Science.gov

Sample records for insulating thin films

  1. A Multilayered Thin Film Insulator for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Blaha, Charles A.; Busfield, A. Rachel; Thomas, Valarie D.

    2002-01-01

    The status of work to develop a reliable high temperature dielectric thin film for use with thin film sensors is presented. The use of thin films to electrically insulate thin film sensors on engine components minimizes the intrusiveness of the sensor and allows a more accurate measurement of the environment. A variety of insulating films were investigated for preventing electrical shorting caused by insulator failure between the sensor and the component. By alternating layers of sputtered high temperature ceramics, a sequence of insulating layers was devised that prevents pinholes from forming completely through the insulator and maintains high electrical resistivity at high temperatures. The major technical challenge remaining is to optimize the fabrication of the insulator with respect to composition to achieve a reliable high temperature insulating film. Data from the testing of various potentially insulating thin film systems is presented and their application to thin film sensors is also discussed.

  2. Optical conductivity of topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-05-07

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi{sub 2}Se{sub 3}-based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ{sub 0}=e{sup 2}/(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF.

  3. Superconductor—Insulator Transitions in Pure Polycrystalline Nb Thin Films

    NASA Astrophysics Data System (ADS)

    Couedo, F.; Crauste, O.; Bergé, L.; Dolgorouky, Y.; Marrache-Kikuchi, C.; Dumoulin, L.

    2012-12-01

    We report on a study of the transport properties of Nb thin films. By varying the thickness of the films from 263 Å to 25 Å, we observed a depression of the superconductivity. Magnetic field was also applied up to 6 T, inducing the disappearance of the superconductivity and the onset of an insulating behavior. The results were compared to those we have already obtained on a highly disordered system, a-NbxSi1-x, to understand whether the same mechanisms for the disappearance of the superconductivity could be at play in pure metallic thin films and in highly disordered systems.

  4. Quantum transport in magnetic topological insulator thin films.

    PubMed

    Lu, Hai-Zhou; Zhao, An; Shen, Shun-Qing

    2013-10-04

    The experimental observation of the long-sought quantum anomalous Hall effect was recently reported in magnetically doped topological insulator thin films [Chang et al., Science 340, 167 (2013)]. An intriguing observation is a rapid decrease from the quantized plateau in the Hall conductance, accompanied by a peak in the longitudinal conductance as a function of the gate voltage. Here, we present a quantum transport theory with an effective model for magnetic topological insulator thin films. The good agreement between theory and experiment reveals that the measured transport originates from a topologically nontrivial conduction band which, near its band edge, has concentrated Berry curvature and a local maximum in group velocity. The indispensable roles of the broken structure inversion and particle-hole symmetries are also revealed. The results are instructive for future experiments and transport studies based on first-principles calculations.

  5. Characterizing the structure of topological insulator thin films

    SciTech Connect

    Richardella, Anthony; Kandala, Abhinav; Lee, Joon Sue; Samarth, Nitin

    2015-08-01

    We describe the characterization of structural defects that occur during molecular beam epitaxy of topological insulator thin films on commonly used substrates. Twinned domains are ubiquitous but can be reduced by growth on smooth InP (111)A substrates, depending on details of the oxide desorption. Even with a low density of twins, the lattice mismatch between (Bi, Sb){sub 2}Te{sub 3} and InP can cause tilts in the film with respect to the substrate. We also briefly discuss transport in simultaneously top and back electrically gated devices using SrTiO{sub 3} and the use of capping layers to protect topological insulator films from oxidation and exposure.

  6. Quantum Hall superfluids in topological insulator thin films.

    PubMed

    Tilahun, Dagim; Lee, Byounghak; Hankiewicz, E M; MacDonald, A H

    2011-12-09

    Three-dimensional topological insulators have protected Dirac-cone surface states. In this Letter we argue that gapped excitonic superfluids with spontaneous coherence between top and bottom surfaces can occur in the topological insulator (TI)-thin-film quantum Hall regime. We find that the large dielectric constants of TI materials increase the layer separation range over which coherence survives and decrease the superfluid sound velocity, but have little influence on the superfluid density or on the charge gap. The coherent state at total Landau-level filling factor νT=0 is predicted to be free of edge modes, qualitatively altering its transport phenomenology compared to the widely studied case of νT=1 in GaAs double-quantum wells.

  7. Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application

    DOEpatents

    Hawkins, G.A.; Clarke, J.

    1975-10-31

    A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

  8. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  9. Absorption of surface acoustic waves by topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Xu, W.

    2014-08-01

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  10. Terahertz transport dynamics in the metal-insulator transition of V2O3 thin film

    NASA Astrophysics Data System (ADS)

    Luo, Y. Y.; Su, F. H.; Zhang, C.; Zhong, L.; Pan, S. S.; Xu, S. C.; Wang, H.; Dai, J. M.; Li, G. H.

    2017-03-01

    The dynamic behavior of thermally-induced metal-insulator transition of V2O3 thin film on Si substrate grown by reactive magnetron sputtering was investigated by the terahertz time-domain spectroscopy. It was found that the THz absorption and optical conductivity of the thin films are temperature-dependent, and the THz amplitude modulation can reach as high as 74.7%. The complex THz optical conductivity in the metallic state of the V2O3 thin films can be well-fitted by the Drude-Smith model, which offer the insight into the electron transport dynamic during the metal-insulator transition of the thin film.

  11. Prototype thin-film thermocouple/heat-flux sensor for a ceramic-insulated diesel engine

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Barrows, Richard F.

    1988-01-01

    A platinum versus platinum-13 percent rhodium thin-film thermocouple/heat-flux sensor was devised and tested in the harsh, high-temperature environment of a ceramic-insulated, low-heat-rejection diesel engine. The sensor probe assembly was developed to provide experimental validation of heat transfer and thermal analysis methodologies applicable to the insulated diesel engine concept. The thin-film thermocouple configuration was chosen to approximate an uninterrupted chamber surface and provide a 1-D heat-flux path through the probe body. The engine test was conducted by Purdue University for Integral Technologies, Inc., under a DOE-funded contract managed by NASA Lewis Research Center. The thin-film sensor performed reliably during 6 to 10 hr of repeated engine runs at indicated mean surface temperatures up to 950 K. However, the sensor suffered partial loss of adhesion in the thin-film thermocouple junction area following maximum cyclic temperature excursions to greater than 1150 K.

  12. Photoexcitation dynamics in thin films of insulated molecular wires

    NASA Astrophysics Data System (ADS)

    Chang, M. H.; Frampton, M. J.; Anderson, H. L.; Herz, L. M.

    2006-12-01

    A study is presented on how encapsulation of conjugated polymer chains affects the motion of photoexcitations and the formation of interchain aggregates in solid films. It is shown that threading of a poly(diphenylene vinylene) backbone inside insulating cyclodextrins (rotaxination) and/or complexation of the chains with poly(ethylene oxide) are effective means of preventing the diffusion of excitons to nonradiative defect sites. Ultrafast time-resolved photoluminescence data reveal that excitation transfer between encapsulated chains is still possible and, for the case of rotaxination, is likely to be facilitated through close packing of end groups belonging to adjacent chains.

  13. Thin films of topological crystalline insulator SnTe in contact with heterogeneous atomic layers

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Hsuan; Yang, Chih-Kai

    2016-12-01

    Tin telluride is a topological crystalline insulator that has gapless surface states protected by mirror symmetry. The symmetry remains intact when the insulator is reduced in thickness and becomes a thin film, according to ab initio calculations based on density functional theory. Furthermore, a SnTe thin film in contact with a heterogeneous atomic layer is capable of closing energy gap caused by quantum tunneling between the two thin film surfaces and therefore distinguishes two conducting channels through surface and interface states respectively. Our calculations of SnTe films deposited with a lead telluride layer have two Dirac cones separated in energy, while the same film in contact with strontium telluride have the cones separated in momentum. The composite with a magnetic manganese telluride layer, however, loses both the mirror and time-reversal symmetry.

  14. Floating-Gate Type Organic Memory with Organic Insulator Thin Film of Plasma Polymerized Methyl Methacrylate

    NASA Astrophysics Data System (ADS)

    Kim, Hee-sung; Lee, Boong-Joo; Kim, Gun-Su; Shin, Paik-Kyun

    2013-02-01

    To fabricate organic memory device by entirely dry process, plasma polymerized methyl methacrylate (ppMMA) thin films were prepared and they were used as both tunneling layer and gate insulator layer in a floating-gate type organic memory device. The ppMMA thin films were prepared with inductively coupled plasma (ICP) source combined with stabilized monomer vapor control. The ppMMA gate insulator thin film revealed dielectric constant of 3.75 and low leakage current of smaller than 10-9 A/cm. The floating-gate type organic memory device showed promising memory characteristics such as memory window value of 12 V and retention time of over 2 h, where 60 V of writing voltage and -30 V of erasing voltage were applied, respectively.

  15. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    SciTech Connect

    Si, Weidong E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun; Ozaki, Toshinori; Gu, Genda; Li, Qiang E-mail: qiangli@bnl.gov

    2015-08-31

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.

  16. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE PAGES

    Si, W.; Zhang, C.; Wu, L.; ...

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  17. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    SciTech Connect

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.

  18. Edge states and integer quantum Hall effect in topological insulator thin films.

    PubMed

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  19. Hydrogenated ultra-thin tin films predicted as two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Quan; Chou, Bo-Hung; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Liu, Yu-Tzu; Lin, Hsin; Bansil, Arun

    2015-03-01

    Using thickness-dependent first-principles electronic structure calculations, we predict that hydrogenated ultra-thin films of tin harbor a new class of two-dimensional (2D) topological insulators (TIs). A single bilayer (BL) tin film assumes a 2D-TI phase, but it transforms into a trivial insulator after hydrogenation. In contrast, tin films with 2 and 3 BLs are found to be trivial insulators, but hydrogenation of 2 to 4 BL films results in a non-trivial TI phase. For 1 to 3 BLs, H-passivation converts the films from being metallic to insulating. Moreover, we examined iodine-terminated tin films up to 3 BLs, and found these to be non-trivial, with the films becoming semi-metallic beyond 1 BL. In particular, the large band gap of 340 meV in an iodine-terminated tin bilayer is not sustained in the iodine-terminated 2BL and 3BL tin films.

  20. Hydrogenated ultra-thin tin films predicted as two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Chou, Bo-Hung; Huang, Zhi-Quan; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Liu, Yu-Tzu; Lin, Hsin; Bansil, Arun

    2014-11-01

    Using thickness-dependent first-principles electronic structure calculations, we predict that hydrogenated ultra-thin films of tin harbor a new class of two-dimensional (2D) topological insulators (TIs). A single bilayer (BL) tin film assumes a 2D-TI phase, but it transforms into a trivial insulator after hydrogenation. In contrast, tin films with 2 and 3 BLs are found to be trivial insulators, but hydrogenation of 2 to 4 BL films results in a non-trivial TI phase. For 1 to 3 BLs, H-passivation converts the films from being metallic to insulating. Moreover, we examined iodine-terminated tin films up to 3 BLs, and found these to be non-trivial, with the films becoming semi-metallic beyond 1 BL. In particular, the large band gap of 340 meV in an iodine-terminated tin BL is not sustained in the iodine-terminated 2 BL and 3 BL tin films.

  1. Metal-insulator transition in epitaxial NdNiO3 thin film: A structural, electrical and optical study

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Qi, Zeming; Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Hu, Chuansheng

    2017-03-01

    NdNiO3 thin film has been prepared by pulsed laser deposition on LaAlO3 (001) single crystalline substrate. Temperature-dependent resistivity measurement shows a sharp metal-insulator transition in such thin film. The phase transition temperature can be tuned from 90 K to 121 K by changing the thickness of thin film. The structure evolution during phase transition is studied by Raman spectroscopy. Optical conductivity reveals that the variation carrier density in the process of phase transition. The results of structural, electrical and optical studies provide useful insights to understand the mechanism of metal-insulator transition of NdNiO3 thin film.

  2. Investigation of the magnetic properties of insulating thin films using the longitudinal spin Seebeck effect

    SciTech Connect

    Kehlberger, A. Jakob, G.; Kläui, M.; Onbasli, M. C.; Kim, D. H.; Ross, C. A.

    2014-05-07

    The longitudinal spin Seebeck effect is used as a detector for the magnetic properties and switching characteristics of magnetic thin insulating films. We use a 300 nm and a 20 nm thick Yttrium Iron Garnet (YIG, Y{sub 3}Fe{sub 5}O{sub 12}) film prepared by pulsed laser deposition and afterwards coated by platinum for the detection of the thermally excited magnons by the inverse spin Hall effect. The inverse spin Hall signals reveal a magnetic uniaxial anisotropy along the direction of the platinum stripe in the thicker film. For the thin film we find a more isotropic behavior, which is complementarily observed using the magnetoresistance occurring at the platinum/YIG interface. We explain our results on the basis of x-ray diffraction data, which reveal a miscut of the substrate and film surface and an expansion of the YIG lattice. Both findings favor a growth-induced magnetic anisotropy that we observe.

  3. Magnetotransport Methods to Probe Surface States of Topological Insulator Thin Films and Topological Insulator/Ferromagnet (TI/FM) Heterostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Raj

    confirmed by the cos(theta) dependence of field titled MR measurements on the Bi2Se3 thin films. No switching in the AMR or hysteresis behavior in the MR was observed in control experiments performed on non TI materials with superconducting electrodes and metal electrodes on Bi2Se3 TI films. The growth and characterization of Bi2Se3/Bi 2Se3/La0.70Sr0.30MnO3 (TI/FM), a topological insulator/ferromagnet heterostructure is discussed in the last part of the thesis. We have grown Bi2Se3/Bi2Se 3/La0.70Sr0.30MnO3 (TI/FM) heterostructures by the method of pulsed laser deposition. Bi2Se3/La 0.70Sr0.30MnO3 (LSMO) is a strong ferromagnetic material with Tc ˜ 350 K and Bi2Se3 is the most studied topological insulator. XRD and phi scan measurements of Bi2Se3/La 0.70Sr0.30MnO3 (TI/FM) heterostructure showed that epitaxial thin films of Bi2Se3 were grown on the LSMO template. Strong in-plane magnetization was confirmed by magnetometry measurements of the Bi2Se3/LSMO heterostructure. Magnetotransport measurements showed a distorted weak anti-localization effect with hysteretic behavior due to interface induced ferromagnetism in the Bi2Se 3 TI films.

  4. Interacting topological phases in thin films of topological mirror Kondo insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Xing; Xu, Cenke; Liu, Chao-Xing

    2016-12-01

    We study interaction effects on thin films of topological mirror Kondo insulators (TMKIs), where the strong interaction is expected to play an important role. Our study has led to the following results: (i) We identify a rich phase diagram of noninteracting TMKIs with different mirror Chern numbers in the monolayer and bilayer thin films; (ii) we obtain the phase diagram with interaction and identify the regimes of interaction parameters to mimic bosonic symmetry-protected topological phases with either gapless bosonic modes or spontaneous mirror symmetry breaking at the boundary; and (iii) for the spontaneous mirror symmetry-breaking boundary, we also study various domain-wall defects between different mirror symmetry-breaking order parameters at the boundary. Our results reveal that the thin-film TMKI serves as an intriguing platform for experimental studies of interacting topological phases.

  5. Ferromagnetism in chromium doped topological insulator thin films and nanoplate crystals

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyi; Zhao, Lukas; Korzhovska, Inna; Deng, Haiming; Huang, Limin; Raoux, Simone; Jordan-Sweet, Jean; O'Brien, Stephen; Krusin-Elbaum, Lia

    2012-02-01

    The surface states of topological insulators are protected by time-reversal symmetry. Introducing magnetic impurities should break this symmetry and open a gap in the otherwise gapless surface states. Recent first-principle calculations predict that when topological insulators are doped with transition metal elements, such as Cr or Fe, a magnetically ordered insulating state will form -- a state that in thin (quasi-2D) samples may support a quantized Hall conductance. Here we report on electrical and magnetic characterization of thin Cr doped topological insulators: Sb2Te3 nanoplate crystals and ˜50 nm thin films of Bi2Te3. Electrical contacts to samples were lithographically defined, with rf sputtered films grown on pre-patterned substrates. Low-temperature in-plane resistivity, Hall, and magnetization measurements were performed in up to 5 T magnetic fields. For 5 at% Cr content, a distinct ferromagnetic hysteretic response is observed at temperatures below 10 K. Hysteretic loops, also observed in Hall resistivity, indicate low-T coercive fields of the order of 0.5 T. Correlation of transport and magnetic measurements indicating anomalous Hall effect, and strong dependence on dopant concentration and sample thickness will be presented.

  6. Dual-gated topological insulator thin-film device for efficient Fermi-level tuning.

    PubMed

    Yang, Fan; Taskin, A A; Sasaki, Satoshi; Segawa, Kouji; Ohno, Yasuhide; Matsumoto, Kazuhiko; Ando, Yoichi

    2015-04-28

    Observations of novel quantum phenomena expected for three-dimensional topological insulators (TIs) often require fabrications of thin-film devices and tuning of the Fermi level across the Dirac point. Since thin films have both top and bottom surfaces, an effective control of the surface chemical potential requires dual gating. However, a reliable dual-gating technique for TI thin films has not yet been developed. Here we report a comprehensive method to fabricate a dual-gated TI device and demonstrate tuning of the chemical potential of both surfaces across the Dirac points. The most important part of our method is the recipe for safely detaching high-quality, bulk-insulating (Bi(1-x)Sb(x))2Te3 thin films from sapphire substrates and transferring them to Si/SiO2 wafers that allow back gating. Fabrication of an efficient top gate by low-temperature deposition of a SiN(x) dielectric complements the procedure. Our dual-gated devices are shown to be effective in tuning the chemical potential in a wide range encompassing the Dirac points on both surfaces.

  7. Superconductor-Metal-Insulator transition in two dimensional Ta thin Films

    NASA Astrophysics Data System (ADS)

    Park, Sun-Gyu; Kim, Eunseong

    2013-03-01

    Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  8. Comparative study of Weyl semimetal and topological/Chern insulators: Thin-film point of view

    NASA Astrophysics Data System (ADS)

    Yoshimura, Yukinori; Onishi, Wataru; Kobayashi, Koji; Ohtsuki, Tomi; Imura, Ken-Ichiro

    2016-12-01

    Regarding three-dimensional (3D) topological insulators and semimetals as a stack of constituent two-dimensional (2D) topological (or sometimes nontopological) systems is a useful viewpoint. Here, we perform a comparative study of the paradigmatic 3D topological phases: Weyl semimetal (WSM), strong and weak topological insulators (STI/WTI), and Chern insulator (CI). By calculating the Z and Z2 indices for the thin films of such 3D topological phases, we follow dimensional evolution of topological properties from 2D to 3D. It is shown that the counterparts of STI and WTI in the time-reversal symmetry broken CI system are, respectively, WSM and CI phases. The number ND of helical Dirac cones emergent on the surface of a topological insulator is shown to be identical to the number NW of the pairs of Weyl cones in the corresponding WSM phase: ND=NW . To test the robustness of this scenario against disorder, we have studied the transport property of disordered WSM thin films, taking into account both the bulk and surface contributions.

  9. Stable metal-insulator transition in epitaxial SmNiO{sub 3} thin films

    SciTech Connect

    Ha, Sieu D.; Otaki, Miho; Jaramillo, R.; Podpirka, Adrian; Ramanathan, Shriram

    2012-06-15

    Samarium nickelate (SmNiO{sub 3}) is a correlated oxide that exhibits a metal-insulator transition (MIT) above room temperature and is of interest for advanced electronics and optoelectronics. However, studies on SmNiO{sub 3} thin films have been limited to date, in part due to well-known difficulties in stabilizing the Ni{sup 3+} valence state during growth, which are manifested in non-reproducible electrical characteristics. In this work, we show that stable epitaxial SmNiO{sub 3} thin films can be grown by rf magnetron sputtering without extreme post-deposition annealing conditions using relatively high growth pressure (>200 mTorr). At low growth pressure, SmNiO{sub 3} is insulating and undergoes an irreversible MIT at {approx}430 K. As pressure is increased, films become metallic across a large temperature range from 100 to 420 K. At high pressure, films are insulating again but with a reversible and stable MIT at {approx}400 K. Phase transition properties can be continuously tuned by control of the sputtering pressure. - Graphical Abstract: X-ray diffraction (left) and resistivity-temperature characteristics (right) of sputtered SmNiO{sub 3} thin films as a function of sputtering pressure. As sputtering pressure increases, the out-of-plane lattice constant of SmNiO{sub 3} decreases, consistent with enhanced oxygen concentration. Concordantly, the electrical properties are strongly modified, and a reversible metal-insulator phase transition is observed at {approx}400 K in the film grown at high pressure. Highlights: Black-Right-Pointing-Pointer Stable SmNiO{sub 3} films grown by rf sputtering without extreme annealing conditions. Black-Right-Pointing-Pointer High sputtering pressures needed to fully stabilize SmNiO{sub 3}. Black-Right-Pointing-Pointer Reversible metal-insulator transition observed at {approx}400 K, similar to bulk. Black-Right-Pointing-Pointer Electrical properties strongly modifiable by varying sputtering pressure.

  10. Electrically induced insulator to metal transition in epitaxial SmNiO{sub 3} thin films

    SciTech Connect

    Shukla, Nikhil Dasgupta, Sandeepan; Datta, Suman; Joshi, Toyanath; Borisov, Pavel; Lederman, David

    2014-07-07

    We report on the electrically induced insulator to metal transition (IMT) in SmNiO{sub 3} thin films grown on (001) LaAlO{sub 3} by pulsed laser deposition. The behavior of the resistivity as a function of temperature suggests that the primary transport mechanism in the SmNiO{sub 3} insulating state is dominated by Efros-Shklovskii variable range hopping (ES-VRH). Additionally, the magnetic transition in the insulating state of SmNiO{sub 3} modifies the characteristics of the ES-VRH transport. Systematic DC and pulsed current-voltage measurements indicate that current-induced joule heating is the fundamental mechanism driving the electrically induced IMT in SmNiO{sub 3}. These transport properties are explained in context of the IMT in SmNiO{sub 3} being related to the strong electron-lattice coupling.

  11. Ferromagnetism in vanadium doped thin films of a topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Zhao, Lukas; Chen, Zhiyi; Korzhovska, Inna; Deng, Haiming; Raoux, Simone; Jordan-Sweet, Jean; Sarachik, Myriam; Krusin-Elbaum, Lia

    2012-02-01

    Recent first-principle calculations predict a new class of ferromagnetic systems that are distinctly different from the conventional dilute magnetic semiconductors. A novel ferromagnetic topological insulator (ferro-TI) state can be obtained when topological insulator are doped with certain transition metal elements. In the the quasi-2D limit these ferro-TIs are expected to support a quantized anomalous Hall effect. Here we report on electrical and magnetic characterization of vanadium doped thin (˜50 nm) films of a topological insulator Bi2Te3. Films were grown by rf sputtering on S3N4/Si substrates with lithographically pre-patterned contact pads. Low-temperature in-plane and Hall resistivity measurements were performed in magnetic fields up to 5 T fields. We find that below 100 K, V-doped films display negative linear magnetoresistance, which at lower temperatures becomes hysteretic. Hall resistivity is also hysteretic, suggesting an unusual ferromagnetic ordering below 10 K. Moreover, V-doping turns the p-type conduction in as-grown films into n-type. The doping and thickness dependence of these effects will be discussed.

  12. Edge states and integer quantum Hall effect in topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. In this report, I will talk about the Landau levels and edge states of surface Dirac fermions in topological insulators under a strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect as a result of the interplay of magnetic field and structure inversion asymmetry. We also reveal that the edge states exist only for the integer Hall conductance while no edge-state solution can be found for the ''half-integer'' Hall conductance. The addition of top and bottom surface Dirac fermions always form well-defined edge states, and gives an integer quantum Hall effect. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  13. Thin-Film III V Photodetectors Integrated on Silicon-on-Insulator Photonic ICs

    NASA Astrophysics Data System (ADS)

    Brouckaert, Joost; Roelkens, Gunther; van Thourhout, Dries; Baets, Roel

    2007-04-01

    We critically assess recent progress in the integration of near-infrared photodetectors onto nanophotonic silicon-on-insulator (SOI) waveguide circuits. Integration of thin-film InGaAs photodetectors is studied in detail. This method consists of bonding unprocessed III V dies onto the SOI substrate using an intermediate adhesive layer. Both benzocyclobutene and spin-on glass are studied and compared as bonding agents. After the removal of the III V substrate, the thin-film detectors are fabricated using wafer-scale-compatible processes and lithographically aligned to the underlying SOI waveguides. The process is compatible with the fabrication of InP/InGaAsP laser diodes on SOI. A new design of an evanescently coupled metal semiconductor metal detector is proposed, proving the ability to obtain compact and highly efficient integrated InGaAs photodetectors.

  14. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K.

    PubMed

    Hanzawa, Kota; Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-04-12

    It is thought that strong electron correlation in an insulating parent phase would enhance a critical temperature (Tc) of superconductivity in a doped phase via enhancement of the binding energy of a Cooper pair as known in high-Tc cuprates. To induce a superconductor transition in an insulating phase, injection of a high density of carriers is needed (e.g., by impurity doping). An electric double-layer transistor (EDLT) with an ionic liquid gate insulator enables such a field-induced transition to be investigated and is expected to result in a high Tc because it is free from deterioration in structure and carrier transport that are in general caused by conventional carrier doping (e.g., chemical substitution). Here, for insulating epitaxial thin films (∼10 nm thick) of FeSe, we report a high Tc of 35 K, which is 4× higher than that of bulk FeSe, using an EDLT under application of a gate bias of +5.5 V. Hall effect measurements under the gate bias suggest that highly accumulated electron carrier in the channel, whose area density is estimated to be 1.4 × 10(15) cm(-2) (the average volume density of 1.7 × 10(21) cm(-3)), is the origin of the high-Tc superconductivity. This result demonstrates that EDLTs are useful tools to explore the ultimate Tc for insulating parent materials.

  15. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K

    PubMed Central

    Hanzawa, Kota; Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-01-01

    It is thought that strong electron correlation in an insulating parent phase would enhance a critical temperature (Tc) of superconductivity in a doped phase via enhancement of the binding energy of a Cooper pair as known in high-Tc cuprates. To induce a superconductor transition in an insulating phase, injection of a high density of carriers is needed (e.g., by impurity doping). An electric double-layer transistor (EDLT) with an ionic liquid gate insulator enables such a field-induced transition to be investigated and is expected to result in a high Tc because it is free from deterioration in structure and carrier transport that are in general caused by conventional carrier doping (e.g., chemical substitution). Here, for insulating epitaxial thin films (∼10 nm thick) of FeSe, we report a high Tc of 35 K, which is 4× higher than that of bulk FeSe, using an EDLT under application of a gate bias of +5.5 V. Hall effect measurements under the gate bias suggest that highly accumulated electron carrier in the channel, whose area density is estimated to be 1.4 × 1015 cm–2 (the average volume density of 1.7 × 1021 cm–3), is the origin of the high-Tc superconductivity. This result demonstrates that EDLTs are useful tools to explore the ultimate Tc for insulating parent materials. PMID:27035956

  16. Spin Seebeck effect in insulating epitaxial γ-Fe2O3 thin films

    NASA Astrophysics Data System (ADS)

    Jiménez-Cavero, P.; Lucas, I.; Anadón, A.; Ramos, R.; Niizeki, T.; Aguirre, M. H.; Algarabel, P. A.; Uchida, K.; Ibarra, M. R.; Saitoh, E.; Morellón, L.

    2017-02-01

    We report the fabrication of high crystal quality epitaxial thin films of maghemite (γ-Fe2O3), a classic ferrimagnetic insulating iron oxide. Spin Seebeck effect (SSE) measurements in γ-Fe2O3/Pt bilayers as a function of sample preparation conditions and temperature yield a SSE coefficient of 0.5(1) μV/K at room temperature. Dependence on temperature allows us to estimate the magnon diffusion length in maghemite to be in the range of tens of nanometers, in good agreement with that of conducting iron oxide magnetite (Fe3O4), establishing the relevance of spin currents of magnonic origin in magnetic iron oxides.

  17. Determining the energy distribution of traps in insulating thin films using the thermally stimulated current technique

    NASA Astrophysics Data System (ADS)

    Miller, S. L.; Fleetwood, D. M.; McWhorter, P. J.

    1992-08-01

    We have developed a simple method to analyze and predict the thermally stimulated current (TSC) of charged insulating thin films experiencing arbitrary time-dependent thermal environments and high electric fields. The method allows greater flexibility in experimental conditions than previous work, and includes the effect of field-induced barrier lowering on the trap energy scale. Trap distributions for irradiated metal-SiO2-Si capacitors were accurately determined from TSC measurements spanning a factor of 50 in heating rate, providing an improved estimate of trapped-hole energies in SiO2 (peak ~1.8 eV).

  18. Metal-insulator transition above room temperature in maximum colossal magnetoresistance manganite thin films

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Habermeier, H.-U.; Zhang, H.; Gu, G.; Varela, M.; Santamaria, J.; Almasan, C. C.

    2005-09-01

    It has been suggested that the maximum magnitude of colossal magnetoresistance occurs in mixed-valent manganites with a tolerance factor t=0.96 [Zhou, Archibald, and Goodenough, Nature (London) 381, 770 (1996)]. However, at t≈0.96 most manganites have relatively low values of the metal-insulator transition temperature TMI(˜60-150K) . Here, we report that a 50 Å La0.9Sr0.1MnO3 thin film with t=0.96 grown on a (100) SrTiO3 substrate has a metal-insulator transition above room temperature, which represents a doubling of TMI compared with its value in the bulk material. We show that this spectacular increase of TMI is a result of the epitaxially compressive strain-induced reduction of the Jahn-Teller distortion.

  19. Propagation of Surface Plasmon Polaritons in Thin Films of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Deshko, Yury; Chen, Zhiyi; Krusin-Elbaum, Lia; Menon, Vinod; Trevino, Jacob; Khanikaev, Alexander

    Surface Plasmon Polaritons (SPP) are coupled collective oscillations of surface charges and electromagnetic waves confined to the interface between a metal and a dielectric. Three dimensional topological insulators (TI), such as Bi2Se3, Bi2Te3, and Sb2Te3 are narrow band-gap semiconductors in the bulk while having conducting surface with the linear energy dispersion for the surface electronics states. Similar to double-layered graphene a thin single film of TI supports two SPP modes in the far-infrared range. We study the propagation of these modes in thin films of Bi2Se3, Bi2Te3, and Sb2Te3. The dispersion curves and the propagation lengths are estimated for all three materials. The explanation of the discrepancy between the theory and the first experimental observation of standing wave SPPs in Bi2Se3 is proposed. Finally, the possibilities of tuning the SPP dispersion relations in thin films of TI are discussed. Supported by NSF DMR-1420634 and DOD-W911NF-13-1-0159.

  20. Enhancing ferromagnetic resonance absorption for very thin insulating magnetic films with spin plasmonics

    SciTech Connect

    Chui, S. T.

    2015-05-14

    We consider enhancing the ferromagnetic resonance (FMR) absorption of very thin insulating magnetic films by placing it on top of a dielectric. We find that the signal is enhanced by at least an order of magnitude due to a new nonreciprocal interface resonance that is a mixture of the magnetic surface plasmon mode and a wave guide mode. This resonance occurs over a wide range of thicknesses of the dielectric that is still much less than the wavelength and is made possible by the negative magnetic susceptibility of the magnetic layer. The line width of absorption is reduced by an order of magnitude less than the Gilbert damping parameter. At some frequency, the group velocity of this resonance is negative. Experimentally, very thin yttrium iron garnet (YIG) films are grown on a Gadolinium Gallium Garnet (GGG) substrate which can be considered the dielectric. Our model applies to experiments performed in the YIG/GGG system. Indeed, our picture resolves the disagreement on the magnitude of the spin diffusion lengths obtained with the FMR and the Brillouin scattering techniques. It also provides for a way to make new adaptive thin film miniaturized photonic nonreciprocal devices with low loss.

  1. Anomalous Hall effect sensors based on magnetic element doped topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Ni, Yan; Zhang, Zhen; Nlebedim, Ikenna; Jiles, David

    Anomalous Hall effect (AHE) is recently discovered in magnetic element doped topological insulators (TIs), which promises low power consumption highly efficient spintronics and electronics. This discovery broaden the family of Hall effect (HE) sensors. In this work, both HE and AHE sensor based on Mn and Cr doped Bi2Te3 TI thin films will be systematically studied. The influence of Mn concentration on sensitivity of MnxBi2-xTe3 HE sensors will be discussed. The Hall sensitivity increase 8 times caused by quantum AHE will be reported. AHE senor based on Cr-doped Bi2Te3 TI thin films will also be studied and compared with Mn doped Bi2Te3 AHE sensor. The influence of thickness on sensitivity of CrxBi2-xTe3 AHE sensors will be discussed. Ultrahigh Hall sensitivity is obtained in Cr doped Bi2Te3. The largest Hall sensitivity can reach 2620 Ω/T in sensor which is almost twice higher than that of the normal semiconductor HE sensor. Our work indicates that magnetic element doped topological insulator with AHE are good candidates for ultra-sensitive Hall effect sensors.

  2. Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.

    PubMed

    Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-09-24

    A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.

  3. Comparison of Classical and Charge Storage Methods for Determining Conductivity of Thin Film Insulators

    NASA Technical Reports Server (NTRS)

    Swaminathan, Prasanna; Dennison, J. R.; Sim, Alec; Brunson, Jerilyn; Crapo, Eric; Frederickson, A. R.

    2004-01-01

    Conductivity of insulating materials is a key parameter to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. Classical ASTM and IEC methods to measure thin film insulator conductivity apply a constant voltage to two electrodes around the sample and measure the resulting current for tens of minutes. However, conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator. Charge decay methods expose one side of the insulator in vacuum to sequences of charged particles, light, and plasma, with a metal electrode attached to the other side of the insulator. Data are obtained by capacitive coupling to measure both the resulting voltage on the open surface and emission of electrons from the exposed surface, as well monitoring currents to the electrode. Instrumentation for both classical and charge storage decay methods has been developed and tested at Jet Propulsion Laboratory (JPL) and at Utah State University (USU). Details of the apparatus, test methods and data analysis are given here. The JPL charge storage decay chamber is a first-generation instrument, designed to make detailed measurements on only three to five samples at a time. Because samples must typically be tested for over a month, a second-generation high sample throughput charge storage decay chamber was developed at USU with the capability of testing up to 32 samples simultaneously. Details are provided about the instrumentation to measure surface charge and current; for charge deposition apparatus and control; the sample holders to properly isolate the mounted samples; the sample carousel to rotate samples into place; the control of the sample environment including sample vacuum, ambient gas, and sample temperature; and the computer control and data acquisition systems. Measurements are compared here for a number of thin film insulators using both

  4. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  5. Strain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films.

    PubMed

    Zeljkovic, Ilija; Walkup, Daniel; Assaf, Badih A; Scipioni, Kane L; Sankar, R; Chou, Fangcheng; Madhavan, Vidya

    2015-10-01

    The unique crystalline protection of the surface states in topological crystalline insulators has led to a series of predictions of strain-generated phenomena, from the appearance of pseudo-magnetic fields and helical flat bands to the tunability of Dirac surface states by strain that may be used to construct 'straintronic' nanoswitches. However, the practical realization of this exotic phenomenology via strain engineering is experimentally challenging and is yet to be achieved. Here, we have designed an experiment to not only generate and measure strain locally, but also to directly measure the resulting effects on Dirac surface states. We grew heteroepitaxial thin films of topological crystalline insulator SnTe in situ and measured them using high-resolution scanning tunnelling microscopy to determine picoscale changes in the atomic positions, which reveal regions of both tensile and compressive strain. Simultaneous Fourier-transform scanning tunnelling spectroscopy was then used to determine the effects of strain on the Dirac electrons. We find that strain continuously tunes the momentum space position of the Dirac points, consistent with theoretical predictions. Our work demonstrates the fundamental mechanism necessary for using topological crystalline insulators in strain-based applications.

  6. Identification of Mott insulators and Anderson insulators in self-assembled gold nanoparticles thin films.

    PubMed

    Jiang, Cheng-Wei; Ni, I-Chih; Tzeng, Shien-Der; Wu, Cen-Shawn; Kuo, Watson

    2014-06-07

    How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction.

  7. Silicon carbide thin films on insulating substrates for robust MEMS applications

    NASA Astrophysics Data System (ADS)

    Cheng, Lin

    MEMS applications require that large area of uniform SiC films is formed on insulating substrates or sacrificial layers. For electrically controlled MEMS devices, in-situ N2-doped 3C-SiC thin-films have been grown by low-pressure chemical vapor deposition (LPCVD) on low-stress, amorphous Si3N4/p-Si(111) substrate using the single organosilane precursor trimethylsilane [(CH3)3SiH]. The effects of N2 flow rate and growth temperature on the electrical properties of SiC films were investigated by Hall Effect measurements. The electron carrier concentration is between 1017˜10 18/cm3. The lowest resistivities at 400 K and 300 K are 1.12 x 10-2 and 1.18 x 10-1 O·cm, respectively. The corresponding sheet resistances are 75.02 and 790.36 O/□. The SiC film structure was studied by X-ray diffraction (XRD). The 3C-SiC films oriented in the <111> direction with a 2theta peak at 35.5° and line widths between 0.18°˜0.25° were obtained. The SiC-Si3N4 interface is very smooth and free of voids. To pattern the SiC films into the desired structural shapes, selective etching is required. The inductively coupled plasma (ICP) etching of 3C-SiC films was then examined in both NF3/Ar and Cl2/Ar mixtures. Two different mask materials (ITO and Shipley 1818 photo-resist) were compared. The effects of RF power, DC bias, ICP power and gas flow ratio on etch rates have been discussed. Furthermore, a novel fiber-optic temperature sensor, which is rugged, compact, stable, and can be easily fabricated, has been developed by using the SiC thin-film grown on sapphire substrate. The film thickness was optimized to 2˜3 mum, while the optimal 3MS flow rate ranged from 35˜40 sccm to produce an optically flat SiC film. The sensors were operated at temperature from 22°C to 540°C. The shifts in resonance minima versus temperature from the reflection spectra fit a linear function, giving a relative temperature sensitivity of 1.9 x 10-5/°C. The capability of providing a +/-3°C accuracy was

  8. Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering

    SciTech Connect

    Koirala, Nikesh; Han, Myung -Geun; Brahlek, Matthew; Salehi, Maryam; Wu, Liang; Dai, Jixia; Waugh, Justin; Nummy, Thomas; Moon, Jisoo; Zhu, Yimei; Dessau, Daniel; Wu, Weida; Armitage, N. Peter; Oh, Seongshik

    2015-11-19

    Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In2Se3/(Bi0.5In0.5)2Se3 heterostructure, we introduce a quantum generation of Bi2Se3 films with an order of magnitude enhanced mobilities than before. Furthermore, this scheme has led to the first observation of the quantum Hall effect in Bi2Se3.

  9. Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering

    DOE PAGES

    Koirala, Nikesh; Han, Myung -Geun; Brahlek, Matthew; ...

    2015-11-19

    Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In2Se3/(Bi0.5In0.5)2Se3 heterostructure, we introduce a quantum generation of Bi2Se3 films with an order of magnitude enhanced mobilities than before. Furthermore, this scheme has led to the first observation of the quantum Hall effect in Bi2Se3.

