Science.gov

Sample records for insulin receptor activator

  1. Protein kinase activity of the insulin receptor.

    PubMed Central

    Gammeltoft, S; Van Obberghen, E

    1986-01-01

    The insulin receptor is an integral membrane glycoprotein (Mr approximately 300,000) composed of two alpha-subunits (Mr approximately 130,000) and two beta-subunits (Mr approximately 95,000) linked by disulphide bonds. This oligomeric structure divides the receptor into two functional domains such that alpha-subunits bind insulin and beta-subunits possess tyrosine kinase activity. The amino acid sequence deduced from cDNA of the single polypeptide chain precursor of human placental insulin receptor revealed that alpha- and beta-subunits consist of 735 and 620 residues, respectively. The alpha-subunit is hydrophilic, disulphide-bonded, glycosylated and probably extracellular. The beta-subunit consists of a short extracellular region which links the alpha-subunit through disulphide bridges, a hydrophobic transmembrane region and a longer cytoplasmic region which is structurally homologous with other tyrosine kinases like the src oncogene product and EGF receptor kinases. The cellular function of insulin receptors is dual: transmembrane signalling and endocytosis of hormone. The binding of insulin to its receptor on the cell membrane induces transfer of signal from extracellular to cytoplasmic receptor domains leading to activation of cell metabolism and growth. In addition, hormone-receptor complexes are internalized leading to intracellular proteolysis of insulin, whereas receptors are recycled to the membrane. These phenomena are kinetically well-characterized, but their molecular mechanisms remain obscure. Insulin receptor in different tissues and animal species are homologous in their structure and function, but show also significant differences regarding size of alpha-subunits, binding kinetics, insulin specificity and receptor-mediated degradation. We suggest that this heterogeneity of receptors may be linked to the diversity in insulin effects on metabolism and growth in various cell types. The purified insulin receptor phosphorylates its own beta-subunit and

  2. Monoclonal Antibodies to the Human Insulin Receptor that Activate Glucose Transport but not Insulin Receptor Kinase Activity

    NASA Astrophysics Data System (ADS)

    Forsayeth, John R.; Caro, Jose F.; Sinha, Madhur K.; Maddux, Betty A.; Goldfine, Ira D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the α subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.

  3. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  4. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. Copyright © 2016 by U.S. Government work not protected by U.S. copyright.

  5. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists.

  6. [Peroxisome proliferator activated receptors (PPAR) and insulin sensitivity: experimental studies].

    PubMed

    Haluzík, M M; Haluzík, M

    2006-01-01

    Peroxisome proliferator activated receptors (PPARs) belong to the nuclear receptor superfamily, which act as transcription factors. PPARs affect expression of many genes, which products are involved in lipid and carbohydrates metabolism, cell proliferation and differentiation and numerous other processes. Three different subtypes (isoforms) of PPARs have been identified: PPAR-alpha, PPAR-gamma, PPAR-delta. PPAR-alpha receptors play an important role in the regulation of lipid metabolism: they decrease circulating fatty acids and triglyceride levels. Recently, the ability of PPAR-alpha receptors to improve insulin sensitivity in rodent model of insulin resistance have been documented and numerous studies have focused on this topic. One of the possible mechanisms of its action on the insulin sensitivity is lowering of ectopic lipids in liver and muscle tissues with subsequent heightening of insulin signalling cascade. Here we summarize the experimental studies focusing on the role of PPAR-alpha in the regulation of insulin sensitivity and discuss possible mechanisms involved.

  7. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators.

    PubMed

    Bedinger, Daniel H; Adams, Sean H

    2015-11-05

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic and mitogenic responses to insulin are regulated by divergent post-receptor signaling mechanisms downstream from the activated insulin receptor (IR). However, the anabolic and growth-promoting properties of insulin require tissue-specific inter-relationships between the two pathways, and the nature and scope of insulin-regulated processes vary greatly across tissues. Understanding the nuances of this interplay between metabolic and growth-regulating properties of insulin would have important implications for development of novel insulin and IR modulator therapies that stimulate insulin receptor activation in both pathway- and tissue-specific manners. This review will provide a unique perspective focusing on the roles of "metabolic" and "mitogenic" actions of insulin signaling in various tissues, and how these networks should be considered when evaluating selective pharmacologic approaches to prevent or treat metabolic disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Thrombin stimulates insulin secretion via protease-activated receptor-3.

    PubMed

    Hänzelmann, Sonja; Wang, Jinling; Güney, Emre; Tang, Yunzhao; Zhang, Enming; Axelsson, Annika S; Nenonen, Hannah; Salehi, Albert S; Wollheim, Claes B; Zetterberg, Eva; Berntorp, Erik; Costa, Ivan G; Castelo, Robert; Rosengren, Anders H

    2015-01-01

    The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes ('module') including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a 'tethered ligand' to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca(2+) release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D.

  9. Activation of insulin signal transduction pathway and anti-diabetic activity of small molecule insulin receptor activators.

    PubMed

    Qureshi, S A; Ding, V; Li, Z; Szalkowski, D; Biazzo-Ashnault, D E; Xie, D; Saperstein, R; Brady, E; Huskey, S; Shen, X; Liu, K; Xu, L; Salituro, G M; Heck, J V; Moller, D E; Jones, A B; Zhang, B B

    2000-11-24

    We recently described the identification of a non-peptidyl fungal metabolite (l-783,281, compound 1), which induced activation of human insulin receptor (IR) tyrosine kinase and mediated insulin-like effects in cells, as well as decreased blood glucose levels in murine models of Type 2 diabetes (Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y., Royo, I., Vilella, D., Diez, M. T. , Pelaez, F., Ruby, C., Kendall, R. L., Mao, X., Griffin, P., Calaycay, J., Zierath, J. R., Heck, J. V., Smith, R. G. & Moller, D. E. (1999) Science 284, 974-977). Here we report the characterization of an active analog (compound 2) with enhanced IR kinase activation potency and selectivity over related receptors (insulin-like growth factor I receptor, epidermal growth factor receptor, and platelet-derived growth factor receptor). The IR activators stimulated tyrosine kinase activity of partially purified native IR and recombinant IR tyrosine kinase domain. Administration of the IR activators to mice was associated with increased IR tyrosine kinase activity in liver. In vivo oral treatment with compound 2 resulted in significant glucose lowering in several rodent models of diabetes. In db/db mice, oral administration of compound 2 elicited significant correction of hyperglycemia. In a streptozotocin-induced diabetic mouse model, compound 2 potentiated the glucose-lowering effect of insulin. In normal rats, compound 2 improved oral glucose tolerance with significant reduction in insulin release following glucose challenge. A structurally related inactive analog (compound 3) was not effective on insulin receptor activation or glucose lowering in db/db mice. Thus, small molecule IR activators exert insulin mimetic and sensitizing effects in cells and in animal models of diabetes. These results have implications for the future development of new therapies for diabetes mellitus.

  10. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-05

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. Copyright © 2016. Published by Elsevier Inc.

  11. Direct Demonstration of Separate Receptors for Growth and Metabolic Activities of Insulin and Multiplication-stimulating Activity (an Insulinlike Growth Factor) Using Antibodies to the Insulin Receptor

    PubMed Central

    King, George L.; Kahn, C. Ronald; Rechler, Matthew M.; Nissley, S. Peter

    1980-01-01

    Insulin and such insulinlike growth factors as multiplication stimulating activity (MSA) are related polypeptides that have common biological activities. Both insulin and MSA produce acute metabolic responses (stimulation of glucose oxidation in isolated fat cells) as well as growth effects (stimulation of [3H]thymidine incorporation into DNA in cultured fibroblasts). In addition, most cells have separate receptors for insulin and insulinlike growth factors, and both peptides have weaker affinity for each other's specific receptors than for their own. To determine, therefore, whether these effects are mediated by receptors for insulin, insulinlike growth factors, or both, we have selectively blocked insulin receptors with a specific antagonist, namely Fab fragments derived from naturally occurring antibodies to the insulin receptor. In rat adipocytes, 10 μg/ml of antireceptor Fab inhibited insulin binding by 90%, whereas it inhibited MSA binding <5%. The anti-insulin receptor Fab is without intrinsic biological activity, but acts as a competitive inhibitor of insulin receptors. Blockade of insulin receptors with Fab fragments produced a 30-fold rightward shift in the dose response for stimulation of glucose oxidation by both insulin and MSA. The dose-response curves for stimulation of oxidation by vitamin K5 and spermine, agents that stimulate glucose oxidation through noninsulin receptor pathways, were not affected by the blockade of insulin receptors with Fab antibody fragments. These data suggest that this acute metabolic effect of both insulin and MSA is mediated via the insulin receptor. In cultured human fibroblasts, 10 μg/ml of Fab inhibited insulin binding by 90% and MSA binding by 15%. In fibroblasts, however, blockade of the insulin receptor did not alter the dose response for stimulation of thymidine incorporation into DNA by either insulin or MSA. Furthermore, intact antireceptor antibody immunoglobulin (Ig)G, which produces multiple other insulinlike

  12. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    SciTech Connect

    Niessen, Markus . E-mail: markus.niessen@usz.ch; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-02-15

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the {beta}-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.

  13. Metformin (Glucophage) inhibits tyrosine phosphatase activity to stimulate the insulin receptor tyrosine kinase.

    PubMed

    Holland, William; Morrison, Thomas; Chang, Ying; Wiernsperger, Nicholas; Stith, Bradley J

    2004-06-01

    Metformin is a commonly used anti-diabetic but whether its mechanism involves action on the insulin receptor or on downstream events is still controversial. With a time course that was slow compared with insulin action, metformin increased tyrosine phosphorylation of the regulatory domain of the insulin receptor (specifically, tyrosine residues 1150 and 1151). In a direct action, therapeutic levels of metformin stimulated the tyrosine kinase activity of the soluble intracellular portion of the beta subunit of the human insulin receptor toward a substrate derived from the insulin receptor regulatory domain. However, metformin did not alter the order of substrate phosphorylation by the insulin receptor kinase. Using a Xenopus oocyte preparation, we simultaneously recorded tyrosine kinase and phosphatase activities that regulate the insulin receptor by measuring the tyrosine phosphorylation and dephosphorylation of peptides derived from the regulatory domain of the human insulin receptor. In an indirect stimulation of the insulin receptor, metformin inhibited endogenous tyrosine phosphatases and purified human protein tyrosine phosphatase 1B that dephosphorylate and inhibit the insulin receptor kinase. Thus, there was evidence that metformin acted directly upon the insulin receptor and indirectly through inhibition of tyrosine phosphatases.

  14. Insulin receptor binding and protein kinase activity in muscles of trained rats

    SciTech Connect

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-02-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing approx. 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise ( SVI). Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training.

  15. Corticosterone-induced insulin resistance is not associated with alterations of insulin receptor number and kinase activity in chicken kidney.

    PubMed

    Bisbis, S; Taouis, M; Derouet, M; Chevalier, B; Simon, J

    1994-12-01

    Chicken renal insulin receptors have been recently characterized; their number and kinase activities vary in response to altered nutritional status. In the present study, the effect of chronic corticosterone treatment was examined in 5-week-old chickens. The development of an insulin resistance following corticosterone was suggested after 1 and 2 weeks of treatment by a significant increases in plasma insulin levels (1.63 +/- 0.13 vs 0.56 +/- 0.14 ng insulin/ml in controls) and in renal cytosolic phosphoenolpyruvate carboxykinase activity (17.2 +/- 0.8 vs 13.7 +/- 0.7 nm/mn/mg tissue in controls). No significant changes were present at the level of insulin receptor number and kinase activity. Therefore, in kidney and, as previously observed, in muscles, corticosterone can induce insulin resistance at postreceptor steps in the cascade of events leading to insulin action.

  16. Solubilized placental membrane protein inhibits insulin receptor tyrosine kinase activity

    SciTech Connect

    Strout, H.V. Jr.; Slater, E.E.

    1987-05-01

    Regulation of insulin receptor (IR) tyrosine kinase (TK) activity may be important in modulating insulin action. Utilizing an assay which measures IR phosphorylation of angiotensin II (AII), the authors investigated whether fractions of TX-100 solubilized human placental membranes inhibited IR dependent AII phosphorylation. Autophosphorylated IR was incubated with membrane fractions before the addition of AII, and kinase inhibition measured by the loss of TSP incorporated in AII. An inhibitory activity was detected which was dose, time, and temperature dependent. The inhibitor was purified 200-fold by sequential chromatography on wheat germ agglutinin, DEAE, and hydroxyapatite. This inhibitory activity was found to correlate with an 80 KD protein which was electroeluted from preparative slab gels and rabbit antiserum raised. Incubation of membrane fractions with antiserum before the IRTK assay immunoprecipitated the inhibitor. Protein immunoblots of crude or purified fractions revealed only the 80 KD protein. Since IR autophosphorylation is crucial to IRTK activity, the authors investigated the state of IR autophosphorylation after treatment with inhibitor; no change was detected by phosphoamino acid analysis.

  17. Cannabinoids induce pancreatic β-cell death by directly inhibiting insulin receptor activation.

    PubMed

    Kim, Wook; Lao, Qizong; Shin, Yu-Kyong; Carlson, Olga D; Lee, Eun Kyung; Gorospe, Myriam; Kulkarni, Rohit N; Egan, Josephine M

    2012-03-20

    Cannabinoid 1 (CB1) receptors have been previously detected in pancreatic β cells, where they attenuate insulin action. We now report that CB1 receptors form a heteromeric complex with insulin receptors and the heterotrimeric guanosine triphosphate-binding protein α subunit Gα(i). Gα(i) inhibited the kinase activity of the insulin receptor in β cells by directly binding to the activation loop in the tyrosine kinase domain of the receptor. Consequently, phosphorylation of proapoptotic protein Bad was reduced and its apoptotic activity was stimulated, leading to β-cell death. Pharmacological blockade or genetic deficiency of CB1 receptors enhanced insulin receptor signaling after injury, leading to reduced blood glucose concentrations and activation of Bad, which increased β-cell survival. These findings provide direct evidence of physical and functional interactions between CB1 and insulin receptors and suggest a mechanism whereby peripherally acting CB1 receptor antagonists improve insulin action in insulin-sensitive tissues independent of the other metabolic effects of CB1 receptors.

  18. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation.

    PubMed

    Kwon, Hayeong; Lee, Jaewoong; Jeong, Kyuho; Jang, Donghwan; Pak, Yunbae

    2015-05-01

    Here, we demonstrate that insulin receptor (IR) tyrosine kinase catalyzes Tyr-19 and Tyr-27 phosphorylation of caveolin-2 (cav-2), leading to stimulation of signaling proteins downstream of IR, and that the catalysis is dependent on fatty acylation status of cav-2, promoting its interaction with IR. Cav-2 is myristoylated at Gly-2 and palmitoylated at Cys-109, Cys-122, and Cys-145. The fatty acylation deficient mutants are unable to localize in the plasma membrane and not phosphorylated by IR tyrosine kinase. IR interacts with the C-terminal domain of cav-2 containing the cysteines for palmitoylation. IR mutants, Y999F and K1057A, but not W1220S, fail interaction with cav-2. Insulin receptor substrate-1 (IRS-1) is recruited to interact with the IR-catalyzed phospho-tyrosine cav-2, which facilitates IRS-1 association with and activation by IR to initiate IRS-1-mediated downstream signaling. Cav-2 fatty acylation and tyrosine phosphorylation are necessary for the IRS-1-dependent PI3K-Akt and ERK activations responsible for glucose uptake and cell survival and proliferation. In conclusion, fatty acylated cav-2 is a new substrate of IR tyrosine kinase, and the fatty acylation and phosphorylation of cav-2 present novel mechanisms by which insulin signaling is activated. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    PubMed

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  20. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects.

    PubMed Central

    Goodyear, L J; Giorgino, F; Sherman, L A; Carey, J; Smith, R J; Dohm, G L

    1995-01-01

    To determine whether the impaired insulin-stimulated glucose uptake in obese individuals is associated with altered insulin receptor signaling, we measured both glucose uptake and early steps in the insulin action pathway in intact strips of human skeletal muscle. Biopsies of rectus abdominus muscle were taken from eight obese and eight control subjects undergoing elective surgery (body mass index 52.9 +/- 3.6 vs 25.7 +/- 0.9). Insulin-stimulated 2-deoxyglucose uptake was 53% lower in muscle strips from obese subjects. Additional muscle strips were incubated in the basal state or with 10(-7) M insulin for 2, 15, or 30 min. In the lean subjects, tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), measured by immunoblotting with anti-phosphotyrosine antibodies, was significantly increased by insulin at all time points. In the skeletal muscle from the obese subjects, insulin was less effective in stimulating tyrosine phosphorylation (maximum receptor and IRS-1 phosphorylation decreased by 35 and 38%, respectively). Insulin stimulation of IRS-1 immunoprecipitable phosphatidylinositol 3-kinase (PI 3-kinase) activity also was markedly lower in obese subjects compared with controls (10- vs 35-fold above basal, respectively). In addition, the obese subjects had a lower abundance of the insulin receptor, IRS-1, and the p85 subunit of PI 3-kinase (55, 54, and 64% of nonobese, respectively). We conclude that impaired insulin-stimulated glucose uptake in skeletal muscle from severely obese subjects is accompanied by a deficiency in insulin receptor signaling, which may contribute to decreased insulin action. Images PMID:7537758

  1. Activation of transforming potential of the human insulin receptor gene

    SciTech Connect

    Wang, L.H.; Lin, B.; Jong, S.M.J.; Dixon, D.; Ellis, L.; Roth, R.A.; Rutter, W.J.

    1987-08-01

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the ..beta.. subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  2. Activation of islet 5-HT4 receptor regulates glycemic control through promoting insulin secretion.

    PubMed

    Chen, Hui; Hong, Feng; Chen, Ye; Li, Ji; Yao, Yuan-Sheng; Zhang, Yue; Zheng, Li-Fei; Zhu, Jin-Xia

    2016-10-15

    Mosapride, a gastrointestinal prokinetic drug, is an agonist of 5-hydroxytryptamine (5-HT) receptor 4 that also reduces blood glucose. Whether 5-HT4 receptor is distributed in pancreatic islets and whether mosapride can directly stimulate insulin secretion is unclear. In the present study, the protein expression and cellular location of 5-HT4 receptor in pancreas was detected through western blotting and immunofluorescence. The acute effects of 5-HT4 receptor agonists, mosapride and prucalopride, on insulin secretion were investigated in vivo and in vitro in normal and alloxan-induced diabetes rats. The results indicated that 5-HT4 receptor immunoreactivity was co-existed in the islets insulin-immunoreactive cells of rat, mouse, pig and human. However the immunoreactive cells of insulin and 5-HT4 receptor and the protein expression of 5-HT4 receptor were significantly decreased in the pancreas of alloxan-induced diabetes rats. In normal rats, mosapride and prucalopride decreased blood glucose and increased insulin secretion during glucose tolerance test, in association with an increase in glucose-stimulated insulin secretion, which was abolished by the 5-HT4 receptor antagonist GR113808. In diabetes rats, mosapride and prucalopride failed to improve blood glucose and insulin levels in the group of 180mg/kg alloxan, but increased glucose-stimulated insulin secretion in the group of 120mg/kg alloxan in vitro. We conclude that 5-HT4 receptor is distributed in the islet β cell. Activation of 5-HT4 receptor is able to stimulate insulin secretion directly, thereby reduce blood glucose. The study provides important experimental evidences for the 5-HT4 receptor regulating insulin secretion and acting as a potential drug target in diabetes treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice.

    PubMed

    Tanigaki, Keiji; Chambliss, Ken L; Yuhanna, Ivan S; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N; Huang, Paul L; Shaul, Philip W; Mineo, Chieko

    2016-07-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Understanding the Mechanism of Insulin and Insulin-Like Growth Factor (IGF) Receptor Activation by IGF-II

    PubMed Central

    Alvino, Clair L.; Ong, Shee Chee; McNeil, Kerrie A.; Delaine, Carlie; Booker, Grant W.; Wallace, John C.; Forbes, Briony E.

    2011-01-01

    Background Insulin-like growth factor-II (IGF-II) promotes cell proliferation and survival and plays an important role in normal fetal development and placental function. IGF-II binds both the insulin-like growth factor receptor (IGF-1R) and insulin receptor isoform A (IR-A) with high affinity. Interestingly both IGF-II and the IR-A are often upregulated in cancer and IGF-II acts via both receptors to promote cancer proliferation. There is relatively little known about the mechanism of ligand induced activation of the insulin (IR) and IGF-1R. The recently solved IR structure reveals a folded over dimer with two potential ligand binding pockets arising from residues on each receptor half. Site-directed mutagenesis has mapped receptor residues important for ligand binding to two separate sites within the ligand binding pocket and we have recently shown that the IGFs have two separate binding surfaces which interact with the receptor sites 1 and 2. Methodology/Principal Findings In this study we describe a series of partial IGF-1R and IR agonists generated by mutating Glu12 of IGF-II. By comparing receptor binding affinities, abilities to induce negative cooperativity and potencies in receptor activation, we provide evidence that residue Glu12 bridges the two receptor halves leading to receptor activation. Conclusions/Significance This study provides novel insight into the mechanism of receptor binding and activation by IGF-II, which may be important for the future development of inhibitors of its action for the treatment of cancer. PMID:22140443

  5. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    USDA-ARS?s Scientific Manuscript database

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  6. Monoclonal antibodies to the insulin receptor stimulate the intrinsic tyrosine kinase activity by cross-linking receptor molecules.

    PubMed

    O'Brien, R M; Soos, M A; Siddle, K

    1987-12-20

    The effect of monoclonal anti-insulin receptor antibodies on the intrinsic kinase activity of solubilized receptor was investigated. Antibodies for six distinct epitopes stimulated receptor autophosphorylation and kinase activity towards exogenous substrates. This effect of antibodies was seen only within a narrow concentration range and monovalent antibody fragments were ineffective. Evidence was obtained by sucrose density-gradient centrifugation for the formation of antibody-receptor complexes which involved both inter- and intra-molecular cross-linking, although stimulation of autophosphorylation appeared to be preferentially associated with the latter. There was partial additivity between the effects of insulin and antibodies in stimulating autophosphorylation, although the sites of phosphorylation appeared identical on two-dimensional peptide maps. Antibodies for two further epitopes failed to activate receptor kinase, but inhibited its stimulation by insulin. The effects of antibodies on kinase activity paralleled their metabolic effects on adipocytes, except for one antibody which was potently insulin-like in its metabolic effects, but which antagonized insulin stimulation of kinase activity. It is concluded that antibodies activate the receptor by cross-linking subunits rather than by reacting at specific epitopes. The ability of some antibodies to activate receptor may depend on receptor environment as well as the disposition of epitopes.

  7. Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin.

    PubMed

    Montagut, Gemma; Onnockx, Sheela; Vaqué, Montserrat; Bladé, Cinta; Blay, Mayte; Fernández-Larrea, Juan; Pujadas, Gerard; Salvadó, M Josepa; Arola, Lluís; Pirson, Isabelle; Ardévol, Anna; Pinent, Montserrat

    2010-06-01

    Procyanidins are bioactive flavonoid compounds from fruits and vegetables that possess insulinomimetic properties, decreasing hyperglycaemia in streptozotocin-diabetic rats and stimulating glucose uptake in insulin-sensitive cell lines. Here we show that the oligomeric structures of a grape-seed procyanidin extract (GSPE) interact and induce the autophosphorylation of the insulin receptor in order to stimulate the uptake of glucose. However, their activation differs from insulin activation and results in differences in the downstream signaling. Oligomers of GSPE phosphorylate protein kinase B at Thr308 lower than insulin does, according to the lower insulin receptor activation by procyanidins. On the other hand, they phosphorylate Akt at Ser473 to the same extent as insulin. Moreover, we found that procyanidins phosphorylate p44/p42 and p38 MAPKs much more than insulin does. These results provide further insight into the molecular signaling mechanisms used by procyanidins, pointing to Akt and MAPK proteins as key points for GSPE-activated signaling pathways. Moreover, the differences between GSPE and insulin might help us to understand the wide range of biological effects that procyanidins have. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Substitution of isoleucine for methionine at position 1153 in the beta-subunit of the human insulin receptor. A mutation that impairs receptor tyrosine kinase activity, receptor endocytosis, and insulin action.

    PubMed

    Cama, A; Quon, M J; de la Luz Sierra, M; Taylor, S I

    1992-04-25

    The intracellular domain of the insulin receptor possesses activity as a tyrosine-specific protein kinase. The receptor tyrosine kinase is stimulated by insulin binding to the extracellular domain of the receptor. Previously, we have identified a patient with a genetic form of insulin resistance who is heterozygous for a mutation substituting Ile for Met1153 in the tyrosine kinase domain of the receptor near the cluster of the three major autophosphorylation sites (Tyr1158, Tyr1162, and Tyr1163). In this investigation, the Ile1153 mutant receptor was expressed by transfection of mutant cDNA into NIH-3T3 cells. The mutation impairs receptor tyrosine kinase activity and also inhibits the ability of insulin to stimulate 2-deoxyglucose uptake and thymidine incorporation. These data support the hypothesis that the receptor tyrosine activity plays a necessary role in the ability of the receptor to mediate insulin action in vivo. Furthermore, expression of the Ile1153 mutant receptor exerted a dominant negative effect to inhibit the ability of endogenous murine receptors for insulin and insulin-like growth factor I to mediate their actions upon the cell. This observation is consistent with previous suggestions that mutant receptors dimerize with wild type receptors, thereby creating hybrid molecules which lack biological activity. The dominant negative effect of the mutant receptor may explain the dominant mode of inheritance of insulin resistance caused by the Ile1153 mutation. Finally, the mutation inhibits the ability of insulin to stimulate receptor endocytosis. This may explain the normal number of insulin receptors on the surface of the patient's cells in vivo. Despite the presence of markedly elevated levels of insulin in the patient's plasma, the receptors were resistant to down-regulation.

  9. Structural insights into ligand-induced activation of the insulin receptor

    SciTech Connect

    Ward, C.; Lawrence, M.; Streltsov, V.; Garrett, T.; McKern, N.; Lou, M.-Z.; Lovrecz, G.; Adams, T.

    2008-04-29

    The current model for insulin binding to the insulin receptor proposes that there are two binding sites, referred to as sites 1 and 2, on each monomer in the receptor homodimer and two binding surfaces on insulin, one involving residues predominantly from the dimerization face of insulin (the classical binding surface) and the other residues from the hexamerization face. High-affinity binding involves one insulin molecule using its two surfaces to make bridging contacts with site 1 from one receptor monomer and site 2 from the other. Whilst the receptor dimer has two identical site 1-site 2 pairs, insulin molecules cannot bridge both pairs simultaneously. Our structures of the insulin receptor (IR) ectodomain dimer and the L1-CR-L2 fragments of IR and insulin-like growth factor receptor (IGF-1R) explain many of the features of ligand-receptor binding and allow the two binding sites on the receptor to be described. The IR dimer has an unexpected folded-over conformation which places the C-terminal surface of the first fibronectin-III domain in close juxtaposition to the known L1 domain ligand-binding surface suggesting that the C-terminal surface of FnIII-1 is the second binding site involved in high-affinity binding. This is very different from previous models based on three-dimensional reconstruction from scanning transmission electron micrographs. Our single-molecule images indicate that IGF-1R has a morphology similar to that of IR. In addition, the structures of the first three domains (L1-CR-L2) of the IR and IGF-1R show that there are major differences in the two regions governing ligand specificity. The implications of these findings for ligand-induced receptor activation will be discussed. This review summarizes the key findings regarding the discovery and characterization of the insulin receptor, the identification and arrangement of its structural domains in the sequence and the key features associated with ligand binding. The remainder of the review

  10. Insulin-receptor activity in nondiabetic and diabetic urbanized South African black women.

    PubMed

    Panz, V R; Joffe, B I; Wing, J R; Raal, F J; Seftel, H C

    1992-02-01

    To evaluate insulin receptor binding characteristics of urbanized South African black women with normal glucose tolerance and of patients with newly diagnosed untreated non-insulin-dependent diabetes mellitus (NIDDM). Four groups of 10 subjects each were selected by the following criteria: group A, young (20-39 yr) nonobese (body mass index [BMI] 19.0-24.9 kg/m2) nondiabetic women; group B, middle-aged (40-60 yr) nonobese nondiabetic women; group C, middle-aged obese (BMI greater than 30.0 kg/m2) nondiabetic women; and group D, middle-aged obese newly diagnosed but untreated female patients with NIDDM. Insulin binding to monocyte receptors was determined by radioreceptor assay. Fasting plasma samples were analyzed for glucose, insulin, C-peptide, and nonesterified fatty acids. In the four groups studied, maximum specific binding and receptor concentration were highest in group A, with a progressive and significant decrease in values through groups B and C to group D. Significant inverse correlations were obtained between maximum specific binding, 50% inhibition dose, and total receptor concentration on the one hand and glucose, insulin, and NEFA on the other. Our study of urban South African black women showed decreasing insulin-receptor activity with obesity and glucose intolerance. In patients with NIDDM, hyperglycemia and beta-cell dysfunction were associated with a reduction in receptor concentration. In this regard, our findings in South African blacks are consistent with results of similar studies of NIDDM in other communities.

  11. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation.

    PubMed

    Cieniewicz, Anne M; Cooper, Philip R; McGehee, Jennifer; Lingham, Russell B; Kihm, Anthony J

    2016-08-01

    Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize

  12. The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity.

    PubMed

    Chan, Chi Bun; Liu, Xia; He, Kunyan; Qi, Qi; Jung, Dae Y; Kim, Jason K; Ye, Keqiang

    2011-07-01

    Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.

  13. Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels

    PubMed Central

    Qiu, Jian; Zhang, Chunguang; Borgquist, Amanda; Nestor, Casey C; Smith, Arik W.; Bosch, Martha A.; Ku, Stephen; Wagner, Edward J.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    SUMMARY Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin receptor and insulin receptor are coupled to activation of phosphatidylinositide3-kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that similar to leptin, purified insulin depolarized POMC, and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn2+, which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis. PMID:24703699

  14. Ligand-dependent intersubunit association with the insulin receptor complex activates its intrinsic kinase activity

    SciTech Connect

    Boeni-Schnetzler, M.; Kaligian, A.; DelVecchio, R.; Pilch, P.F.

    1988-05-15

    Insulin receptor halves (..cap alpha beta..) were obtained upon selective reduction of the holoreceptor (..cap alpha../sub 2/..beta../sub 2/) and were isolated in concentrated form. Autophosphorylation of concentrated ..cap alpha beta.. receptor halves can be stimulated by insulin an average of 4.0-fold, whereas nonreduced holoreceptor can be stimulated 5.4-fold. If ..cap alpha beta.. half-receptors are immobilized on wheat germ agglutinin-agarose, no insulin-stimulated autophosphorylation is observed, whereas immobilized holoreceptor retains insulin responsiveness. Treatment of ..cap alpha beta.. half-receptors with glutathione in the presence of insulin results in reoxidation to the holoreceptor form (..cap alpha../sub 2/..beta../sub 2/) with an efficiency of 60-70% as visualized by immunoblotting, thus providing evidence that two ..cap alpha beta.. halves are in close physical proximity. This reoxidation reaction, which is evident prior to autophosphorylation, is rapid and strictly dependent on the presence of insulin, consistent with the hypothesis that insulin promotes the association of two ..cap alpha beta.. halves. Furthermore, the insulin-induced reoxidation reaction and the insulin-induced autophosphorylation show the same dose dependence suggesting that the noncovalent association of ..cap alpha beta.. half-receptors upon insulin binding is a prerequisite for insulin-stimulated autophosphorylation in concentrated ..gamma beta.. half-receptor preparations. If the ..cap alpha beta.. half-receptor forms are phosphorylated in the presence of an anti-phosphotyrosine antibody and separated from nonphosphorylated ..cap alpha beta.. receptors, we observe that the phosphorylated ..cap alpha beta.. receptor halves contain bound insulin.

  15. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle

    NASA Technical Reports Server (NTRS)

    Hilder, Thomas L.; Tou, Janet C L.; Grindeland, Richard E.; Wade, Charles E.; Graves, Lee M.

    2003-01-01

    c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.

  16. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle

    NASA Technical Reports Server (NTRS)

    Hilder, Thomas L.; Tou, Janet C L.; Grindeland, Richard E.; Wade, Charles E.; Graves, Lee M.

    2003-01-01

    c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.

  17. Identification of a Small Molecular Insulin Receptor Agonist With Potent Antidiabetes Activity

    PubMed Central

    Qiang, Guifen; Xue, Shenghui; Yang, Jenny J.; Du, Guanhua; Pang, Xiaobin; Li, Xiaoting; Goswami, Devrishi; Griffin, Patrick R.; Ortlund, Eric A.; Chan, Chi Bun; Ye, Keqiang

    2014-01-01

    Insulin replacement therapy is a widely adopted treatment for all patients with type 1 diabetes and some with type 2 diabetes. However, injection of insulin has suffered from problems such as tissue irritation, abscesses, discomfort, and inconvenience. The use of orally bioactive insulin mimetics thus represents an ideal treatment alternative. Here we show that a chaetochromin derivative (4548-G05) acts as a new nonpeptidyl insulin mimetic. 4548-G05 selectively activates an insulin receptor (IR) but not insulin-like growth factor receptor-I or other receptor tyrosine kinases. Through binding to the extracellular domain of the IR, 4548-G05 induces activation of the receptor and initiates the downstream Akt and extracellular signal–related kinase pathways to trigger glucose uptake in C2C12 myotubes. Moreover, it displays a potent blood glucose-lowering effect when administrated orally in normal, type 1 diabetic, and type 2 diabetic mice models. Therefore, 4548-G05 may represent a novel pharmacological agent for antidiabetes drug development. PMID:24651808

  18. Insulin receptor activation and down-regulation by cationic lipid transfection reagents.

    PubMed

    Pramfalk, Camilla; Lanner, Johanna; Andersson, Monica; Danielsson, Eva; Kaiser, Christina; Renström, Ing-Marie; Warolén, Malin; James, Stephen R

    2004-01-26

    Transfection agents comprised of cationic lipid preparations are widely used to transfect cell lines in culture with specific recombinant complementary DNA molecules. We have found that cells in culture are often resistant to stimulation with insulin subsequent to treatment with transfection agents such as LipofectAMINE 2000 and FuGENE-6. This is seen with a variety of different readouts, including insulin receptor signalling, glucose uptake into muscle cells, phosphorylation of protein kinase B and reporter gene activity in a variety of different cell types We now show that this is due in part to the fact that cationic lipid agents activate the insulin receptor fully during typical transfection experiments, which is then down-regulated. In attempts to circumvent this problem, we investigated the effects of increasing concentrations of LipofectAMINE 2000 on insulin receptor phosphorylation in Chinese hamster ovary cells expressing the human insulin receptor. In addition, the efficiency of transfection that is supported by the same concentrations of transfection reagent was studied by using a green fluorescent protein construct. Our data indicate that considerably lower concentrations of LipofectAMINE 2000 can be used than are recommended by the manufacturers. This is without sacrificing transfection efficiency markedly and avoids the problem of reducing insulin receptor expression in the cells. Widely-used cationic lipid transfection reagents cause a state of insulin unresponsiveness in cells in culture due to fully activating and subsequently reducing the expression of the receptor in cells. This phenomenon can be avoided by reducing the concentration of reagent used in the transfection process.

  19. In situ autoradiography and ligand-dependent tyrosine kinase activity reveal insulin receptors and insulin-like growth factor I receptors in prepancreatic chicken embryos.

    PubMed Central

    Girbau, M; Bassas, L; Alemany, J; de Pablo, F

    1989-01-01

    We previously reported specific cross-linking of 125I-labeled insulin and 125I-labeled insulin-like growth factor I (IGF-I) to the alpha subunit of their respective receptors in chicken embryos of 20 somites and older. To achieve adequate sensitivity and localize spatially the receptors in younger embryos, we adapted an autoradiographic technique using whole-mounted chicken blastoderms. Insulin receptors and IGF-I receptors were expressed and could be localized as early as gastrulation, before the first somite is formed. Relative density was analyzed by a computer-assisted image system, revealing overall slightly higher binding of IGF-I than of insulin. Structures rich in both types of receptors were predominantly of ectodermal origin: Hensen's node in gastrulating embryos and neural folds, neural tube and optic vesicles during neurulation. The signal transduction capability of the receptors in early organogenesis was assessed by their ability to phosphorylate the exogenous substrate poly(Glu80Tyr20). Ligand-dependent tyrosine phosphorylation was demonstrable with both insulin and IGF-I in glycoprotein-enriched preparations from embryos at days 2 through 6 of embryogenesis. There was a developmentally regulated change in ligand-dependent tyrosine kinase activity, with a sharp increase from day 2 to day 4, in contrast with a small increase in the ligand binding. Binding of 125I-labeled IGF-I was, with the solubilized receptors, severalfold higher than binding of 125I-labeled insulin. However, the insulin-dependent phosphorylation was as high as the IGF-I-dependent phosphorylation at each developmental stage. Images PMID:2548191

  20. Contraction inhibits insulin-stimulated insulin receptor substrate-1/2-associated phosphoinositide 3-kinase activity, but not protein kinase B activation or glucose uptake, in rat muscle.

    PubMed Central

    Whitehead, J P; Soos, M A; Aslesen, R; O'rahilly, S; Jensen, J

    2000-01-01

    The initial stages of insulin-stimulated glucose uptake are thought to involve tyrosine phosphorylation of insulin receptor substrates (IRSs), which recruit and activate phosphoinositide 3-kinase (PI 3-kinase), leading to the activation of protein kinase B (PKB) and other downstream effectors. In contrast, contraction stimulates glucose uptake via a PI 3-kinase-independent mechanism. The combined effects of insulin and contraction on glucose uptake are additive. However, it has been reported that contraction causes a decrease in insulin-stimulated IRS-1-associated PI 3-kinase activity. To investigate this paradox, we have examined the effects of contraction on insulin-stimulated glucose uptake and proximal insulin-signalling events in isolated rat epitrochlearis muscle. Stimulation by insulin or contraction produced a 3-fold increase in glucose uptake, with the effects of simultaneous treatment by insulin and contraction being additive. Wortmannin completely blocked the additive effect of insulin in contracting skeletal muscle, indicating that this is a PI 3-kinase-dependent effect. Insulin-stimulated recruitment of PI 3-kinase to IRS-1 was unaffected by contraction; however, insulin produced no discernible increase in PI 3-kinase activity in IRS-1 or IRS-2 immunocomplexes in contracting skeletal muscle. Consistent with this, contraction inhibited insulin-stimulated p70(S6K) activation. In contrast, insulin-stimulated activation of PKB was unaffected by contraction. Thus, in contracting skeletal muscle, insulin stimulates glucose uptake and activates PKB, but not p70(S6K), by a PI 3-kinase-dependent mechanism that is independent of changes in IRS-1- and IRS-2-associated PI 3-kinase activity. PMID:10903138

  1. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  2. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state.

    PubMed

    Cabail, M Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E; Hubbard, Stevan R; Miller, W Todd

    2015-03-11

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  3. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  4. Internalization and activation of the rat liver insulin receptor kinase in vivo.

    PubMed

    Khan, M N; Baquiran, G; Brule, C; Burgess, J; Foster, B; Bergeron, J J; Posner, B I

    1989-08-05

    The preparation of clearly delineated plasmalemma (PM) and endosomal subcellular fractions from rat liver has allowed us to compare insulin receptor (IR) kinase activity at the cell surface and in hepatic endosomes (ENs) as a function of dose and time after injected insulin. Tyrosine kinase activity in PM and ENs was measured, after solubilization and partial purification by wheat germ agglutinin chromatography (lectin-purified), using poly(Glu:Tyr) as substrate. Following the injection of a subsaturating dose of insulin (1.5 micrograms/100 g body weight), lectin-purified receptor showed peak activation at 30 s in PM and at 2 min in ENs. As observed previously (Khan, M. N., Savoie, S., Bergeron, J. J. M., and Posner, B. I. (1986) J. Biol. Chem. 261, 8462-8472) autophosphorylation activity was also augmented following insulin injection. In a pattern virtually identical to that of exogenous kinase activity, autophosphorylation attained peak activity at 30 s in PM and at 2 min in ENs. The time course of IR autophosphorylation in intact membranes was very similar to that observed for lectin purified receptors and was seen with an injected insulin dose as low as 150 ng/100 g body weight. Phosphatase treatment of the solubilized endosomal receptor abolished its enhanced activity. Hence, insulin treatment led to in vivo receptor phosphorylation which was reflected in the enhancement of both tyrosine kinase and autophosphorylation activities. Significant differences in the phosphorylation activities of PM and ENs were observed. Phosphoamino acid analyses revealed that the activated IR of intact PM was autophosphorylated in vitro, at both serine (55%) and tyrosine (45%) residues; whereas the activated IR of intact ENs was phosphorylated in vitro exclusively on tyrosine autophosphorylation specific activity for the activated IR of ENs was 3- to 4-fold that of the IR of PM. This was observed for the lectin purified IRs as well as for IRs of intact cell fractions. The reduced

  5. Structural determinants of the insulin receptor-related receptor activation by alkali.

    PubMed

    Deyev, Igor E; Mitrofanova, Alla V; Zhevlenev, Egor S; Radionov, Nikita; Berchatova, Anastasiya A; Popova, Nadezhda V; Serova, Oxana V; Petrenko, Alexander G

    2013-11-22

    IRR is a member of the insulin receptor (IR) family that does not have any known agonist of a peptide nature but can be activated by mildly alkaline medium and was thus proposed to function as an extracellular pH sensor. IRR activation by alkali is defined by its N-terminal extracellular region. To reveal key structural elements involved in alkali sensing, we developed an in vitro method to quantify activity of IRR and its mutants. Replacing the IRR L1C domains (residues 1-333) or L2 domain (residues 334-462) or both with the homologous fragments of IR reduced the receptor activity to 35, 64, and 7% percent, respectively. Within L1C domains, five amino acid residues (Leu-135, Gly-188, Arg-244, and vicinal His-318 and Lys-319) were identified as IRR-specific by species conservation analysis of the IR family. These residues are exposed and located in junctions between secondary structure folds. The quintuple mutation of these residues to alanine had the same negative effect as the entire L1C domain replacement, whereas none of the single mutations was as effective. Separate mutations of these five residues and of L2 produced partial negative effects that were additive. The pH dependence of cell-expressed mutants (L1C and L2 swap, L2 plus triple LGR mutation, and L2 plus quintuple LGRHK mutation) was shifted toward alkalinity and, in contrast with IRR, did not show significant positive cooperativity. Our data suggest that IRR activation is not based on a single residue deprotonation in the IRR ectodomain but rather involves synergistic conformational changes at multiple points.

  6. Structural Determinants of the Insulin Receptor-related Receptor Activation by Alkali*

    PubMed Central

    Deyev, Igor E.; Mitrofanova, Alla V.; Zhevlenev, Egor S.; Radionov, Nikita; Berchatova, Anastasiya A.; Popova, Nadezhda V.; Serova, Oxana V.; Petrenko, Alexander G.

    2013-01-01

    IRR is a member of the insulin receptor (IR) family that does not have any known agonist of a peptide nature but can be activated by mildly alkaline medium and was thus proposed to function as an extracellular pH sensor. IRR activation by alkali is defined by its N-terminal extracellular region. To reveal key structural elements involved in alkali sensing, we developed an in vitro method to quantify activity of IRR and its mutants. Replacing the IRR L1C domains (residues 1–333) or L2 domain (residues 334–462) or both with the homologous fragments of IR reduced the receptor activity to 35, 64, and 7% percent, respectively. Within L1C domains, five amino acid residues (Leu-135, Gly-188, Arg-244, and vicinal His-318 and Lys-319) were identified as IRR-specific by species conservation analysis of the IR family. These residues are exposed and located in junctions between secondary structure folds. The quintuple mutation of these residues to alanine had the same negative effect as the entire L1C domain replacement, whereas none of the single mutations was as effective. Separate mutations of these five residues and of L2 produced partial negative effects that were additive. The pH dependence of cell-expressed mutants (L1C and L2 swap, L2 plus triple LGR mutation, and L2 plus quintuple LGRHK mutation) was shifted toward alkalinity and, in contrast with IRR, did not show significant positive cooperativity. Our data suggest that IRR activation is not based on a single residue deprotonation in the IRR ectodomain but rather involves synergistic conformational changes at multiple points. PMID:24121506

  7. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    SciTech Connect

    Kabuta, Tomohiro; Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro; Asano, Tomoichiro; Wada, Keiji; Takahashi, Shin-Ichiro

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  8. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR

    PubMed Central

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation. PMID:26584640

  9. Characterization of the chicken muscle insulin receptor

    SciTech Connect

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-12-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific /sup 125/I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of /sup 125/I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific /sup 125/I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens.

