <p>2012-01-01</p> <p>In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10745106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10745106"><span>Control of interaction strength in a network of the true slime mold by a microfabricated structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takamatsu, A; Fujii, T; Endo, I</p> <p>2000-02-01</p> <p>The plasmodium of the true slime mold, Physarum polycephalum, which shows various nonlinear oscillatory phenomena, for example, in its thickness, protoplasmic streaming and concentration of intracellular chemicals, can be regarded as a collective of nonlinear oscillators. The plasmodial oscillators are interconnected by microscale tubes whose dimensions can be closely related to the strength of interaction between the oscillators. Investigation of the collective behavior of the oscillators under the conditions in which the interaction strength can be systematically controlled gives significant information on the characteristics of the system. In this study, we proposed a living model system of a coupled oscillator system in the Physarum plasmodium. We patterned the geometry and dimensions of the microscale tube structure in the plasmodium by a microfabricated structure (microstructure). As the first step, we constructed a two-oscillator system for the plasmodium that has two wells (oscillator part) and a channel (coupling part). We investigated the oscillation behavior by monitoring the thickness oscillation of the plasmodium in the microstructure with various channel widths. It was found that the oscillation behavior of two oscillators dynamically changed depending on the channel width. Based on the results of measurements of the tube dimensions and the velocity of the protoplasmic streaming in the tube, we discuss how the channel width relates to the interaction strength of the coupled oscillator system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121a4308G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121a4308G"><span>An oscillator based on a single Au nanocluster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorshkov, O. N.; Filatov, D. O.; Antonov, D. A.; Antonov, I. N.; Shenina, M. E.; Pavlov, D. A.</p> <p>2017-01-01</p> <p>Metal nanoclusters embedded into the ultrathin dielectric films attracted much attention in recent years due to their unusual electronic, optical, etc., properties differing from those of the bulk metals essentially and, hence, to the prospects of their applications in novel nanoelectronic, single electronic, non-volatile memory, etc., devices. Here, we report on the experimental observation of the electrical oscillations in an oscillating loop connected to a contact of a conductive probe of an Atomic Force Microscope to a tunnel-transparent ( ˜6.5 nm thick) yttria stabilized zirconia film with embedded Au nanoclusters on the Si substrate. The oscillations were attributed to the negative differential resistance of the probe-to-sample contact originating from the resonant electron tunnelling between the probe and the Si substrate via the quantum confined electron energy levels in small ( ≈2.5 nm in diameter) Au nanoclusters. This observation demonstrates the prospects of building an oscillator nanoelectronic device based on an individual nanometer-sized metal nanocluster.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3150514','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3150514"><span>Electrochemical Oscillations of Nickel Electrodissolution in an Epoxy-Based Microchip Flow Cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cioffi, Alexander G.; Martin, R. Scott; Kiss, István Z.</p> <p>2011-01-01</p> <p>We investigate the nonlinear dynamics of transpassive electrodissolution of nickel in sulfuric acid in an epoxy-based microchip flow cell. We observed bistability, smooth, relaxation, and period-2 waveform current oscillations with external resistance attached to the electrode in the microfabricated electrochemical cell with 0.05 mm diameter Ni wire under potentiostatic control. Experiments with 1mm × 0.1 mm Ni electrode show spontaneous oscillations without attached external resistance; similar surface area electrode in macrocell does not exhibit spontaneous oscillations. Combined experimental and numerical studies show that spontaneous oscillation with the on-chip fabricated electrochemical cell occurs because of the unusually large ohmic potential drop due to the constrained current in the narrow flow channel. This large IR potential drop is expected to have an important role in destabilizing negative differential resistance electrochemical (e.g., metal dissolution and electrocatalytic) systems in on-chip integrated microfludic flow cells. The proposed experimental setup can be extendend to multi-electrode configurations; the epoxy-based substrate procedure thus holds promise in electroanalytical applications that require collector-generator multi-electrodes wires with various electrode sizes, compositions, and spacings as well as controlled flow conditions. PMID:21822407</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21822407','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21822407"><span>Electrochemical Oscillations of Nickel Electrodissolution in an Epoxy-Based Microchip Flow Cell.