  10. Record Surface State Mobility and Quantum Hall Effect in Topological Insulator Thin Films via Interface Engineering.

    PubMed

    Koirala, Nikesh; Brahlek, Matthew; Salehi, Maryam; Wu, Liang; Dai, Jixia; Waugh, Justin; Nummy, Thomas; Han, Myung-Geun; Moon, Jisoo; Zhu, Yimei; Dessau, Daniel; Wu, Weida; Armitage, N Peter; Oh, Seongshik

    2015-12-09

    Material defects remain as the main bottleneck to the progress of topological insulators (TIs). In particular, efforts to achieve thin TI samples with dominant surface transport have always led to increased defects and degraded mobilities, thus making it difficult to probe the quantum regime of the topological surface states. Here, by utilizing a novel buffer layer scheme composed of an In2Se3/(Bi0.5In0.5)2Se3 heterostructure, we introduce a quantum generation of Bi2Se3 films with an order of magnitude enhanced mobilities than before. This scheme has led to the first observation of the quantum Hall effect in Bi2Se3.

  11. Massive Dirac Fermion Observed in Lanthanide-Doped Topological Insulator Thin Films.

    PubMed

    Harrison, S E; Collins-McIntyre, L J; Schönherr, P; Vailionis, A; Srot, V; van Aken, P A; Kellock, A J; Pushp, A; Parkin, S S P; Harris, J S; Zhou, B; Chen, Y L; Hesjedal, T

    2015-10-27

    The breaking of time reversal symmetry (TRS) in three-dimensional (3D) topological insulators (TIs), and thus the opening of a 'Dirac-mass gap' in the linearly dispersed Dirac surface state, is a prerequisite for unlocking exotic physical states. Introducing ferromagnetic long-range order by transition metal doping has been shown to break TRS. Here, we present the study of lanthanide (Ln) doped Bi2Te3, where the magnetic doping with high-moment lanthanides promises large energy gaps. Using molecular beam epitaxy, single-crystalline, rhombohedral thin films with Ln concentrations of up to ~35%, substituting on Bi sites, were achieved for Dy, Gd, and Ho doping. Angle-resolved photoemission spectroscopy shows the characteristic Dirac cone for Gd and Ho doping. In contrast, for Dy doping above a critical doping concentration, a gap opening is observed via the decreased spectral intensity at the Dirac point, indicating a topological quantum phase transition persisting up to room-temperature.

  12. Quantum coherent transport in SnTe topological crystalline insulator thin films

    SciTech Connect

    Assaf, B. A.; Heiman, D.; Katmis, F.; Moodera, J. S.; Wei, P.; Satpati, B.; Bennett, S. P.; Harris, V. G.

    2014-09-08

    Topological crystalline insulators (TCI) are unique systems where a band inversion that is protected by crystalline mirror symmetry leads to a multiplicity of topological surface states. Binary SnTe is an attractive lead-free TCI compound; the present work on high-quality thin films provides a route for increasing the mobility and reducing the carrier density of SnTe without chemical doping. Results of quantum coherent magnetotransport measurements reveal a multiplicity of Dirac surface states that are unique to TCI. Modeling of the weak antilocalization shows variations in the extracted number of carrier valleys that reflect the role of coherent intervalley scattering in coupling different Dirac states on the degenerate TCI surface.

  13. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer.

    PubMed

    Owerre, S A

    2016-06-15

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, [Formula: see text], and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for [Formula: see text], the tunneling parameter [Formula: see text] changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  14. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-06-01

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, {{t}\\bot} , and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for {{t}\\text{S}},{{t}\\text{D}}>0 , the tunneling parameter {{t}\\bot} changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  15. Metal-insulator transition of valence-controlled VO2 thin film prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.

  16. Thickness dependent quantum oscillations of transport properties in topological insulator Bi2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Rogacheva, E. I.; Budnik, A. V.; Sipatov, A. Yu.; Nashchekina, O. N.; Dresselhaus, M. S.

    2015-02-01

    The dependences of the electrical conductivity, the Hall coefficient, and the Seebeck coefficient on the layer thickness d (d = 18-600 nm) of p-type topological insulator Bi2Te3 thin films grown by thermal evaporation in vacuum on glass substrates were obtained at room temperature. In the thickness range of d = 18-100 nm, sustained oscillations with a substantial amplitude were revealed. The observed oscillations are well approximated by a harmonic function with a period Δd = (9.5 ± 0.5) nm. At d > 100 nm, the transport coefficients practically do not change as d is increased. The oscillations of the kinetic properties are attributed to the quantum size effects due to the hole confinement in the Bi2Te3 quantum wells. The results of the theoretical calculations of Δd within the framework of a model of an infinitely deep potential well are in good agreement with the experimental results. It is suggested that the substantial amplitude of the oscillations and their sustained character as a function of d are connected with the topologically protected gapless surface states of Bi2Te3 and are inherent to topological insulators.

  17. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Bilayer Photoresist Insulator for High Performance Organic Thin-Film Transistors on Plastic Films

    NASA Astrophysics Data System (ADS)

    Wang, He; Li, Chun-Hong; Pan, Feng; Wang, Hai-Bo; Yan, Dong-Hang

    2009-11-01

    A novel bilayer photoresist insulator is applied in flexible vanadyl-phthalocyanine (VOPc) organic thin-film transistors (OTFTs). The micron-size patterns of this photoresisit insulator can be directly defined only by photolithography without the etching process. Furthermore, these OTFTs exhibit high field-effect mobility (about 0.8 cm2/Vs) and current on/off ratio (about 106). In particular, they show rather low hysteresis (< 1 V). The results demonstrate that this bilayer photoresist insulator can be applied in large-area electronics and in the facilitation of patterning insulators.

  18. Characterization of Chemical Trends in Magnetically Doped, Electrically Gated Topological Insulator Thin Films

    NASA Astrophysics Data System (ADS)

    Richardella, Anthony; Kandala, Abhinav; Lee, Joon Sue; Fraleigh, Robbie; Samarth, Nitin; Liu, Minhao; Ong, Nai Phuan; Tao, Jing

    2014-03-01

    Interfacing topological insulators (TIs) with magnetism breaks time reversal symmetry and opens a gap in the surface states at the Dirac point. This results in novel phenomena, such as the recently reported quantized conductance at zero applied external magnetic field due to the quantum anomalous Hall effect (QAHE) in Cr doped (BixSb1-x)2 Te3 [C-Z. Chang, et al., Science 340, 167 (2013)]. We have studied magnetically doped (BixSb1-x)2 Te3 thin films grown by MBE on SrTiO3(111) (STO) substrates using Cr, Fe and Mn as magnetic dopants and as a function of the Bi and Sb composition. These films are carefully characterized by XRD, AFM, SQUID magnetometry and TEM. The chemical composition is determined using SIMS, RBS and XRF. Low temperature transport shows a large gate-tunable Hall effect in Cr doped samples and systematically varying longitudinal magneto-conductance as the Fermi energy is tuned through the Dirac point. The origin of ferromagnetism and its dependence on the chemical potential, chemical composition and sample thickness is discussed. Funded by DARPA and ARO-MURI.

  19. Cooper pair insulator phase induced in amorphous Pb0.9Bi0.1 thin films

    NASA Astrophysics Data System (ADS)

    Hollen, S. M.; Shainline, J.; Xu, J. M.; Valles, J. M.

    2013-03-01

    A Cooper pair insulator (CPI) phase emerges near the superconductor-insulator transitions of a number of strongly-disordered thin film systems. Much recent study has focused on a mechanism driving the underlying Cooper pair localization. We present data showing that a CPI phase develops in amorphous Pb0.9Bi0.1 films deposited onto nano-porous anodized aluminum oxide surfaces just as it has been shown to develop for a-Bi films. This result confirms the assertion that this CPI phase emerges due to the structure of the substrate. It supports the picture that nanoscale film thickness variations induced by the substrate drive the localization. Moreover, it implies that the CPI phase can be induced in any superconducting material that can be deposited onto this surface.

  20. Atomic-Scale Magnetism of Cr-Doped Bi2Se3 Thin Film Topological Insulators.

    PubMed

    Liu, Wenqing; West, Damien; He, Liang; Xu, Yongbing; Liu, Jun; Wang, Kejie; Wang, Yong; van der Laan, Gerrit; Zhang, Rong; Zhang, Shengbai; Wang, Kang L

    2015-10-27

    Magnetic doping is the most common method for breaking time-reversal-symmetry surface states of topological insulators (TIs) to realize novel physical phenomena and to create beneficial technological applications. Here we present a study of the magnetic coupling of a prototype magnetic TI, that is, Cr-doped Bi2Se3, in its ultrathin limit which is expected to give rise to quantum anomalous Hall (QAH) effect. The high quality Bi2-xCrxSe3 epitaxial thin film was prepared using molecular beam epitaxy (MBE), characterized with scanning transimission electron microscopy (STEM), electrical magnetotransport, and X-ray magnetic circularly dichroism (XMCD) techniques, and the results were simulated using density functional theory (DFT) with spin-orbit coupling (SOC). We observed a sizable spin moment mspin = (2.05 ± 0.20) μB/Cr and a small and negative orbital moment morb = (-0.05 ± 0.02) μB/Cr of the Bi1.94Cr0.06Se3 thin film at 2.5 K. A remarkable fraction of the (CrBi-CrI)(3+) antiferromagnetic dimer in the Bi2-xCrxSe3 for 0.02 < x < 0.40 was obtained using first-principles simulations, which was neglected in previous studies. The spontaneous coexistence of ferro- and antiferromagnetic Cr defects in Bi2-xCrxSe3 explains our experimental observations and those based on conventional magnetometry which universally report magnetic moments significantly lower than 3 μB/Cr predicted by Hund's rule.

  1. Cooper pair localization in a-Bi thin films near the superconductor-insulator transition

    NASA Astrophysics Data System (ADS)

    Hollen, S. M.; Nguyen, H. Q.; Rudisaile, E.; Shainline, J.; Fernandes, G.; Xu, J. M.; Valles, J. M., Jr.

    2011-03-01

    Ultrathin films near the Superconductor-Insulator Transition (SIT) can exhibit Cooper pair transport in their insulating phase. This Cooper Pair Insulator state is achieved in amorphous Bi films patterned with a nanohoneycomb array of holes. We will present evidence from a number of experiments on these substrates supporting that 1) thickness variations, which result in variations in Tc and Δ , serve to localize the Cooper pairs; 2) the weak links between these superconducting islands control the SIT. Finally, we will discuss our most recent experiments that aim to characterize this Cooper pair insulator state and confirm the role of the thickness variations in the localization of Cooper pairs. This work was supported by the NSF through No. DMR-0907357, by the AFRL, and by the ONR.

  2. Shrinking of the Cooper Pair Insulator Phase in Thin Films with Ultrasmall Superconducting Islands

    NASA Astrophysics Data System (ADS)

    Joy, J. C.; Zhang, X.; Zhao, C.; Valles, J. M., Jr.; Fernandes, G.; Xu, J. M.

    The ubiquity of the bosonic Cooper Pair Insulator (CPI) phase near the two-dimensional superconductor to insulator transition (SIT) is a long standing question. While a number of two dimensional materials exhibit bosonic insulating phases similar to the Mott Insulator in arrays of ultrasmall, Josephson coupled superconducting islands, others show behaviors consistent with a fermionic insulating phase. Utilizing specially prepared anodized aluminum oxide substrates, we are able to fabricate films reminiscent of arrays of superconducting islands whose properties are tunable by varying the substrate morphology. Our recent work has focused on arrays of islands which possess an energy level spacing comparable to the mean field superconducting gap, where one expects pair breaking followed by fermionic Anderson Localization as the dominant mechanism by which superconductivity is destroyed. Early results show that the paradigmatic bosonic insulator exists only very near the disorder tuned SIT, while films only marginally deeper in the insulating phase exhibit transport distinct from the CPI's reentrant, activated transport. We are grateful for the support of NSF Grant No. DMR-1307290, the AFOSR, and the AOARD. Currently at Northwestern Polytechnical University, Xian, China.

  3. AC hot carrier effect of the thin-film silicon-on-insulator power n-MOSFET

    NASA Astrophysics Data System (ADS)

    Takenaka, Daiki; Matsumoto, Satoshi

    2017-04-01

    In this paper, we describe the hot carrier (HC) effect of the thin-film silicon-on-insulator (SOI) power n-MOSFET under DC and AC stress. We clarify that the HC effect is enhanced by AC stress because of both drain avalanche hot carriers (DAHC) and channel hot carriers (CHC). In addition, the parasitic bipolar effect which is enhanced by minority carrier accumulation under AC stress, causes device degradation at low frequencies.

  4. Quantum spin Hall insulators in centrosymmetric thin films composed from topologically trivial BiTeI trilayers

    PubMed Central

    Nechaev, I. A.; Eremeev, S. V.; Krasovskii, E. E.; Echenique, P. M.; Chulkov, E. V.

    2017-01-01

    The quantum spin Hall insulators predicted ten years ago and now experimentally observed are instrumental for a break- through in nanoelectronics due to non-dissipative spin-polarized electron transport through their edges. For this transport to persist at normal conditions, the insulators should possess a sufficiently large band gap in a stable topological phase. Here, we theoretically show that quantum spin Hall insulators can be realized in ultra-thin films constructed from a trivial band insulator with strong spin-orbit coupling. The thinnest film with an inverted gap large enough for practical applications is a centrosymmetric sextuple layer built out of two inversely stacked non-centrosymmetric BiTeI trilayers. This nontrivial sextuple layer turns out to be the structure element of an artificially designed strong three-dimensional topological insulator Bi2Te2I2. We reveal general principles of how a topological insulator can be composed from the structure elements of the BiTeX family (X = I, Br, Cl), which opens new perspectives towards engineering of topological phases. PMID:28252656

  5. Quantum spin Hall insulators in centrosymmetric thin films composed from topologically trivial BiTeI trilayers

    NASA Astrophysics Data System (ADS)

    Nechaev, I. A.; Eremeev, S. V.; Krasovskii, E. E.; Echenique, P. M.; Chulkov, E. V.

    2017-03-01

    The quantum spin Hall insulators predicted ten years ago and now experimentally observed are instrumental for a break- through in nanoelectronics due to non-dissipative spin-polarized electron transport through their edges. For this transport to persist at normal conditions, the insulators should possess a sufficiently large band gap in a stable topological phase. Here, we theoretically show that quantum spin Hall insulators can be realized in ultra-thin films constructed from a trivial band insulator with strong spin-orbit coupling. The thinnest film with an inverted gap large enough for practical applications is a centrosymmetric sextuple layer built out of two inversely stacked non-centrosymmetric BiTeI trilayers. This nontrivial sextuple layer turns out to be the structure element of an artificially designed strong three-dimensional topological insulator Bi2Te2I2. We reveal general principles of how a topological insulator can be composed from the structure elements of the BiTeX family (X = I, Br, Cl), which opens new perspectives towards engineering of topological phases.

  6. Quantum spin Hall insulators in centrosymmetric thin films composed from topologically trivial BiTeI trilayers.

    PubMed

    Nechaev, I A; Eremeev, S V; Krasovskii, E E; Echenique, P M; Chulkov, E V

    2017-03-02

    The quantum spin Hall insulators predicted ten years ago and now experimentally observed are instrumental for a break- through in nanoelectronics due to non-dissipative spin-polarized electron transport through their edges. For this transport to persist at normal conditions, the insulators should possess a sufficiently large band gap in a stable topological phase. Here, we theoretically show that quantum spin Hall insulators can be realized in ultra-thin films constructed from a trivial band insulator with strong spin-orbit coupling. The thinnest film with an inverted gap large enough for practical applications is a centrosymmetric sextuple layer built out of two inversely stacked non-centrosymmetric BiTeI trilayers. This nontrivial sextuple layer turns out to be the structure element of an artificially designed strong three-dimensional topological insulator Bi2Te2I2. We reveal general principles of how a topological insulator can be composed from the structure elements of the BiTeX family (X = I, Br, Cl), which opens new perspectives towards engineering of topological phases.

  7. ac conductance in granular insulating Co-ZrO{sub 2} thin films: A universal response

    SciTech Connect

    Konstantinovic, Zorica; Garcia del Muro, Montserrat; Kovylina, Miroslavna; Batlle, Xavier; Labarta, Amilcar

    2009-03-01

    The ac conductance in granular insulating Co-ZrO{sub 2} thin films prepared by pulsed laser deposition is systematically studied as a function of the Co volume content x. An absorption phenomenon at low frequencies that mimics the universal response of disordered dielectric materials is observed in the range of metal content below the Co percolation threshold x{sub p}{approx_equal}0.35 in the so-called dielectric regime. The temperature and frequency dependences of this absorption phenomenon are successfully analyzed in terms of random competing conduction channels between Co particles through thermally assisted tunneling and capacitive conductance. The ac conductance is well correlated with the nanostructure of the samples obtained by the transmission electron microscopy and perfectly matches the calculated ac response for a random resistor-capacitor network. We also show the occurrence of fractional power-law dependences on the frequency of the ac conductance taking place at very low frequencies as compared to the typical ranges at which dispersive behavior is observed in classical-disordered dielectric materials.

  8. Inter-surface interactions in a 3-dimensional topological insulator : Bi2Se3 thin film

    NASA Astrophysics Data System (ADS)

    Jin, Hosub; Song, Jung-Hwan; Freeman, Arthur

    2010-03-01

    Recently much attention has focused on 3-dimensional strong topological insulators as a new quantum state of matter, such as Bi2Se3 and Bi2Te3. One of their intriguing features is a topologically protected surface state whose quasiparticle dispersion shows a Dirac cone. Due to lack of backscattering and robustness against disorder and interaction, surface states have the potential to be perfect conducting channels which carry not only charge but also spin currents. Here, we present a theoretical study of electronic structures and surfaces of thin film Bi2Se3 using the highly precise FLAPW methodfootnotetext Wimmer, Krakauer, Weinert, Freeman, Phys. Rev. B, 24, 864 (1981). Our calculated results focus on the interaction between surface states on opposing sides of the slab. The gap opening from the inter-surface interaction can be easily explained by simple symmetry arguments considering both time-reversal and spatial inversion. For a 6 quintuple layer slab (˜6 nm), a 1.06 meV gap at the γ point survives due to the inter-surface interactions, and we discuss how to preserve the massless excitations despite this inter-surface interaction.

  9. Massive Dirac Fermion Observed in Lanthanide-Doped Topological Insulator Thin Films

    PubMed Central

    Harrison, S. E.; Collins-McIntyre, L. J.; Schönherr, P.; Vailionis, A.; Srot, V.; van Aken, P. A.; Kellock, A. J.; Pushp, A.; Parkin, S. S. P.; Harris, J. S.; Zhou, B.; Chen, Y. L.; Hesjedal, T.

    2015-01-01

    The breaking of time reversal symmetry (TRS) in three-dimensional (3D) topological insulators (TIs), and thus the opening of a ‘Dirac-mass gap’ in the linearly dispersed Dirac surface state, is a prerequisite for unlocking exotic physical states. Introducing ferromagnetic long-range order by transition metal doping has been shown to break TRS. Here, we present the study of lanthanide (Ln) doped Bi2Te3, where the magnetic doping with high-moment lanthanides promises large energy gaps. Using molecular beam epitaxy, single-crystalline, rhombohedral thin films with Ln concentrations of up to ~35%, substituting on Bi sites, were achieved for Dy, Gd, and Ho doping. Angle-resolved photoemission spectroscopy shows the characteristic Dirac cone for Gd and Ho doping. In contrast, for Dy doping above a critical doping concentration, a gap opening is observed via the decreased spectral intensity at the Dirac point, indicating a topological quantum phase transition persisting up to room-temperature. PMID:26503435

  10. ZnO thin-film transistors with a polymeric gate insulator built on a polyethersulfone substrate

    NASA Astrophysics Data System (ADS)

    Hyung, Gun Woo; Park, Jaehoon; Koo, Ja Ryong; Choi, Kyung Min; Kwon, Sang Jik; Cho, Eou Sik; Kim, Yong Seog; Kim, Young Kwan

    2012-03-01

    Zinc oxide (ZnO) thin-film transistors (TFTs) with a cross-linked poly(vinyl alcohol) (c-PVA) insulator are fabricated on a polyethersulfone substrate. The ZnO film, formed by atomic layer deposition, shows a polycrystalline hexagonal structure with a band gap energy of about 3.37 eV. The fabricated ZnO TFT exhibits a field-effect mobility of 0.38 cm2/Vs and a threshold voltage of 0.2 V. The hysteresis of the device is mainly caused by trapped electrons at the c-PVA/ZnO interface, whereas the positive threshold voltage shift occurs as a consequence of constant positive gate bias stress after 5000 s due to an electron injection from the ZnO film into the c-PVA insulator.

  11. Electrophoretic deposition onto an insulator for thin film preparation toward electronic device fabrication

    NASA Astrophysics Data System (ADS)

    Miyajima, Shougo; Nagamatsu, Shuichi; Pandey, Shyam S.; Hayase, Shuzi; Kaneto, Keiichi; Takashima, Wataru

    2012-11-01

    An electrostatic film fabrication method utilizing the dielectric layer, entitled dielectric barrier electrophoretic deposition (DBEPD) has been proposed. We demonstrated the fabrication of uniform organic semiconductor thin film onto any kind of substrate by DBEPD. Optical absorption spectra of colloidal poly(3-hexylthiophene) (P3HT) film prepared by DBEPD exhibited the clear vibrational structure attributed to highly ordered domains. It was in contrast to the relatively disordered structure as shown in the case of P3HT film prepared by conventional electrophoretic deposition (EPD). Organic field effect transistors fabricated by each method showed similar organic field effect transistor characteristics, however, the uniformity of DBEPD film was superior to EPD film.

  12. Metal insulator transition with ferrimagnetic order in epitaxial thin films of spinel NiCo2O4

    NASA Astrophysics Data System (ADS)

    Silwal, Punam; Miao, Ludi; Stern, Ilan; Zhou, Xiaolan; Hu, Jin; Ho Kim, Dae

    2012-01-01

    We have grown epitaxial thin films of spinel NiCo2O4 on single crystalline MgAl2O4 (001) substrates by pulsed laser deposition. Magnetization measurement revealed hysteresis loops consistent with the reported ferrimagnetic order. The electrical transport exhibits a metallic behavior with the lowest resistivity of 0.8 mΩ cm and a metal insulator transition around the Néel temperature. The systematic variation in the properties of the films grown at different growth temperatures indicates a close relationship between the magnetic order and electrical transport.

  13. Voltage-induced Metal-Insulator Transitions in Perovskite Oxide Thin Films Doped with Strongly Correlelated Electrons

    NASA Astrophysics Data System (ADS)

    Wang, Yudi; Gil Kim, Soo; Chen, I.-Wei

    2007-03-01

    We have observed a reversible metal-insulator transition in perovskite oxide thin films that can be controlled by charge trapping pumped by a bipolar voltage bias. In the as-fabricated state, the thin film is metallic with a very low resistance comparable to that of the metallic bottom electrode, showing decreasing resistance with decreasing temperature. This metallic state switches to a high-resistance state after applying a voltage bias: such state is non-ohmic showing a negative temperature dependence of resistance. Switching at essentially the same voltage bias was observed down to 2K. The metal-insulator transition is attributed to charge trapping that disorders the energy of correlated electron states in the conduction band. By increasing the amount of charge trapped, which increases the disorder relative to the band width, increasingly more insulating states with a stronger temperature dependence of resistivity are accessed. This metal-insulator transition provides a platform to engineer new nonvolatile memory that does not require heat (as in phase transition) or dielectric breakdown (as in most other oxide resistance devices).

  14. Quantum anomalous Hall effect and a nontrivial spin-texture in ultra-thin films of magnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Duong, Le Quy; Das, Tanmoy; Feng, Y. P.; Lin, Hsin

    2015-05-01

    We study the evolution of quantum anomalous Hall (QAH) effect for a Z2 topological insulator (TI) thin films in a proximity induced magnetic phase by a realistic layered k.p model with interlayer coupling. We examine three different magnetic configurations in which ferromagnetic (FM) layer(s) is added either from one side (FM-TI), from both sides (FM-TI-FM), or homogeneously distributed (magnetically doped) in a TI slab. We map out the thickness-dependent topological phase diagram under various experimental conditions. The critical magnetic exchange energy for the emergence of QAH effect in the latter two cases decreases monotonically with increasing number of quintuple layers (QLs), while it becomes surprisingly independent of the film thickness in the former case. The gap size of the emergent QAH insulator depends on the non-magnetic "parent" gap of the TI thin film and is tuned by the FM exchange energy, opening a versatile possibility to achieve room-temperature QAH insulator in various topological nanomaterials. Finally, we find that the emergent spin-texture in the QAH effect is very unconventional, non-"hedgehog" type; and it exhibits a chiral out-of-plane spin-flip texture within the same valence band which is reminiscent of dynamical "skyrmion" pattern, except our results are in the momentum space.

  15. Quantum anomalous Hall effect and a nontrivial spin-texture in ultra-thin films of magnetic topological insulators

    SciTech Connect

    Duong, Le Quy; Das, Tanmoy; Feng, Y. P.; Lin, Hsin

    2015-05-07

    We study the evolution of quantum anomalous Hall (QAH) effect for a Z{sub 2} topological insulator (TI) thin films in a proximity induced magnetic phase by a realistic layered k·p model with interlayer coupling. We examine three different magnetic configurations in which ferromagnetic (FM) layer(s) is added either from one side (FM-TI), from both sides (FM-TI-FM), or homogeneously distributed (magnetically doped) in a TI slab. We map out the thickness-dependent topological phase diagram under various experimental conditions. The critical magnetic exchange energy for the emergence of QAH effect in the latter two cases decreases monotonically with increasing number of quintuple layers (QLs), while it becomes surprisingly independent of the film thickness in the former case. The gap size of the emergent QAH insulator depends on the non-magnetic “parent” gap of the TI thin film and is tuned by the FM exchange energy, opening a versatile possibility to achieve room-temperature QAH insulator in various topological nanomaterials. Finally, we find that the emergent spin-texture in the QAH effect is very unconventional, non-“hedgehog” type; and it exhibits a chiral out-of-plane spin-flip texture within the same valence band which is reminiscent of dynamical “skyrmion” pattern, except our results are in the momentum space.

  16. Scaling analysis of field-tuned superconductor–insulator transition in two-dimensional tantalum thin films

    NASA Astrophysics Data System (ADS)

    Park, Sungyu; Shin, Junghyun; Kim, Eunseong

    2017-02-01

    The superconductor–insulator (SI) transition in two-dimensional Ta thin films is investigated by controlling both film thickness and magnetic field. An intriguing metallic phase appears between a superconducting and an insulating phase within a range of film thickness and magnetic field. The temperature and electric field scaling analyses are performed to investigate the nature of the SI transition in the thickness-tuned metallic and superconducting samples. The critical exponents product of νz obtained from the temperature scaling analysis is found to be approximately 0.67 in the entire range of film thickness. On the other hand, an apparent discrepancy is measured in the product of ν(z + 1) by the electric filed analysis. The product values are found to be about 1.37 for the superconducting films and about 1.86 for the metallic films respectively. We find that the discrepancy is the direct consequence of electron heating that introduces additional dissipation channels in the metallic Ta films.

  17. Scaling analysis of field-tuned superconductor–insulator transition in two-dimensional tantalum thin films

    PubMed Central

    Park, Sungyu; Shin, Junghyun; Kim, Eunseong

    2017-01-01

    The superconductor–insulator (SI) transition in two-dimensional Ta thin films is investigated by controlling both film thickness and magnetic field. An intriguing metallic phase appears between a superconducting and an insulating phase within a range of film thickness and magnetic field. The temperature and electric field scaling analyses are performed to investigate the nature of the SI transition in the thickness-tuned metallic and superconducting samples. The critical exponents product of νz obtained from the temperature scaling analysis is found to be approximately 0.67 in the entire range of film thickness. On the other hand, an apparent discrepancy is measured in the product of ν(z + 1) by the electric filed analysis. The product values are found to be about 1.37 for the superconducting films and about 1.86 for the metallic films respectively. We find that the discrepancy is the direct consequence of electron heating that introduces additional dissipation channels in the metallic Ta films. PMID:28218296

  18. Metal-insulator transition with ferrimagnetic order in epitaxial thin films of spinel NiCo2O4

    NASA Astrophysics Data System (ADS)

    Silwal, Punam; Miao, Ludi; Stern, Ilan; Zhou, Xiaolan; Hu, Jin; Spinu, Leonard; Kim, Dae Ho; Talbayev, Diyar

    2014-03-01

    Spinel NiCo2O4 is attractive for various technological applications but is less studied partly because of the unavailability of NiCo2O4 single crystal or epitaxial thin film. We have grown high-quality crystalline epitaxial NiCo2O4 thin films on MgAl2O4 (001) substrates. The systematic investigation of the films grown at various temperatures reveals a strong correlation between the structural, magnetic, and electrical transport properties. The low-temperature grown films show metallic behavior with strong ferrimagnetic ordering while the high temperature grown films are insulating with suppressed magnetic order. In addition, these films show excellent transport and magnetic properties down to 2 unit-cell thickness. Our study of temperature- and growth-condition dependent optical conductivity provides further insight in the carrier transport of these films. We observed coherent band-like transport in both low- and high temperature grown films, whereas only thermally activated hopping conductivity was reported in previous studies. The confirmation of coherent band like transport provides a basis for further improving NiCo2O4 for the application as transparent conducting oxide.

  19. Transport in thin insulating films close to the Boson-Fermion Crossover

    NASA Astrophysics Data System (ADS)

    Joy, J. C.; Zhang, X.; Hollen, S. M.; Zhao, C.; Fernandes, G.; Xu, J. M.; Valles, J. M., Jr.

    2015-03-01

    In two-dimensional systems, sufficient levels of disorder are known to localize Cooper Pairs into a phase incoherent insulating state. While many theoretical and experimental works have shown this state's existence, its ubiquity close to the disorder tuned Superconductor to Insulator transition is still an open problem. Recent experiments on nanopatterned Pb0.9Bi0.1 films have suggested a crossover from Bosonic to Fermionic transport deep in the insulating phase, indicating that the Cooper Pair Insulator (CPI) only persists to a finite level of microscopic disorder. The normal state resistance at which this crossover occurs is governed by the extent coupling constant inhomogeneities on the scale of the coherence length, which allow the formation of locally phase coherent superconducting islands in the insulating state. By tuning the scale of these inhomogeneities and examining the extent of the CPI state, we argue that the disorder tuned Superconductor to Insulator transition proceeds via pair breaking and Anderson localization of fermions when the level spacing in the islands approaches the size of the mean field gap. This work was supported by the NSF through grants No. DMR-1307290 and DMR-0907357 and by the AFRL, the ONR, and the AFOSR. Currently at the Center for Emergent Materials, Ohio State University.

  20. Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi2Te3 topological insulator thin films

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2016-07-01

    Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi2Te3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi2Te3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor. The AHE of 65more » nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi2Te3 with the previously studied Mn-doped Bi2Te3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. Furthermore, the implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.« less

  1. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Zhang, Angran; Huang, Mingju

    2017-03-01

    High-quality vanadium oxide ( VO2) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO2 has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO2 thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm.

  2. Combined gate-tunable Josephson junctions and normal state transport in Bi2Te3 topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Ngabonziza, Prosper; Stehno, Martin, P.; Myoren, Hiroaki; Brinkman, Alexander

    In recent years, extensive efforts have been made to improve the coupling between topological insulators and s-wave superconductors in topological insulator Josephson devices (TIJDs). Despite significant progress, essential questions remain open such as the bulk contribution to the Josephson critical current or the existence (and number) of 4 π -periodic bound states (Majoranas) in TIJDs. To address these issues, we fabricated Nb/Bi2Te3/Nb Josephson junctions alongside Hall bar devices on MBE-grown Bi2Te3 topological insulator thin films. Using the SrTiO3 [111] substrate as a gate dielectric, we tuned the carrier density electrostatically and measured the Josephson supercurrent and the normal state transport properties of our thin film devices. We identify three gate voltage ranges with distinct behavior: A region of intermediate gate bias where the measured quantities change rapidly with the applied electric field, and two saturation regions for large bias of either polarity. We discuss carrier distribution and band alignment in the material as well as implications for the effective Josephson coupling in TIJDs. This work is financially supported by the Dutch Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC).

  3. Metal-Insulator Transition of strained SmNiO3 Thin Films: Structural, Electrical and Optical Properties

    PubMed Central

    Torriss, B.; Margot, J.; Chaker, M.

    2017-01-01

    Samarium nickelate (SmNiO3) thin films were successfully synthesized on LaAlO3 and SrTiO3 substrates using pulsed-laser deposition. The Mott metal-insulator (MI) transition of the thin films is sensitive to epitaxial strain and strain relaxation. Once the strain changes from compressive to tensile, the transition temperature of the SmNiO3 samples shifts to slightly higher values. The optical conductivity reveals the strong dependence of the Drude spectral weight on the strain relaxation. Actually, compressive strain broadens the bandwidth. In contrast, tensile strain causes the effective number of free carriers to reduce which is consistent with the d-band narrowing. PMID:28098240

  4. Metal-Insulator Transition of strained SmNiO3 Thin Films: Structural, Electrical and Optical Properties

    NASA Astrophysics Data System (ADS)

    Torriss, B.; Margot, J.; Chaker, M.

    2017-01-01

    Samarium nickelate (SmNiO3) thin films were successfully synthesized on LaAlO3 and SrTiO3 substrates using pulsed-laser deposition. The Mott metal-insulator (MI) transition of the thin films is sensitive to epitaxial strain and strain relaxation. Once the strain changes from compressive to tensile, the transition temperature of the SmNiO3 samples shifts to slightly higher values. The optical conductivity reveals the strong dependence of the Drude spectral weight on the strain relaxation. Actually, compressive strain broadens the bandwidth. In contrast, tensile strain causes the effective number of free carriers to reduce which is consistent with the d-band narrowing.

  5. Laser-induced chemical vapour deposition of conductive and insulating thin films

    NASA Astrophysics Data System (ADS)

    Reisse, G.; Gaensicke, F.; Ebert, R.; Illmann, U.; Johansen, H.

    1992-01-01

    Investigations concerning the laser-induced chemical vapour deposition of Mo, W, Co and TiSi 2 conductive thin film structures from Mo(CO) 6, W(CO) 6, Co 2(CO) 8, TiCl 4 and SiH 4 using a direct writing method are presented. SiO 2 thin films were deposited from SiH 4 and N 2O in a large area deposition process stimulated by an excimer laser by using a parallel beam configuration.

  6. Local photocurrent generation in thin films of the topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Kastl, C.; Guan, T.; He, X. Y.; Wu, K. H.; Li, Y. Q.; Holleitner, A. W.

    2012-12-01

    We report on the optoelectronic properties of thin films of Bi2Se3 grown by molecular beam epitaxy. The films are patterned into circuits with typical extensions of tens of microns. In spatially resolved experiments, we observe submicron photocurrent patterns with positive and negative amplitudes. The patterns are independent of the applied bias voltage, but they depend on the width of the circuits. We interpret the patterns to originate from a local photocurrent generation due to potential fluctuations.

  7. Low-frequency current fluctuations in "graphene-like" exfoliated thin-films of bismuth selenide topological insulators.

    PubMed

    Hossain, Md Zahid; Rumyantsev, Sergey L; Shahil, Khan M F; Teweldebrhan, Desalegne; Shur, Michael; Balandin, Alexander A

    2011-04-26

    We report on the low-frequency current fluctuations and electronic noise in thin-films made of Bi(2)Se(3) topological insulators. The films were prepared via the "graphene-like" mechanical exfoliation and used as the current conducting channels in the four- and two-contact devices. The thickness of the films ranged from ∼50 to 170 nm to avoid hybridization of the top and bottom electron surface states. Analysis of the resistance dependence on the film thickness indicates that the surface contribution to conductance is dominant in our samples. It was established that the current fluctuations have the noise spectrum close to the pure 1/f in the frequency range from 1 Hz to 10 kHz (f is the frequency). The relative noise amplitude S(I)/I(2) for the examined Bi(2)Se(3) films was increasing from ∼5 × 10(-8) to 5 × 10(-6) (1/Hz) as the resistance of the channels varied from ∼10(3) to 10(5) Ω. The obtained noise data is important for understanding electron transport through the surface and volume of topological insulators, and proposed applications of this class of materials. The results may help to develop a new method of noise reduction in electronic devices via the "scattering immune" transport through the surface states.

  8. Effect of oxygen partial pressure and Fe doping on growth and properties of metallic and insulating molybdenum oxide thin films

    NASA Astrophysics Data System (ADS)

    Tiwari, Shailja; Master, Ridhi; Choudhary, R. J.; Phase, D. M.; Ahuja, B. L.

    2012-04-01

    We report the effect of oxygen partial pressure (OPP) and 5% Fe doping on the structural, electrical, and magnetic properties of MoOx thin films on c-Al2O3 substrate prepared by pulsed laser deposition technique. Detailed analyses of the structural properties suggest that the grown phase of molybdenum oxides and its orientation strongly depend on the OPP as well as Fe doping. Undoped and Fe doped α-MoO3 films formed at 350 mTorr OPP value show insulating character, where as MoO2 films formed at lower OPP values reveal metallic behavior. Resistivity minima are observed in Fe doped MoO2 films, which could be due to weak localization effect or Kondo scattering of the conduction electrons from the Fe impurities. Interestingly, all the Fe doped molybdenum oxide films show magnetic hysteresis at room temperature irrespective of their insulating (MoO3 phase) or metallic (MoO2 phase) behavior.

  9. Experimental Analysis of Weak Anti-localization in Topological Insulator Thin Films

    NASA Astrophysics Data System (ADS)

    Bansal, Namrata; Brahlek, Matthew; Koirala, Nikesh; Moon, Jisoo; Oh, Seongshik

    2015-03-01

    The weak anti-localization (WAL) effect, seen as a sharp cusp in resistance vs magnetic field at small fields, is quantified by the Hikami-Larkin-Nagaoka (HLN) formalism that yields information about the effective number of 2D conducting channels in terms of the parameter A. In thin-film Bi2Se3, A has a typical value of 1, even if the ideal value is 2 that occurs if top and bottom surfaces are decoupled. We show that this is due to bulk being metallic. On depleting the bulk carriers, the value of A increases to 2, though only if the film is thick enough. In the ultra-thin regime, <6 nm, a gap is formed at the Dirac point; A remains 1 if the Fermi level is away from Dirac point and into the conduction band, and only drops to 0 when Fermi level is tuned into the Dirac gap, though this occurs only for thin films with high mobility. In case of highly disordered films with poor carrier mobilities, the value of A can change from 1 to 0 as the film thickness is reduced, even if the Fermi level is away from Dirac gap. We provide a coherent picture of how A evolves depending on disorder, bulk properties and film thickness.

  10. Electrolysis-induced protonation of VO2 thin film transistor for the metal-insulator phase modulation

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2016-02-01

    Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.

  11. Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    PubMed Central

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; DeMann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J. S.; Porod, Wolfgang; Field, Stuart B.; Tang, Jinke; Marconi, Mario C.; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-01-01

    As an in-plane charge current flows in a heavy metal film with spin–orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin–orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field. PMID:27581060

  12. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; Demann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J. S.; Porod, Wolfgang; Field, Stuart B.; Tang, Jinke; Marconi, Mario C.; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-09-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.