  10. Human insulin production from a novel mini-proinsulin which has high receptor-binding activity.

    PubMed

    Chang, S G; Kim, D Y; Choi, K D; Shin, J M; Shin, H C

    1998-02-01

    To increase the folding efficiency of the insulin precursor and the production yield of insulin, we have designed a mini-proinsulin (M2PI) having the central C-peptide region replaced with a sequence forming a reverse turn. The mini-proinsulin was fused at the N-terminus to a 21-residue fusion partner containing a His10 tag for affinity purification. The gene for the fusion protein was inserted downstream of the T7 promoter of the expression plasmid pET-3a, and the fusion proteins were produced as inclusion bodies in the Escherichia coli cytoplasm at levels up to 25% of the total cell protein. The protein was sulphonated, cleaved by CNBr and the M2PI mini-proinsulin was purified using ion-exchange chromatography. The refolding yield of M2PI was 20-40% better than that of proinsulin studied at the same molar concentrations, indicating that the short turn-forming sequence is more effective in the refolding process than the much longer C-peptide. Native human insulin was successfully generated by subsequent enzymic conversion of mini-proinsulin. The mini-proinsulin exhibited high receptor-binding activity, about 50% as potent as insulin, suggesting that this single-chained mini-proinsulin may provide a foundation in understanding the receptor-bound structure of insulin as well as the role of C-peptide in the folding and activity of proinsulin.

  11. Human insulin production from a novel mini-proinsulin which has high receptor-binding activity.

    PubMed Central

    Chang, S G; Kim, D Y; Choi, K D; Shin, J M; Shin, H C

    1998-01-01

    To increase the folding efficiency of the insulin precursor and the production yield of insulin, we have designed a mini-proinsulin (M2PI) having the central C-peptide region replaced with a sequence forming a reverse turn. The mini-proinsulin was fused at the N-terminus to a 21-residue fusion partner containing a His10 tag for affinity purification. The gene for the fusion protein was inserted downstream of the T7 promoter of the expression plasmid pET-3a, and the fusion proteins were produced as inclusion bodies in the Escherichia coli cytoplasm at levels up to 25% of the total cell protein. The protein was sulphonated, cleaved by CNBr and the M2PI mini-proinsulin was purified using ion-exchange chromatography. The refolding yield of M2PI was 20-40% better than that of proinsulin studied at the same molar concentrations, indicating that the short turn-forming sequence is more effective in the refolding process than the much longer C-peptide. Native human insulin was successfully generated by subsequent enzymic conversion of mini-proinsulin. The mini-proinsulin exhibited high receptor-binding activity, about 50% as potent as insulin, suggesting that this single-chained mini-proinsulin may provide a foundation in understanding the receptor-bound structure of insulin as well as the role of C-peptide in the folding and activity of proinsulin. PMID:9445392

  12. [The role of peroxisome proliferator-activated receptors γ (PPARγ) in obesity and insulin resistance].

    PubMed

    Chmielewska-Kassassir, Małgorzata; Woźniak, Lucyna A; Ogrodniczek, Paweł; Wójcik, Marzena

    2013-12-11

    Obesity, defined as abnormal or excessive fat accumulation, is currently believed to be a major public health problem worldwide. Over the past 20 years, the prevalence of obesity has increased rapidly in both industrialized and developing countries, resulting in a considerably increased risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome. Although the exact pathophysiological mechanisms underlying these diseases remain unclear, clinical and epidemiological studies support the existence of a relationship between obesity-induced inflammation and insulin resistance linked with the development and progression of metabolic diseases. Adipokines, produced and released by adipose tissue, are considered as factors linking obesity-induced inflammation with insulin resistance, and their regulation through peroxisome proliferator-activated receptors γ (PPARγ also known as NR1C3) is essential in these processes. PPARγ are transcriptional factors belonging to the ligand-activated nuclear receptor superfamily which directly regulate the expression of a large number of genes involved in adipocyte differentiation, lipid and carbohydrate metabolism as well as adipokine synthesis; thereby they are implicated in various metabolic disorders, including obesity, insulin resistance, dyslipidemia, and hypertension. This review summarizes the current literature on a functional relationship of PPARγ with obesity and insulin resistance and, moreover, highlights the significance of synthetic ligands of these receptors in the mentioned metabolic disorders.

  13. Defective insulin secretion by chronic glucagon receptor activation in glucose intolerant mice.

    PubMed

    Ahlkvist, Linda; Omar, Bilal; Valeur, Anders; Fosgerau, Keld; Ahrén, Bo

    2016-03-01

    Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized; however, the effect of long-term GCGR activation on β-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2 weeks) infused with the stable glucagon analog ZP-GA-1 and challenged with oral glucose and intravenous glucose±glucagon-like peptide 1 (GLP1). Islets were isolated to evaluate the insulin secretory response to glucose±GLP1 and their pancreas were collected for immunohistochemical analysis. Two weeks of ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP1. Also, we observed increased β-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of β-cell function during development of type 2 diabetes.

  14. Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity

    SciTech Connect

    Goren, H.J.; White, M.F.; Khan, C.R.

    1987-04-21

    The authors have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the ..beta..-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22/sup 0/C with low concentrations of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the ..beta..-subunit was carried out before and after digestion, and the (/sup 32/P)phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the ..beta..-subunit (..cap alpha..Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the (/sup 32/P)phosphate originally found in the ..beta..-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. To determined the structural requirements for kinase activity, the insulin receptor was subjected to tryptic digestion for 30 s-30 min, such that the receptor was composed exclusively of 85- and 70-kDa fragments of the ..beta..-subunit. The 85-kDa fragment exhibited autophosphorylation at pY1, pY1a, and pY4. Both the 85- and 70-kDa fragments phosphorylated tyrosine residues in a synthetic decapeptide that has the sequence of the C-terminal domain of the ..beta..-subunit of human insulin rare in the receptor.

  15. Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors.

    PubMed

    Fang, Fang; Kang, Zhanfang; Wong, Chiwai

    2010-03-01

    Vitamin E is comprised of two classes of compounds: tocopherols and tocotrienols. Tocotrienol-enriched palm oil has been shown to help reduce blood glucose levels in patients and preclinical animal models. However, the mechanistic basis for tocotrienol action is not well established. Peroxisome proliferator-activated receptors alpha, gamma, and delta (PPARalpha, PPARgamma, and PPARdelta) are ligand-regulated transcription factors that play essential roles in energy metabolism. Importantly, synthetic PPARalpha and PPARgamma ligands are currently used for treating hyperlipidemia and diabetes. In this study, we present data that tocotrienols within palm oil functioned as PPAR modulators. Specifically, both alpha- and gamma-tocotrienol activated PPARalpha, while delta-tocotrienol activated PPARalpha, PPARgamma, and PPARdelta in reporter-based assays. Tocotrienols enhanced the interaction between the purified ligand-binding domain of PPARalpha with the receptor-interacting motif of coactivator PPARgamma coactivator-1alpha. In addition, the tocotrienol-rich fraction of palm oil improved whole body glucose utilization and insulin sensitivity of diabetic Db/Db mice by selectively regulating PPAR target genes. These lines of evidence collectively suggested that PPARs represent a set of molecular targets of tocotrienols.

  16. Heparanase Enhances the Insulin Receptor Signaling Pathway to Activate Extracellular Signal-regulated Kinase in Multiple Myeloma*

    PubMed Central

    Purushothaman, Anurag; Babitz, Stephen K.; Sanderson, Ralph D.

    2012-01-01

    ERK signaling regulates proliferation, survival, drug resistance, and angiogenesis in cancer. Although the mechanisms regulating ERK activation are not fully understood, we previously demonstrated that ERK phosphorylation is elevated by heparanase, an enzyme associated with aggressive behavior of many cancers. In the present study, myeloma cell lines expressing either high or low levels of heparanase were utilized to determine how heparanase stimulates ERK signaling. We discovered that the insulin receptor was abundant on cells expressing either high or low levels of heparanase, but the receptor was highly phosphorylated in heparanase-high cells compared with heparanase-low cells. In addition, protein kinase C activity was elevated in heparanase-high cells, and this enhanced expression of insulin receptor substrate-1 (IRS-1), the principle intracellular substrate for phosphorylation by the insulin receptor. Blocking insulin receptor function with antibody or a small molecule inhibitor or knockdown of IRS-1 expression using shRNA diminished heparanase-mediated ERK activation in the tumor cells. In addition, up-regulation of the insulin signaling pathway by heparanase and the resulting ERK activation were dependent on heparanase retaining its enzyme activity. These results reveal a novel mechanism whereby heparanase enhances activation of the insulin receptor signaling pathway leading to ERK activation and modulation of myeloma behavior. PMID:23048032

  17. Autoantibodies to Insulin Receptor Spontaneously Develop as Anti-Idiotypes in Mice Immunized with Insulin

    NASA Astrophysics Data System (ADS)

    Shechter, Yoram; Maron, Ruth; Elias, Dana; Cohen, Irun R.

    1982-04-01

    Mice immunized with insulin developed antibodies to both insulin and the insulin receptor. The antibodies to insulin receptor displaced labeled insulin from insulin receptors and mimicked the actions of insulin in stimulating the oxidation of glucose and its incorporation into lipids, and in inhibiting lipolysis. The antibodies to insulin receptor could be blocked by or bound to the antibodies to insulin, and therefore were identified as anti-idiotypes. Thus, immunization against a hormone may activate spontaneously an idiotype-anti-idiotype network resulting in antibodies to the hormone receptor.

  18. Insulin receptor substrate-2 phosphorylation is necessary for protein kinase C zeta activation by insulin in L6hIR cells.

    PubMed

    Oriente, F; Formisano, P; Miele, C; Fiory, F; Maitan, M A; Vigliotta, G; Trencia, A; Santopietro, S; Caruso, M; Van Obberghen, E; Beguinot, F

    2001-10-05

    We have investigated glycogen synthase (GS) activation in L6hIR cells expressing a peptide corresponding to the kinase regulatory loop binding domain of insulin receptor substrate-2 (IRS-2) (KRLB). In several clones of these cells (B2, F4), insulin-dependent binding of the KRLB to insulin receptors was accompanied by a block of IRS-2, but not IRS-1, phosphorylation, and insulin receptor binding. GS activation by insulin was also inhibited by >70% in these cells (p < 0.001). The impairment of GS activation was paralleled by a similarly sized inhibition of glycogen synthase kinase 3 alpha (GSK3 alpha) and GSK3 beta inactivation by insulin with no change in protein phosphatase 1 activity. PDK1 (a phosphatidylinositol trisphosphate-dependent kinase) and Akt/protein kinase B (PKB) activation by insulin showed no difference in B2, F4, and in control L6hIR cells. At variance, insulin did not activate PKC zeta in B2 and F4 cells. In L6hIR, inhibition of PKC zeta activity by either a PKC zeta antisense or a dominant negative mutant also reduced by 75% insulin inactivation of GSK3 alpha and -beta (p < 0.001) and insulin stimulation of GS (p < 0.002), similar to Akt/PKB inhibition. In L6hIR, insulin induced protein kinase C zeta (PKC zeta) co-precipitation with GSK3 alpha and beta. PKC zeta also phosphorylated GSK3 alpha and -beta. Alone, these events did not significantly affect GSK3 alpha and -beta activities. Inhibition of PKC zeta activity, however, reduced Akt/PKB phosphorylation of the key serine sites on GSK3 alpha and -beta by >80% (p < 0.001) and prevented full GSK3 inactivation by insulin. Thus, IRS-2, not IRS-1, signals insulin activation of GS in the L6hIR skeletal muscle cells. In these cells, insulin inhibition of GSK3 alpha and -beta requires dual phosphorylation by both Akt/PKB and PKC zeta.

  19. Alternative signaling network activation through different insulin receptor family members caused by pro-mitogenic antidiabetic insulin analogues in human mammary epithelial cells.

    PubMed

    ter Braak, Bas; Wink, Steven; Koedoot, Esmee; Pont, Chantal; Siezen, Christine; van der Laan, Jan Willem; van de Water, Bob

    2015-07-19

    Insulin analogues are designed to have improved pharmacokinetic parameters compared to regular human insulin. This provides a sustained control of blood glucose levels in diabetic patients. All novel insulin analogues are tested for their mitogenic side effects, however these assays do not take into account the molecular mode of action of different insulin analogues. Insulin analogues can bind the insulin receptor and the insulin-like growth factor 1 receptor with different affinities and consequently will activate different downstream signaling pathways. Here we used a panel of MCF7 human breast cancer cell lines that selectively express either one of the isoforms of the INSR or the IGF1R. We applied a transcriptomics approach to assess the differential transcriptional programs activated in these cells by either insulin, IGF1 or X10 treatment. Based on the differentially expressed genes between insulin versus IGF1 and X10 treatment, we retrieved a mitogenic classifier gene set. Validation by RT-qPCR confirmed the robustness of this gene set. The translational potential of these mitogenic classifier genes was examined in primary human mammary cells and in mammary gland tissue of mice in an in vivo model. The predictive power of the classifier genes was evaluated by testing all commercial insulin analogues in the in vitro model and defined X10 and glargine as the most potent mitogenic insulin analogues. We propose that these mitogenic classifier genes can be used to test the mitogenic potential of novel insulin analogues as well as other alternative molecules with an anticipated affinity for the IGF1R.

  20. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  1. The antidiabetic agent sodium tungstate activates glycogen synthesis through an insulin receptor-independent pathway.

    PubMed

    Domínguez, Jorge E; Muñoz, M Carmen; Zafra, Delia; Sanchez-Perez, Isabel; Baqué, Susanna; Caron, Martine; Mercurio, Ciro; Barberà, Albert; Perona, Rosario; Gomis, Ramon; Guinovart, Joan J

    2003-10-31

    Sodium tungstate is a powerful antidiabetic agent when administered orally. In primary cultured hepatocytes, tungstate showed insulin-like actions, which led to an increase in glycogen synthesis and accumulation. However, this compound did not significantly alter the insulin receptor activation state or dephosphorylation rate in cultured cells (CHO-R) or in primary hepatocytes, in either short or long term treatments. In contrast, at low concentrations, tungstate induced a transient strong activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) after 5-10 min of treatment, in a similar way to insulin. Moreover, this compound did not significantly delay or inhibit the dephosphorylation of ERK1/2. ERK1/2 activation triggered a cascade of downstream events, which included the phosphorylation of p90rsk and glycogen synthase-kinase 3beta. Experiments with a specific inhibitor of ERK1/2 activation and kinase assays indicate that these proteins were directly involved in the stimulation of glycogen synthase and glycogen synthesis induced by tungstate without a direct involvement of protein kinase B (PKB/Akt). These results show a direct involvement of ERK1/2 in the mechanism of action of tungstate at the hepatic level.

  2. Dopamine synthesis and D3 receptor activation in pancreatic β-cells regulates insulin secretion and intracellular [Ca(2+)] oscillations.

    PubMed

    Ustione, Alessandro; Piston, David W

    2012-11-01

    Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca(2+)] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca(2+)] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes.

  3. Dopamine Synthesis and D3 Receptor Activation in Pancreatic β-Cells Regulates Insulin Secretion and Intracellular [Ca2+] Oscillations

    PubMed Central

    Ustione, Alessandro

    2012-01-01

    Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca2+] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca2+] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes. PMID:22918877

  4. Essential role of PSM/SH2-B variants in insulin receptor catalytic activation and the resulting cellular responses.

    PubMed

    Zhang, Manchao; Deng, Youping; Tandon, Ruchi; Bai, Cheng; Riedel, Heimo

    2008-01-01

    The positive regulatory role of PSM/SH2-B downstream of various mitogenic receptor tyrosine kinases or gene disruption experiments in mice support a role of PSM in the regulation of insulin action. Here, four alternative PSM splice variants and individual functional domains were compared for their role in the regulation of specific metabolic insulin responses. We found that individual PSM variants in 3T3-L1 adipocytes potentiated insulin-mediated glucose and amino acid transport, glycogenesis, lipogenesis, and key components in the metabolic insulin response including p70 S6 kinase, glycogen synthase, glycogen synthase kinase 3 (GSK3), Akt, Cbl, and IRS-1. Highest activity was consistently observed for PSM alpha, followed by beta, delta, and gamma with decreasing activity. In contrast, dominant-negative peptide mimetics of the PSM Pro-rich, pleckstrin homology (PH), or src homology 2 (SH2) domains inhibited any tested insulin response. Potentiation of the insulin response originated at the insulin receptor (IR) kinase level by PSM variant-specific regulation of the Km (ATP) whereas the Vmax remained unaffected. IR catalytic activation was inhibited by peptide mimetics of the PSM SH2 or dimerization domain (DD). Either peptide should disrupt the complex of a PSM dimer linked to IR via SH2 domains as proposed for PSM activation of tyrosine kinase JAK2. Either peptide abolished downstream insulin responses indistinguishable from PSM siRNA knockdown. Our results implicate an essential role of the PSM variants in the activation of the IR kinase and the resulting metabolic insulin response. PSM variants act as internal IR ligands that in addition to potentiating the insulin response stimulate IR catalytic activation even in the absence of insulin.

  5. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    SciTech Connect

    Androlewicz, M.J.; Straus, D.S. ); Brandenburg, D.F. )

    1989-12-12

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe {sup 125}I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37{degree}C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation.

  6. [Peroxisome proliferator-activated receptors (PPARs) in obesity and insulin resistance development].

    PubMed

    Alemán, Gabriela; Torres, Nimbe; Tovar, Armando R

    2004-01-01

    The peroxisome proliferator-activated receptors (PPARs) are a family of nuclear transcription factors that belong to the steroid receptor superfamily. PPARs family includes PPARalpha, PPARbeta/delta, PPARgamma1 and PPARgamma2. PPARs form an heterodimer with the 9-cis retinoic acid receptor (RXR) and bind to response elements present in target genes activated by these transcription factors. PPARs control the expression of genes involved in fatty acid synthesis, oxidation and storage. PPARs are present in most tissues, where PPARalpha is most abundant in liver and skeletal muscle, whereas PPARgamma is found mainly in adipose tissue. Natural ligands for PPARs are polyunsaturated fatty acids (PUFAs) and some eicosanoids, however they are also activated by compounds such as fibrates and thiazolidinediones (TZDs). In this review is shown the different PPARs isoforms, identification, and regulation of their expression and activity. Also shows which are the natural ligands, and the chemical compounds that activate PPARs. Finally, it shows the target genes activated by the different isoforms of PPARs, the metabolic integration between the different PPAR isoforms to maintain a balance between fatty acid synthesis and oxidation and the association with the development of obesity and insulin resistance. Also shows information about the nutritional requirements of PUFAs that are the main natural ligands of PPARs.

  7. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  8. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus.

    PubMed

    Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz

    2012-01-01

    Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.

  9. Role of insulin and insulin receptor in learning and memory.

    PubMed

    Zhao, W Q; Alkon, D L

    2001-05-25

    As one of the most extensively studied protein hormones, insulin and its receptor have been known to play key roles in a variety of important biological functions. Until recent years, the functions of insulin and insulin receptor (IR) in the central nervous system (CNS) have largely remained unclear. IR is abundantly expressed in several specific brain regions that govern fundamental behaviors such as food intake, reproduction and high cognition. The IR from the periphery and CNS exhibit differences in both structure and function. In addition to that from the peripheral system, locally synthesized insulin in the brain has also been identified. Accumulated evidence has demonstrated that insulin/IR plays important roles in associative learning, as suggested by results from both interventive and correlative studies. Interruption of insulin production and IR activity causes deficits in learning and memory formation. Abnormal insulin/IR levels and activities are seen in Alzheimer's dementia, whereas administration of insulin significantly improves the cognitive performance of these patients. The synaptic bases for the action of insulin/IR include modifying neurotransmitter release processes at various types of presynaptic terminals and modulating the activities of both excitatory and inhibitory postsynaptic receptors such as NMDA and GABA receptors, respectively. At the molecular level, insulin/IR participates in regulation of learning and memory via activation of specific signaling pathways, one of which is shown to be associated with the formation of long-term memory and is composed of intracellular molecules including the shc, Grb-r/SOS, Ras/Raf, and MEK/MAP kinases. Cross-talk with another IR pathway involving IRS1, PI3 kinase, and protein kinase C, as well as with the non-receptor tyrosine kinase pp60c-src, may also be associated with memory processing.

  10. Role of endosomal trafficking dynamics on the regulation of hepatic insulin receptor activity: models for Fao cells.

    PubMed

    Hori, Sharon S; Kurland, Irwin J; DiStefano, Joseph J

    2006-05-01

    Evidence indicates that endosomal insulin receptor (IR) trafficking plays a role in regulating insulin signal transduction. To evaluate its importance, we developed a series of biokinetic models for quantifying activated surface and endosomal IR dynamics from published experimental data. Starting with a published two-compartment Fao hepatoma model, a four-pool model was formulated that depicts IR autophosphorylation after receptor binding, IR endosomal internalization/trafficking, insulin dissociation from and dephosphorylation of internalized IR, and recycling of unliganded, dephosphorylated IR to the plasma membrane. Quantification required three additional data sets, two measured, but unmodeled by the same group. A five-pool model created to include endosomal trafficking of the nonphosphorylated insulin-IR complex was fitted using the same data sets, augmented with another published data set. Creation of a six-pool model added the physiologically relevant dissociation of insulin ligand from the activated endosomal IR. More importantly, all three models, validated against additional data not used in model fitting, predict that, mechanistically, internalization of activated IR is a rate-limiting step, at least under the receptor saturating conditions of the fitting data. This rate includes the transit time to a site where insulin dissociation from and/or dephosphorylation of the IR occurs by docking with protein-tyrosine phosphatases (PTPases), or where a sufficient conformational change occurs in the IR, perhaps due to insulin-IR dissociation, where associated PTPases may complete IR dephosphorylation. Our new models indicate that key events in endosomal IR trafficking have significance in mediating IR activity, possibly serving to regulate insulin signal transduction.

  11. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells

    PubMed Central

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-01-01

    Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic β cells. In the present study, we have identified the expression of TGR5 in pancreatic β cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated Gαs and caused an increase in intracellular cAMP and Ca2+. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective Gαs inhibitor) or U73122 (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, U73122 or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on Gs/cAMP/Ca2+ pathway. 8-pCPT-2′-O-Me-cAMP, a cAMP analogue, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic β cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis. PMID:23022524

  12. Peroxisome Proliferator-Activated Receptor γ Decouples Fatty Acid Uptake from Lipid Inhibition of Insulin Signaling in Skeletal Muscle

    PubMed Central

    Hu, Shanming; Yao, Jianrong; Howe, Alexander A.; Menke, Brandon M.; Sivitz, William I.; Spector, Arthur A.

    2012-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity. PMID:22474127

  13. Peroxisome proliferator-activated receptor γ decouples fatty acid uptake from lipid inhibition of insulin signaling in skeletal muscle.

    PubMed

    Hu, Shanming; Yao, Jianrong; Howe, Alexander A; Menke, Brandon M; Sivitz, William I; Spector, Arthur A; Norris, Andrew W

    2012-06-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity.

  14. Acute treatment with XMetA activates hepatic insulin receptors and lowers blood glucose in normal mice

    USDA-ARS?s Scientific Manuscript database

    It has been proposed that monoclonal antibodies may become therapeutics for metabolic diseases such as diabetes mellitus. We have previously characterized an allosteric monoclonal antibody to the human insulin receptor (IR), XMetA, that activated metabolic signaling leading to enhanced glucose tran...

  15. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    USDA-ARS?s Scientific Manuscript database

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  16. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    PubMed

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  17. Protein kinase C activators selectively inhibit insulin-stimulated system A transport activity in skeletal muscle at a post-receptor level.

    PubMed Central

    Gumà, A; Camps, M; Palacín, M; Testar, X; Zorzano, A

    1990-01-01

    We have investigated the role of phorbol esters on different biological effects induced by insulin in muscle, such as activation of system A transport activity, glucose utilization and insulin receptor function. System A transport activity was measured by monitoring the uptake of the system A-specific analogue alpha-(methyl)aminoisobutyric acid (MeAIB), by intact rat extensor digitorum longus muscle. The addition of 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.5 microM) for 60 or 180 min did not modify basal MeAIB uptake by muscle, suggesting that insulin signalling required to stimulate MeAIB transport does not involve protein kinase C activation. However, TPA added 30 min before insulin (100 nM) markedly inhibited insulin-stimulated MeAIB uptake. The addition of polymyxin B (0.1 mM) or H-7 (1 mM), protein kinase C inhibitors, alone or in combination with TPA leads to impairment of insulin-stimulated MeAIB uptake. This paradoxical pattern is incompatible with a unique action of Polymyxin B or H-7 on protein kinase C activity. Therefore these agents are not suitable tools with which to investigate whether a certain insulin effect is mediated by protein kinase C. TPA did not cause a generalized inhibition of insulin action. Thus both TPA and insulin increased 3-O-methylglucose uptake by muscle, and their effects were not additive. Furthermore, TPA did not modify insulin-stimulated lactate production by muscle. In keeping with this selective modification of insulin action, treatment of muscles with TPA did not modify insulin receptor binding or kinase activities. In conclusion, phorbol esters do not mimic insulin action on system A transport activity; however, they markedly inhibit insulin-stimulated amino acid transport, with no modification of insulin receptor function in rat skeletal muscle. It is suggested that protein kinase C activation causes a selective post-receptor modification on the biochemical pathway by which insulin activates system A amino acid

  18. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin.

    PubMed

    Reiter, Chad E N; Wu, Xiaohua; Sandirasegarane, Lakshman; Nakamura, Makoto; Gilbert, Kirk A; Singh, Ravi S J; Fort, Patrice E; Antonetti, David A; Gardner, Thomas W

    2006-04-01

    Diabetic retinopathy is characterized by early onset of neuronal cell death. We previously showed that insulin mediates a prosurvival pathway in retinal neurons and that normal retina expresses a highly active basal insulin receptor/Akt signaling pathway that is stable throughout feeding and fasting. Using the streptozotocin-induced diabetic rat model, we tested the hypothesis that diabetes diminishes basal retinal insulin receptor signaling concomitantly with increased diabetes-induced retinal apoptosis. The expression, phosphorylation status, and/or kinase activity of the insulin receptor and downstream signaling proteins were investigated in retinas of age-matched control, diabetic, and insulin-treated diabetic rats. Four weeks of diabetes reduced basal insulin receptor kinase, insulin receptor substrate (IRS)-1/2-associated phosphatidylinositol 3-kinase, and Akt kinase activity without altering insulin receptor or IRS-1/2 expression or tyrosine phosphorylation. After 12 weeks of diabetes, constitutive insulin receptor autophosphorylation and IRS-2 expression were reduced, without changes in p42/p44 mitogen-activated protein kinase or IRS-1. Sustained systemic insulin treatment of diabetic rats prevented loss of insulin receptor and Akt kinase activity, and acute intravitreal insulin administration restored insulin receptor kinase activity. Insulin treatment restored insulin receptor-beta autophosphorylation in rat retinas maintained ex vivo, demonstrating functional receptors and suggesting loss of ligand as a cause for reduced retinal insulin receptor/Akt pathway activity. These results demonstrate that diabetes progressively impairs the constitutive retinal insulin receptor signaling pathway through Akt and suggests that loss of this survival pathway may contribute to the initial stages of diabetic retinopathy.

  19. Improved Insulin Resistance and Lipid Metabolism by Cinnamon Extract through Activation of Peroxisome Proliferator-Activated Receptors.

    PubMed

    Sheng, Xiaoyan; Zhang, Yuebo; Gong, Zhenwei; Huang, Cheng; Zang, Ying Qin

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors involved in the regulation of insulin resistance and adipogenesis. Cinnamon, a widely used spice in food preparation and traditional antidiabetic remedy, is found to activate PPARgamma and alpha, resulting in improved insulin resistance, reduced fasted glucose, FFA, LDL-c, and AST levels in high-caloric diet-induced obesity (DIO) and db/db mice in its water extract form. In vitro studies demonstrate that cinnamon increases the expression of peroxisome proliferator-activated receptors gamma and alpha (PPARgamma/alpha) and their target genes such as LPL, CD36, GLUT4, and ACO in 3T3-L1 adipocyte. The transactivities of both full length and ligand-binding domain (LBD) of PPARgamma and PPARalpha are activated by cinnamon as evidenced by reporter gene assays. These data suggest that cinnamon in its water extract form can act as a dual activator of PPARgamma and alpha, and may be an alternative to PPARgamma activator in managing obesity-related diabetes and hyperlipidemia.

  20. Activation of oncogenic tyrosine kinase signaling promotes insulin receptor-mediated cone photoreceptor survival

    PubMed Central

    Rajala, Ammaji; Wang, Yuhong; Rajala, Raju V.S.

    2016-01-01

    In humans, daylight vision is primarily mediated by cone photoreceptors. These cells die in age-related retinal degenerations. Prolonging the life of cones for even one decade would have an enormous beneficial effect on usable vision in an aging population. Photoreceptors are postmitotic, but shed 10% of their outer segments daily, and must synthesize the membrane and protein equivalent of a proliferating cell each day. Although activation of oncogenic tyrosine kinase and inhibition of tyrosine phosphatase signaling is known to be essential for tumor progression, the cellular regulation of this signaling in postmitotic photoreceptor cells has not been studied. In the present study, we report that a novel G-protein coupled receptor–mediated insulin receptor (IR) signaling pathway is regulated by non-receptor tyrosine kinase Src through the inhibition of protein tyrosine phosphatase IB (PTP1B). We demonstrated the functional significance of this pathway through conditional deletion of IR and PTP1B in cones, in addition to delaying the death of cones in a mouse model of cone degeneration by activating the Src. This is the first study demonstrating the molecular mechanism of a novel signaling pathway in photoreceptor cells, which provides a window of opportunity to save the dying cones in retinal degenerative diseases. PMID:27391439

  1. The isoflavonoid aglycone-rich fractions of Chungkookjang, fermented unsalted soybeans, enhance insulin signaling and peroxisome proliferator-activated receptor-gamma activity in vitro.

    PubMed

    Kwon, Dae Young; Jang, Jin Sun; Lee, Ji Eun; Kim, Yong-Suk; Shin, Dong-Hwa; Park, Sunmin

    2006-01-01

    We investigated anti-diabetic candidates and their mechanisms from the fractions of Chungkookjang (CKJ), a traditional fermented unsalted soybean, by investigating insulin signaling, peroxisome proliferator-activated receptor (PPAR)-gamma activity and glucose-stimulated insulin secretion, in vitro. Cooked soybeans (CSB) and CKJ, fermented predominantly with Bacillus subtilis, were extracted by 70% EtOH followed by an XAD-4 column chromatography with a serial mixture of solvents comprised of MeOH and water. During fermentation, the contents of isoflavonoid aglycones were elevated, and the fractions enriched with aglycones enhanced insulin-stimulated glucose uptake in 3T3-L1 adipocytes. This increase in glucose uptake resulted from stimulating a translocation of the glucose transporter (GLUT)-4 into the plasma membrane through the phosphorylation of insulin receptor substrate (IRS)-1 and Akt. Especially, daidzein enriched fractions elevated insulin-stimulated glucose uptake by acting as PPAR-gamma agonist up to levels exhibited when 10 nM insulin is administered. Fractions containing small peptides with low polarity in CKJ slightly increased glucose-stimulated insulin secretion. The data suggest that an increase in isoflavonoid aglycones in CKJ, in comparison to CSB, enhances glucose utilization via activating insulin signaling and stimulates PPAR-gamma activity in adipocytes. In addition, CKJ contains small peptides improving glucose-stimulated insulin secretion in insulinoma cells. Overall, CKJ is superior to CSB in anti-diabetic action.

  2. Acute Treatment With XMetA Activates Hepatic Insulin Receptors and Lowers Blood Glucose in Normal Mice.

    PubMed

    Bedinger, Daniel H; Kieffer, Dorothy A; Goldfine, Ira D; Roell, Marina K; Adams, Sean H

    2015-09-01

    It has been proposed that monoclonal antibodies may become therapeutics for metabolic diseases such as diabetes mellitus. We have previously characterized an allosteric monoclonal antibody to the human insulin receptor (IR), XMetA, that activated metabolic signaling leading to enhanced glucose transport in cultured cells, and chronically reduced fasting blood glucose levels in mouse models of diabetes mellitus. Under acute dosing conditions, the large size of an IR-binding antibody like XMetA (∼ 150 kDa) could lead to a more rapid access into liver, an insulin sensitive tissue with well-fenestrated capillaries, when compared to other insulin sensitive tissues with non-fenestrated capillaries, such as muscle and adipose. Thus, in the present study we administered XMetA (10 mg/kg) and insulin (0.5 U/kg) via IV injection, and for 90 min compared their effects on blood glucose lowering and IR activation in three of the major insulin-sensitive tissues of the normal fasted mouse: liver, adipose, and muscle. Like insulin, XMetA lowered blood glucose levels, although the effect was less rapid. Insulin activated IR autophosphorylation and Akt phosphorylation in liver, fat, and muscle. In contrast, IR activation by XMetA was primarily observed in the liver. Both insulin and XMetA lowered β-hydroxybutyrate levels in plasma; however, only insulin reduced both non-esterified fatty acids (NEFA) and glycerol concentrations. These data indicate that, in normal mice, acute glucose regulation by XMetA is largely mediated by its action on the liver.

  3. Insulin restores L-arginine transport requiring adenosine receptors activation in umbilical vein endothelium from late-onset preeclampsia.

    PubMed

    Salsoso, R; Guzmán-Gutiérrez, E; Sáez, T; Bugueño, K; Ramírez, M A; Farías, M; Pardo, F; Leiva, A; Sanhueza, C; Mate, A; Vázquez, C; Sobrevia, L

    2015-03-01

    Preeclampsia is associated with impaired placental vasodilation and reduced endothelial nitric oxide synthase (eNOS) activity in the foetoplacental circulation. Adenosine and insulin stimulate vasodilation in endothelial cells, and this activity is mediated by adenosine receptor activation in uncomplicated pregnancies; however, this activity has yet to be examined in preeclampsia. Early onset preeclampsia is associated with severe placental vasculature alterations that lead to altered foetus growth and development, but whether late-onset preeclampsia (LOPE) alters foetoplacental vascular function is unknown. Vascular reactivity to insulin (0.1-1000 nmol/L, 5 min) and adenosine (1 mmol/L, 5 min) was measured in KCl-preconstricted human umbilical vein rings from normal and LOPE pregnancies using a wire myograph. The protein levels of human cationic amino acid transporter 1 (hCAT-1), adenosine receptor subtypes, total and Ser¹¹⁷⁷- or Thr⁴⁹⁵-phosphorylated eNOS were detected via Western blot, and L-arginine transport (0-1000 μmol/L L-arginine, 3 μCi/mL L-[³H]arginine, 20 s, 37 °C) was measured in the presence or absence of insulin and adenosine receptor agonists or antagonists in human umbilical vein endothelial cells (HUVECs) from normal and LOPE pregnancies. LOPE increased the maximal L-arginine transport capacity and hCAT-1 and eNOS expression and activity compared with normal conditions. The A(2A) adenosine receptor (A(2A)AR) antagonist ZM-241385 blocked these effects of LOPE. Insulin-mediated umbilical vein ring relaxation was lower in LOPE pregnancies than in normal pregnancies and was restored using the A(2A)AR antagonist. The reduced foetoplacental vascular response to insulin may result from A(2A)AR activation in LOPE pregnancies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins

    PubMed Central

    Hakuno, Fumihiko; Fukushima, Toshiaki; Yoneyama, Yosuke; Kamei, Hiroyasu; Ozoe, Atsufumi; Yoshihara, Hidehito; Yamanaka, Daisuke; Shibano, Takashi; Sone-Yonezawa, Meri; Yu, Bu-Chin; Chida, Kazuhiro; Takahashi, Shin-Ichiro

    2015-01-01

    Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases. PMID:26074875

  5. Upregulated insulin secretion in insulin-resistant mice: evidence of increased islet GLP1 receptor levels and GPR119-activated GLP1 secretion.

    PubMed

    Ahlkvist, L; Brown, K; Ahrén, B

    2013-06-01

    We previously demonstrated that the overall incretin effect and the β-cell responsiveness to glucagon-like peptide-1 (GLP1) are increased in insulin-resistant mice and may contribute to the upregulated β-cell function. Now we examined whether this could, first, be explained by increased islet GLP1 receptor (GLP1R) protein levels and, secondly, be leveraged by G-protein-coupled receptor 119 (GPR119) activation, which stimulates GLP1 secretion. Female C57BL/6J mice, fed a control (CD, 10% fat) or high-fat (HFD, 60% fat) diet for 8 weeks, were anesthetized and orally given a GPR119 receptor agonist (GSK706A; 10 mg/kg) or vehicle, followed after 10 min with gavage with a liquid mixed meal (0.285 kcal). Blood was sampled for determination of glucose, insulin, intact GLP1, and glucagon, and islets were isolated for studies on insulin and glucagon secretion and GLP1R protein levels. In HFD vs CD mice, GPR119 activation augmented the meal-induced increase in the release of both GLP1 (AUCGLP1 81±9.6 vs 37±6.9 pM×min, P=0.002) and insulin (AUCINS 253±29 vs 112±19 nM×min, P<0.001). GPR119 activation also significantly increased glucagon levels in both groups (P<0.01) with, however, no difference between the groups. By contrast, GPR119 activation did not affect islet hormone secretion from isolated islets. Glucose elimination after meal ingestion was significantly increased by GPR119 activation in HFD mice (0.57±0.04 vs 0.43±0.03% per min, P=0.014) but not in control mice. Islet GLP1R protein levels was higher in HFD vs CD mice (0.8±0.1 vs 0.5±0.1, P=0.035). In conclusion, insulin-resistant mice display increased islet GLP1R protein levels and augmented meal-induced GLP1 and insulin responses to GPR119 activation, which results in increased glucose elimination. We suggest that the increased islet GLP1R protein levels together with the increased GLP1 release may contribute to the upregulated β-cell function in insulin resistance.

  6. Involvement of PRMT1 in hnRNPQ activation and internalization of insulin receptor

    SciTech Connect

    Iwasaki, Hiroaki

    2008-07-25

    Insulin signaling in skeletal L6 myotubes is known to be affected by arginine methylation catalyzed by protein N-arginine methyltransferase 1 (PRMT1), however, the mechanism by which this occurs has not yet been defined. This study aimed to determine the exact substrate involved in the methylation and regulating insulin signaling in cells. Insulin enhanced arginine methylation of a 66-kDa protein (p66) concomitant with translocation of PRMT1 to the membrane fraction. Peptide mass fingerprinting identified p66 as a heterogeneous nuclear ribonucleoprotein, hnRNPQ that was bound to and methylated by PRMT1. Pharmacological inhibition of methylation (MTA) and small interfering RNA against PRMT1 (PRMT1-siRNA) attenuated insulin-stimulated tyrosine phosphorylation of hnRNPQ and insulin receptor (IR), and the interaction between hnRNPQ and IR. MTA, PRMT1-siRNA, and hnRNPQ-siRNA inhibited internalization of IR in the same manner. These data suggest that the PRMT1-mediated methylation of hnRNPQ is implicated in IR trafficking and insulin signaling in skeletal L6 myotubes.

  7. Light Activation of the Insulin Receptor Regulates Mitochondrial Hexokinase. A Possible Mechanism of Retinal Neuroprotection

    PubMed Central

    Rajala, Ammaji; Gupta, Vivek K.; Anderson, Robert E.; Rajala, Raju V.S.

    2013-01-01

    The serine/threonine kinase Akt has been shown to mediate the anti-apoptotic activity through hexokinase (HK)-mitochondria interaction. We previously reported that Akt activation in retinal rod photoreceptor cells is mediated through light-dependent insulin receptor (IR)/PI3K pathway. Our data indicate that light-induced activation of IR/PI3K/Akt results in the translocation of HK-II to mitochondria. We also found that PHLPPL, a serine/threonine phosphatase, enhanced the binding of HK-II to mitochondria. We found a mitochondrial targeting signal in PHLPPL and our study suggests that Akt translocation to mitochondria could be mediated through PHLPPL. Our results suggest that light-dependent IR/PI3K/Akt pathway regulates hexokinase-mitochondria interaction in photoreceptors. Down-regulation of IR signaling has been associated with ocular diseases of retinitis pigmentosa, diabetic retinopathy, and Leber Congenital Amaurosis-type 2, and agents that enhance the binding interaction between hexokinase and mitochondria may have therapeutic potential against these ocular diseases. PMID:23993956

  8. Ganglioside GM3 depletion reverses impaired wound healing in diabetic mice by activating IGF-1 and insulin receptors.

    PubMed

    Wang, Xiao-Qi; Lee, Sarah; Wilson, Heather; Seeger, Mark; Iordanov, Hristo; Gatla, Nandita; Whittington, Adam; Bach, Daniel; Lu, Jian-Yun; Paller, Amy S

    2014-05-01

    Ganglioside GM3 mediates adipocyte insulin resistance, but the role of GM3 in diabetic wound healing, a major cause of morbidity, is unclear. The purpose of this study was to determine whether GM3 depletion promotes diabetic wound healing and directly activates keratinocyte (KC) insulin pathway signaling. GM3 synthase (GM3S) expression is increased in human diabetic foot skin, ob/ob and diet-induced obese diabetic mouse skin, and in mouse KCs exposed to increased glucose. GM3S knockout in diet-induced obese mice prevents the diabetic wound-healing defect. KC proliferation, migration, and activation of insulin receptor (IR) and insulin growth factor-1 receptor (IGF-1R) are suppressed by excess glucose in wild-type cells, but increased in GM3S (-/-) KCs with supplemental glucose. Co-immunoprecipitation of IR, IR substrate 1 (IRS-1), and IGF-1R, and increased IRS-1 and Akt phosphorylation accompany receptor activation. GM3 supplementation or inhibition of IGF-1R or PI3K reverses the increased migration of GM3S(-/-) KCs, whereas IR knockdown only partially suppresses migration.

  9. Insulin receptor substrate 1 rescues insulin action in CHO cells expressing mutant insulin receptors that lack a juxtamembrane NPXY motif.

    PubMed Central

    Chen, D; Van Horn, D J; White, M F; Backer, J M

    1995-01-01

    Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the beta-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21ras. Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK. PMID:7651388

  10. Simulation model of defective insulin receptors as byproducts of receptor recycling.

    PubMed

    Kurbel, B; Kurbel, S; Kristek, Z; Jakić, M; Jurić, M; Sulava, D

    1997-08-01

    Our simulation model assumes that the defective insulin-binding receptors in non-insulin-dependent diabetes (NIDDM) patients result from functional receptor recycling. The model is a short program written in MS DOS 5.0 Qbasic. MODEL DESIGN: Receptors with intracellular portions damaged in the process of recycling are considered defective since they bind insulin but do mediate insulin effects, or recycle. Their occurrence depends on the average activation rate of functional receptors. The insulin-binding receptors (defective and functional) are objects of slow and time-dependent turnover defined by the turnover rate. Recycled receptors rejoin functional receptors or enter the pool of defective receptors. The waste in the functional receptors' pool is covered by a limited amount of newly synthesized receptors. The defective receptors often accumulate in cases of increased activation of functional receptors. SIMULATION RESULTS: The insulin-binding receptor quantity is determined, in the model, only by the number of newly synthesized receptors, reflecting the intensity of insulin stimulation. Synthesis is increased following variable insulin stimulations and decreased after sustained, intensive insulin stimulation. The number of functional receptors inversely reflects the average activation rate of functional receptors compared with the insulin-binding receptors turnover rate. High activation rates can diminish the proportion of functional receptors to less than 5% of that of all insulin-binding receptors. The model predicts that cells bearing only functional receptors show progressively shortened half-lives of receptors, reflecting the receptor activation intensity. On the other hand, cells bearing both defective and functional receptors show stable receptors' half-lives (20-36% of the defective receptors' half-life). Simulation results suggest that reduced functional receptor proportions in NIDDM patients might reflect the imbalance between the activation of

  11. Peroxisome Proliferator-activated Receptor γ Regulates Genes Involved in Insulin/Insulin-like Growth Factor Signaling and Lipid Metabolism during Adipogenesis through Functionally Distinct Enhancer Classes*

    PubMed Central

    Oger, Frédérik; Dubois-Chevalier, Julie; Gheeraert, Céline; Avner, Stéphane; Durand, Emmanuelle; Froguel, Philippe; Salbert, Gilles; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme

    2014-01-01

    The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ is a transcription factor whose expression is induced during adipogenesis and that is required for the acquisition and control of mature adipocyte functions. Indeed, PPARγ induces the expression of genes involved in lipid synthesis and storage through enhancers activated during adipocyte differentiation. Here, we show that PPARγ also binds to enhancers already active in preadipocytes as evidenced by an active chromatin state including lower DNA methylation levels despite higher CpG content. These constitutive enhancers are linked to genes involved in the insulin/insulin-like growth factor signaling pathway that are transcriptionally induced during adipogenesis but to a lower extent than lipid metabolism genes, because of stronger basal expression levels in preadipocytes. This is consistent with the sequential involvement of hormonal sensitivity and lipid handling during adipocyte maturation and correlates with the chromatin structure dynamics at constitutive and activated enhancers. Interestingly, constitutive enhancers are evolutionary conserved and can be activated in other tissues, in contrast to enhancers controlling lipid handling genes whose activation is more restricted to adipocytes. Thus, PPARγ utilizes both broadly active and cell type-specific enhancers to modulate the dynamic range of activation of genes involved in the adipogenic process. PMID:24288131

  12. Phosphorylation of insulin-like growth factor I receptor by insulin receptor tyrosine kinase in intact cultured skeletal muscle cells

    SciTech Connect

    Beguinot, F.; Smith, R.J.; Kahn, C.R.; Maron, R.; Moses, A.C.; White, M.F.