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cioffi, Alexander G; Martin, R Scott; Kiss, István Z</p> <p>2011-08-01</p> <p>We investigate the nonlinear dynamics of transpassive electrodissolution of nickel in sulfuric acid in an epoxy-based microchip flow cell. We observed bistability, smooth, relaxation, and period-2 waveform current oscillations with external resistance attached to the electrode in the microfabricated electrochemical cell with 0.05 mm diameter Ni wire under potentiostatic control. Experiments with 1mm × 0.1 mm Ni electrode show spontaneous oscillations without attached external resistance; similar surface area electrode in macrocell does not exhibit spontaneous oscillations. Combined experimental and numerical studies show that spontaneous oscillation with the on-chip fabricated electrochemical cell occurs because of the unusually large ohmic potential drop due to the constrained current in the narrow flow channel. This large IR potential drop is expected to have an important role in destabilizing negative differential resistance electrochemical (e.g., metal dissolution and electrocatalytic) systems in on-chip integrated microfludic flow cells. The proposed experimental setup can be extendend to multi-electrode configurations; the epoxy-based substrate procedure thus holds promise in electroanalytical applications that require collector-generator multi-electrodes wires with various electrode sizes, compositions, and spacings as well as controlled flow conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..199a2082H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..199a2082H"><span>Analysis of SVC’s Impact on Out-of-step Oscillation Based on Direct Method Considering Admittance Effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Jing-bo; Ding, Jian; Feng, Li; Ren, Jian-wen; Tang, Wei; Yang, Cheng; Wang, Jing-jin; Song, Yun-ting</p> <p>2017-05-01</p> <p>The widely employment of power electronic equipment in modern power system, may affect grid structure and system operation because of their diverse dynamic characteristics. In this paper, the impact of the static var compensators (SVC) on out-of-step oscillation is investigated based on the equal area criterion by considering SVC’s admittance effect. Firstly, the variation pattern of bus voltage which is connected to SVC is concluded. Then the derivation of equation considering the admittance effect is given, which explains the ability of SVC to suppress out-of-step oscillation. SVC’s impact on migration of out-of-step oscillation centre (OSOC) is discussed based on the expression of OSOC’s electrical location. Moreover, the influence of SVC’s response speed and capacity on its effect are presented by qualitative analysis. Finally, simulations on a two-end equivalent test system are carried out to verify the correctness of the theoretical analysis. It is found that the capacity and a response speed of SVC have significant effect on the out-of-step oscillation, while SVC have no d istinct influence on location of OSOC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510303N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510303N"><span>Mode cross coupling observations with a rotation sensor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nader, Maria-Fernanda; Igel, Heiner; Ferreira, Ana M. G.; Al-Attar, David</p> <p>2013-04-01</p> <p>The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations (Igel et al. 2011). Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of two of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011 and Maule, Chile, 2010. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements. Igel H, Nader MF, Kurrle D, Ferreira AM,Wassermann J, Schreiber KU (2011) ''Observations of Earth's toroidal free oscillations with a rotation sensor: the 2011 magnitude 9.0 Tohoku-Oki earthquake.'' Geophys Res Lett. doi:10.1029/2011GL049045</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhRvE..67e5201P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhRvE..67e5201P"><span>Direction of coupling from phases of interacting oscillators: An information-theoretic approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paluš, Milan; Stefanovska, Aneta</p> <p>2003-05-01</p> <p>A directionality index based on conditional mutual information is proposed for application to the instantaneous phases of weakly coupled oscillators. Its abilities to distinguish unidirectional from bidirectional coupling, as well as to reveal and quantify asymmetry in bidirectional coupling, are demonstrated using numerical examples of quasiperiodic, chaotic, and noisy oscillators, as well as real human cardiorespiratory data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040027560&hterms=beauty&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbeauty','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040027560&hterms=beauty&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbeauty"><span>The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Danchi, William C.</p> <p>2003-01-01</p> <p>Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17771283','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17771283"><span>Voyager 2 plasma wave observations at saturn.