  13. Acoustic phonon dynamics in thin-films of the topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2015-04-01

    Transient reflectivity traces measured for nanometer-sized films (6-40 nm) of the topological insulator Bi2Se3 revealed GHz-range oscillations driven within the relaxation of hot carriers photoexcited with ultrashort (˜100 fs) laser pulses of 1.51 eV photon energy. These oscillations have been suggested to result from acoustic phonon dynamics, including coherent longitudinal acoustic phonons in the form of standing acoustic waves. An increase of oscillation frequency from ˜35 to ˜70 GHz with decreasing film thickness from 40 to 15 nm was attributed to the interplay between two different regimes employing traveling-acoustic-waves for films thicker than 40 nm and the film bulk acoustic wave resonator (FBAWR) modes for films thinner than 40 nm. The amplitude of oscillations decays rapidly for films below 15 nm thick when the indirect intersurface coupling in Bi2Se3 films switches the FBAWR regime to that of the Lamb wave excitation. The frequency range of coherent longitudinal acoustic phonons is in good agreement with elastic properties of Bi2Se3.

  14. Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    DOE PAGES

    Li, Peng; Liu, Tao; Chang, Houchen; ...

    2016-09-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down statesmore » of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. Furthermore, it can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.« less

  15. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy.

    PubMed

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; DeMann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J S; Porod, Wolfgang; Field, Stuart B; Tang, Jinke; Marconi, Mario C; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-09-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.

  16. Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

    SciTech Connect

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; DeMann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J. S.; Porod, Wolfgang; Field, Stuart B.; Tang, Jinke; Marconi, Mario C.; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-09-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. Furthermore, it can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.

  17. Study of Ho-doped Bi{sub 2}Te{sub 3} topological insulator thin films

    SciTech Connect

    Harrison, S. E.; Collins-McIntyre, L. J.; Zhang, S. L.; Chen, Y. L.; Hesjedal, T.; Baker, A. A.; Figueroa, A. I.; Laan, G. van der; Kellock, A. J.; Pushp, A.; Parkin, S. S. P.; Harris, J. S.

    2015-11-02

    Breaking time-reversal symmetry through magnetic doping of topological insulators has been identified as a key strategy for unlocking exotic physical states. Here, we report the growth of Bi{sub 2}Te{sub 3} thin films doped with the highest magnetic moment element Ho. Diffraction studies demonstrate high quality films for up to 21% Ho incorporation. Superconducting quantum interference device magnetometry reveals paramagnetism down to 2 K with an effective magnetic moment of ∼5 μ{sub B}/Ho. Angle-resolved photoemission spectroscopy shows that the topological surface state remains intact with Ho doping, consistent with the material's paramagnetic state. The large saturation moment achieved makes these films useful for incorporation into heterostructures, whereby magnetic order can be introduced via interfacial coupling.

  18. Time-resolved terahertz dynamics in thin films of the topological insulator Bi2Se3

    DOE PAGES

    Valdés Aguilar, R.; Qi, J.; Brahlek, M.; ...

    2015-01-07

    We use optical pump–THz probe spectroscopy at low temperatures to study the hot carrier response in thin Bi2Se3 films of several thicknesses, allowing us to separate the bulk from the surface transient response. We find that for thinner films the photoexcitation changes the transport scattering rate and reduces the THz conductivity, which relaxes within 10 picoseconds (ps). For thicker films, the conductivity increases upon photoexcitation and scales with increasing both the film thickness and the optical fluence, with a decay time of approximately 5 ps as well as a much higher scattering rate. Furthermore, these different dynamics are attributed tomore » the surface and bulk electrons, respectively, and demonstrate that long-lived mobile surface photo-carriers can be accessed independently below certain film thicknesses for possible optoelectronic applications.« less

  19. Thin-film topological insulator-ferromagnet heterostructures for terahertz detection

    SciTech Connect

    Li, Xiaodong; Semenov, Yuriy G.; Kim, Ki Wook

    2014-02-10

    An atomically thin topological insulator is investigated theoretically for long-wavelength photodetection when it interacts with a magnetic material. Through the coupling between top and bottom surfaces as well as the exchange interaction with the proximate ferromagnet, the distribution of optically excited carriers exhibits unique patterns that depend sensitively on the frequency of the incoming light. This effect results in the generation of strong nonzero photocurrent, leading potentially to room-temperature detection of far-infrared/THz radiation with the advantage of low noise and fast response. The ease of frequency tuning by an external electrical bias offers an added versatility in the realistic implementation.

  20. Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators

    PubMed Central

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2016-01-01

    Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states. PMID:27687867

  1. Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators

    NASA Astrophysics Data System (ADS)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2016-09-01

    Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.

  2. Positive Bias Instability of Bottom-Gate Zinc Oxide Thin-Film Transistors with a SiOx/SiNx-Stacked Gate Insulator

    NASA Astrophysics Data System (ADS)

    Furuta, Mamoru; Kamada, Yudai; Hiramatsu, Takahiro; Li, Chaoyang; Kimura, Mutsumi; Fujita, Shizuo; Hirao, Takashi

    2011-03-01

    The positive bias instabilities of the zinc oxide thin-film transistors (ZnO TFTs) with a SiOx/SiNx-stacked gate insulator have been investigated. The film quality of a gate insulator of SiOx, which forms an interface with the ZnO channel, was varied by changing the gas mixture ratio of SiH4/N2O/N2 during plasma-enhanced chemical vapor deposition. The positive bias stress endurance of ZnO TFT strongly depended on the deposition condition of the SiOx gate insulator. From the relaxations of the transfer curve shift after imposition of positive bias stress, transfer curves could not be recovered completely without any thermal annealing. A charge trapping in a gate insulator rather than that in bulk ZnO and its interface with a gate insulator is a dominant instability mechanism of ZnO TFTs under positive bias stress.

  3. Theory of STM junctions for π-conjugated molecules on thin insulating films

    NASA Astrophysics Data System (ADS)

    Sobczyk, Sandra; Donarini, Andrea; Grifoni, Milena

    2012-05-01

    A microscopic theory of the transport in a scanning tunneling microscope (STM) setup is introduced for π-conjugated molecules on insulating films, based on the density matrix formalism. A key role is played in the theory by the energy dependent tunneling rates which account for the coupling of the molecule to the tip and to the substrate. In particular, we analyze how the geometrical differences between the localized tip and extended substrate are encoded in the tunneling rate and influence the transport characteristics. Finally, using benzene as an example of a planar, rotationally symmetric molecule, we calculate the STM current-voltage characteristics and current maps and analyze them in terms of few relevant angular momentum channels.

  4. Optical properties of TiN thin films close to the superconductor-insulator transition.

    SciTech Connect

    Pfuner, F.; Degiorgi, L.; Baturina, T. I.; Vinokur, V. M.; Baklanov, M. R.; Materials Science Division; ETH Zurich; Inst. Semiconductor Physics; IMEC Kapeldreef

    2009-11-10

    We present the intrinsic optical properties over a broad spectral range of TiN thin films deposited on an Si/SiO{sub 2} substrate. We analyze the measured reflectivity spectra of the film-substrate multilayer structure within a well-establish procedure based on the Fresnel equation and extract the real part of the optical conductivity of TiN. We identify the metallic contribution as well as the finite energy excitations and disentangle the spectral weight distribution among them. The absorption spectrum of TiN bears some similarities with the electrodynamic response observed in the normal state of the high-temperature superconductors. Particularly, a mid-infrared feature in the optical conductivity is quite reminiscent of a pseudogap-like excitation.

  5. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering

    PubMed Central

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-01-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect. PMID:27142578

  6. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  7. Hidden landscapes in thin film topological insulators: between order and disorder, 2D and 3D, normal and topological phases

    NASA Astrophysics Data System (ADS)

    Oh, Seongshik

    Topological insulator (TI) is one of the rare systems in the history of condensed matter physics that is initiated by theories and followed by experiments. Although this theory-driven advance helped move the field quite fast despite its short history, apparently there exist significant gaps between theories and experiments. Many of these discrepancies originate from the very fact that the worlds readily accessible to theories are often far from the real worlds that are available in experiments. For example, the very paradigm of topological protection of the surface states on Z2 TIs such as Bi2Se3, Bi2Te3, Sb2Te3, etc, is in fact valid only if the sample size is infinite and the crystal momentum is well-defined in all three dimensions. On the other hand, many widely studied forms of TIs such as thin films and nano-wires have significant confinement in one or more of the dimensions with varying level of disorders. In other words, many of the real world topological systems have some important parameters that are not readily captured by theories, and thus it is often questionable how far the topological theories are valid to real systems. Interestingly, it turns out that this very uncertainty of the theories provides additional control knobs that allow us to explore hidden topological territories. In this talk, I will discuss how these additional knobs in thin film topological insulators reveal surprising, at times beautiful, landscapes at the boundaries between order and disorder, 2D and 3D, normal and topological phases. This work is supported by Gordon and Betty Moore Foundation's EPiQS Initiative (GBMF4418).

  8. Dynamics of solid thin-film dewetting in the silicon-on-insulator system

    NASA Astrophysics Data System (ADS)

    Bussmann, E.; Cheynis, F.; Leroy, F.; Müller, P.; Pierre-Louis, O.

    2011-04-01

    Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO2 substrates. During annealing (T>700 °C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO2 is mediated by surface-diffusion driven by surface free-energy minimization.

  9. Quantum Hall Effect on Surface States of Topological Insulator (Bi1-xSbx)2Te3 Thin Films

    NASA Astrophysics Data System (ADS)

    Yoshimi, Ryutaro; Tsukazaki, Atsushi; Kozuka, Yusuke; Falson, Joseph; Takahashi, Kei; Checkelsky, Joseph; Nagaosa, Naoto; Kawasaki, Masashi; Tokura, Yoshinori

    2015-03-01

    The three-dimensional (3D) topological insulator (TI) is a novel state of matter as characterized by two-dimensional metallic Dirac states on its surface. Quantum transport in Dirac systems has been attracting much attention for the half-integer quantum Hall effect (QHE), as typically observed in graphene. Unlike the case of graphene, the Dirac states of TIs have no degeneracy including spin degree of freedom. Instead, both top and bottom surfaces host Dirac states with opposite spin-momentum locked modes. Such a helicity degree of freedom in real space is expected to yield intriguing quantum phenomena in 3D TIs. Bi-based chalcogenides such as Bi2Se3,Bi2Te3,Sb2Te3 and their compounds are candidates where the Dirac features can be detected via quantum transport phenomena in thin films form. Here, we report the realization of the QHE on the surface Dirac states in (Bi1-xSbx)2Te3 films (x = 0.84 and 0.88). With electrostatic gate-tuning of Fermi level under magnetic fields, QH states with filling factor ν = +/- 1 are resolved with quantized Hall resistance of Ryx = +/- h /e2 and zero Rxx, owing to the chiral edge modes at top/bottom surface Dirac states. The significant technical advance in 3D TI films may pave a way toward TI-based electronics.

  10. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor-insulator transition in TiN thin films.

    PubMed

    Baturina, T I; Mironov, A Yu; Vinokur, V M; Baklanov, M R; Strunk, C

    2007-12-21

    We investigate low-temperature transport properties of thin TiN superconducting films in the vicinity of the disorder-driven superconductor-insulator transition. In a zero magnetic field, we find an extremely sharp separation between superconducting and insulating phases, evidencing a direct superconductor-insulator transition without an intermediate metallic phase. At moderate temperatures, in the insulating films we reveal thermally activated conductivity with the magnetic field-dependent activation energy. At very low temperatures, we observe a zero-conductivity state, which is destroyed at some depinning threshold voltage V{T}. These findings indicate the formation of a distinct collective state of the localized Cooper pairs in the critical region at both sides of the transition.

  11. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  12. Thickness dependent quantum oscillations of transport properties in topological insulator Bi{sub 2}Te{sub 3} thin films

    SciTech Connect

    Rogacheva, E. I.; Budnik, A. V.; Sipatov, A. Yu.; Nashchekina, O. N.; Dresselhaus, M. S.

    2015-02-02

    The dependences of the electrical conductivity, the Hall coefficient, and the Seebeck coefficient on the layer thickness d (d = 18−600 nm) of p-type topological insulator Bi{sub 2}Te{sub 3} thin films grown by thermal evaporation in vacuum on glass substrates were obtained at room temperature. In the thickness range of d = 18–100 nm, sustained oscillations with a substantial amplitude were revealed. The observed oscillations are well approximated by a harmonic function with a period Δd = (9.5 ± 0.5) nm. At d > 100 nm, the transport coefficients practically do not change as d is increased. The oscillations of the kinetic properties are attributed to the quantum size effects due to the hole confinement in the Bi{sub 2}Te{sub 3} quantum wells. The results of the theoretical calculations of Δd within the framework of a model of an infinitely deep potential well are in good agreement with the experimental results. It is suggested that the substantial amplitude of the oscillations and their sustained character as a function of d are connected with the topologically protected gapless surface states of Bi{sub 2}Te{sub 3} and are inherent to topological insulators.

  13. Gate insulator effects on the electrical performance of ZnO thin film transistor on a polyethersulphone substrate.

    PubMed

    Lee, Jae-Kyu; Choi, Duck-Kyun

    2012-07-01

    Low temperature processing for fabrication of transistor backplane is a cost effective solution while fabrication on a flexible substrate offers a new opportunity in display business. Combination of both merits is evaluated in this investigation. In this study, the ZnO thin film transistor on a flexible Polyethersulphone (PES) substrate is fabricated using RF magnetron sputtering. Since the selection and design of compatible gate insulator is another important issue to improve the electrical properties of ZnO TFT, we have evaluated three gate insulator candidates; SiO2, SiNx and SiO2/SiNx. The SiO2 passivation on both sides of PES substrate prior to the deposition of ZnO layer was effective to enhance the mechanical and thermal stability. Among the fabricated devices, ZnO TFT employing SiNx/SiO2 stacked gate exhibited the best performance. The device parameters of interest are extracted and the on/off current ratio, field effect mobility, threshold voltage and subthreshold swing are 10(7), 22 cm2/Vs, 1.7 V and 0.4 V/decade, respectively.

  14. Strain relaxation mechanisms in compressively strained thin SiGe-on-insulator films grown by selective Si oxidation

    NASA Astrophysics Data System (ADS)

    Gunji, Marika; Marshall, Ann F.; McIntyre, Paul C.

    2011-01-01

    We report on strain relaxation mechanisms in highly compressive-strained (0.67%-2.33% biaxial strain), thin SiGe-on-insulator (SGOI) structures with Ge atomic fraction ranging from 0.18 to 0.81. SGOI layers (8.7-75 nm thickness) were fabricated by selective oxidization of Si from compressively strained SiGe films epitaxially grown on single crystalline Si-on-insulator (SOI) layers. During high temperature oxidation annealing, strain relaxation occurred due to both intrinsic stacking fault (SF) formation and biaxial stress-driven buckling of the SiGe layers through viscous flow of the overlying and underlying SiO2 layers. Transmission electron microscopy (TEM) and x-ray diffraction were performed to confirm the simultaneous occurrence of these two strain relaxation mechanisms. The results indicate that ˜30 % of the observed strain relaxation can be attributed to formation of intrinsic SFs and the remaining strain relaxation to stress-driven buckling of the SiGe layers. In addition, cross-sectional TEM images show that some of the SFs and layer buckling roughness appears to be spatially correlated.

  15. Tuning the metal-insulator transition via epitaxial strain and Co doping in NdNiO{sub 3} thin films grown by polymer-assisted deposition

    SciTech Connect

    Yao, Dan; Shi, Lei Zhou, Shiming; Liu, Haifeng; Zhao, Jiyin; Li, Yang; Wang, Yang

    2016-01-21

    The epitaxial NdNi{sub 1-x}Co{sub x}O{sub 3} (0 ≤ x ≤ 0.10) thin films on (001) LaAlO{sub 3} and (001) SrTiO{sub 3} substrates were grown by a simple polymer-assisted deposition technique. The co-function of the epitaxial strain and Co doping on the metal-insulator transition in perovskite nickelate NdNiO{sub 3} thin films is investigated. X-ray diffraction and scanning electron microscopy reveal that the as-prepared thin films exhibit good crystallinity and heteroepitaxy. The temperature dependent resistivities of the thin films indicate that both the epitaxial strain and Co doping lower the metal-insulator (MI) transition temperature, which can be treated as a way to tune the MI transition. Furthermore, under the investigated Co-doping levels, the MI transition temperature (T{sub MI}) shifts to low temperatures with Co content increasing under both compressive and tensile strain, and the more distinction is in the former situation. When x is increased up to 0.10, the insulating phase is completely suppressed under the compressive strain. With the strain increases from compression to tension, the resistivities are enhanced both in the metal and insulating regions. However, the Co-doping effect on the resistivity shows a more complex situation. As Co content x increases from zero to 0.10, the resistivities are reduced both in the metal and insulating regions under the tensile strain, whereas they are enhanced in the high-temperature metal region under the compressive strain. Based on the temperature dependent resistivity in the metal regions, it is suggested that the electron-phonon coupling in the films becomes weaker with the increase of both the strain and Co-doping.

  16. Tuning the metal-insulator transition temperature of Sm0.5Nd0.5NiO3 thin films via strain

    NASA Astrophysics Data System (ADS)

    Gardner, H. Jeffrey; Singh, Vijay; Zhang, Le; Hong, Xia

    2014-03-01

    We have investigated the effect of substrate induced strain and film thickness on the metal-insulator transition of the correlated oxide Sm0.5Nd0.5NiO3 (SNNO). We have fabricated epitaxial 3 - 40 nm thick SNNO films on (001) LaAlO3 (LAO), (001) SrTiO3 (STO), and (110) NdGaO3 (NGO) via off-axis RF magnetron sputtering. The SNNO films are atomically smooth with (001) orientation as determined by atomic force microscopy and x-ray diffraction. SNNO films grown on LAO, subject to compressive strain, exhibit a sharp metal-insulator transition at lower temperatures. Conversely, films grown on STO and NGO, subject to tensile strain, exhibit a smeared albeit above room temperature metal-insulator transition. For all substrates, we have observed that the metal-insulator transition temperature (TMI) increases monotonically with decreasing film thickness until the electrically dead layer is reached (below 4 nm). We discuss the effect of strain and oxygen deficiencies on the TMI of SNNO thin films.

  17. Non-ohmic behavior of metal-insulator granular thin films in low-field regime (eΔV ≪ kBT)

    NASA Astrophysics Data System (ADS)

    Boff, M. A. S.; Canto, B.; Mesquita, F.; Hinrichs, R.; Fraga, G. L. F.; Pereira, L. G.

    2016-10-01

    Non-ohmic behavior is not expected in metal-insulator granular systems in a low-field regime. There is no model to explain this behavior, even though it has been reported in several metal-insulator granular thin films (Fe-Al2O3, Co-Al2O3, and Ti-SiO2). In this paper, we show additional experimental results of Fe-SiO2 granular films and propose an explanation for the electrical properties of all above mentioned systems, based on Mott variable range hopping. The experimental results show that the localization length increases and the electrical resistance decreases with the increase of electrical potential or current. The non-ohmic behavior of the resistance and the increase of the localization length with increasing current are explained by the activation of new pathways for electrons in granular thin films that contain variable grain sizes and/or have different distances between grains.

  18. High performance thin film transistor (flex-TFT) with textured nanostructure ZnO film channel fabricated by exploiting electric double layer gate insulator

    NASA Astrophysics Data System (ADS)

    Ghimire, Rishi Ram; Raychaudhuri, A. K.

    2017-01-01

    We report a flexible thin film transistor (flex-TFT) fabricated on a commonly available polyimide (Kapton®) tape with a channel of highly textured nanocrystalline ZnO film grown by pulsed laser deposition. The flex-TFT with an electric double layer (EDL) gate insulator shows a low threshold for operation (Vth ≤ 1 V), an ON/OFF ratio reaching ≈107 and a subthreshold swing ≈75 mV/dec. The superior performance is enabled by a high saturation mobility (μs ≈ 70 cm2/V s) of the highly textured nanocrystalline channel. The low Vth arises from large charge density (≈1014/cm2) induced into the channel by EDL gate insulator. The large charge density induced by the EDL gate dielectric also enhances the Hall mobility in the film and brings down the sheet resistance by nearly 2 orders, which leads to large ON/OFF ratio. The flex-TFT operation can be sustained with reproducibility when the TFT is bent down to a radius of curvature ≈2 cm.

  19. Improving the performance of organic thin film transistors formed on a vacuum flash-evaporated acrylate insulator

    SciTech Connect

    Ding, Z. Abbas, G. A.; Assender, H. E.; Morrison, J. J.; Sanchez-Romaguera, V.; Yeates, S. G.; Taylor, D. M.

    2013-12-02

    A systematic investigation has been undertaken, in which thin polymer buffer layers with different ester content have been spin-coated onto a flash-evaporated, cross-linked diacrylate gate-insulator to form bottom-gate, top-contact organic thin-film transistors. The highest device mobilities, ∼0.65 cm{sup 2}/V s and ∼1.00 cm{sup 2}/V s for pentacene and dinaphtho[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene (DNTT), respectively, were only observed for a combination of large-grain (∼1–2 μm) semiconductor morphology coupled with a non-polar dielectric surface. No correlation was found between semiconductor grain size and dielectric surface chemistry. The threshold voltage of pentacene devices shifted from −10 V to −25 V with decreasing surface ester content, but remained close to 0 V for DNTT.

  20. Heteroepitaxial VO{sub 2} thin films on GaN: Structure and metal-insulator transition characteristics

    SciTech Connect

    Zhou You; Ramanathan, Shriram

    2012-10-01

    Monolithic integration of correlated oxide and nitride semiconductors may open up new opportunities in solid-state electronics and opto-electronics that combine desirable functional properties of both classes of materials. Here, we report on epitaxial growth and phase transition-related electrical properties of vanadium dioxide (VO{sub 2}) thin films on GaN epitaxial layers on c-sapphire. The epitaxial relation is determined to be (010){sub vo{sub 2}} parallel (0001){sub GaN} parallel (0001){sub A1{sub 2O{sub 3}}} and [100]{sub vo{sub 2}} parallel [1210]{sub GaN} parallel [0110]{sub A1{sub 2O{sub 3}}} from x-ray diffraction. VO{sub 2} heteroepitaxial growth and lattice mismatch are analyzed by comparing the GaN basal plane (0001) with the almost close packed corrugated oxygen plane in vanadium dioxide and an experimental stereographic projection describing the orientation relationship is established. X-ray photoelectron spectroscopy suggests a slightly oxygen rich composition at the surface, while Raman scattering measurements suggests that the quality of GaN layer is not significantly degraded by the high-temperature deposition of VO{sub 2}. Electrical characterization of VO{sub 2} films on GaN indicates that the resistance changes by about four orders of magnitude upon heating, similar to epitaxial VO{sub 2} films grown directly on c-sapphire. It is shown that the metal-insulator transition could also be voltage-triggered at room temperature and the transition threshold voltage scaling variation with temperature is analyzed in the framework of a current-driven Joule heating model. The ability to synthesize high quality correlated oxide films on GaN with sharp phase transition could enable new directions in semiconductor-photonic integrated devices.

  1. X-ray magnetic circular dichroism study of Dy-doped Bi2Te3 topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Baker, A. A.; Harrison, S. E.; Kummer, K.; van der Laan, G.; Hesjedal, T.

    2017-01-01

    Magnetic doping of topological insulators (TIs) is crucial for unlocking novel quantum phenomena, paving the way for spintronics applications. Recently, we have shown that doping with rare earth ions introduces large magnetic moments and allows for high doping concentrations without the loss of crystal quality, however no long range magnetic order was observed. In Dy-doped Bi2Te3 we found a band gap opening above a critical doping concentration, despite the paramagnetic bulk behavior. Here, we present a surface-sensitive x-ray magnetic circular dichroism (XMCD) study of an in situ cleaved film in the cleanest possible environment. The Dy M4,5 absorption spectra measured with circularly polarized x-rays are fitted using multiplet calculations to obtain the effective magnetic moment. Arrott-Noakes plots, measured by the Dy M5 XMCD as a function of field at low temperatures, give a negative transition temperature. The evaporation of a ferromagnetic Co thin film did not introduce ferromagnetic ordering of the Dy dopants either; instead a lowering of the transition temperature was observed, pointing towards an antiferromagnetic ordering scenario. This result shows that there is a competition between the magnetic exchange interaction and the Zeeman interaction. The latter favors the Co and Dy magnetic moments to be both aligned along the direction of the applied magnetic field, while the exchange interaction is minimized if the Dy and Co atoms are antiferromagnetically coupled, as in zero applied field.

  2. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  3. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  4. Effects of silicon-on-insulator substrate on the residual stress within 3C-SiC/Si thin films

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Kim, J. H.; Kim, Y.; Lee, B.-T.; Jang, S.-J.; Moon, C.-K.; Song, H.-J.

    2003-09-01

    Single-crystalline 3C-SiC heteroepitaxial layers were grown on silicon-on-insulator (SOI) and Si wafers, to investigate effects of SOI substrates on the film quality. Residual stress measurement using a laser scan method and the Raman scattering spectroscopy indicated that internal stress within SiC films on SOI were indeed reduced, when compared with that of SiC films on Si.

  5. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  6. Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates.

    PubMed

    Shui, Keyi; Nie, Lixia; Zhang, Yan; Peng, Bo; Xie, Jianliang; Deng, Longjiang; Bi, Lei

    2016-06-13

    We report the design of a waveguide optical isolator based on multimode interferometer (MMI) structure using silicon on insulator (SOI) and deposited magneto-optical (MO) thin films. The optical isolator is based on a vertical 1 × 2 SOI MMI utilizing the nonreciprocal phase shift (NRPS) difference of different TM modes of the MO garnet thin film/SOI waveguide. By constructing a silicon/MO thin film/silicon structure, we demonstrate that the NRPS of the fundamental and first order TM modes can show opposite signs for certain device dimensions, therefore significantly reduce the device length. For a 310.42 μm long device, 20 dB isolation bandwidth larger than 1.6 nm with total insertion loss of 0.817 dB is achieved at 1550 nm wavelength. The fabrication tolerances and materials losses are also discussed to satisfy the state-of-the-art fabrication technology and material properties.

  7. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals

    SciTech Connect

    Kamlapure, Anand; Saraswat, Garima; Ganguli, Somesh Chandra; Bagwe, Vivas; Raychaudhuri, Pratap; Pai, Subash P.

    2013-12-15

    We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe{sub 2} single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.

  8. Variable-range hopping conduction and metal-insulator transition in amorphous RexSi1-x thin films

    NASA Astrophysics Data System (ADS)

    Lisunov, K. G.; Vinzelberg, H.; Arushanov, E.; Schumann, J.

    2011-09-01

    Resistivity, ρ(T), of the amorphous RexSi1-x thin films with x = 0.285-0.351 is investigated in the interval of T ~ 300-0.03 K. At x = 0.285-0.324 the activated behavior of ρ(T) is governed by the Mott and the Shklovskii-Efros variable-range hopping (VRH) conduction mechanisms in different temperature intervals and the three-dimensional regime of the hopping. Between x = 0.328 and 0.351 the activationless dependence of ρ(T) takes place. The critical behavior of the characteristic VRH temperatures and of the Coulomb gap, Δ, pertinent to proximity to the metal-insulator transition at the critical value of xc ≈ 0.327, is observed. The analysis of the critical behavior of Δ yields directly the critical exponent of the dielectric permittivity, η = 2.1 ± 0.2, in agreement with the theoretical prediction, η = 2. On the other hand, the values of the critical exponent of the correlation length ν ~ 0.8-1.1 close to the expected value of unity can be obtained from the analysis of the critical behavior of the VRH characteristic temperatures under an additional assumption of a strong underbarrier scattering of hopping charge carriers in conditions, when the concentration of scattering centers considerably exceeds the concentration of sites involved in the hopping.

  9. Positive charge trapping phenomenon in n-channel thin-film transistors with amorphous alumina gate insulators

    NASA Astrophysics Data System (ADS)

    Daus, Alwin; Vogt, Christian; Münzenrieder, Niko; Petti, Luisa; Knobelspies, Stefan; Cantarella, Giuseppe; Luisier, Mathieu; Salvatore, Giovanni A.; Tröster, Gerhard

    2016-12-01

    In this work, we investigate the charge trapping behavior in InGaZnO4 (IGZO) thin-film transistors with amorphous Al2O3 (alumina) gate insulators. For thicknesses ≤10 nm, we observe a positive charge generation at intrinsic defects inside the Al2O3, which is initiated by quantum-mechanical tunneling of electrons from the semiconductor through the Al2O3 layer. Consequently, the drain current shows a counter-clockwise hysteresis. Furthermore, the de-trapping through resonant tunneling causes a drastic subthreshold swing reduction. We report a minimum value of 19 mV/dec at room temperature, which is far below the fundamental limit of standard field-effect transistors. Additionally, we study the thickness dependence for Al2O3 layers with thicknesses of 5, 10, and 20 nm. The comparison of two different gate metals shows an enhanced tunneling current and an enhanced positive charge generation for Cu compared to Cr.

  10. New type of quantum spin Hall insulators in hydrogenated PbSn thin films

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Qin, Hongwei; Hu, Jifan

    2017-02-01

    The realization of a quantum spin Hall (QSH) insulator working at high temperature is of both scientific and technical interest since it supports spin-polarized and dssipationless edge states. Based on first-principle calculations, we predicted that the two-dimensional (2D) binary compound of lead and tin (PbSn) in a buckled honeycomb framework can be tuned into a topological insulator with huge a band gap and structural stability via hydrogenation or growth on special substrates. This heavy-element-based structure is sufficiently ductile to survive the 18 ps molecular dynamics (MD) annealing to 400 K, and the band gap opened by strong spin-orbital-coupling (SOC) is as large as 0.7 eV. These characteristics indicate that hydrogenated PbSn (H-PbSn) is an excellent platform for QSH realization at high temperature.

  11. New type of quantum spin Hall insulators in hydrogenated PbSn thin films

    PubMed Central

    Liu, Liang; Qin, Hongwei; Hu, Jifan

    2017-01-01

    The realization of a quantum spin Hall (QSH) insulator working at high temperature is of both scientific and technical interest since it supports spin-polarized and dssipationless edge states. Based on first-principle calculations, we predicted that the two-dimensional (2D) binary compound of lead and tin (PbSn) in a buckled honeycomb framework can be tuned into a topological insulator with huge a band gap and structural stability via hydrogenation or growth on special substrates. This heavy-element-based structure is sufficiently ductile to survive the 18 ps molecular dynamics (MD) annealing to 400 K, and the band gap opened by strong spin-orbital-coupling (SOC) is as large as 0.7 eV. These characteristics indicate that hydrogenated PbSn (H-PbSn) is an excellent platform for QSH realization at high temperature. PMID:28218297

  12. Metal to insulator transition in Sb doped SnO2 monocrystalline nanowires thin films

    NASA Astrophysics Data System (ADS)

    Costa, I. M.; Bernardo, E. P.; Marangoni, B. S.; Leite, E. R.; Chiquito, A. J.

    2016-12-01

    We report on the growth and transport properties of single crystalline Sb doped SnO2 wires grown from chemical vapour deposition. While undoped samples presented semiconducting behaviour, doped ones clearly undergo a transition from an insulating state ( d R /d T <0 ) to a metallic one ( d R /d T >0 ) around 130 -150 K depending on the doping level. Data analysis in the framework of the metal-to-insulator transition theories allowed us to investigate the underlying physics: electron-electron and electron-phonon interactions were identified as the scattering mechanisms present in the metallic phase, while the conduction mechanism of the semiconducting phase (undoped sample) was characterized by thermal activation and variable range hopping mechanisms.

  13. Influence of the surface properties of polymeric insulators on the electrical stability of 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Baang, Sungkeun; Lee, Hyeonju; Ham, Youngjin; Zhang, Xue; Park, Jaehoon; Lee, Ho Won; Kim, Young Kwan; Piao, Shang Hao; Choi, Hyoung Jin

    2015-12-01

    We investigated the electrical stabilities of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) thin-film transistors (TFTs) fabricated with cross-linked polymeric insulators, i.e., poly(4-vinylphenol) (PVP) and poly(4-vinylphenol-co-methyl methacrylate) (PVP- co-PMMA). Compared to the cross-linked PVP insulator, the TIPS-pentacene TFTs containing a cross-linked PVP- co-PMMA insulator exhibit less hysteresis upon reversal of the gate-voltage sweep direction and a lower shift in the threshold voltage during consecutive operations, which is ascribed to the relatively hydrophobic surface of the cross-linked PVP- co-PMMA insulator. When these polymer solutions are mixed with yttrium-oxide nanoparticles, the rough surfaces of both nanocomposite insulators lead to larger shifts in the threshold voltage during consecutive operations, but its effect on the hysteretic behavior in the transfer characteristics of the TIPS-pentacene TFTs is negligible. Thus, the influence of the surface properties of the polymeric insulators on the electrical stability of TIPS-pentacene TFTs can be explained through hole-trapping and the delayed-depletion of the holes at the insulator/semiconductor interface.

  14. Origins of enhanced thermoelectric power factor in topologically insulating Bi{sub 0.64}Sb{sub 1.36}Te{sub 3} thin films

    SciTech Connect

    Liu, Wei; Chi, Hang; Walrath, J. C.; Chang, A. S.; Stoica, Vladimir A.; Endicott, Lynn; Uher, Ctirad; Tang, Xinfeng; Goldman, R. S.

    2016-01-25

    In this research, we report the enhanced thermoelectric power factor in topologically insulating thin films of Bi{sub 0.64}Sb{sub 1.36}Te{sub 3} with a thickness of 6–200 nm. Measurements of scanning tunneling spectroscopy and electronic transport show that the Fermi level lies close to the valence band edge, and that the topological surface state (TSS) is electron dominated. We find that the Seebeck coefficient of the 6 nm and 15 nm thick films is dominated by the valence band, while the TSS chiefly contributes to the electrical conductivity. In contrast, the electronic transport of the reference 200 nm thick film behaves similar to bulk thermoelectric materials with low carrier concentration, implying the effect of the TSS on the electronic transport is merely prominent in the thin region. The conductivity of the 6 nm and 15 nm thick film is obviously higher than that in the 200 nm thick film owing to the highly mobile TSS conduction channel. As a consequence of the enhanced electrical conductivity and the suppressed bipolar effect in transport properties for the 6 nm thick film, an impressive power factor of about 2.0 mW m{sup −1} K{sup −2} is achieved at room temperature for this film. Further investigations of the electronic transport properties of TSS and interactions between TSS and the bulk band might result in a further improved thermoelectric power factor in topologically insulating Bi{sub 0.64}Sb{sub 1.36}Te{sub 3} thin films.

  15. Surface modification of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors.

    PubMed

    Jang, Kwang-Suk; Wee, Duyoung; Kim, Yun Ho; Kim, Jinsoo; Ahn, Taek; Ka, Jae-Won; Yi, Mi Hye

    2013-06-11

    We report a simple approach to modify the surface of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. It is expected that the yttrium oxide interlayer will provide a surface that is more chemically compatible with the ZnO semiconductor than is bare polyimde. The field-effect mobility and the on/off current ratio of the ZnO TFT with the YOx/polyimide gate insulator were 0.456 cm(2)/V·s and 2.12 × 10(6), respectively, whereas the ZnO TFT with the polyimide gate insulator was inactive.

  16. Stability of low-carrier-density topological-insulator Bi{sub 2}Se{sub 3} thin films and effect of capping layers

    SciTech Connect

    Salehi, Maryam; Brahlek, Matthew; Koirala, Nikesh; Moon, Jisoo; Oh, Seongshik; Wu, Liang; Armitage, N. P.

    2015-09-01

    Although over the past number of years there have been many advances in the materials aspects of topological insulators (TIs), one of the ongoing challenges with these materials is the protection of them against aging. In particular, the recent development of low-carrier-density bulk-insulating Bi{sub 2}Se{sub 3} thin films and their sensitivity to air demands reliable capping layers to stabilize their electronic properties. Here, we study the stability of the low-carrier-density Bi{sub 2}Se{sub 3} thin films in air with and without various capping layers using DC and THz probes. Without any capping layers, the carrier density increases by ∼150% over a week and by ∼280% over 9 months. In situ-deposited Se and ex situ-deposited poly(methyl methacrylate) suppress the aging effect to ∼27% and ∼88%, respectively, over 9 months. The combination of effective capping layers and low-carrier-density TI films will open up new opportunities in topological insulators.

  17. Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi2Te3 topological insulator thin films

    SciTech Connect

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Jiles, D. C.

    2016-07-01

    Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi2Te3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi2Te3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor. The AHE of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi2Te3 with the previously studied Mn-doped Bi2Te3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. Furthermore, the implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.

  18. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate.

    PubMed

    Kim, So-Jung; Jeon, Da-Bin; Park, Jung-Ho; Ryu, Min-Ki; Yang, Jong-Heon; Hwang, Chi-Sun; Kim, Gi-Heon; Yoon, Sung-Min

    2015-03-04

    Nonvolatile memory thin-film transistors (TFTs) fabricated on paper substrates were proposed as one of the eco-friendly electronic devices. The gate stack was composed of chicken albumen gate insulator and In-Ga-Zn-O semiconducting channel layers. All the fabrication processes were performed below 120 °C. To improve the process compatibility of the synthethic paper substrate, an Al2O3 thin film was introduced as adhesion and barrier layers by atomic layer deposition. The dielectric properties of biomaterial albumen gate insulator were also enhanced by the preparation of Al2O3 capping layer. The nonvolatile bistabilities were realized by the switching phenomena of residual polarization within the albumen thin film. The fabricated device exhibited a counterclockwise hysteresis with a memory window of 11.8 V, high on/off ratio of approximately 1.1 × 10(6), and high saturation mobility (μsat) of 11.5 cm(2)/(V s). Furthermore, these device characteristics were not markedly degraded even after the delamination and under the bending situration. When the curvature radius was set as 5.3 cm, the ION/IOFF ratio and μsat were obtained to be 5.9 × 10(6) and 7.9 cm(2)/(V s), respectively.

  19. Collapse of the low temperature insulating state in Cr-doped V{sub 2}O{sub 3} thin films

    SciTech Connect

    Homm, P. Dillemans, L.; Menghini, M.; Van Bilzen, B.; Bakalov, P.; Su, C.-Y.; Lieten, R.; Houssa, M.; Locquet, J.-P.; Nasr Esfahani, D.; Covaci, L.; Peeters, F. M.; Seo, J. W.

    2015-09-14

    We have grown epitaxial Cr-doped V{sub 2}O{sub 3} thin films with Cr concentrations between 0% and 20% on (0001)-Al{sub 2}O{sub 3} by oxygen-assisted molecular beam epitaxy. For the highly doped samples (>3%), a regular and monotonous increase of the resistance with decreasing temperature is measured. Strikingly, in the low doping samples (between 1% and 3%), a collapse of the insulating state is observed with a reduction of the low temperature resistivity by up to 5 orders of magnitude. A vacuum annealing at high temperature of the films recovers the low temperature insulating state for doping levels below 3% and increases the room temperature resistivity towards the values of Cr-doped V{sub 2}O{sub 3} single crystals. It is well-know that oxygen excess stabilizes a metallic state in V{sub 2}O{sub 3} single crystals. Hence, we propose that Cr doping promotes oxygen excess in our films during deposition, leading to the collapse of the low temperature insulating state at low Cr concentrations. These results suggest that slightly Cr-doped V{sub 2}O{sub 3} films can be interesting candidates for field effect devices.