    1988-05-03

    The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of (/sup 32/P)-orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identifies of the insulin and IGF I receptor ..beta..-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the ..beta..-subunit of the insulin receptor correlated with the occupancy of the ..beta..-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the ..beta..-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the ..beta..-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells.

  13. Hydroxylamine enhances glucose uptake in C2C12 skeletal muscle cells through the activation of insulin receptor substrate 1.

    PubMed

    Kimura, Taro; Kato, Eisuke; Machikawa, Tsukasa; Kimura, Shunsuke; Katayama, Shinji; Kawabata, Jun

    2014-02-28

    Diabetes mellitus is a global disease, and the number of patients with it is increasing. Of various agents for treatment, those that directly act on muscle are currently attracting attention because muscle is one of the main tissues in the human body, and its metabolism is decreased in type II diabetes. In this study, we found that hydroxylamine (HA) enhances glucose uptake in C2C12 myotubes. Analysis of HA's mechanism revealed the involvement of IRS1, PI3K and Akt that is related to the insulin signaling pathway. Further investigation about the activation mechanism of insulin receptor or IRS1 by HA may provide a way to develop a novel anti-diabetic agent alternating to insulin. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory.

  15. The neuronal insulin receptor in its environment.

    PubMed

    Gralle, Matthias

    2017-02-01

    Insulin is known mainly for its effects in peripheral tissues, such as the liver, skeletal muscles and adipose tissue, where the activation of the insulin receptor (IR) has both short-term and long-term effects. Insulin and the IR are also present in the brain, and since there is evidence that neuronal insulin signaling regulates synaptic plasticity and that it is impaired in disease, this pathway might be the key to protection or reversal of symptoms, especially in Alzheimer's disease. However, there are controversies about the importance of the neuronal IR, partly because biophysical data on its activation and signaling are much less complete than for the peripheral IR. This review briefly summarizes the neuronal IR signaling in health and disease, and then focuses on known differences between the neuronal and peripheral IR with regard to alternative splicing and glycosylation, and lack of data with respect to phosphorylation and membrane subdomain localization. Particularities in the neuronal IR itself and its environment may have consequences for downstream signaling and impact synaptic plasticity. Furthermore, establishing the relative importance of insulin signaling through IR or through hybrids with its homolog, the insulin-like growth factor 1 receptor, is crucial for evaluating the consequences of brain IR activation. An improved biophysical understanding of the neuronal IR may help predict the consequences of insulin-targeted interventions.

  16. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    SciTech Connect

    Wang, Feng; Yang, Yong

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  17. Proliferator-activated receptor gamma Pro12Ala interacts with the insulin receptor substrate 1 Gly972Arg and increase the risk of insulin resistance and diabetes in the mixed ancestry population from South Africa.

    PubMed

    Vergotine, Zelda; Yako, Yandiswa Y; Kengne, Andre P; Erasmus, Rajiv T; Matsha, Tandi E

    2014-01-21

    The peroxisome proliferator-activated receptor gamma (PPARG), Pro12Ala and the insulin receptor substrate (IRS1), Gly972Arg confer opposite effects on insulin resistance and type 2 diabetes mellitus (T2DM). We investigated the independent and joint effects of PPARG Pro12Ala and IRS1 Gly972Arg on markers of insulin resistance and T2DM in an African population with elevated risk of T2DM. In all 787 (176 men) mixed-ancestry adults from the Bellville-South community in Cape Town were genotyped for PPARG Pro12Ala and IRS1 Gly972Arg by two independent laboratories. Glucose tolerance status and insulin resistance/sensitivity were assessed. Genotype frequencies were 10.4% (PPARG Pro12Ala) and 7.7% (IRS1 Gly972Arg). Alone, none of the polymorphisms predicted prevalent T2DM, but in regression models containing both alleles and their interaction term, PPARG Pro12 conferred a 64% higher risk of T2DM. Furthermore PPARG Pro12 was positively associated in adjusted linear regressions with increased 2-hour post-load insulin in non-diabetic but not in diabetic participants. The PPARG Pro12 is associated with insulin resistance and this polymorphism interacts with IRS1 Gly972Arg, to increase the risk of T2DM in the mixed-ancestry population of South Africa. Our findings require replication in a larger study before any generalisation and possible application for risk stratification.

  18. Hepatitis B virus inhibits insulin receptor signaling and impairs liver regeneration via intracellular retention of the insulin receptor.

    PubMed

    Barthel, Sebastian Robert; Medvedev, Regina; Heinrich, Thekla; Büchner, Sarah Manon; Kettern, Nadja; Hildt, Eberhard

    2016-11-01

    Hepatitis B virus (HBV) causes severe liver disease but the underlying mechanisms are incompletely understood. During chronic HBV infection, the liver is recurrently injured by immune cells in the quest for viral elimination. To compensate tissue injury, liver regeneration represents a vital process which requires proliferative insulin receptor signaling. This study aims to investigate the impact of HBV on liver regeneration and hepatic insulin receptor signaling. After carbon tetrachloride-induced liver injury, liver regeneration is delayed in HBV transgenic mice. These mice show diminished hepatocyte proliferation and increased expression of fibrosis markers. This is in accordance with a reduced activation of the insulin receptor although HBV induces expression of the insulin receptor via activation of NF-E2-related factor 2. This leads to increased intracellular amounts of insulin receptor in HBV expressing hepatocytes. However, intracellular retention of the receptor simultaneously reduces the amount of functional insulin receptors on the cell surface and thereby attenuates insulin binding in vitro and in vivo. Intracellular retention of the insulin receptor is caused by elevated amounts of α-taxilin, a free syntaxin binding protein, in HBV expressing hepatocytes preventing proper targeting of the insulin receptor to the cell surface. Consequently, functional analyses of insulin responsiveness revealed that HBV expressing hepatocytes are less sensitive to insulin stimulation leading to delayed liver regeneration. This study describes a novel pathomechanism that uncouples HBV expressing hepatocytes from proliferative signals and thereby impedes compensatory liver regeneration after liver injury.

  19. Immunological demonstration of the accumulation of insulin, but not insulin receptors, in nuclei of insulin-treated cells

    SciTech Connect

    Soler, A.P.; Thompson, K.A.; Smith, R.M.; Jarett, L. )

    1989-09-01

    Although insulin is known to regulate nuclear-related processes, such as cell growth and gene transcription, the mechanisms involved are poorly understood. Previous studies suggested that translocation of insulin or its receptor to cell nuclei might be involved in some of these processes. The present investigation demonstrated that intact insulin, but not the insulin receptor, accumulated in nuclei of insulin-treated cells. Cell fractionation studies demonstrated that the nuclear accumulation of {sup 125}I-labeled insulin was time-, temperature-, and insulin-concentration-dependent. Electron microscopic immunocytochemistry demonstrated that the insulin that accumulated in the nucleus was immunologically intact and associated with the heterochromatin. Only 1% of the {sup 125}I-labeled insulin extracted from isolated nuclei was eluted from a Sephadex G-50 column as {sup 125}I-labeled tyrosine. Plasma membrane insulin receptors were not detected in the nucleus by immuno electron microscopy or when wheat germ agglutinin-purified extracts of the nuclei were subjected to PAGE, electrotransfer, and immunoblotting with anti-insulin receptor antibodies. These results suggested that internalized insulin dissociated from its receptor and accumulated in the nucleus without its membrane receptor. The authors propose that some of insulin's effects on nuclear function may be caused by the translocation of the intact and biologically active hormone to the nucleus and its binding to nuclear components in the heterochromatin.

  20. Homozygous nonsense mutation in the insulin receptor gene of a patient with severe congenital insulin resistance: leprechaunism and the role of the insulin-like growth factor receptor.

    PubMed

    Jospe, N; Kaplowitz, P B; Furlanetto, R W

    1996-08-01

    Severe congenital insulin resistance in the syndrome of leprechaunism is caused by mutations in the insulin receptor gene. We report a patient with leprechaunism who was homozygous for a mutation resulting in the absence of cell surface insulin receptors. To determine whether the receptor for Insulin-like growth factor-I (IGF-I) is involved in the phenotype of leprechaunism, we studied the effect of insulin and of IGF-I on cells from this patient. The patient had a homozygous C-->T substitution at base pair 8212 in exon 12 of the insulin receptor gene, creating a premature stop codon. This nonsense mutation is in the extracellular portion of the receptor and truncates the insulin receptor proximal to its transmembrane anchor, resulting in the absence of cell surface insulin receptors. This finding indicates that complete absence of the insulin receptor is compatible with life. Secondly, DNA synthesis was studied in skin derived fibroblasts in response to increasing concentrations of either insulin or Insulin-like growth factor-I (IGF-I), and was assessed by 3H-thymidine incorporation. In this patient's cells, both of these hormones increased 3H-thymidine incorporation, and the effect was blocked by alpha-IR3, a monoclonal antibody that blocks activation of the IGF-I receptor. These findings confirmed the absence of the insulin receptor and indicated that insulin acts here through activation of the IGF-I receptor. These data support the contention that the phenotypic and metabolic abnormalities of leprechaunism result from the combination of lack of insulin receptor action and over-activation by insulin of the type 1 IGF receptor.

  1. Insulin-receptor phosphotyrosyl-protein phosphatases.

    PubMed Central

    King, M J; Sale, G J

    1988-01-01

    Calmodulin-dependent protein phosphatase has been proposed to be an important phosphotyrosyl-protein phosphatase. The ability of the enzyme to attack autophosphorylated insulin receptor was examined and compared with the known ability of the enzyme to act on autophosphorylated epidermal-growth-factor (EGF) receptor. Purified calmodulin-dependent protein phosphatase was shown to catalyse the complete dephosphorylation of phosphotyrosyl-(insulin receptor). When compared at similar concentrations, 32P-labelled EGF receptor was dephosphorylated at greater than 3 times the rate of 32P-labelled insulin receptor; both dephosphorylations exhibited similar dependence on metal ions and calmodulin. Native phosphotyrosyl-protein phosphatases in cell extracts were also characterized. With rat liver, heart or brain, most (75%) of the native phosphatase activity against both 32P-labelled insulin and EGF receptors was recovered in the particulate fraction of the cell, with only 25% in the soluble fraction. This subcellular distribution contrasts with results of previous studies using artificial substrates, which found most of the phosphotyrosyl-protein phosphatase activity in the soluble fraction of the cell. Properties of particulate and soluble phosphatase activity against 32P-labelled insulin and EGF receptors are reported. The contribution of calmodulin-dependent protein phosphatase activity to phosphotyrosyl-protein phosphatase activity in cell fractions was determined by utilizing the unique metal-ion dependence of calmodulin-dependent protein phosphatase. Whereas Ni2+ (1 mM) markedly activated the calmodulin-dependent protein phosphatase, it was found to inhibit potently both particulate and soluble phosphotyrosyl-protein phosphatase activity. In fractions from rat liver, brain and heart, total phosphotyrosyl-protein phosphatase activity against both 32P-labelled receptors was inhibited by 99.5 +/- 6% (mean +/- S.E.M., 30 observations) by Ni2+. Results of Ni2+ inhibition

  2. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation.

    PubMed

    De Meyts, Pierre

    2015-04-01

    Progress in solving the structure of insulin bound to its receptor has been slow and stepwise, but a milestone has now been reached with a refined structure of a complex of insulin with a "microreceptor" that contains the primary binding site. The insulin receptor is a dimeric allosteric enzyme that belongs to the family of receptor tyrosine kinases. The insulin binding process is complex and exhibits negative cooperativity. Biochemical evidence suggested that insulin, through two distinct binding sites, crosslinks two receptor sites located on each α subunit. The structure of the unliganded receptor ectodomain showed a symmetrical folded-over conformation with an antiparallel disposition. Further work resolved the detailed structure of receptor site 1, both without and with insulin. Recently, a missing piece in the puzzle was added: the C-terminal portion of insulin's B-chain known to be critical for binding and negative cooperativity. Here I discuss these findings and their implications.

  3. Selective Activation of Estrogen Receptor α Activation Function-1 Is Sufficient to Prevent Obesity, Steatosis, and Insulin Resistance in Mouse.

    PubMed

    Guillaume, Maeva; Handgraaf, Sandra; Fabre, Aurélie; Raymond-Letron, Isabelle; Riant, Elodie; Montagner, Alexandra; Vinel, Alexia; Buscato, Melissa; Smirnova, Natalia; Fontaine, Coralie; Guillou, Hervé; Arnal, Jean-François; Gourdy, Pierre

    2017-06-01

    Estrogen receptor α (ERα) regulates gene transcription through two activation functions (ERα-AF1 and ERα-AF2). We recently found that the protection conferred by 17β-estradiol against obesity and insulin resistance requires ERα-AF2 but not ERα-AF1. However, the interplay between the two ERα-AFs is poorly understood in vivo and the metabolic influence of a specific ERα-AF1 action remains to be explored. To this end, wild-type, ERα-deficient, or ERα-AF1-deficient ovariectomized female mice were fed a high-fat diet and concomitantly administered with vehicle or tamoxifen, a selective ER modulator that acts as a ERα-AF1 agonist/ERα-AF2 antagonist. In ovariectomized wild-type mice, tamoxifen significantly reduced food intake and totally prevented adiposity, insulin resistance, and steatosis. These effects were abolished in ERα-deficient and ERα-AF1-deficient mice, revealing the specific role of ERα-AF1 activation. Finally, hepatic gene expression changes elicited by tamoxifen in wild-type mice were abrogated in ERα-AF1-deficient mice. The combination of pharmacologic and transgenic approaches thus indicates that selective ERα-AF1 activation by tamoxifen is sufficient to elicit metabolic protection, contrasting with the specific requirement of ERα-AF2 in the metabolic actions of 17β-estradiol. This redundancy in the ability of the two ERα-AFs to separately mediate metabolic prevention strikingly contrasts with the contribution of both ERα-AFs in breast cancer proliferation, shedding new light on the therapeutic potential of selective ER modulation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  5. Deletion of 3 basepairs resulting in the loss of lysine-121 in the insulin receptor alpha-subunit in a patient with leprechaunism: binding, phosphorylation, and biological activity.

    PubMed

    Jospe, N; Zhu, J; Liu, R; Livingston, J N; Furlanetto, R W

    1994-11-01

    We have identified a novel mutation of the human insulin receptor gene in a previously unreported patient with leprechaunism, leprechaun Rochester. This mutation consists of deletion of three nucleotides (GAA) in exon 2 and results in loss of the lysine-121 in the putative ligand-binding domain of the alpha-subunit. To analyze this mutation, we prepared a corresponding mutant insulin receptor by site-directed mutagenesis and expressed the receptor in Chinese hamster ovary cells. Although the mutant receptor displayed normal insulin binding, abnormalities were found in autophosphorylation and in phosphorylation of endogenous and exogenous protein substrates. These abnormalities consisted of increased basal kinase activity, but blunted insulin-stimulated responsiveness. Importantly, cells that expressed the mutant receptor showed markedly decreased insulin- and serum-stimulated DNA synthesis compared to untransfected control cells and cells transfected with the wild-type insulin receptor. These findings suggest that deletion of lysine-121 in conjunction with a presumed, but thus far unidentified, second mutant allele contributed significantly to the lethal insulin-resistant state in this patient with leprechaunism.

  6. Tetramethylpyrazine reduces glucose and insulin-induced activation of hepatic stellate cells by inhibiting insulin receptor-mediated PI3K/AKT and ERK pathways.

    PubMed

    Zhang, Feng; Zhang, Zili; Kong, Desong; Zhang, Xiaoping; Chen, Li; Zhu, Xiaojing; Lu, Yin; Zheng, Shizhong

    2014-01-25

    Hepatic stellate cell (HSC) activation is the central event during liver fibrogenesis. Metabolic syndrome characterized by hyperglycemia and hyperinsulinemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of tetramethylpyrazine (TMP) on HSC activation induced by glucose and insulin (Glu/Ins) and the underlying mechanisms. Results showed that Glu/Ins significantly stimulated proliferation, invasion, adhesion, and extracellular matrix (ECM) production in HSCs. TMP inhibited HSC proliferation, invasion and adhesion, and reduced the expression of marker genes related to HSC activation in Glu/Ins-activated HSCs. Mechanistic evidence revealed that TMP reduced insulin receptor (InsR) expression and blocked the downstream phosphatidylinositol-3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) cascades, which was required for TMP attenuation of HSC activation. Moreover, TMP modulated the genes relevant to ECM homeostasis favoring ECM degradation. It could be concluded that TMP inhibited Glu/Ins-stimulated HSC activation and ECM production by inhibiting InsR-mediated PI3K/AKT and ERK pathways. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Skeletal muscle peroxisome proliferator- activated receptor-gamma expression in obesity and non- insulin-dependent diabetes mellitus.

    PubMed Central

    Kruszynska, Y T; Mukherjee, R; Jow, L; Dana, S; Paterniti, J R; Olefsky, J M

    1998-01-01

    The two isoforms of peroxisome proliferator-activated receptor-gamma (PPARgamma1 and PPARgamma2), are ligand-activated transcription factors that are the intracellular targets of a new class of insulin sensitizing agents, the thiazolidinediones. The observation that thiazolidinediones enhance skeletal muscle insulin sensitivity in obesity and in patients with non-insulin-dependent diabetes mellitus (NIDDM), by activating PPARgamma, and possibly by inducing its expression, suggests that PPARgamma expression in skeletal muscle plays a key role in determining tissue sensitivity to insulin, and that PPARgamma expression may be decreased in insulin resistant subjects. We used a sensitive ribonuclease protection assay, that permits simultaneous measurement of the two isoforms, to examine the effects of obesity and NIDDM, and the effects of insulin, on skeletal muscle levels of PPARgamma1 and PPARgamma2 mRNA. We studied seven patients with NIDDM (body mass index, 32+/-1 kg/m2), seven lean (24+/-1 kg/m2), and six obese (36+/-1 kg/m2) normal subjects. Biopsies from the vastus lateralis muscle were taken before and after a 5-h hyperinsulinemic (80 mU/m2 per minute) euglycemic clamp. The obese controls and NIDDM patients were insulin resistant with glucose disposal rates during the last 30 min of the clamp that were 67 and 31%, respectively, of those found in the lean controls. PPARgamma1, but not PPARgamma2 mRNA was detected in skeletal muscle at 10-15% of the level found in adipose tissue. No difference was found in PPARgamma1 levels between the three groups, and there was no change in PPARgamma1 levels after 5 h of hyperinsulinemia. In obese subjects, PPARgamma1 correlated with clamp glucose disposal rates (r = 0.92, P < 0.01). In the lean and NIDDM patients, muscle PPARgamma1 levels correlated with percentage body fat (r = 0.76 and r = 0.82, respectively, both P < 0.05) but not with body mass index. In conclusion: (a) skeletal muscle PPARgamma1 expression does not differ

  8. Impact of Oxidative Stress and Peroxisome Proliferator–Activated Receptor γ Coactivator-1α in Hepatic Insulin Resistance

    PubMed Central

    Kumashiro, Naoki; Tamura, Yoshifumi; Uchida, Toyoyoshi; Ogihara, Takeshi; Fujitani, Yoshio; Hirose, Takahisa; Mochizuki, Hideki; Kawamori, Ryuzo; Watada, Hirotaka

    2008-01-01

    OBJECTIVE—Recent studies identified accumulation of reactive oxygen species (ROS) as a common pathway causing insulin resistance. However, whether and how the reduction of ROS levels improves insulin resistance remains to be elucidated. The present study was designed to define this mechanism. RESEARCH DESIGN AND METHODS—We investigated the effect of overexpression of superoxide dismutase (SOD)1 in liver of obese diabetic model (db/db) mice by adenoviral injection. RESULTS—db/db mice had high ROS levels in liver. Overexpression of SOD1 in liver of db/db mice reduced hepatic ROS and blood glucose level. These changes were accompanied by improvement in insulin resistance and reduction of hepatic gene expression of phosphoenol-pyruvate carboxykinase and peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), which is the main regulator of gluconeogenic genes. The inhibition of hepatic insulin resistance was accompanied by attenuation of phosphorylation of cAMP-responsive element-binding protein (CREB), which is a main regulator of PGC-1α expression, and attenuation of Jun NH2-terminal kinase (JNK) phosphorylation. Simultaneously, overexpression of SOD1 in db/db mice enhanced the inactivation of forkhead box class O1, another regulator of PGC-1α expression, without the changes of insulin-induced Akt phosphorylation in liver. In hepatocyte cell lines, ROS induced phosphorylation of JNK and CREB, and the latter, together with PGC-1α expression, was inhibited by a JNK inhibitor. CONCLUSIONS—Our results indicate that the reduction of ROS is a potential therapeutic target of liver insulin resistance, at least partly by the reduced expression of PGC-1α. PMID:18487450

  9. Tea enhances insulin activity.

    PubMed

    Anderson, Richard A; Polansky, Marilyn M

    2002-11-20

    The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.

  10. Human monoclonal antibodies to the insulin-like growth factor 1 receptor inhibit receptor activation and tumor growth in preclinical studies.

    PubMed

    Runnels, Herbert A; Arbuckle, J Alan; Bailey, Karen S; Nicastro, Peter J; Sun, Duo; Pegg, Jodi A; Meyer, Debra M; Evans, Michelle; Bono, Christine P; Lie, Wen-Rong; Moffat, Mark A; Casperson, Gerald F; Lennard, Simon; Elvin, John; Vaughan, Tristan; Smith, Christine E; Morton, Phillip A

    2010-07-01

    The insulin-like growth factor type 1 (IGF-1) receptor contributes importantly to transformation and survival of tumor cells both in vitro and in vivo, and selective antagonists of the IGF-1 receptor (IGF-1R) activity represent an attractive experimental approach for human cancer therapy. Using a phage display library, we identified several high-affinity fully human monoclonal antibodies with inhibitory activity against both human and rodent IGF.1Rs. These candidate therapeutic antibodies recognized several distinct epitopes and effectively blocked ligand-mediated receptor signal transduction and cellular proliferation in vitro. They also induced IGF-1R downregulation and catabolism following antibody-mediated endocytosis. These antibodies exhibited activity against human, primate, and rodent IGF-1Rs, and dose-dependently inhibited the growth of established human tumors in nude mice. These fully human antibodies therefore have the potential to provide an effective anti-tumor biological therapy in the human clinical setting.

  11. Candesartan cilexetil prevents diet-induced insulin resistance via peroxisome proliferator-activated receptoractivation in an obese rat model

    PubMed Central

    YAN, WEN-HUA; PAN, CHANG-YU; DOU, JING-TAO; MENG, JUN-HUA; WANG, BAO-AN; MU, YI-MING

    2016-01-01

    Angiotensin II type 1 receptor (AT1R) blockers (ARBs) have been shown to reduce the incidence of type 2 diabetes mellitus; however, the underlying molecular mechanism is unknown. Peroxisome proliferator-activated receptor γ (PPARγ) is the central regulator of insulin and glucose metabolism, which improves insulin sensitivity. Whether candesartan cilexetil, as a prodrug of the AT1R blocker candesartan, has PPARγ-activating properties remains to be elucidated. The aim of the present study was to investigate the effects of oral administration of candesartan cilexetil on glucose tolerance and the actions of PPARγ on liver and adipose tissue in the insulin-resistant obese rat induced by high-fat diet. Animals treated with candesartan cilexetil showed an improved glucose tolerance after oral glucose challenge. Whole-body insulin sensitivity was evaluated using the hyperinsulinemic-euglycemic clamp technique. During high-fat feeding in high-fat diet (HF) rats, the glucose infusion rate (GIR) was 52.3% lower than that in normal chow (NC) rats. However, the GIR was significantly enhanced following candesartan cilexetil treatment. Angiotensin II receptor antagonism also resulted in significant increases in PPARγ protein expression in adipose and liver tissue. These results indicate that PPARγ activation by candesartan cilexetil may provide novel therapeutic options in the treatment of patients with metabolic syndrome. PMID:27347049

  12. GQ-16, a novel peroxisome proliferator-activated receptor γ (PPARγ) ligand, promotes insulin sensitization without weight gain.

    PubMed

    Amato, Angélica A; Rajagopalan, Senapathy; Lin, Jean Z; Carvalho, Bruno M; Figueira, Ana C M; Lu, Jenny; Ayers, Stephen D; Mottin, Melina; Silveira, Rodrigo L; Souza, Paulo C T; Mourão, Rosa H V; Saad, Mário J A; Togashi, Marie; Simeoni, Luiz A; Abdalla, Dulcinéia S P; Skaf, Munir S; Polikparpov, Igor; Lima, Maria C A; Galdino, Suely L; Brennan, Richard G; Baxter, John D; Pitta, Ivan R; Webb, Paul; Phillips, Kevin J; Neves, Francisco A R

    2012-08-10

    The recent discovery that peroxisome proliferator-activated receptor γ (PPARγ) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report the development of a novel thiazolidinedione that retains similar anti-diabetic efficacy as rosiglitazone in mice yet does not elicit weight gain or edema, common side effects associated with full PPARγ activation. Further characterization of this compound shows GQ-16 to be an effective inhibitor of Cdk5-mediated phosphorylation of PPARγ. The structure of GQ-16 bound to PPARγ demonstrates that the compound utilizes a binding mode distinct from other reported PPARγ ligands, although it does share some structural features with other partial agonists, such as MRL-24 and PA-082, that have similarly been reported to dissociate insulin sensitization from weight gain. Hydrogen/deuterium exchange studies reveal that GQ-16 strongly stabilizes the β-sheet region of the receptor, presumably explaining the compound's efficacy in inhibiting Cdk5-mediated phosphorylation of Ser-273. Molecular dynamics simulations suggest that the partial agonist activity of GQ-16 results from the compound's weak ability to stabilize helix 12 in its active conformation. Our results suggest that the emerging model, whereby "ideal" PPARγ-based therapeutics stabilize the β-sheet/Ser-273 region and inhibit Cdk5-mediated phosphorylation while minimally invoking adipogenesis and classical agonism, is indeed a valid framework to develop improved PPARγ modulators that retain antidiabetic actions while minimizing untoward effects.

  13. GQ-16, a Novel Peroxisome Proliferator-activated Receptor γ (PPARγ) Ligand, Promotes Insulin Sensitization without Weight Gain

    PubMed Central

    Amato, Angélica A.; Rajagopalan, Senapathy; Lin, Jean Z.; Carvalho, Bruno M.; Figueira, Ana C. M.; Lu, Jenny; Ayers, Stephen D.; Mottin, Melina; Silveira, Rodrigo L.; Souza, Paulo C. T.; Mourão, Rosa H. V.; Saad, Mário J. A.; Togashi, Marie; Simeoni, Luiz A.; Abdalla, Dulcinéia S. P.; Skaf, Munir S.; Polikparpov, Igor; Lima, Maria C. A.; Galdino, Suely L.; Brennan, Richard G.; Baxter, John D.; Pitta, Ivan R.; Webb, Paul; Phillips, Kevin J.; Neves, Francisco A. R.

    2012-01-01

    The recent discovery that peroxisome proliferator-activated receptor γ (PPARγ) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report the development of a novel thiazolidinedione that retains similar anti-diabetic efficacy as rosiglitazone in mice yet does not elicit weight gain or edema, common side effects associated with full PPARγ activation. Further characterization of this compound shows GQ-16 to be an effective inhibitor of Cdk5-mediated phosphorylation of PPARγ. The structure of GQ-16 bound to PPARγ demonstrates that the compound utilizes a binding mode distinct from other reported PPARγ ligands, although it does share some structural features with other partial agonists, such as MRL-24 and PA-082, that have similarly been reported to dissociate insulin sensitization from weight gain. Hydrogen/deuterium exchange studies reveal that GQ-16 strongly stabilizes the β-sheet region of the receptor, presumably explaining the compound's efficacy in inhibiting Cdk5-mediated phosphorylation of Ser-273. Molecular dynamics simulations suggest that the partial agonist activity of GQ-16 results from the compound's weak ability to stabilize helix 12 in its active conformation. Our results suggest that the emerging model, whereby “ideal” PPARγ-based therapeutics stabilize the β-sheet/Ser-273 region and inhibit Cdk5-mediated phosphorylation while minimally invoking adipogenesis and classical agonism, is indeed a valid framework to develop improved PPARγ modulators that retain antidiabetic actions while minimizing untoward effects. PMID:22584573

  14. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.

    PubMed

    Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A

    2014-12-01

    Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.

  15. FoxO1 Haploinsufficiency Protects Against High-Fat Diet–Induced Insulin Resistance With Enhanced Peroxisome Proliferator–Activated Receptor γ Activation in Adipose Tissue

    PubMed Central

    Kim, Jane J.; Li, Pingping; Huntley, Jessica; Chang, Jeffrey P.; Arden, Karen C.; Olefsky, Jerrold M.

    2009-01-01

    OBJECTIVE Forkhead box O (FoxO) transcription factors represent evolutionarily conserved targets of insulin signaling, regulating metabolism and cellular differentiation in response to changes in nutrient availability. Although the FoxO1 isoform is known to play a key role in adipogenesis, its physiological role in differentiated adipose tissue remains unclear. RESEARCH DESIGN AND METHODS In this study, we analyzed the phenotype of FoxO1 haploinsufficient mice to investigate the role of FoxO1 in high-fat diet–induced obesity and adipose tissue metabolism. RESULTS We showed that reduced FoxO1 expression protects mice against obesity-related insulin resistance with marked improvement not only in hepatic insulin sensitivity but also in skeletal muscle insulin action. FoxO1 haploinsufficiency also resulted in increased peroxisome proliferator–activated receptor (PPAR)γ gene expression in adipose tissue, with enhanced expression of PPARγ target genes known to influence metabolism. Moreover, treatment of mice with the PPARγ agonist rosiglitazone caused a greater improvement in in vivo insulin sensitivity in FoxO1 haploinsufficient animals, including reductions in circulating proinflammatory cytokines. CONCLUSIONS These findings indicate that FoxO1 proteins negatively regulate insulin action and that their effect may be explained, at least in part, by inhibition of PPARγ function. PMID:19289458

  16. Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6

    SciTech Connect

    Heidenreich, K.A.; Toledo, S.P. )

    1989-09-01

    As an initial attempt to identify early steps in insulin action that may be involved in the growth responses of neurons to insulin, we investigated whether insulin receptor activation increases the phosphorylation of ribosomal protein S6 in cultured fetal neurons and whether activation of a protein kinase is involved in this process. When neurons were incubated for 2 h with 32Pi, the addition of insulin (100 ng/ml) for the final 30 min increased the incorporation of 32Pi into a 32K microsomal protein. The incorporation of 32Pi into the majority of other neuronal proteins was unaltered by the 30-min exposure to insulin. Cytosolic extracts from insulin-treated neurons incubated in the presence of exogenous rat liver 40S ribosomes and (gamma-32P)ATP displayed a 3- to 8-fold increase in the phosphorylation of ribosomal protein S6 compared to extracts from untreated cells. Inclusion of cycloheximide during exposure of the neurons to insulin did not inhibit the increased cytosolic kinase activity. Activation of S6 kinase activity by insulin was dose dependent (seen at insulin concentration as low as 0.1 ng/ml) and reached a maximum after 20 min of incubation. Addition of phosphatidylserine, diolein, and Ca2+ to the in vitro kinase reaction had no effect on the phosphorylation of ribosomal protein S6. Likewise, treatment of neurons with (Bu)2cAMP did not alter the phosphorylation of ribosomal protein S6 by neuronal cytosolic extracts. We conclude that insulin activates a cytosolic protein kinase that phosphorylates ribosomal S6 in neurons and is distinct from protein kinase-C and cAMP-dependent protein kinase. Stimulation of this kinase may play a role in insulin signal transduction in neurons.

  17. Polyubiquitination of Insulin-like Growth Factor I Receptor (IGF-IR) Activation Loop Promotes Antibody-induced Receptor Internalization and Down-regulation*

    PubMed Central

    Mao, Yifan; Shang, Yonglei; Pham, Victoria C.; Ernst, James A.; Lill, Jennie R.; Scales, Suzie J.; Zha, Jiping

    2011-01-01

    Ubiquitination has been implicated in negatively regulating insulin-like growth factor I receptor (IGF-IR) activity. Because of the relative stability of IGF-IR in the presence of ligand stimulation, IGF-IR ubiquitination sites have yet to be mapped and characterized, thus preventing a direct demonstration of how the receptor ubiquitination contributes to downstream molecular cascades. We took advantage of an anti-IGF-IR antibody (h10H5) that induces more efficient receptor down-regulation to show that IGF-IR is promptly and robustly ubiquitinated. The ubiquitination sites were mapped to the two lysine residues in the IGF-IR activation loop (Lys-1138 and Lys-1141) and consisted of polyubiquitin chains formed through both Lys-48 and Lys-29 linkages. Mutation of these ubiquitinated lysine residues resulted in decreased h10H5-induced IGF-IR internalization and down-regulation as well as a reduced cellular response to h10H5 treatment. We have therefore demonstrated that IGF-IR ubiquitination contributes critically to the down-regulating and antiproliferative activity of h10H5. This finding is physiologically relevant because insulin-like growth factor I appears to mediate ubiquitination of the same major sites as h10H5 (albeit to a lesser extent), and ubiquitination is facilitated by pre-existing phosphorylation of the receptor in both cases. Furthermore, identification of a breast cancer cell line with a defect in IGF-IR ubiquitination suggests that this could be an important tumor resistance mechanism to evade down-regulation-mediated negative regulation of IGF-IR activity in cancer. PMID:21994939

  18. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  19. Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3-L1 adipocytes

    SciTech Connect

    Weiland, M.; Joost, H.G. ); Brandenburg, C.; Brandenburg, D. )

    1990-02-01

    In the present study the authors describe the antagonistic effects of the covalently dimerized insulin derivative B29,B29{prime}-suberoyl-insulin on insulin receptors in 3T3-L1 mouse cells. In differentiated 3T3-L1 adipocytes, the derivative fully inhibits binding of {sup 125}I-labeled insulin to its receptor with about the same affinity as unlabeled insulin. In contrast, the dimerized derivative only partially (approximately 20%) mimics insulin's effects on glucose transport and DNA synthesis in the absence of insulin. In the presence of insulin, the agent competitively inhibits insulin-stimulated DNA synthesis (({sup 3}H)thymidine incorporation into total DNA), glucose transport activity (2-deoxyglucose uptake rate), and insulin receptor tyrosine kinase activity. In rat adipocytes, in contrast, the dimerized derivative stimulates glucose transport (initial 3-O-methylglucose as well as 2-deoxyglucose uptake rates) to the same extent as insulin does, and it fails to inhibit the effect of insulin. The data indicate that the dimerized insulin derivative B29,B29{prime}-suberoyl-insulin is an insulin receptor antagonist (partial agonist) which retains a moderate intrinsic activity. The effects of this agent reveal a striking difference in insulin receptor-mediated stimulation of glucose transport between 3T3-L1 fatty fibroblasts and the mature rat adipocyte.

  20. Knockdown of the gene encoding Drosophila tribbles homologue 3 (Trib3) improves insulin sensitivity through peroxisome proliferator-activated receptor-γ (PPAR)-γ activation in a rat model of insulin resistance

    PubMed Central

    Weismann, D.; Erion, D. M.; Ignatova-Todorava, I.; Nagai, Y.; Stark, R.; Hsiao, J. J.; Flannery, C.; Birkenfeld, A. L.; May, T.; Kahn, M.; Zhang, D.; Yu, X. X.; Murray, S. F.; Bhanot, S.; Monia, B. P.; Cline, G. W.; Shulman, G. I.; Samuel, V. T.

    2014-01-01

    Aims/hypothesis Insulin action is purportedly modulated by Drosophila tribbles homologue 3 (TRIB3), which in vitro prevents thymoma viral proto-oncogene (AKT) and peroxisome proliferator-activated receptor (PPAR)-γ activation. However, the physiological impact of TRIB3 action in vivo remains controversial. Methods We investigated the role of TRIB3 in rats treated with either a control or Trib3 antisense oligonucleotide (ASO). Tissue-specific insulin sensitivity was assessed in vivo using a euglycaemic–hyperinsulinaemic clamp. A separate group was treated with the PPAR-γ antagonist, bisphenol-A-diglycidyl ether (BADGE) to assess the role of PPAR-γ in mediating the response to Trib3 ASO. Results Trib3 ASO treatment specifically reduced Trib3 expression by 70 to 80% in liver and white adipose tissue. Fasting plasma glucose, insulin concentrations and basal rate of endogenous glucose production were unchanged. However, Trib3 ASO increased insulin-stimulated whole-body glucose uptake by ~50% during the euglycaemic–hyperinsulinaemic clamp. This was attributable to improved skeletal muscle glucose uptake. Despite the reduction of Trib3 expression, AKT2 activity was not increased. Trib3 ASO increased white adipose tissue mass by 70%, and expression of Ppar-γ and its key target genes, raising the possibility that Trib3 ASO improves insulin sensitivity primarily in a PPAR-γ-dependent manner. Co-treatment with BADGE blunted the expansion of white adipose tissue and abrogated the insulin-sensitising effects of Trib3 ASO. Finally, Trib3 ASO also increased plasma HDL-cholesterol, a change that persisted with BADGE co-treatment. Conclusions/interpretation These data suggest that TRIB3 inhibition improves insulin sensitivity in vivo primarily in a PPAR-γ-dependent manner and without any change in AKT2 activity. PMID:21190014

  1. A minimized human insulin-receptor-binding motif revealed in a Conus geographus venom insulin.

    PubMed

    Menting, John G; Gajewiak, Joanna; MacRaild, Christopher A; Chou, Danny Hung-Chieh; Disotuar, Maria M; Smith, Nicholas A; Miller, Charleen; Erchegyi, Judit; Rivier, Jean E; Olivera, Baldomero M; Forbes, Briony E; Smith, Brian J; Norton, Raymond S; Safavi-Hemami, Helena; Lawrence, Michael C

    2016-10-01

    Insulins in the venom of certain fish-hunting cone snails facilitate prey capture by rapidly inducing hypoglycemic shock. One such insulin, Conus geographus G1 (Con-Ins G1), is the smallest known insulin found in nature and lacks the C-terminal segment of the B chain that, in human insulin, mediates engagement of the insulin receptor and assembly of the hormone's hexameric storage form. Removal of this segment (residues B23-B30) in human insulin results in substantial loss of receptor affinity. Here, we found that Con-Ins G1 is monomeric, strongly binds the human insulin receptor and activates receptor signaling. Con-Ins G1 thus is a naturally occurring B-chain-minimized mimetic of human insulin. Our crystal structure of Con-Ins G1 reveals a tertiary structure highly similar to that of human insulin and indicates how Con-Ins G1's lack of an equivalent to the key receptor-engaging residue Phe(B24) is mitigated. These findings may facilitate efforts to design ultrarapid-acting therapeutic insulins.

  2. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway.

    PubMed

    Li, Yunsheng; Kim, Jaekyung; Li, Jing; Liu, Fang; Liu, Xueqing; Himmeldirk, Klaus; Ren, Yulin; Wagner, Thomas E; Chen, Xiaozhuo

    2005-10-21

    Insulin mimetics from natural sources are potential therapeutics that can act alone or supplement insulin and other anti-diabetic drugs in the prevention and treatment of diabetes. We recently reported the insulin-like glucose transport stimulatory activity of tannic acid (TA) in 3T3-L1 adipocytes. In this study, we find that chemically synthesized 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose (beta-PGG), one of the components of TA, as well as its natural anomer alpha-PGG possess activity. Mechanistic studies in adipocytes with alpha-PGG, the more potent of the two anomers, reveal that inhibitors that block the insulin-mediated glucose transport, including one that inhibits the insulin receptor (IR), also completely abolish the glucose transport activated by alpha-PGG. In addition, alpha-PGG induces phosphorylation of the IR and Akt, activates PI 3-kinase, and stimulates membrane translocation of GLUT 4. Receptor binding studies indicate that alpha-PGG binds to the IR and affects the binding between insulin and IR by reducing the maximum binding of insulin to IR without significantly altering the binding affinity of insulin to IR. Western blotting analysis of the products of a cross-linking reaction suggests that alpha-PGG may bind to IR at a site located on the alpha-subunit of the receptor. Animal studies demonstrate that PGG reduces blood glucose levels and improves glucose tolerance in diabetic and obese animals. Our results suggest that PGG may serve as a model for the development of new types of anti-diabetic and anti-metabolic syndrome therapeutics.

  3. Insulin receptors in the mammary gland

    SciTech Connect

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of /sup 125/I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less /sup 125/I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less /sup 125/I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands.

  4. Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation

    PubMed Central

    Beauvais, DeannaLee M.; Rapraeger, Alan C.

    2010-01-01

    Syndecan-1 (Sdc1) engages and activates the αvβ3 (and/or αvβ5) integrin when clustered in human carcinoma and endothelial cells. Although the engagement is extracellular, the activation mechanism is cytoplasmic. This talin-dependent, inside-out signaling pathway is activated downstream of the insulin-like growth factor-1 receptor (IGF1R), whose kinase activity is triggered by Sdc1 clustering. In vitro binding assays using purified receptors suggest that association of the Sdc1 ectodomain with the integrin provides a ‘docking face’ for IGF1R. IGF1R docking and activation of the associated integrin is blocked by synstatin (SSTN92–119), a peptide derived from the integrin engagement site in Sdc1. IGF1R colocalizes with αvβ3 integrin and Sdc1 in focal contacts, but fails to associate with or activate the integrin in cells either lacking Sdc1 or expressing Sdc1Δ67–121, a mutant that is unable to form the Sdc1–integrin–IGF1R ternary complex. Integrin activation is also blocked by IGF1R inhibitors or by silencing IGF1R or talin expression with small-interfering RNAs (siRNAs). In both cases, expression of the constitutively active talin F23 head domain rescues integrin activation. We recently reported that SSTN92–119 blocks angiogenesis and impairs tumor growth in mice, therefore this Sdc1-mediated integrin regulatory mechanism might be a crucial regulator of disease processes known to rely on these integrins, including tumor cell metastasis and tumor-induced angiogenesis. PMID:20971705

  5. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    ERIC Educational Resources Information Center

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  6. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    ERIC Educational Resources Information Center

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  7. Activation of Distinct P2Y Receptor Subtypes Stimulates Insulin Secretion in MIN6 Mouse Pancreatic β Cells

    PubMed Central

    Balasubramanian, Ramachandran; de Azua, Inigo Ruiz; Wess, Jürgen; Jacobson, Kenneth A.

    2010-01-01

    Extracellular nucleotides and their receptor antagonists have therapeutic potential in disorders such as inflammation, brain disorders, and cardiovascular diseases. Pancreatic β cells express several purinergic receptors, and reported nucleotide effects on insulin secretion are contradictory. We studied the effect of P2Y receptors on insulin secretion and cell death in MIN6, mouse pancreatic β cells. Expression of P2Y1 and P2Y6 receptors was revealed by total mRNA analysis using RT-PCR. MIN6 cells were stimulated in the presence of 16.7 mM glucose with or without P2Y1 and P2Y6 agonists, 2-MeSADP and Up3U, respectively. Both the agonists increased insulin secretion with EC50 values of 44.6±7.0 nM and 30.7±12.7 nM respectively. The insulin secretion by P2Y1 and P2Y6 agonists was blocked by their selective antagonists MRS2179 and MRS2578, respectively. Binding of the selective P2Y1 receptor antagonist radioligand [125I]MRS2500 in MIN6 cell membranes was saturable (KD 4.74±0.47 nM), and known P2Y1 ligands competed with high affinities. Inflammation and glucose toxicity leads to pancreatic β cell death in diabetes. Flow cytometric analysis revealed that Up3U but not 2-MeSADP protected MIN6 cells against TNF-α induced apoptosis. Overall, the results demonstrate that selective stimulation of P2Y1 and P2Y6 receptors increases insulin secretion that accompanies intracellular calcium release, suggesting potential application of P2Y receptor ligands in the treatment of diabetes. PMID:20067775

  8. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by XMetA, an allosteric partial agonist antibody

    USDA-ARS?s Scientific Manuscript database

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  9. Analysis of insulin receptor substrate signaling dynamics on microstructured surfaces.

    PubMed

    Lanzerstorfer, Peter; Yoneyama, Yosuke; Hakuno, Fumihiko; Müller, Ulrike; Höglinger, Otmar; Takahashi, Shin-Ichiro; Weghuber, Julian

    2015-03-01

    Insulin receptor substrates (IRS) are phosphorylated by activated insulin/insulin-like growth factor I receptor tyrosine kinases, with this comprising an initial key event for downstream signaling and bioactivities. Despite the structural similarities, increasing evidence shows that IRS family proteins have nonredundant functions. Although the specificity of insulin/insulin-like growth factor signaling and biological responses partly reflects which IRS proteins are dominantly phosphorylated by the receptors, the precise properties of the respective IRS interaction with the receptors remain elusive. In the present study, we utilized a technique that combines micropatterned surfaces and total internal reflection fluorescence microscopy for the quantitative analysis of the interaction between IRS proteins and insulin/insulin-like growth factor in living cells. Our experimental set-up enabled the measurement of equilibrium associations and interaction dynamics of these molecules with high specificity. We revealed that several domains of IRS including pleckstrin homology and phosphotyrosine binding domains critically determine the turnover rate of the receptors. Furthermore, we found significant differences among IRS proteins in the strength and kinetic stability of the interaction with the receptors, suggesting that these interaction properties could account for the diverse functions of IRS. In addition, our analyses using fluorescent recovery after photobleaching revealed that kinases such as c-Jun N-terminal kinase and IκB kinase β, which phosphorylate serine/threonine residues of IRS and contribute to insulin resistance, altered the interaction kinetics of IRS with insulin receptor. Collectively, our experimental set-up is a valuable system for quantitifying the physiological interaction of IRS with the receptors in insulin/insulin-like growth factor signaling. © 2015 FEBS.