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scarf, F L; Gurnett, D A; Kurth, W S; Poynter, R L</p> <p>1982-01-29</p> <p>The first inbound Voyager 2 crossing of Saturn's bow shock [at 31.7 Saturn radii (RS), near local noon] and the last outbound crossing (at 87.4 RS, near local dawn) had similar plasma wave signatures. However, many other aspects of the plasma wave measurements differed considerably during the inbound and outbound passes, suggesting the presence of effects associated with significant north-south or noon-dawn asymmetries, or temporal variations. Within Saturn's magnetosphere, the plasma wave instrument detected electron plasma oscillations, upper hybrid resonance emissions, half-gyrofrequency harmonics, hiss and chorus, narrowband electromagnetic emissions and broadband Saturn radio noise, and noise bursts with characteristics of static. At the ring plane crossing, the plasma wave instrument also detected a large number of intense impulses that we interpret in terms of ring particle impacts on Voyager 2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5552402','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5552402"><span>Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.</p> <p>2017-01-01</p> <p>We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981PhDT........75K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981PhDT........75K"><span>Woodwind Tone Hole Acoustics and the Spectrum Transformation Function.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keefe, Douglas Howard</p> <p></p> <p>This report describes an investigation of woodwind musical instrument tone holes and their effect on the radiated spectrum, the total dissipation, the stability of oscillation, the psychoacoustical cues important in perception, and the tuning and response of the instrument. Varying tone hole proportions significantly affect the radiative and frictional damping near a single hole, the mutual interactions between holes, the onset of streaming and turbulence near the holes, and the perceived woodwind timbre. The interconnections between related fields are explored through a brief review of sound production in woodwinds plus more extensive reviews of room and psychological acoustics. A theoretical and experimental discussion of the spectrum transformation function from the mouthpiece into the room relates all these fields. Also, considered are differences between cylindrical and conical bore woodwinds, the systematic shifts in saxophone spectra produced by the beating of the reed, the coupling of many closely spaced tone holes to the room excitation, the role of the player, and the results pertaining to computer music synthesis. The complicated acoustical flow inside the main air column near a single tone hole has been examined using a Green function, integral equation approach. A variational formulation allows explicit calculation of the open and closed hole impedance parameters needed in the transmission line description of a woodwind, and experiments have verified the theory in detail. Major acoustical topics considered are listed below. The effective length t(,e) of an open hole, relevant for instrument design and modification, is calculated and measured in terms of the main bore diameter 2a, hole diameter 2b, and the height t of the hole chimney; the effect of a hanging pad is a semi-empirical correction on t(,e). When the fundamental plane-wave mode of the main air column oscillation is at a pressure node, both the open and closed hole series impedances are negative inertances whose values depend on the tone hole proportions. An open hole at a pressure node can radiate as a dipole when (b/a) is large and (t/2b) is small. Dissipative losses vary significantly with the frequency of oscillation and the tone hole geometry. Lowering the pad height above a tone hole increases the dissipation. Acoustical streaming through holes is very important for t << 2b, and the associated nonlinear dissipation can destroy the oscillation on poorly designed woodwinds. This unexpected phenomenon is critical in the playing behavior of some flutes, clarinets, and other woodwinds. The onset of streaming occurs at all dynamical levels and more easily for instruments whose spectra are in a 1:3:5 frequency ratio, rather than a 1:2:3 ratio. The streaming is most important for low register tones for which the usual dissipation is also the largest relative to the radiative dissipation, due to losses at the sharp edges inside the bore near the tone holes. Mutual interactions between holes separated by a distance 2s are most pronounced for large diameter holes (2b/2s not small). Holes interact externally via radiation, and internally via higher-order evanescent modes excited at the intersection of the main bore with each tone hole. The non-radiative dissipation increases, and the air column resonances are slightly shifted due to the presence of these interactions. Applications are discussed and numerous additional experiments are proposed which are relevant to woodwinds and their design, and the perception of listeners in rooms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>