  20. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    SciTech Connect

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    FeCo epitaxial films were prepared on MgO(111), SrTiO{sub 3}(111), and Al{sub 2}O{sub 3}(0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110){sub bcc} films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO{sub 3} and Al{sub 2}O{sub 3} substrates include FeCo(111){sub bcc} crystal in addition to the FeCo(110){sub bcc} crystals with NW and KS relationships. The FeCo(111){sub bcc} crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110){sub bcc} and FeCo(111){sub bcc} crystals formed on the insulating substrates are in agreement with those of the bulk Fe{sub 50}Co{sub 50} (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  1. Structural properties of Bi2Te3 topological insulator thin films grown by molecular beam epitaxy on (111) BaF2 substrates

    NASA Astrophysics Data System (ADS)

    Fornari, Celso I.; Rappl, Paulo H. O.; Morelhão, Sérgio L.; Abramof, Eduardo

    2016-04-01

    Structural properties of topological insulator bismuth telluride films grown epitaxially on (111) BaF2 with a fixed Bi2Te3 beam flux were systematically investigated as a function of substrate temperature and additional Te flux. A layer-by-layer growth mode is observed since the early stages of epitaxy and remains throughout the whole deposition. Composition of the epitaxial films produced here stays between Bi2Te3 and Bi4Te5, as determined from the comparison of the measured x-ray diffraction curves with calculations. The substrate temperature region, where the growth rate remains constant, is found to be the most appropriate to obtain ordered Bi2Te3 films. Line width of the L = 18 Bi2Te3 diffraction peaks as low as 140 arcsec was obtained, indicating high crystalline quality. Twinning domains density rises with increasing growth temperature and reducing Te extra flux. X-ray reflectivity curves of pure Bi2Te3 films with thickness from 165 to 8 nm exhibited well defined interference fringes, evidencing homogeneous layers with smooth surface. Our results demonstrate that Bi2Te3 films with very well controlled structural parameters can be obtained. High structural quality Bi2Te3 films as thin as only eight quintuple layers grown here are promising candidates for intrinsic topological insulator.

  2. Ferromagnetism of magnetically doped topological insulators in Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films

    SciTech Connect

    Ni, Y.; Zhang, Z. Hadimani, R. L.; Tuttle, G.; Jiles, D. C.; Nlebedim, I. C.

    2015-05-07

    We investigated the effect of magnetic doping on magnetic and transport properties of Bi{sub 2}Te{sub 3} thin films. Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films with x = 0.03, 0.14, and 0.29 were grown epitaxially on mica substrate with low surface roughness (∼0.4 nm). It is found that Cr is an electron acceptor in Bi{sub 2}Te{sub 3} and increases the magnetization of Cr{sub x}Bi{sub 2−x}Te{sub 3}. When x = 0.14 and 0.29, ferromagnetism appears in Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films, where anomalous Hall effect and weak localization of magnetoconductance were observed. The Curie temperature, coercivity, and remnant Hall resistance of thin films increase with increasing Cr concentration. The Arrott-Noakes plot demonstrates that the critical mechanism of the ferromagnetism can be described better with 3D-Heisenberg model than with mean field model. Our work may benefit for the practical applications of magnetic topological insulators in spintronics and magnetoelectric devices.

  3. Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics

    PubMed Central

    Yu, Haiming; Kelly, O. d'Allivy; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I.; Grundler, D.

    2014-01-01

    Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition. PMID:25355200

  4. Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics

    NASA Astrophysics Data System (ADS)

    Yu, Haiming; Kelly, O. D'allivy; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I.; Grundler, D.

    2014-10-01

    Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition.

  5. Optimization of a Solution-Processed SiO2 Gate Insulator by Plasma Treatment for Zinc Oxide Thin Film Transistors.

    PubMed

    Jeong, Yesul; Pearson, Christopher; Kim, Hyun-Gwan; Park, Man-Young; Kim, Hongdoo; Do, Lee-Mi; Petty, Michael C

    2016-01-27

    We report on the optimization of the plasma treatment conditions for a solution-processed silicon dioxide gate insulator for application in zinc oxide thin film transistors (TFTs). The SiO2 layer was formed by spin coating a perhydropolysilazane (PHPS) precursor. This thin film was subsequently thermally annealed, followed by exposure to an oxygen plasma, to form an insulating (leakage current density of ∼10(-7) A/cm(2)) SiO2 layer. Optimized ZnO TFTs (40 W plasma treatment of the gate insulator for 10 s) possessed a carrier mobility of 3.2 cm(2)/(V s), an on/off ratio of ∼10(7), a threshold voltage of -1.3 V, and a subthreshold swing of 0.2 V/decade. In addition, long-term exposure (150 min) of the pre-annealed PHPS to the oxygen plasma enabled the maximum processing temperature to be reduced from 180 to 150 °C. The resulting ZnO TFT exhibited a carrier mobility of 1.3 cm(2)/(V s) and on/off ratio of ∼10(7).

  6. Thin θ -film optics

    NASA Astrophysics Data System (ADS)

    Huerta, Luis

    2016-12-01

    A Chern-Simons theory in 3D is accomplished by the so-called θ term in the action (θ /2 )∫F ∧F , which contributes only to observable effects on the boundaries of such a system. When electromagnetic radiation interacts with the system, the wave is reflected and its polarization is rotated at the interface, even when both the θ system and the environment are pure vacuum. These topics have been studied extensively. Here, we investigate the optical properties of a thin θ film, where multiple internal reflections could interfere coherently. The cases of pure vacuum and a material with magnetoelectric properties are analyzed. It is found that the film reflectance is enhanced compared to ordinary non-θ systems and the interplay between magnetoelectric properties and the θ parameter yield film opacity and polarization properties which could be interesting in the case of topological insulators, among other topological systems.

  7. Local photocurrent generation in thin films of the topological insulator Bi{sub 2}Se{sub 3}

    SciTech Connect

    Kastl, C.; Holleitner, A. W.; Guan, T.; He, X. Y.; Wu, K. H.; Li, Y. Q.

    2012-12-17

    We report on the optoelectronic properties of thin films of Bi{sub 2}Se{sub 3} grown by molecular beam epitaxy. The films are patterned into circuits with typical extensions of tens of microns. In spatially resolved experiments, we observe submicron photocurrent patterns with positive and negative amplitudes. The patterns are independent of the applied bias voltage, but they depend on the width of the circuits. We interpret the patterns to originate from a local photocurrent generation due to potential fluctuations.

  8. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  9. Acoustic phonon dynamics in thin-films of the topological insulator Bi{sub 2}Se{sub 3}

    SciTech Connect

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2015-04-28

    Transient reflectivity traces measured for nanometer-sized films (6–40 nm) of the topological insulator Bi{sub 2}Se{sub 3} revealed GHz-range oscillations driven within the relaxation of hot carriers photoexcited with ultrashort (∼100 fs) laser pulses of 1.51 eV photon energy. These oscillations have been suggested to result from acoustic phonon dynamics, including coherent longitudinal acoustic phonons in the form of standing acoustic waves. An increase of oscillation frequency from ∼35 to ∼70 GHz with decreasing film thickness from 40 to 15 nm was attributed to the interplay between two different regimes employing traveling-acoustic-waves for films thicker than 40 nm and the film bulk acoustic wave resonator (FBAWR) modes for films thinner than 40 nm. The amplitude of oscillations decays rapidly for films below 15 nm thick when the indirect intersurface coupling in Bi{sub 2}Se{sub 3} films switches the FBAWR regime to that of the Lamb wave excitation. The frequency range of coherent longitudinal acoustic phonons is in good agreement with elastic properties of Bi{sub 2}Se{sub 3}.

  10. Domain formation due to surface steps in topological insulator Bi{sub 2}Te{sub 3} thin films grown on Si (111) by molecular beam epitaxy

    SciTech Connect

    Borisova, S.; Kampmeier, J.; Mussler, G.; Grützmacher, D.; Luysberg, M.

    2013-08-19

    The atomic structure of topological insulators Bi{sub 2}Te{sub 3} thin films on Si (111) substrates grown in van der Waals mode by molecular beam epitaxy has been investigated by in situ scanning tunneling microscopy and scanning transmission electron microscopy. Besides single and multiple quintuple layer (QL) steps, which are typical for the step-flow mode of growth, a number of 0.4 QL steps is observed. We determine that these steps originate from single steps at the substrate surface causing domain boundaries in the Bi{sub 2}Te{sub 3} film. Due to the peculiar structure of these domain boundaries the domains are stable and penetrate throughout the entire film.

  11. Enhanced ferromagnetic and metal insulator transition in Sm0.55Sr0.45MnO3 thin films: Role of oxygen vacancy induced quenched disorder

    NASA Astrophysics Data System (ADS)

    Srivastava, M. K.; Siwach, P. K.; Kaur, A.; Singh, H. K.

    2010-11-01

    Effect of quenched disorder (QD) caused by oxygen vacancy (OV) and substrate induced inhomogeneous compressive strain, on the magnetic and transport properties of oriented polycrystalline Sm0.55Sr0.45MnO3 thin films is investigated. QD is related intimately to the ordering/disordering of the OVs and controls the paramagnetic-ferromagnetic/insulator-metal transition. OV ordered films show enhanced TC/TIM˜165 K, which is depressed by oxygen annealing. OV disordering realized by quenching reduces TC/TIM. The first order IM transition observed in SSMO single crystals is transformed into nonhysteretic and continuous one in the OV ordered films. QD appears to be diluted by OV disorder/annihilation and results in stronger carrier localization.

  12. Metal-insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture

    NASA Astrophysics Data System (ADS)

    Bharathi, R.; Naorem, Rameshwari; Umarji, A. M.

    2015-08-01

    We report the synthesis of high quality vanadium dioxide (VO2) thin films by a novel spray pyrolysis technique, namely ultrasonic nebulized spray pyrolysis of aqueous combustion mixture (UNSPACM). This simple and cost effective two step process involves synthesis of a V2O5 film on an LaAlO3 substrate followed by a controlled reduction to form single phase VO2. The formation of M1 phase (P21/c) is confirmed by Raman spectroscopic studies. A thermally activated metal-insulator transition (MIT) was observed at 61 ^\\circ C, where the resistivity changes by four orders of magnitude. Activation energies for the low conduction phase and the high conduction phase were obtained from temperature variable resistance measurements. The infrared spectra also show a dramatic change in reflectance from 13% to over 90% in the wavelength range of 7-15 μ m. This indicates the suitability of the films for optical switching applications at infrared frequencies.

  13. Low-temperature (180 °C) formation of large-grained Ge (111) thin film on insulator using accelerated metal-induced crystallization

    SciTech Connect

    Toko, K. Numata, R.; Oya, N.; Suemasu, T.; Fukata, N.; Usami, N.

    2014-01-13

    The Al-induced crystallization (AIC) yields a large-grained (111)-oriented Ge thin film on an insulator at temperatures as low as 180 °C. We accelerated the AIC of an amorphous Ge layer (50-nm thickness) by initially doping Ge in Al and by facilitating Ge diffusion into Al. The electron backscatter diffraction measurement demonstrated the simultaneous achievement of large grains over 10 μm and a high (111) orientation fraction of 90% in the polycrystalline Ge layer formed at 180 °C. This result opens up the possibility for developing Ge-based electronic and optical devices fabricated on inexpensive flexible substrates.

  14. Time-resolved terahertz dynamics in thin films of the topological insulator Bi{sub 2}Se{sub 3}

    SciTech Connect

    Valdés Aguilar, R.; Qi, J.; Brahlek, M.; Bansal, N.; Oh, S.; Azad, A.; Bowlan, J.; Taylor, A. J.; Prasankumar, R. P.; Yarotski, D. A.

    2015-01-05

    We use optical pump–THz probe spectroscopy at low temperatures to study the hot carrier response in thin Bi{sub 2}Se{sub 3} films of several thicknesses, allowing us to separate the bulk from the surface transient response. We find that for thinner films the photoexcitation changes the transport scattering rate and reduces the THz conductivity, which relaxes within 10 picoseconds (ps). For thicker films, the conductivity increases upon photoexcitation and scales with increasing both the film thickness and the optical fluence, with a decay time of approximately 5 ps as well as a much higher scattering rate. These different dynamics are attributed to the surface and bulk electrons, respectively, and demonstrate that long-lived mobile surface photo-carriers can be accessed independently below certain film thicknesses for possible optoelectronic applications.

  15. Magnetotransport phenomena in Bi{sub 2}Se{sub 3} thin film topological insulators grown by hybrid physical chemical vapor deposition

    SciTech Connect

    Kumar, Raj; Hunte, Frank; Brom, Joseph E.; Redwing, Joan M.

    2015-02-14

    Intrinsic defects in Bi{sub 2}Se{sub 3} topological insulators tend to produce a high carrier concentration and current leakage through the bulk material. Bi{sub 2}Se{sub 3} thin films were grown by hybrid physical chemical vapor deposition on (0001) Al{sub 2}O{sub 3} substrates with high Se vapor pressure to reduce the occurrence of Se vacancies as the main type of defect. Consequently, the carrier concentration was reduced to ∼5.75 × 10{sup 18} cm{sup −3} comparable to reported carrier concentration in Bi{sub 2}Se{sub 3} thin films. Magnetotransport measurements were performed on the films and the data were analyzed for weak anti-localization using the Hikami-Larkin-Nagaoka model. The estimated α and l{sub ϕ} values showed good agreement with the symplectic case of 2-D transport of topological surface states in the quantum diffusion regime. The temperature and angular dependence of magnetoresistance indicate a large contribution of the 2-D surface carriers to overall transport properties of Bi{sub 2}Se{sub 3} thin film.

  16. Finite-size driven topological and metal-insulator transition in (Bi1-xInx)2 Se3thin films

    NASA Astrophysics Data System (ADS)

    Salehi, Maryam; Shapourian, Hassan; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Oh, Seongshik

    In a topological insulator (TI), if one of its heavy elements is replaced by a light one, the spin-orbit coupling (SOC) strength decreases and eventually the TI transforms into a normal insulator beyond a critical level of substitution.This is the standard description of the topological phase transition (TPT). However, this notion of TPT, driven solely by the SOC (or something equivalent), is not complete for finite size samples considering that the thickness of the topological surface states diverges at the critical point. Here, on specially-engineered (BixIn1-x)2 Se3 thin films, using systematic transport measurments we show that not only the SOC but also the finite sample size can induce TPT. This study sheds light on the role of spatial confinement as an extra tuning parameter controlling the topological critical point.

  17. Effect of Mn doping on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Glinka, Yuri D.; Babakiray, Sercan; Holcomb, Mikel B.; Lederman, David

    2016-04-01

    Transient reflectivity (TR) measured at laser photon energy 1.51 eV from the indirectly intersurface-coupled topological insulator Bi2-x Mn x Se3 films (12 nm thick) revealed a strong dependence of the rise-time and initial decay-time constants on photoexcited carrier density and Mn content. In undoped samples (x  =  0), these time constants are exclusively governed by electron-electron and electron-phonon scattering, respectively, whereas in films with x  =  0.013-0.27 ultrafast carrier dynamics are completely controlled by photoexcited electron trapping by ionized Mn2+ acceptors and their dimers. The shortest decay-time (~0.75 ps) measured for the film with x  =  0.27 suggests a great potential of Mn-doped Bi2Se3 films for applications in high-speed optoelectronic devices. Using Raman spectroscopy exploiting similar laser photon energy (1.58 eV), we demonstrate that due to indirect intersurface coupling in the films, the photoexcited electron trapping in the bulk enhances the electron-phonon interaction strength in Dirac surface states.

  18. Improvement in performance of solution-processed indium-zinc-tin oxide thin-film transistors by UV/O3 treatment on zirconium oxide gate insulator

    NASA Astrophysics Data System (ADS)

    Naik, Bukke Ravindra; Avis, Christophe; Delwar Hossain Chowdhury, Md; Kim, Taehun; Lin, Tengda; Jang, Jin

    2016-03-01

    We studied solution-processed amorphous indium-zinc-tin oxide (a-IZTO) thin-film transistors (TFTs) with spin-coated zirconium oxide (ZrOx) as the gate insulator. The ZrOx gate insulator was used without and with UV/O3 treatment. The TFTs with an untreated ZrOx gate dielectric showed a saturation mobility (μsat) of 0.91 ± 0.29 cm2 V-1 s-1, a threshold voltage (Vth) of 0.28 ± 0.36 V, a subthreshold swing (SS) of 199 ± 37.17 mV/dec, and a current ratio (ION/IOFF) of ˜107. The TFTs with a UV/O3-treated ZrOx gate insulator exhibited μsat of 2.65 ± 0.43 cm2 V-1 s-1, Vth of 0.44 ± 0.35 V, SS of 133 ± 24.81 mV/dec, and ION/IOFF of ˜108. Hysteresis was 0.32 V in the untreated TFTs and was eliminated by UV/O3 treatment. Also, the leakage current decreased significantly when the IZTO TFT was coated onto a UV/O3-treated ZrOx gate insulator.

  19. Damping of confined modes in a ferromagnetic thin insulating film: angular momentum transfer across a nanoscale field-defined interface.

    PubMed

    Adur, Rohan; Du, Chunhui; Wang, Hailong; Manuilov, Sergei A; Bhallamudi, Vidya P; Zhang, Chi; Pelekhov, Denis V; Yang, Fengyuan; Hammel, P Chris

    2014-10-24

    We observe a dependence of the damping of a confined mode of precessing ferromagnetic magnetization on the size of the mode. The micron-scale mode is created within an extended, unpatterned yttrium iron garnet film by means of the intense local dipolar field of a micromagnetic tip. We find that the damping of the confined mode scales like the surface-to-volume ratio of the mode, indicating an interfacial damping effect (similar to spin pumping) due to the transfer of angular momentum from the confined mode to the spin sink of ferromagnetic material in the surrounding film. Though unexpected for insulating systems, the measured intralayer spin-mixing conductance g_↑↓=5.3×10(19)  m(-2) demonstrates efficient intralayer angular momentum transfer.

  20. Spatially Uniform Thin-Film Formation of Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces by Self-Assisted Flow-Coating.

    PubMed

    Bulgarevich, Kirill; Sakamoto, Kenji; Minari, Takeo; Yasuda, Takeshi; Miki, Kazushi

    2017-02-22

    Surface hydrophobization by self-assembled monolayer formation is a powerful technique for improving the performance of organic field-effect transistors (OFETs). However, organic thin-film formation on such a surface by solution processing often fails due to the repellent property of the surface against common organic solvents. Here, a scalable unidirectional coating technique that can solve this problem, named self-assisted flow-coating, is reported. Producing a specially designed lyophobic-lyophilic pattern on the lyophobic surface enables organic thin-film formation in the lyophobic surface areas by flow-coating. To demonstrate the usefulness of this technique, OFET arrays with an active layer of poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) are fabricated. The ideal transfer curves without hysteresis behavior are obtained for all OFETs. The average field-effect hole mobility in the saturation regime is 0.273 and 0.221 cm(2)·V(-1)·s(-1) for the OFETs with the channels parallel and perpendicular to the flow-coating direction, respectively, and the device-to-device variation is less than 3% for each OFET set. Very small device-to-device variation is also obtained for the on-state current, threshold voltage, and subthreshold swing. These results indicate that the self-assisted flow-coating is a promising coating technique to form spatially uniform thin films of polymeric organic semiconductors on lyophobic gate insulator surfaces.

  1. Epitaxial growth of Bi{sub 2}Se{sub 3} topological insulator thin films on Si (111)

    SciTech Connect

    He Liang; Xiu Faxian; Huang Guan; Kou Xufeng; Lang Murong; Wang, Kang L.; Wang Yong; Fedorov, Alexei V.; Beyermann, Ward P.; Zou Jin

    2011-05-15

    In this paper, we report the epitaxial growth of Bi{sub 2}Se{sub 3} thin films on Si (111) substrate, using molecular beam epitaxy (MBE). We show that the as-grown samples have good crystalline quality, and their surfaces exhibit terracelike quintuple layers. Angel-resolved photoemission experiments demonstrate single-Dirac-conelike surface states. These results combined with the temperature- and thickness-dependent magneto-transport measurements, suggest the presence of a shallow impurity band. Below a critical temperature of {approx}100K, the surface states of a 7 nm thick film contribute up to 50% of the total conduction.

  2. Signature of surface state coupling in thin films of the topological Kondo insulator SmB6 from anisotropic magnetoresistance

    NASA Astrophysics Data System (ADS)

    Shaviv Petrushevsky, M.; Rout, P. K.; Levi, G.; Kohn, A.; Dagan, Y.

    2017-02-01

    The temperature and thickness dependencies of the in-plane anisotropic magnetoresistance (AMR) of SmB6 thin films are reported. We find that the AMR changes sign from negative (ρ||<ρ⊥ ) at high temperatures to positive (ρ||>ρ⊥ ) at low temperatures. The temperature, Ts, at which this sign change occurs, decreases with increasing film thickness t and Ts vanishes for t > 30 nm. We interpret our results in the framework of a competition between two components: a negative bulk contribution and a positive surface AMR.

  3. Predicted Growth of Two-Dimensional Topological Insulator Thin Films of III-V Compounds on Si(111) Substrate

    SciTech Connect

    Yao, Liang-Zi; Crisostomo, Christian P.; Yeh, Chun-Chen; Lai, Shu-Ming; Huang, Zhi-Quan; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Lin, Hsin; Bansil, Arun

    2015-11-05

    We have carried out systematic first-principles electronic structure computations of growth of ultrathin films of compounds of group III (B, Al, In, Ga, and Tl) with group V (N, P, As, Sb, and Bi) elements on Si(111) substrate, including effects of hydrogenation. Two bilayers (BLs) of AlBi, InBi, GaBi, TlAs, and TlSb are found to support a topological phase over a wide range of strains, in addition to BBi, TlN, and TlBi which can be driven into the nontrivial phase via strain. A large band gap of 134 meV is identified in hydrogenated 2 BL film of InBi. One and two BL films of GaBi and 2 BL films of InBi and TlAs on Si(111) surface possess nontrivial phases with a band gap as large as 121 meV in the case of 2 BL film of GaBi. Persistence of the nontrivial phase upon hydrogenations in the III-V thin films suggests that these films are suitable for growing on various substrates.

  4. Predicted Growth of Two-Dimensional Topological Insulator Thin Films of III-V Compounds on Si(111) Substrate

    DOE PAGES

    Yao, Liang-Zi; Crisostomo, Christian P.; Yeh, Chun-Chen; ...

    2015-11-05

    We have carried out systematic first-principles electronic structure computations of growth of ultrathin films of compounds of group III (B, Al, In, Ga, and Tl) with group V (N, P, As, Sb, and Bi) elements on Si(111) substrate, including effects of hydrogenation. Two bilayers (BLs) of AlBi, InBi, GaBi, TlAs, and TlSb are found to support a topological phase over a wide range of strains, in addition to BBi, TlN, and TlBi which can be driven into the nontrivial phase via strain. A large band gap of 134 meV is identified in hydrogenated 2 BL film of InBi. One andmore » two BL films of GaBi and 2 BL films of InBi and TlAs on Si(111) surface possess nontrivial phases with a band gap as large as 121 meV in the case of 2 BL film of GaBi. Persistence of the nontrivial phase upon hydrogenations in the III-V thin films suggests that these films are suitable for growing on various substrates.« less

  5. Predicted Growth of Two-Dimensional Topological Insulator Thin Films of III-V Compounds on Si(111) Substrate

    NASA Astrophysics Data System (ADS)

    Yao, Liang-Zi; Crisostomo, Christian P.; Yeh, Chun-Chen; Lai, Shu-Ming; Huang, Zhi-Quan; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Lin, Hsin; Bansil, Arun

    2015-11-01

    We have carried out systematic first-principles electronic structure computations of growth of ultrathin films of compounds of group III (B, Al, In, Ga, and Tl) with group V (N, P, As, Sb, and Bi) elements on Si(111) substrate, including effects of hydrogenation. Two bilayers (BLs) of AlBi, InBi, GaBi, TlAs, and TlSb are found to support a topological phase over a wide range of strains, in addition to BBi, TlN, and TlBi which can be driven into the nontrivial phase via strain. A large band gap of 134 meV is identified in hydrogenated 2 BL film of InBi. One and two BL films of GaBi and 2 BL films of InBi and TlAs on Si(111) surface possess nontrivial phases with a band gap as large as 121 meV in the case of 2 BL film of GaBi. Persistence of the nontrivial phase upon hydrogenations in the III-V thin films suggests that these films are suitable for growing on various substrates.

  6. Effect of carrier recombination on ultrafast carrier dynamics in thin films of the topological insulator Bi{sub 2}Se{sub 3}

    SciTech Connect

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2014-10-27

    Transient reflectivity (TR) from thin films (6–40 nm thick) of the topological insulator Bi{sub 2}Se{sub 3} revealed ultrafast carrier dynamics, which suggest the existence of both radiative and non-radiative recombination between electrons residing in the upper cone of initially unoccupied high energy Dirac surface states (SS) and holes residing in the lower cone of occupied low energy Dirac SS. The modeling of measured TR traces allowed us to conclude that recombination is induced by the depletion of bulk electrons in films below ∼20 nm thick due to the charge captured on the surface defects. We predict that such recombination processes can be observed using time-resolved photoluminescence techniques.

  7. Structural, magnetic, and electronic properties of GdTiO{sub 3} Mott insulator thin films grown by pulsed laser deposition

    SciTech Connect

    Grisolia, M. N.; Bruno, F. Y.; Sando, D.; Jacquet, E.; Barthélémy, A.; Bibes, M.; Zhao, H. J.; Chen, X. M.; Bellaiche, L.

    2014-10-27

    We report on the optimization process to synthesize epitaxial thin films of GdTiO{sub 3} on SrLaGaO{sub 4} substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature T{sub C} = 31.8 K with a saturation magnetization of 4.2 μ{sub B} per formula unit at 10 K. Transport measurements reveal an insulating response, as expected. Optical spectroscopy indicates a band gap of ∼0.7 eV, comparable to the bulk value. Our work adds ferrimagnetic orthotitanates to the palette of perovskite materials for the design of emergent strongly correlated states at oxide interfaces using a versatile growth technique such as pulsed laser deposition.

  8. Electron-beam induced damage in thin insulating films on compound semiconductors. M.S. Thesis, 1988

    NASA Technical Reports Server (NTRS)

    Pantic, Dragan M.

    1989-01-01

    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron-beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectric. The electron-beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage.

  9. Semiconductor-insulator transition in VO{sub 2} (B) thin films grown by pulsed laser deposition

    SciTech Connect

    Rúa, Armando; Díaz, Ramón D.; Lysenko, Sergiy; Fernández, Félix E.

    2015-09-28

    Thin films of B-phase VO{sub 2} were grown by pulsed-laser deposition on glass and (100)-cut MgO substrates in a temperature range from 375 to 425 °C and at higher gas pressures than usual for this technique. The films were strongly oriented, with ab-planes parallel to the substrate surface. Detailed study of surface morphology through Atomic Force Microscopy images suggest significant differences in evolution as a function of growth temperature for films on the two types of substrates. Measurements of electrical conductivities through cooling-heating cycles from room temperature to 120 K showed changes of five orders of magnitude, with steeper changes between room temperature and ∼150 K, which corresponds with the extended and reversible phase transition known to occur for this material. At lower temperatures conductivities exhibited Arrhenius behavior, indicating that no further structural change was occurring and that conduction is thermally activated. In this lower temperature range, conductivity of the samples can be described by the near-neighbor hopping model. No hysteresis was found between the cooling and heating braches of the cycles, which is at variance with previous results published for VO{sub 2} (B). This apparent lack of hysteresis for thin films grown in the manner described and the large conductivity variation as a function of temperature observed for the samples suggests this material could be of interest for infrared sensing applications.

  10. Microstructure of Thin Films

    DTIC Science & Technology

    1990-02-07

    optical properties ." (Final text in preparation). John Lehan, "Microstructural analysis of thin films by Rutherford Backscattering...correlation of optical properties and micro- Ion assisted deposition (IAD) is known to produce structure of IAD thin films with ion beam parameters thin films ...1.5-eV interband absorption. P (eV) R (%) P (, -V) R %) Optical properties of metal thin films in the spectral 0 98.3 0 88.8 range of

  11. Thin film interference of colloidal thin films.

    PubMed

    Cong, Hailin; Cao, Weixiao

    2004-09-14

    A stairlike colloidal crystal thin film composed of poly(styrene-methyl methacrylate-acrylic acid) (P(St-MMA-AA)) monodispersed colloids was fabricated on an inclined silicon substrate. Different bright colors were observed on the various parts of the film with different layers as white light irradiated perpendicularly on it. The relationship between the colors and layers of the film was investigated and discussed according to the principle of thin film interference. On the basis of the phenomenon of thin film interference, a one-layer colloidal film having uniform color was researched and it would display diverse colors before and after swollen by styrene (St). A circular stairlike colloidal film was achieved to mimic the colors of the peacock tail feather.

  12. Predicted Growth of Two-Dimensional Topological Insulators Consisting of Hydrogenated III-V Thin films on Si(111) Substrate

    NASA Astrophysics Data System (ADS)

    Chuang, Feng-Chuan; Crisostomo, Christian; Yao, Liang-Zi; Yeh, Chun-Chen; Lai, Shu-Ming; Huang, Zhi-Quan; Hsu, Chia-Hsiu; Lin, Hsin; Albao, Marvin; Bansil, Arun

    We have carried out systematic first-principles electronic structure calculations of growth of ultrathin films of compounds of group III (B, Al, In, Ga and Tl) with group V (N, P, As, Sb and Bi) elements on Si(111) substrate, including effects of hydrogenation. A total of six compounds (GaBi, InBi, TlBi, TlAs, TlSb and TlN) are identified to be nontrivial in unhydrogenated case; whereas for hydrogenated case, only four (GaBi, InBi, TlBi and TlSb) remains nontrivial. The band gap is found to be as large as 855 meV for the hydrogenated TlBi film, making this class of III-V materials suitable for room temperature applications. TlBi remains topologically nontrivial with a large band gap at various hydrogen coverages, indicating the robustness of its band topology against bonding effects of substrates. Two bilayers (BLs) of AlBi, InBi, GaBi, TlAs and TlSb are found to support a topological phase over a wide range of strains, in addition to BBi, TlN and TlBi which can be driven into the nontrivial phase via strain. One and two BL films of GaBi and 2 BL films of InBi and TlAs on Si(111) surface possess nontrivial phases with a band gap as large as 121 meV in the case of 2 BL film of GaBi. Persistence of the nontrivial phase upon hydrogenations in the III-V thin films suggests that these films are suitable for growing on various substrates.

  13. Effective Contact Potential of Thin Film Metal-Insulator Nanostructures and Its Role in Self-Powered Nanofilm X-ray Sensors.

    PubMed

    Brivio, Davide; Ada, Earl; Sajo, Erno; Zygmanski, Piotr

    2017-03-29

    We studied the effective contact potential difference (ECPD) of thin film nanostructures and its role in self-powered X-ray sensors, which use the high-energy current detection scheme. We compared the response to kilovoltage X-rays of several nanostructures made of disparate combinations of conductors (Al, Cu, Ta, ITO) and oxides (SiO2, Ta2O5, Al2O3). We measured current-voltage curves in parallel-plate configuration separated by an air gap and determined three characteristic parameters: current at zero voltage bias I0, the voltage offset for zero current ECPD, and saturation current Isat. We found that the metals' ECPD values measured with our technique were higher than the CPD values measured with photoelectron spectroscopy in situ, i.e., no air contact. These differences are related to natural oxidization and to the presence of photo-/Auger-electron current leaking from the high-Z toward the low-Z electrode, as suggested by additional experiments carried out in vacuum. Further, the deposition of the 40-500 nm oxide layer on the surface of metallic substrates strongly affects their contact potential. This technique exploits ionization and charge carrier transport in both solid insulators and in air, and it opens the possibility of measuring the ECPD between metals separated by a solid insulator in a metal-insulator-metal (MIM) configuration. Additionally, we demonstrated that certain configurations of MIM structures are suitable for X-ray detection in self-powered mode.

  14. Optimization on the Thickness of Organic Insulator Layer for Advanced Super-In-Plane Switching Mode Thin-Film-Transistor Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Lin, Jiunn-Shyong; Yang, Kei-Hsiung; Chen, Shu-Hsia

    2005-08-01

    The growth rate of thin-film-transistor liquid crystal display (TFT-LCD) industries is faster than predicted due to the possible replacement of a cathode-ray tube television (CRT-TV) by a liquid crystal display television (LCD-TV). The in-plane switching (IPS) mode has been known as an excellent technology for realizing a wide viewing angle for LCD-TV, but it has the drawback of a low aperture ratio. An advanced super-IPS (AS-IPS) structure with an organic insulator layer was invented to achieve a high aperture ratio with increasing manufacturing cost. In this paper, we proposed a simple method of analyzing the optimum thickness of the organic insulator layer for AS-IPS. We derived the capacitive coupling ratio (CCR) of the IPS cell and analyzed the delay time of the AS-IPS panel to quantify the crosstalk properties. Furthermore, we also analyzed our electrode structure (AS'-IPS), which not only increases substantially the aperture ratio over that of AS-IPS but also reduces the crosstalk using the same optimized thickness of the organic insulator layer.

  15. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  16. Metal-to-Insulator Transition in Anatase TiO2 Thin Films Induced by Growth Rate Modulation

    SciTech Connect

    Tachikawa, T; Minohara, M.; Nakanishi, Y.; Hikita, Y.; Yoshita, M.; Akiyama, H.; Bell, C.; Hwang, H.Y.

    2012-06-21

    We demonstrate control of the carrier density of single phase anatase TiO{sub 2} thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO{sub 2} samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.

  17. A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chang, Sheng-jiang; Wang, Xiang-hui; Lin, Lie; Bai, Jin-jun

    2014-05-01

    A terahertz bandpass filter with the sandwich structure consisting of thermally tunable vanadium dioxide (VO2) thin film, silica substrate and subwavelength rectangular Cu hole arrays is designed and theoretically analyzed. The results show that the transmittance of the filter can be actively tuned by controlling the temperature of VO2, the narrow band terahertz (THz) waves with the transmittance from 85.2% to 10.5% can be well selected at the frequency of 1.25 THz when the temperature changes from 50 °C to 80 °C, and the maximum modulation depth of this terahertz bandpass filter can achieve 74.7%.

  18. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  19. Electrical Conduction in Thin Insulators

    NASA Astrophysics Data System (ADS)

    Sinha, Anil Kumar, , Dr.

    2003-10-01

    ABSTRACT: The study of Conduction mechanism in Insulator(Mica)of thickness from 20-80 microns has been carried out.The effect of varying electrical fields upto 50 MV/m at room temperature were studied.A sample of thickness 80 microns exibits non-linear behavior at fields beyond 24 MV/m. Other sample of thickness 50 microns,40 microns and 20 microns exibit linear behavior at low fields.On increasing the field furthur a sharp rise in current is obersved. Eventually at fields beyond 20 MV/m,the current does not continue to rise sharply and the rate of increase slow down very much.The log J-log V characterstics were obtained for various samples.For a sample of thickness of 20 microns,there are three distinct regions were found, having different slopes.The slope the second region indicates a square law dependence.The studies with these Mica films indicated different conduction processes at different field strenght.At field,ranging from(10-20)MV/m, the current was found to be SPACE-CHARGE LIMITED,due to shallow trapping of electrons.Beyond this field,however,at room temperature,the current did not show as sharp a rise as it should in case of an insulator caontaining shallow traps.This behavior has been attributed to the electron- phonon interactions.At higher temperature the current increased with fields as in the case of an insulator contaning shallow traps.A SPACE-CHARGE LIMITED CONDUCTION MECHANISM due to shallow traping of electrons has been suggested.This has been undertaken in view of growing interest and application of integrated circuitry.

  20. Tunable metal-insulator transition in Nd1-xYxNiO3 (x = 0.3, 0.4) perovskites thin film at near room temperature

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Qi, Zeming; Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Wang, Yu; Zhang, Guobin; Liu, Miao

    2015-07-01

    Metal-insulator transition (MIT) occurs due to the charge disproportionation and lattice distortions in rare-earth nickelates. Existing studies revealed that the MIT behavior of rare-earth nickelates is fairly sensitive to external stress/pressure, suggesting a viable route for MIT strain engineering. Unlike applying extrinsic strain, the MIT can also be modulated by through rare-earth cation mixing, which can be viewed as intrinsic quantum stress. We choose Nd1-XYXNiO3 (x = 0.3, 0.4) perovskites thin films as a prototype system to exhibit the tunable sharp MIT at near room temperature. By adjusting Y concentration, the transition temperature of the thin films can be changed within the range of 340-360 K. X-ray diffraction, X-ray absorption fine structure (XAFS), and in situ infrared spectroscopy are employed to probe the structural and optical property variation affected by composition and temperature. The infrared transmission intensity decreases with temperature across the MIT, indicating a pronounced thermochromic effect. Meanwhile, the XAFS result exhibits that the crystal atomistic structure changes accompanying with the Y atoms incorporation and MIT phase transition. The heavily doped Y atoms result in the pre-edge peak descent and Ni-O bond elongation, suggesting an enhanced charge disproportionation effect and the weakening of hybridization between Ni-3d and O-2p orbits.

  1. Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized Raman spectroscopy: effect of blending TIPS-pentacene with insulating polymer.

    PubMed

    James, David T; Kjellander, B K Charlotte; Smaal, Wiljan T T; Gelinck, Gerwin H; Combe, Craig; McCulloch, Iain; Wilson, Richard; Burroughes, Jeremy H; Bradley, Donal D C; Kim, Ji-Seon

    2011-12-27

    We report thin-film morphology studies of inkjet-printed single-droplet organic thin-film transistors (OTFTs) using angle-dependent polarized Raman spectroscopy. We show this to be an effective technique to determine the degree of molecular order as well as to spatially resolve the orientation of the conjugated backbones of the 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pentacene) molecules. The addition of an insulating polymer, polystyrene (PS), does not disrupt the π-π stacking of the TIPS-Pentacene molecules. Blending in fact improves the uniformity of the molecular morphology and the active layer coverage within the device and reduces the variation in molecular orientation between polycrystalline domains. For OTFT performance, blending enhances the saturation mobility from 0.22 ± 0.05 cm(2)/(V·s) (TIPS-Pentacene) to 0.72 ± 0.17 cm(2)/(V·s) (TIPS-Pentacene:PS) in addition to improving the quality of the interface between TIPS-Pentacene and the gate dielectric in the channel, resulting in threshold voltages of ∼0 V and steep subthreshold slopes.

  2. A Low Temperature, Solution-Processed Poly(4-vinylphenol), YO(x) Nanoparticle Composite/Polysilazane Bi-Layer Gate Insulator for ZnO Thin Film Transistor.

    PubMed

    Shin, Hyeonwoo; Kang, Chan-Mo; Chae, Hyunsik; Kim, Hyun-Gwan; Baek, Kyu-Ha; Choi, Hyoung Jin; Park, Man-Young; Do, Lee-Mi; Lee, Changhee

    2016-03-01

    Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C.