  10. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor*

    PubMed Central

    Lawrence, Callum F.; Margetts, Mai B.; Menting, John G.; Smith, Nicholas A.; Smith, Brian J.; Ward, Colin W.; Lawrence, Michael C.

    2016-01-01

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe701 and Phe705. The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  11. Insulin and Insulin-like Growth Factor II Differentially Regulate Endocytic Sorting and Stability of Insulin Receptor Isoform A*

    PubMed Central

    Morcavallo, Alaide; Genua, Marco; Palummo, Angela; Kletvikova, Emilia; Jiracek, Jiri; Brzozowski, Andrzej M.; Iozzo, Renato V.; Belfiore, Antonino; Morrione, Andrea

    2012-01-01

    The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3–10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R−/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R−/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R−/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyrB26]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli. PMID:22318726

  12. Extracts of Liriopsis tuber protect AMPA induced brain damage and improve memory with the activation of insulin receptor and ERK I/II.

    PubMed

    Kim, Sung-Jin; Lee, Keun

    2008-11-01

    The brain insulin receptor and ERK I/II are known to play an important role in memory formation and neuroprotection. A series of experiments was designed to explore if Liriopsis tuber (LT) extracts could exhibit neuroprotection and memory enhancing actions. LT was extracted with 70% methanol and subsequently fractionated into chloroform (fraction C), chloroform/methanol-(3:1) (fraction CM), methanol-soluble (fraction M) and methanol-insoluble, water-soluble fractions (fraction A). The LT fractions (T, C, M, A) significantly inhibited the cortical depolarization induced by AMPA in cortical slices of rats. In addition, these fractions were also effective in promoting memory in the passive avoidance test in mice. To gain insight into the mechanism of memory enhancing effects by Liriopsis tuber extracts, the activities of hippocampal insulin receptors and ERK I/II were tested in rats. Extract of LT (T) dramatically stimulated tyrosine phosphorylation of the insulin receptor, while fraction C of LT also significantly stimulated the same. In addition, ERK I/II were stimulated and cholinesterase activities were inhibited by fractions T, C, M and A in the rat hippocampus. These results suggest that Liriopsis tuber extracts may exert neuroprotection and memory enhancing effects via activation of the insulin receptor and ERK I/II as well as inhibiting cholinesterase.

  13. Effects of Acute Pinitol Supplementation on Plasma Pinitol Concentration, Whole Body Glucose Tolerance, and Activation of the Skeletal Muscle Insulin Receptor in Older Humans

    PubMed Central

    Stull, A. J.; Wood, K. V.; Thyfault, J. P.; Campbell, W. W.

    2015-01-01

    Limited research with rodents and humans suggests that oral ingestion of pinitol (3-O-methyl-d-chiro-inositol) might positively influence glucose tolerance. This double-blinded, placebo-controlled, and cross-over study assessed the effects of acute pinitol supplementation on plasma pinitol concentration, glucose tolerance, insulin sensitivity, and activation of the skeletal muscle insulin receptor. Fifteen older, nondiabetic subjects (62 ± 1 years, mean ± SEM) completed four, 1-day trials. Subjects consumed a non-nutritive beverage with nothing (placebo) or 1 000 mg pinitol. Sixty minutes later, the subjects consumed beverages that were either energy- and carbohydrate-free (Sham) or contained 75 g glucose (OGTT). Blood samples were collected frequently over the 240-min testing period. For the OGTT trials only, vastus lateralis samples were obtained before the placebo and pinitol supplementation and 60 min after consuming the 75 g glucose beverage. Plasma pinitol concentration increased and was maintained for 240 min. Pinitol did not influence the fasting state and 180-min area under the curves for plasma glucose and insulin during the Sham and OGTT trials or hepatic (placebo 0.83 ± 0.08; pinitol 0.80 ± 0.08) and whole-body (placebo 6.10 ± 0.54; pinitol 6.22 ± 0.52) insulin sensitivities. Activation of the muscle insulin receptor was increased by 140% with glucose ingestion (Pre 0.62 ± 0.12; Post 1.49 ± 0.35), but pinitol did not influence this response. These results show that the pinitol supplement was quickly absorbed, but did not acutely influence indices of whole-body glucose tolerance and insulin sensitivity, or the activation of the skeletal muscle insulin receptor in older, nondiabetic humans. PMID:19221977

  14. Brain Insulin Receptor Causes Activity-Dependent Current Suppression in the Olfactory Bulb Through Multiple Phosphorylation of Kv1.3

    PubMed Central

    FADOOL, D. A.; TUCKER, K.; PHILLIPS, J. J.; SIMMEN, J. A.

    2015-01-01

    Insulin and insulin receptor (IR) kinase are found in abundance in discrete brain regions yet insulin signaling in the CNS is not understood. Because it is known that the highest brain insulin-binding affinities, insulin-receptor density, and IR kinase activity are localized to the olfactory bulb, we sought to explore the downstream substrates for IR kinase in this region of the brain to better elucidate the function of insulin signaling in the CNS. First, we demonstrate that IR is postnatally and developmentally expressed in specific lamina of the highly plastic olfactory bulb (OB). ELISA testing confirms that insulin is present in the developing and adult OB. Plasma insulin levels are elevated above that found in the OB, which perhaps suggests a differential insulin pool. Olfactory bulb insulin levels appear not to be static, however, but are elevated as much as 15-fold after a 72-h fasting period. Bath application of insulin to cultured OB neurons acutely induces outward current suppression as studied by the use of traditional whole-cell and single-channel patchclamp recording techniques. Modulation of OB neurons is restricted to current magnitude; IR kinase activation does not modulate current kinetics of inactivation or deactivation. Transient transfection of human embryonic kidney cells with cloned Kv1.3 ion channel, which carries a large proportion of the outward current in these neurons, revealed that current suppression was the result of multiple tyrosine phosphorylation of Kv1.3 channel. Y to F single-point mutations in the channel or deletion of the kinase domain in IR blocks insulininduced modulation and phosphorylation of Kv1.3. Neuromodulation of Kv1.3 current in OB neurons is activity dependent and is eliminated after 20 days of odor/sensory deprivation induced by unilateral naris occlusion at postnatal day 1. IR kinase but not Kv1.3 expression is downregulated in the OB ipsilateral to the occlusion, as demonstrated in cryosections of right (control

  15. Insulin receptors in normal and disease states.

    PubMed

    Grunberger, G; Taylor, S I; Dons, R F; Gorden, P

    1983-03-01

    The binding of insulin to its receptor has been studied under various physiological and pathological conditions. Quantitative studies have involved human circulating cells such as monocytes and erythrocytes, adipocytes, placental cells, and cultured cells such as fibroblasts and transformed lymphocytes. In animals, other target tissues such as liver and muscle have been studied and correlated with the human studies. Various physiological conditions such as diurnal rhythm, diet, age, exercise and the menstrual cycle affect insulin binding; in addition, many drugs perturb the receptor interaction. Disease affecting the insulin receptor can be divided into five general categories: (1) Receptor regulation--this involves diseases characterized by hyper- or hypoinsulinaemia. Hyperinsulinaemia in the basal state usually leads to receptor 'down' regulation as seen in obesity, type II diabetes, acromegaly and islet cell tumours. Hypoinsulinaemia such as seen in anorexia nervosa or type I diabetes may lead to elevated binding. (2) Antireceptor antibodies--these immunoglobulins bind to the receptor and competitively inhibit insulin binding. They may act as agonists, antagonists or partial agonists. (3) Genetic diseases which produce fixed alterations in both freshly isolated and cultured cells. (4) Diseases of receptor specificity where insulin may bind with different affinity to its own receptor or related receptors such as receptors for insulin-like growth factors. (5) Disease of affinity modulation where physical factors such as pH, temperature, ions, etc. may modify binding. In this review, we have considered primarily abnormality in insulin receptor binding. There are numerous other functions of the receptor such as coupling and transmission of the biological signal. These mechanisms are frequently referred to as postreceptor events, but more properly should be referred to as postbinding events since the receptor subserves other functions in addition to recognition and

  16. Insulin Receptor Signaling in Cones*

    PubMed Central

    Rajala, Ammaji; Dighe, Radhika; Agbaga, Martin-Paul; Anderson, Robert E.; Rajala, Raju V.S.

    2013-01-01

    In humans, age-related macular degeneration and diabetic retinopathy are the most common disorders affecting cones. In retinitis pigmentosa (RP), cone cell death precedes rod cell death. Systemic administration of insulin delays the death of cones in RP mouse models lacking rods. To date there are no studies on the insulin receptor signaling in cones; however, mRNA levels of IR signaling proteins are significantly higher in cone-dominant neural retina leucine zipper (Nrl) knock-out mouse retinas compared with wild type rod-dominant retinas. We previously reported that conditional deletion of the p85α subunit of phosphoinositide 3-kinase (PI3K) in cones resulted in age-related cone degeneration, and the phenotype was not rescued by healthy rods, raising the question of why cones are not protected by the rod-derived cone survival factors. Interestingly, systemic administration of insulin has been shown to delay the death of cones in mouse models of RP lacking rods. These observations led to the hypothesis that cones may have their own endogenous neuroprotective pathway, or rod-derived cone survival factors may be signaled through cone PI3K. To test this hypothesis we generated p85α−/−/Nrl−/− double knock-out mice and also rhodopsin mutant mice lacking p85α and examined the effect of the p85α subunit of PI3K on cone survival. We found that the rate of cone degeneration is significantly faster in both of these models compared with respective mice with competent p85α. These studies suggest that cones may have their own endogenous PI3K-mediated neuroprotective pathway in addition to the cone viability survival signals derived from rods. PMID:23673657

  17. Peroxisome proliferator-activated receptor gamma (PPARG) modulates free fatty acid receptor 1 (FFAR1) dependent insulin secretion in humans

    PubMed Central

    Wagner, Robert; Hieronimus, Anja; Lamprinou, Apostolia; Heni, Martin; Hatziagelaki, Erifili; Ullrich, Susanne; Stefan, Norbert; Staiger, Harald; Häring, Hans-Ulrich; Fritsche, Andreas

    2014-01-01

    Genetic variation in FFAR1 modulates insulin secretion dependent on non-esterified fatty acid (NEFA) concentrations. We previously demonstrated lower insulin secretion in minor allele carriers of PPARG Pro12Ala in high-NEFA environment, but the mode of action could not been revealed. We tested if this effect is mediated by FFAR1 in humans. Subjects with increased risk of diabetes who underwent oral glucose tolerance tests were genotyped for 7 tagging SNPs in FFAR1 and PPARG Pro12Ala. The FFAR1 SNPs rs12462800 and rs10422744 demonstrated interactions with PPARG on insulin secretion. FFAR1 rs12462800 (p = 0.0006) and rs10422744 (p = 0.001) were associated with reduced insulin secretion in participants concomitantly carrying the PPARG minor allele and having high fasting FFA. These results suggest that the minor allele of the PPARG SNP exposes its carriers to modulatory effects of FFAR1 on insulin secretion. This subphenotype may define altered responsiveness to FFAR1-agonists, and should be investigated in further studies. PMID:25161890

  18. Insulin Action is Blocked by a Monoclonal Antibody That Inhibits the Insulin Receptor Kinase

    NASA Astrophysics Data System (ADS)

    Morgan, David O.; Ho, Lisa; Korn, Laurence J.; Roth, Richard A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor β subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens, and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor β subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  19. Insulin action is blocked by a monoclonal antibody that inhibits insulin receptor kinase

    SciTech Connect

    Morgan, D.O.; Ho, L.; Korn, L.J.; Roth, R.A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor ..beta.. subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor ..beta.. subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  20. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  1. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor

    PubMed Central

    Gibbs, Peter E. M.; Lerner-Marmarosh, Nicole; Poulin, Amelia; Farah, Elie; Maines, Mahin D.

    2014-01-01

    Insulin binding changes conformation of the insulin receptor kinase (IRK) domain and initiates glucose uptake through the insulin, IGF-1, phosphatidyl inositol 3-kinase (PI3K), and MAPK pathways; human biliverdin reductase (hBVR) is an IRK substrate and pathway effector. This is the first report on hBVR peptide-mediated IRK activation and conformational change. 290KYCCSRK, which increased IRK Vmax without changing Km, stimulated glucose uptake and potentiated insulin and IGF-1 stimulation in 4 cell lines. KYCCSRK in native hBVR was necessary for the hBVR and IRK cross-activation. Peptide treatment also activated PI3K downstream effectors, Akt and ERK, phosphorylation, and Elk transcriptional activity. In cells transfected with CMV-regulated EGFP-VP-peptide plasmid, C292→A mutant did not stimulate glucose uptake; K296→A decreased uptake and kinase activity. KEDQYMKMTV, corresponding to hBVR's SH2-binding domain, was a potent inhibitor of glucose uptake and IRK. The mechanism of action of peptides was examined using cells expressing IRK (aa 988–1263) activated by coexpressed KYCCSRK. Three active cys-mutants of IRK, with fluorophore coupled to cysteines, C1056, C1138, or C1234, were examined for changes in fluorescence emission spectra in the presence of peptides. KYCCSRK and KEDQYMKMTV bound to different sites in IRK. The findings identify novel agents for activating or inhibiting insulin signaling and offer a new approach for treatment of type 2 diabetes and hypoglycemia.—Gibbs, P. E. M., Lerner-Marmarosh, N., Poulin, A., Farah, E., Maines, M. D. Human biliverdin reductase-based peptides activate and inhibit glucose uptake through direct interaction with the kinase domain of insulin receptor. PMID:24568842

  2. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways.

    PubMed

    Hsieh, Chi-Fen; Tsuei, Yi-Wei; Liu, Chi-Wei; Kao, Chung-Cheng; Shih, Li-Jane; Ho, Low-Tone; Wu, Liang-Yi; Wu, Chi-Peng; Tsai, Pei-Hua; Chang, Hsin-Huei; Ku, Hui-Chen; Kao, Yung-Hsi

    2010-10-01

    Insulin and (-)-epigallocatechin gallate (EGCG) are reported to regulate obesity and fat accumulation, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated glucose uptake in 3T3-L1 and C3H10T1/2 adipocytes. EGCG inhibited insulin stimulation of adipocyte glucose uptake in a dose- and time-dependent manner. The concentration of EGCG that decreased insulin-stimulated glucose uptake by 50-60% was approximately 5-10 µM for a period of 2 h. At 10 µM, EGCG and gallic acid were more effective than (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin 3-gallate. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and extended the findings for this study to clarify whether EGCG-induced changes in insulin-stimulated glucose uptake in adipocytes could be mediated through the 67LR. Pretreatment of adipocytes with a 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on insulin-increased glucose uptake. This suggests that the 67LR mediates the effect of EGCG on insulin-stimulated glucose uptake in adipocytes. Moreover, pretreatment with an AMP-activated protein kinase (AMPK) inhibitor, such as compound C, but not with a glutathione (GSH) activator, such as N-acetyl-L-cysteine (NAC), blocked the antiinsulin effect of EGCG on adipocyte glucose uptake. These data suggest that EGCG exerts its anti-insulin action on adipocyte glucose uptake via the AMPK, but not the GSH, pathway. The results of this study possibly support that EGCG mediates fat content. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Specific Activation of Insulin-like Growth Factor-1 Receptor by Ginsenoside Rg5 Promotes Angiogenesis and Vasorelaxation*

    PubMed Central

    Cho, Young-Lai; Hur, Sung-Mo; Kim, Ji-Yoon; Kim, Ji-Hee; Lee, Dong-Keon; Choe, Jongeon; Won, Moo-Ho; Ha, Kwon-Soo; Jeoung, Dooil; Han, Sanghwa; Ryoo, Sungwoo; Lee, Hansoo; Min, Jeong-Ki; Kwon, Young-Guen; Kim, Dong-Hyun; Kim, Young-Myeong

    2015-01-01

    Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE−/− mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca2+/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature. PMID:25391655

  4. Specific activation of insulin-like growth factor-1 receptor by ginsenoside Rg5 promotes angiogenesis and vasorelaxation.

    PubMed

    Cho, Young-Lai; Hur, Sung-Mo; Kim, Ji-Yoon; Kim, Ji-Hee; Lee, Dong-Keon; Choe, Jongeon; Won, Moo-Ho; Ha, Kwon-Soo; Jeoung, Dooil; Han, Sanghwa; Ryoo, Sungwoo; Lee, Hansoo; Min, Jeong-Ki; Kwon, Young-Guen; Kim, Dong-Hyun; Kim, Young-Myeong

    2015-01-02

    Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE(-/-) mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca(2+)/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature.

  5. Relationship between insulin A chain regions and insulin biological activities

    PubMed Central

    Yang, Shi-Zhen; Huang, Yi-Ding; Jie, Xin-Feng; Feng, You-Min; Niu, Jing-Yi

    2000-01-01

    AIM: To study the relationship between insulin A chain regions and insulin biological activities, we designed a series of insulin analogues with changes at A21, A12-18 of C-terminal helical region and A8-10 located in the region of A6-A11 intra-chain disulphide bond. METHODS: Insulin A-chain analogues were prepared by stepwise Fmoc solid-phase manual synthesis and then combined with natural B-chain of porcine insulin to yield corresponding insulin analogues. Their biological activities were tested by receptor binding, mouse convulsion and immunological assay. RESULTS: [A21Ala]Ins retains 70.3% receptor binding capacity and 60% in vivo biological activity. [DesA13-14, A21Ala]Ins and [DesA12-13-14-15, A21Ala] Ins still have definite biological activity, 7.9% and 4.0% receptor binding, and 6.2% and 3.3% in vivo biological activity respectively. [A15Asn, A17Pro, A21Ala]Ins maintains 10.4% receptor binding and 10% in vivo biological activity. [A8His, A9Arg, A10Pro, A21Ala]Ins, [A8His, A9Lys, A10Pro, A21Ala]Ins and [A8His, A9Lys, A10Arg, A21Ala]Ins have 51.9%, 44.3% and 32.1% receptor binding respectively, 50%, 40% and 30% in vivo biological activity respectively, and 28.8%, 29.6% and 15.4% immunological activity respectively. CONCLUSION: A21Asn can be replaced by simple amino acid residues. The A chains with gradually damaged structur al integrity in A12-18 helical region and the demolition of the A12-18 helical region by the substitution of Pro and Asn for A17Glu and A15Gln respectively ca n combine with the B chain and the combination products show definite biological activity, the helical structure of A12-18 is essential for biological activities of insulin. A8-10 is not much concerned with biological activities, but is much more important antigenically in binding to its antibodies, these results may help us design a new type of insulin analogue molecule. PMID:11819600

  6. Insulin receptor-related receptor as an extracellular alkali sensor.

    PubMed

    Deyev, Igor E; Sohet, Fabien; Vassilenko, Konstantin P; Serova, Oxana V; Popova, Nadezhda V; Zozulya, Sergey A; Burova, Elena B; Houillier, Pascal; Rzhevsky, Dmitry I; Berchatova, Anastasiya A; Murashev, Arkady N; Chugunov, Anton O; Efremov, Roman G; Nikol'sky, Nikolai N; Bertelli, Eugenio; Eladari, Dominique; Petrenko, Alexander G

    2011-06-08

    The insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family, can be activated by alkaline media both in vitro and in vivo at pH >7.9. The alkali-sensing property of IRR is conserved in frog, mouse, and human. IRR activation is specific, dose-dependent and quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Insulin receptor-related receptor as an extracellular alkali sensor

    PubMed Central

    Deyev, Igor E.; Sohet, Fabien; Vassilenko, Konstantin P.; Serova, Oxana V.; Popova, Nadezhda V.; Zozulya, Sergey A.; Burova, Elena B.; Houillier, Pascal; Rzhevsky, Dmitry I.; Berchatova, Anastasiya A.; Murashev, Arkady N.; Chugunov, Anton O.; Efremov, Roman G.; Nikol’sky, Nikolai N.; Bertelli, Eugenio; Eladari, Dominique; Petrenko, Alexander G.

    2011-01-01

    SUMMARY The insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family, can be activated by alkaline media both in vitro and in vivo at pH>7.9. The alkali-sensing property of IRR is conserved in frog, mouse and human. IRR activation is specific, dose-dependent, quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess. PMID:21641549

  8. Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion

    PubMed Central

    Nakagawa, Yuko; Nagasawa, Masahiro; Yamada, Satoko; Hara, Akemi; Mogami, Hideo; Nikolaev, Viacheslav O.; Lohse, Martin J.; Shigemura, Noriatsu; Ninomiya, Yuzo; Kojima, Itaru

    2009-01-01

    Background Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. Methodology/Principal Findings The expression of the sweet taste receptor was determined by RT–PCR and immunohistochemistry. Changes in cytoplasmic Ca2+ ([Ca2+]c) and cAMP ([cAMP]c) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca2+]c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca2+]c response. The effect of sucralose on [Ca2+]c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a Gq inhibitor. Sucralose also induced sustained elevation of [cAMP]c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. Conclusions Sweet taste receptor is expressed in β-cells, and activation of this receptor induces insulin secretion by Ca2+ and cAMP-dependent mechanisms. PMID:19352508

  9. Identification of insulin as a novel retinoic acid receptor-related orphan receptor α target gene.

    PubMed

    Kuang, Jiangying; Hou, Xiaoming; Zhang, Jinlong; Chen, Yulong; Su, Zhiguang

    2014-03-18

    Insulin plays an important role in regulation of lipid and glucose metabolism. Retinoic acid receptor-related orphan receptor α (RORα) modulates physiopathological processes such as dyslipidemia and diabetes. In this study, we found overexpression of RORα in INS1 cells resulted in increased expression and secretion of insulin. Suppression of endogenous RORα caused a decrease of insulin expression. Luciferase and electrophoretic mobility shift assay (EMSA) assays demonstrated that RORα activated insulin transcription via direct binding to its promoter. RORα was also observed to regulate BETA2 expression, which is one of the insulin active transfactors. In vivo analyses showed that the insulin transcription is increased by the synthetic RORα agonist SR1078. These findings identify RORα as a transcriptional activator of insulin and suggest novel therapeutic opportunities for management of the disease. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake.

    PubMed

    Christensen, Kathrine B; Minet, Ariane; Svenstrup, Henrik; Grevsen, Kai; Zhang, Hongbin; Schrader, Eva; Rimbach, Gerald; Wein, Silvia; Wolffram, Siegfried; Kristiansen, Karsten; Christensen, Lars P

    2009-09-01

    Thiazolidinediones (TZDs) are insulin sensitizing drugs used to treat type 2 diabetes. The primary target of the TZDs is the peroxisome proliferator-activated receptor (PPAR) gamma, a key regulator of adipogenesis and glucose homeostasis. Currently prescribed TZDs are full PPARgamma agonists, and their use is associated with several side effects. Partial PPARgamma agonists appear to be associated with fewer side effects but may still confer the desired insulin sensitizing action. Extracts from common medicinal/food plants were tested in a screening platform comprising a series of bioassays, including tests for PPARgamma, alpha and delta transactivation, adipocyte differentiation and insulin-stimulated glucose uptake, allowing identification of plants containing potentially interesting PPAR agonists. Twenty-two plant extracts out of 133 were found to increase insulin-stimulated glucose uptake and 18 extracts were found to activate PPARgamma, 3 to activate PPARalpha and gamma, 6 to activate PPARdelta and gamma, and 9 to activate PPARgamma, alpha and delta. Among the 24 different plant species tested in the platform, 50% were shown to contain compounds capable of activating PPARgamma and stimulating insulin-dependent glucose uptake with no or little effect on adipocyte differentiation warranting further studies and characterization.

  11. Alpha-1-adrenergic receptor blockade modifies insulin-regulated aminopeptidase (IRAP) activity in rat prostate and modulates oxytocin functions.

    PubMed

    Saníger, Marcela Arrazola; Ramírez-Expósito, María Jesús; de la Chica, Susana; Carrera-González, María Pilar; Mayas, María Dolores; Manuel Martínez-Martos, José

    2011-08-01

    Oxytocin (OT) is one of the important paracrine factors that prostate synthesizes. OT maintains its resting tone and stimulates its contractile activity. However, the involvement of OT in modulating cell proliferation of the prostate is being investigated. In fact, alterations in OT concentrations accompany both benign prostatic hyperplasia/hypertrophy and carcinoma of the prostate. The enzyme Insulin-regulated aminopeptidase (IRAP) is the main responsible of OT levels regulation through its catabolism. To date, the long-acting selective α(1)-adrenergic receptor antagonist doxazosin is widely used to the treatment of BPH. Thus, our aim was to analyze the effects of doxazosin on IRAP specific activity and its putative effects on prostate OT regulation and functions. Fifteen male Wistar rats were treated subcutaneously with 10 mg/Kg doxazosin during 15 days and fifteen controls were treated with the vehicle only. After the treatment period, prostate was removed to obtain soluble and membrane-bound fractions. Soluble and membrane-bound IRAP specific activities were assayed fluorometrically using leucyl-ß-naphthylamide as substrate. Prostate OT content was assayed by enzyme immunoassay. Doxazosin treatment significantly increased membrane-bound IRAP specific activity in rat prostate by 59.4%, whereas no changes were observed in the soluble fraction. Treatment with doxazosin also significantly increased OT concentration by 26.3%. In vivo administration of doxazosin to male rats modify both prostatic IRAP activity and OT levels. Because there is now evidence that OT plays a physiological role in the regulation of growth and muscular contractility within the gland, more attention should be paid to IRAP activity, which could represent a new target for the regulation of the functions of OT under physiological or pathological conditions such as BPH and prostate cancer.

  12. Clarification of signaling pathways mediated by insulin and insulin-like growth factor I receptors in fibroblasts from patients with specific defect in insulin receptor.

    PubMed

    Sasaoka, T; Kobayashi, M; Takata, Y; Ishibashi, O; Iwasaki, M; Shigeta, Y; Goji, K; Hisatomi, A

    1988-11-01

    Receptor binding and biological action of insulin and insulin-like growth factor I (IGF-I) were studied in fibroblasts from a patient with leprechaunism and a patient with type A syndrome of insulin resistance. Insulin binding was reduced to 18.8 and 27.7% of control value, respectively. In contrast, IGF-I binding was normal in both patients. In competitive binding studies, IGF-I had 0.2% of the ability of insulin to compete with 125I-labeled insulin binding, and insulin had 0.1% of the ability of IGF-I to compete with 125I-labeled IGF-I binding in control subjects and patient fibroblasts. The dose-response curves of insulin stimulation assessed by glucose incorporation and alpha-aminoisobutyric acid uptake showed normal responsiveness, and ED50 was significantly shifted to the right in fibroblasts from both patients. However, normal responsiveness and sensitivity were observed in thymidine incorporation studies. For IGF-I, dose-response curves of glucose incorporation, alpha-aminoisobutyric acid uptake, and thymidine incorporation were all normal in both patients. These results indicate that 1) the defect is specific to the insulin-receptor binding in these patients, 2) insulin and IGF-I activate glucose incorporation and alpha-aminoisobutyric acid uptake mainly through their own specific receptors, but 3) the IGF-I receptor appears to have a more important role in stimulating thymidine incorporation than the insulin receptor in physiological condition or, alternatively, an unknown postreceptor process with cascade signal transmission may overcome the decreased insulin-receptor binding to produce a normal dose-response curve.

  13. [Effects of peroxisome proliferator-activated receptors γ on the expression of insulin receptor substrate-4 gene in rat cortical neurons and mouse brain].

    PubMed

    Zhang, Hongyan; Meng, Siying; Lin, Lifang; Wu, Qiaoqi; Zhou, Riyang; Wang, Xuemin

    2013-10-01

    To investigate the effect of peroxisome proliferator-activated receptors γ (PPARγ) on insulin receptor substrate-4 (IRS-4) gene expression in the brain. Primarily cultured cortical neurons from E17-18 Sprague Dawley rats, after 1 week of plating, were exposed to 10 µmol/L PPARγ agonist rosiglitazone for 0, 1, 4 or 24 h. Adult C57BL/6J mice or conditional brain PPARγ knock-out mice (B-PPARγ-KO, BKO) received an intraperitoneal injection of rosiglitazone in 10% DMSO at 12 mg/kg or injection of the same volume of saline containing 10% DMSO. The effect of rosiglitazone on the survival of the neurons was examined by MTT assay. The expression of IRS-4 mRNA was analyzed by real-time quantitative PCR. The survival of the cortical neurons showed no significant difference between the agonist groups and the control group. The expression of IRS-4 mRNA was significantly up-regulated in the cortical tissues and neurons of the agonist groups compared with the control groups (P<0.05), but in BKO mice without treatment, IRS-4 mRNA expression was significantly down-regulated (P<0.05). PPARγ can enhance the expression of IRS-4 mRNA in the brain.

  14. Peroxisome proliferator-activated receptorβ/δ activation is essential for modulating p-Foxo1/Foxo1 status in functional insulin-positive cell differentiation.

    PubMed

    Li, L; Li, T; Zhang, Y; Pan, Z; Wu, B; Huang, X; Zhang, Y; Mei, Y; Ge, L; Shen, G; Ge, R-s; Zhu, D; Lou, Y

    2015-04-09

    Peroxisome proliferator-activated receptors (PPARs) participate in energy homeostasis and play essential roles in diabetes therapy through their effects on non-pancreas tissues. Pathological microenvironment may influence the metabolic requirements for the maintenance of stem cell differentiation. Accordingly, understanding the mechanisms of PPARs on pancreatic β-cell differentiation may be helpful to find the underlying targets of disrupted energy homeostasis under the pancreatic disease condition. PPARs are involved in stem cell differentiation via mitochondrial oxidative phosphorylation, but the subtype member activation and the downstream regulation in functional insulin-positive (INS+) cell differentiation remain unclear. Here, we show a novel role of PPARβ/δ activation in determining INS+ cell differentiation and functional maturation. We found PPARβ/δ expression selectively upregulated in mouse embryonic pancreases or stem cells-derived INS+ cells at the pancreatic mature stage in vivo and in vitro. Strikingly, given the inefficiency of generating INS+ cells in vitro, PPARβ/δ activation displayed increasing mouse and human ES cell-derived INS+ cell numbers and insulin secretion. This phenomenon was closely associated with the forkhead box protein O1 (Foxo1) nuclear shuttling, which was dependent on PPARβ/δ downstream PI3K/Akt signaling transduction. The present study reveals the essential role of PPARβ/δ activation on p-Foxo1/Foxo1 status, and in turn, determining INS+ cell generation and insulin secretion via affecting pancreatic and duodenal homeobox-1 expression. The results demonstrate the underlying mechanism by which PPARβ/δ activation promotes functional INS+ cell differentiation. It also provides potential targets for anti-diabetes drug discovery and hopeful clinical applications in human cell therapy.

  15. Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1.

    PubMed

    Hennige, Anita M; Stefan, Norbert; Kapp, Katja; Lehmann, Rainer; Weigert, Cora; Beck, Alexander; Moeschel, Klaus; Mushack, Joanne; Schleicher, Erwin; Häring, Hans-Ulrich

    2006-06-01

    Insulin resistance in skeletal muscle is found in obesity and type 2 diabetes. A mechanism for impaired insulin signaling in peripheral tissues is the inhibition of insulin action through serine phosphorylation of insulin receptor substrate (Irs) proteins that abolish the coupling of Irs proteins to the activated insulin receptor. Recently, we described serine-318 as a protein kinase C (PKC)-dependent phosphorylation site in Irs1 (Ser-318) activated by hyperinsulinemia. Here we show in various cell models that the adipose hormone leptin, a putative mediator in obesity-related insulin resistance, promotes phosphorylation of Ser-318 in Irs1 by a janus kinase 2, Irs2, and PKC-dependent pathway. Mutation of Ser-318 to alanine abrogates the inhibitory effect of leptin on insulin-induced Irs1 tyrosine phosphorylation and glucose uptake in L6 myoblasts. In C57Bl/6 mice, Ser-318 phosphorylation levels in muscle tissue were enhanced by leptin and insulin administration in lean animals while in diet-induced obesity Ser-318 phosphorylation levels were already up-regulated in the basal state, and further stimulation was diminished. In analogy, in lymphocytes of obese hyperleptinemic human subjects basal Ser-318 phosphorylation levels were increased compared to lean individuals. During a hyperinsulinemic euglycemic clamp, the increment in Ser-318 phosphorylation observed in lean individuals was absent in obese. In summary, these data suggest that phosphorylation of Ser-318 in Irs1 mediates the inhibitory signal of leptin on the insulin-signaling cascade in obese subjects.

  16. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    SciTech Connect

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  17. Binding characteristics of swine erythrocyte insulin receptors

    SciTech Connect

    Dieberg, G.; Bryan, G.S.; Sartin, J.L.; Williams, J.C.; Prince, T.J.; Kemppainen, R.J.

    1985-09-01

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of ( SVI)insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine.

  18. Grb10 mediates insulin-stimulated degradation of the insulin receptor: a mechanism of negative regulation.

    PubMed

    Ramos, Fresnida J; Langlais, Paul R; Hu, Derong; Dong, Lily Q; Liu, Feng

    2006-06-01

    Growth factor receptor-bound protein 10 (Grb10) is an adapter protein that interacts with a number of tyrosine-phosphorylated growth factor receptors, including the insulin receptor (IR). To investigate the role of Grb10 in insulin signaling, we generated cell lines in which the expression levels of Grb10 are either overexpressed by stable transfection or suppressed by RNA interference. We found that suppressing endogenous Grb10 expression led to increased IR protein levels, whereas overexpression of Grb10 led to reduced IR protein levels. Altering Grb10 expression levels had no effect on the mRNA levels of IR, suggesting that the modulation occurs at the protein level. Reduced IR levels were also observed in cells with prolonged insulin treatment, and this reduction was inhibited in Grb10-deficient cells. The insulin-induced IR reduction was greatly reversed by MG-132, a proteasomal inhibitor, but not by chloroquine, a lysosomal inhibitor. IR underwent insulin-stimulated ubiquitination in cells, and this ubiquitination was inhibited in the Grb10-suppressed cell line. Together, our results suggest that, in addition to inhibiting IR kinase activity by directly binding to the IR, Grb10 also negatively regulates insulin signaling by mediating insulin-stimulated degradation of the receptor.

  19. Nature and regulation of the receptors for insulin-like growth factors

    SciTech Connect

    Rechler, M.M.; Nissley, S.P.

    1985-01-01

    Two subtypes of IGF receptors have been identified. Type I IGF receptors have a Mr greater than 300,000 and are composed of disulfide-linked 130,000-dalton (alpha) and approximately 90,000-dalton (beta) subunits. Type I receptors preferentially bind IGF-I but also bind IGF-II and, more weakly, insulin. Type II IGF receptors consist of a 250,000-dalton protein that contains internal disulfide bonds but is not linked to other membrane components. Type II receptors bind IGF-II with higher affinity than IGF-I. They do not interact with even very high concentrations of insulin. Type I IGF receptors and insulin receptors are homologous structures. Type II IGF receptors do not appear to be homologous to type I receptors. Type II receptors do not appear to be downregulated. Insulin acutely upregulates type II IGF receptors in intact rat adipose cells by effecting a redistribution of receptors cycling between a large intracellular pool and the plasma membrane. Insulin and the IGFs elicit the same biological responses, either by cross-reacting with one of the receptors for the heterologous ligand or by concurrent activation of convergent effector pathways by binding to the homologous receptor. Which mechanism is utilized appears to depend more on the tissue than on the biological response. Insulin desensitizes rat hepatoma cells to the actions of insulin and IGFs, mediated by both insulin and IGF receptors, by mechanisms distal to hormone binding and possibly common to IGF and insulin effector pathways.

  20. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats.

    PubMed

    Seymour, E Mitchell; Tanone, Ignasia I; Urcuyo-Llanes, Daniel E; Lewis, Sarah K; Kirakosyan, Ara; Kondoleon, Michael G; Kaufman, Peter B; Bolling, Steven F

    2011-12-01

    Metabolic syndrome can precede the development of type 2 diabetes and cardiovascular disease and includes phenotypes such as obesity, systemic inflammation, insulin resistance, and hyperlipidemia. A recent epidemiological study indicated that blueberry intake reduced cardiovascular mortality in humans, but the possible genetic mechanisms of this effect are unknown. Blueberries are a rich source of anthocyanins, and anthocyanins can alter the activity of peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism. The effect of blueberry intake was assessed in obesity-prone rats. Zucker Fatty and Zucker Lean rats were fed a higher-fat diet (45% of kcal) or a lower-fat diet (10% of kcal) containing 2% (wt/wt) freeze-dried whole highbush blueberry powder or added sugars to match macronutrient and calorie content. In Zucker Fatty rats fed a high-fat diet, the addition of blueberry reduced triglycerides, fasting insulin, homeostasis model index of insulin resistance, and glucose area under the curve. Blueberry intake also reduced abdominal fat mass, increased adipose and skeletal muscle PPAR activity, and affected PPAR transcripts involved in fat oxidation and glucose uptake/oxidation. In Zucker Fatty rats fed a low-fat diet, the addition of blueberry also significantly reduced liver weight, body weight, and total fat mass. Finally, Zucker Lean rats fed blueberry had higher body weight and reduced triglycerides, but all other measures were unaffected. In conclusion, whole blueberry intake reduced phenotypes of metabolic syndrome in obesity-prone rats and affected PPAR gene transcripts in adipose and muscle tissue involved in fat and glucose metabolism.

  1. Hepatocyte insulin receptor is a calmodulin binding protein and is functionally inhibited by calmidazolium

    SciTech Connect

    Arnold, T.P.; Pollet, R.J.

    1986-05-01

    Insulin-induced autophosphorylation of the insulin receptor and changes in intracellular Ca/sup + +/ have been proposed as possible mediators of insulin action in target tissues. The authors have investigated the association of the 17kD calcium binding protein calmodulin with the insulin receptor solubilized from rat liver plasma membranes. Insulin receptors solubilized in 0.1% Triton X-100 exhibited strong binding to calmodulin-agarose affinity columns in the presence of 100..mu..M calcium and could be eluded with 100..mu..M ethelene glycol-bis (amino ethel ether) Tetra Acetic Acid (EGTA) with an 80% yield in insulin binding activity. In addition, /sup 125/I-Calmodulin was shown to bind to wheat germ agglutinin purified solubilized receptors, was specifically inhibited by EGTA (100 ..mu..M) and/or calmidazolium (10 ..mu..M) and was found to be insulin-dependent (max 10/sup -10/ M insulin). SDS-polyacrylamide gel electrophoresis data suggests that /sup 125/I-calmodulin may be associated with the 92 kD beta-subunit of the insulin receptor, consistent with the cytoplasmic domain of this subunit. While they have confirmed previous reports that the addition of calcium and calmodulin to solubilized insulin receptors preparations produces no demonstrable change in receptor phosphorylation, the addition of the calmodulin inhibitor calmidazolium did show more than 50% inhibition of insulin stimulated receptor phosphorylation, suggesting that a domain of the calmodulin molecule may be very tightly associated with the insulin receptor. These results indicate that calmodulin binds tightly and specifically to the insulin receptor of the hepatocyte and is insulin dependent. The findings also suggest that this interaction may be functionally significant in mediating insulin-induced receptor phosphorylation as well as other insulin actions. Thus, calmodulin may play a major role as an intracellular contributor to insulin action.

  2. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor.

    PubMed

    Lawrence, Callum F; Margetts, Mai B; Menting, John G; Smith, Nicholas A; Smith, Brian J; Ward, Colin W; Lawrence, Michael C

    2016-07-22

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe(701) and Phe(705) The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity.

    PubMed

    Křížková, Květoslava; Chrudinová, Martina; Povalová, Anna; Selicharová, Irena; Collinsová, Michaela; Vaněk, Václav; Brzozowski, Andrzej M; Jiráček, Jiří; Žáková, Lenka

    2016-05-31

    Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones. For this, we made two types of insulin hybrid analogues: (i) with the C-terminus of the insulin A chain extended by the amino acids from the DI and DII domains and (ii) with the C-terminus of the insulin B chain extended by some amino acids derived from the CII domain. The receptor binding affinities of these analogues and their receptor autophosphorylation potentials were characterized. Our results indicate that the DI domain has a more negative impact than the DII domain does on binding to IR, and that the DI domain Pro-Leu-Lys residues are important factors for a different IR-A versus IR-B binding affinity of IGF-1. We also showed that the additions of amino acids that partially "mimic" the CII domain, to the C-terminus of the insulin B chain, change the binding and autophosphorylation specificity of insulin in favor of the "metabolic" IR-B isoform. This opens new venues for rational enhancement of insulin IR-B specificity by modifications beyond the C-terminus of its B chain.

  4. High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells.

    PubMed Central

    Milazzo, G; Yip, C C; Maddux, B A; Vigneri, R; Goldfine, I D

    1992-01-01

    We studied the nature of insulin receptor binding in MCF-7 breast cancer cells. In both intact cells and solubilized receptor preparations, high-affinity insulin binding was seen. However, unlabeled insulin-like growth factor-I (IGF-I) was five-fold more potent in inhibiting 125I-insulin binding than insulin itself. With monoclonal antibodies to the insulin receptor, 30% of 125I-insulin binding was inhibited. In contrast when alpha-IR3, a monoclonal antibody that recognizes typical IGF-I receptor, was employed over 60% of 125I-insulin binding was inhibited. The B29-MAB-125I-insulin photoprobe was then cross-linked to MCF-7 membranes. Cross-linking was inhibited by both unlabeled insulin and IGF-I. Further, the B29-MAB-125I-insulin photoprobe cross-linked to MCF-7 membranes was strongly immunoprecipitated by alpha-IR3. Employing sequential affinity chromatography with insulin-Affi-gel followed by insulin receptor monoclonal antibody agarose, atypical insulin binding activity was separated from insulin receptor binding activity. This atypical receptor had intrinsic tyrosine kinase activity. Both insulin and IGF-I stimulated the phosphorylation of the receptor's beta subunit. In MCF-7 cells both IGF-I and insulin stimulated [3H]thymidine incorporation; alpha-IR3 blocked all of the IGF-I effect but only 50-60% of the insulin effect. This study demonstrates in MCF-7 cells that, in addition to typical insulin and IGF-I receptors, there is another receptor that binds both insulin and IGF-I with high affinity. Images PMID:1311720

  5. Inhibition of D4 Dopamine Receptors on Insulin Receptor Expression and Effect in Renal Proximal Tubule Cells.

    PubMed

    Zhang, Ye; Ren, Hongmei; Lu, Xi; He, Duofen; Han, Yu; Wang, Hongyong; Zeng, Chunyu; Shi, Weibin

    2016-04-22

    Ion transport in the renal proximal tubule (RPT), which is increased in essential hypertension, is regulated by numerous hormones and humoral factors, including insulin and dopamine. Activation of dopamine receptor inhibits sodium reabsorption, whereas activation of insulin receptor increases sodium reabsorption in RPTs, and hyperinsulinemic animals and patients have defective renal dopaminergic system. We presume that there is an inhibition of D4 receptor on insulin receptor expression and effect, and the regulation is lost in spontaneously hypertensive rats (SHRs). Insulin receptor expression was determined by immunoblotting, and Na(+)-K(+)-ATPase activity was detected in both Wistar-Kyoto (WKY) and SHR RPT cells. Stimulation of D4 receptor with PD168077 decreased expression of insulin receptors, which was blocked in the presence of the calcium-channel blocker, nicardipine (10(-6) mol/L per 24 hours), in cell culture medium without calcium or in the presence of inositol 1,4,5-trisphosphate (IP3) receptor blocker (2-aminoethyl diphenylborinate [2-ADB]; 10(-6) mol/L per 24 hours), indicating that extracellular calcium entry and calcium release from the endoplasmic reticulum were involved in the signal pathway. Stimulation of the insulin receptor stimulated Na(+)-K(+)-ATPase activity, whereas pretreatment with PD168077 for 24 hours decreased the inhibitory effects of insulin receptor on Na(+)-K(+)-ATPase activity in WKY cells. However, in SHR cells, inhibition of D4 receptor on insulin receptor expression and effect were lost. Activation of D4 receptor inhibits insulin receptor expression in RPT cells from WKY rats. The aberrant inhibition of D4 receptor on insulin receptor expression and effect might be involved in the pathogenesis of essential hypertension. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  6. Human diabetes associated with defects in nuclear regulatory proteins for the insulin receptor gene.