  3. Electric field induced metal-insulator transition in VO2 thin film based on FTO/VO2/FTO structure

    NASA Astrophysics Data System (ADS)

    Hao, Rulong; Li, Yi; Liu, Fei; Sun, Yao; Tang, Jiayin; Chen, Peizu; Jiang, Wei; Wu, Zhengyi; Xu, Tingting; Fang, Baoying

    2016-03-01

    A VO2 thin film has been prepared using a DC magnetron sputtering method and annealing on an F-doped SnO2 (FTO) conductive glass substrate. The FTO/VO2/FTO structure was fabricated using photolithography and a chemical etching process. The temperature dependence of the I-V hysteresis loop for the FTO/VO2/FTO structure has been analyzed. The threshold voltage decreases with increasing temperature, with a value of 9.2 V at 20 °C. The maximum transmission modulation value of the FTO/VO2/FTO structure is 31.4% under various temperatures and voltages. Optical modulation can be realized in the structure by applying an electric field.

  4. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  5. Thin transparent films formed from powdered glass

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Glass film less than five mils thick is formed from powdered glass dispersed in an organic liquid, deposited on a substrate, and fused into place. The thin films can be cut and shaped for contact lenses, optical filters and insulating layers.

  6. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  7. Environmentally stable flexible metal-insulator-metal capacitors using zirconium-silicate and hafnium-silicate thin film composite materials as gate dielectrics.

    PubMed

    Meena, Jagan Singh; Chu, Min-Ching; Wu, Chung-Shu; Ravipati, Srikanth; Ko, Fu-Hsiang

    2011-08-01

    Fully flexible metal-insulator-metal (MIM) capacitors fabricated on 25 microm thin polyimide (PI) substrates via the surface sol-gel process using 10-nm-thick zirconium-silicate (ZrSixOy) and hafnium-silicate (HfSimOn) films as gate dielectrics. The surface morphology of the ZrSixOy and HfSimOn films were investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free surface growth had occurred on the PI. Both the films treated with oxygen (O2) plasma and annealing (ca. 250 degrees C) consisted of amorphous phase; confirmed by X-ray diffraction. We employed X-ray photoelectron spectroscopy (XPS) at high resolution to examine the chemical composition of the films subjected to various treatment conditions. The shift of the XPS peaks towards higher binding energy revealed the O2 plasma-pretreatment followed by annealing was the most effective process to the surface oxidation at relatively low-temperature, for further passivate the grease traps and making dielectric films thermally stable. The ZrSixOy and HfSimOn films in sandwich-like MIM configuration on the PI substrates exhibited the low leakage current densities of 7.1 x 10(-9) and 8.4 x 10(-9) A/cm2 at applied electric field of 10 MV/cm and maximum capacitance densities of 7.5 and 5.3 fF/microm2 at 1 MHz, respectively. In addition, the ZrSixOy and HfSimOn films in MIM capacitors showed the estimated dielectric constants of 8.2 and 6.0, respectively. Prior to use of flexible MIM capacitors in advanced flexible electronic devices; the reliability test was studied by applying day-dependent leakage current density measurements up to 30 days. These films of silicate-surfactant mesostructured materials have special interest to be used as gate dielectrics in future for flexible metal-oxide-semiconductor devices.

  8. Optical thin film devices

    NASA Astrophysics Data System (ADS)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  9. Effects of gate insulator using high pressure annealing on the characteristics of solid phase crystallized polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Moojin; Jin, GuangHai

    2009-04-01

    The oxidizing ambient was built using high pressure H2O vapor at 550 °C. For the solid phase crystallization (SPC) polycrystalline silicon (poly-Si) that is annealed for 1 h at 2 MPa, the oxide thickness is about 150 Å. The oxide layer is approximately 90 Å above the original surface of the poly-Si and 60 Å below the original surface. The oxide layer is used as the first gate insulator layer of thin-film transistors (TFTs). The heating at 550 °C with 2 MPa H2O vapor increased the carrier mobility from 17.6 cm2/V s of the conventional SPC process to 30.4 cm2/V s, and it reduced the absolute value of the threshold voltage (Vth) from 4.13 to 3.62 V. The subthreshold swing also decreased from 0.72 to 0.60 V/decade. This improvement is attributed mainly to the reduction in defect density at the oxide/poly-Si interface and in the poly-Si film by the high pressure annealing (HPA) process. Since the realization of excellent performance at the oxide/poly-Si interface and in poly-Si depends on the defect density, the poly-Si having the thermal oxide formed by a combined process of SPC and HPA may be well suited for fabrication of poly-Si TFTs for flat panel displays such as active matrix organic light emitting diodes.

  10. Studies on electric triggering of the metal-insulator transition in VO2 thin films between 77 K and 300 K

    NASA Astrophysics Data System (ADS)

    Yang, Zheng; Hart, Sean; Ko, Changhyun; Yacoby, Amir; Ramanathan, Shriram

    2011-08-01

    We investigate the electrically triggered metal-insulator transition (E-MIT) in VO2 thin films at temperatures far below the structural phase transition temperature (˜340 K). At 77 K, the maximum current jump observed across the E-MIT is nearly 300×. The threshold voltage for E-MIT decreases slightly from ˜2.0 V at 77 K to ˜1.1 V at 300 K across ˜200 nm thick films, which scales weakly over the temperature range of 77-300 K with an activation energy of ˜5 meV. The phase transition properties are found to be stable after over one thousand scans, indicating reproducible measurements. Analysis of the scaling behavior suggests that the observed weak temperature-dependence of the threshold voltages for E-MIT is smaller than that predicted for a purely current induced Joule heating effect and may include contribution from field effect or carrier injection under applied bias. The results are of potential relevance to the field of phase transition oxide electronics and further understanding of the transition mechanisms.

  11. Mechanics of Thin Films

    DTIC Science & Technology

    1992-02-06

    S. Hwang, Thermal conductivity of thin films: measurement and microstructural effects, in Thin- film heat transfer, properties and processing, ed...thermal, electrical, optical and magnetic properties . As typical examples we mention microelectronics, optical coatings and multilayers for use in optical...interplay between mechanical properties (elastic moduli), thermal properties (thermal conductivity, thermal expansion coefficient), and optical

  12. Theory of Strain-Controlled Magnetotransport and Stabilization of the Ferromagnetic Insulating Phase in Manganite Thin Films

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anamitra; Cole, William S.; Woodward, Patrick; Randeria, Mohit; Trivedi, Nandini

    2013-04-01

    We show that applying strain on half-doped manganites makes it possible to tune the system to the proximity of a metal-insulator transition and thereby generate a colossal magnetoresistance (CMR) response. This phase competition not only allows control of CMR in ferromagnetic metallic manganites but can be used to generate CMR response in otherwise robust insulators at half-doping. Further, from our realistic microscopic model of strain and magnetotransport calculations within the Kubo formalism, we demonstrate a striking result of strain engineering that, under tensile strain, a ferromagnetic charge-ordered insulator, previously inaccessible to experiments, becomes stable.

  13. Preservation of pristine Bi2Te3 thin film topological insulator surface after ex situ mechanical removal of Te capping layer

    NASA Astrophysics Data System (ADS)

    Fornari, C. I.; Rappl, P. H. O.; Morelhão, S. L.; Peixoto, T. R. F.; Bentmann, H.; Reinert, F.; Abramof, E.

    2016-10-01

    Ex situ analyses on topological insulator films require protection against surface contamination during air exposure. This work reports on a technique that combines deposition of protective capping just after epitaxial growth and its mechanical removal inside ultra-high vacuum systems. This method was applied to Bi2Te3 films with thickness varying from 8 to 170 nm. Contrarily to other methods, this technique does not require any sputtering or thermal annealing setups installed inside the analyzing system and preserves both film thickness and surface characteristics. These results suggest that the technique presented here can be expanded to other topological insulator materials.

  14. Carbon thin film thermometry

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  15. The metal-insulator transition in vanadium dioxide: A view at bulk and surface contributions for thin films and the effect of annealing

    NASA Astrophysics Data System (ADS)

    Yin, W.; West, K. G.; Lu, J. W.; Pei, Y.; Wolf, S. A.; Reinke, P.; Sun, Y.

    2009-06-01

    Vanadium dioxide is investigated as potential oxide barrier in spin switches, and in order to incorporate VO2 layers in complex multilayer devices, it is necessary to understand the relation between bulk and surface/interface properties. Highly oriented VO2 thin films were grown on (0001) sapphire single crystal substrates with reactive bias target ion beam deposition. In the analysis of the VO2 films, bulk-sensitive methods [x-ray diffraction (XRD) and transport measurements] and surface sensitive techniques [photoelectron spectroscopy (PES) and scanning tunneling microscopy and spectroscopy] were employed. The samples were subjected to heating cycles with annealing temperatures of up to 425 and 525K. Prior to annealing the VO2 films exhibit the transition from the monoclinic to the tetragonal phase with the concurrent change in conductivity by more than a factor of 103 and their phase purity is confirmed by XRD. Annealing to 425K and thus cycling across the metal-insulator transition (MIT) temperature has no impact on the bulk properties of the VO2 film but the surface undergoes irreversible electronic changes. The observation of the valence band with PES during the annealing illustrates that the surface adopts a partially metallic character, which is retained after cooling. Annealing to a higher temperature (525K ) triggers a modification of the bulk, which is evidenced by a considerable reduction in the MIT characteristics, and a degradation in crystallite morphology. The local measurement of the conductivity with scanning tunneling spectroscopy shows the transition of the surface from predominantly semiconducting surface prior to annealing to a surface with an overwhelming contribution from metallic sections afterward. The spatial distribution of metallic regions cannot be linked in a unique manner to the crystallite size or location within the crystallites. The onset of oxygen depletion at the surface is held responsible for this behavior. The onset of bulk

  16. Reentrant Insulating State in Ultrathin Manganite Films

    SciTech Connect

    Bell, Christopher

    2011-08-11

    The transport and magnetic properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin-films grown by pulsed laser deposition on (LaAlO{sub 3}){sub 0.3}(SrAl{sub 0.5}Ta{sub 0.5}O{sub 3}){sub 0.7} single crystal substrates have been investigated. A systematic series with various thicknesses of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} was used to establish a phase diagram - which showed a clear difference compared to films grown on SrTiO{sub 3} substrates, highlighting the importance of film thickness and substrate strain. At 8 unit cells, the boundary between the metallic and insulating ground states, a second abrupt metal-insulator transition was observed at low temperatures, which could be tuned with by magnetic field, and is interpreted as a signature of electronic phase separation.

  17. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  18. Biomimetic thin film synthesis

    SciTech Connect

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  19. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  20. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  1. Influence of Mn concentration on magnetic topological insulator MnxBi2−xTe3 thin-film Hall-effect sensor

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi2Te3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi2Te3. The sensors with low Mn concentrations, MnxBi2-xTe3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that ofmore » the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less

  2. Amorphous Indium Gallium Zinc Oxide Semiconductor Thin Film Transistors Using O2 Plasma Treatment on the SiNx Gate Insulator

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Sun; Moon, Yeon-Keon; Lee, Sih; Kang, Byung-Woo; Kim, Kyung-Taek; Lee, Je-Hun; Kim, Joo-Han; Ahn, Byung-Du; Park, Jong-Wan

    2010-08-01

    In this study, we investigated the role of processing parameters on the electrical characteristics of amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) fabricated using DC magnetron sputtering at room temperature. Processing parameters including the oxygen partial pressure, annealing temperature, and channel thickness have a great influence on TFT performance and better devices are obtained at a low oxygen partial pressure, annealing at 200 °C, and a low channel thickness. We attempted to improve the a-IGZO TFT performance and stability under a gate bias stress using O2 plasma treatment. With an O2 plasma treated gate insulator, remarkable properties including excellent bias stability as well as a field effect mobility (µFE) of 11.5 cm2 V-1 s-1, a subthreshold swing (S) of 0.59 V/decade, a turn-on voltage (VON) of -1.3 V, and an on/off current ratio (ION/IOFF) of 105 were achieved.

  3. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  4. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  5. Magneto-Electric Effect in Three-Dimensional Topological Insulators from Surface Magnetic Disorder and Ferromagnetic Thin Film

    NASA Astrophysics Data System (ADS)

    Nomura, Kentaro

    2012-02-01

    Topologically nontrivial gapped phases can be characterized by the bulk topological indices and the surface gapless modes. The topological magneto-electric (ME) effect is a novel manifestation of the bulk-surface correspondence in which the bulk magnetization is generated by a circulating quantized Hall current flowing at the surface of topological insulators. To realize the topological ME effect, there are two difficulties: (a) one needs to attach an insulating ferromagnetic layer with the magnetization normal to the surface all pointing out or in. (b) The Fermi energy must be tuned accurately within the small gap of the surface Dirac spectrum opened by the exchange interaction. In this talk we discuss the anomalous quantized Hall current on the surface of a magnetically doped topological insulator, basing on the two-dimensional surface Dirac Hamiltonian with magnetic disorder. The scaling analysis indicates that, in sharp contrast to the time-reversal-invariant cases, the all surface states tend to be localized while the Hall conductivity is quantized no matter whether the Fermi level resides within or out of the surface gap. This resolves problem(b). Furthermore it is shown that this also resolves problem (a) with the simultaneous application of magnetic and electric fields parallel or antiparallel to each other. By this method, doped local spins can be controlled by the bulk energy which can overcome the magnetic anisotropy and Zeeman splitting at the surface. We also comment on the generalization of the topological responses to the case of topological superconductors and superfluids. This work was done in collaboration with Naoto Nagaosa, Shinsei Ryu, and Akira Furusaki. K. Nomura and N. Nagaosa, Phys. Rev. Lett. 106, 166802 (2011); K. Nomura, S. Ryu, A. Furusaki, N. Nagaosa, arXiv:1108.5054.

  6. Welding Wires To Thin Thermocouple Films

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Kim, Walter S.; Danzey, Gerald A.; Pencil, Eric; Wadel, Mary

    1993-01-01

    Parallel-gap resistance welding yields joints surviving temperatures of about 1,000 degrees C. Much faster than thermocompression bonding. Also exceeds conductive-paste bonding and sputtering thin films through porous flame-sprayed insulation on prewelded lead wires. Introduces no foreign material into thermocouple circuit and does not require careful control of thickness of flame-sprayed material.

  7. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  8. Anomalous photoelectric effect of a polycrystalline topological insulator film.

    PubMed

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-07-29

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators.

  9. Anomalous Photoelectric Effect of a Polycrystalline Topological Insulator Film

    PubMed Central

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-01-01

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators. PMID:25069391

  10. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  11. Biomimetic thin film deposition

    NASA Astrophysics Data System (ADS)

    Rieke, P. C.; Campbell, A. A.; Tarasevich, B. J.; Fryxell, G. E.; Bentjen, S. B.

    1991-04-01

    Surfaces derivatized with organic functional groups were used to promote the deposition of thin films of inorganic minerals. These derivatized surfaces were designed to mimic the nucleation proteins that control mineral deposition during formation of bone, shell, and other hard tissues in living organisms. By the use of derivatized substrates control was obtained over the phase of mineral deposited, the orientation of the crystal lattice and the location of deposition. These features are of considerable importance in many technically important thin films, coatings, and composite materials. Methods of derivatizing surfaces are considered and examples of controlled mineral deposition are presented.

  12. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  13. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  14. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  15. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  16. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  17. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  18. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  19. VACUUM DEPOSITION OF THIN FILMS,

    DTIC Science & Technology

    The book deals with methods of obtaining and processing thin films , methods of measuring the deposition rate and thickness of thin-film layers, and...the main fields of application of thin films . Vacuum requirements and the requirements for the composition of the residual medium in thermal...evaporation and cathode sputtering are given, and modern methods of producing and measuring vacuums and the equipment used in obtaining thin films are described. (Author)

  20. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  1. Protein thin film machines.

    PubMed

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  2. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  3. Coalescence and percolation in thin metal films

    NASA Astrophysics Data System (ADS)

    Yu, X.; Duxbury, P. M.; Jeffers, G.; Dubson, M. A.

    1991-12-01

    Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates (pc) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-pc's arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius Rc, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.

  4. Carrier tuning the metal-insulator transition of epitaxial La0.67Sr0.33MnO3 thin film on Nb doped SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Zhan, J. M.; Li, P. G.; Liu, H.; Tao, S. L.; Ma, H.; Shen, J. Q.; Pan, M. J.; Zhang, Z. J.; Wang, S. L.; Yuan, G. L.

    2016-04-01

    La0.67Sr0.33MnO3 (LSMO) thin films were deposited on (001)SrTiO3(STO) and n-type doped Nb:SrTiO3(NSTO) single crystal substrates respectively. The metal to insulator transition temperature(TMI) of LSMO film on NSTO is lower than that on STO, and the TMI of LSMO can be tuned by changing the applied current in the LSMO/NSTO p-n junction. Such behaviors were considered to be related to the carrier concentration redistribution in LSMO film caused by the change of depletion layer thickness in p-n junction which depends greatly on the applied electric field. The phenomenon could be used to configure artificial devices and exploring the underlying physics.

  5. Time-resolved terahertz dynamics in thin films of the topological insulator Bi2Se3

    SciTech Connect

    Valdés Aguilar, R.; Qi, J.; Brahlek, M.; Bansal, N.; Azad, A.; Bowlan, J.; Oh, S.; Taylor, A. J.; Prasankumar, R. P.; Yarotski, D. A.

    2015-01-07

    We use optical pump–THz probe spectroscopy at low temperatures to study the hot carrier response in thin Bi2Se3 films of several thicknesses, allowing us to separate the bulk from the surface transient response. We find that for thinner films the photoexcitation changes the transport scattering rate and reduces the THz conductivity, which relaxes within 10 picoseconds (ps). For thicker films, the conductivity increases upon photoexcitation and scales with increasing both the film thickness and the optical fluence, with a decay time of approximately 5 ps as well as a much higher scattering rate. Furthermore, these different dynamics are attributed to the surface and bulk electrons, respectively, and demonstrate that long-lived mobile surface photo-carriers can be accessed independently below certain film thicknesses for possible optoelectronic applications.

  6. Effect of annealing temperature of Bi1.5Zn1.0Nb1.5O7 gate insulator on performance of ZnO based thin film transistors

    NASA Astrophysics Data System (ADS)

    Wei, Ye; Wei, Ren; Peng, Shi; Zhuangde, Jiang

    2016-07-01

    The bottom-gate structure ZnO based thin film transistors (ZnO-TFTs) using Bi1.5Zn1.0Nb1.5O7 (BZN) thin films as gate insulator were fabricated on Pt/SiO2/Si substrate by radio frequency magnetic sputtering. We investigated the effect of annealing temperature at 300, 400, and 500 °C on the performance of BZN thin films and ZnO-TFTs. XRD measurement confirmed that BZN thin films were amorphous in nature. BZN thin films annealed at 400 °C obtain the high capacitance density of 249 nF/cm2, high dielectric constant of 71, and low leakage current density of 10-7 A/cm2 on/off current ratio and field effect mobility of ZnO-TFTs annealed at 400 °C are approximately one order of magnitude and two times, respectively higher than that of ZnO-TFTs annealed at 300 °C. When the annealing temperature is 400 °C, the electrical performance of ZnO-TFTs is enhanced remarkably. Devices obtain a low sub-threshold swing of 470 mV/dec and surface states density of 3.21 × 1012cm-2. Project supported by the National Natural Science Foundation of China (Nos. 51332003, 51202184), the International Science & Technology Cooperation Program of China (Nos. 2010DFB13640, 2011DFA51880), and the “111 Project” of China (No. B14040).

  7. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  8. Radiation effects on organic insulator films at low temperature

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Miyata, K.

    1985-08-01

    The radiation effects of some organic insulator films have been studied at low temperature. The specimens used were thin films of polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyether etherketone (PEEK), and polypyromellitimide (PPMI, Kapton H). Reactor irradiations were performed at 20 K and tensile properties of the irradiated films were measured at 77 K. In the irradiated PET, the tensile strength remarkably decreased with an increase in the absorbed dose above 2 MGy and the ultimate elongation gradually reduced with increasing dose. On the other hand, no essential changes in mechanical properties were observed for both PPS and PEEK films after irradiation up to 8 MGy at 20 K. As far as the present experiments are concerned, the radiation tolerances of PPS and PEEK films have been proved to be of the same level as that of PPMI film.

  9. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOEpatents

    Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  10. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  11. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  12. Thin film composite electrolyte

    DOEpatents

    Schucker, Robert C.

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  13. Fabrication of thin film heat flux sensors

    NASA Technical Reports Server (NTRS)

    Will, Herbert

    1991-01-01

    Thin-film heat-flux sensors have been constructed in the form of arrays of thermocouples on upper and lower surfaces of an insulating layer, so that flux values are proportional to the temperature difference across the upper and lower surface of the insulation material. The sensor thermocouples are connected in thermopile arrangement, and the structure is patterned with photolithographic techniques. Both chromel-alumel and Pt-Pt/Rh thermocouples have been devised; the later produced 28 microvolts when exposed to the radiation of a 1000 C furnace.

  14. Dewetting of Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Dixit, P. S.; Sorensen, J. L.; Kent, M.; Jeon, H. S.

    2001-03-01

    DEWETTING OF THIN POLYMER FILMS P. S. Dixit,(1) J. L. Sorensen,(2) M. Kent,(2) H. S. Jeon*(1) (1) Department of Petroleum and Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, jeon@nmt.edu (2) Department 1832, Sandia National Laboratories, Albuquerque, NM. Dewetting of thin polymer films is of technological importance for a variety of applications such as protective coatings, dielectric layers, and adhesives. Stable and smooth films are required for the above applications. Above the glass transition temperature (Tg) the instability of polymer thin films on a nonwettable substrate can be occurred. The dewetting mechanism and structure of polypropylene (Tg = -20 ^circC) and polystyrene (Tg = 100 ^circC) thin films is investigated as a function of film thickness (25 Åh < 250 Åand quenching temperature. Contact angle measurements are used in conjunction with optical microscope to check the surface homogeneity of the films. Uniform thin films are prepared by spin casting the polymer solutions onto silicon substrates with different contact angles. We found that the stable and unstable regions of the thin films as a function of the film thickness and quenching temperature, and then constructed a stability diagram for the dewetting of thin polymer films. We also found that the dewetting patterns of the thin films are affected substantially by the changes of film thickness and quenching temperature.

  15. Ferroelectric/Dielectric Double Gate Insulator Spin-Coated Using Barium Titanate Nanocrystals for an Indium Oxide Nanocrystal-Based Thin-Film Transistor.

    PubMed

    Pham, Hien Thu; Yang, Jin Ho; Lee, Don-Sung; Lee, Byoung Hun; Jeong, Hyun-Dam

    2016-03-23

    Barium titanate nanocrystals (BT NCs) were prepared under solvothermal conditions at 200 °C for 24 h. The shape of the BT NCs was tuned from nanodot to nanocube upon changing the polarity of the alcohol solvent, varying the nanosize in the range of 14-22 nm. Oleic acid-passivated NCs showed good solubility in a nonpolar solvent. The effect of size and shape of the BT NCs on the ferroelectric properties was also studied. The maximum polarization value of 7.2 μC/cm(2) was obtained for the BT-5 NC thin film. Dielectric measurements of the films showed comparable dielectric constant values of BT NCs over 1-100 kHz without significant loss. Furthermore, the bottom gate In2O3 NC thin film transistors exhibited outstanding device performance with a field-effect mobility of 11.1 cm(2) V(-1) s(-1) at a low applied gate voltage with BT-5 NC/SiO2 as the gate dielectric. The low-density trapped state was observed at the interface between the In2O3 NC semiconductor and the BT-5 NCs/SiO2 dielectric film. Furthermore, compensation of the applied gate field by an electric dipole-induced dipole field within the BT-5 NC film was also observed.

  16. Holographic thin film analyzer

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Norden, B. N. (Inventor)

    1973-01-01

    A system for the analysis and measurement of thin films in which the light output of a laser is split into two beams is discribed. The first beam is focused to illuminate the entire area of a photographic plate and the second beam is colummated and directed through a relatively small portion of the photographic plate onto the sample with the film to be observed. The surface of the sample is positioned at a slight angle with respect to a plane normal to the second beam and the light reflected from the sample arrives back at the photographic plate in a region other than through which the second beam originally passes. By making two successive exposures during the deposition of material on the surface of the sample, holograms are recorded on the photographic plate. The plate is then developed and interference lines of the hologram provide a measurement of the film or material deposited between exposure.

  17. Center for Thin Film Studies

    DTIC Science & Technology

    1991-01-22

    techniques for reducing roughness were developed and tested . Substrate Preparation We deposited Si films by sputtering on a variety of substrates, and...deposition," Mod. Phys. Lett. B 3, 1039 (1989). 41 42 Nd: YAG LASER ABLATION OF BaTiO 3 THIN FILMS *URSULA J. GIBSON, **J.A. RUFFNER,***J.J. MCNALLY...thin films of barium titanate onto a variety of substrates, using picosecond and nanosecond pulsed Nd: YAG lasers. The films were deposited from a hot

  18. Interfacial reaction between metal-insulator transition material NbO2 thin film and wide band gap semiconductor GaN

    NASA Astrophysics Data System (ADS)

    Posadas, Agham; Kvit, Alexander; Demkov, Alexander

    Materials that undergo a metal-insulator transition (MIT) are potentially useful for a wide variety of applications including electronic and opto-electronic switches, memristors, sensors, and coatings. In most such materials, the MIT is driven by temperature. In one such material, NbO2, the MIT mechanism is primarily of the Peierls-type, in which the dimerization of the Nb atoms without electron correlation causes the transition from metallic to semiconducting. We describe our initial work at combining NbO2 and GaN in epitaxial form, which could be potentially useful in resistive switching devices operating at very high temperatures. We grow NbO2 films on GaN(0001)/Si(111) substrates using reactive molecular beam epitaxy from a metal evaporation source and molecular oxygen. X-ray diffraction shows that the films are found to grow with a single out of plane orientation but with three symmetry-related orientation domains in the plane. In situ x-ray photoelectron spectroscopy confirms that the phase pure NbO2 is formed but that a chemical reaction occurs between the GaN and NbO2 during the growth forming a polycrystalline interfacial layer. We perform STEM-EELS analysis of the film and the interface to further elucidate their chemical and structural properties.

  19. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  20. High temperature polymer dielectric film insulation

    NASA Technical Reports Server (NTRS)

    Jones, Robert J.

    1994-01-01

    PFPI polymers were invented in the late 1970's. Assessment of emerging requirements has dictated that 300 C performance is the goal for next generation wire insulation. TRW PFPI as superior 300 C polymer candidates is presented. Included is a comparison of promising PFPI film properties with Kapton. Also included are the promising bulk polymer or coating properties.

  1. Cooper pair islanding model of insulating nanohoneycomb films

    NASA Astrophysics Data System (ADS)

    Hollen, S. M.; Rudisaile, E.; Shainline, J.; Xu, J. M.; Valles, J. M., Jr.

    2012-02-01

    Nanohoneycomb (NHC) amorphous Bi thin films, made by thermal evaporation onto substrates that contain a nanometer-scale array of holes and regular surface height variations, exhibit an insulating phase of localized Cooper pairs. Recently, we described how thickness variations induced by the substrate height variations can give rise to superconducting island formation.ootnotetextHollen et. al., Phys. Rev. B, 84(6), August 2011. This work is supported by the AAUW, the NSF through Grant No. DMR-0605797 and No. DMR-0907357, by the AFRL, and by the ONR. Here, we will present an extension of this analysis to suggest how the island sizes evolve through the magnetic field-driven superconductor-insulator transition. Using this islanding picture, we will discuss the applicability of a granular array model to explain the appearance and behavior of the CPI phase in these films. Finally, we will discuss recent experimental tests of this proposal for thickness-undulation-driven Cooper pair localization.

  2. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  3. Surface and substrate induced effects on thin films of the topological insulators Bi2Se3 and Bi2Te3

    SciTech Connect

    Liu, Wenliang; Peng, Xiangyang; Wei, Xiaolin; Yang, Hong; Stocks, George Malcolm; Zhong, Jianxin

    2013-01-01

    Based on van der Waals density functional calculations, we have studied few-quintuple-layer (QL) films of Bi2Se3 and Bi2Te3. The separation between the QLs near the surface is found to have a large increase after relaxation, whereas, the separation between the inner QLs is smaller and approaches the bulk value as the thickness grows, showing a two-dimensional to three-dimensional structural crossover. Accordingly, the surface Dirac cone of the Bi2Se3 film is evidently gapped for small thicknesses (two to four QLs), and the gap is reduced and, finally, is closed with the increasing thickness, agreeing well with the experiments. We further studied the substrate effect by investigating the Bi2Se3/graphene system. It is found that the underlying graphene induces a giant thickness-dependent Rashba splitting and Dirac point shift. Because Bi2Te3 films have smaller relative inter-QL expansion and stronger spin-orbit coupling, the topological features start to appear in the film as thin as two QLs in good accord with the experiments.

  4. Tuning thermoelectricity in a Bi2Se3 topological insulator via varied film thickness

    DOE PAGES

    Guo, Minghua; Wang, Zhenyu; Xu, Yong; ...

    2016-01-12

    We report thermoelectric transport studies on Bi2Se3 topological insulator thin films with varied thickness grown by molecular beam epitaxy. We find that the Seebeck coefficient and thermoelectric power factor decrease systematically with the reduction of film thickness. These experimental observations can be explained quantitatively by theoretical calculations based on realistic electronic band structure of the Bi2Se3 thin films. Lastly, this work illustrates the crucial role played by the topological surface states on the thermoelectric transport of topological insulators, and sheds new light on further improvement of their thermoelectric performance.

  5. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  6. Methods of Producing Thin Films,

    DTIC Science & Technology

    The report describes various methods of producing thin films , especially for microelectronics. In addition to the classical methods of forming thin ... films by vacuum vapor deposition, it also describes processes of diode sputtering and modern methods of cathode sputtering by means of a third

  7. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  8. Magnetochromatic thin-film microplates.

    PubMed

    He, Le; Janner, Michael; Lu, Qipeng; Wang, Mingsheng; Ma, Hua; Yin, Yadong

    2015-01-07

    A new type of magnetochromatic material is developed based on thin-film interference of microplates self-assembled from super-paramagnetic nanocrystals. Dynamic optical tuning can be achieved through orientational manipulation of free-standing super-paramagnetic thin-film microplates using external magnetic fields.

  9. Thin Film Inorganic Electrochemical Systems.

    DTIC Science & Technology

    1995-07-01

    determined that thin film cathodes of LiCoO2 can be readily performed by either spray pyrolysis or spin coating . These cathodes are electrochemically...active. We have also determined that thin film anodes of Li4Ti5O12 can be prepared by spray pyrolysis or spin coating . These anodes are also

  10. High-Mobility Transparent SnO2 and ZnO-SnO2 Thin-Film Transistors with SiO2/Al2O3 Gate Insulators

    NASA Astrophysics Data System (ADS)

    Cheong, Woo-Seok; Yoon, Sung-Min; Hwang, Chi-Sun; Chu, Hye Yong

    2009-04-01

    Using a double-layered gate insulator [SiO2 (100 nm)/Al2O3 (10 nm)] and a dry-etching process for the channel layer, we could obtain high mobility top-gate SnO2 and ZnO-SnO2 (ZTO) transparent thin-film transistor (TTFT). After annealing at 300 °C, for 1 h in O2 ambient, the saturated mobility of SnO2 TTFT was 17.4 cm2 s-1 V-1, and that of ZTO TTFT was 50.4 cm2 s-1 V-1. Generally, both devices operated in the enhancement mode with a drain current on-off ratio of ˜106.

  11. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  12. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  13. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  14. Tunable metal-insulator transition in Nd{sub 1−x}Y{sub x}NiO{sub 3} (x = 0.3, 0.4) perovskites thin film at near room temperature

    SciTech Connect

    Shao, Tao; Qi, Zeming Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Zhang, Guobin; Wang, Yu; Liu, Miao

    2015-07-13

    Metal-insulator transition (MIT) occurs due to the charge disproportionation and lattice distortions in rare-earth nickelates. Existing studies revealed that the MIT behavior of rare-earth nickelates is fairly sensitive to external stress/pressure, suggesting a viable route for MIT strain engineering. Unlike applying extrinsic strain, the MIT can also be modulated by through rare-earth cation mixing, which can be viewed as intrinsic quantum stress. We choose Nd{sub 1−X}Y{sub X}NiO{sub 3} (x = 0.3, 0.4) perovskites thin films as a prototype system to exhibit the tunable sharp MIT at near room temperature. By adjusting Y concentration, the transition temperature of the thin films can be changed within the range of 340–360 K. X-ray diffraction, X-ray absorption fine structure (XAFS), and in situ infrared spectroscopy are employed to probe the structural and optical property variation affected by composition and temperature. The infrared transmission intensity decreases with temperature across the MIT, indicating a pronounced thermochromic effect. Meanwhile, the XAFS result exhibits that the crystal atomistic structure changes accompanying with the Y atoms incorporation and MIT phase transition. The heavily doped Y atoms result in the pre-edge peak descent and Ni-O bond elongation, suggesting an enhanced charge disproportionation effect and the weakening of hybridization between Ni-3d and O-2p orbits.

  15. The thin film microwave iris

    NASA Technical Reports Server (NTRS)

    Ramey, R. L.; Landes, H. S.; Manus, E. A.

    1972-01-01

    Development of waveguide iris for microwave coupling applications using thin film techniques is discussed. Production process and installation of iris are described. Iris improves power transmission properties of waveguide window.

  16. Interference Colors in Thin Films.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1979-01-01

    Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)

  17. Thin film strain transducer

    NASA Astrophysics Data System (ADS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  18. Thin-film Sensors for Space Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Englund, D. R.

    1985-01-01

    SSME components such as the turbine blades of the high pressure fuel turbopump are subjected to rapid and extreme thermal transients that contribute to blade cracking and subsequent failure. The objective was to develop thin film sensors for SSME components. The technology established for aircraft gas turbine engines was adopted to the materials and environment encountered in the SSME. Specific goals are to expand the existing thin film sensor technology, to continue developing improved sensor processing techniques, and to test the durability of aircraft gas turbine engine technology in the SSME environment. A thin film sensor laboratory is being installed in a refurbished clean room, and new sputtering and photoresist exposure equipment is being acquired. Existing thin film thermocouple technology in an SSME environment are being tested. Various coatings and their insulating films are being investigated for use in sensor development.

  19. Multilayer Thin-Film Microcapacitors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Thakoor, Anil; Karmon, Dan

    1995-01-01

    Miniature capacitors containing multiple alternating thin-film dielectric and metal layers proposed, especially for use in integrated and hybrid electronic circuits. Because capacitance inversely proportional to thickness of dielectric layers, use of thin, high-quality dielectric layers affords capacitance and energy-storage densities much greater than now available. These devices much smaller and more reliable than state-of-art capacitors.

  20. Thin film growth of a topological crystal insulator SnTe on the CdTe (111) surface by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryo; Yamaguchi, Tomonari; Ohtaki, Yusuke; Akiyama, Ryota; Kuroda, Shinji

    2016-11-01

    We report molecular beam epitaxial growth of a SnTe (111) layer on a CdTe template, fabricated by depositing it on a GaAs (111)A substrate, instead of BaF2 which has been conventionally used as a substrate. By optimizing temperatures for the growth of both SnTe and CdTe layers and the SnTe growth rate, we could obtain SnTe layers of the single phase grown only in the (111) orientation and of much improved surface morphology from the viewpoint of the extension and the flatness of flat regions, compared to the layers grown on BaF2. In this optimal growth condition, we have also achieved a low hole density of the order of 1017 cm-3 at 4 K, the lowest value ever reported for SnTe thin films without additional doping. In the magnetoresistance measurement on this optimized SnTe layer, we observe characteristic negative magneto-conductance which is attributed to the weak antilocalization effect of the two-dimensional transport in the topological surface state.

  1. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  2. Fabrication of Thin Film Heat Flux Sensors

    NASA Technical Reports Server (NTRS)

    Will, Herbert A.

    1992-01-01

    Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.

  3. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  4. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  5. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  6. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  7. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  8. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  9. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  10. Thin-Film Resistance Heat-Flux Sensors

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Blaha, Charles A.

    2005-01-01

    Thin-film heat-flux sensors of a proposed type would offer advantages over currently available thin-film heat flux sensors. Like a currently available thin-film heat-flux sensor, a sensor according to the proposal would be based on measurement of voltages related to the temperatures of thin metal films on the hotter and colder faces of a layer of an electrically insulating and moderately thermally conductive material. The heat flux through such a device is proportional to the difference between the temperatures and to the thermal conductivity of the layer. The advantages of the proposed sensors over the commercial ones would arise from the manner in which the temperature-related voltages would be generated and measured.

  11. Drying of thin colloidal films

    NASA Astrophysics Data System (ADS)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  12. Thin-film forces in pseudoemulsion films

    SciTech Connect

    Bergeron, V.; Radke, C.J. |

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  13. Thin film technologies II; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    NASA Astrophysics Data System (ADS)

    Jacobsson, J. Roland

    1986-01-01

    Papers are presented on automated optical coating processes and thin film production with an optical thickness monitoring system; the ultrasonic precision cleaning of optical components prior to and after vacuum coating; a wideband antireflection coating design by the random search approach; a computer-aided design of thin film optical coatings; subjective and objective methods for surface inspection; and micro/ultramicro hardness measurements with insulating films. Topics discussed include optical absorption in amorphous semiconductor films; the optical properties of thin silicide layers; laser damage to optical coatings; and light scattering and characterization of thin films; ion and photon-beam assisted deposition of thin films; and low temperature photo-CVD silicon nitride characterization. Consideration is given to the measurement of absorption in thin films using laser calorimetry; coherence loss due to thin film interface roughness; the performance of sputter deposited multilayer X-ray mirrors; and the stability of hard coating filters.

  14. Vanadium dioxide thin films for smart windows: optical design and performance improvement

    NASA Astrophysics Data System (ADS)

    He, Xinfeng; Gu, Congcong; Chen, Fei; Xu, Xiaofeng

    2013-12-01

    The high quality vanadium dioxide (VO2) thin films have been fabricated successfully on sapphire by a simple novel sputtering oxidation coupling (SOC) method. Transmittance spectra of vanadium dioxide film have been measured between 25 °C and 90 °C. The thin film samples exhibit a good insulator-metal transition near room temperature. The optical constants of VO2 thin film samples were derived by fitting the transmittance spectra using the Drude-Lorentz model. In order to improve the transition efficiency, the thin film thickness was optimized by the optical design. The calculated results with different thin film thickness show that VO2 thin film with 84 nm owns a maximums value of the transition efficiency. This research will promote VO2 thin film optical performance improvement for the smart windows.

  15. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  16. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  17. Observation of quantum-tunnelling-modulated spin texture in ultrathin topological insulator Bi2Se3 films.

    PubMed

    Neupane, Madhab; Richardella, Anthony; Sánchez-Barriga, Jaime; Xu, SuYang; Alidoust, Nasser; Belopolski, Ilya; Liu, Chang; Bian, Guang; Zhang, Duming; Marchenko, Dmitry; Varykhalov, Andrei; Rader, Oliver; Leandersson, Mats; Balasubramanian, Thiagarajan; Chang, Tay-Rong; Jeng, Horng-Tay; Basak, Susmita; Lin, Hsin; Bansil, Arun; Samarth, Nitin; Hasan, M Zahid

    2014-05-12

    Understanding the spin-texture behaviour of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nanodevices. Here, by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunnelling-dependent evolution of spin configuration in topological insulator thin films across the metal-to-insulator transition. We report a systematic binding energy- and wavevector-dependent spin polarization for the topological surface electrons in the ultrathin gapped-Dirac-cone limit. The polarization decreases significantly with enhanced tunnelling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model that captures this delicate relationship between quantum tunnelling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nanodevice.

  18. Dielectric Composite Thin Films

    DTIC Science & Technology

    1989-11-01

    more compressive under deposition conditions, such as high temperature, low pressure or energetic ion bombardment, that produce a more densely packed...film porosity and silica content. Thus, films formed at high temperatures and low pressures , as well as under ion bombardment during deposition, have...and their mixtures were deposited on 100-300 *C substrates and under reactive gas III. RESULTS pressures of 1-10x 10- Torr 02. 02 was UHP grade with A

  19. Low work function, stable thin films

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  20. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  1. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  2. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  3. Influence of Mn concentration on magnetic topological insulator MnxBi2−xTe3 thin-film Hall-effect sensor

    SciTech Connect

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Hadimani, R. L.; Jiles, D. C.

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi2Te3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi2Te3. The sensors with low Mn concentrations, MnxBi2-xTe3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.

  4. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Park, Sang-Hee Ko; Choi, Kyung Cheol

    2016-05-01

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al2O3, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔVth) was 0 V even after a PBS time (tstress) of 3000 s under a gate voltage (VG) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔVth value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔVth values resulting from PBS quantitatively, the average oxide charge trap density (NT) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher NT resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of NT near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  5. Lithographic Micropatterning of Polythiophene Thin-Films.

    DTIC Science & Technology

    OXYGEN, POLYMERS, PROCESSING, PROPANOLS, REACTIVITIES, REFRACTIVE INDEX, REPRODUCTION(COPYING), SEMICONDUCTORS, SILICATES, SOLVENTS, STRUCTURES, SURFACE PROPERTIES, THICKNESS, THIN FILMS , THIOPHENES.

  6. Thermopower of thin iron films

    NASA Astrophysics Data System (ADS)

    Schepis, Randy; Schröder, Klaus

    1992-02-01

    Thin iron films were prepared by evaporation in a high vacuum system (pressure in the 10 -5 MPa range). The thermopower was measured in situ near room temperature as a function of film thickness. Iron films with rather high resistivity values showed a strong thickness effect of the Seeback coefficient, S, with the difference between S (bulk) and S (film) reaching values of up to (19±3) μV/K for a sample 5 nm thick. The difference between S (bulk) and S (film) decreased with increasing d values. However, a sample with a resistance value of 50 μΩ cm at d = 5 n had an S value which differed by less than 3 μV/K from S (bulk).

  7. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  8. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  9. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  10. Thin films and uses

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  11. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics

    DTIC Science & Technology

    2012-06-01

    CdTe and ZnO single-phase thin films , nanocomposite films ...for the CdTe -ZnO thin film system under these conditions. c. Optical Absorption The films produced in the present study consistently exhibited...optical absorbance spectra collected from CdTe -ZnO multilayer nanocomposite thin films . The effect of CdTe layer thickness used per deposition cycle

  12. Thin Film Phosphor Development

    DTIC Science & Technology

    1989-01-01

    followed in Fig. 1. Two different garnet phases are observed in the fired films. The "low temperature " phase observed in the film treated at 9(X)°C has a... garnets ,1 121 thle experimentall~v-ob,•crved lattice constar.als correspond to the followving lmh composition for the low and high temperature phases...deposited, which is probably an yttrium rich garnet (see Figure 1). At I100)°C we start to see the appearance of both phases. As the firing temperature

  13. Low-temperature Hall effect in bismuth chalcogenides thin films

    NASA Astrophysics Data System (ADS)

    Kuntsevich, A. Yu.; Gabdullin, A. A.; Prudkogliad, V. A.; Selivanov, Yu. G.; Chizhevskii, E. G.; Pudalov, V. M.

    2016-12-01

    Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures, thin films of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization should lead to resistivity decrease at low temperatures; in experiments, however, resistivity grows as temperature decreases. From transport measurements for several thin films (with various carrier density, thickness, and carrier mobility), and by using a purely phenomenological approach, with no microscopic theory, we show that the low-temperature growth of the resistivity is accompanied by growth of the Hall coefficient, in agreement with the diffusive electron-electron interaction correction mechanism. Our data reasonably explain the low-temperature resistivity upturn.

  14. Thin film module development

    NASA Technical Reports Server (NTRS)

    Jester, T.

    1985-01-01

    The design of ARCO Solar, Inc.'s Genesis G100 photovoltaic module was driven by several criteria, including environmental stability (both electrical and mechanical), consumer aesthetics, low materials costs, and manufacturing ease. The module circuitry is designed as a 12 volt battery charger, using monolithic patterning techniques on a glass superstrate. This patterning and interconnect method proves amenable to high volume, low cost production throughput, and the use of glass serves the dual role of handling ease and availability. The mechanical design of the module centers on environmental stability. Packaging of the glass superstrate circuit must provide good resistance to thermal and humidity exposure along with hi-pot insulation and hailstone impact resistance. The options considered are given. Ethylene vinyl acetate (EVA) is chosen as the pottant material for its excellent weatherability.

  15. Tuning thermoelectricity in a Bi2Se3 topological insulator via varied film thickness

    SciTech Connect

    Guo, Minghua; Wang, Zhenyu; Xu, Yong; Huang, Huaqing; Zang, Yunyi; Liu, Chang; Duan, Wenhui; Gan, Zhongxue; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2016-01-12

    We report thermoelectric transport studies on Bi2Se3 topological insulator thin films with varied thickness grown by molecular beam epitaxy. We find that the Seebeck coefficient and thermoelectric power factor decrease systematically with the reduction of film thickness. These experimental observations can be explained quantitatively by theoretical calculations based on realistic electronic band structure of the Bi2Se3 thin films. Lastly, this work illustrates the crucial role played by the topological surface states on the thermoelectric transport of topological insulators, and sheds new light on further improvement of their thermoelectric performance.

  16. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  17. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  18. Joining lead wires to thin platinum alloy films

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.; Claing, R. G. (Inventor)

    1983-01-01

    A two step process of joining a lead wire to .000002 m thick platinum alloy film which rests upon an equally thin alumina insulating layer which is adhered to a metal substrate is described. Typically the platinum alloy film forms part of a thermocouple for measuring the surface temperature of a gas turbine airfoil. In the first step the lead wire is deformed 30 to 60% at room temperature while the characteristic one million ohm resistance of the alumina insulating layer is monitored for degradation. In the second step the cold pressed assembly is heated at 865 to 1025 C for 4 to 75 hr in air. During the heating step any degradation of insulating layer resistance may be reversed, provided the resistance was not decreased below 100 ohm in the cold pressing.

  19. Thin film characterization using spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.

    1990-01-01

    The application of the multiple angle and wavelength (MAW) technique to measure the dielectric function of semiconducting films is discussed. This technique evaluates unambiguously the complex dielectric function, epsilon (E), of the film without any pre-assumptions. In some cases the effective medium approximation (EMA) was used to determine the volume fraction of the film components. Application of the MAW technique to several semiconducting films was published previously. Different applications and examples are given, including metal and insulator films.

  20. Flexible thin film magnetoimpedance sensors

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz.

  1. Laminated thin film solar module

    SciTech Connect

    Berman, E.; Eisner, K.P.

    1986-11-25

    This patent describes a solar module comprising: a first untempered glass sheet having a first side forming a light receiving face of a solar module and a second side, a thin film photovoltaic device fabricated on the second side of the first glass sheet, a second tempered glass sheet spaced from the second side of the first sheet and forming the primary structural member of the solar module; and a pottant layer filling substantially all space between the first and second glass sheets and bonding the sheets together. This patent describes a solar module according to claim 1 further including a second thin film photovoltaic device fabricated on a surface of the second tempered glass sheet.

  2. Thin film concentrator panel development

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1982-01-01

    The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.

  3. Thin Film Research. Volume 2

    DTIC Science & Technology

    2014-09-26

    laboratory for several years to measure ne optical properties of many different thin films. A helium-neon laser (Spectra Physics model 120, 5 milliwatt...linear interpolation between known points. Ne estimate an accuracy o 2 to 4 m over the range we have tested with available spectral line sources. 3...exam,. nes " ne e+f- ect ,- water adsorption on a +ilter. 4) The larger data base available to the computer permits better characterization o+ a +ilm’s

  4. Photoconductivity of thin organic films

    NASA Astrophysics Data System (ADS)

    Tkachenko, Nikolai V.; Chukharev, Vladimir; Kaplas, Petra; Tolkki, Antti; Efimov, Alexander; Haring, Kimmo; Viheriälä, Jukka; Niemi, Tapio; Lemmetyinen, Helge

    2010-04-01

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene ( PHT), fullerene ( C60), pyrelene tetracarboxylic diimide ( PTCDI) and copper phthalocyanine ( CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 × 10 3 Ω m and 3 × 10 4 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 × 10 8 Ω m in dark to 3.1 × 10 6 Ω m under the light.

  5. Cooper pair islanding model of insulating nanohoneycomb films

    NASA Astrophysics Data System (ADS)

    Hollen, S. M.; Valles, J. M., Jr.

    2012-07-01

    We first review evidence for the Cooper pair insulator (CPI) phase in amorphous nanohoneycomb (NHC) films. We then extend our analysis of superconducting islands induced by film thickness variations in NHC films to examine the evolution of island sizes through the magnetic field-driven SIT. Finally, using the islanding picture, we present a plausible model for the appearance and behavior of the CPI phase in amorphous NHC films.

  6. Thin-Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.

    1993-01-01

    Direct conversion of thermal energy into electrical energy using a photovoltaic cell is called thermophotovoltaic energy conversion. One way to make this an efficient process is to have the thermal energy source be an efficient selective emitter of radiation. The emission must be near the band-gap energy of the photovoltaic cell. One possible method to achieve an efficient selective emitter is the use of a thin film of rare-earth oxides. The determination of the efficiency of such an emitter requires analysis of the spectral emittance of the thin film including scattering and reflectance at the vacuum-film and film-substrate interfaces. Emitter efficiencies (power emitted in emission band/total emitted power) in the range 0.35-0.7 are predicted. There is an optimum optical depth to obtain maximum efficiency. High emitter efficiencies are attained only for low (less than 0.05) substrate emittance values, both with and without scattering. The low substrate emittance required for high efficiency limits the choice of substrate materials to highly reflective metals or high-transmission materials such as sapphire.

  7. Nonvolatile multilevel conductance and memory effects in organic thin films

    NASA Astrophysics Data System (ADS)

    Lauters, M.; McCarthy, B.; Sarid, D.; Jabbour, G. E.

    2005-12-01

    Organic thin-film structures, including organic light-emitting diodes, are demonstrated to contain multiple nonvolatile conductance states at low-read voltages. Retention time of states is more than several weeks, and more than 20 000 write-read-rewrite-read cycles have been performed with minimal degradation. The electrical characteristics of these devices are consistent with metal diffusion or filament phenomena found in metal-insulator-metal structures, suggesting a possible mechanism by which the states are stored.

  8. Space Charge Distribution Measurement in Insulation Film with Thickness of Several Tens μm

    NASA Astrophysics Data System (ADS)

    Hamano, Akihiro; Tanaka, Yasuhiro; Maeno, Takashi

    Since electronic equipment is required to be smaller and lighter, an insulating material for such equipment is consequently required to be thinner. However, under a certain DC voltage, the electric field in it becomes relatively higher according to the insulating material becomes thinner. Therefore, the insulating performance under high electric field must be important in such thin films. On the other hand, it is said that a space charge accumulation in them under DC high electric field is important because sometimes an electrical breakdown occurs in them due to an enhancement of electric field induced by the accumulated space charge. To investigate the characteristics of the space charge accumulation in them, PEA (Pulsed Electroacoustic) method is usually used. However, a spatial resolution of ordinary PEA system is not enough to observe the space charge distribution in thin films with thickness of several tens μm. Therefore, a new measurement system with high positional resolution is developed by making a thin piezo-electric film that is used as a sensor for PEA system. The obtained resolution of the developed system is 4 μm, and it is used for a typical measurement in LDPE film with thickness of 40 μm.

  9. Atomic layer deposition of thin superconducting films and multilayers

    NASA Astrophysics Data System (ADS)

    Proslier, Thomas; Klug, Jeffrey; Groll, Nikolas; Altin, Serdar; Becker, Nicholas

    2012-02-01

    We report the use of atomic layer deposition (ALD) to synthesize thin superconducting films and multilayer superconductor-insulator (S-I) heterostructures including: nitrides, carbides, and silicides, nitrides of molybdenum and titanium, and Nb1-xTixN/AlN-based S-I heterostructures. The atomic-scale thickness control afforded by ALD enables the study of superconductivity and associated phenomena in homogeneous layers in the ultra-thin film limit. Two-dimensional superconductivity in such films is of interest from a fundamental point of view, as a new effect has recently been discovered at ultra-low temperature in thin superconducting films made by ALD: the super-insulating transition. Furthermore, the ALD technique applied to superconducting films opens the way for a variety of applications, including improving the performance and decreasing the cost of high energy particle accelerators, superconducting wires for energy storage, and bolometers for radiation detection. In this respect, we will present results on the ALD growth processes, the metallurgy and superconducting properties of these coatings.

  10. Fate of the Bose insulator in the limit of strong localization and low Cooper-pair density in ultrathin films

    NASA Astrophysics Data System (ADS)

    Hollen, S. M.; Fernandes, G. E.; Xu, J. M.; Valles, J. M.

    2014-10-01

    A Bose insulator composed of a low density of strongly localized Cooper pairs develops at the two-dimensional superconductor to insulator transition (SIT) in a number of thin film systems. Investigations of ultrathin amorphous PbBi films far from the SIT described here provide evidence that the Bose insulator gives way to a second insulating phase with decreasing film thickness. At a critical film thickness dc the magnetoresistance changes sign from positive, as expected for boson transport, to negative, as expected for fermion transport, signs of local Cooper-pair phase coherence effects on transport vanish, and the transport activation energy exhibits a kink. Below dc pairing fluctuation effects remain visible in the high-temperature transport while the activation energy continues to rise. These features show that Cooper pairing persists and suggest that the localized unpaired electron states involved in transport are interspersed among regions of strongly localized Cooper pairs in this strongly localized, low Cooper-pair density phase.

  11. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    SciTech Connect

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  12. Ion Implantation of Zinc Sulphide Thin Films,

    DTIC Science & Technology

    The report considers the use of ion implantation as a means of preparing rare earth doped thin films of zinc sulphide, and presents preliminary results on the luminescence of such films doped with Tb and Er166 ions. (Author)

  13. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  14. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  15. THIN FILMS FORMED BY ELECTROCHEMICAL REACTIONS

    DTIC Science & Technology

    ELECTROCHEMISTRY, * THIN FILMS (STORAGE DEVICES), ALUMINUM, ANODES (ELECTROLYTIC CELL), CAPACITORS, CIRCUITS, MICROMETERS, NIOBIUM, OXIDATION, RESISTORS, TANTALUM, TITANIUM, TUNGSTEN, VACUUM APPARATUS, ZIRCONIUM

  16. A thin film nitinol heart valve.

    PubMed

    Stepan, Lenka L; Levi, Daniel S; Carman, Gregory P

    2005-11-01

    In order to create a less thrombogenic heart valve with improved longevity, a prosthetic heart valve was developed using thin film nitinol (NiTi). A "butterfly" valve was constructed using a single, elliptical piece of thin film NiTi and a scaffold made from Teflon tubing and NiTi wire. Flow tests and pressure readings across the valve were performed in vitro in a pulsatile flow loop. Bio-corrosion experiments were conducted on untreated and passivated thin film nitinol. To determine the material's in vivo biocompatibility, thin film nitinol was implanted in pigs using stents covered with thin film NiTi. Flow rates and pressure tracings across the valve were comparable to those through a commercially available 19 mm Perimount Edwards tissue valve. No signs of corrosion were present on thin film nitinol samples after immersion in Hank's solution for one month. Finally, organ and tissue samples explanted from four pigs at 2, 3, 4, and 6 weeks after thin film NiTi implantation appeared without disease, and the thin film nitinol itself was without thrombus formation. Although long term testing is still necessary, thin film NiTi may be very well suited for use in artificial heart valves.

  17. Thin film fuel cell electrodes.

    NASA Technical Reports Server (NTRS)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  18. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  19. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on real-world tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  20. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  1. Fully Integrated Applications of Thin Films on Low Temperature Cofired Ceramic (LTCC)

    SciTech Connect

    Ambrose Wolf; Ken Peterson; Matt O'Keefe; Wayne Huebner; Bill Kuhn

    2012-04-19

    Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC), as well as initial thin film capacitors on LTCC. The ruggedness of a multipurpose Ti-Cu-Pt-Au stack for connectivity and RF conductivity has continued to benefit fabrication and reliability in state of-the-art modules, while the capacitors have followed the traditional Metal-Insulator-Metal (MIM) style. The full integration of thin film passives with thin film connectivity traces is presented. Certain passives, such as capacitors, require specifically tailored and separately patterned thin film (multi-)layers, including a dielectric. Different capacitance values are achieved by variation of both the insulator layer thickness and the active area of the capacitor. Other passives, such as filters, require only the conductor - a single thin film multilayer. This can be patterned from the same connectivity thin film material (Ti-Cu-Pt-Au), or a specially tailored thin film material (e.g. Ti-Cu-Au) can be deposited. Both versions are described, including process and integration details. Examples are discussed, ranging from patterning for maximum tolerances, to space and performance-optimized designs. Cross-sectional issues associated with integration are also highlighted in the discussion.

  2. The extent of the Cooper pair insulator phase in amorphous Pb0.9Bi0.1 nanohoneycomb films

    NASA Astrophysics Data System (ADS)

    Hollen, S. M.; Joy, J. C.; Berg, A. H.; Fernandes, G. E.; Shainline, J.; Xu, J. M.; Valles, J. M., Jr.

    2012-02-01

    Amorphous Bi nanohoneycomb (NHC) thin films, which contain a nanometer-scale array of holes and regular thickness undulations, exhibit an insulating phase made up of localized Cooper pairs (CPs) near their thickness-driven insulator to superconductor transition (IST). This Cooper pair insulator (CPI) phase includes a giant magnetoresistance peak, also observed in InOx and TiN. We have now produced NHC films of a new material, Pb0.9Bi0.1, that show a qualitatively similar CPI phase. We will show the evolution of this CPI phase from deep in the insulating state to the IST using transport measurements. Throughout this regime, we will track the appearance, growth, and range of the magnetoresistance oscillations (which indicate CP transport) and giant magnetoresistance peak. Considering these observations, we will discuss the likely extent of CP transport in these insulators.

  3. Spin Coated Nano Scale PMMA Films for Organic Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Shekar, B. Chandar; Sathish, S.; Sengoden, R.

    Nano scale poly methyl methacrylate (PMMA) films are prepared by spin coating the solution of PMMA on to p-Si substrate. The thickness of the films coated is measured by Ellipsometry. The SA-XRD spectrum of the as grown and annealed films indicated the amorphous nature. The SEM analysis revealed no pinholes, pits and dendritic features on the surface. Both as grown and annealed films indicated smooth surface and amorphous structure. The capacitance-voltage (C-V) behaviour of the metal-insulator-semiconductor (MIS) structure with Al/PMMA/p-Si has been studied. The C-V behaviour carried out for various frequencies (f) ranging from 20 kHz to 1 MHz and for a bias voltage range of -20 V to +20 V. Both as grown and annealed films showed a small flat band voltage (VFB) shift towards the negative voltage. The small shift in the VFB observed may be due to charge traps and de-traps. The obtained C-V behaviour for as grown and annealed films indicated that as grown PMMA nano scale thin films do not have many defects such as voids and inhomogeneity etc. The observed C-V behavior, a very low shift in the flat band voltage (VFB 0); reasonably higher dielectric constant values; thermal stability up to 2800C; amorphous and smooth surface implies that nano scale thin PMMA film coated by spin coating could be used as an efficient dielectric layer in field effect organic thin film transistors (OTFTs).

  4. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  5. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  6. Applications of Thin Films in Electronics,

    DTIC Science & Technology

    The authors review the application of thin films produced by vacuum vaporization, cathode sputtering, diffusion, and epitaxial growing in the fields...of passive and active electric components and microminiaturization. Some of the most important characteristics of thin films are summarized. (Author)

  7. Application of Thin Films in Electronics,

    DTIC Science & Technology

    The article reviews the application of thin films (produced by vacuum evaporation, cathode sputtering, diffusion and epitaxial growing) in the field...of passive and active electric components and in microminiaturization. Some of the characteristics of thin films are summarized. (Author)

  8. Characteristics Of Vacuum Deposited Sucrose Thin Films

    NASA Astrophysics Data System (ADS)

    Ungureanu, F.; Predoi, D.; Ghita, R. V.; Vatasescu-Balcan, R. A.; Costache, M.

    Thin films of sucrose (C12H22O11) were deposited on thin cut glass substrates by thermal evaporation technique (p ~ 10-5 torr). The surface morphology was putted into evidence by FT-IR and SEM analysis. The experimental results confirm a uniform deposition of an adherent sucrose layer. The biological tests (e.g., cell morphology and cell viability evaluated by measuring mitochondrial dehydrogenise activity with MTT assay) confirm the properties of sucrose thin films as bioactive material. The human fetal osteoblast system grown on thin sucrose film was used for the determination of cell proliferation, cell viability and cell morphology studies.

  9. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  10. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  11. Optical properties of vanadium dioxide and vanadium pentoxide thin films.

    PubMed

    Chain, E E

    1991-07-01

    Several oxides of vanadium undergo a transition from a semiconductor or insulating state to a metal phase at a critical temperature. Vanadium dioxide undergoes this transition near 68 degrees C, while V(2)O(5) undergoes a similar phase transition near 257 degrees C. During the transition a change in oxide crystal structure is accompanied by large changes in electrical and optical behavior. Thin films of vanadium oxides are capable of reversibly switching from the semiconductor to the metallic state at high speeds and with high spatial resolution. Therefore, these oxides have potential use, particularly in thin film form, for a wide variety of applications involving thermally activated electronic or optical switching devices. Such films are of considerable technical interest because of applications in chemical sensors, energy-conserving coatings, transparent conductors, and switching materials. The numerous potential electronic, optical, and optoelectronic device applications which have been suggested have stimulated work on the preparation of thin films by a variety of techniques, including chemical vapor deposition, solgel, evaporation, and sputter deposition. This paper reviews the optical properties of vanadium oxide coatings and stresses the dependence of film properties on sample preparation and resultant film microstructure.

  12. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  13. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  14. Magnetostrictive thin films for microwave spintronics.

    PubMed

    Parkes, D E; Shelford, L R; Wadley, P; Holý, V; Wang, M; Hindmarch, A T; van der Laan, G; Campion, R P; Edmonds, K W; Cavill, S A; Rushforth, A W

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

  15. Magnetostrictive thin films for microwave spintronics

    PubMed Central

    Parkes, D. E.; Shelford, L. R.; Wadley, P.; Holý, V.; Wang, M.; Hindmarch, A. T.; van der Laan, G.; Campion, R. P.; Edmonds, K. W.; Cavill, S. A.; Rushforth, A. W.

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications. PMID:23860685

  16. Deposition of thin insulation layers from the gas phase

    NASA Technical Reports Server (NTRS)

    Behn, R.; Hagedorn, H.; Kammermaier, J.; Kobale, M.; Packonik, H.; Ristow, D.; Seebacher, G.

    1981-01-01

    The continuous deposition of thin organic dielectric films on metallized carrier foils by glow discharge in monomeric gases is described. Depending on the applied monomers, the films had a dissipation factor of .001 to .003 (1 kHz), a relative permittivity of 2.3 to 2.5 and a resistivity of about 10 to the 17th power omega cm. Additionally, they proved to have a high mechanical homogeneity. Self-healing rolled capacitors with a very high capacitance per volume and of consistently high quality were fabricated from the metallized carrier foils covered with the dielectric film.

  17. Large magnetoresistance of insulating silicon films with superconducting nanoprecipitates

    NASA Astrophysics Data System (ADS)

    Heera, V.; Fiedler, J.; Skorupa, W.

    2016-10-01

    We report on large negative and positive magnetoresistance in inhomogeneous, insulating Si:Ga films below a critical temperature of about 7 K. The magnetoresistance effect exceeds 300 % at temperatures below 3 K and fields of 8 T. The comparison of the transport properties of superconducting samples with that of insulating ones reveals that the large magnetoresistance is associated with the appearance of local superconductivity. A simple phenomenological model based on localized Cooper pairs and hopping quasiparticles is able to describe the temperature and magnetic field dependence of the sheet resistance of such films.

  18. rf plasma oxidation of Ni thin films sputter deposited to generate thin nickel oxide layers

    SciTech Connect

    Hoey, Megan L.; Carlson, J. B.; Osgood, R. M. III; Kimball, B.; Buchwald, W.

    2010-10-11

    Nickel oxide (NiO) layers were formed on silicon (Si) substrates by plasma oxidation of nickel (Ni) film lines. This ultrathin NiO layer acted as a barrier layer to conduction, and was an integral part of a metal-insulator-metal (MIM) diode, completed by depositing gold (Au) on top of the oxide. The electrical and structural properties of the NiO thin film were examined using resistivity calculations, current-voltage (I-V) measurements and cross-sectional transmission electron microscopy (XTEM) imaging. The flow rate of the oxygen gas, chamber pressure, power, and exposure time and their influence on the characteristics of the NiO thin film were studied.

  19. Planar thin film SQUID with integral flux concentrator

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N. (Inventor); Sisk, Robert C. (Inventor)

    1988-01-01

    A thin film SQUID is disclosed having improved flux concentration combined with simplicity of design and fabrication. The SQUID starts with a wafer like substrate having simple planar geometry. A large area of superconducting film is coated on the substrate, with a small open or uncoated area remaining at its center to define a SQUID loop, and a gap in the film formed, beginning at the outer circumferential edge of the substrate and extending radially inward to the open area. A Josephson junction is formed across the gap near the open area to interrupt the electrical continuity of the SQUID loop. A coil is attached to the surface of the substrate, electrically insulated from the superconducting film, and is energized to induce flux within the SQUID which is concentrated within the open area.

  20. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  1. BDS thin film damage competition

    SciTech Connect

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  2. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  3. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  4. Metal-insulator transition in films of doped semiconductor nanocrystals.

    PubMed

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  5. Thin Film Physical Sensor Instrumentation Research and Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.

    2006-01-01

    A range of thin film sensor technology has been demonstrated enabling measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Multiple techniques exist for refractory thin film fabrication, fabrication and integration on complex surfaces and multilayered thin film insulation. Leveraging expertise in thin films and high temperature materials, investigations for the applications of thin film ceramic sensors has begun. The current challenges of instrumentation technology are to further develop systems packaging and component testing of specialized sensors, further develop instrumentation techniques on complex surfaces, improve sensor durability, and to address needs for extreme temperature applications. The technology research and development ongoing at NASA Glenn for applications to future launch vehicles, space vehicles, and ground systems is outlined.

  6. Stability of thin liquid films

    SciTech Connect

    Bankoff, S.G.; Davis, S.H.

    1994-12-31

    Two topics are discussed in the present progress report. The first is a study of the stability of the interface between two thin immiscible fluid layers in a two-dimensional channel. The flowrates may be specified, or alternatively the total pressure drop and the flowrate of one fluid. The channel may be horizontal or inclined. A long-wave 3D nonlinear evolution equation is derived for the local layer thickness, whose coefficients are high-order polynomials of the viscosity ratio and the initial volume fraction. With a further restriction to small wave amplitude, as well as many slopes, a Kuramoto-Sivashinsky-type (KS) is derived. In countercurrent flow the {open_quotes}group velocity{close_quotes} of the interface can become very small, possibly signaling the onset of flooding. In this case a cubic nonlinearity becomes significant. The properties of this modified KS equation are explored in considerable detail. The classical Yih-Benjamin linear stability theory for long waves on an unforced thin liquid film down a vertical wall has never been experimentally verified, owing to the sensitivity to small random disturbances. However, by careful balancing and by operating under very quiet conditions, the theoretical predictions were verified for the first time. For pointwise measurements, 25-{mu}m resistivity probes were employed, and for global measurements fluorescent imaging.

  7. Quantum transport in the surface states of epitaxial Bi(111) thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Kai; Wu, Lin; Gong, Xinxin; Xiao, Shunhao; Jin, Xiaofeng

    2016-09-01

    Although bulk Bi is a prototypical semimetal with a topologically trivial electronic band structure, we show by various quantum transport measurements that epitaxial Bi(111) thin films have unexpected and nontrivial properties. Not only the top and the bottom but also the side surfaces of epitaxial Bi(111) thin films are always robustly metallic while the interior has already become insulating. We identify the coupling between the top and the bottom surface states that drives the two originally independent surface conducting channels into a single connected one. The properties of Bi(111) thin films realized could lead to promising applications in spintronics.

  8. Seed-layer mediated orientation evolution in dielectric Bi-Zn-Ti-Nb-O thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Noh, Jun Hong; Lee, Sangwook; Yoon, Sung-Hun; Cho, Chin Moo; Hong, Kug Sun; Jung, Hyun Suk; Lee, Jung-Kun

    2007-12-01

    Highly (hhh)-oriented pyrochlore Bi-Zn-Ti-Nb-O (BZTN) thin films were fabricated via metal-organic decomposition using orientation template layers. The preferred orientation was ascribed to the interfacial layer, the lattice parameter of which is similar to BZTN. High-resolution transmission electron microscopy supported that the interfacial layer consists of Bi and Pt. The (hhh)-oriented thin films exhibited a highly insulating nature enabling feasible applications in electronic devices, particularly voltage tunable application. The BZTN thin films did not show any apparent dielectric anisotropy and the slightly enhanced dielectric properties were discussed in connection to the internal stress and the grain boundary effect.

  9. Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films

    PubMed Central

    2011-01-01

    The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated. PMID:21711646

  10. VUV thin films, chapter 7

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    The application of thin film technology to the vacuum ultraviolet (VUV) wavelength region from 120 nm to 230 nm has not been fully exploited in the past because of absorption effects which complicate the accurate determination of the optical functions of dielectric materials. The problem therefore reduces to that of determining the real and imaginary parts of a complex optical function, namely the frequency dependent refractive index n and extinction coefficient k. We discuss techniques for the inverse retrieval of n and k for dielectric materials at VUV wavelengths from measurements of their reflectance and transmittance. Suitable substrate and film materials are identified for application in the VUV. Such applications include coatings for the fabrication of narrow and broadband filters and beamsplitters. The availability of such devices open the VUV regime to high resolution photometry, interferometry and polarimetry both for space based and laboratory applications. This chapter deals with the optics of absorbing multilayers, the determination of the optical functions for several useful materials, and the design of VUV multilayer stacks as applied to the design of narrow and broadband reflection and transmission filters and beamsplitters. Experimental techniques are discussed briefly, and several examples of the optical functions derived for selected materials are presented.

  11. Micromotors using magnetostrictive thin films

    NASA Astrophysics Data System (ADS)

    Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Betz, Jochen; MacKay, Ken; Givord, Dominique; Bouchilloux, Philippe

    1998-07-01

    This study deals with a micromotor based on the use of magnetostrictive thin films. This motor belongs to the category of the Standing Wave Ultrasonic Motors. The active part of the motor is the rotor, which is a 100 micrometers thick ring vibrating in a flexural mode. Teeth (300 micrometers high) are placed on special positions of the rotor and produce an oblique motion which can induce the relative motion of any object in contact with them. The magnetic excitation field is radial and uses the transverse coupling of the 4 micrometers thick magnetostrictive film. The film, deposited by sputtering on the ring, consists of layers of different rare-earth/iron alloys and was developed during a European Brite-Euram project. The finite element technique was used in order to design a prototype of the motor and to optimize the active rotor and the energizer coil. The prototype we built delivered a speed of 30 turns per minute with a torque of 2 (mu) N.m (without prestress applied on the rotor). Our experimental results show that the performance of this motor could easily be increased by a factor of 5. The main advantage of this motor is the fact that it is remotely powered and controlled. The excitation coil, which provides both power and control, can be placed away from the active rotor. Moreover, the rotor is completely wireless and is not connected to its support or to any other part. It is interesting to note that it would not be possible to build this type of motor using piezoelectric technology. Medical applications of magnetostrictive micromotors could be found for internal microdistributors of medication (the coil staying outside the body). Other applications include remote control micropositioning, micropositioning of optical components, and for the actuation of systems such as valves, electrical switches, and relays.

  12. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  13. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1994-11-01

    Small thin-film rechargeable cells have been fabricated with a lithium phosphorus oxyniuide electrolyte, Li metal anode, and Li{sub 1-x}Mn{sub 2}O{sub 4} as the cathode film. The cathode films were fabricated by several different techniques resulting in both crystalline and amorphous films. These were compared by observing the cell discharge behavior. Estimates have been made for the scale-up of such a thin-film battery to meet the specifications for the electric vehicle application. The specific energy, energy density, and cycle life are expected to meet the USABC mid-term criteria. However, the areas of the thin-films needed to fabricate such a cell are very large. The required areas could be greatly reduced by operating the battery at temperatures near 100{degrees}C or by enhancing the lithium ion transport rate in the cathode material.

  14. Surface roughness evolution of nanocomposite thin films

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; Hosson, J. Th. M. de

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growing interface is explained by ballistic effects resulting from impingements of ions to the growing thin film. These ballistic effects are sensitive to the flux and energy of impinging ions. The predictions of the model are compared with experimental data, and it is concluded that the thin film roughness can be further controlled by adjusting waveform, frequency, and width of dc pulses.

  15. Density inhomogeneity in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Cao, Jiang-Li; Solbach, Axel; Klemradt, Uwe; Weirich, Thomas; Mayer, Joachim; Böttger, Ulrich; Schorn, Peter J.; Waser, Rainer

    2006-07-01

    Structural investigations of Pb(Zr ,Ti)O3 (PZT) ferroelectric thin films derived by chemical solution deposition on Pt /TiOx electrode stacks were performed using grazing incidence x-ray specular reflectivity of synchrotron radiation and transmission electron microscopy. A density inhomogeneity, i.e., a sublayer structure, in the PZT thin films was observed; the upper PZT sublayer had a lower density and the lower sublayer had a higher density. The influence of the density inhomogeneity, as a possible extrinsic contribution to size effects in ferroelectric thin films, was discussed.

  16. Insulating phase at low temperature in ultrathin La0.8Sr0.2MnO3 films

    PubMed Central

    Feng, Yaqing; Jin, Kui-juan; Gu, Lin; He, Xu; Ge, Chen; Zhang, Qing-hua; He, Min; Guo, Qin-lin; Wan, Qian; He, Meng; Lu, Hui-bin; Yang, Guozhen

    2016-01-01

    Metal-insulator transition is observed in the La0.8Sr0.2MnO3 thin films with thickness larger than 5 unit cells. Insulating phase at lower temperature appeared in the ultrathin films with thickness ranging from 6 unit cells to 10 unit cells and it is found that the Mott variable range hopping conduction dominates in this insulating phase at low temperature with a decrease of localization length in thinner films. A deficiency of oxygen content and a resulting decrease of the Mn valence have been observed in the ultrathin films with thickness smaller than or equal to 10 unit cells by studying the aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy of the films. These results suggest that the existence of the oxygen vacancies in thinner films suppresses the double-exchange mechanism and contributes to the enhancement of disorder, leading to a decrease of the Curie temperature and the low temperature insulating phase in the ultrathin films. In addition, the suppression of the magnetic properties in thinner films indicates stronger disorder of magnetic moments, which is considered to be the reason for this decrease of the localization length. PMID:26928070

  17. Magnesium diboride thin films and devices

    NASA Astrophysics Data System (ADS)

    Cui, Yi

    Magnesium diboride (MgB2) is a binary compound superconductor with a superconducting transition temperature Tc of ˜40 K. MgB2 has two conduction bands: a two-dimensional sigma band and a three-dimensional pi band with weak interband scattering. The two gap superconductivity in MgB2 gives rise to many interesting physical properties not possible in other superconductors. The relatively high Tc combined with phonon mediated superconductivity and relatively long coherence length makes MgB2 promising for electronics applications like rapid single flux quantum (RSFQ) logics and superconducting quantum interference devices (SQUID). The high current density and record-high upper critical field in pure or alloyed MgB2 are also attractive to a variety of high field applications including cryogen-free Magnetic Resonance Imaging (MRI) systems. MgB2 may also be used in RF cavity coatings due to its low surface resistance and in photo detection due to its fast photoresponse coupled with relatively high Tc. High quality epitaxial thin films are produced by the hybrid physical-chemical vapor deposition (HPCVD) technique. The HPCVD MgB2 thin films have the highest Tc and lowest resistivity with sharp transition of all MgB2 materials reported. The HPCVD MgB2 material is free of dendritic flux jumps due to its low resistivity. The root-mean-square (RMS) surface roughness of HPCVD MgB2 films can be ˜1 nm when ˜1% of nitrogen is added to the hydrogen carrier gas during the growth. The stability of MgB2 films in water is studied; it is found that degradation can be prevented by a thin (10 nm) MgO layer deposited on the film surface. The Tc is enhanced by tensile strain due to the Volmer-Weber growth mode and the mismatches between MgB2 and the substrate in the lattice constants and the coefficients of thermal expansion. High quality superconductor-insulator-superconductor Josephson tunnel junctions were made with various barrier formation techniques. The junction critical current

  18. Dielectric and Optical Properties of Thin Films.

    DTIC Science & Technology

    1978-08-01

    Is const ructed from a thin slice of bismuth silicon oxlde,~ a cubic crystal exhibiting the Pockels effect. The crystal also is photoconductive when... Photoconductive diameter electro -optical crystal ~~~~~~~~~~~~~~~~~ i12SiO20) Electrode 2 Insulator layer Electrode 1 (paralene) Figure 1-1

  19. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  20. Thin Thermal-Insulation Blankets for Very High Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).

  1. Performance Characterization of Monolithic Thin Film Resistors

    NASA Astrophysics Data System (ADS)

    Yin, Rong

    Thin film resistors have a large resistance range and stable performance under high temperature operating condition. Thin film resistors trimmed by laser beam are able to achieve very high precision on resistance value. As a result, thin film resistors have been widely used to improve the performance of integrated circuits such as operational amplifier, analog-to-digital (A/D) and digital -to-analog (D/A) converters, etc. In this dissertation, a new class of thin film resistors, silicon chrome (SiCr) thin film resistors, has been investigated at length. From thin film characterization to aging behavior modelling, we have carried out a series of engineering activities. The characteristics of the SiCr thin film incorporated into three bipolar processes were first determined. After laser trimming, we have measured a couple of physical parameters of the SiCr film in the heat affected zone (HAZ). This is the first time the sheet resistance and the temperature coefficient of resistance (TCR) of thin film in the HAZ have been characterized. Both thermal and d.c. load accelerated aging tests were performed. The test structures were subjected to the aging for 1000 hours. Based on the test data, we not only evaluated the classical thermal aging model for untrimmed thin film resistors, but also established several empirical thermal aging models for trimmed resistors and d.c. load aging models for both trimmed and untrimmed thin film resistors. All the experiments were carried out for both conventional bar resistors and our new Swiss Cheese (SC) resistors. For the first time, the performance of laser trimmed SC resistors, which was experimentally evaluated, shown a clear superiority over that of trimmed bar resistors. Besides these experiments, we have examined different die attach techniques and their effects on thin film resistors. Also, we have developed a number of hardware systems and software tools, such as a temperature controller, d.c. current source, temperature

  2. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  3. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  4. Thin Films in the Technology of Superhigh Frequencies.