    PubMed Central

    Brunetti, A; Brunetti, L; Foti, D; Accili, D; Goldfine, I D

    1996-01-01

    The control of gene transcription is mediated by sequence-specific DNA-binding proteins (trans-acting factors) that bind to upstream regulatory elements (cis elements). We have previously identified two DNA-binding proteins that specifically interact with two unique AT-rich sequences of the 5' regulatory region of the insulin receptor gene which have in vivo promoter activity. Herein we have investigated the expression of these DNA-binding proteins in cells from two unrelated patients with insulin resistance and non-insulin-dependent diabetes mellitus. In these patients, the insulin receptor gene was normal. In EBV-transformed lymphoblasts from both patients, insulin receptor mRNA levels and insulin receptor expression were decreased. The expression of nuclear-binding proteins for the 5' regulatory region of the insulin receptor gene was markedly reduced, and this defect paralleled the decrease in insulin receptor protein expression. These studies indicate that DNA-binding proteins to the regulatory region of the insulin receptor gene are important for expression of the insulin receptor. Further, they suggest that in affected individuals, defects in the expression of these proteins may cause decreased insulin receptor expression and insulin resistance. PMID:8550844

  7. Recombinant canine single chain insulin analogues: insulin receptor binding capacity and ability to stimulate glucose uptake.

    PubMed

    Adams, Jamie P; Holder, Angela L; Catchpole, Brian

    2014-12-01

    Virtually all diabetic dogs require exogenous insulin therapy to control their hyperglycaemia. In the UK, the only licensed insulin product currently available is a purified porcine insulin preparation. Recombinant insulin is somewhat problematic in terms of its manufacture, since the gene product (preproinsulin) undergoes substantial post-translational modification in pancreatic β cells before it becomes biologically active. The aim of the present study was to develop recombinant canine single chain insulin (SCI) analogues that could be produced in a prokaryotic expression system and which would require minimal processing. Three recombinant SCI constructs were developed in a prokaryotic expression vector, by replacing the insulin C-peptide sequence with one encoding a synthetic peptide (GGGPGKR), or with one of two insulin-like growth factor (IGF)-2 C-peptide coding sequences (human: SRVSRRSR; canine: SRVTRRSSR). Recombinant proteins were expressed in the periplasmic fraction of Escherichia coli and assessed for their ability to bind to the insulin and IGF-1 receptors, and to stimulate glucose uptake in 3T3-L1 adipocytes. All three recombinant SCI analogues demonstrated preferential binding to the insulin receptor compared to the IGF-1 receptor, with increased binding compared to recombinant canine proinsulin. The recombinant SCI analogues stimulated glucose uptake in 3T3-L1 adipocytes compared to negligible uptake using recombinant canine proinsulin, with the canine insulin/cIGF-2 chimaeric SCI analogue demonstrating the greatest effect. Thus, biologically-active recombinant canine SCI analogues can be produced relatively easily in bacteria, which could potentially be used for treatment of diabetic dogs.

  8. Signal transduction through the IL-4 and insulin receptor families.

    PubMed

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. C333H ameliorated insulin resistance through selectively modulating peroxisome proliferator-activated receptor γ in brown adipose tissue of db/db mice.

    PubMed

    Zhang, Ning; Chen, Wei; Zhou, Xinbo; Zhou, Xiaolin; Xie, Xinni; Meng, Aimin; Li, Song; Wang, Lili

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a unique target for insulin sensitizer agents. These drugs have been used for the clinical treatment of type 2 diabetes for almost twenty years. However, serious safety issues are associated with the PPARγ agonist thiazolidinediones (TZDs). Selective PPARγ modulators (SPPARMs) which retain insulin sensitization without TZDs-like side effects are emerging as a promising new generation of insulin sensitizers. C333H is a novel structure compound synthesized by our laboratory. In diabetic rodent models, C333H has insulin-sensitizing and glucose-lowering activity comparable to that of TZDs, and causes no significant increase in body weight or adipose tissue weight in db/db mice. In diabetic db/db mice, C333H elevated circulating high molecular weight adiponectin isoforms, decreased PPARγ 273 serine phosphorylation in brown adipose tissue and selectively modulated the expression of a subset of PPARγ target genes in adipose tissue. In vitro, C333H weakly recruited coactivator and weakly dissociated corepressor activity. These findings suggest that C333H has similar properties to SPPARMs and may be a potential therapeutic agent for the treatment of type 2 diabetes.

  10. Direct method for detection and characterization of cell surface receptors for insulin by means of 125I-labeled autoantibodies against the insulin receptor.

    PubMed Central

    Jarrett, D B; Roth, J; Kahn, C R; Flier, J S

    1976-01-01

    Autoantibodies directed against the cell surface receptors for insulin are found in some patients with extreme insulin resistance. These antibodies specifically inhibit the binding of insulin to its receptor. A purified IgG fraction from one patient's plasma was labeled with 125I. The 125I-labeled antireceptor antibody, which initially represented about 0.3% of the total 125I-IgG, was enriched by selective adsorption and subsequent elution from cells rich in insulin receptors. The 125I-antireceptor antibody bound to cells and the binding was inhibited by whole plasma and purified IgG from this patient, as well as whole plasma from another patient with autoantibodies to the insulin receptor. Insulins that differed 300-fold in biological potency and affinity inhibited binding of 125I-antireceptor antibody in direct proportion to their ability to bind to the insulin receptor. The binding of 125I-antireceptor antibody was closely correlated with the binding of 125I-insulin over a wide range of receptor concentrations on different cell types. Experimentally induced reduction of the insulin receptor concentration was associated with parallel decreases in the binding of 125I-antireceptor antibody and 125I-insulin. The preparation of 125I-antireceptor antibody with a high specific activity by cytoadsorption and elution has provided a sensitive method for the detection of receptors and autoantibodies to cell surface components. PMID:1069300

  11. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  12. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity

    PubMed Central

    Kubota, Naoto; Kubota, Tetsuya; Kajiwara, Eiji; Iwamura, Tomokatsu; Kumagai, Hiroki; Watanabe, Taku; Inoue, Mariko; Takamoto, Iseki; Sasako, Takayoshi; Kumagai, Katsuyoshi; Kohjima, Motoyuki; Nakamuta, Makoto; Moroi, Masao; Sugi, Kaoru; Noda, Tetsuo; Terauchi, Yasuo; Ueki, Kohjiro; Kadowaki, Takashi

    2016-01-01

    Hepatic insulin signalling involves insulin receptor substrates (Irs) 1/2, and is normally associated with the inhibition of gluconeogenesis and activation of lipogenesis. In diabetes and obesity, insulin no longer suppresses hepatic gluconeogenesis, while continuing to activate lipogenesis, a state referred to as ‘selective insulin resistance'. Here, we show that ‘selective insulin resistance' is caused by the differential expression of Irs1 and Irs2 in different zones of the liver. We demonstrate that hepatic Irs2-knockout mice develop ‘selective insulin resistance', whereas mice lacking in Irs1, or both Irs1 and Irs2, develop ‘total insulin resistance'. In obese diabetic mice, Irs1/2-mediated insulin signalling is impaired in the periportal zone, which is the primary site of gluconeogenesis, but enhanced in the perivenous zone, which is the primary site of lipogenesis. While hyperinsulinaemia reduces Irs2 expression in both the periportal and perivenous zones, Irs1 expression, which is predominantly in the perivenous zone, remains mostly unaffected. These data suggest that ‘selective insulin resistance' is induced by the differential distribution, and alterations of hepatic Irs1 and Irs2 expression. PMID:27708333

  13. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity.

    PubMed

    Kubota, Naoto; Kubota, Tetsuya; Kajiwara, Eiji; Iwamura, Tomokatsu; Kumagai, Hiroki; Watanabe, Taku; Inoue, Mariko; Takamoto, Iseki; Sasako, Takayoshi; Kumagai, Katsuyoshi; Kohjima, Motoyuki; Nakamuta, Makoto; Moroi, Masao; Sugi, Kaoru; Noda, Tetsuo; Terauchi, Yasuo; Ueki, Kohjiro; Kadowaki, Takashi

    2016-10-06

    Hepatic insulin signalling involves insulin receptor substrates (Irs) 1/2, and is normally associated with the inhibition of gluconeogenesis and activation of lipogenesis. In diabetes and obesity, insulin no longer suppresses hepatic gluconeogenesis, while continuing to activate lipogenesis, a state referred to as 'selective insulin resistance'. Here, we show that 'selective insulin resistance' is caused by the differential expression of Irs1 and Irs2 in different zones of the liver. We demonstrate that hepatic Irs2-knockout mice develop 'selective insulin resistance', whereas mice lacking in Irs1, or both Irs1 and Irs2, develop 'total insulin resistance'. In obese diabetic mice, Irs1/2-mediated insulin signalling is impaired in the periportal zone, which is the primary site of gluconeogenesis, but enhanced in the perivenous zone, which is the primary site of lipogenesis. While hyperinsulinaemia reduces Irs2 expression in both the periportal and perivenous zones, Irs1 expression, which is predominantly in the perivenous zone, remains mostly unaffected. These data suggest that 'selective insulin resistance' is induced by the differential distribution, and alterations of hepatic Irs1 and Irs2 expression.

  14. Prediction of a novel internal rearrangement of the insulin receptor.

    PubMed

    Sit, Kei C; van Lonkhuyzen, Derek; Walsh, Terry; Croll, Tristan

    2017-03-01

    The insulin receptor (IR) plays critical roles in metabolism and growth, directed by the binding of insulin. Decades of research to understand the mechanism of insulin binding and activation of the IR have identified a region of the receptor, the C-terminal (CT) peptide, to be crucial for insulin binding. In particular, a truncated IR consisting of the first three domains fused to the CT peptide was found to bind insulin with nanomolar affinity, with undetectable binding in the absence of fused or soluble CT peptide. Problematically, all current crystal structures of the IR indicate the fusion point of the CT peptide to the three domains is located far from the position of the CT peptide as resolved in such structures. We have attempted to address this problem using molecular modelling and dynamics simulations. The results led to the identification of a potential inter-domain interaction between the L2 domain and the CT peptide that is not observed in any of the crystal structures of the IR. Investigations into this new interaction found a conformational change that could potentially be in response to insulin binding. Additionally, further simulation work with the new conformation demonstrated its compatibility with the position and orientation of insulin from the latest insulin-bound IR crystal structure.

  15. Degradation of pro-insulin-receptor proteins by proteasomes.

    PubMed

    Cruz, Miguel; Velasco, Eduardo; Kumate, Jesús

    2004-01-01

    Type-2 diabetes is characterized by hyperinsulinemia, peripheral insulin resistance, and diminished tyrosine phosphorylation activity. It has been recently shown that proteasomes are implicated in the degradation of the insulin receptor substrate-1 (IRS-1) but not in that of the insulin receptor (IR). However, it is unknown whether proteasomes are involved in pro-IR degradation. We used CHO-IR and the 3T3-L1 cells treated with insulin at different concentrations and compared the proteasome activity of IRS-1, IR, and pro-IR degradation either in presence or in absence of lactacystin. A total of 100 nM of insulin allowed degradation of IRS-1 after 6 h of incubation. At 1,000 nM of insulin, pro-IR degradation began at 1 h of incubation, similar to IRS-1 degradation. Surprisingly, at a higher concentration (10 microM) of insulin, a drastic decrease of proteins was observed from the first minute of incubation. This activity was blocked by lactacystin, a specific proteasome inhibitor. According to these results, we propose that pro-IR is degraded by proteasomes.

  16. Human blood-brain barrier insulin receptor.

    PubMed

    Pardridge, W M; Eisenberg, J; Yang, J

    1985-06-01

    A new model system for characterizing the human brain capillary, which makes up the blood-brain barrier (BBB) in vivo, is described in these studies and is applied initially to the investigation of the human BBB insulin receptor. Autopsy brains were obtained from the pathologist between 22-36 h postmortem and were used to isolate human brain microvessels which appeared intact on both light and phase microscopy. The microvessels were positive for human factor 8 and for a BBB-specific enzyme marker, gamma-glutamyl transpeptidase. The microvessels avidly bound insulin with a high-affinity dissociation constant, KD = 1.2 +/- 0.5 nM. The human brain microvessels internalized insulin based on acid-wash assay, and 75% of insulin was internalized at 37 degrees C. The microvessels transported insulin to the medium at 37 degrees C with a t1/2 = approximately 70 min. Little of the 125I-insulin was metabolized by the microvessels under these conditions based on the elution profile of the medium extract over a Sephadex G-50 column. Plasma membranes were obtained from the human brain microvessels and these membranes were enriched in membrane markers such as gamma-glutamyl transpeptidase or alkaline phosphatase. The plasma membranes bound 125I-insulin with and ED50 = 10 ng/ml, which was identical to the 50% binding point in intact microvessels. The human BBB plasma membranes were solubilized in Triton X-100 and were adsorbed to a wheat germ agglutinin Sepharose affinity column, indicating the BBB insulin receptor is a glycoprotein. Affinity cross-linking of insulin to the plasma membranes revealed a 127K protein that specifically binds insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Contribution of TyrB26 to the Function and Stability of Insulin: STRUCTURE-ACTIVITY RELATIONSHIPS AT A CONSERVED HORMONE-RECEPTOR INTERFACE.

    PubMed

    Pandyarajan, Vijay; Phillips, Nelson B; Rege, Nischay; Lawrence, Michael C; Whittaker, Jonathan; Weiss, Michael A

    2016-06-17

    Crystallographic studies of insulin bound to receptor domains have defined the primary hormone-receptor interface. We investigated the role of Tyr(B26), a conserved aromatic residue at this interface. To probe the evolutionary basis for such conservation, we constructed 18 variants at B26. Surprisingly, non-aromatic polar or charged side chains (such as Glu, Ser, or ornithine (Orn)) conferred high activity, whereas the weakest-binding analogs contained Val, Ile, and Leu substitutions. Modeling of variant complexes suggested that the B26 side chains pack within a shallow depression at the solvent-exposed periphery of the interface. This interface would disfavor large aliphatic side chains. The analogs with highest activity exhibited reduced thermodynamic stability and heightened susceptibility to fibrillation. Perturbed self-assembly was also demonstrated in studies of the charged variants (Orn and Glu); indeed, the Glu(B26) analog exhibited aberrant aggregation in either the presence or absence of zinc ions. Thus, although Tyr(B26) is part of insulin's receptor-binding surface, our results suggest that its conservation has been enjoined by the aromatic ring's contributions to native stability and self-assembly. We envisage that such classical structural relationships reflect the implicit threat of toxic misfolding (rather than hormonal function at the receptor level) as a general evolutionary determinant of extant protein sequences. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes.

    PubMed

    Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Carluccio, Maria Annunziata; Calabriso, Nadia; Wabitsch, Martin; Storelli, Carlo; Wright, Matthew; De Caterina, Raffaele

    2016-05-01

    Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Engineering of Insulin Receptor Isoform-Selective Insulin Analogues

    PubMed Central

    Glendorf, Tine; Stidsen, Carsten E.; Norrman, Mathias; Nishimura, Erica; Sørensen, Anders R.; Kjeldsen, Thomas

    2011-01-01

    Background The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues. Methodology/Principal Findings Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity. Conclusions/Significance We have discovered a new class of IR isoform-selective insulin analogues with 2–4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits. PMID:21625452

  20. Muscleblind-like 1 activates insulin receptor exon 11 inclusion by enhancing U2AF65 binding and splicing of the upstream intron.

    PubMed

    Echeverria, Gloria V; Cooper, Thomas A

    2014-02-01

    Alternative splicing regulates developmentally and tissue-specific gene expression programs, disruption of which have been implicated in numerous diseases. Muscleblind-like 1 (MBNL1) regulates splicing transitions, which are disrupted on loss of MBNL1 function in myotonic dystrophy type 1 (DM1). One such event is MBNL1-mediated activation of insulin receptor exon 11 inclusion, which requires an intronic enhancer element downstream of exon 11. The mechanism of MBNL1-mediated activation of exon inclusion is unknown. We developed an in vitro splicing assay, which robustly recapitulates MBNL1-mediated splicing activation of insulin receptor exon 11 and found that MBNL1 activates removal of the intron upstream of exon 11 upon binding its functional response element in the downstream intron. MBNL1 enhances early spliceosome assembly as evidenced by enhanced complex A formation and binding of U2 small nuclear ribonucleoprotein auxiliary factor 65 kDa subunit (U2AF65) on the upstream intron. We demonstrated that neither the 5' splice site nor exon 11 sequences are required for MBNL1-activated U2AF65 binding. Interestingly, the 5' splice site is required for MBNL1-mediated activation of upstream intron removal, although MBNL1 has no effect on U1 snRNA recruitment. These results suggest that MBNL1 directly activates binding of U2AF65 to enhance upstream intron removal to ultimately activate alternative exon inclusion.

  1. A novel dual peroxisome proliferator-activated receptors alpha and gamma agonist with beneficial effects on insulin resistance and lipid metabolism.

    PubMed

    Xu, Cheng; Wang, Li-Li; Liu, Hong-Ying; Ruan, Cheng-Mai; Zhou, Xing-Bo; Cao, Ying-Lin; Li, Song

    2006-06-01

    Peroxisome proliferator-activated receptors (PPARs) alpha and gamma are key regulators of lipid homeostasis and insulin resistance. In this study we show that a novel compound, 3-{4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl}- 2-[2-(2-nitro-phenoxy)-acetyl amino]-propionic acid (O325H), is an agonist with dual effect on PPARalpha/gamma by using dual-luciferase reporter gene assay. By activating PPARalpha and PPARgamma simultaneously, O325H promotes pre-adipocyte differentiation and up-regulates the expression of glucose and lipid metabolic target genes. In diabetic mice, administration of O325H at 10 mg/kg decreases the blood lipid and glucose levels. Therefore, O325H has dual action on PPARalpha and PPARgamma and is a promising agent for the amelioration of lipid metabolic disorders and diabetes associated with insulin resistance.

  2. Prolonged Activation of the Htr2b Serotonin Receptor Impairs Glucose Stimulated Insulin Secretion and Mitochondrial Function in MIN6 Cells.

    PubMed

    Cataldo, Luis Rodrigo; Mizgier, María L; Bravo Sagua, Roberto; Jaña, Fabián; Cárdenas, César; Llanos, Paola; Busso, Dolores; Olmos, Pablo; Galgani, José E; Santos, José L; Cortés, Víctor A

    2017-01-01

    Pancreatic β-cells synthesize and release serotonin (5 hydroxytryptamine, 5HT); however, the role of 5HT receptors on glucose stimulated insulin secretion (GSIS) and the mechanisms mediating this function is not fully understood. The aims of this study were to determine the expression profile of 5HT receptors in murine MIN6 β-cells and to examine the effects of pharmacological activation of 5HT receptor Htr2b on GSIS and mitochondrial function. mRNA levels of 5HT receptors in MIN6 cells were quantified by RT qPCR. GSIS was assessed in MIN6 cells in response to global serotonergic activation with 5HT and pharmacological Htr2b activation or inhibition with BW723C86 or SB204741, respectively. In response to Htr2b activation also was evaluated the mRNA and protein levels of PGC1α and PPARy by RT-qPCR and western blotting and mitochondrial function by oxygen consumption rate (OCR) and ATP cellular content. We found that mRNA levels of most 5HT receptors were either very low or undetectable in MIN6 cells. By contrast, Htr2b mRNA was present at moderate levels in these cells. Preincubation (6 h) of MIN6 cells with 5HT or BW723C86 reduced GSIS and the effect of 5HT was prevented by SB204741. Preincubation with BW723C86 increased PGC1α and PPARy mRNA and protein levels and decreased mitochondrial respiration and ATP content in MIN6 cells. Our results indicate that prolonged Htr2b activation in murine β-cells decreases glucose-stimulated insulin secretion and mitochondrial activity by mechanisms likely dependent on enhanced PGC1α/PPARy expression.

  3. Prolonged Activation of the Htr2b Serotonin Receptor Impairs Glucose Stimulated Insulin Secretion and Mitochondrial Function in MIN6 Cells

    PubMed Central

    Cataldo, Luis Rodrigo; Mizgier, María L.; Bravo Sagua, Roberto; Jaña, Fabián; Cárdenas, César; Llanos, Paola; Busso, Dolores; Olmos, Pablo; Galgani, José E.; Santos, José L.; Cortés, Víctor A.

    2017-01-01

    Aims Pancreatic β-cells synthesize and release serotonin (5 hydroxytryptamine, 5HT); however, the role of 5HT receptors on glucose stimulated insulin secretion (GSIS) and the mechanisms mediating this function is not fully understood. The aims of this study were to determine the expression profile of 5HT receptors in murine MIN6 β-cells and to examine the effects of pharmacological activation of 5HT receptor Htr2b on GSIS and mitochondrial function. Materials and Methods mRNA levels of 5HT receptors in MIN6 cells were quantified by RT qPCR. GSIS was assessed in MIN6 cells in response to global serotonergic activation with 5HT and pharmacological Htr2b activation or inhibition with BW723C86 or SB204741, respectively. In response to Htr2b activation also was evaluated the mRNA and protein levels of PGC1α and PPARy by RT-qPCR and western blotting and mitochondrial function by oxygen consumption rate (OCR) and ATP cellular content. Results We found that mRNA levels of most 5HT receptors were either very low or undetectable in MIN6 cells. By contrast, Htr2b mRNA was present at moderate levels in these cells. Preincubation (6 h) of MIN6 cells with 5HT or BW723C86 reduced GSIS and the effect of 5HT was prevented by SB204741. Preincubation with BW723C86 increased PGC1α and PPARy mRNA and protein levels and decreased mitochondrial respiration and ATP content in MIN6 cells. Conclusions Our results indicate that prolonged Htr2b activation in murine β-cells decreases glucose-stimulated insulin secretion and mitochondrial activity by mechanisms likely dependent on enhanced PGC1α/PPARy expression. PMID:28129327

  4. A Novel Partial Agonist of Peroxisome Proliferator-Activated Receptor γ with Excellent Effect on Insulin Resistance and Type 2 Diabetes.

    PubMed

    Liu, Hui-juan; Zhang, Cheng-yu; Song, Fei; Xiao, Ting; Meng, Jing; Zhang, Qiang; Liang, Cai-li; Li, Shan; Wang, Jing; Zhang, Bo; Liu, Yan-rong; Sun, Tao; Zhou, Hong-gang

    2015-06-01

    Partial agonists of peroxisome proliferator-activated receptor γ (PPARγ) reportedly reverse insulin resistance in patients with type 2 diabetes mellitus. In this work, a novel non-thiazolidinedione-partial PPARγ ligand, MDCCCL1636 [N-(4-hydroxyphenethyl)-3-mercapto-2-methylpropanamide], was investigated. The compound displayed partial agonist activity in biochemical and cell-based transactivation assays and reversed insulin resistance. MDCCCL1636 showed a potential antidiabetic effect on an insulin-resistance model of human hepatocarcinoma cells (HepG2). High-fat diet-fed streptozotocin-induced diabetic rats treated with MDCCCL1636 for 56 days displayed reduced fasting serum glucose and reversed dyslipidemia and pancreatic damage without significant weight gain. Furthermore, MDCCCL1636 had lower toxicity in vivo and in vitro than pioglitazone. MDCCCL1636 also potentiated glucose consumption and inhibited the impairment in insulin signaling targets, such as AKT, glycogen synthase kinase 3β, and glycogen synthase, in HepG2 human hepatoma cells. Overall, our results suggest that MDCCCL1636 is a promising candidate for the prevention and treatment of type 2 diabetes mellitus.

  5. Activation of α7 Nicotinic Acetylcholine Receptor Decreases On-site Mortality in Crush Syndrome through Insulin Signaling-Na/K-ATPase Pathway

    PubMed Central

    Fan, Bo-Shi; Zhang, En-Hui; Wu, Miao; Guo, Jin-Min; Su, Ding-Feng; Liu, Xia; Yu, Jian-Guang

    2016-01-01

    On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine (Ani) is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR) mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with Ani decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with Ani (20 mg/kg and 28 mg/kg respectively, i.p.) 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist) and PNU282987 (selective α7nAChR agonist), or in α7nAChR knockout mice. Effect of Ani was also appraised in C2C12 myotubes. Ani reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by Ani. Phosphorylation of Na/K-ATPase was enhanced by Ani in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of Ani on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway. PMID:27065867

  6. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action

    PubMed Central

    Eldar-Finkelman, Hagit; Krebs, Edwin G.

    1997-01-01

    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance. PMID:9275179

  7. Insulin enhances platelet activation in vitro.

    PubMed

    Yngen, M; Li, N; Hjemdahl, P; Wallén, N H

    2001-10-15

    Diabetes mellitus is associated with an increased risk of atherothrombotic complications. There is accumulating evidence of platelet hyperreactivity in diabetes, which may be of importance in the pathogenesis of diabetic vascular complications. Platelets possess insulin receptors, but their physiological relevance is not clear, and data on insulin effects on platelet function in the literature are less than consistent. We therefore investigated the influence of insulin on platelet activation in vitro. Fasting blood samples were collected in 20 healthy males, using citrate or hirudin as anticoagulants. Platelet activation was measured as platelet P-selectin expression and fibrinogen binding using whole blood flow cytometry in unstimulated and adenosine diphosphate (ADP) stimulated samples, incubated with 0-10000 microU/ml insulin for 20 min. The effect of insulin (30 or 300 microU/ml, incubated for 3 min) on platelet aggregation was studied using Born aggregometry in platelet-rich plasma (PRP). Insulin enhanced platelet fibrinogen binding more than P-selectin expression in unstimulated and ADP stimulated samples (P<.001 by analysis of variance [ANOVA]; n=20). Insulin (30 or 300 microU/ml) also enhanced ADP-induced platelet aggregation in PRP (P<.01 or P<.001; n=14). The platelet activating effect of insulin was verified in hirudinized samples (n=12), indicating that it was not dependent on unphysiologically low extracellular calcium concentrations. Thus, insulin enhances platelet activation in vitro, independently of extracellular calcium concentrations. Beneficial effects of insulin treatment on platelet function in vivo are probably related to improved metabolic control, rather than to direct platelet stabilizing effects.

  8. A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes.

    PubMed

    Alghamdi, Farah; Guo, Merry; Abdulkhalek, Samar; Crawford, Nicola; Amith, Schammim Ray; Szewczuk, Myron R

    2014-06-01

    Insulin-induced insulin receptor (IR) tyrosine kinase activation and insulin cell survival responses have been reported to be under the regulation of a membrane associated mammalian neuraminidase-1 (Neu1). The molecular mechanism(s) behind this process is unknown. Here, we uncover a novel Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B G-protein coupled receptor (GPCR), which is essential for insulin-induced IR activation and cellular signaling. Neu1, MMP-9 and neuromedin B GPCR form a complex with IRβ subunit on the cell surface. Oseltamivir phosphate (Tamiflu®), anti-Neu1 antibodies, broad range MMP inhibitors piperazine and galardin (GM6001), MMP-9 specific inhibitor (MMP-9i), and GPCR neuromedin B specific antagonist BIM-23127 dose-dependently inhibited Neu1 activity associated with insulin stimulated rat hepatoma cells (HTCs) that overly express human IRs (HTC-IR). Tamiflu, anti-Neu1 antibodies and MMP-9i attenuated phosphorylation of IRβ and insulin receptor substrate-1 (IRS1) associated with insulin-stimulated cells. Olanzapine, an antipsychotic agent associated with insulin resistance, induced Neu3 sialidase activity in WG544 or 1140F01 human sialidosis fibroblast cells genetically defective in Neu1. Neu3 antagonist 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) and anti-Neu3 antibodies inhibited sialidase activity associated with olanzapine treated murine Neu4 knockout macrophage cells. Olanzapine attenuated phosphorylation of IGF-R and IRS1 associated with insulin-stimulated human wild-type fibroblast cells. Our findings identify a novel insulin receptor-signaling platform that is critically essential for insulin-induced IRβ tyrosine kinase activation and cellular signaling. Olanzapine-induced Neu3 sialidase activity attenuated insulin-induced IGF-R and IRS1 phosphorylation contributing to insulin resistance. Copyright © 2014. Published by Elsevier Inc.

  9. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    SciTech Connect

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H. )

    1990-08-14

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the {alpha}-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor.

  10. Metabolites related to gut bacterial metabolism, peroxisome proliferator-activated receptor-alpha activation, and insulin sensitivity are associated with physical function in functionally-limited older adults

    PubMed Central

    Lustgarten, Michael S; Price, Lori L; Chalé, Angela; Fielding, Roger A

    2014-01-01

    Identification of mechanisms underlying physical function will be important for addressing the growing challenge that health care will face with physical disablement in the expanding aging population. Therefore, the goals of the current study were to use metabolic profiling to provide insight into biologic mechanisms that may underlie physical function by examining the association between baseline and the 6-month change in serum mass spectrometry-obtained amino acids, fatty acids, and acylcarnitines with baseline and the 6-month change in muscle strength (leg press one repetition maximum divided by total lean mass, LP/Lean), lower extremity function [short physical performance battery (SPPB)], and mobility (400 m gait speed, 400-m), in response to 6 months of a combined resistance exercise and nutritional supplementation (whey protein or placebo) intervention in functionally-limited older adults (SPPB ≤ 10; 70–85 years, N = 73). Metabolites related to gut bacterial metabolism (cinnamoylglycine, phenol sulfate, p-cresol sulfate, 3-indoxyl sulfate, serotonin, N-methylproline, hydrocinnamate, dimethylglycine, trans-urocanate, valerate) that are altered in response to peroxisome proliferator-activated receptor-alpha (PPAR-α) activation (α-hydroxyisocaproate, α-hydroxyisovalerate, 2-hydroxy-3-methylvalerate, indolelactate, serotonin, 2-hydroxypalmitate, glutarylcarnitine, isobutyrylcarnitine, cinnamoylglycine) and that are related to insulin sensitivity (monounsaturated fatty acids: 5-dodecenoate, myristoleate, palmitoleate; γ-glutamylamino acids: γ-glutamylglutamine, γ-glutamylalanine, γ-glutamylmethionine, γ-glutamyltyrosine; branched-chain amino acids: leucine, isoleucine, valine) were associated with function at baseline, with the 6-month change in function or were identified in backward elimination regression predictive models. Collectively, these data suggest that gut microbial metabolism, PPAR-α activation, and insulin sensitivity may be involved in

  11. Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants.

    PubMed

    Schumacher, R; Soos, M A; Schlessinger, J; Brandenburg, D; Siddle, K; Ullrich, A

    1993-01-15

    Chimeric receptors were generated in which structurally defined subdomains of the insulin receptor (IR) and insulin growth factor-I receptor (IGF-1R) alpha-subunits were exchanged between their respective receptor backbone structures. Upon expression in human fibroblasts, nine IR/IGF-1R chimeras were transported to the cell surface, where they formed binding sites with differential properties. One IGF-1R/IR chimera (C3') exhibited to some extent high insulin specificity, demonstrating the presence of major insulin binding determinants within the amino acid 325-524 region of the IR alpha-subunit. Complementation of this region with subdomain 1 (amino acids 1-137) reconstituted full insulin binding potential within an IGF-1R framework. In addition, both the IGF-1R/IR C3' chimera and another chimera (C13') displayed high affinity binding properties for IGF-1, which suggests distinct locations for major insulin and IGF-1 binding determinants in their respective receptors, in agreement with our previous findings (Schumacher, R., Mosthaf, L., Schlessinger, J., Brandenburg, D., and Ullrich, A. (1991) J. Biol. Chem. 266, 19288-19295). The binding characteristics of all receptor chimeras correlated directly with the ability of the ligands to regulate their tyrosine kinase activity in intact cells. These results demonstrate direct coupling of ligand binding affinity and capacity for tyrosine kinase activation.

  12. RETRACTED: Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand-receptor binding and therefore impairs cancer cell proliferation.

    PubMed

    Wang, Feng; Yang, Yong

    2014-10-03

    Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand-receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Berberine inhibits PTP1B activity and mimics insulin action.

    PubMed

    Chen, Chunhua; Zhang, Yuebo; Huang, Cheng

    2010-07-02

    Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.

  14. Characterization of insulin receptors in chicken kidneys: effect of nutritional status.

    PubMed

    Bisbis, S; Derouet, M; Simon, J

    1994-10-01

    In chickens, the kidneys actively contribute to gluconeogenesis. A cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK) is present in this tissue but is absent in liver. Cytosolic renal PEPCK is nutritionally and hormonally controlled which indicates a likely contribution of insulin in the control of this enzyme (and other renal functions). The present studies characterize renal insulin receptors in the chicken. The effects of the following nutritional conditions were examined: fed, 48 hr fasted, and 24 hr refed following a 48-hr fast. PEPCK activity was increased by the 48-hr fast and returned to normal after refeeding. Specific binding of 125I-insulin to renal membranes was time-, temperature-, and protein-dependent. Unlabeled insulin was more potent than IGF-1 in inhibiting 125I-insulin binding; the ratio of potencies for insulin and IGF-1, however, was dependent upon the nutritional state. Insulin binding was significantly higher (P < 0.05) following 48 hr fasting and lower (P < 0.05) following refeeding compared to ad libitum feeding. Receptor affinity was similar irrespective of the nutritional state. Solubilized and wheat germ agglutinin purified renal insulin receptors were devoid of ATPase activity in contrast to hepatic receptors. The sizes of alpha- and beta-subunits of renal receptors were similar to those of hepatic receptors: 135 and 95 kDa, respectively. Insulin-stimulated autophosphorylation of the beta-subunit was decreased, although not significantly, by prolonged fasting. Phosphorylation of artificial substrate: poly(Glu-Tyr) 4:1 was significantly decreased by the 48-hr fast at high insulin concentrations (10 and 100 nM). Kinase activities of renal insulin receptors from fed or refed chickens were very similar. In conclusion, typical insulin receptors are present in chicken kidneys. These receptors exhibit a regulation at the level of their number and kinase activity in a fashion similar to that found for hepatic receptors. The present

  15. How insulin engages its primary binding site on the insulin receptor

    PubMed Central

    Menting, John G.; Whittaker, Jonathan; Margetts, Mai B.; Whittaker, Linda J.; Kong, Geoffrey K.-W.; Smith, Brian J.; Watson, Christopher J.; Žáková, Lenka; Kletvíková, Emília; Jiráček, Jiří; Chan, Shu Jin; Steiner, Donald F.; Dodson, Guy G.; Brzozowski, Andrzej M.; Weiss, Michael A.; Ward, Colin W.; Lawrence, Michael C.

    2013-01-01

    Insulin receptor signalling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation and survival1,2. Insulin resistance contributes to the pathogenesis of type 2 diabetes mellitus and the onset of Alzheimer’s disease3; aberrant signalling occurs in diverse cancers, exacerbated by crosstalk with the homologous type 1 insulin-like growth factor receptor (IGF1R)4. Despite more than three decades of investigation, the three-dimensional structure of the insulin–insulin receptor complex has proved elusive, confounded by the complexity of producing the receptor protein. Here we present the first view, to our knowledge, of the interaction of insulin with its primary binding site on the insulin receptor, on the basis of four crystal structures of insulin bound to truncated insulin receptor constructs. The direct interaction of insulin with the first leucine-rich-repeat domain (L1) of insulin receptor is seen to be sparse, the hormone instead engaging the insulin receptor carboxy-terminal α-chain (αCT) segment, which is itself remodelled on the face of L1 upon insulin binding. Contact between insulin and L1 is restricted to insulin B-chain residues. The αCT segment displaces the B-chain C-terminal β-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone–receptor recognition is novel within the broader family of receptor tyrosine kinases5. We support these findings by photo-crosslinking data that place the suggested interactions into the context of the holoreceptor and by isothermal titration calorimetry data that dissect the hormone–insulin receptor interface. Together, our findings provide an explanation for a wealth of biochemical data from the insulin receptor and IGF1R systems relevant to the design of therapeutic insulin analogues. PMID:23302862

  16. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor γ coactivator 1α promoter.

    PubMed

    Sookoian, Silvia; Rosselli, Maria Soledad; Gemma, Carolina; Burgueño, Adriana L; Fernández Gianotti, Tomas; Castaño, Gustavo O; Pirola, Carlos J

    2010-12-01

    Insulin resistance (IR) and mitochondrial dysfunction play a central role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). We hypothesized that genetic factors and epigenetic modifications occurring in the liver contribute to the IR phenotype. We specifically examined whether fatty liver and IR are modified by hepatic DNA methylation of the peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A) and mitochondrial transcription factor A (TFAM) promoters, and also evaluated whether liver mitochondrial DNA (mtDNA) content is associated with NAFLD and IR. We studied liver biopsies obtained from NAFLD patients in a case-control design. After bisulfite treatment of DNA, we used methylation-specific polymerase chain reaction (PCR) to assess the putative methylation of three CpG in the PPARGC1A and TFAM promoters. Liver mtDNA quantification using nuclear DNA (nDNA) as a reference was evaluated by way of real-time PCR. Liver PPARGC1A methylated DNA/unmethylated DNA ratio correlated with plasma fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR); TFAM methylated DNA/unmethylated DNA ratio was inversely correlated with insulin levels. PPARGC1A promoter methylation was inversely correlated with the abundance of liver PPARGC1A messenger RNA. The liver mtDNA/nDNA ratio was significantly higher in control livers compared with NAFLD livers. mtDNA/nDNA ratio was inversely correlated with HOMA-IR, fasting glucose, and insulin and was inversely correlated with PPARGC1A promoter methylation. Our data suggest that the IR phenotype and the liver transcriptional activity of PPARGC1A show a tight interaction, probably through epigenetic modifications. Decreased liver mtDNA content concomitantly contributes to peripheral IR. Copyright © 2010 American Association for the Study of Liver Diseases.

  17. Transmembrane signaling by a chimera of the Escherichia coli aspartate receptor and the human insulin receptor.

    PubMed Central

    Moe, G R; Bollag, G E; Koshland, D E

    1989-01-01

    Since many receptors apparently contain only one or two membrane-spanning segments, their transmembrane topology should be similar. This feature suggests that these receptors share common mechanisms of transmembrane signaling. To test the degree of conservation of signaling properties, a chimeric receptor containing the ligand-binding extracellular domain of the Escherichia coli aspartate chemoreceptor and the cytosolic portion of the human insulin receptor was constructed. This chimeric receptor is active as a tyrosine kinase, and aspartate stimulates its activity. Some interesting differences are noted in the target proteins phosphorylated by the chimera compared to the wild-type insulin receptor. These results indicate that features of the signaling mechanisms used by these diverse receptors are conserved, but that interesting changes in the protein properties are caused by differences in the neighboring domains. Images PMID:2548185

  18. Saturated fatty acids inhibit hepatic insulin action by modulating insulin receptor expression and post-receptor signalling.

    PubMed

    Ruddock, Mark W; Stein, Andrew; Landaker, Edwin; Park, Jun; Cooksey, Robert C; McClain, Donald; Patti, Mary-Elizabeth

    2008-11-01

    Free fatty acids (FFAs) are proposed to play a pathogenic role in both peripheral and hepatic insulin resistance. We have examined the effect of saturated FFA on insulin signalling (100 nM) in two hepatocyte cell lines. Fao hepatoma cells were treated with physiological concentrations of sodium palmitate (0.25 mM) (16:0) for 0.25-48 h. Palmitate decreased insulin receptor (IR) protein and mRNA expression in a dose- and time-dependent manner (35% decrease at 12 h). Palmitate also reduced insulin-stimulated IR and IRS-2 tyrosine phosphorylation, IRS-2-associated PI 3-kinase activity, and phosphorylation of Akt, p70 S6 kinase, GSK-3 and FOXO1A. Palmitate also inhibited insulin action in hepatocytes derived from wild-type IR (+/+) mice, but was ineffective in IR-deficient (-/-) cells. The effects of palmitate were reversed by triacsin C, an inhibitor of fatty acyl CoA synthases, indicating that palmitoyl CoA ester formation is critical. Neither the non-metabolized bromopalmitate alone nor the medium chain fatty acid octanoate (8:0) produced similar effects. However, the CPT-1 inhibitor (+/-)-etomoxir and bromopalmitate (in molar excess) reversed the effects of palmitate. Thus, the inhibition of insulin signalling by palmitate in hepatoma cells is dependent upon oxidation of fatty acyl-CoA species and requires intact insulin receptor expression.

  19. Activation of the Liver X Receptor by Agonist TO901317 Improves Hepatic Insulin Resistance via Suppressing Reactive Oxygen Species and JNK Pathway

    PubMed Central

    Dong, Ying; Gao, Guirong; Fan, Hongyan; Li, Shengxian; Li, Xuhang; Liu, Wei

    2015-01-01

    Activation of Liver X receptors (LXRs), key transcriptional regulators of glucose metabolism, normalizes glycemia and improves insulin sensitivity in rodent models with insulin resistance. However, the molecular mechanism is unclear. This study is aimed to elucidate the mechanism of LXRs-mediated liver glucose metabolic regulation in vitro and in vivo. Db/db mice were used as an in vivo model of diabetes; palmitate (PA)-stimulated HepG2 cells were used as an in vitro cell model with impairment of insulin signaling. TO901317 (TO) was chosen as the LXRs agonist. We demonstrated that TO treatment for 14 days potently improved the hepatic glucose metabolism in db/db mice, including fasting blood glucose, fasting insulin level, and HOMA-IR. TO had no effect on the glucose metabolism in normal WT mice. TO-mediated activation of hepatic LXRs led to strong inhibition of ROS production accompanied by inactivation of JNK pathway and re-activation of Akt pathway. TO also suppressed the expression of gluconeogenic genes such as PEPCK and G-6-pase in db/db mice, but not in WT mice. In HepG2 cells, TO almost completely restored PA-induced Akt inactivation, and suppressed PA-stimulated ROS production and JNK activation. Interestingly, basal level of ROS was also inhibited by TO in HepG2 cells. TO significantly inhibited PA-stimulated expressions of gluconeogenic genes. Finally, we found that anti-oxidative genes, such as Nrf2, were up-regulated after LXRs activation by TO. These results strongly support the notion that activation of LXRs is critical in suppression of liver gluconeogenesis and improvement of insulin sensitivity in diabetic individuals. At molecular levels, the mode of action appears to be as fellows: under diabetic condition, ROS production is increased, JNK is activated, and Akt activity is inhibited; TO-mediated LXR activation potently inhibits ROS production, increases anti-oxidative gene expressions, suppresses JNK activation, and restores Akt activity. Our

  20. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    PubMed

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser(318), Ser(346), Ser(612), and Ser(789), and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R.

  1. Functional characterization of insulin receptor gene mutations contributing to Rabson-Mendenhall syndrome - phenotypic heterogeneity of insulin receptor gene mutations.

    PubMed

    Jiang, Shan; Fang, Qichen; Zhang, Feng; Wan, Hui; Zhang, Rong; Wang, Congrong; Bao, Yuqian; Zhang, Lei; Ma, Xiaojing; Lu, Junxi; Gao, Fei; Xiang, Kunsan; Jia, Weiping

    2011-01-01

    Rabson-Mendenhall syndrome (RMS) is a rare disorder that presents as severe insulin resistance as a result of mutations present in the insulin receptor (INSR). A Chinese girl with RMS presented with profound diabetes, hyperinsulinemia, acanthosis nigricans, hirsutism, and abnormalities of teeth and nails. Direct sequencing of the patient's INSR detected heterozygote mutations at Arg83Gln (R83Q) and Ala1028Val (A1028V), with the former representing a novel mutation. Functional studies of Chinese hamster ovary (CHO) cells transfected with wild-type (WT) and mutant forms of INSR were performed to evaluate the effects of these mutations on receptor expression and activation. Receptor expression, insulin binding activity, and phosphorylation of the R83Q variant were comparable to WT. In contrast, expression of the A1028V receptor was much lower than that of WT INSR, and impairment of insulin binding and autophosphorylation were nearly commensurate with the decrease in expression detected. Reductions in the phosphorylation of IRS-1, Akt, and Erk1/2 (60%, 40%, and 50% of WT, respectively) indicate that the A1028V receptor contributes to impaired signal transduction. In conclusion, INSR mutations associated with RMS were identified. Moreover, the A1028V mutation associated with a decrease in expression of INSR potentially accounts for loss of function of the INSR.

  2. Peroxisome proliferator-activated receptor (PPAR) delta genetic polymorphism and its association with insulin resistance index and fasting plasma glucose concentrations in Chinese subjects.

    PubMed

    Hu, C; Jia, W; Fang, Q; Zhang, R; Wang, C; Lu, J; Xiang, K

    2006-12-01

    Previous studies have shown that the peroxisome proliferator-activated receptor delta (PPARD) genetic polymorphism affects cholesterol metabolism in Whites. This association was not observed in a Korean population in a separate study, but this study showed a link between the PPARD polymorphism and body weight and fasting plasma glucose. The purpose of this study was to determine whether polymorphisms of PPARD influence glucose and cholesterol metabolism in Chinese subjects. We investigated the association between the polymorphism (-87T/C) of the human PPARD gene and phenotypes related to body weight, insulin sensitivity, glucose and lipid metabolism in Chinese subjects. Unrelated Chinese subjects (n = 663) in Shanghai were studied; 287 had newly diagnosed Type 2 diabetes mellitus and 376 were non-diabetic control subjects over 40 years old. Clinical parameters were collected and genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism. In normal glucose tolerant (NGT) subjects, the C allele carriers had higher fasting plasma glucose concentrations (P = 0.0078) and a lower insulin sensitivity index (ISI) (P = 0.0365). The C allele carriers also showed higher concentrations of low-density lipoprotein cholesterol (P = 0.0261) and percentage of body fat (P = 0.0357). There was a trend towards higher visceral adiposity in C allele carriers, but the difference was not significant (P = 0.0830). In diabetes patients, similar results were detected for plasma glucose concentrations (fasting plasma glucose P < 0.0001, 2-h plasma glucose P = 0.0052) and insulin sensitivity (homeostasis model assessment of insulin resistance P = 0.0094; ISI P = 0.0058). The PPARD-87T/C polymorphism is associated with higher fasting plasma glucose concentrations in both NGT and diabetic subjects, largely due to impaired insulin sensitivity.