    DTIC Science & Technology

    A comprehensive discussion of the physics, manufacturing processes and applications of thin films in modern communications technology. The following...subjects are discussed in detail: (1) Structure and properties of thin films : vacuum vaporization, cathode sputtering, thin film structure and...physical properties. (2) Thin films as SHF load resistors: peculiarities of SHF resistors, material selection, behavior in an SHF field, cylindrical disc

  5. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  6. Properties of topological insulator Bi2Se3 films prepared by thermal evaporation growth on different substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Min.

    2017-02-01

    Topological insulator Bi2Se3 thin films were grown by the thermal evaporation deposition on different substrates and their phase structures and magneto-transport properties were discussed. The films growth is along the c-axis, and their surfaces exhibited terrace-like quintuple layers. Resistivity upturn as well as weak anti-localization was observed only in the film with Si and LAO substrates. The linear magneto-resistance (LMR) under high field was found, which was associated with the gapless topological surface states and the quantum origin. The results indicate that the films are highly uniform.

  7. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  8. Highly stretchable wrinkled gold thin film wires

    PubMed Central

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D.; Khine, Michelle

    2016-01-01

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications. PMID:26937042

  9. Thin film production method and apparatus

    DOEpatents

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  10. Electrical Properties of Thin Films of Alumina.

    DTIC Science & Technology

    The report consists of a literature survey on the electrical properties of alumina and aluminum oxide thin films . A bibliographic listing of reports is included along with abstracts from most of them.

  11. Highly stretchable wrinkled gold thin film wires

    SciTech Connect

    Kim, Joshua Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D.; Khine, Michelle

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  12. Review paper: Transparent amorphous oxide semiconductor thin film transistor

    NASA Astrophysics Data System (ADS)

    Kwon, Jang-Yeon; Lee, Do-Joong; Kim, Ki-Bum

    2011-03-01

    Thin film transistors (TFTs) with oxide semiconductors have drawn great attention in the last few years, especially for large area electronic applications, such as high resolution active matrix liquid crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs), because of their high electron mobility and spatial uniform property. This paper reviews and summarizes recent emerging reports that include potential applications, oxide semiconductor materials, and the impact of the fabrication process on electrical performance. We also address the stability behavior of such devices under bias/illumination stress and critical factors related to reliability, such as the gate insulator, the ambient and the device structure.

  13. Photocurrent Suppression of Transparent Organic Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Chuang, Chiao-Shun; Tsai, Shu-Ting; Lin, Yung-Sheng; Chen, Fang-Chung; Shieh, Hang-Ping D.

    2007-12-01

    Organic thin-film transistors (OTFTs) with high transmittance and low photosensitivity have been demonstrated. By using titanium dioxide nanoparticles as the additives in the polymer gate insulators, the level of device photoresponse has been reduced. The device shows simultaneously a high transparence and a minimal threshold voltage shift under white light illumination. It is inferred that the localized energy levels deep in the energy gap of pentacene behave as the recombination centers, enhancing substantially the recombination process in the conducting channel of the OTFTs. Therefore, the electron trapping is relieved and the shift of threshold voltage is reduced upon illumination.

  14. RAPID COMMUNICATION: ? thin film bilayers grown by pulsed laser ablation deposition

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Palmer, S. B.; McK Paul, D.; Lees, M. R.

    1996-09-01

    We have grown superconducting thin films of 0022-3727/29/9/044/img2 (Y-123) on 0022-3727/29/9/044/img3 (PCMO) buffer layers and PCMO overlayers on Y-123 thin films using pulsed laser ablation deposition. For both sets of films below 50 K, the Y-123 layer is superconducting and the zero-field cooled PCMO layer is insulating. The application of a magnetic field of 8 T results in an insulator - metal transition in the PCMO layer. This field-induced conducting state is stable in zero magnetic field at low temperature. The PCMO layer can be returned to an insulating state by annealing above 100 K. This opens the way for the construction of devices incorporating these oxide materials in which the electronic properties of key components such as the substrate or the barrier layer can be switched in a controlled way by the application of a magnetic field.

  15. High temperature polymer dielectric film-wire insulation

    NASA Technical Reports Server (NTRS)

    Nairus, John G.

    1994-01-01

    The highlights of the program are outlined including two major accomplishments. TRW identified and demonstrated the potential of two aromatic/heterocyclic polymers to have an outstanding and superior combination of electrical, thermal, and chemical resistance properties versus state-of-the-art Kapton for spacecraft and/or aircraft dielectric insulation applications. (Supporting data is provided in tables.) Feasibility was demonstrated for supporting/enabling technologies such as ceramic coatings, continuous film casting, and conductor wire wrapping, which are designed to accelerate qualification and deployment of the new wire insulation materials for USAF systems applications during the mid- to late-1990's.

  16. Multilayer Thin Film Sensors for Damage Diagnostics

    NASA Astrophysics Data System (ADS)

    Protasov, A. G.; Gordienko, Y. G.; Zasimchuk, E. E.

    2006-03-01

    The new innovative approach to damage diagnostics within the production and maintenance/servicing procedures in industry is proposed. It is based on the real-time multiscale monitoring of the smart-designed multilayer thin film sensors of fatigue damage with the standard electrical input/output interfaces which can be connected to the embedded and on-board computers. The multilayer thin film sensors supply information about the actual unpredictable deformation damage, actual fatigue life, strain localization places, damage spreading, etc.

  17. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  18. Thin wetting film lensless imaging

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.

    2011-03-01

    Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.

  19. Critical thickness for ferromagnetism in insulating LaMnO3 films

    NASA Astrophysics Data System (ADS)

    Renshaw Wang, X.; Poccia, N.; Leusink, D. P.; Paudel, Tura R.; Tsymbal, E. Y.; Li, C. J.; Lv, W. M.; Venkatesan, T.; Ariando, Ariando; Hilgenkamp, H.

    2014-03-01

    The interplay between exchange interactions, interfacial charges, and confinement effects controls the electronic, magnetic, and transport properties of complex oxide thin films. Here we report the emergence of ferromagnetism in insulating LaMnO3 thin films grown on SrTiO3 substrates beyond a critical thickness. LaMnO3 (001) films are deposited by a pulsed laser deposition technique with thicknesses varying from 1 unit cell to 24 unit cells. The position dependent local magnetization is then mapped with micrometer resolution using scanning superconducting quantum interference device microscopy. We find that the magnetic ground state switches from non-ferromagnetic to ferromagnetic within a change of one unit cell above the critical thickness of 5 unit cells with characteristic domain size of about 20 μm. Further increase of film thickness up to 24 unit cells leads to reduction of the domain size to about 10 μm. The critical thickness is qualitatively explained in terms of the charge transfer in polar LaMnO3 (001) thin films based on results of additional experimental data, density-functional calculations, and the electrostatic modeling.

  20. Design and evaluation of thin metal surface insulation for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Petach, A. M.

    1976-01-01

    An all-metal insulation was studied as a thermal protection system for hypersonic vehicles. Key program goals included fabricating the insulation in thin packages which are optimized for high temperature insulation of an actively cooled aluminum structure, and the use of state-of-the-art alloys. The insulation was fabricated from 300 series stainless steel in thicknesses of 0.8 to 12 mm. The outer, 0.127 mm thick, skin was textured to accommodate thermal expansion and oxidized to increase emittance. The thin insulating package was achieved using an insulation concept consisting of foil radiation shields spaced within the package, and conical foil supports to carry loads from the skin and maintain package dimensions. Samples of the metal-insulation were tested to evaluate thermal insulation capability, rain and sand erosion resistance, high temperature oxidation resistance, applied load capability, and high temperature emittance.

  1. Organic ferroelectric gate field-effect transistor memory using high-mobility rubrene thin film

    NASA Astrophysics Data System (ADS)

    Kanashima, Takeshi; Katsura, Yuu; Okuyama, Masanori

    2014-01-01

    An organic ferroelectric gate field-effect transistor (FET) memory has been fabricated using an organic semiconductor of rubrene thin film with a high mobility and a gate insulating layer of poly(vinylidene fluoride-tetrafluoroethylene) [P(VDF-TeFE)] thin film. A rubrene thin-film sheet was grown by physical vapor transport (PVT), and placed onto a spin-coated P(VDF-TeFE) thin-film layer, and Au source and drain electrodes were formed on this rubrene thin film. A hysteresis loop of the drain current-gate voltage (ID-VG) characteristic has been clearly observed in the ferroelectric gate FET, and is caused by the ferroelectricity. The maximum drain current is 1.5 × 10-6 A, which is about two orders of magnitude larger than that of the P(VDF-TeFE) gate FET using a pentacene thin film. Moreover, the mobility of this organic ferroelectric gate FET using rubrene thin film is 0.71 cm2 V-1 s-1, which is 35 times larger than that of the FET with pentacene thin film.

  2. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  3. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2013-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film solar cells have been considered as the most promising alternatives to crystalline silicon solar cells because of their high photo-electricity conversion efficiency, reliability, and stability. However, many fabrication methods of CIGS thin film are based on vacuum processes such as evaporation and sputtering techniques which are not cost efficient. This work develops a solution method using paste or ink liquid spin-coated on glass that would be competitive to conventional ways in terms of cost effective, non-vacuum needed, and quick processing. A mixture precursor was prepared by dissolving appropriate amounts of composition chemicals. After the mixture solution was cooled, a viscous paste was prepared and ready for spin-coating process. A slight bluish CIG thin film on substrate was then put in a tube furnace with evaporation of metal Se followed by depositing CdS layer and ZnO nanoparticle thin film coating to complete a solar cell fabrication. Structure, absorption spectrum, and photo-electricity conversion efficiency for the as-grown CIGS thin film solar cell are under study.

  4. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  5. Twin domain imaging in topological insulator Bi2Te3 and Bi2Se3 epitaxial thin films by scanning X-ray nanobeam microscopy and electron backscatter diffraction

    PubMed Central

    Harcuba, Petr; Veselý, Jozef; Lesnik, Andreas; Bauer, Guenther; Springholz, Gunther; Holý, Václav

    2017-01-01

    The twin distribution in topological insulators Bi2Te3 and Bi2Se3 was imaged by electron backscatter diffraction (EBSD) and scanning X-ray diffraction microscopy (SXRM). The crystal orientation at the surface, determined by EBSD, is correlated with the surface topography, which shows triangular pyramidal features with edges oriented in two different orientations rotated in the surface plane by 60°. The bulk crystal orientation is mapped out using SXRM by measuring the diffracted X-ray intensity of an asymmetric Bragg peak using a nano-focused X-ray beam scanned over the sample. By comparing bulk- and surface-sensitive measurements of the same area, buried twin domains not visible on the surface are identified. The lateral twin domain size is found to increase with the film thickness. PMID:28381969

  6. Photophysical properties of Alq3 thin films

    NASA Astrophysics Data System (ADS)

    Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Łukasiak, Z.; Sahraoui, B.

    2013-11-01

    This work contains investigation results of the photophysical properties of aluminum (III) tris(8-hydroxyquinoline) thin films. The Alq3 thin films were successfully fabricated by Physical Vapor Deposition technique. The films were grown on transparent: (quartz and glass) and semiconductor (n-type silica) substrates kept at room temperature during the deposition process. Selected films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 100 °C and 150 °C. Morphology of the films was investigated by AFM technique. Photophysical properties were characterized via photoluminescence, transmission, second and third harmonic generation measurements. The thin films exhibit high structural quality regardless of the annealing process, but the stability of the film can be improved by using an appropriate temperature during the annealing process. Photoluminescence of Alq3 films obtained in air were efficient and stable. The measurements of transmission, SHG and THG spectra allowed us to determine optical constant of the films. We find that the photophysical properties were strictly connected with the morphology and the annealing process significantly changes the structural properties of the films.

  7. Thin-Film Nanocapacitor and Its Characterization

    ERIC Educational Resources Information Center

    Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong

    2007-01-01

    An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor.…

  8. Thin films, asphaltenes, and reservoir wettability

    SciTech Connect

    Kaminsky, R.; Bergeron, V.; Radke, C.J. |

    1993-04-01

    Reservoir wettability impacts the success of oil recovery by waterflooding and other methods. To understand wettability and its alteration, thin-film forces in solid-aqueous-oil systems must be elucidated. Upon rupture of thick aqueous films separating the oil and rock phases, asphaltene components in the crude oil adsorb irreversibly on the solid surface, changing it from water-wet to oil-wet. Conditions of wettability alteration can be found by performing adhesion tests, in which an oil droplet is brought into contact with a solid surface. Exceeding a critical capillary pressure destabilizes the film, causing spontaneous film rupture to a molecularly adsorbed layer and oil adhesion accompanied by pinning at the three-phase contact line. The authors conduct adhesion experiments similar to those of Buckley and Morrow and simultaneously examine the state of the underlying thin film using optical microscopy and microinterferometry. Aqueous thin films between an asphaltic Orcutt crude oil and glass surfaces are studied as a function of aqueous pH and salinity. For the first time, they prove experimentally that strongly water-wet to strongly oil-wet wettability alteration and contact-angle pinning occur when thick aqueous films thin to molecularly adsorbed films and when the oil phase contains asphaltene molecules.

  9. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  10. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  11. Plasma deposition of organic thin films: Control of film chemistry

    SciTech Connect

    Ratner, B.D.

    1993-12-31

    Plasma deposition of thin, polymeric films represent a versatile surface modification technology. Although these thin films are exploited for many applications, complaints heard about plasma deposited films are that their structures are uncharacterizable, that organic functionality is lost in their production and that reproducibility is difficult. Recently, new methods for film production, reactor control and surface characterization have led to well characterized plasma deposited thin polymeric films (PDTPF) with defined structure and organic functionality. Such PDTPF often closely resemble conventionally prepared homopolymers. Methods that can be used to control the chemistry of PDTPF are the minimization of the plasma power, pulsing the RF field to reduce the {open_quotes}plasma on{close_quotes} time, use of a Faraday cage to reduce electron bombardment, positioning the sample downfield from the glow zone, the use of monomers containing polymerizable double bonds and the use of a cold substrate to condense vapor simultaneously with plasma deposition.

  12. thin films prepared by pulsed laser deposition on different substrates

    NASA Astrophysics Data System (ADS)

    Navasery, M.; Halim, S. A.; Dehzangi, A.; Soltani, N.; Bahmanrokh, G.; Erfani H, M.; Kamalianfar, A.; Pan, K. Y.; Chang, S. C.; Chen, S. K.; Lim, K. P.; Awang Kechik, M. M.

    2014-09-01

    Perovskite manganite La2/3Ca1/3MnO3 thin films were directly grown on MgO(100), Si(100) and glass substrates by pulsed laser deposition. From the XRD patterns, the films are found to be polycrystalline, single-phase orthorhombic. The metal-insulator transition temperature is 209 K for LCMO/MgO, 266 K for LCMO/Si and 231 K for film deposited on the glass substrate. The conduction mechanism in these films is investigated in different temperature regimes. Low-temperature resistivity data below the phase transition temperature ( T P) have been fitted with the relation , indicating that the electron-electron scattering affects the conduction of these materials. The high-temperature resistivity data ( T > T P) were explained using variable-range hopping (VRH) and small-polaron hopping (SPH) models. Debye temperature values are 548 K for LCMO/Cg, 568 K for LCMO/Si and 508 K for LCMO/MgO thin films. In all thin films, the best fitting in the range of VRH is found for 3D dimension. The density of states near the Fermi level N ( E F) for LCMO/MgO is lower due to the prominent role of the grain boundary in LCMO/MgO and increase in bending of Mn-O-Mn bond angle, which decreases the double exchange coupling of Mn3+-O2-Mn4+ and in turn makes the LCMO/MgO sample less conducting as compared to the other films.

  13. Collaboration of the NASA Glenn Research Center and Rolls-Royce Developed Thin Film Multilayered Dielectrics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Busfield, A. Rachel; Thomas, Valarie D.; Blaha, Charles A.

    2003-01-01

    The use of thin films to electrically insulate thin film sensors on engine components minimizes the intrusiveness of the sensors and allows a more accurate measurement of the environment. A variety of insulating films were investigated for preventing electrical shorting caused by insulator failure between the sensor and the component. By alternating layers of sputtered high-temperature ceramics, a sequence of insulating layers was devised that (1) prevents pinholes from forming completely through the insulator and (2) maintains high electrical resistivity at high temperatures. The total thickness is only a fraction of that needed for conventional insulating techniques. The Sensors and Electronics Technology Branch of the NASA Glenn Research Center has an in-house effort to develop thin film sensors for surface measurement in propulsion system research. Thin film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner (less than 10 mm thick) than wire or foil sensors. The thin film sensors are thus much less disturbing to the operating environment and have a minimal impact on the physical characteristics of the supporting component. To further this research, NASA Glenn and Rolls-Royce (Derby, UK), with assistance from the Ohio Aerospace Institute (OAI) and the Akima Corporation, pursued a joint investigation using multilayered thin film dielectrics as a reliable insulator in harsh environments. The use of a multilayered scheme is thought to be promising for the fabrication of electrically insulating thin films. A major cause of conduction in thin film dielectrics is the presence of defects, such as pinholes, that propagate through the film to the underlying substrate surface. By alternating the insulating material, each new growth pattern would deviate from the previous one, eliminating direct pathways for conduction to the substrate. The film depositions and testing were conducted in the Instrument

  14. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1995-06-01

    Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

  15. Elastohydrodynamic studies using thin film transducers

    NASA Astrophysics Data System (ADS)

    Safa, M. M. A.; MacPherson, P. B.

    1984-01-01

    Thin film microtransducers for application to the study of the variation of pressure, temperature, and oil film thickness in an elastohydrodynamically lubricated, nominal line contact were developed. Fabrication techniques were improved to enhance the useful life. Techniques to achieve higher resolution by reducing sensor size and improving the signal monitoring circuitry were developed. Material properties in thin film form used in fabricating the sensors were examined. Possible sources of errors in interpreting the results obtained from these devices were studied. Results under various operating conditions were compared with theoretical and experimental results, and reasonably good agreement is found.

  16. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  17. Glassy dynamics in thin films of polystyrene

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Koizumi, Hiroki

    2008-02-01

    Glassy dynamics was investigated for thin films of atactic polystyrene by complex electric capacitance measurements using dielectric relaxation spectroscopy. During the isothermal aging process the real part of the electric capacitance increased with time, whereas the imaginary part decreased with time. It follows that the aging time dependences of real and imaginary parts of the electric capacitance were primarily associated with change in volume (film thickness) and dielectric permittivity, respectively. Further, dielectric permittivity showed memory and rejuvenation effects in a similar manner to those observed for poly(methyl methacrylate) thin films. On the other hand, volume did not show a strong rejuvenation effect.

  18. Thin Ice Films at Mineral Surfaces.

    PubMed

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood.

  19. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  20. Carrier lifetimes in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  1. Fabrication of Poly (methyl methacrylate) and Poly(vinyl alcohol) Thin Film Capacitors on Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Salim, Bindu; Meenaa Pria KNJ, Jaisree; Alagappan, M.; Kandaswamy, A.

    2015-11-01

    Flexible electronics is becoming more popular with introduction of more and more organic conducting materials and processes for making thin films. The use of polymers as gate dielectric has over ruled the usage of conventional inorganic oxides in Organic Thin Film Transistors (OTFTs) on account of its solution process ability and ease of making highly insulating thin film. In this work Capacitance is fabricated with polymeric dielectrics namely poly (methyl methacrylate) - PMMA and poly (vinyl alcohol) - PVA. The electrodes used for these capacitors are Indium Tin Oxide (ITO) and Aluminium. Capacitance value of 9.5nF/cm2 and 33.12nF/cm2 is achieved for thickness of 510 nm of PMMA and 80 nm of PVA respectively. This study on capacitance can be used for assessing the suitability of these polymers as gate insulators in OTFTs.

  2. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    NASA Astrophysics Data System (ADS)

    Will, Herbert

    1991-05-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  3. Method for making thin polypropylene film

    DOEpatents

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  4. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  5. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    SciTech Connect

    Brinker, C.J.; Prakash, S.S.

    1999-09-07

    A method for preparing aerogel thin films by an ambient-pressure, continuous process is disclosed. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  6. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  7. Light scattering by epitaxial VO{sub 2} films near the metal-insulator transition point

    SciTech Connect

    Lysenko, Sergiy Fernández, Felix; Rúa, Armando; Figueroa, Jose; Vargas, Kevin; Cordero, Joseph; Aparicio, Joaquin; Sepúlveda, Nelson

    2015-05-14

    Experimental observation of metal-insulator transition in epitaxial films of vanadium dioxide is reported. Hemispherical angle-resolved light scattering technique is applied for statistical analysis of the phase transition processes on mesoscale. It is shown that the thermal hysteresis strongly depends on spatial frequency of surface irregularities. The transformation of scattering indicatrix depends on sample morphology and is principally different for the thin films with higher internal elastic strain and for the thicker films where this strain is suppressed by introduction of misfit dislocations. The evolution of scattering indicatrix, fractal dimension, surface power spectral density, and surface autocorrelation function demonstrates distinctive behavior which elucidates the influence of structural defects and strain on thermal hysteresis, twinning of microcrystallites, and domain formation during the phase transition.

  8. Interferometry of thick and thin films

    NASA Astrophysics Data System (ADS)

    Conroy, Michael

    2007-06-01

    Interferometry is now an established technique for the measurement of surface topography. It has the capability of combining sub-nanometre resolution. A very useful extension to its capability is the ability to measure thick and thin films on a local scale. For films with thicknesses in excess of 1-2μm (depending on refractive index), the SWLI interaction with the film leads simply the formation of two localised fringes, each corresponding to a surface interface. It is relatively trivial to locate the positions of these two envelope maxima and therefore determine the film thickness, assuming the refractive index is known. For thin films (with thicknesses ~20nm to ~2μm, again depending on the index), the SWLI interaction leads to the formation of a single interference maxima. In this context, it is appropriate to describe the thin film structure in terms of optical admittances; it is this regime that is addressed through the introduction of a new function, the 'helical conjugate field' (HCF) function. This function may be considered as providing a 'signature' of the multilayer measured so that through optimization, the thin film multilayer may be determined on a local scale.

  9. Local Strain Distributions in Silicon-on-Insulator/Stressor-Film Composites

    SciTech Connect

    Kalenci,O.; Murray, C.; Noyan, I.

    2008-01-01

    We have used scanning microdiffraction topography to determine the mismatch strains and local strain distributions in silicon-on-insulator substrates with overlying thin film stressor features. Analysis of the data using the edge-force model and the Ewald-von Laue dynamical diffraction theory shows the presence of an exponential strain gradient in the vicinity of the buried SiO2/Si-substrate interface. We show that, for simple geometries, it is possible to deduce the sign of the mismatch strain simply by inspecting the microdiffraction topograph.

  10. Synthesis and ionic liquid gating of hexagonal WO{sub 3} thin films

    SciTech Connect

    Wu, Phillip M. E-mail: beasley@stanford.edu; Munakata, Ko; Hammond, R. H.; Geballe, T. H.; Beasley, M. R. E-mail: beasley@stanford.edu; Ishii, Satoshi; Tanabe, Kenji; Tokiwa, Kazuyasu

    2015-01-26

    Via thin film deposition techniques, the meta-stable in bulk crystal hexagonal phase of tungsten oxide (hex-WO{sub 3}) is stabilized as a thin film. The hex-WO{sub 3} structure is potentially promising for numerous applications and is related to the structure for superconducting compounds found in WO{sub 3}. Utilizing ionic liquid gating, carriers were electrostatically induced in the films and an insulator-to-metal transition is observed. These results show that ionic liquid gating is a viable technique to alter the electrical transport properties of WO{sub 3}.

  11. Microscale damping using thin film active materials

    NASA Astrophysics Data System (ADS)

    Kerrigan, Catherine A.; Ho, Ken K.; Mohanchandra, K. P.; Carman, Gregory P.

    2007-04-01

    This paper focuses on understanding and developing a new approach to dampen MEMS structures using both experiments and analytical techniques. Thin film Nitinol and thin film Terfenol-D are evaluated as a damping solution to the micro scale damping problem. Stress induced twin boundary motion in Nitinol is used to passively dampen potentially damaging vibrations. Magnetic domain wall motion is used to passively dampen vibration in Terfenol-D. The thin films of Nitinol, Nitinol/Silicon laminates and Nitinol/Terfenol-D/Nickel laminates have been produced using a sputter deposition process and damping properties have been evaluated. Dynamic testing shows substantial damping (tan δ) measurable in each case. Nitinol film samples were tested in the Differential Scanning Calorimetry (DSC) to determine phase transformation temperatures. The twin boundary mechanism by which energy absorption occurs is present at all points below the Austenite start temperature (approximately 69°C in our film) and therefore allows damping at cold temperatures where traditional materials fail. Thin film in the NiTi/Si laminate was found to produce substantially higher damping (tan δ = 0.28) due to the change in loading condition. The NiTi/Si laminate sample was tested in bending allowing the twin boundaries to be reset by cyclic tensile and compressive loads. The thin film Terfenol-D in the Nitinol/Terfenol-D/Nickel laminate was shown to produce large damping (tan δ = 0.2). In addition to fabricating and testing, an analytical model of a heterogeneous layered thin film damping material was developed and compared to experimental work.

  12. MOF thin films: existing and future applications.

    PubMed

    Shekhah, O; Liu, J; Fischer, R A; Wöll, Ch

    2011-02-01

    The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).

  13. Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film.

    PubMed

    Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo; Sun, Cheng-Jun; Yang, Ping; Venkatesan, T; Chen, Jingsheng; Zhu, Yimei; Chow, Gan Moog

    2016-07-13

    Interfaces with subtle differences in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 film on SrTiO3 substrate. The variations in the out-of-plane lattice constant and BO6 octahedral rotation across the Pr0.67Sr0.33MnO3/SrTiO3 interface strongly depend on the thickness of the Pr0.67Sr0.33MnO3 film. In the 12 nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition of SrTiO3, apparently due to the enhanced electron-phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30 nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. This work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic-polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.

  14. Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film

    DOE PAGES

    Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo; ...

    2016-06-08

    Interfaces with subtle differences in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 film on SrTiO3 substrate. The variations in the out-of-plane lattice constant and BO6 octahedral rotation across the Pr0.67Sr0.33MnO3/SrTiO3 interface strongly depend on the thickness of the Pr0.67Sr0.33MnO3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition of SrTiO3, apparently due to the enhanced electron–phonon interaction and atomic disorder in themore » film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.« less

  15. Crystallinity of tellurium capping and epitaxy of ferromagnetic topological insulator films on SrTiO3.

    PubMed

    Park, Jihwey; Soh, Yeong-Ah; Aeppli, Gabriel; Feng, Xiao; Ou, Yunbo; He, Ke; Xue, Qi-Kun

    2015-06-30

    Thin films of topological insulators are often capped with an insulating layer since topological insulators are known to be fragile to degradation. However, capping can hinder the observation of novel transport properties of the surface states. To understand the influence of capping on the surface states, it is crucial to understand the crystal structure and the atomic arrangement at the interfaces. Here, we use x-ray diffraction to establish the crystal structure of magnetic topological insulator Cr-doped (Bi,Sb)2Te3 (CBST) films grown on SrTiO3 (1 1 1) substrates with and without a Te capping layer. We find that both the film and capping layer are single crystal and that the crystal quality of the film is independent of the presence of the capping layer, but that x-rays cause sublimation of the CBST film, which is prevented by the capping layer. Our findings show that the different transport properties of capped films cannot be attributed to a lower crystal quality but to a more subtle effect such as a different electronic structure at the interface with the capping layer. Our results on the crystal structure and atomic arrangements of the topological heterostructure will enable modelling the electronic structure and design of topological heterostructures.

  16. Niobium Thin Film Characterization for Thin Film Technology Used in Superconducting Radiofrequency Cavities

    NASA Astrophysics Data System (ADS)

    Dai, Yishu; Valente-Feliciano, Anne-Marie

    2015-10-01

    Superconducting RadioFrequency (SRF) penetrates about 40-100 nm of the top surface, making thin film technology possible in producing superconducting cavities. Thin film is based on the deposition of a thin Nb layer on top of a good thermal conducting material such as Al or Cu. Thin film allows for better control of the surface and has negligible response to the Earth's magnetic field, eliminating the need for magnetic shielding of the cavities. Thin film superconductivity depends heavily on coating process conditions, involving controllable parameters such as crystal plane orientation, coating temperature, and ion energy. MgO and Al2O3 substrates are used because they offer very smooth surfaces, ideal for studying film growth. Atomic Force Microscopy is used to characterize surface's morphology. It is evident that a lower nucleation energy and a long coating time increases the film quality in the r-plane sapphire crystal orientation. The quality of the film increases with thickness. Nb films coated on r-plane, grow along the (001) plane and yield a much higher RRR compared to the films grown on a- and c-planes. This information allows for further improvement on the research process for thin film technology used in superconducting cavities for the particle accelerators. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  17. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  18. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  19. Dewetting of thin-film polymers.

    PubMed

    Saulnier, F; Raphaël, E; De Gennes, P-G

    2002-12-01

    In this paper we present a theoretical model for the dewetting of ultrathin polymer films. Assuming that the shear-thinning properties of these films can be described by a Cross-type constitutive equation, we analyze the front morphology of the dewetting film, and characterize the time evolution of the dry region radius, and of the rim height. Different regimes of growth are expected, depending on the initial film thickness, and on the power-law index involved in the constitutive equation. In the thin-films regime, the dry radius and the rim height obey power-law time dependences. We then compare our predictions with the experimental results obtained by Debrégeas et al. [Phys. Rev. Lett. 75, 3886 (1995)] and by Reiter [Phys. Rev. Lett. 87, 186101 (2001)].

  20. Sprayed lanthanum doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Bouznit, Y.; Beggah, Y.; Ynineb, F.

    2012-01-01

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  1. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  2. Magnetowetting of Ferrofluidic Thin Liquid Films

    PubMed Central

    Tenneti, Srinivas; Subramanian, Sri Ganesh; Chakraborty, Monojit; Soni, Gaurav; DasGupta, Sunando

    2017-01-01

    An extended meniscus of a ferrofluid solution on a silicon surface is subjected to axisymmetric, non-uniform magnetic field resulting in significant forward movement of the thin liquid film. Image analyzing interferometry is used for accurate measurement of the film thickness profile, which in turn, is used to determine the instantaneous slope and the curvature of the moving film. The recorded video, depicting the motion of the film in the Lagrangian frame of reference, is analyzed frame by frame, eliciting accurate information about the velocity and acceleration of the film at any instant of time. The application of the magnetic field has resulted in unique changes of the film profile in terms of significant non-uniform increase in the local film curvature. This was further analyzed by developing a model, taking into account the effect of changes in the magnetic and shape-dependent interfacial force fields. PMID:28303971

  3. Magnetowetting of Ferrofluidic Thin Liquid Films

    NASA Astrophysics Data System (ADS)

    Tenneti, Srinivas; Subramanian, Sri Ganesh; Chakraborty, Monojit; Soni, Gaurav; Dasgupta, Sunando

    2017-03-01

    An extended meniscus of a ferrofluid solution on a silicon surface is subjected to axisymmetric, non-uniform magnetic field resulting in significant forward movement of the thin liquid film. Image analyzing interferometry is used for accurate measurement of the film thickness profile, which in turn, is used to determine the instantaneous slope and the curvature of the moving film. The recorded video, depicting the motion of the film in the Lagrangian frame of reference, is analyzed frame by frame, eliciting accurate information about the velocity and acceleration of the film at any instant of time. The application of the magnetic field has resulted in unique changes of the film profile in terms of significant non-uniform increase in the local film curvature. This was further analyzed by developing a model, taking into account the effect of changes in the magnetic and shape-dependent interfacial force fields.

  4. Fe3O4 thin films: controlling and manipulating an elusive quantum material

    NASA Astrophysics Data System (ADS)

    Liu, Xionghua; Chang, Chun-Fu; Rata, Aurora Diana; Komarek, Alexander Christoph; Tjeng, Liu Hao

    2016-12-01

    Fe3O4 (magnetite) is one of the most elusive quantum materials and at the same time one of the most studied transition metal oxide materials for thin-film applications. The theoretically expected half-metallic behaviour generates high expectations that it can be used in spintronic devices. Yet, despite the tremendous amount of work devoted to preparing thin films, the enigmatic first-order metal-insulator transition, and the hallmark of magnetite known as the Verwey transition, is in thin films extremely broad and occurs at substantially lower temperatures as compared with that in high-quality bulk single crystals. Here we have succeeded in finding and making a particular class of substrates that allows the growth of magnetite thin films with the Verwey transition as sharp as in the bulk. Moreover, we are now able to tune the transition temperature and, using tensile strain, increase it to substantially higher values than in the bulk.

  5. Pulsed laser deposition of ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  6. Photoluminescence Study of Copper Selenide Thin Films

    NASA Astrophysics Data System (ADS)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.

    2011-10-01

    Thin films of Copper Selenide of composition of composition Cu7Se4 with thickness 350 nm are deposited on glass substrate at a temperature of 498 K±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%) and Selenium (99.99%) as the elemental starting material. The deposited film is characterized structurally using X-ray Diffraction. The structural parameters such as lattice constant, particle size, dislocation density; number of crystallites per unit area and strain in the film are evaluated. Photoluminescence of the film is analyzed at room temperature using Fluoro Max-3 Spectrofluorometer.

  7. Memory switches based on metal oxide thin films

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni (Inventor); Thakoor, Anilkumar P. (Inventor); Lambe, John J. (Inventor)

    1990-01-01

    MnO.sub.2-x thin films (12) exhibit irreversible memory switching (28) with an OFF/ON resistance ratio of at least about 10.sup.3 and the tailorability of ON state (20) resistance. Such films are potentially extremely useful as a connection element in a variety of microelectronic circuits and arrays (24). Such films provide a pre-tailored, finite, non-volatile resistive element at a desired place in an electric circuit, which can be electrically turned OFF (22) or disconnected as desired, by application of an electrical pulse. Microswitch structures (10) constitute the thin film element, contacted by a pair of separate electrodes (16a, 16b) and have a finite, pre-selected ON resistance which is ideally suited, for example, as a programmable binary synaptic connection for electronic implementation of neural network architectures. The MnO.sub.2-x microswitch is non-volatile, patternable, insensitive to ultraviolet light, and adherent to a variety of insulating substrates (14), such as glass and silicon dioxide-coated silicon substrates.

  8. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  9. Solution-Processed Rare-Earth Oxide Thin Films for Alternative Gate Dielectric Application.

    PubMed

    Zhuang, Jiaqing; Sun, Qi-Jun; Zhou, Ye; Han, Su-Ting; Zhou, Li; Yan, Yan; Peng, Haiyan; Venkatesh, Shishir; Wu, Wei; Li, Robert K Y; Roy, V A L

    2016-11-16

    Previous investigations on rare-earth oxides (REOs) reveal their high possibility as dielectric films in electronic devices, while complicated physical methods impede their developments and applications. Herein, we report a facile route to fabricate 16 REOs thin insulating films through a general solution process and their applications in low-voltage thin-film transistors as dielectrics. The formation and properties of REOs thin films are analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), spectroscopic ellipsometry, water contact angle measurement, X-ray photoemission spectroscopy (XPS), and electrical characterizations, respectively. Ultrasmooth, amorphous, and hydrophilic REO films with thickness around 10 nm have been obtained through a combined spin-coating and postannealing method. The compositional analysis results reveal the formation of RE hydrocarbonates on the surface and silicates at the interface of REOs films annealed on Si substrate. The dielectric properties of REO films are investigated by characterizing capacitors with a Si/Ln2O3/Au (Ln = La, Gd, and Er) structure. The observed low leakage current densities and large areal capacitances indicate these REO films can be employed as alternative gate dielectrics in transistors. Thus, we have successfully fabricated a series of low-voltage organic thin-film transistors based on such sol-gel derived REO films to demonstrate their application in electronics. The optimization of REOs dielectrics in transistors through further surface modification has also been studied. The current study provides a simple solution process approach to fabricate varieties of REOs insulating films, and the results reveal their promising applications as alternative gate dielectrics in thin-film transistors.

  10. History Dependent Magnetoresistance in Lightly Doped LaZxSrxCuO4Thin Films

    SciTech Connect

    Bozovic I.; Shi, X.; Popovic, D.; Panagopoulos, C.; Logvenov, G.; Bollinger, A.T.

    2012-06-01

    The in-plane magnetoresistance (MR) in atomically smooth La{sub 2-x}Sr{sub x}CuO{sub 4} thin films grown by molecular-beam-epitaxy was measured in magnetic fields B up to 9 T over a wide range of temperatures T. The films, with x = 0.03 and x = 0.05, are insulating, and the positive MR emerges at T < 4 K. The positive MR exhibits glassy features, including history dependence and memory, for all orientations of B. The results show that this behavior, which reflects the onset of glassiness in the dynamics of doped holes, is a robust feature of the insulating state.

  11. Evaluation of unencapsulated ceramic monolithic and MOS thin-film capacitors (25 to 300 C)

    NASA Astrophysics Data System (ADS)

    Nance, W. R.

    1982-01-01

    Several commercial monolithic ceramic and thin-film MOS chip capacitors were evaluated for use in high temperatures (300 C) geothermal instrumentation. Characteristics of the commonly used dielectric materials (NPO, X7R, BX) and temperature dependence of the insulation resistance are briefly discussed. Some ceramic capacitors with NPO dielectric materials had insulation resistances above 10 megohms at 300 C and less than 2% change in capacitance from 25 C to 300 C, while the X7R and BX dielectric materials exhibited insulation resistances below 10 megohm and changes in capacitance greater then 50%. The thin-film capacitors showed good stability at 300 C. However, during aging, bonds and bond pads presented a problem causing intermittently open circuits for some of the devices.

  12. Influence of Parasitic Capacitance on Output Voltage for Series-Connected Thin-Film Piezoelectric Devices

    PubMed Central

    Kanda, Kensuke; Saito, Takashi; Iga, Yuki; Higuchi, Kohei; Maenaka, Kazusuke

    2012-01-01

    Series-connected thin film piezoelectric elements can generate large output voltages. The output voltage ideally is proportional to the number of connections. However, parasitic capacitances formed by the insulation layers and derived from peripheral circuitry degrade the output voltage. Conventional circuit models are not suitable for predicting the influence of the parasitic capacitance. Therefore we proposed the simplest model of piezoelectric elements to perform simulation program with integrated circuit emphasis (SPICE) circuit simulations). The effects of the parasitic capacitances on the thin-film Pb(Zr, Ti)O3, (PZT) elements connected in series on a SiO2 insulator are demonstrated. The results reveal the negative effect on the output voltage caused by the parasitic capacitances of the insulation layers. The design guidelines for the devices using series-connected piezoelectric elements are explained. PMID:23211754

  13. Influence of parasitic capacitance on output voltage for series-connected thin-film piezoelectric devices.

    PubMed

    Kanda, Kensuke; Saito, Takashi; Iga, Yuki; Higuchi, Kohei; Maenaka, Kazusuke

    2012-12-04

    Series-connected thin film piezoelectric elements can generate large output voltages. The output voltage ideally is proportional to the number of connections. However, parasitic capacitances formed by the insulation layers and derived from peripheral circuitry degrade the output voltage. Conventional circuit models are not suitable for predicting the influence of the parasitic capacitance. Therefore we proposed the simplest model of piezoelectric elements to perform simulation program with integrated circuit emphasis (SPICE) circuit simulations). The effects of the parasitic capacitances on the thin-film Pb(Zr, Ti)O(3), (PZT) elements connected in series on a SiO(2) insulator are demonstrated. The results reveal the negative effect on the output voltage caused by the parasitic capacitances of the insulation layers. The design guidelines for the devices using series-connected piezoelectric elements are explained.