  3. Circulating osteoprotegerin and soluble receptor activator of nuclear factor κB ligand in polycystic ovary syndrome: relationships to insulin resistance and endothelial dysfunction.

    PubMed

    Pepene, Carmen Emanuela; Ilie, Ioana Rada; Marian, Ioan; Duncea, Ileana

    2011-01-01

    There is plenty of evidence that osteoprotegerin (OPG) is linked to subclinical vascular damage and predicts cardiovascular disease in high-risk populations. Our aim is to investigate the relationships of OPG/free soluble receptor activator of nuclear factor κB ligand (sRANKL) to insulin resistance, brachial artery flow-mediated vasodilation (FMD), and the carotid artery intima-media thickness (CIMT) in polycystic ovary syndrome (PCOS), a disorder characterized by hyperandrogenism, impaired glucose control, and endothelial injury. A cross-sectional, observational study. Hormonal and metabolic profiles, FMD, CIMT, serum OPG, and ampli-sRANKL were assessed in 64 young PCOS patients and 20 controls of similar age. Body composition was measured by dual energy X-ray absorptiometry. OPG was significantly lower in PCOS and related negatively to free testosterone and positively to estradiol (E(2)) levels. In multivariate analysis, OPG but not ampli-sRANKL correlated positively to fasting insulin, insulin sensitivity indices, and FMD. Neither OPG nor ampli-sRANKL was associated with CIMT. Significantly lower adjusted FMD values were demonstrated in women in the upper OPG quartile group (>2.65 pmol/l) compared with all other quartile groups together (P=0.012). In PCOS, multiple regression analysis retained E(2)/sex hormone-binding globulin ratio, fat mass, and homeostasis model assessment of insulin resistance as independent predictors of OPG. In PCOS, circulating OPG is related to both endothelial dysfunction and insulin resistance, independent of obesity and androgen excess, suggesting OPG as a useful biomarker of these effects. Further studies are needed to evaluate OPG in relation to cardiovascular events and cardiovascular mortality in PCOS.

  4. Insulin/insulin-like growth factor (IGF) stimulation abrogates an association between a deubiquitinating enzyme USP7 and insulin receptor substrates (IRSs) followed by proteasomal degradation of IRSs.

    PubMed

    Yoshihara, Hidehito; Fukushima, Toshiaki; Hakuno, Fumihiko; Saeki, Yasushi; Tanaka, Keiji; Ito, Akihiro; Yoshida, Minoru; Iemura, Shun-ichiro; Natsume, Tohru; Asano, Tomoichiro; Chida, Kazuhiro; Girnita, Leonard; Takahashi, Shin-Ichiro

    2012-06-22

    Insulin receptor substrates (IRSs) play central roles in insulin/insulin-like growth factor (IGF) signaling and mediate a variety of their bioactivities. IRSs are tyrosine-phosphorylated by activated insulin receptor/IGF-I receptor tyrosine kinase in response to insulin/IGF, and are recognized by signaling molecules possessing the SH2 domain such as phosphatidylinositol 3-kinase (PI3K), leading to the activation of downstream pathways. Recent studies have suggested that degradation of IRSs by the ubiquitin-proteasome pathway leads to impaired insulin/IGF signaling, but the precise mechanism underlying the process is still unclear. In this study, we identified deubiquitinating enzyme ubiquitin specific protease 7 (USP7) as an IRS-2-interacting protein and demonstrated that deubiquitinase activity of USP7 plays important roles in IRS-2 stabilization through the ubiquitin-proteasome pathway. In addition, insulin treatment dissociated USP7 from IRS-2, leading to degradation of IRS-2. This dissociation was prevented by treatment with LY294002, a PI3K inhibitor, indicating that insulin activation of the PI3K pathway leads to dissociation of IRS-2 from USP7 and IRS-2 degradation. We obtained similar results for IRS-1 in cells treated with insulin and for IRS-2 in cells treated with IGF-I. Taken together, this is the first report demonstrating that USP7 is an IRS-1/2 deubiquitinating enzyme forming a negative feedback loop in insulin/IGF signaling. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  6. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  7. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    USDA-ARS?s Scientific Manuscript database

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  8. A panel of monoclonal antibodies for the type I insulin-like growth factor receptor. Epitope mapping, effects on ligand binding, and biological activity.

    PubMed

    Soos, M A; Field, C E; Lammers, R; Ullrich, A; Zhang, B; Roth, R A; Andersen, A S; Kjeldsen, T; Siddle, K

    1992-06-25

    We obtained 20 mouse monoclonal antibodies specific for human type I insulin-like growth factor (IGF) receptors, using transfected cells expressing high levels of receptors (IGF-1R/3T3 cells) as immunogen. The antibodies immunoprecipitated receptor.125I-IGF-I complexes and biosynthetically labeled receptors from IGF-1R/3T3 cells but did not react with human insulin receptors or rat type I IGF receptors. Several antibodies stimulated DNA synthesis in IGF-1R/3T3 cells, but the maximum stimulation was only 25% of that produced by IGF-I. The antibodies fell into seven groups recognizing distinct epitopes and with different effects on receptor function. All the antibodies reacted with the extracellular portion of the receptor, and epitopes were localized to specific domains by investigating their reaction with a series of chimeric IGF/insulin receptor constructs. Binding of IGF-I was inhibited up to 90% by antibody 24-60 reacting in the region 184-283, and by antibody 24-57 reacting in the region 440-586. IGF-I binding was stimulated up to 2.5-fold by antibodies 4-52 and 16-13 reacting in the region 62-184, and by antibody 26-3 reacting downstream of 283. The latter two groups of antibodies also dramatically stimulated insulin binding to intact IGF-1R/3T3 cells (by up to 50-fold), and potentiated insulin stimulation of DNA synthesis. Scatchard analysis indicated that in the presence of these antibodies, the affinity of the type I IGF receptor for insulin was comparable with that of the insulin receptor. These data indicate that regions both within and outside the cysteine-rich domain of the receptor alpha-subunit are important in determining the affinity and specificity of ligand binding. These antibodies promise to be valuable tools in resolving issues of IGF-I receptor heterogeneity and in studying the structure and function of classical type I receptors and insulin/IGF receptor hybrids.

  9. Receptor-Mediated Transport of Insulin across Endothelial Cells

    NASA Astrophysics Data System (ADS)

    King, George L.; Johnson, Sandra M.

    1985-03-01

    Hormones such as insulin are transported from the interior to the exterior of blood vessels. Whether endothelial cells, which line the inner walls of blood vessels have a role in this transport of hormones is not clear, but it is known that endothelial cells can internalize and release insulin rapidly with little degradation. The transport of iodine-125-labeled insulin was measured directly through the use of dual chambers separated by a horizontal monolayer of cultured bovine aortic endothelial cells. In this setting, endothelial cells took up and released the labeled insulin, thereby transporting it across the cells. The transport of insulin across the endothelial cells was temperature sensitive and was inhibited by unlabeled insulin and by antibody to insulin receptor in proportion to the ability of these substances to inhibit insulin binding to its receptor. More than 80 percent of the transported insulin was intact. These data suggest that insulin is rapidly transported across endothelial cells by a receptor-mediated process.

  10. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle.

    PubMed

    He, Weimin; Barak, Yaacov; Hevener, Andrea; Olson, Peter; Liao, Debbie; Le, Jamie; Nelson, Michael; Ong, Estelita; Olefsky, Jerrold M; Evans, Ronald M

    2003-12-23

    Syndrome X, typified by obesity, insulin resistance (IR), dyslipidemia, and other metabolic abnormalities, is responsive to antidiabetic thiazolidinediones (TZDs). Peroxisome proliferator-activated receptor (PPAR) gamma, a target of TZDs, is expressed abundantly in adipocytes, suggesting an important role for this tissue in the etiology and treatment of IR. Targeted deletion of PPARgamma in adipose tissue resulted in marked adipocyte hypocellularity and hypertrophy, elevated levels of plasma free fatty acids and triglyceride, and decreased levels of plasma leptin and ACRP30. In addition, increased hepatic glucogenesis and IR were observed. Despite these defects, blood glucose, glucose and insulin tolerance, and insulin-stimulated muscle glucose uptake were all comparable to those of control mice. However, targeted mice were significantly more susceptible to high-fat diet-induced steatosis, hyperinsulinemia, and IR. Surprisingly, TZD treatment effectively reversed liver IR, whereas it failed to lower plasma free fatty acids. These results suggest that syndrome X may be comprised of separable PPARgamma-dependent components whose origins and therapeutic sites may reside in distinct tissues.

  11. Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse.

    PubMed

    Kuo, L-H; Tsai, P-J; Jiang, M-J; Chuang, Y-L; Yu, L; Lai, K-T A; Tsai, Y-S

    2011-01-01

    Substantial evidence suggests a link between elevated inflammation and development of insulin resistance. Toll-like receptor 2 (TLR2) recognises a large number of lipid-containing molecules and transduces inflammatory signalling in a variety of cell types, including insulin-responsive cells. Considering the contribution of the fatty acid composition in TLR2-depedent signalling, we hypothesised that the inflammatory signals transduced by TLR2 contribute to insulin resistance. Mice deficient in TLR2 were used to investigate the in vivo roles of TLR2 in initiating and maintaining inflammation-associated insulin resistance and energy homeostasis. We first recapitulated the observation with elevated expression of TLR2 and inflammatory cytokines in white adipose tissue and liver of ob/ob mice. Aged or high-fat-fed TLR2-deficient mice were protected from obesity and adipocyte hypertrophy compared with wild-type mice. Moreover, mice lacking TLR2 exhibited improved glucose tolerance and insulin sensitivity regardless of feeding them regular chow or a high-fat diet. This is accompanied by reductions in expression of inflammatory cytokines and activation of extracellular signal-regulated kinase (ERK) in a liver-specific manner. The attenuated hepatic inflammatory cytokine expression and related signalling are correlated with increased insulin action specifically in the liver in TLR2-deficient mice, reflected by increased insulin-stimulated protein kinase B (Akt) phosphorylation and IRS1 tyrosine phosphorylation and increased insulin-suppressed hepatocyte glucose production. The absence of TLR2 attenuates local inflammatory cytokine expression and related signalling and increases insulin action specifically in the liver. Thus, our work has identified TLR2 as a key mediator of hepatic inflammation-related signalling and insulin resistance.

  12. Insulin receptors: binding kinetics and structure-function relationship of insulin

    SciTech Connect

    Gammeltoft, S.

    1984-10-01

    Morphological and biochemical work suggests that internalization of the receptor-insulin complex from the plasma membrane transfers insulin to intracellular organelles like the lysosomes, the Golgi apparatus, or nucleus, where degradation by insulin protease takes place, whereas the receptor is recycled back to the membrane. Recent advances in the studies of biosynthesis and cellular dynamics of receptors indicate that intracellular processing and redistribution of binding sites may play a role in the mechanism of insulin action. Insulin receptors are widely distributed in all cell types, but evidence has accumulated that receptors show tissue and species variations in their functional properties regarding binding affinity, insulin specificity, cooperativity, and insulin degradation and in structural properties such as antigenic determinants and glycosidic composition. Perhaps these differences reflect cellular adaptations and variations in the physiological role of insulin.

  13. Is insulin binding followed by disulfide interchange between insulin and the receptor

    SciTech Connect

    Phillips, P.E.; Lipkin, E.W.; Teller, D.C.; de Haeen, C.

    1986-05-01

    The kinetics of insulin binding to rat adipocytes at 15/sup 0/C can best be described by a 2-step model. Insulin, I, first binds to the receptor, R. Occupied receptors, RI, then convert reversibly to another form, R'I, from which insulin cannot dissociate directly. At equilibrium, the R'I:RI ratio is approx.3:2. To elucidate the nature of R'I, the effects of 5,5'-dithiobis-(2-nitrobenzoate) (DTNB) on the kinetics of insulin binding were investigated. DTNB (2.5 mM) added with 1 nM /sup 125/I-iodoinsulin doubled insulin binding relative to cells without DTNB. When labeled insulin prebound to cells was dissociated with excess unlabeled insulin, DTNB added with the unlabeled insulin reduced the amount of dissociating label. Treatment of adipocytes with DTNB prior to insulin exposure did not alter the subsequent response of insulin binding to DTNB. These data suggest that the receptor exists in at least two conformational states: R, the unoccupied receptor, with a cryptic sulfhydryl group, and the occupied receptors RI and R'I, in which a sulfhydryl group is sensitive to DTNB. The authors propose that R'I formation is the result of disulfide exchange between the receptor and insulin, in accordance with the kinetics evidence that insulin cannot directly dissociate from R'I. The disulfide exchange generates a free sulfhydryl on insulin, with which DTNB reacts to trap insulin covalently bound in the R'I form.

  14. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide

    SciTech Connect

    Hayes, G.R.; Lockwood, D.H.

    1987-11-01

    The oxidant H/sub 2/O/sub 2/ has many insulin-like effects in rat adipocytes. To determine whether these effects could be mediated by the tyrosine kinase activity of the insulin receptor, the ability of H/sub 2/O/sub 2/ to stimulate receptor phosphorylation in intact adipocytes and partially purified insulin receptors has been examined. Phosphorylation of the ..beta.. subunit of the insulin receptor was increased. Stimulation of receptor phosphorylation was rapid, reaching maximal levels within 5 min, and preceded activation of glucose transport. Phosphoamino acid analysis of insulin receptors from H/sub 2/O/sub 2/-treated adipocytes showed that /sup 32/P incorporation into phosphotyrosine and phosphoserine residues of the ..beta.. subunit was enhanced. Furthermore, partially purified receptors from H/sub 2/O/sub 2/-treated cells exhibit increased tyrosine kinase activity, as measured by phosphorylation of the peptide Glu/sub 80/Tyr/sub 20/. To define the factors involved in H/sub 2/O/sub 2/'s effect, the authors have examined receptor phosphorylation in fat cell homogenates and purified plasma membranes. Although insulin stimulated receptor phosphorylation in both of these systems, H/sub 2/O/sub 2/ was only effective in the cell homogenates. These data demonstrate that, under certain conditions, H/sub 2/O/sub 2/ stimulates insulin receptor phosphorylation and tyrosine kinase activity, suggesting that the insulin-like effects of H/sub 2/O/sub 2/ may be mediated by stimulation of insulin receptor phosphorylation. This does not appear to be a direct effect of H/sub 2/O/sub 2/ on the insulin receptor and requires nonplasma membrane cellular constituents.

  15. Protective hinge in insulin opens to enable its receptor engagement.

    PubMed

    Menting, John G; Yang, Yanwu; Chan, Shu Jin; Phillips, Nelson B; Smith, Brian J; Whittaker, Jonathan; Wickramasinghe, Nalinda P; Whittaker, Linda J; Pandyarajan, Vijay; Wan, Zhu-li; Yadav, Satya P; Carroll, Julie M; Strokes, Natalie; Roberts, Charles T; Ismail-Beigi, Faramarz; Milewski, Wieslawa; Steiner, Donald F; Chauhan, Virander S; Ward, Colin W; Weiss, Michael A; Lawrence, Michael C

    2014-08-19

    Insulin provides a classical model of a globular protein, yet how the hormone changes conformation to engage its receptor has long been enigmatic. Interest has focused on the C-terminal B-chain segment, critical for protective self-assembly in β cells and receptor binding at target tissues. Insight may be obtained from truncated "microreceptors" that reconstitute the primary hormone-binding site (α-subunit domains L1 and αCT). We demonstrate that, on microreceptor binding, this segment undergoes concerted hinge-like rotation at its B20-B23 β-turn, coupling reorientation of Phe(B24) to a 60° rotation of the B25-B28 β-strand away from the hormone core to lie antiparallel to the receptor's L1-β2 sheet. Opening of this hinge enables conserved nonpolar side chains (Ile(A2), Val(A3), Val(B12), Phe(B24), and Phe(B25)) to engage the receptor. Restraining the hinge by nonstandard mutagenesis preserves native folding but blocks receptor binding, whereas its engineered opening maintains activity at the price of protein instability and nonnative aggregation. Our findings rationalize properties of clinical mutations in the insulin family and provide a previously unidentified foundation for designing therapeutic analogs. We envisage that a switch between free and receptor-bound conformations of insulin evolved as a solution to conflicting structural determinants of biosynthesis and function.

  16. Protective hinge in insulin opens to enable its receptor engagement

    PubMed Central

    Menting, John G.; Yang, Yanwu; Chan, Shu Jin; Phillips, Nelson B.; Smith, Brian J.; Whittaker, Jonathan; Wickramasinghe, Nalinda P.; Whittaker, Linda J.; Pandyarajan, Vijay; Wan, Zhu-li; Yadav, Satya P.; Carroll, Julie M.; Strokes, Natalie; Roberts, Charles T.; Ismail-Beigi, Faramarz; Milewski, Wieslawa; Steiner, Donald F.; Chauhan, Virander S.; Ward, Colin W.; Weiss, Michael A.; Lawrence, Michael C.

    2014-01-01

    Insulin provides a classical model of a globular protein, yet how the hormone changes conformation to engage its receptor has long been enigmatic. Interest has focused on the C-terminal B-chain segment, critical for protective self-assembly in β cells and receptor binding at target tissues. Insight may be obtained from truncated “microreceptors” that reconstitute the primary hormone-binding site (α-subunit domains L1 and αCT). We demonstrate that, on microreceptor binding, this segment undergoes concerted hinge-like rotation at its B20-B23 β-turn, coupling reorientation of PheB24 to a 60° rotation of the B25-B28 β-strand away from the hormone core to lie antiparallel to the receptor's L1–β2 sheet. Opening of this hinge enables conserved nonpolar side chains (IleA2, ValA3, ValB12, PheB24, and PheB25) to engage the receptor. Restraining the hinge by nonstandard mutagenesis preserves native folding but blocks receptor binding, whereas its engineered opening maintains activity at the price of protein instability and nonnative aggregation. Our findings rationalize properties of clinical mutations in the insulin family and provide a previously unidentified foundation for designing therapeutic analogs. We envisage that a switch between free and receptor-bound conformations of insulin evolved as a solution to conflicting structural determinants of biosynthesis and function. PMID:25092300

  17. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance

    PubMed Central

    Petersen, Max C.; Madiraju, Anila K.; Gassaway, Brandon M.; Marcel, Michael; Nasiri, Ali R.; Butrico, Gina; Marcucci, Melissa J.; Zhang, Dongyan; Abulizi, Abudukadier; Zhang, Xian-Man; Philbrick, William; Hubbard, Stevan R.; Samuel, Varman T.; Rinehart, Jesse

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-ε (PKCε) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCε inhibition of INSR kinase activity is unknown. Here, we used mass spectrometry to identify the phosphorylation site Thr1160 as a PKCε substrate in the functionally critical INSR kinase activation loop. We hypothesized that Thr1160 phosphorylation impairs INSR kinase activity by destabilizing the active configuration of the INSR kinase, and our results confirmed this prediction by demonstrating severely impaired INSR kinase activity in phosphomimetic T1160E mutants. Conversely, the INSR T1160A mutant was not inhibited by PKCε in vitro. Furthermore, mice with a threonine-to-alanine mutation at the homologous residue Thr1150 (InsrT1150A mice) were protected from high fat diet–induced hepatic insulin resistance. InsrT1150A mice also displayed increased insulin signaling, suppression of hepatic glucose production, and increased hepatic glycogen synthesis compared with WT controls during hyperinsulinemic clamp studies. These data reveal a critical pathophysiological role for INSR Thr1160 phosphorylation and provide further mechanistic links between PKCε and INSR in mediating NAFLD-induced hepatic insulin resistance. PMID:27760050

  18. Hyperinsulinemia is Associated with Increased Soluble Insulin Receptors Release from Hepatocytes.

    PubMed

    Hiriart, Marcia; Sanchez-Soto, Carmen; Diaz-Garcia, Carlos Manlio; Castanares, Diana T; Avitia, Morena; Velasco, Myrian; Mas-Oliva, Jaime; Macias-Silva, Marina; González-Villalpando, Clicerio; Delgado-Coello, Blanca; Sosa-Garrocho, Marcela; Vidaltamayo, Román; Fuentes-Silva, Deyanira

    2014-01-01

    It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR) has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration, and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l(-1) insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia, the amount of this soluble receptor increases and this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  19. Hyperinsulinemia is Associated with Increased Soluble Insulin Receptors Release from Hepatocytes

    PubMed Central

    Hiriart, Marcia; Sanchez-Soto, Carmen; Diaz-Garcia, Carlos Manlio; Castanares, Diana T.; Avitia, Morena; Velasco, Myrian; Mas-Oliva, Jaime; Macias-Silva, Marina; González-Villalpando, Clicerio; Delgado-Coello, Blanca; Sosa-Garrocho, Marcela; Vidaltamayo, Román; Fuentes-Silva, Deyanira

    2014-01-01

    It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR) has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration, and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l−1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia, the amount of this soluble receptor increases and this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance. PMID:24995000

  20. Berberine-improved visceral white adipose tissue insulin resistance associated with altered sterol regulatory element-binding proteins, liver x receptors, and peroxisome proliferator-activated receptors transcriptional programs in diabetic hamsters.

    PubMed

    Li, Guo-Sheng; Liu, Xu-Han; Zhu, Hua; Huang, Lan; Liu, Ya-Li; Ma, Chun-Mei; Qin, Chuan

    2011-01-01

    The diabetic "lipotoxicity" hypothesis presents that fat-induced visceral white adipose tissue insulin resistance plays a central role in the pathogenesis of type 2 diabetes. Berberine, a hypolipidemic agent, has been reported to have antidiabetic activities. The molecular mechanisms for this property are, however, not well clarified. Therefore in this study type 2 diabetic hamsters were induced by high-fat diet with low-dose streptozotocin. Then, we investigated the gene expression alterations and explored the molecular mechanisms underlying the therapeutic effect of berberine on fat-induced visceral white adipose tissue insulin resistance in diabetic hamsters by microarray analysis followed by real-time reverse transcription-polymerase chain reaction (RT-PCR) confirmation. Type 2 diabetic hamsters exhibited hyperglycemia and relative hyperinsulinemia, glucose intolerance, insulin resistance, intra-adipocyte lipid accumulation, significant increase in body weight and visceral white adipose tissue weight, abnormal serum adipokines levels, and deleterious dyslipidemia. Furthermore, they had increased sterol regulatory element-binding proteins (SREBPs) expression and decreased liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs) expression in visceral white adipose tissue. After 9-week berberine treatment, fat-induced insulin resistance and diabetic phenotype in type 2 diabetic hamsters were significantly improved. Compared with diabetic hamsters, expression of LXRs and PPARs significantly increased and SREBPs significantly decreased in visceral white adipose tissue from berberine-treated diabetic hamsters. These results suggest that altered visceral white adipose tissue LXRs, PPARs, and SREBPs transcriptional programs are involved in the therapeutic mechanisms of berberine on fat-induced visceral white adipose tissue insulin resistance in type 2 diabetic hamsters.

  1. Dissecting Mannose 6-Phosphate-Insulin-like Growth Factor 2 Receptor Complexes That Control Activation and Uptake of Plasminogen in Cells*

    PubMed Central

    Leksa, Vladimir; Pfisterer, Karin; Ondrovičová, Gabriela; Binder, Brigitte; Lakatošová, Silvia; Donner, Clemens; Schiller, Herbert B.; Zwirzitz, Alexander; Mrvová, Katarína; Pevala, Vladimir; Kutejová, Eva; Stockinger, Hannes

    2012-01-01

    The plasminogen (Plg) activation cascade on the cell surface plays a central role in cell migration and is involved in a plethora of physiological and pathological processes. Its regulation is coordinated by many receptors, in particular the urokinase-type plasminogen activator receptor (uPAR, CD87), receptors that physically interact and functionally cooperate with uPAR, and Plg binding molecules. Here we studied the impact of one of the Plg binding molecules, the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P-IGF2R, CD222), on cellular Plg activation. By developing both in vitro and in vivo Plg activation assays on size-fractionated lysates of M6P-IGF2R-silenced cells, we identified Plg-associated complexes with M6P-IGF2R as the regulatory factor. Using lipid raft preserving versus dissolving detergents, we found lipid dependence of the Plg regulatory function of these complexes. Furthermore, M6P-IGF2R-silencing in uPAR-positive human cell lines reduced internalization of Plg, resulting in elevated Plg activation. In contrast, the expression of human M6P-IGF2R in mouse embryonic fibroblasts derived from M6P-IGF2R knock-out mice enhanced Plg internalization. Finally, peptide 18–36 derived from the Plg-binding site within M6P-IGF2R enhanced Plg uptake. Thus, by targeting Plg to endocytic pathways, M6P-IGF2R appears to control Plg activation within cells that might be important to restrict plasmin activity to specific sites and substrates. PMID:22613725

  2. Peroxisome proliferator-activated receptor gamma (PPARγ) in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA expression and transcriptional regulation by insulin in vivo and in vitro.

    PubMed

    Zheng, Jia-Lang; Zhuo, Mei-Qin; Luo, Zhi; Pan, Ya-Xiong; Song, Yu-Feng; Huang, Chao; Zhu, Qing-Ling; Hu, Wei; Chen, Qi-Liang

    2015-02-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is ligand-inducible transcription factor and has important roles in lipid metabolism, cell proliferation and inflammation. In the present study, yellow catfish Pelteobagrus fulvidraco PPARγ cDNA was isolated from liver by RT-PCR and RACE, and its molecular characterization and transcriptional regulation by insulin in vivo and in vitro were determined. The generation of PPARγ1 and PPARγ2 was due to alternative promoter of PPARγ gene. PPARγ1 and PPARγ2 mRNA covered 2426 bp and 2537 bp, respectively, with an open reading frame (ORF) of 1584 bp encoding 527 amino acid residues. Yellow catfish PPARγ gene was organized in a manner similar to that of their mammalian homologs, implying a modular organization of the protein's domains. A comparison between the yellow catfish PPARγ amino acid sequence and the correspondent sequences of several other species revealed the identity of 55-76.2%. Two PPARγ transcripts (PPARγ1 and PPARγ2) mRNAs were expressed in a wide range of tissues, but the abundance of each PPARγ mRNA showed the tissue- and developmental stage-dependent expression patterns. Intraperitoneal injection of insulin in vivo significantly stimulated the mRNA expression of total PPARγ and PPARγ1, but not PPARγ2 in the liver of yellow catfish. In contrast, incubation of hepatocytes with insulin in vitro increased the mRNA levels of PPARγ1, PPARγ2 and total PPARγ. To our knowledge, for the first time, the present study provides evidence that PPARγ1 and PPARγ2 are differentially expressed with and among tissues during different developmental stages and also regulated by insulin both in vivo and in vitro, which serves to increase our understanding on PPARγ physiological function in fish.

  3. Antidepressants activate the lysophosphatidic acid receptor LPA(1) to induce insulin-like growth factor-I receptor transactivation, stimulation of ERK1/2 signaling and cell proliferation in CHO-K1 fibroblasts.

    PubMed

    Olianas, Maria C; Dedoni, Simona; Onali, Pierluigi

    2015-06-15

    Different lines of evidence indicate that the lysophosphatidic acid (LPA) receptor LPA1 is involved in neurogenesis, synaptic plasticity and anxiety-related behavior, but little is known on whether this receptor can be targeted by neuropsychopharmacological agents. The present study investigated the effects of different antidepressants on LPA1 signaling. We found that in Chinese hamster ovary (CHO)-K1 fibroblasts expressing endogenous LPA1 tricyclic and tetracyclic antidepressants and fluoxetine induced the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and CREB. This response was antagonized by either LPA1 blockade with Ki16425 and AM966 or knocking down LPA1 with siRNA. Antidepressants induced ERK1/2 phosphorylation in human embryonic kidney (HEK)-293 cells overexpressing LPA1, but not in wild-type cells. In PathHunter™ assay measuring receptor-β-arrestin interaction, amitriptyline, mianserin and fluoxetine failed to induce activation of LPA2 and LPA3 stably expressed in CHO-K1 cells. ERK1/2 stimulation by antidepressants and LPA was suppressed by pertussis toxin and inhibition of Src, phosphatidylinositol-3 kinase and insulin-like growth factor-I receptor (IGF-IR) activities. Antidepressants and LPA induced tyrosine phosphorylation of IGF-IR and insulin receptor-substrate-1 through LPA1 and Src. Prolonged exposure of CHO-K1 fibroblasts to either mianserin, mirtazapine or LPA enhanced cell proliferation as indicated by increased [(3)H]-thymidine incorporation and Ki-67 immunofluorescence. This effect was inhibited by blockade of LPA1- and ERK1/2 activity. These data provide evidence that different antidepressants induce LPA1 activation, leading to receptor tyrosine kinase transactivation, stimulation of ERK1/2 signaling and enhanced cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro.

    PubMed

    Burgermeister, Elke; Schnoebelen, Astride; Flament, Angele; Benz, Jörg; Stihle, Martine; Gsell, Bernard; Rufer, Arne; Ruf, Armin; Kuhn, Bernd; Märki, Hans Peter; Mizrahi, Jacques; Sebokova, Elena; Niesor, Eric; Meyer, Markus

    2006-04-01

    Partial agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma), also termed selective PPARgamma modulators, are expected to uncouple insulin sensitization from triglyceride (TG) storage in patients with type 2 diabetes mellitus. These agents shall thus avoid adverse effects, such as body weight gain, exerted by full agonists such as thiazolidinediones. In this context, we describe the identification and characterization of the isoquinoline derivative PA-082, a prototype of a novel class of non-thiazolidinedione partial PPARgamma ligands. In a cocrystal with PPARgamma it was bound within the ligand-binding pocket without direct contact to helix 12. The compound displayed partial agonism in biochemical and cell-based transactivation assays and caused preferential recruitment of PPARgamma-coactivator-1alpha (PGC1alpha) to the receptor, a feature shared with other selective PPARgamma modulators. It antagonized rosiglitazone-driven transactivation and TG accumulation during de novo adipogenic differentiation of murine C3H10T1/2 mesenchymal stem cells. The latter effect was mimicked by overexpression of wild-type PGC1alpha but not its LXXLL-deficient mutant. Despite failing to promote TG loading, PA-082 induced mRNAs of genes encoding components of insulin signaling and adipogenic differentiation pathways. It potentiated glucose uptake and inhibited the negative cross-talk of TNFalpha on protein kinase B (AKT) phosphorylation in mature adipocytes and HepG2 human hepatoma cells. PGC1alpha is a key regulator of energy expenditure and down-regulated in diabetics. We thus propose that selective recruitment of PGC1alpha to favorable PPARgamma-target genes provides a possible molecular mechanism whereby partial PPARgamma agonists dissociate TG accumulation from insulin signaling.

  5. Insulin-Dependent Activation of MCH Neurons Impairs Locomotor Activity and Insulin Sensitivity in Obesity.

    PubMed

    Hausen, A Christine; Ruud, Johan; Jiang, Hong; Hess, Simon; Varbanov, Hristo; Kloppenburg, Peter; Brüning, Jens C

    2016-12-06

    Melanin-concentrating-hormone (MCH)-expressing neurons (MCH neurons) in the lateral hypothalamus (LH) are critical regulators of energy and glucose homeostasis. Here, we demonstrate that insulin increases the excitability of these neurons in control mice. In vivo, insulin promotes phosphatidylinositol 3-kinase (PI3K) signaling in MCH neurons, and cell-type-specific deletion of the insulin receptor (IR) abrogates this response. While lean mice lacking the IR in MCH neurons (IR(ΔMCH)) exhibit no detectable metabolic phenotype under normal diet feeding, they present with improved locomotor activity and insulin sensitivity under high-fat-diet-fed, obese conditions. Similarly, obesity promotes PI3 kinase signaling in these neurons, and this response is abrogated in IR(ΔMCH) mice. In turn, acute chemogenetic activation of MCH neurons impairs locomotor activity but not insulin sensitivity. Collectively, our experiments reveal an insulin-dependent activation of MCH neurons in obesity, which contributes via distinct mechanisms to the manifestation of impaired locomotor activity and insulin resistance.

  6. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    SciTech Connect

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-12

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor ..cap alpha.. subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-(..gamma..-/sup 32/P)triphosphate, a protein of 95 kilodaltons representing the insulin receptor ..beta.. subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins.

  7. Amplification and analysis of promoter region of insulin receptor gene in a patient with leprechaunism associated with severe insulin resistance.

    PubMed

    Haruta, T; Imamura, T; Iwanishi, M; Egawa, K; Goji, K; Kobayashi, M

    1995-04-01

    A patient with leprechaunism associated with severe insulin resistance was studied to identify the molecular and genetic basis for insulin resistance. Insulin binding and surface labeling of transformed lymphocytes prepared from the patient showed a significantly decreased insulin receptor number on the cell surface. Southern blot analysis of the insulin receptor gene showed no evidence of large insertions or deletions. Furthermore, direct sequencing of all 22 exons and exon-intron junctions of the insulin receptor gene failed to show any missense mutations, nonsense mutations, or mutations at exon-intron junctions. However, Northern blot analysis indicated significantly decreased insulin receptor mRNA expression in the patient's cells. Moreover, restriction endonuclease digestion of the amplified cDNA suggested that the expression levels of one allele were less efficient than the other. These findings suggested that the regulatory region of the insulin receptor gene might have abnormalities. Therefore, we examined the 5' flanking region of the insulin receptor gene. Southern blot analysis showed no major deletions or insertions between positions -1,823 and -2 relative to the translation initiation site. A 5' flanking region of the insulin receptor gene spanning positions -881 approximately +7 was amplified by polymerase chain reaction (PCR) and introduced into a reporter plasmid carrying the human growth hormone (hGH) gene. The nucleotide sequence of the amplified fragment showed two polymorphic sites at positions -603 and -500 in the patient, as well as in normal subjects. No other abnormal sequence was found in the patient. Promoter activity measured by hGH expression in transfected mouse L cells was not influenced by the polymorphism at position -603 located in a cluster of GC boxes.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Glucose-induced phosphorylation of the insulin receptor. Functional effects and characterization of phosphorylation sites.

    PubMed Central

    Pillay, T S; Xiao, S; Olefsky, J M

    1996-01-01

    Elevated glucose concentrations have been reported to inhibit insulin receptor kinase activity. We studied the effects of high glucose on insulin action in Rat1 fibroblasts transfected with wild-type human insulin receptor (HIRcB) and a truncated receptor lacking the COOH-terminal 43 amino acids (delta CT). In both cell lines, 25 mM glucose impaired receptor and insulin receptor substrate-1 phosphorylation by 34%, but IGF-1 receptor phosphorylation was unaffected. Phosphatidylinositol 3-kinase activity and bromodeoxyuridine uptake were decreased by 85 and 35%, respectively. This was reversed by coincubation with a protein kinase C (PKC) inhibitor or microinjection of a PKC inhibitor peptide. Phosphopeptide mapping revealed that high glucose or PMA led to serine/threonine phosphorylation of similar peptides. Inhibition of the microtubule-associated protein (MAP) kinase cascade by the MAP kinase kinase inhibitor PD98059 did not reverse the impaired phosphorylation. We conclude that high glucose inhibits insulin action by inducing serine phosphorylation through a PKC-mediated mechanism at the level of the receptor at sites proximal to the COOH-terminal 43 amino acids. This effect is independent of activation of the MAP kinase cascade. Proportionately, the impairment of insulin receptor substrate-1 tyrosine phosphorylation is greater than that of the insulin receptor resulting in attenuated phosphatidylinositol 3-kinase activation and mitogenic signaling. PMID:8609215

  9. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    SciTech Connect

    Vikram, Ajit; Jena, Gopabandhu

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  10. Human insulin prepared by recombinant DNA techniques and native human insulin interact identically with insulin receptors.

    PubMed Central

    Keefer, L M; Piron, M A; De Meyts, P

    1981-01-01

    Human insulin synthesized from A and B chains separately produced in Escherichia coli from cloned synthetic genes (prepared by the Eli Lilly Research Laboratories, Indianapolis, IN) was characterized by examining its interaction with human cultured lymphocytes, human circulating erythrocytes in vitro, and isolated rat fat cells. The binding behavior of the biosynthetic insulin with human cells was indistinguishable from that of native human or porcine insulins, with respect to affinity, association and dissociation kinetics, negative cooperativity, and the down-regulation of lymphocyte receptors. Similarly, the biosynthetic insulin was as potent as the native insulins in stimulating lipogenesis in isolated rat fat cells. We also examined the receptor binding characteristics of 125I-labeled human and porcine insulins monoiodinated solely at Tyr-A14, which were obtained by means of high-performance liquid chromatography of the iodination reaction mixture (this material was prepared by B. Frank, Eli Lilly Research Laboratories). In all aspects studied, the pure [TyrA14-125I]iodoinsulins were superior as tracers to the monoiodoinsulin purified by the more conventional method of gel filtration. PMID:7015337

  11. Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats.

    PubMed

    Bao, Suqing; Cao, Yanli; Fan, Chenling; Fan, Yuxin; Bai, Shuting; Teng, Weiping; Shan, Zhongyan

    2014-04-01

    In this study, we investigated the beneficial effects and the underlying mechanism of epigallocatechin gallate (EGCG) in adipose tissues of rats fed with a high-fat diet (HFD). Fasting plasma insulin, epididymal fat coefficient and free fatty acids, homeostasis model assessment-insulin resistance index, and the average glucose infusion rate were determined. EGCG significantly decreased free fatty acids, fasting insulin, homeostasis model assessment-insulin resistance index, and epididymal fat coefficient, and increased glucose infusion rate in HFD group. The levels of toll-like receptor 4, TNF receptor associated factor 6, inhibitor-kappa-B kinase β, p-nuclear factor κB, tumor necrosis factor α, and IL-6 in the EGCG group were all significantly lower than the HFD control group. EGCG also decreased the level of phosphorylated insulin receptor substrate 1 and increased phosphoinositide-3-kinase and glucose transporter isoform 4 in the HFD group. Decreased macrophage infiltration was in EGCG group versus HFD group, and the protein level of CD68 in EGCG group was also significantly lower than that of HFD group. EGCG attenuated inflammation by decreasing the content of macrophages, interfered the toll-like receptor 4 mediated inflammatory response pathway, thus, improving insulin signaling in adipose tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Axons guided by insulin receptor in Drosophila visual system.

    PubMed

    Song, Jianbo; Wu, Lingling; Chen, Zun; Kohanski, Ronald A; Pick, Leslie

    2003-04-18

    Insulin receptors are abundant in the central nervous system, but their roles remain elusive. Here we show that the insulin receptor functions in axon guidance. The Drosophila insulin receptor (DInR) is required for photoreceptor-cell (R-cell) axons to find their way from the retina to the brain during development of the visual system. DInR functions as a guidance receptor for the adapter protein Dock/Nck. This function is independent of Chico, the Drosophila insulin receptor substrate (IRS) homolog.

  13. Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2.

    PubMed

    Zhang, Suode; Hughes, Richard A; Bathgate, Ross A D; Shabanpoor, Fazel; Hossain, M Akhter; Lin, Feng; van Lierop, Bianca; Robinson, Andrea J; Wade, John D

    2010-09-01

    INSL3 is a member of the insulin-IGF-relaxin superfamily and plays a key role in male fetal development and in adult germ cell maturation. It is the cognate ligand for RXFP2, a leucine-rich repeat containing G-protein coupled receptor. To date, and in contrast to our current knowledge of the key structural features that are required for the binding of INSL3 to RXFP2, comparatively little is known about the key residues that are required to elicit receptor activation and downstream cell signaling. Early evidence suggests that these are contained principally within the A-chain. To further explore this hypothesis, we have undertaken an examination of the functional role of the intra-A-chain disulfide bond. Using solid-phase peptide synthesis together with regioselective disulfide bond formation, two analogs of human INSL3 were prepared in which the intra-chain disulfide bond was replaced, one in which the corresponding Cys residues were substituted with the isosteric Ser and the other in which the Cys were removed altogether. Both of these peptides retained nearly full RXFP2 receptor binding but were devoid of cAMP activity (receptor activation), indicating that the intra-A-chain disulfide bond makes a significant contribution to the ability of INSL3 to act as an RXFP2 agonist. Replacement of the disulfide bond with a metabolically stable dicarba bond yielded two isomers of INSL3 that each exhibited bioactivity similar to native INSL3. This study highlights the critical structural role played by the intra-A-chain disulfide bond of INSL3 in mediating agonist actions through the RXFP2 receptor.

  14. p75 neurotrophin receptor regulates glucose homeostasis and insulin sensitivity

    PubMed Central

    Baeza-Raja, Bernat; Li, Pingping; Le Moan, Natacha; Sachs, Benjamin D.; Schachtrup, Christian; Davalos, Dimitrios; Vagena, Eirini; Bridges, Dave; Kim, Choel; Saltiel, Alan R.; Olefsky, Jerrold M.; Akassoglou, Katerina

    2012-01-01

    Insulin resistance is a key factor in the etiology of type 2 diabetes. Insulin-stimulated glucose uptake is mediated by the glucose transporter 4 (GLUT4), which is expressed mainly in skeletal muscle and adipose tissue. Insulin-stimulated translocation of GLUT4 from its intracellular compartment to the plasma membrane is regulated by small guanosine triphosphate hydrolases (GTPases) and is essential for the maintenance of normal glucose homeostasis. Here we show that the p75 neurotrophin receptor (p75NTR) is a regulator of glucose uptake and insulin resistance. p75NTR knockout mice show increased insulin sensitivity on normal chow diet, independent of changes in body weight. Euglycemic-hyperinsulinemic clamp studies demonstrate that deletion of the p75NTR gene increases the insulin-stimulated glucose disposal rate and suppression of hepatic glucose production. Genetic depletion or shRNA knockdown of p75NTR in adipocytes or myoblasts increases insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, overexpression of p75NTR in adipocytes decreases insulin-stimulated glucose transport. In adipocytes, p75NTR forms a complex with the Rab5 family GTPases Rab5 and Rab31 that regulate GLUT4 trafficking. Rab5 and Rab31 directly interact with p75NTR primarily via helix 4 of the p75NTR death domain. Adipocytes from p75NTR knockout mice show increased Rab5 and decreased Rab31 activities, and dominant negative Rab5 rescues the increase in glucose uptake seen in p75NTR knockout adipocytes. Our results identify p75NTR as a unique player in glucose metabolism and suggest that signaling from p75NTR to Rab5 family GTPases may represent a unique therapeutic target for insulin resistance and diabetes. PMID:22460790

  15. Brain kinin B1 receptor is upregulated by the oxidative stress and its activation leads to stereotypic nociceptive behavior in insulin-resistant rats.

    PubMed

    Dias, Jenny Pena; Gariépy, Helaine De Brito; Ongali, Brice; Couture, Réjean

    2015-07-01

    Kinin B1 receptor (B1R) is virtually absent under physiological condition, yet it is highly expressed in models of diabetes mellitus. This study aims at determining: (1) whether B1R is induced in the brain of insulin-resistant rat through the oxidative stress; (2) the consequence of B1R activation on stereotypic nocifensive behavior; (3) the role of downstream putative mediators in B1R-induced behavioral activity. Sprague-Dawley rats were fed with 10% D-glucose in their drinking water or tap water (controls) for 4 or 12 weeks, combined either with a standard chow diet or a diet enriched with α-lipoic acid (1 g/kg feed) for 4 weeks. The distribution and density of brain B1R binding sites were assessed by autoradiography. Behavioral activity evoked by i.c.v. injection of the B1R agonist Sar-[D-Phe(8)]-des-Arg(9)-BK (10 μg) was measured before and after i.c.v. treatments with selective antagonists (10 μg) for kinin B1 (R-715, SSR240612), tachykinin NK1 (RP-67580) and glutamate NMDA (DL-AP5) receptors or with the inhibitor of NOS (L-NNA). Results showed significant increases of B1R binding sites in various brain areas of glucose-fed rats that could be prevented by the diet containing α-lipoic acid. The B1R agonist elicited head scratching, grooming, sniffing, rearing, digging, licking, face washing, wet dog shake, teeth chattering and biting in glucose-fed rats, which were absent after treatment with α-lipoic acid or antagonists/inhibitors. Data suggest that kinin B1R is upregulated by the oxidative stress in the brain of insulin-resistant rats and its activation causes stereotypic nocifensive behavior through the release of substance P, glutamate and NO. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Structural Dynamics of Insulin Receptor and Transmembrane Signaling.

    PubMed

    Tatulian, Suren A

    2015-09-15

    The insulin receptor (IR) is a (αβ)2-type transmembrane tyrosine kinase that plays a central role in cell metabolism. Each αβ heterodimer consists of an extracellular ligand-binding α-subunit and a membrane-spanning β-subunit that comprises the cytoplasmic tyrosine kinase (TK) domain and the phosphorylation sites. The α- and β-subunits are linked via a single disulfide bridge, and the (αβ)2 tetramer is formed by disulfide bonds between the α-chains. Insulin binding induces conformational changes in IR that reach the intracellular β-subunit followed by a protein phosphorylation and activation cascade. Defects in this signaling process, including IR dysfunction caused by mutations, result in type 2 diabetes. Rational drug design aimed at treatment of diabetes relies on knowledge of the detailed structure of IR and the dynamic structural transformations during transmembrane signaling. Recent X-ray crystallographic studies have provided important clues about the mode of binding of insulin to IR, the resulting structural changes and their transmission to the TK domain, but a complete understanding of the structural basis underlying insulin signaling has not been achieved. This review presents a critical analysis of the current status of the structure-function relationship of IR, with a comparative assessment of the other IR family receptors, and discusses potential advancements that may provide insight into the molecular mechanism of insulin signaling.

  17. Angiotensin Receptor Blockade Recovers Hepatic UCP2 Expression and Aconitase and SDH Activities and Ameliorates Hepatic Oxidative Damage in Insulin Resistant Rats

    PubMed Central

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A.; Viscarra, José A.; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira

    2012-01-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity. PMID:23087176

  18. Angiotensin receptor blockade recovers hepatic UCP2 expression and aconitase and SDH activities and ameliorates hepatic oxidative damage in insulin resistant rats.

    PubMed

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A; Viscarra, José A; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2012-12-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity.

  19. Cannabinoids Inhibit Insulin Receptor Signaling in Pancreatic β-Cells

    PubMed Central

    Kim, Wook; Doyle, Máire E.; Liu, Zhuo; Lao, Qizong; Shin, Yu-Kyong; Carlson, Olga D.; Kim, Hee Seung; Thomas, Sam; Napora, Joshua K.; Lee, Eun Kyung; Moaddel, Ruin; Wang, Yan; Maudsley, Stuart; Martin, Bronwen; Kulkarni, Rohit N.; Egan, Josephine M.

    2011-01-01

    OBJECTIVE Optimal glucose homeostasis requires exquisitely precise adaptation of the number of insulin-secreting β-cells in the islets of Langerhans. Insulin itself positively regulates β-cell proliferation in an autocrine manner through the insulin receptor (IR) signaling pathway. It is now coming to light that cannabinoid 1 receptor (CB1R) agonism/antagonism influences insulin action in insulin-sensitive tissues. However, the cells on which the CB1Rs are expressed and their function in islets have not been firmly established. We undertook the current study to investigate if intraislet endogenous cannabinoids (ECs) regulate β-cell proliferation and if they influence insulin action. RESEARCH DESIGN AND METHODS We measured EC production in isolated human and mouse islets and β-cell line in response to glucose and KCl. We evaluated human and mouse islets, several β-cell lines, and CB1R-null (CB1R−/−) mice for the presence of a fully functioning EC system. We investigated if ECs influence β-cell physiology through regulating insulin action and demonstrated the therapeutic potential of manipulation of the EC system in diabetic (db/db) mice. RESULTS ECs are generated within β-cells, which also express CB1Rs that are fully functioning when activated by ligands. Genetic and pharmacologic blockade of CB1R results in enhanced IR signaling through the insulin receptor substrate 2-AKT pathway in β-cells and leads to increased β-cell proliferation and mass. CB1R antagonism in db/db mice results in reduced blood glucose and increased β-cell proliferation and mass, coupled with enhanced IR signaling in β-cells. Furthermore, CB1R activation impedes insulin-stimulated IR autophosphorylation on β-cells in a Gαi-dependent manner. CONCLUSIONS These findings provide direct evidence for a functional interaction between CB1R and IR signaling involved in the regulation of β-cell proliferation and will serve as a basis for developing new therapeutic interventions to

  20. Dissociation of insulin receptor phosphorylation and stimulation of glucose transport in BC3H-1 myocytes

    SciTech Connect

    Mojsilovic, L.P.; Standaert, M.L.; Rosic, N.K.; Pollet, R.J.

    1986-05-01

    The authors have investigated insulin receptor phosphorylation in differentiated cultured BC3H-1 myocytes. As for other insulin-responsive cell systems in partially purified wheat germ agglutinin receptor preparations, insulin stimulates the phosphorylation of its own receptor (95K ..beta..-subunits) in a dose dependent manner (0-400 nM), as identified by immunoprecipitation with antiinsulin receptor antibodies and SDS-PAGE. In the same preparations they show that 12-0-tetradecanyl phorbol acetate (TPA), which in many respect ..beta..-subunits in the same dose dependent manner (0-5 ..mu..M). In addition, antiinsulin receptor antibodies (B-10) also induced phosphorylation of mimics insulin action, also induced phosphorylation of the insulin receptor and HPLC tryptic maps of the /sup 32/P-labeled ..beta..-subunit were identical to those for insulin-induced receptor phosphorylation. However, while insulin and TPA are potent stimulators of glucose transport in these muscle cells, the antireceptor antibodies alone failed to provoke glucose transport at any concentration. The specificity and activity of these antibodies were confirmed in their system by their ability to inhibit insulin binding and insulin-stimulated glucose transport in a concentration-dependent manner. Their results indicate that phosphorylation of insulin receptor is not a crucial event in mediating insulin action, at least with respect to glucose transport. While the effects of the B-10 antibody in the BC3H-1 myocyte differ from those in the adipocyte, their results provide independent confirmation of their essential conclusion that phosphorylation of the insulin receptor may not be necessary nor sufficient for its acute action in promoting glucose transport.

  1. Peroxisome Proliferator-activated Receptor (PPAR) Gene Profiling Uncovers Insulin-like Growth Factor-1 as a PPARα Target Gene in Cardioprotection*

    PubMed Central

    el Azzouzi, Hamid; Leptidis, Stefanos; Bourajjaj, Meriem; Armand, Anne-Sophie; van der Nagel, Roel; van Bilsen, Marc; Da Costa Martins, Paula A.; De Windt, Leon J.

    2011-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-activated transcription factors and consist of the three isoforms, PPARα, PPARβ/δ, and PPARγ. Considerable evidence indicates the importance of PPARs in cardiovascular lipid homeostasis and diabetes, yet the isoform-dependent cardiac target genes remain unknown. Here, we constructed murine ventricular clones allowing stable expression of siRNAs to achieve specifically knockdown for each of the PPAR isoforms. By combining gene profiling and computational peroxisome proliferator response element analysis following PPAR isoform activation in normal versus PPAR isoform-deficient cardiomyocyte-like cells, we have, for the first time, determined PPAR isoform-specific endogenous target genes in the heart. Electromobility shift and chromatin immunoprecipitation assays demonstrated the existence of an evolutionary conserved peroxisome proliferator response element consensus-binding site in an insulin-like growth factor-1 (igf-1) enhancer. In line, Wy-14643-mediated PPARα activation in the wild-type mouse heart resulted in up-regulation of igf-1 transcript abundance and provided protection against cardiomyocyte apoptosis following ischemia/reperfusion or biomechanical stress. Taken together, these data confirm igf-1 as an in vivo target of PPARα and the involvement of a PPARα/IGF-1 signaling pathway in the protection of cardiomyocytes under ischemic and hemodynamic loading conditions. PMID:21245137

  2. Peroxisome proliferator-activated receptor (PPAR) gene profiling uncovers insulin-like growth factor-1 as a PPARalpha target gene in cardioprotection.

    PubMed

    el Azzouzi, Hamid; Leptidis, Stefanos; Bourajjaj, Meriem; Armand, Anne-Sophie; van der Nagel, Roel; van Bilsen, Marc; Da Costa Martins, Paula A; De Windt, Leon J

    2011-04-22

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-activated transcription factors and consist of the three isoforms, PPARα, PPARβ/δ, and PPARγ. Considerable evidence indicates the importance of PPARs in cardiovascular lipid homeostasis and diabetes, yet the isoform-dependent cardiac target genes remain unknown. Here, we constructed murine ventricular clones allowing stable expression of siRNAs to achieve specifically knockdown for each of the PPAR isoforms. By combining gene profiling and computational peroxisome proliferator response element analysis following PPAR isoform activation in normal versus PPAR isoform-deficient cardiomyocyte-like cells, we have, for the first time, determined PPAR isoform-specific endogenous target genes in the heart. Electromobility shift and chromatin immunoprecipitation assays demonstrated the existence of an evolutionary conserved peroxisome proliferator response element consensus-binding site in an insulin-like growth factor-1 (igf-1) enhancer. In line, Wy-14643-mediated PPARα activation in the wild-type mouse heart resulted in up-regulation of igf-1 transcript abundance and provided protection against cardiomyocyte apoptosis following ischemia/reperfusion or biomechanical stress. Taken together, these data confirm igf-1 as an in vivo target of PPARα and the involvement of a PPARα/IGF-1 signaling pathway in the protection of cardiomyocytes under ischemic and hemodynamic loading conditions.

  3. A kinase-independent biological activity for insulin growth factor-1 receptor (IGF-1R) : implications for inhibition of the IGF-1R signal.

    PubMed

    Janku, Filip; Huang, Helen J; Angelo, Laura S; Kurzrock, Razelle

    2013-03-01

    It has been demonstrated that epidermal growth factor receptor (EGFR) can have kinase independent activity. EGFR kinase-independent function maintains intracellular glucose levels via sodium glucose transporter protein 1 (SGLT1) and supports cell survival. It is plausible that this phenomenon can apply to other receptor tyrosine kinases. We found that transfection of insulin-like growth factor receptor (IGF-1R) siRNA into HEK293 (human embryonic kidney) and MCF7 (metastatic breast cancer) cells result in decreased intracellular glucose levels, whereas treatment with an IGF-1R tyrosine kinase inhibitor OSI-906 did not affect intracellular glucose levels. In addition, IGF-1R interacted with SGLT1 in a manner similar to that previously reported with EGFR. The combination of IGF-1R siRNA and OSI-906 resulted in decreased viability of HEK293 and MCF7 cell lines compared to either agent alone. Collectively, these experiments suggest that IGF-1R, has kinase-independent biologic functions and provide a rationale for combining anti-IGF-1R antibodies or siRNA and IGF-1R small molecule inhibitors.

  4. Insulin-induced surface redistribution regulates internalization of the insulin receptor and requires its autophosphorylation

    SciTech Connect

    Carpentier, J.L.; Paccaud, J.P.; Orci, L. ); Gorden, P. ); Rutter, W.J. )

    1992-01-01

    The role of insulin-induced receptor autophosphorylation in its internalization was analyzed by comparing {sup 125}I-labeled insulin ({sup 125}I-insulin) internalization in Chinese hamster ovary (CHO) cell lines transfected with normal (CHO.T) or mutated insulin receptors. In four cell lines with a defect of insulin-induced autophosphorylation, {sup 125}I-insulin internalization was impaired. By contrast, in CHO.T cells and in two other CHO cell lines with amino acid deletions or insertions that do not perturb autophosphorylation, {sup 125}I-insulin internalization was not affected. A morphological analysis showed that the inhibition is linked to the ligand-specific surface redistribution in which the insulin-receptor complexes leave microvilli and concentrate on nonvillous segments of the membrane where endocytosis occurs.

  5. Linking Functional Domains of the Human Insulin Receptor with the Bacterial Aspartate Receptor

    NASA Astrophysics Data System (ADS)

    Ellis, Leland; Morgan, David O.; Koshland, Daniel E.; Clauser, Eric; Moe, Gregory R.; Bollag, Gideon; Roth, Richard A.; Rutter, William J.

    1986-11-01

    A hybrid receptor has been constructed that is composed of the extracellular domain of the human insulin receptor fused to the transmembrane and cytoplasmic domains of the bacterial aspartate chemoreceptor. This hybrid protein can be expressed in rodent (CHO) cells and displays several functional features comparable to wild-type insulin receptor. It is localized to the cell surface, binds insulin with high affinity, forms oligomers, and is recognized by conformation-specific monoclonal antibodies. Although most of the expressed protein accumulates as a 180-kDa proreceptor, some processed 135-kDa receptor can be detected on the cell surface by covalent cross-linking. Expression of the hybrid receptor inhibits the insulin-activated uptake of 2-deoxyglucose by CHO cells. Thus, this hybrid is partially functional and can be processed; however, it is incapable of native transmembrane signaling. The results indicate that the intact domains of different types of receptors can retain some of the native features in a hybrid molecule but specific requirements will need to be satisfied for transmembrane signaling.

  6. Central Resistin Overexposure Induces Insulin Resistance Through Toll-Like Receptor 4

    PubMed Central

    Benomar, Yacir; Gertler, Arieh; De Lacy, Pamela; Crépin, Delphine; Ould Hamouda, Hassina; Riffault, Laure; Taouis, Mohammed

    2013-01-01

    Resistin promotes both inflammation and insulin resistance associated with energy homeostasis impairment. However, the resistin receptor and the molecular mechanisms mediating its effects in the hypothalamus, crucial for energy homeostasis control, and key insulin-sensitive tissues are still unknown. In the current study, we report that chronic resistin infusion in the lateral cerebral ventricle of normal rats markedly affects both hypothalamic and peripheral insulin responsiveness. Central resistin treatment inhibited insulin-dependent phosphorylation of insulin receptor (IR), AKT, and extracellular signal–related kinase 1/2 associated with reduced IR expression and with upregulation of suppressor of cytokine signaling-3 and phosphotyrosine phosphatase 1B, two negative regulators of insulin signaling. Additionally, central resistin promotes the activation of the serine kinases Jun NH2-terminal kinase and p38 mitogen-activated protein kinase, enhances the serine phosphorylation of insulin receptor substrate-1, and increases the expression of the proinflammatory cytokine interleukin-6 in the hypothalamus and key peripheral insulin-sensitive tissues. Interestingly, we also report for the first time, to our knowledge, the direct binding of resistin to Toll-like receptor (TLR) 4 receptors in the hypothalamus, leading to the activation of the associated proinflammatory pathways. Taken together, our findings clearly identify TLR4 as the binding site for resistin in the hypothalamus and bring new insight into the molecular mechanisms involved in resistin-induced inflammation and insulin resistance in the whole animal. PMID:22961082

  7. Insulin-Dependent Regulation of Insulin Receptor Concentrations: A Direct Demonstration in Cell Culture

    PubMed Central

    Gavin, James R.; Roth, Jesse; Neville, David M.; De Meyts, Pierre; Buell, Donald N.

    1974-01-01

    Chronic (5-16 hr) exposure of cultured human lymphocytes to 10-8 M insulin at 37° in vitro produced a decrease in insulin receptor concentrations unaccounted for by simple occupancy of sites; acute exposure (0-2 hr) was without effect. These results reproduced observations in vivo where chronic hyperinsulinemia (e.g., 10-8 M insulin in the circulation of obese insulinresistant hyperglycemic mice) is associated with a substantial reduction in the concentration of insulin receptors per cell, while acute hyperinsulinemia in vivo has no effect on receptor concentration. These data suggest a reciprocal relationship between insulin in the extracellular fluid and the concentration of insulin receptors per cell, which is mediated at the target cell itself by intracellular insulin-sensitive regulatory processes and directly affects target-cell sensitivity to hormone. PMID:4359334

  8. A peptide from Porphyra yezoensis stimulates the proliferation of IEC-6 cells by activating the insulin-like growth factor I receptor signaling pathway.

    PubMed

    Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2015-02-01

    Porphyra yezoensis (P. yezoensis) is the most noteworthy red alga and is mainly consumed in China, Japan and Korea. In the present study, the effects of a P. yezoensis peptide (PY‑PE) on cell proliferation and the associated signaling pathways were examined in IEC‑6 rat intestinal epithelial cells. First, the MTS assay showed that PY‑PE induced cell proliferation in a dose‑dependent manner. Subsequently, the mechanism behind the proliferative activity induced by PY‑PE was determined. The insulin‑like growth factor‑I receptor (IGF‑IR) signaling pathway was the main focus as it plays an important role in the regulation of cell growth and proliferation. PY‑PE increased the protein and mRNA expression of IGF‑IR, insulin receptor substrate‑1, Shc and PY‑99. In addition, PY‑PE stimulated extracellular signal‑regulated kinase phosphorylation and phosphatidylinositol 3‑kinase/Akt activation but inhibited p38 and c‑Jun N‑terminal kinase phosphorylation. Furthermore, PY‑PE treatment increased protein and mRNA expression levels of activator protein‑1, which regulates cell proliferation and survival, in the nuclear fraction. These results have significant implications for understanding the role of cell proliferation signaling pathways in intestinal epithelial cells.

  9. Insulin receptor-insulin interaction kinetics using multiplex surface plasmon resonance.

    PubMed

    Subramanian, Kannan; Fee, Conan J; Fredericks, Rayleen; Stubbs, Richard S; Hayes, Mark T

    2013-12-01

    Type 2 diabetes affects millions of people worldwide, and measuring the kinetics of insulin receptor-insulin interactions is critical to improving our understanding of this disease. In this paper, we describe, for the first time, a rapid, real-time, multiplex surface plasmon resonance (SPR) assay for studying the interaction between insulin and the insulin receptor ectodomain, isoform A (eIR-A). We used a scaffold approach in which anti-insulin receptor monoclonal antibody 83-7 (Abcam, Cambridge, UK) was first immobilized on the SPR sensorchip by amine coupling, followed by eIR-A capture. The multiplex SPR system (ProteOn XPR36™, Bio-Rad Laboratories, Hercules, CA) enabled measurement of replicate interactions with a single, parallel set of analyte injections, whereas repeated regeneration of the scaffold between measurements caused variable loss of antibody activity. Interactions between recombinant human insulin followed a two-site binding pattern, consistent with the literature, with a high-affinity site (dissociation constant K(D1)  = 38.1 ± 0.9 nM) and a low-affinity site (K(D2)  = 166.3 ± 7.3 nM). The predominantly monomeric insulin analogue Lispro had corresponding dissociation constants K(D1)  = 73.2 ± 1.8 nM and K(D2)  = 148.9 ± 6.1 nM, but the fit to kinetic data was improved when we included a conformational change factor in which the high-affinity site was converted to the low-affinity site. The new SPR assay enables insulin-eIR-A interactions to be followed in real time and could potentially be extended to study the effects of humoral factors on the interaction, without the need for insulin labeling. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Changes of insulin effect on lipogenesis and insulin binding receptors during hypokinesia

    NASA Astrophysics Data System (ADS)

    Macho, L.; Fickova, M.; Zorad, S.

    The effect of hypokinesia on insulin action and insulin binding to specific receptors in fat cells was studied. Male Wistar rats were exposed to hypokinesia in special adjustable plastic cages for 1, 7, 21 and 60 days, and the stimulatory effect of insulin (10 and 100 mU) on the incorporation of radiocarbon labelled glucose into lipids of fat tissue and the binding of insulin to receptors of isolated adipocytes was estimated. The stimulation of lipogenesis by insulin was slightly diminished after hypokinesia for 1 day, however, an important increase of insulin action was found in rats exposed to hypokinesia for 60 days. The decrease of insulin binding capacity of the number of binding sites per cell and of the insulin receptor density was found after 1 day of hypokinesia. In rats exposed to hypokinesia for 60 days, in agreement with the higher stimulatory affect of insulin, an increase of insulin receptor density was observed. These results showed that hypokinesia has an important influence on stimulatory action of insulin and on insulin receptors in adipocytes.

  11. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart

    PubMed Central

    Riehle, Christian; Wende, Adam R.; Sena, Sandra; Pires, Karla Maria; Pereira, Renata Oliveira; Zhu, Yi; Bugger, Heiko; Frank, Deborah; Bevins, Jack; Chen, Dong; Perry, Cynthia N.; Dong, Xiaocheng C.; Valdez, Steven; Rech, Monika; Sheng, Xiaoming; Weimer, Bart C.; Gottlieb, Roberta A.; White, Morris F.; Abel, E. Dale

    2013-01-01

    The induction of autophagy in the mammalian heart during the perinatal period is an essential adaptation required to survive early neonatal starvation; however, the mechanisms that mediate autophagy suppression once feeding is established are not known. Insulin signaling in the heart is transduced via insulin and IGF-1 receptors (IGF-1Rs). We disrupted insulin and IGF-1R signaling by generating mice with combined cardiomyocyte-specific deletion of Irs1 and Irs2. Here we show that loss of IRS signaling prevented the physiological suppression of autophagy that normally parallels the postnatal increase in circulating insulin. This resulted in unrestrained autophagy in cardiomyocytes, which contributed to myocyte loss, heart failure, and premature death. This process was ameliorated either by activation of mTOR with aa supplementation or by genetic suppression of autophagic activation. Loss of IRS1 and IRS2 signaling also increased apoptosis and precipitated mitochondrial dysfunction, which were not reduced when autophagic flux was normalized. Together, these data indicate that in addition to prosurvival signaling, insulin action in early life mediates the physiological postnatal suppression of autophagy, thereby linking nutrient sensing to postnatal cardiac development. PMID:24177427

  12. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    SciTech Connect

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F. )

    1988-04-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of {sup 125}I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase.

  13. Peroxisome proliferator-activated receptoractivation enhances insulin-stimulated glucose disposal by reducing ped/pea-15 gene expression in skeletal muscle cells: evidence for involvement of activator protein-1.

    PubMed

    Ungaro, Paola; Mirra, Paola; Oriente, Francesco; Nigro, Cecilia; Ciccarelli, Marco; Vastolo, Viviana; Longo, Michele; Perruolo, Giuseppe; Spinelli, Rosa; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2012-12-14

    The gene network responsible for inflammation-induced insulin resistance remains enigmatic. In this study, we show that, in L6 cells, rosiglitazone- as well as pioglitazone-dependent activation of peroxisome proliferator-activated receptor-γ (PPARγ) represses transcription of the ped/pea-15 gene, whose increased activity impairs glucose tolerance in mice and humans. Rosiglitazone enhanced insulin-induced glucose uptake in L6 cells expressing the endogenous ped/pea-15 gene but not in cells expressing ped/pea-15 under the control of an exogenous promoter. The ability of PPARγ to affect ped/pea-15 expression was also lost in cells and in C57BL/6J transgenic mice expressing ped/pea-15 under the control of an exogenous promoter, suggesting that ped/pea-15 repression may contribute to rosiglitazone action on glucose disposal. Indeed, high fat diet mice showed insulin resistance and increased ped/pea-15 levels, although these effects were reduced by rosiglitazone treatment. Both supershift and ChIP assays revealed the presence of the AP-1 component c-JUN at the PED/PEA-15 promoter upon 12-O-tetradecanoylphorbol-13-acetate stimulation of the cells. In these experiments, rosiglitazone treatment reduced c-JUN presence at the PED/PEA-15 promoter. This effect was not associated with a decrease in c-JUN expression. In addition, c-jun silencing in L6 cells lowered ped/pea-15 expression and caused nonresponsiveness to rosiglitazone, although c-jun overexpression enhanced the binding to the ped/pea-15 promoter and blocked the rosiglitazone effect. These results indicate that PPARγ regulates ped/pea-15 transcription by inhibiting c-JUN binding at the ped/pea-15 promoter. Thus, ped/pea-15 is downstream of a major PPARγ-regulated inflammatory network. Repression of ped/pea-15 transcription might contribute to the PPARγ regulation of muscle sensitivity to insulin.

  14. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    PubMed

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  15. Designing peptide inhibitor of insulin receptor to induce diabetes mellitus type 2 in animal model Mus musculus.

    PubMed

    Permatasari, Galuh W; Utomo, Didik H; Widodo

    2016-10-01

    A designing peptide as agent for inducing diabetes mellitus type 2 (T2DM) in an animal model is challenging. The computational approach provides a sophisticated tool to design a functional peptide that may block the insulin receptor activity. The peptide that able to inhibit the binding between insulin and insulin receptor is a warrant for inducing T2DM. Therefore, we designed a potential peptide inhibitor of insulin receptor as an agent to generate T2DM animal model by bioinformatics approach. The peptide has been developed based on the structure of insulin receptor binding site of insulin and then modified it to obtain the best properties of half life, hydrophobicity, antigenicity, and stability binding into insulin receptor. The results showed that the modified peptide has characteristics 100h half-life, high-affinity -95.1±20, and high stability 28.17 in complex with the insulin receptor. Moreover, the modified peptide has molecular weight 4420.8g/Mol and has no antigenic regions. Based on the molecular dynamic simulation, the complex of modified peptide-insulin receptor is more stable than the commercial insulin receptor blocker. This study suggested that the modified peptide has the promising performance to block the insulin receptor activity that potentially induce diabetes mellitus type 2 in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation.

    PubMed

    Tanti, Jean-François; Jager, Jennifer

    2009-12-01

    Insulin receptor substrates (IRS) serine phosphorylation is a time-controlled physiological feedback mechanism in insulin signaling that is hijacked by metabolic and inflammatory stresses to promote insulin resistance. Kinases, including IKKbeta, JNK, ERK, mTOR, and S6K, activated by the inducers of insulin resistance induce uncontrolled IRS serine phosphorylation. Studies with genetically modified mice reveal that these kinases integrate signals from metabolic and inflammatory stresses in adipose tissue, liver, and hypothalamus leading to peripheral and central insulin resistance. Moreover, IKKbeta/NF-kappaB and JNK1 pathways in myeloid cells represent a core mechanism involved in inflammation linked to obesity. These kinases are thus potential drug targets against insulin resistance and the targeting of the IKKbeta/NF-kappaB or the JNK pathway may evolve into future diabetes medication.

  17. Activation of insulin signaling and energy sensing network by AICAR, an AMPK activator in insulin resistant rat tissues.

    PubMed

    Radika, Mutlur Krishnamoorthy; Anuradha, Carani Venkatraman

    2015-11-01

    The energy status of the cell is regulated by the energy sensing network constituted by AMP-activated protein kinase (AMPK), the NAD+-dependent type III deacetylase silence information regulator T1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). This study investigates the potential effect of 5-aminoimidazole-4-carboximide-1-b-D-ribofuranoside (AICAR), an AMPK activator on insulin signaling and energy sensing network in insulin resistant rats. Adult male albino Wistar rats with body weight of 150-180 g were fed high-fructose diet (HFD) for 60 days to induce insulin resistance. Rats fed HFD were divided into two and were treated or untreated with AICAR (0.7 mg/kg bw, i.p.) for the last 2 weeks. Insulin resistant rats displayed increased glucose and insulin levels and reduced tyrosine phosphorylation of insulin resistance receptor and insulin receptor substrate 1. The downstream signaling and glucose transport were also affected. Phosphorylation of AMPK, SIRT1 protein abundance and mRNA expression of PGC-1α were reduced. Treatment with AICAR reduced hyperglycemia and hyperinsulinemia and improved the activation of the key molecules of insulin signaling. Improved action of energy sensing network was noted after AICAR treatment. AICAR showed higher binding affinity with Akt (-8.2 kcal/mol) than with AMPK or insulin receptor (-8.0 kcal/mol) in the in silico study. The findings suggest that AICAR, the AMPK activator, influences insulin signaling proteins and molecules involved in energy modulation during insulin resistance.

  18. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    SciTech Connect

    Ogunwole, J.O.A.

    1984-01-01

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-/sup 14/C-pyruvate to /sup 14/CO/sub 2/ in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P < 0.05) increase in food intake (FI) for calorie compensation. Fiber and protein intake had a significant (P < 0.01) effect on IRI and both basal (PDB) and PDS activities of PDH. At all fiber levels, specific percent /sup 125/I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group.

  19. Concerted transcriptional activation of the low density lipoprotein receptor gene by insulin and luteinizing hormone in cultured porcine granulosa-luteal cells: possible convergence of protein kinase a, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase signaling pathways.

    PubMed

    Sekar, N; Veldhuis, J D

    2001-07-01

    Insulin and insulin-like growth factor I (IGF-I) can amplify gonadotropin-stimulated steroidogenesis by augmenting the expression of key sterol regulatory genes in ovarian cells, viz. low density lipoprotein (LDL) receptor, steroidogenic acute regulatory protein, and P450 cholesterol side-chain cleavage enzyme (CYP11A). The mechanisms underlying the foregoing bihormonal interactions are not known. Accordingly, in relation to the LDL receptor gene, the present study tests the hypothesis that insulin/IGF-I and LH can act via concerted transcriptional control of promoter expression. To this end, we transiently transfected primary monolayer cultures of porcine granulosa-luteal cells with a reporter vector containing the putative 5'-upstream full-length (pLDLR1076/luc) regulatory region (-1076 to +11 bp) of the homologous LDL receptor gene driving firefly luciferase in the presence or absence of insulin (or IGF-I) and/or LH (each 100 ng/ml). Combined exposure to LH and insulin (or IGF-I) stimulated LDL receptor transcriptional activity maximally at 4 h by 8- to 20-fold, as normalized by coexpression of Renilla luciferase. Further analysis of multiple 5'-nested deletional constructs of the LDL receptor gene promoter showed that deletion of -139 bp upstream of the transcriptional start site virtually abolished basal expression and promoter responsiveness to LH and insulin/IGF-I. In contrast, full basal activity and 60-80% of maximal monohormonal and bihormonal drive were retained by the -255 to +11 bp fragment. As LDL receptor gene expression in other tissues is negatively regulated by the abundance of intracellular free cholesterol, we assessed the impact of concomitant pretreatment of granulosa-luteal cells with an exogenous soluble sterol (25-hydroxycholesterol, 1 and 10 microM). Excess sterol markedly (50-70%) attenuated bihormonally and, in lesser measure, LH-stimulated and basal LDL receptor promoter expression, thus affirming a feedback-sensitive sterol

  20. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells

    SciTech Connect

    Shimizu, Masahito; Deguchi, Atsuko; Hara, Yukihiko; Moriwaki, Hisataka; Weinstein, I. Bernard . E-mail: ibw1@columbia.edu

    2005-09-02

    The IGF/IGF-1R system, which includes the IGF, IGF-1R, and IGFBPs proteins, plays an important role in the development and growth of colorectal cancer. We previously reported that in the HT29 human colon cancer cell line EGCG, the major biologically active component of green tea, inhibits activation of the RTKs EGFR, HER2, and HER3, and that this is associated with inhibition of multiple downstream signaling pathways. Since IGF-1R is also a RTK, in this study we examined the effects of EGCG on the activity of IGF/IGF-1R system in human colon cancer cells. We found that the colon cancer cell lines Caco2, HT29, SW837, and SW480 express high levels of the IGF-1R receptor, and that both SW837 and SW480 cells display constitutive activation of this receptor. Treatment of SW837 cells with 20 {mu}g/ml of EGCG (the IC{sub 50} concentration for growth inhibition) caused within 6 h a decrease in the phosphorylated (i.e., activated) form of the IGF-1R protein. At 12 h, there was a decrease in the levels of both IGF-1 protein and mRNA and within 3-6 h there was an increase in the levels of both IGFBP-3 protein and mRNA. The increased expression of the latter protein was sustained for at least 48 h. When SW837 cells were treated with EGCG for a longer time, i.e., 96 h, a very low concentration (1.0 {mu}g/ml) of EGCG also caused inhibition of activation of IGF-1R, a decrease in the IGF-1 protein, and an increase in the IGFBP-3 protein. EGCG also caused a decrease in the levels of mRNAs that encode MMPs-7 and -9, proteins that proteolyze IGFBP-3. In addition, treatment with EGCG caused a transient increase in the expression of TGF-{beta}2, an inducer of IGFBP-3 expression. These findings expand the roles of EGCG as an inhibitor of critical RTKs involved in cell proliferation, providing further evidence that EGCG and related compounds may be useful in the chemoprevention or treatment of colorectal cancer.

  1. Serine Phosphorylation of the Insulin-like Growth Factor I (IGF-1) Receptor C-terminal Tail Restrains Kinase Activity and Cell Growth*

    PubMed Central

    Kelly, Geraldine M.; Buckley, Deirdre A.; Kiely, Patrick A.; Adams, David R.; O'Connor, Rosemary

    2012-01-01

    Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the 1248SFYYS1252 motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling. PMID:22685298

  2. Mutations at the dimer, hexamer, and receptor-binding surfaces of insulin independently affect insulin-insulin and insulin-receptor interactions

    SciTech Connect

    Shoelson, S.E.; Zixian Lu; Parlautan, L.; Lynch, C.S.; Weiss, M.A. )

    1992-02-18

    Mutagenesis of the dimer- and hexamer-forming surfaces of insulin yields analogues with reduced tendencies to aggregate and dramatically altered pharmacokinetic properties. The authors recently showed that one such analogue, HisB1- {yields} Asp, ProB28 {yields} Lys, LysB29 {yields} Pro human insulin (DKP-insulin), has enhanced affinity for the insulin receptor and is useful for studying the structure of the insulin monomer under physiologic solvent conditions. DKP-insulin retains native secondary and tertiary structure in solution and may therefore provide an appropriate baseline for further studies of related analogues containing additional substitutions within the receptor-binding surface of insulin. To test this, they prepared a family of DKP analogues having potency-altering substitutions at the B24 and B25 positions using a streamlined approach to enzymatic semisynthesis which negates the need for amino-group protection. For comparison, similar analogues of native human insulin were prepared by standard semisynthetic methods. The DKP analogues show a reduced tendency to self-associate, as indicated by {sup 1}H-NMR resonance line widths. Such 'template independence' reflects an absence of functional interactions between the B24 and B25 sites and additional substitutions in DKP-insulin and demonstrates that mutations in discrete surfaces of insulin have independent effects on protein structure and function. In particular, the respective receptor-recognition (PheB24, PheB25), hexamer-forming (HisB10), and dimer-forming (ProB28, LysB29) surfaces of insulin may be regarding as independent targets for protein design. DKP-insulin provides an appropriate biophysical model for defining structure-function relationships in a monomeric template.

  3. Oestrogen requires the insulin-like growth factor-I receptor for stimulation of prolactin synthesis via mitogen-activated protein kinase.

    PubMed

    Arroba, A I; Frago, L M; Argente, J; Chowen, J A

    2005-02-01

    Sex steroids and growth factors interact at the intracellular level in a variety of tissues to control numerous physiological functions. Oestrogen is known to stimulate prolactin synthesis and secretion, but the effect of insulin-like growth factor (IGF)-I is less clear. We used GH3 cells, a somatolactotroph cell line, to study the interaction of 17beta-oestradiol (E(2)) and IGF-I on prolactin protein levels and the intracellular mechanisms involved. Cell cultures were treated with E(2) (10 nM) and/or IGF-I (10 ng/ml) for 8 h. The real-time reverse transcriptase-polymerase chain reaction, Western blot and enzyme-immunoassay were used to determine changes in prolactin mRNA and protein levels. At this time-point, there were no significant changes in cell number, prolactin mRNA expression, or the amount of secreted prolactin. However, E(2) increased intracellular prolactin concentrations. IGF-I alone had no effect, but blocked the stimulatory effect of E(2). MAPK (ERK1/2) activation, as determined by Western blot analysis, increased with both E(2) and IGF-I, but not with the combination of these factors. The MAPK inhibitor PD98059 blocked the ability of E(2) to increase intracellular prolactin concentrations. Similarly, the IGF-I receptor antagonist, JB1, blocked the effect of E(2) on prolactin synthesis and MAPK activation, as did the oestrogen receptor antagonist ICI182 780. These results suggest that, to stimulate prolactin synthesis, E(2) activates the MAPK cascade and that this requires the presence of both oestrogen and IGF-I receptors.

  4. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression.

    PubMed

    Kong, Wei-Jia; Zhang, Hao; Song, Dan-Qing; Xue, Rong; Zhao, Wei; Wei, Jing; Wang, Yue-Ming; Shan, Ning; Zhou, Zhen-Xian; Yang, Peng; You, Xue-Fu; Li, Zhuo-Rong; Si, Shu-Yi; Zhao, Li-Xun; Pan, Huai-Ning; Jiang, Jian-Dong

    2009-01-01

    Natural product berberine (BBR) has been reported to have hypoglycemic and insulin-sensitizing activities; however, its mechanism remains unclear. This study was designed to investigate the molecular mechanism of BBR against insulin resistance. Here, we identify insulin receptor (InsR) as a target of BBR to increase insulin sensitivity. In cultured human liver cells, BBR increased InsR messenger RNA (mRNA) and protein expression in a dose- and time-dependent manner. Berberine increased InsR expression in the L6 rat skeletal muscle cells as well. Berberine-enhanced InsR expression improved cellular glucose consumption only in the presence of insulin. Silencing InsR gene with small interfering RNA or blocking the phosphoinositol-3-kinase diminished this effect. Berberine induced InsR gene expression through a protein kinase C (PKC)-dependent activation of its promoter. Inhibition of PKC abolished BBR-caused InsR promoter activation and InsR mRNA transcription. In animal models, treatment of type 2 diabetes mellitus rats with BBR lowered fasting blood glucose and fasting serum insulin, increased insulin sensitivity, and elevated InsR mRNA as well as PKC activity in the liver. In addition, BBR lowered blood glucose in KK-Ay type 2 but not in NOD/LtJ type 1 diabetes mellitus mice that were insulin deficient. Our results suggest that BBR is a unique natural medicine against insulin resistance in type 2 diabetes mellitus and metabolic syndrome.

  5. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  6. Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells.

    PubMed

    Lee, Jun Hee; Lee, Sang Hun; Lee, Hyang Seon; Ji, Seung Taek; Jung, Seok Yun; Kim, Jae Ho; Bae, Sun Sik; Kwon, Sang-Mo

    2016-09-01

    Adipogenic differentiation of mesenchymal stem cells (MSCs) is critical for metabolic homeostasis and nutrient signaling during development. However, limited information is available on the pivotal modulators of adipogenic differentiation of MSCs. Adaptor protein Lnk (Src homology 2B3 [SH2B3]), which belongs to a family of SH2-containing proteins, modulates the bioactivities of different stem cells, including hematopoietic stem cells and endothelial progenitor cells. In this study, we investigated whether an interaction between insulin-like growth factor-1 receptor (IGF-1R) and Lnk regulated IGF-1-induced adipogenic differentiation of MSCs. We found that wild-type MSCs showed greater adipogenic differentiation potential than Lnk (-/-) MSCs. An ex vivo adipogenic differentiation assay showed that Lnk (-/-) MSCs had decreased adipogenic differentiation potential compared with wild-type MSCs. Interestingly, we found that Lnk formed a complex with IGF-1R and that IGF-1 induced the dissociation of this complex. In addition, we observed that IGF-1-induced increase in the phosphorylation of Akt and mammalian target of rapamycin was triggered by the dissociation of the IGF-1R-Lnk complex. Expression levels of a pivotal transcription factor peroxisome proliferator-activated receptor gamma (PPAR-γ) and its adipogenic target genes (LPL and FABP4) significantly decreased in Lnk (-/-) MSCs. These results suggested that Lnk adaptor protein regulated the adipogenesis of MSCs through the IGF-1/Akt/PPAR-γ pathway.

  7. Tyrosine phosphorylation of phosphoinositide-dependent kinase 1 by the insulin receptor is necessary for insulin metabolic signaling.

    PubMed

    Fiory, Francesca; Alberobello, Anna Teresa; Miele, Claudia; Oriente, Francesco; Esposito, Iolanda; Corbo, Vincenzo; Ruvo, Menotti; Tizzano, Barbara; Rasmussen, Thomas E; Gammeltoft, Steen; Formisano, Pietro; Beguinot, Francesco

    2005-12-01

    In L6 myoblasts, insulin receptors with deletion of the C-terminal 43 amino acids (IR(Delta43)) exhibited normal autophosphorylation and IRS-1/2 tyrosine phosphorylation. The L6 cells expressing IR(Delta43) (L6(IRDelta43)) also showed no insulin effect on glucose uptake and glycogen synthase, accompanied by a >80% decrease in insulin induction of 3-phosphoinositide-dependent protein kinase 1 (PDK-1) activity and tyrosine phosphorylation and of protein kinase B (PKB) phosphorylation at Thr(308). Insulin induced the phosphatidylinositol 3 kinase-dependent coprecipitation of PDK-1 with wild-type IR (IR(WT)), but not IR(Delta43). Based on overlay blotting, PDK-1 directly bound IR(WT), but not IR(Delta43). Insulin-activated IR(WT), and not IR(Delta43), phosphorylated PDK-1 at tyrosines 9, 373, and 376. The IR C-terminal 43-amino-acid peptide (C-terminal peptide) inhibited in vitro PDK-1 tyrosine phosphorylation by the IR. Tyr-->Phe substitution prevented this inhibitory action. In the L6(hIR) cells, the C-terminal peptide coprecipitated with PDK-1 in an insulin-stimulated fashion. This peptide simultaneously impaired the insulin effect on PDK-1 coprecipitation with IR(WT), on PDK-1 tyrosine phosphorylation, on PKB phosphorylation at Thr(308), and on glucose uptake. Upon insulin exposure, PDK-1 membrane persistence was significantly reduced in L6(IRDelta43) compared to control cells. In L6 cells expressing IR(WT), the C-terminal peptide also impaired insulin-dependent PDK-1 membrane persistence. Thus, PDK-1 directly binds to the insulin receptor, followed by PDK-1 activation and insulin metabolic effects.

  8. Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway.

    PubMed

    Bernis, María E; Oksdath, Mariana; Dupraz, Sebastián; Nieto Guil, Alvaro; Fernández, Marisa M; Malchiodi, Emilio L; Rosso, Silvana B; Quiroga, Santiago

    2013-01-01

    Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r) and the phosphatidylinositol 3 kinase (PI3k) pathway. Wingless-type family growth factors (Wnts) have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs) isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a) was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k, and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR) experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7.

  9. Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway

    PubMed Central

    Bernis, María E.; Oksdath, Mariana; Dupraz, Sebastián; Nieto Guil, Alvaro; Fernández, Marisa M.; Malchiodi, Emilio L.; Rosso, Silvana B.; Quiroga, Santiago

    2013-01-01

    Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r) and the phosphatidylinositol 3 kinase (PI3k) pathway. Wingless-type family growth factors (Wnts) have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs) isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a) was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k, and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR) experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7. PMID:24298236

  10. Insulin phosphorylates calmodulin in preparations of solubilized rat hepatocyte insulin receptors

    SciTech Connect

    Sacks, D.B.; McDonald, J.M.

    1987-05-01

    It has previously been shown that insulin stimulates the phosphorylation of calmodulin in adipocyte insulin receptor preparations. Here they demonstrate that insulin also stimulates the phosphorylation of calmodulin in wheat germ lectin-enriched insulin receptor preparations obtained from rat hepatocytes. Standard phosphorylation assays were performed at 30C in the presence of 50mM Tris-HCl (pH 7.5), 0.1% (v/v) Triton X-100, 1mM EGTA, 50 M (el-TSP)ATP, 5mM MgCl2, 0.25 M polylysine, 1.2 M calmodulin and various CaS and insulin concentrations. The phosphorylation of calmodulin was determined by SDS-PAGE and autoradiography. Phosphorylation of calmodulin had an absolute requirement for insulin receptors, insulin and certain basic proteins. Phosphorylation was maximal above 13 nM insulin and at submicromolar CaS concentrations, whereas supramicromolar CaS concentrations were inhibitory. As was observed in the adipocyte insulin receptor system, calmodulin phosphorylation was dependent upon the presence of co-factors, such as polylysine, histone H/sub f/2b and protamine sulfate. The role played by these co-factors has not yet been established. These data suggest that both CaS and calmodulin participate in post receptor insulin events in hepatocytes.

  11. Nerve Growth Factor Receptor TrkA, a New Receptor in Insulin Signaling Pathway in PC12 Cells*

    PubMed Central

    Geetha, Thangiah; Rege, Shraddha D.; Mathews, Salome E.; Meakin, Susan O.; White, Morris F.; Babu, Jeganathan Ramesh

    2013-01-01

    TrkA is a cell surface transmembrane receptor tyrosine kinase for nerve growth factor (NGF). TrkA has an NPXY motif and kinase regulatory loop similar to insulin receptor (INSR) suggesting that NGF→TrkA signaling might overlap with insulin→INSR signaling. During insulin or NGF stimulation TrkA, insulin receptor substrate-1 (IRS-1), INSR (and presumably other proteins) forms a complex in PC12 cells. In PC12 cells, tyrosine phosphorylation of INSR and IRS-1 is dependent upon the functional TrkA kinase domain. Moreover, expression of TrkA kinase-inactive mutant blocked the activation of Akt and Erk5 in response to insulin or NGF. Based on these data, we propose that TrkA participates in insulin signaling pathway in PC12 cells. PMID:23749991

  12. Nerve growth factor receptor TrkA, a new receptor in insulin signaling pathway in PC12 cells.

    PubMed

    Geetha, Thangiah; Rege, Shraddha D; Mathews, Salome E; Meakin, Susan O; White, Morris F; Babu, Jeganathan Ramesh

    2013-08-16

    TrkA is a cell surface transmembrane receptor tyrosine kinase for nerve growth factor (NGF). TrkA has an NPXY motif and kinase regulatory loop similar to insulin receptor (INSR) suggesting that NGF→TrkA signaling might overlap with insulin→INSR signaling. During insulin or NGF stimulation TrkA, insulin receptor substrate-1 (IRS-1), INSR (and presumably other proteins) forms a complex in PC12 cells. In PC12 cells, tyrosine phosphorylation of INSR and IRS-1 is dependent upon the functional TrkA kinase domain. Moreover, expression of TrkA kinase-inactive mutant blocked the activation of Akt and Erk5 in response to insulin or NGF. Based on these data, we propose that TrkA participates in insulin signaling pathway in PC12 cells.