  14. Fluoride dielectric films on InP for metal-insulator-semiconductor applications

    NASA Astrophysics Data System (ADS)

    Paul, T. K.; Bose, D. N.

    1990-04-01

    This paper describes the characteristics of thin fluoride films on InP which are used as dielectric for metal-insulator-semiconductor (MIS) devices. Films of Ba1-xSrxF2 (x=0.0, 0.5, 0.83, and 1.0) were deposited by sublimation of mixtures of BaF2 and SrF2 in vacuum under 10-5 Torr pressure. The composition of the films was deduced from x-ray diffraction and energy dispersion analysis by x-ray studies. The electrical activation energies of the films determined between 120 and 300 K were found to be 3.5-22.0×10-3 eV , depending on composition and temperature. The resistivity of the films was in the range of 5.0×1011 to 5.0×1012 Ω cm with the breakdown fields greater than 5.0×105 V cm-1 . The interface state density obtained was as low as 5×1010 cm-2 eV-1 with annealed BaF2 films. Scanning electron microscope studies showed that annealing caused development of cracks resulting in decreased film resistivity. Auger studies gave evidence of broadening of the interface and outdiffusion from the substrate due to annealing.

  15. Mesoscale morphologies in polymer thin films.

    SciTech Connect

    Ramanathan, M.; Darling, S. B.

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  16. Method for synthesizing thin film electrodes

    DOEpatents

    Boyle, Timothy J.

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  17. Vibration welding system with thin film sensor

    DOEpatents

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  18. Fabrication and Characterization of ZnO Langmuir-Blodgett Film and Its Use in Metal-Insulator-Metal Tunnel Diode.

    PubMed

    Azad, Ibrahim; Ram, Manoj K; Goswami, D Yogi; Stefanakos, Elias

    2016-08-23

    Metal-insulator-metal tunnel diodes have great potential for use in infrared detection and energy harvesting applications. The quantum based tunneling mechanism of electrons in MIM (metal-insulator-metal) or MIIM (metal-insulator-insulator-metal) diodes can facilitate rectification at THz frequencies. In this study, the required nanometer thin insulating layer (I) in the MIM diode structure was fabricated using the Langmuir-Blodgett technique. The zinc stearate LB film was deposited on Au/Cr coated quartz, FTO, and silicon substrates, and then heat treated by varying the temperature from 100 to 550 °C to obtain nanometer thin ZnO layers. The thin films were characterized by XRD, AFM, FTIR, and cyclic voltammetry methods. The final MIM structure was fabricated by depositing chromium/nickel over the ZnO on Au/Cr film. The current voltage (I-V) characteristics of the diode showed that the conduction mechanism is electron tunneling through the thin insulating layer. The sensitivity of the diodes was as high as 32 V(-1). The diode resistance was ∼80 Ω (at a bias voltage of 0.78 V), and the rectification ratio at that bias point was about 12 (for a voltage swing of ±200 mV). The diode response exhibited significant nonlinearity and high asymmetry at the bias point, very desirable diode performance parameters for IR detection applications.

  19. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  20. Capillary instabilities in thin films. I. Energetics

    SciTech Connect

    Srolovitz, D.J.; Safran, S.A.

    1986-07-01

    A stability theory is presented which describes the conditions under which thin films rupture. It is found that holes in the film will either grow or shrink, depending on whether their initial radius is larger or smaller than a critical value. If the holes grow large enough, they impinge to form islands; the size of which are determined by the surface energies. The formation of grooves where the grain boundary meets the free surface is a potential source of holes which can lead to film rupture. Equilibrium grain boundary groove depths are calculated for finite grain sizes. Comparison of groove depth and film thickness yields microstructural conditions for film rupture. In addition, pits which form at grain boundary vertices, where three grains meet, are another source of film instability.

  1. Thin Film Electrodes for Rare Event Detectors

    NASA Astrophysics Data System (ADS)

    Odgers, Kelly; Brown, Ethan; Lewis, Kim; Giordano, Mike; Freedberg, Jennifer

    2017-01-01

    In detectors for rare physics processes, such as neutrinoless double beta decay and dark matter, high sensitivity requires careful reduction of backgrounds due to radioimpurities in detector components. Ultra pure cylindrical resistors are being created through thin film depositions onto high purity substrates, such as quartz glass or sapphire. By using ultra clean materials and depositing very small quantities in the films, low radioactivity electrodes are produced. A new characterization process for cylindrical film resistors has been developed through analytic construction of an analogue to the Van Der Pauw technique commonly used for determining sheet resistance on a planar sample. This technique has been used to characterize high purity cylindrical resistors ranging from several ohms to several tera-ohms for applications in rare event detectors. The technique and results of cylindrical thin film resistor characterization will be presented.

  2. Thin-Film Organic Electronic Devices

    NASA Astrophysics Data System (ADS)

    Katz, Howard E.; Huang, Jia

    2009-08-01

    We review recently published advancements in thin-film organic devices, ranging from the composition and properties of organic materials to be used in devices, to the applications of devices, with special emphasis on thin-film transistors, diodes, and chemical sensors. We present exemplary materials used in each kind of device, outline the physical mechanisms behind the functioning of the devices, and discuss the most advanced capabilities of the devices and device assemblies. Advantages to the selection of organic and polymeric materials, future prospects, and challenges for organic-based electronics are also considered.

  3. Feasibility Study of Thin Film Thermocouple Piles

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  4. Micro-sensor thin-film anemometer

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  5. Borocarbide thin films and tunneling measurements.

    SciTech Connect

    Iavarone, M.; Andreone, A.; Cassinese, A.; Dicapual, R.; giannil, L.; Vagliol, R.; DeWilde, Y.; Crabtree, G. W.

    2000-06-15

    The results obtained by their group in thin film fabrication and STM tunneling on superconducting borocarbides YNi{sub 2}B{sub 2}C have been be briefly reviewed. Results concerning the microwave surface impedance and the S/N planar junctions on LuNi{sub 2}B{sub 2}C thin films have been also presented and analyzed. These new data unambiguously confirm the full BCS nature of the superconducting gap in borocarbides and the absence of significant pair-breaking effects in LuNi{sub 2}B{sub 2}C.

  6. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  7. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  8. Dynamics of liquid films and thin jets

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1979-01-01

    The theory of liquid films and thin jets as one- and two-dimensional continuums is examined. The equations of motion have led to solutions for the characteristic speeds of wave propagation for the parameters characterizing the shape. The formal analogy with a compressible fluid indicates the possibility of shock wave generation in films and jets and the formal analogy to the theory of threads and membranes leads to the discovery of some new dynamic effects. The theory is illustrated by examples.

  9. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  10. Reactively sputtered thin film photovoltaic devices

    NASA Technical Reports Server (NTRS)

    Hsieh, E. J.

    1975-01-01

    The feasibility of a reactively sputtered thin film CdS - Cu2S solar cell is proven. Identification of the reactively sputtered Cu2S film is made by X-ray diffractometer and spectro-transmission measurements. Because of its simplicity, economical use of material, and high yield, the reactive sputtering process promises to be a low cost method for producing CdS - Cu2S solar cells.

  11. Anomalous C-V response correlated to relaxation processes in TiO{sub 2} thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects

    SciTech Connect

    Kahouli, A.; Marichy, C.; Pinna, N.

    2015-04-21

    Capacitance-voltage (C–V) and capacitance-frequency (C–f) measurements are performed on atomic layer deposited TiO{sub 2} thin films with top and bottom Au and Pt electrodes, respectively, over a large temperature and frequency range. A sharp capacitance peak/discontinuity (C–V anomalous) is observed in the C–V characteristics at various temperatures and voltages. It is demonstrated that this phenomenon is directly associated with oxygen vacancies. The C–V peak irreversibility and dissymmetry at the reversal dc voltage are attributed to difference between the Schottky contacts at the metal/TiO{sub 2} interfaces. Dielectric analyses reveal two relaxation processes with degeneration of the activation energy. The low trap level of 0.60–0.65 eV is associated with the first ionized oxygen vacancy at low temperature, while the deep trap level of 1.05 eV is associated to the second ionized oxygen vacancy at high temperature. The DC conductivity of the films exhibits a transition temperature at 200 °C, suggesting a transition from a conduction regime governed by ionized oxygen vacancies to one governed by interstitial Ti{sup 3+} ions. Both the C–V anomalous and relaxation processes in TiO{sub 2} arise from oxygen vacancies, while the conduction mechanism at high temperature is governed by interstitial titanium ions.

  12. Hydrothermal Barium Titanate Thin-Film Characteristics and their Suitability as Decoupling Capacitors

    SciTech Connect

    Raj, P. Markondeya; Lee, Baik-Woo; Kang, Nam-Kee; Tummala, Rao R; Lance, Michael J; Meyer III, Harry M

    2010-01-01

    System integration and miniaturization demands are driving integrated thin film capacitor technologies towards ultrahigh capacitance densities for noise-free power supply, power conversion and efficient power management. Hydrothermal route can deposit crystalline ferroelectric films at low temperatures of less than 150 C. It is hence an attractive route for integrating high permittivity thin film capacitors on organic, silicon or flex substrates. However, hydrothermal films are not commercialized so far because of their inferior insulation characteristics. Embedded hydroxyl groups are attributed to be the cause for high leakage currents, temperature dependent properties and lower Breakdown Voltages (BDVs). This paper discusses the dielectric characteristics such as capacitance density, leakage currents and Temperature Coefficient of Capacitance (TCC) of hydrothermal barium titanate films and correlates them to the embedded water and OH groups, film morphology, stoichiometry and crystallinity. With thermal treatment, majority of the OH groups can be removed leading to improved insulation characteristics. The room temperature I-V characteristics agreed with ionic conduction models for films baked at 160 C while higher baking temperatures of above 300 C resulted in Poole-Frenkel type conduction. A brief perspective is provided on the suitability of hydrothermal thin film capacitors for power supply applications.

  13. Preparation of silica thin films by novel wet process and study of their optical properties.

    PubMed

    Im, Sang-Hyeok; Kim, Nam-Jin; Kim, Dong-Hwan; Hwang, Cha-Won; Yoon, Duck-Ki; Ryu, Bong-Ki

    2012-02-01

    Silicon dioxide (SiO2) thin films have gained considerable attention because of their various industrial applications. For example, SiO2 thin films are used in superhydrophilic self-cleaning surface glass, UV protection films, anti-reflection coatings, and insulating materials. Recently, many processes such as vacuum evaporation, sputtering, chemical vapor deposition, and spin coating have been widely applied to prepare thin films of functionally graded materials. However, these processes suffer from several engineering problems. For example, a special apparatus is required for the deposition of films, and conventional wet processes are not suitable for coating the surfaces of substrates with a large surface area and complex morphology. In this study, we investigated the film morphology and optical properties of SiO2 films prepared by a novel technique, namely, liquid phase deposition (LPD). Images of the SiO2 films were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM) in order to study the surface morphology of these films: these images indicate that films deposited with different reaction times were uniform and dense and were composed of pure silica. Optical properties such as refractive index and transmittance were estimated by UV-vis spectroscopy and ellipsometry. SiO2 films with porous structures at the nanometer scale (100-250 nm) were successfully produced by LPD. The deposited film had excellent transmittance in the visible wavelength region.

  14. Optical and Structural Properties of Thin Film Composites.

    NASA Astrophysics Data System (ADS)

    Gibson, Ursula Jane

    This work describes the optical and structural characterization of metal-insulator and bimetallic composite films. Included are experimental details, theoretical descriptions of these systems, and a correlation of the optical response and microstructure of these thin film systems. The films were made by simultaneous or sequential evaporation of the constituents onto either amorphous or single crystal substrates. Two reflectance and one transmittance measurements were combined and inverted to determine the intrinsic optical constants of these materials over the wavelength range 0.2 to 3.0 microns. The metal insulator systems studied were Au-Al(,2)O(,3) and Au-MgO. The optical behavior and transport properties of these materials were measured, and correlated with their disparate microstructures. The optical behavior was compared to the predictions of three effective medium theories, labelled as the Maxwell-Garnett, Bruggeman Self-Consistent and Probabilistic Growth theories. The differing topological assumptions which form the bases of these theories were correlated with microscopic examination of the morphologies of the films, and it was found that the simple theories adequately predicted the optical response of the composites. Bimetallic systems were also studied, to investigate the extension of the Bruggeman theory to symmetric composites of immiscible metal constituents. It was found that the theory adequately predicts the behavior of films which display the symmetric morphology assumed by the theory. Studies of non-symmetric composites, and anisotropic systems (such as epitaxial layered materials (ELMs), showed that the symmetric morphology is necessary in order to model these systems with the Bruggeman theory.

  15. Workshop on thin film thermal conductivity measurements

    NASA Astrophysics Data System (ADS)

    Feldman, Albert; Balzaretti, Naira M.; Guenther, Arthur H.

    1998-04-01

    On a subject of considerable import to the laser-induced damage community, a two day workshop on the topic, Thin Film Thermal Conductivity Measurement was held as part of the 13th Symposium on Thermophysical Properties at the University of Colorado in Boulder CO, June 25 and 26, 1997. The Workshop consisted of 4 sessions of 17 oral presentations and two discussion sessions. Two related subjects of interest were covered; 1) methods and problems associated with measuring thermal conductivity ((kappa) ) of thin films, and 2) measuring and (kappa) of chemical vapor deposited (CVD) diamond. On the subject of thin film (kappa) measurement, several recently developed imaginative techniques were reviewed. However, several authors disagreed on how much (kappa) in a film differs from (kappa) in a bulk material of the same nominal composition. A subject of controversy was the definition of an interface. In the first discussion session, several questions were addressed, a principal one being, how do we know that the values of (kappa) we obtain are correct and is there a role for standards in thin film (kappa) measurement. The second discussion session was devoted to a round-robin interlaboratory comparison of (kappa) measurements on a set of CVD diamond specimens and several other specimens of lower thermal conductivity. Large interlaboratory differences obtained in an earlier round robin had been attributed to specimen inhomogeneity. Unfortunately, large differences were also observed in the second round robin even though the specimens were more homogenous. There was good consistency among the DC measurements, however, the AC measurements showed much greater variability. There was positive feedback from most of the attenders regarding the Workshop with nearly all respondents recommending another Workshop in three or fewer years. There was general recognition that thin film thermal conductivity measurements are important for predicting the resistance of optical coating

  16. Epitaxy of layered semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Brahim Otsmane, L.; Emery, J. Y.; Jouanne, M.; Balkanski, M.

    1993-03-01

    Epilayers of InSe on InSe(00.1) and GaSe(00.1) have been grown by the molecular beam epitaxy (MBE) technique. Raman spectroscopy was used for a characterization of the structure and crystallinity in InSe/InSe(00.1) (homoepitaxy) and InSe/GaSe(00.1) (heteroepitaxy). The Raman spectra of the InSe thin films are identical to those of polytype γ-InSe. An activation of the E(LO) mode at 211 cm -1 is observed in these films here. Scanning electron microscopy (SEM) is also used to investigate surfaces of these films.

  17. Ferrite thin films for microwave applications

    NASA Astrophysics Data System (ADS)

    Zaquine, I.; Benazizi, H.; Mage, J. C.

    1988-11-01

    This paper describes the preparation and the properties of thin (a few micron-thick) ferrite films for microwave applications. The films were deposited by RF sputtering from a single ferrite target on two different 4-in-thick substrates, silicon and alumina, both bare and metallized. The as-deposited films were amorphous, requiring careful annealing in oxygen atmosphere. The optimum annealing temperature was determined by obtaining the highest possible magnetization for each ferrite. The conditions of microwave measurements are described together with the results.

  18. Study of iron mononitride thin films

    NASA Astrophysics Data System (ADS)

    Tayal, Akhil; Gupta, Mukul; Phase, D. M.; Reddy, V. R.; Gupta, Ajay

    2014-04-01

    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  19. Corrugational Instabilities of Thin Copolymer Films

    NASA Astrophysics Data System (ADS)

    Williams, D. R. M.

    1995-07-01

    We study the equilibrium configurations of thin films of diblock copolymers, in the strong segregation limit, resting on a flat surface. The top surface is free. Such films are geometrically frustrated and possess an inherent strain. Here we show how this strain induces an undulational instability in the film. The existence of this instability is very sensitive to the chain end distribution within the bilayers, and a macroscopic observation of this instability on a length scale of 1000 Å gives an indication of the chain end distribution on the scale of 5 Å.

  20. Study of iron mononitride thin films

    SciTech Connect

    Tayal, Akhil Gupta, Mukul Phase, D. M. Reddy, V. R. Gupta, Ajay

    2014-04-24

    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  1. Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film

    SciTech Connect

    Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo; Sun, Cheng-Jun; Yang, Ping; Venkatesan, T.; Chen, Jingsheng; Zhu, Yimei; Chow, Gan Moog

    2016-06-08

    Interfaces with subtle differences in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 film on SrTiO3 substrate. The variations in the out-of-plane lattice constant and BO6 octahedral rotation across the Pr0.67Sr0.33MnO3/SrTiO3 interface strongly depend on the thickness of the Pr0.67Sr0.33MnO3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition of SrTiO3, apparently due to the enhanced electron–phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.

  2. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  3. Thin films for micro solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U. P.; Prestat, M.; Rupp, J. L. M.; Gauckler, L. J.

    Thin film deposition as applied to micro solid oxide fuel cell (μSOFC) fabrication is an emerging and highly active field of research that is attracting greater attention. This paper reviews thin film (thickness ≤1 μm) deposition techniques and components relevant to SOFCs including current research on nanocrystalline thin film electrolyte and thin-film-based model electrodes. Calculations showing the geometric limits of μSOFCs and first results towards fabrication of μSOFCs are also discussed.

  4. Deep-level defect characteristics in pentacene organic thin films

    NASA Astrophysics Data System (ADS)

    Yang, Yong Suk; Kim, Seong Hyun; Lee, Jeong-Ik; Chu, Hye Yong; Do, Lee-Mi; Lee, Hyoyoung; Oh, Jiyoung; Zyung, Taehyoung; Ryu, Min Ki; Jang, Min Su

    2002-03-01

    Organic thin-film transistors using the pentacene as an active electronic material have shown the mobility of 0.8 cm2/V s and the grains larger than 1 μm. To study the characteristics of electronic charge concentrations and the interface traps of the pentacene thin films, the capacitance properties were measured in the metal/insulator/organic semiconductor structure device by employing the capacitance-voltage and deep-level transient spectroscopy (DLTS) measurements. Based on the DLTS measurements, the concentrations and the energy levels of hole and electron traps in the obtained pentacene films were formed to be approximately 4.2×1015 cm-3 at Ev+0.24 eV, 9.6×1014 cm-3 at Ev+1.08 eV, 6.5×1015 cm-3 at Ev+0.31 eV and 2.6×1014 cm-3 at Ec-0.69 eV.

  5. Ferrite thin films for microwave applications

    SciTech Connect

    Zaquine, I.; Benazizi, H.; Mage, J.C.

    1988-11-15

    Production of ferrite thin films is the key to integration of microwave ferrite devices (circulators for phased array antennas, for instance). The interesting materials are the usual microwave ferrites: garnets, lithium ferrites, barium hexaferrites. The required thicknesses are a few tens of micrometers, and it will be important to achieve high deposition rates. Different substrates can be used: silicon and alumina both with and without metallization. The films were deposited by rf sputtering from a single target. The as-deposited films are amorphous and therefore require careful annealing in oxygen atmosphere. The sputtered films are a few micrometers thick on 4 in. substrates. The optimum annealing temperature was found by trying to obtain the highest possible magnetization for each ferrite. The precision on the value of magnetization is limited by the precision on the thickness of the film. We obtain magnetization values slightly lower than the target's. The ferromagnetic resonance linewidth was measured on toroids from 5 to 18 GHz.

  6. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  7. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  8. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  9. Semiconductor cooling by thin-film thermocouples

    NASA Technical Reports Server (NTRS)

    Tick, P. A.; Vilcans, J.

    1970-01-01

    Thin-film, metal alloy thermocouple junctions do not rectify, change circuit impedance only slightly, and require very little increase in space. Although they are less efficient cooling devices than semiconductor junctions, they may be applied to assist conventional cooling techniques for electronic devices.

  10. Thin coatings and films hardness evaluation

    NASA Astrophysics Data System (ADS)

    Matyunin, V. M.; Marchenkov, A. Yu; Demidov, A. N.; Karimbekov, M. A.

    2016-10-01

    The existing thin coatings and films hardness evaluation methods based on indentation with pyramidal indenter on various scale levels are expounded. The impact of scale factor on hardness values is performed. The experimental verification of several existing hardness evaluation methods regarding the substrate hardness value and the “coating - substrate” composite hardness value is made.

  11. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  12. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  13. Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors.

    PubMed

    Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J

    2005-03-29

    Very thin (2.3-5.5 nm) self-assembled organic dielectric multilayers have been integrated into organic thin-film transistor structures to achieve sub-1-V operating characteristics. These new dielectrics are fabricated by means of layer-by-layer solution phase deposition of molecular silicon precursors, resulting in smooth, nanostructurally well defined, strongly adherent, thermally stable, virtually pinhole-free, organosiloxane thin films having exceptionally large electrical capacitances (up to approximately 2,500 nF.cm(-2)), excellent insulating properties (leakage current densities as low as 10(-9) A.cm(-2)), and single-layer dielectric constant (k)of approximately 16. These 3D self-assembled multilayers enable organic thin-film transistor function at very low source-drain, gate, and threshold voltages (<1 V) and are compatible with a broad variety of vapor- or solution-deposited p- and n-channel organic semiconductors.

  14. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    SciTech Connect

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  15. Splitting methanol on ultra-thin MgO(100) films deposited on a Mo substrate.

    PubMed

    Song, Zhenjun; Xu, Hu

    2017-03-08

    The dissociation reaction of methanol on metal-supported MgO(100) films has been studied by employing density functional theory calculations. As far as we know, the dissociation of a single methanol molecule over inert oxide insulators such as MgO has not yet been successfully realized without the introduction of defects or low coordinated atoms. By depositing ultra-thin oxide films on a Mo substrate, we have successfully proposed the dissociative state of methanol. The dissociation reaction is energetically exothermic and nearly barrierless. The lattice mismatch between ultra-thin MgO(100) films and metal substrates plays a crucial role in the heterolytic dissociation of adsorbates, while the electronic effect of the Mo(100) substrate plays a non-ignorable role in the homolytic dissociation of methanol. The metal-supported ultra-thin oxide films studied herein provide a versatile approach to enhance the surface reaction activity and properties of oxides.

  16. Thin-film nanocapacitor and its characterization

    NASA Astrophysics Data System (ADS)

    Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong

    2007-03-01

    An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor. TiO2 with a 400 nm thickness and a high dielectric constant (ɛr ~ 100) was coated between the gold metal layers by using sol gel and dip-coating techniques. A RC circuit was built to measure the capacitance of the nanocapacitors. Some fundamental thin-film characterization equipment such as a four-point probe, a step profiler and an atomic force microscope were used in this laboratory to characterize the devices' morphology and electrical properties.

  17. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  18. Nanoindentation of GaSe thin films

    PubMed Central

    2012-01-01

    The structural and nanomechanical properties of GaSe thin films were investigated by means of X-ray diffraction (XRD) and nanoindentation techniques. The GaSe thin films were deposited on Si(111) substrates by pulsed laser deposition. XRD patterns reveal only the pure (000 l)-oriented reflections originating from the hexagonal GaSe phase and no trace of any impurity or additional phases. Nanoindentation results exhibit discontinuities (so-called multiple ‘pop-in’ events) in the loading segments of the load–displacement curves, and the continuous stiffness measurements indicate that the hardness and Young’s modulus of the hexagonal GaSe films are 1.8 ± 0.2 and 65.8 ± 5.6 GPa, respectively. PMID:22804961

  19. MISSE 5 Thin Films Space Exposure Experiment

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  20. Thin Film Research. Volume 1

    DTIC Science & Technology

    1985-05-30

    73 1. Antimony trioxide .. .. . .. ... ... . ............ 73 2. Potassium hexafluorozirconate ................... 73 3...silicon monoxide (SiO), zinc sulfide (ZnS), magnesium fluoride (MgF 2 ), and potassium hexafluorozirconate [2KF(ZrF,4J. Brief results follow: (1) SiO...somewhat higher packing density for the bombarded films. 2. Potassium hexafluorozirconate The structure tended toward a more- amorphous form under electron

  1. Center for Thin Film Studies

    DTIC Science & Technology

    1988-10-31

    initial layers of ZnS by molecular beam epitaxy (MBE) and atomic layer evaporation (ALE) on substrates prepared using different protocols . Work...I TASK 1. Nucleation and Growth Studies By Conventional and Atomic Layer Evaporation... LAYER EVAPORATION Principal Investigator: U. J. Gibson Project Goal The goal of the project is to study the details of nucleation and film growth

  2. Epitaxial stabilization of ultra thin films of electron doped manganites

    SciTech Connect

    Middey, S. Kareev, M.; Meyers, D.; Liu, X.; Cao, Y.; Tripathi, S.; Chakhalian, J.; Yazici, D.; Maple, M. B.; Ryan, P. J.; Freeland, J. W.

    2014-05-19

    Ultra-thin films of the electron doped manganite La{sub 0.8}Ce{sub 0.2}MnO{sub 3} were grown in a layer-by-layer growth mode on SrTiO{sub 3} (001) substrates by pulsed laser interval deposition. High structural quality and surface morphology were confirmed by a combination of synchrotron based x-ray diffraction and atomic force microscopy. Resonant X-ray absorption spectroscopy measurements confirm the presence of Ce{sup 4+} and Mn{sup 2+} ions. In addition, the electron doping signature was corroborated by Hall effect measurements. All grown films show a ferromagnetic ground state as revealed by both dc magnetization and x-ray magnetic circular dichroism measurements and remain insulating contrary to earlier reports of a metal-insulator transition. Our results hint at the possibility of electron-hole asymmetry in the colossal magnetoresistive manganite phase diagram akin to the high-T{sub c} cuprates.

  3. A magnetron sputtering system for the preparation of patterned thin films and in situ thin film electrical resistance measurements

    SciTech Connect

    Arnalds, U. B.; Agustsson, J. S.; Ingason, A. S.; Eriksson, A. K.; Gylfason, K. B.; Gudmundsson, J. T.; Olafsson, S.

    2007-10-15

    We describe a versatile three gun magnetron sputtering system with a custom made sample holder for in situ electrical resistance measurements, both during film growth and ambient changes on film electrical properties. The sample holder allows for the preparation of patterned thin film structures, using up to five different shadow masks without breaking vacuum. We show how the system is used to monitor the electrical resistance of thin metallic films during growth and to study the thermodynamics of hydrogen uptake in metallic thin films. Furthermore, we demonstrate the growth of thin film capacitors, where patterned films are created using shadow masks.

  4. Thin-film semiconductor rectifier has improved properties

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Cadmium selenide-zinc selenide film is used as a thin film semiconductor rectifier. The film is vapor-deposited in a controlled concentration gradient into a glass substrate to form the required junctions between vapor-deposited gold electrodes.

  5. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    SciTech Connect

    Ou-Yang, Wei E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  6. Thin blend films of cellulose and polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  7. Magnetoelectric Effect in Topological Insulator Films Beyond Linear Response Regime

    NASA Astrophysics Data System (ADS)

    Tretiakov, Oleg; Baasanjav, Dashdeleg; Nomura, Kentaro

    2014-03-01

    We study the response of topological insulator films to strong magnetic and electric fields beyond the linear response theory. As a model, we use three-dimensional lattice Wilson-Dirac Hamiltonian where we simultaneously introduce both magnetic field as Aharonov Bohm phase and electric field as potential energy depending on lattice coordinate. We compute the energy spectrum by numerically diagonalizing this Hamiltonian for electrons and obtain the quantized magnetoelectric polarizability. In addition, we find that the magnetoelectric effect vanishes as width of the film decreases, due to the hybridization of surface wavefunctions. Furthermore, by applying a gate voltage between the surfaces, we observe multiple quantized plateaus of θ-term. We explain that the multiple quantization rule of θ is mainly determined by the physics of Landau level structures on the top and bottom surfaces of topological insulator, whereas the small deviations from the exact quantization are coming from the asymmetry of the surface wavefunctions in the bulk. We also show that the magnetoelectric effect persists even for strong bulk interactions with magnetic field or magnetic impurities. We acknowledge support by the Grants-in-Aid for Scientific Research (No. 24740211, No. 25800184, and No. 25247056) from the MEXT, Japan.

  8. Thin Film Research. Volume 1

    DTIC Science & Technology

    1985-05-30

    isotherm expected for nonwetting adsorbate-adsorbent systems. 8 Type I depicts monolayer adsorption. Type II is very common in the case of physical...5.11 show the isothermal growth rate as a function of relative humidity. The shape can be classified as a type IV adsorption isotherm that corresponds...by following the fringes generated by interference effects in the growing film. The Balzers 760 evaporation system was supplied with both types of

  9. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  10. Electrical and optical properties of TiO2 anatase thin films

    NASA Astrophysics Data System (ADS)

    Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P. E.; Lévy, F.

    1994-02-01

    Electrical and optical spectroscopic studies of TiO2 anatase thin films deposited by sputtering show that the metastable phase anatase differs in electronic properties from the well-known, stable phase rutile. Resistivity and Hall-effect measurements reveal an insulator-metal transition in a donor band in anatase thin films with high donor concentrations. Such a transition is not observed in rutile thin films with similar donor concentrations. This indicates a larger effective Bohr radius of donor electrons in anatase than in rutile, which in turn suggests a smaller electron effective mass in anatase. The smaller effective mass in anatase is consistent with the high mobility, bandlike conduction observed in anatase crystals. It is also responsible for the very shallow donor energies in anatase. Luminescence of self-trapped excitons is observed in anatase thin films, which implies a strong lattice relaxation and a small exciton bandwidth in anatase. Optical absorption and photoconductivity spectra show that anatase thin films have a wider optical absorption gap than rutile thin films.

  11. Periodic oxidation for fabricating titanium oxynitride thin films via atomic layer deposition

    SciTech Connect

    Iwashita, Shinya Aoyama, Shintaro; Nasu, Masayuki; Shimomura, Kouji; Noro, Naotaka; Hasegawa, Toshio; Akasaka, Yasushi; Miyashita, Kohei

    2016-01-15

    This paper demonstrates thermal atomic layer deposition (ALD) combined with periodic oxidation for synthesizing titanium oxynitride (TiON) thin films. The process used a typical ALD reactor for the synthesis of titanium nitride (TiN) films wherein oxygen was supplied periodically between the ALD-TiN cycles. The great advantage of the process proposed here was that it allowed the TiN films to be oxidized efficiently. Also, a uniform depth profile of the oxygen concentration in the films could be obtained by tuning the oxidation conditions, allowing the process to produce a wide variety of TiON films. The resistivity measurement is a convenient method to confirm the reproducibility of metal film fabrication but may not be applicable for TiON films depending upon the oxidation condition because the films can easily turn into insulators when subjected to periodic oxidation. Therefore, an alternative reproducibility confirmation method was required. In this study, spectroscopic ellipsometry was applied to monitor the variation of TiON films and was able to detect changes in film structures such as conductor–insulator transitions in the TiON films.

  12. Ferroelectric Thin Films for Electronic Applications

    NASA Astrophysics Data System (ADS)

    Udayakumar, K. R.

    This study yokes together the feasibility of a family of PbO-based perovskite-structured ferroelectric thin films as functional elements in nonvolatile random access memories (NVRAMs), in high capacity dynamic RAMs, and in a new class of flexure wave piezoelectric ultrasonic micromotors. The dielectric and ferroelectric properties of lead zirconate titanate (PZT) thin films were dependent on thickness; at saturation, the films were characterized by a relative permittivity of 1300, remanent polarization of 36 muC/cm^2 and breakdown strength of over 1 MV/cm. The temperature dependence of permittivity revealed an anomalous behavior with the film annealing temperature. Based on the ferroelectric properties in the bulk, thin films in the lead zirconate -lead zinc niobate (PZ-PZN) solid solution system at 8-12% PZN, examined as alternate compositions for ferroelectric memories, feature switched charges of 4-14 mu C/cm^2, with coercive and saturation voltages less than the semiconductor operating voltage of 5 V. Rapid thermally annealed lead magnesium niobate titanate films were privy to weak signal dielectric permittivity of 2900, remanent polarization of 11 muC/cm^2, and a storage density of 210 fC/mum^2 at 5 V; the films merit consideration for potential applications in ultra large scale integrated circuits as also ferroelectric nonvolatile RAMs. The high breakdown strength and relative permittivity of the PZT films entail maximum stored energy density 10^3 times larger than a silicon electrostatic motor. The longitudinal piezoelectric strain coefficient d_{33 } was measured to be 220 pC/N at a dc bias of 75 kV/cm. The transverse piezoelectric strain coefficient d_{31} bore a nonlinear relationship with the electric field; at 200 kV/cm, d _{31} was -88 pC/N. The development of the piezoelectric ultrasonic micromotors from the PZT thin films, and the architecture of the stator structures are described. Nonoptimized prototype micromotors show rotational velocities of 100

  13. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    NASA Astrophysics Data System (ADS)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  14. Physical Vapor Deposition of Thin Films

    NASA Astrophysics Data System (ADS)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  15. Adhesion assessment of copper thin films

    SciTech Connect

    Kriese, M.D.; Gerberich, W.W.; Moody, N.R.

    1997-06-01

    Nano-indentation testing has been used to quantitatively assess the adhesion of thin copper films, sputtered to thicknesses of 150 nm to 1500 nm. Copper films of low residual stress were deposited via RF diode cathode sputtering onto SiO{sub 2}/Si substrates. Overlayers of DC magnetron sputtered tungsten, 850 nm thick with high residual stress, were additionally used to provide a driving force for delamination. All films tested exhibited buckle-driven delamination, from which the interfacial toughness was estimated to be 0.2 - 2 J/m{sup 2}, which is comparable to the thermodynamic work of adhesion. The use of an overlayer requires extensions of existing models, but otherwise does not change the interfacial adhesion, allowing measurements of films that would not otherwise delaminate.

  16. Cathodoluminescence degradation of PLD thin films

    NASA Astrophysics Data System (ADS)

    Swart, H. C.; Coetsee, E.; Terblans, J. J.; Ntwaeaborwa, O. M.; Nsimama, P. D.; Dejene, F. B.; Dolo, J. J.

    2010-12-01

    The cathodoluminescence (CL) intensities of Y2SiO5:Ce3+, Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+ phosphor thin films that were grown by pulsed laser deposition (PLD) were investigated for possible application in low voltage field emission displays (FEDs) and other infrastructure applications. Several process parameters (background gas, laser fluence, base pressure, substrate temperature, etc.) were changed during the deposition of the thin films. Atomic force microscopy (AFM) was used to determine the surface roughness and particle size of the different films. The layers consist of agglomerated nanoparticle structures. Samples with good light emission were selected for the electron degradation studies. Auger electron spectroscopy (AES) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of the thin films. AES and CL spectroscopy were done with 2 keV energy electrons. Measurements were done at 1×10-6 Torr oxygen pressure. The formation of different oxide layers during electron bombardment was confirmed with X-ray photoelectron spectroscopy (XPS). New non-luminescent layers that formed during electron bombardment were responsible for the degradation in light intensity. The adventitious C was removed from the surface in all three cases as volatile gas species, which is consistent with the electron stimulated surface chemical reaction (ESSCR) model. For Y2SiO5:Ce3+ a luminescent SiO2 layer formed during the electron bombardment. Gd2O3 and SrO thin films formed on the surfaces of Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+, respectively, due to ESSCRs.

  17. Thermochromic vanadium oxide thin films: Electronic and optical properties

    NASA Astrophysics Data System (ADS)

    Niklasson, G. A.; Li, S.-Y.; Granqvist, C. G.

    2014-11-01

    Vanadium dioxide, VO2, is a widely studied thermochromic material with potential applications in energy efficient window technology. It undergoes a first-order metal-to- insulator transition, accompanied by a crystal structure transformation from monoclinic to tetragonal rutile, at a critical temperature of 68 °C. Below this temperature, VO2 is semiconducting and infrared transmitting whereas it is metallic and infrared reflecting above the transition temperature. However, in order to achieve significant thermochromic switching, the luminous transmittance of thin films will typically be less than 50%. Here we report on recent research to improve the luminous transmittance as well as the transmittance change at the transition temperature. We systematically evaluate the effect of antireflection coatings, doping with Mg and the performance of coatings comprising thermochromic nanoparticles in a transparent matrix. The last option is shown to give the best performance and holds great promise for practical applications.

  18. A study of reactive plasma deposited thin films

    NASA Technical Reports Server (NTRS)

    Gilchrist, J.; Williams, E.

    1986-01-01

    A state-of-the-art research laboratory was established to grow and characterize amorphous thin films that are useful in semi-conductor devices. Two film systems, nitride films and silicon dioxide films were studied. Over seventy deposition runs for nitride films were made. The films were deposited on silicon substrate using plasma enhanced chemical vapor deposition. It was found that the uniformity of the films were affected by the location of the film on the platen.

  19. Thin Film...Large Payoff

    NASA Technical Reports Server (NTRS)

    1998-01-01

    SRS Technologies is currently the only company licensed by Langley Research Center to produce colorless polyimides. They currently produce two polyimides, the LaRC-CP1 and LaRC-CP2 developed by Langley Research Center. These polyimides offer many advantages over other commercially available materials including excellent thermal stability, radiation resistance, solubility, and transparency. The SRS polyimides can be used in laminates, films, molded parts, and stock shapes. The polyimide technology has also helped the company further their development of solar arrays.

  20. Deposition and characterization of CuInS2 thin films deposited over copper thin films

    NASA Astrophysics Data System (ADS)

    Thomas, Titu; Kumar, K. Rajeev; Kartha, C. Sudha; Vijayakumar, K. P.

    2015-06-01

    Simple, cost effective and versatile spray pyrolysis method is effectively combined with vacuum evaporation for the deposition of CuIns2 thin films for photovoltaic applications. In the present study In2s3 was spray deposited over vacuum evaporated Cu thin films and Cu was allowed to diffuse in to the In2S3 layer to form CuInS2. To analyse the dependence of precursor volume on the formation of CuInS2 films structural, electrical and morphological analzes are carried out. Successful deposition of CuInS2thin films with good crystallinity and morphology with considerably low resistivity is reported in this paper.