  13. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    PubMed

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  14. Molecular Basis of Signaling Specificity of Insulin and IGF Receptors: Neglected Corners and Recent Advances

    PubMed Central

    Siddle, Kenneth

    2011-01-01

    Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of “metabolic” and “mitogenic” responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to “metabolic” and “mitogenic” responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in “metabolic” or “mitogenic” signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears

  15. The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity.

    PubMed

    Patil, Nitin A; Bathgate, Ross A D; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger; Grosse, Johannes; Hughes, Richard A; Wade, John D; Hossain, Mohammed Akhter

    2016-04-01

    Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.

  16. Insulin receptor: Interaction with nonreceptor glycoprotein from liver cell membranes

    PubMed Central

    Maturo, Joseph M.; Hollenberg, Morley D.

    1978-01-01

    In crude receptor preparations (either particulate or soluble) of rat liver membranes, the insulin receptor exhibits complicated binding kinetics (two binding plateaus, half-saturated at approximately 60 pM and 700 pM insulin) and an apparent chromatographic heterogeneity, suggested by the presence of two detectable, soluble insulin-binding components with apparent Stokes radii of 72 Å and 38 Å. In contrast, the insulin receptor isolated by affinity chromatography exhibits a simple binding isotherm (half-maximal saturation of binding at 700 pM insulin) without evidence for negative cooperativity and behaves as a single component (apparent Stokes radius of 38 Å) upon chromatography on Sepharose 6B. The apparent discrepancies between the properties of the unpurified insulin receptor and the affinity-purified receptor can be attributed to the presence in crude preparations of a nonreceptor constituent(s) having properties consistent with those of a membrane glycoprotein. A glycoprotein fraction from such crude soluble membrane preparations, freed from insulin receptor and subsequently partially purified using concanavalin-A-agarose, when combined with affinity-purified insulin receptor, causes both a reappearance of the complicated binding kinetics and an increase in the receptor's apparent Stokes radius from 38 Å to 72 Å. Similar results are observed for a glycoprotein fraction obtained from rat adipocyte membranes but are not observed for an identical fraction isolated from human erythrocyte membranes. We conclude that the insulin receptor in rat liver membranes can interact with another nonreceptor membrane glycoprotein that may represent either a nonrecognition moiety of the receptor oligomer or an effector molecule to the biological action of insulin. PMID:277909

  17. Cytoplasmic domains determine signal specificity, cellular routing characteristics and influence ligand binding of epidermal growth factor and insulin receptors.

    PubMed Central

    Riedel, H; Dull, T J; Honegger, A M; Schlessinger, J; Ullrich, A

    1989-01-01

    The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing. Images PMID:2583088

  18. [A case of leprechaunism with extreme insulin resistance due to a primary defect in insulin receptors].

    PubMed

    Goji, K; Takata, Y; Kobayashi, M

    1985-09-20

    This report describes a 3-month-old female infant with the typical physical features of leprechaunism. The patient demonstrated glucose intolerance and marked hyperinsulinemia (4600 microU/ml). Since an intravenous insulin injection (actrapid insulin: 0.15 U/kg) caused no significant decrease in the blood glucose level, the presence of insulin resistance was suggested. Neither insulin antibodies nor insulin receptor antibodies were were found in the patient's plasma, and other circulating insulin antagonists such as glucagon, growth hormone, and cortisol were within normal limits. [125I]Insulin binding to the erythrocytes from the patient was as low as 1.02% (control infants: 4.89 +/- 1.08% [mean +/- SD]). [125I]Insulin binding to the cultured transformed lymphocytes from the patient was similarly reduced to 3.58% (control: 20.9 +/- 2.71% [mean +/- SD]). From these findings we concluded that the insulin resistance was due to a primary defect in insulin receptors. Interestingly, transient remissions of the patient's glucose intolerance and hyperinsulinemia were observed during a year of follow-up study. The insulin tolerance test which was performed at the remission period showed an improvement in insulin resistance. However, the insulin binding defect to erythrocytes remained unchanged even at the remission period. The exact cause of these remissions was not clear and remained to be elucidated.

  19. Insulin response sequence-dependent and -independent mechanisms mediate effects of insulin on glucocorticoid-stimulated insulin-like growth factor binding protein-1 promoter activity.

    PubMed

    Gan, Lixia; Pan, Haiyun; Unterman, Terry G

    2005-10-01

    IGF binding protein-1 (IGFBP-1) gene expression is stimulated by glucocorticoids and suppressed by insulin in the liver. Insulin response sequences (IRSs) mediate effects of insulin on basal promoter function, whereas glucocorticoids stimulate promoter activity through a contiguous glucocorticoid response element. Here we examined the role of IRS-dependent and -independent mechanisms in mediating insulin and glucocorticoids effects on IGFBP-1 promoter activity. Dexamethasone (Dex) stimulates IGFBP-1 promoter activity in HepG2 cells, and mutation of IRSs reduces this effect, indicating that IRS-associated factors enhance glucocorticoid effects on promoter function. Conversely, insulin inhibits basal promoter activity by 40% and Dex-stimulated promoter activity by 65%, indicating that glucocorticoids enhance the ability of insulin to suppress promoter activity. Mutation of IRSs completely disrupts the insulin effect on basal promoter activity and reduces but does not abolish inhibition of Dex-stimulated promoter activity, indicating that insulin suppresses glucocorticoid-stimulated promoter activity through both IRS-dependent and -independent mechanisms. IRS-independent effects of insulin are context dependent because insulin does not suppress glucocorticoid-stimulated activity of a promoter containing multiple glucocorticoid response elements. Cotransfection studies indicate that suppression of peroxisomal proliferator-activated receptor-gamma coactivator-1alpha, an insulin-regulated coactivator of the glucocorticoid receptor, is not required for this effect of insulin. Studies with pharmacological inhibitors indicate that both phosphatidylinositol-3' kinase and mitogen-activated kinase kinase pathways contribute to IRS-independent effects. These studies indicate that glucocorticoids and IRS-associated factors function together to mediate effects of insulin and glucocorticoids on promoter activity and that glucocorticoid treatment creates a complex environment in

  20. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation.

    PubMed

    Borradaile, Nica M; de Dreu, Linda E; Huff, Murray W

    2003-10-01

    The flavonoid naringenin improves hyperlipidemia and hyperglycemia in streptozotocin-treated rats. In HepG2 human hepatoma cells, naringenin inhibits apolipoprotein B (apoB) secretion primarily by inhibiting microsomal triglyceride transfer protein and enhances LDL receptor (LDLr)-mediated apoB-containing lipoprotein uptake. Phosphatidylinositol 3-kinase (PI3K) activation by insulin increases sterol regulatory element-binding protein (SREBP)-1 and LDLr expression and inhibits apoB secretion in hepatocytes. Thus, we determined whether naringenin activates this pathway. Insulin and naringenin induced PI3K-dependent increases in cytosolic and nuclear SREBP-1 and LDLr expression. Similar PI3K-mediated increases in SREBP-1 were observed in McA-RH7777 rat hepatoma cells, which express predominantly SREBP-1c. Reductions in HepG2 cell media apoB with naringenin were partially attenuated by wortmannin, whereas the effect of insulin was completely blocked. Both treatments reduced apoB100 secretion in wild-type and LDLr(-/-) mouse hepatocytes to the same extent. Insulin and naringenin increased HepG2 cell PI3K activity and decreased insulin receptor substrate (IRS)-2 levels. In sharp contrast to insulin, naringenin did not induce tyrosine phosphorylation of IRS-1. We conclude that naringenin increases LDLr expression in HepG2 cells via PI3K-mediated upregulation of SREBP-1, independent of IRS-1 phosphorylation. Although this pathway may not regulate apoB secretion in primary hepatocytes, PI3K activation by this novel mechanism may explain the insulin-like effects of naringenin in vivo.

  1. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance.

    PubMed

    Mauer, Jan; Chaurasia, Bhagirath; Plum, Leona; Quast, Thomas; Hampel, Brigitte; Blüher, Matthias; Kolanus, Waldemar; Kahn, C Ronald; Brüning, Jens C

    2010-05-06

    A major component of obesity-related insulin resistance is the establishment of a chronic inflammatory state with invasion of white adipose tissue by mononuclear cells. This results in the release of pro-inflammatory cytokines, which in turn leads to insulin resistance in target tissues such as skeletal muscle and liver. To determine the role of insulin action in macrophages and monocytes in obesity-associated insulin resistance, we conditionally inactivated the insulin receptor (IR) gene in myeloid lineage cells in mice (IR(Deltamyel)-mice). While these animals exhibit unaltered glucose metabolism on a normal diet, they are protected from the development of obesity-associated insulin resistance upon high fat feeding. Euglycemic, hyperinsulinemic clamp studies demonstrate that this results from decreased basal hepatic glucose production and from increased insulin-stimulated glucose disposal in skeletal muscle. Furthermore, IR(Deltamyel)-mice exhibit decreased concentrations of circulating tumor necrosis factor (TNF) alpha and thus reduced c-Jun N-terminal kinase (JNK) activity in skeletal muscle upon high fat feeding, reflecting a dramatic reduction of the chronic and systemic low-grade inflammatory state associated with obesity. This is paralleled by a reduced accumulation of macrophages in white adipose tissue due to a pronounced impairment of matrix metalloproteinase (MMP) 9 expression and activity in these cells. These data indicate that insulin action in myeloid cells plays an unexpected, critical role in the regulation of macrophage invasion into white adipose tissue and in the development of obesity-associated insulin resistance.

  2. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    PubMed Central

    Root-Bernstein, Robert; Podufaly, Abigail; Dillon, Patrick F.

    2014-01-01

    Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance. PMID:25101056

  3. Insulin receptors and downstream substrates associate with membrane microdomains after treatment with insulin or chromium(III) picolinate.

    PubMed

    Al-Qatati, Abeer; Winter, Peter W; Wolf-Ringwall, Amber L; Chatterjee, Pabitra B; Van Orden, Alan K; Crans, Debbie C; Roess, Deborah A; Barisas, B George

    2012-04-01

    We have examined the association of insulin receptors (IR) and downstream signaling molecules with membrane microdomains in rat basophilic leukemia (RBL-2H3) cells following treatment with insulin or tris(2-pyridinecarbxylato)chromium(III) (Cr(pic)(3)). Single-particle tracking demonstrated that individual IR on these cells exhibited reduced lateral diffusion and increased confinement within 100 nm-scale membrane compartments after treatment with either 200 nM insulin or 10 μM Cr(pic)(3). These treatments also increased the association of native IR, phosphorylated insulin receptor substrate 1 and phosphorylated AKT with detergent-resistant membrane microdomains of characteristically high buoyancy. Confocal fluorescence microscopic imaging of Di-4-ANEPPDHQ labeled RBL-2H3 cells also showed that plasma membrane lipid order decreased following treatment with Cr(pic)(3) but was not altered by insulin treatment. Fluorescence correlation spectroscopy demonstrated that Cr(pic)(3) did not affect IR cell-surface density or compete with insulin for available binding sites. Finally, Fourier transform infrared spectroscopy indicated that Cr(pic)(3) likely associates with the lipid interface in reverse-micelle model membranes. Taken together, these results suggest that activation of IR signaling in a cellular model system by both insulin and Cr(pic)(3) involves retention of IR in specialized nanometer-scale membrane microdomains but that the insulin-like effects of Cr(pic)(3) are due to changes in membrane lipid order rather than to direct interactions with IR.

  4. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

    PubMed

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A; Hamilton, Elisha J; Figtree, Gemma A; Rasmussen, Helge H

    2015-09-01

    Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes.

  5. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade

    PubMed Central

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A.; Hamilton, Elisha J.; Figtree, Gemma A.

    2015-01-01

    Dysregulated nitric oxide (NO)- and superoxide (O2·−)-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na+-K+ pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na+-K+ pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47phox and membranous p22phox NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47phox to p22phox with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na+-K+ pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22phox with p47phox, abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na+-K+ pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na+-K+ pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. PMID:26063704

  6. Replacement of insulin receptor tyrosine residues 1162 and 1163 does not alter the mitogenic effect of the hormone

    SciTech Connect

    Debant, A.; Clauser, E.; Ponzio, G.; Filloux, C.; Auzan, C.; Contreres, J.O.; Rossi, B. )

    1988-11-01

    Chinese hamster ovary transfectants that express insulin receptors in which tyrosine residues 1162 and 1163 were replaced by phenylalanine exhibit a total inhibition of the insulin-mediated tyrosine kinase activity toward exogenous substrates; this latter activity is associated with total inhibition of the hypersensitivity reported for insulin in promoting 2-deoxyglucose uptake. The authors now present evidence that the twin tyrosines also control the insulin-mediated stimulation of glycogen synthesis. Surprisingly, this type of Chinese hamster ovary transfectant is as hypersensitive to insulin for its mitogenic effect as are Chinese hamster ovary cells expressing many intact insulin receptors. Such data suggest that (i) the insulin mitogenic effect routes through a different pathway than insulin uses to activate the transport and metabolism of glucose and (ii) the mitogenic effect of insulin is not controlled by the twin tyrosines. At the molecular level, the solubilized mutated receptor has not insulin-dependent tyrosine kinase activity, whereas this receptor displays measurable insulin-stimulated phosphorylation of its {beta} subunit in {sup 32}P-labeled cells. The authors therefore propose that the autocatalytic phosphorylating activity of the receptor reports a cryptic tyrosine kinase activity that cannot be visualized by the use of classical exogenous substrates.

  7. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes.

    PubMed

    Yin, T; Tsang, M L; Yang, Y C

    1994-10-28

    Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.

  8. Differing effects of antiinsulin serum and antiinsulin receptor serum on 123I-insulin metabolism in rats.

    PubMed Central

    Sodoyez, J C; Sodoyez Goffaux, F; von Frenckell, R; De Vos, C J; Treves, S; Kahn, C R

    1985-01-01

    Anesthetized rats were treated with saline, antiinsulin receptor serum, or antiinsulin serum, and the biodistribution of high pressure liquid chromatography-purified 123I-Tyr A14-insulin was studied by scintillation scanning. Time activity curves over organs of interest were calibrated by sacrificing the rats at the end of the experiment and directly determining the radioactivity in the blood, liver, and kidneys. Saline-treated rats exhibited normal insulin biodistribution. The highest concentration of 123I-insulin was found in the liver, and reached 30% of total injected dose between 3 and 5 min after injection. After this peak, activity rapidly decreased with a t1/2 of 6 min. Activity of 123I-insulin in kidney showed a more gradual rise and fall and was approximately 15% of injected dose at its maximum. In rats treated with antiinsulin antiserum, insulin biodistribution was markedly altered. Peak liver activity increased with increasing antibody concentration with up to 90% of injected dose appearing in the liver. In addition, there was no clearance of the liver 123I-insulin over 30 min. Autoradiographic studies demonstrated that in contrast to the normal rats in which radioactivity was associated with hepatocytes, in rats passively immunized with anti-insulin serum, 125I-insulin was associated primarily with the Kuppfer cells. In contrast, antibodies to the insulin receptor markedly inhibited 123I-insulin uptake by the liver. Kidney activity increased, reflecting the amount of free 123I-insulin that reached this organ. This is similar to the pattern observed when insulin receptors are saturated with a high concentration of unlabeled insulin. Thus, both insulin antibodies and anti-receptor antibodies alter the distribution of insulin, but with very different patterns. The use of 123I-insulin and scintillation scanning allows one to study specific alterations in insulin distribution in animal models of insulin-resistant states, and should also be useful in human

  9. Insulin-induced myosin light-chain phosphorylation during receptor capping in IM-9 human B-lymphoblasts.

    PubMed Central

    Majercik, M H; Bourguignon, L Y

    1988-01-01

    We have examined further the interaction between insulin surface receptors and the cytoskeleton of IM-9 human lymphoblasts. Using immunocytochemical techniques, we determined that actin, myosin, calmodulin and myosin light-chain kinase (MLCK) are all accumulated directly underneath insulin-receptor caps. In addition, we have now established that the concentration of intracellular Ca2+ (as measured by fura-2 fluorescence) increases just before insulin-induced receptor capping. Most importantly, we found that the binding of insulin to its receptor induces phosphorylation of myosin light chain in vivo. Furthermore, a number of drugs known to abolish the activation properties of calmodulin, such as trifluoperazine (TFP) or W-7, strongly inhibit insulin-receptor capping and myosin light-chain phosphorylation. These data imply that an actomyosin cytoskeletal contraction, regulated by Ca2+/calmodulin and MLCK, is involved in insulin-receptor capping. Biochemical analysis in vitro has revealed that IM-9 insulin receptors are physically associated with actin and myosin; and most interestingly, the binding of insulin-receptor/cytoskeletal complex significantly enhances the phosphorylation of the 20 kDa myosin light chain. This insulin-induced phosphorylation is inhibited by calmodulin antagonists (e.g. TFP and W-7), suggesting that the phosphorylation is catalysed by MLCK. Together, these results strongly suggest that MLCK-mediated myosin light-chain phosphorylation plays an important role in regulating the membrane-associated actomyosin contraction required for the collection of insulin receptors into caps. Images Fig. 2. Fig. 4. PMID:3048249

  10. Nuclear insulin-like growth factor-1 receptor (IGF1R) displays proliferative and regulatory activities in non-malignant cells.

    PubMed

    Solomon-Zemler, Ravid; Sarfstein, Rive; Werner, Haim

    2017-01-01

    The insulin-like growth factor-1 receptor (IGF1R) mediates the biological actions of IGF1 and IGF2. The IGF1R is involved in both physiological and pathological activities and is usually overexpressed in most types of cancer. In addition to its classical mechanism of action, recent evidence has shown a nuclear presence of IGF1R, associated with novel genomic/transcriptional types of activities. The present study was aimed at evaluating the hypothesis that nuclear IGF1R localization is not restricted to cancer cells and might constitute a novel physiologically relevant regulatory mechanism. Our data shows that nuclear translocation takes place in a wide array of cells, including normal diploid fibroblasts. In addition, we provide evidence for a synergistic effect of a nuclear translocation blocker along with selective IGF1R inhibitors in terms of decreasing cell proliferation. Given the important role of the IGF1R in mitogenesis, the present results may be of translational relevance in cancer research. In conclusion, results are consistent with the concept that nuclear IGF1R fulfills important physiological and pathological roles.

  11. Short-term in vivo inhibition of insulin receptor substrate-1 expression leads to insulin resistance, hyperinsulinemia, and increased adiposity.

    PubMed

    Araújo, Eliana P; De Souza, Cláudio T; Gasparetti, Alessandra L; Ueno, Mirian; Boschero, Antonio C; Saad, Mário J A; Velloso, Lício A

    2005-03-01

    Insulin receptor substrate-1 (IRS-1) has an important role as an early intermediary between the insulin and IGF receptors and downstream molecules that participate in insulin and IGF-I signal transduction. Here we employed an antisense oligonucleotide (IRS-1AS) to inhibit whole-body expression of IRS-1 in vivo and evaluate the consequences of short-term inhibition of IRS-1 in Wistar rats. Four days of treatment with IRS-1AS reduced the expression of IRS-1 by 80, 75, and 65% (P < 0.05) in liver, skeletal muscle, and adipose tissue, respectively. This was accompanied by a 40% (P < 0.05) reduction in the constant of glucose decay during an insulin tolerance test, a 78% (P < 0.05) reduction in glucose consumption during a hyperinsulinemic-euglycemic clamp, and a 90% (P < 0.05) increase in basal plasma insulin level. The metabolic effects produced by IRS-1AS were accompanied by a significant reduction in insulin-induced [Ser (473)] Akt phosphorylation in liver (85%, P < 0.05), skeletal muscle (40%, P < 0.05), and adipose tissue (85%, P < 0.05) and a significant reduction in insulin-induced tyrosine phosphorylation of ERK in liver (20%, P < 0.05) and skeletal muscle (30%, P < 0.05). However, insulin-induced tyrosine phosphorylation of ERK was significantly increased (60%, P < 0.05) in adipose tissue of IRS-1AS-treated rats. In rats treated with IRS-1AS for 8 d, a 100% increase (P < 0.05) in relative epididymal fat weight and a 120% (P < 0.05) increase in nuclear expression of peroxisome proliferator-activated receptor-gamma were observed. Thus, acute inhibition of IRS-1 expression in rats leads to insulin resistance accompanied by activation of a growth-related pathway exclusively in white adipose tissue.

  12. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling

    PubMed Central

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication. PMID:26986757

  13. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling.

    PubMed

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.

  14. The R3 receptor-like protein tyrosine phosphatase subfamily inhibits insulin signalling by dephosphorylating the insulin receptor at specific sites.

    PubMed

    Shintani, Takafumi; Higashi, Satoru; Takeuchi, Yasushi; Gaudio, Eugenio; Trapasso, Francesco; Fusco, Alfredo; Noda, Masaharu

    2015-09-01

    The autophosphorylation of specific tyrosine residues occurs in the cytoplasmic region of the insulin receptor (IR) upon insulin binding, and this in turn initiates signal transduction. The R3 subfamily (Ptprb, Ptprh, Ptprj and Ptpro) of receptor-like protein tyrosine phosphatases (RPTPs) is characterized by an extracellular region with 6-17 fibronectin type III-like repeats and a cytoplasmic region with a single phosphatase domain. We herein identified the IR as a substrate for R3 RPTPs by using the substrate-trapping mutants of R3 RPTPs. The co-expression of R3 RPTPs with the IR in HEK293T cells suppressed insulin-induced tyrosine phosphorylation of the IR. In vitro assays using synthetic phosphopeptides revealed that R3 RPTPs preferentially dephosphorylated a particular phosphorylation site of the IR: Y960 in the juxtamembrane region and Y1146 in the activation loop. Among four R3 members, only Ptprj was co-expressed with the IR in major insulin target tissues, such as the skeletal muscle, liver and adipose tissue. Importantly, the activation of IR and Akt by insulin was enhanced, and glucose and insulin tolerance was improved in Ptprj-deficient mice. These results demonstrated Ptprj as a physiological enzyme that attenuates insulin signalling in vivo, and indicate that an inhibitor of Ptprj may be an insulin-sensitizing agent. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  15. Restoration of insulin secretion in pancreatic islets of protein-deficient rats by reduced expression of insulin receptor substrate (IRS)-1 and IRS-2.

    PubMed

    Araujo, E P; Amaral, M E C; Filiputti, E; De Souza, C T; Laurito, T L; Augusto, V D; Saad, M J A; Boschero, A C; Velloso, L A; Carneiro, E M

    2004-04-01

    Autocrine and paracrine insulin signaling may participate in the fine control of insulin secretion. In the present study, tissue distribution and protein amounts of the insulin receptor and its major substrates, insulin receptor substrate (IRS)-1 and IRS-2, were evaluated in a model of impaired glucose-induced insulin secretion, the protein-deficient rat. Immunoblot and RT-PCR studies showed that the insulin receptor and IRS-2 expression are increased, whilst IRS-1 protein and mRNA contents are decreased in pancreatic islets of protein-deficient rats. Immunohistochemical studies revealed that the insulin receptor and IRS-1 and -2 are present in the great majority of islet cells; however, the greatest staining was localized at the periphery, suggesting a co-localization with non-insulin-secreting cells. Exogenous insulin stimulation of isolated islets promoted higher insulin receptor and IRS-1 and -2 tyrosine phosphorylation in islets from protein-deficient rats, as compared with controls. Moreover, insulin-induced IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activity are increased in islets of protein-deficient rats. The reduction of IRS-1 and IRS-2 protein expression in islets isolated from protein-deficient rats by the use of antisense IRS-1 or IRS-2 phosphorthioate-modified oligonucleotides partially restored glucose-induced insulin secretion. Thus, the impairment of insulin cell signaling through members of the IRS family of proteins in isolated rat pancreatic islets improves glucose-induced insulin secretion. The present data reinforced the role of insulin paracrine and autocrine signaling in the control of its own secretion.

  16. Differential Effects of Camel Milk on Insulin Receptor Signaling – Toward Understanding the Insulin-Like Properties of Camel Milk

    PubMed Central

    Abdulrahman, Abdulrasheed O.; Ismael, Mohammad A.; Al-Hosaini, Khaled; Rame, Christelle; Al-Senaidy, Abdulrahman M.; Dupont, Joëlle; Ayoub, Mohammed Akli

    2016-01-01

    Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications. PMID:26858689

  17. Differential Effects of Camel Milk on Insulin Receptor Signaling - Toward Understanding the Insulin-Like Properties of Camel Milk.

    PubMed

    Abdulrahman, Abdulrasheed O; Ismael, Mohammad A; Al-Hosaini, Khaled; Rame, Christelle; Al-Senaidy, Abdulrahman M; Dupont, Joëlle; Ayoub, Mohammed Akli

    2016-01-01

    Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.

  18. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2

    USDA-ARS?s Scientific Manuscript database

    Insulin receptor substrates (IRSs) are signaling adaptors that play a major role in the metabolic and mitogenic actions of insulin and insulin-like growth factors. Reports have recently noted increased levels, or activity, of IRSs in many human cancers, and some have linked this to poor patient prog...

  19. Design of a selective insulin receptor tyrosine kinase inhibitor and its effect on glucose uptake and metabolism in intact cells

    SciTech Connect

    Saperstein, R.; Vicario, P.P.; Strout, H.V.; Brady, E.; Slater, E.E.; Greenlee, W.J.; Onedyka, D.L.; Patchett, A.A.; Hangauer, D.G. )

    1989-06-27

    An inhibitor of the insulin receptor tyrosine kinase (IRTK), (hydroxy-2-napthalenylmethyl)phosphonic acid, was designed and synthesized and was shown to be an inhibitor of the biological effects of insulin in vitro. With a wheat germ purified human placental insulin receptor preparation, this compound inhibited the insulin-stimulated autophosphorylation of the 95-kDa {beta}-subunit of the insulin receptor. The ability of the kinase to phosphorylate an exogenous peptide substrate, angiotensin II, was also inhibited. Half-maximal inhibition of basal and insulin-stimulated human placental IRTK activity was found at concentrations of 150 and 100 {mu}M, respectively, with 2 mM angiotensin II as the peptide substrate. The inhibitor was found to be specific for tyrosine kinases over serine kinases and noncompetitive with ATP. The inhibitor was converted into various (acyloxy)methyl prodrugs in order to achieve permeability through cell membranes. These prodrugs inhibited insulin-stimulated autophosphorylation of the insulin receptor 95-kDa {beta}-subunit in intact CHO cells transfected with human insulin receptor. Inhibition of insulin-stimulated glucose oxidation in isolated rat adipocytes and 2-deoxyglucose uptake into CHO cells was observed with these prodrugs. The data provide additional evidence for the involvement of the insulin receptor tyrosine kinase in the regulation of glucose uptake and metabolism. These results and additional data reported herein suggest that this class of prodrugs and inhibitors will be useful for modulating the activity of a variety of tyrosine kinases.

  20. Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors.

    PubMed

    Stephenson, Rachel J; Toth, Istvan; Liang, Jiening; Mangat, Amanjot; McManus, Donald P; You, Hong

    2016-01-01

    Schistosoma japonicum insulin receptors (SjIRs) have been identified as encouraging vaccine candidates. Interrupting or blocking the binding between host insulin and the schistosome insulin receptors (IRs) may result in reduced glucose uptake leading to starvation and stunting of worms with a reduction in egg output. To further understand how schistosomes are able to exploit host insulin for development and growth, and whether these parasites and their mammalian hosts compete for the same insulin source, we identified insulin binding sites on the SjIRs. Based on sequence analysis and the predicted antigenic structure of the primary sequences of the SjIRs, we designed nine and eleven peptide analogues from SjIR-1 and SjIR-2, respectively. Using the Octet RED system, we identified analogues derived from SjIR-1 (10) and SjIR-2 (20, 21 and 22) with insulin-binding sequences specific for S. japonicum. Nevertheless, the human insulin receptor (HIR) may compete with the SjIRs in binding human insulin in other positions which are important for HIR binding to insulin. However, no binding occurred between insulin and parasite analogues derived from SjIR-1 (2, 7 and 8) and SjIR-2 (14, 16 and 18) at the same locations as HIR sequences which have been shown to have strong insulin binding affinities. Importantly, we found two analogues (1 and 3), derived from SjIR-1, and two analogues (13 and 15) derived from SjIR-2, were responsible for the major insulin binding affinity in S. japonicum. These peptide analogues were shown to have more than 10 times (in KD value) stronger binding capacity for human insulin compared with peptides derived from the HIR in the same sequence positions. Paradoxically, analogues 1, 3, 13 and 15 do not appear to contain major antigenic determinants which resulted in poor antibody responses to native S. japonicum protein. This argues against their future development as peptide-vaccine candidates.

  1. The insulin receptor concept and its relation to the treatment of diabetes.

    PubMed

    Ward, G M

    1987-02-01

    The initial step in insulin action is binding to specific receptors. Two covalent receptor modifications possibly involved in producing pharmacodynamic effects as a result of insulin receptor binding are autophosphorylation and disulphide insulin binding. Insulin receptor numbers are 'down regulated' by insulin, but this effect may be minimised by pulsatile insulin secretion. Insulin receptor affinity is modulated rapidly by fasting, exercise and dietary composition. In non-insulin-dependent diabetes coupling of receptor binding to bioeffects is impaired. Binding is also reduced in those subjects with hyperinsulinaemia and non-insulin-dependent diabetes. Insulin-dependent diabetics have reduced insulin sensitivity, which is only partially reversed by conventional insulin therapy. 'Post-binding defects' in some diabetics could be related to defective covalent receptor modifications resulting from genetic receptor defects. High carbohydrate diets improve diabetes control through effects on the binding and coupling defects. In addition to stimulating insulin secretion, oral hypoglycaemics stimulate post-binding insulin action in vivo and in vitro. Insulin therapy in diabetes also tends to reverse post-binding defects. Pulsatile insulin delivery is more effective in lowering blood sugar than continuous administration, and produces less 'down regulation' of receptors. Combined insulin and sulphonylurea drugs reduce insulin requirements only in insulin-dependent diabetics with some endogenous insulin secretion, whereas metformin reduces insulin requirement in C-peptide negative insulin-dependent diabetes mellitus.

  2. Involvement of insulin-like growth factor binding protein-3 in peroxisome proliferator-activated receptor gamma-mediated inhibition of breast cancer cell growth.

    PubMed

    Pon, Cindy K; Firth, Sue M; Baxter, Robert C

    2015-01-05

    We have previously reported that insulin-like growth factor binding protein-3 (IGFBP-3), a protein with dichotomous effects on both cell proliferation and cell survival, interacts with peroxisome proliferator-activated receptor gamma (PPARγ) and inhibits adipogenic PPARγ signaling. We now show that IGFBP-3 and PPARγ interact in breast cancer cells, through amino- and carboxyl-terminal residues of IGFBP-3. IGFBP-3 and the PPARγ ligands, rosiglitazone or 15-deoxy-Δ(12,14)-prostaglandin J2, separately inhibited the proliferation of MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells. However, growth inhibition by IGFBP-3 and PPARγ ligand combined was greater than by either alone. Two IGFBP-3 mutants with reduced PPARγ binding caused no growth inhibition when used alone and abolished the inhibitory effect of rosiglitazone when used in combination with PPARγ ligand. Cell growth inhibition by PPARγ ligands was substantially blocked by IGFBP-3 siRNA and restored by exogenous IGFBP-3. We conclude that the interaction between IGFBP-3 and PPARγ is important for the growth-inhibitory effect of PPARγ ligands in human breast cancer cells, suggesting that IGFBP-3 expression by breast tumors may regulate their sensitivity toward PPARγ ligands. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Insulin Receptor Signaling in Normal and Insulin-Resistant States

    PubMed Central

    Boucher, Jérémie; Kleinridders, André; Kahn, C. Ronald

    2014-01-01

    In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications. PMID:24384568

  4. Defect in cooperativity in insulin receptors from a patient with a congenital form of extreme insulin resistance.

    PubMed Central

    Taylor, S I; Leventhal, S

    1983-01-01

    Previously, we have described a novel qualitative defect in insulin receptors from a patient with a genetic form of extreme insulin resistance (leprechaunism). Receptors from this insulin-resistant child are characterized by two abnormalities: (a) an abnormally high binding affinity for insulin, and (b) a markedly reduced sensitivity of 125I-insulin binding to alterations in pH and temperature. In this paper, we have investigated the kinetic mechanism of this abnormality in steady-state binding. The increased binding affinity for 125I-insulin results from a decrease in the dissociation rate of the hormone-receptor complex. In addition, the cooperative interactions among insulin binding sites are defective with insulin receptors from this child with leprechaunism. With insulin receptors on cultured lymphocytes from normal subjects, both negative and positive cooperativity may be observed. Porcine insulin accelerates the dissociation of the hormone-receptor complex (negative cooperativity). In contrast, certain insulin analogs such as desoctapeptide-insulin and desalanine-desasparagine-insulin retard the dissociation of the hormone-receptor complex (positive cooperativity). With insulin receptors from the leprechaun child, positive cooperativity could not be demonstrated, although negative cooperativity appeared to be normal. It seems likely that the same genetic defect may be responsible for the abnormalities in both insulin sensitivity and positive cooperativity. PMID:6345588

  5. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    PubMed

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  6. Insulin-like growth factor-1 enhances epidermal growth factor receptor activation and renal tubular cell regeneration in postischemic acute renal failure.

    PubMed

    Lin, J J; Cybulsky, A V; Goodyer, P R; Fine, R N; Kaskel, F J

    1995-06-01

    Growth factors such as insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), and hepatocyte growth factor have been shown to accelerate the recovery from postischemic acute renal failure (ARF) with a concomitant increase in DNA synthesis. Interactions between growth factors have been demonstrated in a number of in vitro studies. This study examined the effect of exogenous IGF-1 on the DNA synthesis and EGF receptor (EGF-R) activation in postischemic rat kidneys. Thirty minutes after the relief of 30-minute total occlusion of the left renal artery in anesthetized 225 to 300 gm Sprague-Dawley rats, either IGF-1 (75 micrograms/kg) or normal saline solution (NS, 0.2 ml) was given by intravenous bolus, followed by twice daily subcutaneous injections of IGF-1 (50 micrograms/kg) or 0.2 ml NS for 4 days, respectively, in IGF-1-Tx) and NS treated (NS-Tx) groups (n = 8 each). On the day after the completion of treatment, inulin clearance (ml/kg/min) of the postischemic kidneys in the IGF-1-Tx group was significantly higher (p < 0.01) than inulin clearance of kidneys in the NS-Tx group. This was associated with improved kidney morphology. IGF-1 treatment also enhanced the labeling index of 5-bromo-2'-deoxyuridine (percent of stained tubule cells), a marker for active DNA synthesis, in the outer medulla of postischemic kidneys at 1 day and 2 days after the injury. EGF-R tyrosine phosphorylation (which reflects receptor activation) increased in postischemic kidneys in both NS-Tx (n = 5) and IGF-1-Tx (n = 3) groups 1 day after the injury as compared with nonischemic contralateral kidneys. In the IGF-1-Tx group there was also increased iodine 125-labeled EGF binding and EGF-R protein. Our results demonstrate a beneficial effect of IGF-1 on postischemic ARF. Furthermore, they suggest that EGF-R activation is involved in tubular regeneration and that IGF-1 may enhance EGF-R activation by increasing EGF-R expression.

  7. Impaired activation of phosphoinositide 3-kinase by insulin in fibroblasts from patients with severe insulin resistance and pseudoacromegaly. A disorder characterized by selective postreceptor insulin resistance.

    PubMed Central

    Dib, K; Whitehead, J P; Humphreys, P J; Soos, M A; Baynes, K C; Kumar, S; Harvey, T; O'Rahilly, S

    1998-01-01

    Some patients with severe insulin resistance develop pathological tissue growth reminiscent of acromegaly. Previous studies of such patients have suggested the presence of a selective postreceptor defect of insulin signaling, resulting in the impairment of metabolic but preservation of mitogenic signaling. As the activation of phosphoinositide 3-kinase (PI 3-kinase) is considered essential for insulin's metabolic signaling, we have examined insulin-stimulated PI 3-kinase activity in anti-insulin receptor substrate (IRS)-1 immunoprecipitates from cultured dermal fibroblasts obtained from pseudoacromegalic (PA) patients and controls. At a concentration of insulin (1 nM) similar to that seen in vivo in PA patients, the activation of IRS-1-associated PI 3-kinase was reduced markedly in fibroblasts from the PA patients (32+/-7% of the activity of normal controls, P < 0.01). Genetic and biochemical studies indicated that this impairment was not secondary to a defect in the structure, expression, or activation of the insulin receptor, IRS-1, or p85alpha. Insulin stimulation of mitogenesis in PA fibroblasts, as determined by thymidine incorporation, was indistinguishable from controls, as was mitogen-activated protein kinase phosphorylation, confirming the integrity of insulin's mitogenic signaling pathways in this condition. These findings support the existence of an intrinsic defect of postreceptor insulin signaling in the PA subtype of insulin resistance, which involves impairment of the activation of PI 3-kinase. The PA tissue growth seen in such patients is likely to result from severe in vivo hyperinsulinemia activating intact mitogenic signaling pathways emanating from the insulin receptor. PMID:9486982

  8. Biological effects of insulin and its analogs on cancer cells with different insulin family receptor expression.

    PubMed

    Sciacca, Laura; Cassarino, Maria Francesca; Genua, Marco; Vigneri, Paolo; Giovanna Pennisi, Maria; Malandrino, Pasqualino; Squatrito, Sebastiano; Pezzino, Vincenzo; Vigneri, Riccardo

    2014-11-01

    Hyperinsulinemia is a likely cause of the increased cancer incidence and mortality in diabetic patients, but its role is difficult to define in vivo. Previous in vitro studies testing the mitogenic potential of insulin and its analogs provided incomplete and sometimes contradictory results. To better evaluate cancer cell responsiveness to insulin, to its analogs and to IGF-I, we measured under identical experimental conditions cell proliferation, invasiveness, and foci formation in six cancer cell lines with different insulin receptor family expression levels. The cancer cells studied have a different expression of insulin receptor (IR), its isoforms (IR-A and IR-B), and of the IGF-I receptor. The data indicate that insulin stimulates proliferation in all cancer cell lines, invasiveness in some, and foci formation in none. Cancer cell responses to insulin (and IGF-I) are not related to receptor expression levels; moreover, hormone-stimulated proliferation and invasiveness are not correlated. IGF-I is a more potent stimulator than insulin in most but not all cancer cell lines. Insulin analogs including M1 and M2 Glargine metabolites stimulate cancer cells similar to insulin. However, exceptions occur for specific analogs in particular cancer cells. In conclusion, in vitro insulin is an effective growth factor for all cancer cells but the biological response to insulin cannot be predicted on the basis of receptor expression levels. In the clinical setting, these observations should be taken in account when deciding treatment for diabetic patients who are at risk of undiscovered cancer or survivors of oncological diseases. © 2014 Wiley Periodicals, Inc.

  9. β-Adrenergic Receptor and Insulin Resistance in the Heart.

    PubMed

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Overstimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs overstimulation leads to induction of insulin resistance in the heart.

  10. β-Adrenergic Receptor and Insulin Resistance in the Heart

    PubMed Central

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Over-stimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR over-stimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs over-stimulation leads to induction of insulin resistance in the heart. PMID:28035081

  11. Comparison the relationship between the levels of insulin resistance, hs-CRP, percentage of body fat and serum osteoprotegerin/receptor activator of nuclear factor κβ ligand in prediabetic patients.

    PubMed

    Bilgir, Oktay; Yavuz, Mehmet; Bilgir, Ferda; Akan, Ozden Y; Bayindir, Aslı G; Calan, Mehmet; Bozkaya, Giray; Yuksel, Arif

    2017-01-31

    BACKGROUND Receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPN) are soluble members of the tumor necrosis factor superfamily. Growing evidence suggest that there is link between inflammation, insulin resistance and OPG, sRANKL. We aimed to ascertain whether OPG and sRANKL levels are altered in prediabetic subjects and there is association between OPG, sRANKL and metabolic parameters.

  12. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    SciTech Connect

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  13. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids.

    PubMed Central

    Vidal-Puig, A J; Considine, R V; Jimenez-Liñan, M; Werman, A; Pories, W J; Caro, J F; Flier, J S

    1997-01-01

    The peroxisome proliferator activated receptor (PPAR gamma) plays a key role in adipogenesis and adipocyte gene expression and is the receptor for the thiazolidinedione class of insulin-sensitizing drugs. The tissue expression and potential for regulation of human PPAR gamma gene expression in vivo are unknown. We have cloned a partial human PPAR gamma cDNA, and established an RNase protection assay that permits simultaneous measurements of both PPAR gamma1 and PPAR gamma2 splice variants. Both gamma1 and gamma2 mRNAs were abundantly expressed in adipose tissue. PPAR gamma1 was detected at lower levels in liver and heart, whereas both gamma1 and gamma2 mRNAs were expressed at low levels in skeletal muscle. To examine the hypothesis that obesity is associated with abnormal adipose tissue expression of PPAR gamma, we quantitated PPARgamma mRNA splice variants in subcutaneous adipose tissue of 14 lean and 24 obese subjects. Adipose expression of PPARgamma 2 mRNA was increased in human obesity (14.25 attomol PPAR gamma2/18S in obese females vs 9.9 in lean, P = 0.003). This increase was observed in both male and females. In contrast, no differences were observed in PPAR gamma1/18S mRNA expression. There was a strong positive correlation (r = 0.70, P < 0.001) between the ratio of PPAR gamma2/gamma1 and the body mass index of these patients. We also observed sexually dimorphic expression with increased expression of both PPAR gamma1 and PPAR gamma2 mRNAs in the subcutaneous adipose tissue of women compared with men. To determine the effect of weight loss on PPAR gamma mRNA expression, seven additional obese subjects were fed a low calorie diet (800 Kcal) until 10% weight loss was achieved. Mean expression of adipose PPAR gamma2 mRNA fell 25% (P = 0.0250 after a 10% reduction in body weight), but then increased to pretreatment levels after 4 wk of weight maintenance. Nutritional regulation of PPAR gamma1 was not seen. In vitro experiments revealed a synergistic effect of

  14. Insulin Receptor Signaling in POMC, but Not AgRP, Neurons Controls Adipose Tissue Insulin Action.

    PubMed

    Shin, Andrew C; Filatova, Nika; Lindtner, Claudia; Chi, Tiffany; Degann, Seta; Oberlin, Douglas; Buettner, Christoph

    2017-06-01

    Insulin is a key regulator of adipose tissue lipolysis, and impaired adipose tissue insulin action results in unrestrained lipolysis and lipotoxicity, which are hallmarks of the metabolic syndrome and diabetes. Insulin regulates adipose tissue metabolism through direct effects on adipocytes and through signaling in the central nervous system by dampening sympathetic outflow to the adipose tissue. Here we examined the role of insulin signaling in agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) neurons in regulating hepatic and adipose tissue insulin action. Mice lacking the insulin receptor in AgRP neurons (AgRP IR KO) exhibited impaired hepatic insulin action because the ability of insulin to suppress hepatic glucose production (hGP) was reduced, but the ability of insulin to suppress lipolysis was unaltered. To the contrary, in POMC IR KO mice, insulin lowered hGP but failed to suppress adipose tissue lipolysis. High-fat diet equally worsened glucose tolerance in AgRP and POMC IR KO mice and their respective controls but increased hepatic triglyceride levels only in POMC IR KO mice, consistent with impaired lipolytic regulation resulting in fatty liver. These data suggest that although insulin signaling in AgRP neurons is important in regulating glucose metabolism, insulin signaling in POMC neurons controls adipose tissue lipolysis and prevents high-fat diet-induced hepatic steatosis. © 2017 by the American Diabetes Association.

  15. Knockout of Vasohibin-1 Gene in Mice Results in Healthy Longevity with Reduced Expression of Insulin Receptor, Insulin Receptor Substrate 1, and Insulin Receptor Substrate 2 in Their White Adipose Tissue

    PubMed Central

    Takeda, Eichi; Suzuki, Yasuhiro; Yamada, Tetsuya; Katagiri, Hideki

    2017-01-01

    Vasohibin-1 (Vash1), originally isolated as an endothelium-derived angiogenesis inhibitor, has a characteristic of promoting stress tolerance in endothelial cells (ECs). We therefore speculated that the lack of the vash1 gene would result in a short lifespan. However, to our surprise, vash1−/− mice lived significantly longer with a milder senescence phenotype than wild-type (WT) mice. We sought the cause of this healthy longevity and found that vash1−/− mice exhibited mild insulin resistance along with reduced expression of the insulin receptor (insr), insulin receptor substrate 1 (irs-1), and insulin receptor substrate 2 (irs-2) in their white adipose tissue (WAT) but not in their liver or skeletal muscle. The expression of vash1 dominated in the WAT among those 3 organs. Importantly, vash1−/− mice did not develop diabetes even when fed a high-fat diet. These results indicate that the expression of vash1 was required for the normal insulin sensitivity of the WAT and that the target molecules for this activity were insr, irs1, and irs2. The lack of vash1 caused mild insulin resistance without the outbreak of overt diabetes and might contribute to healthy longevity. PMID:28367331

  16. New concept for long-acting insulin: spontaneous conversion of an inactive modified insulin to the active hormone in circulation: 9-fluorenylmethoxycarbonyl derivative of insulin.

    PubMed

    Gershonov, E; Shechter, Y; Fridkin, M

    1999-07-01

    Insulin is a short-lived species in the circulatory system. After binding to its receptor sites and transmission of its biological signals, bound insulin undergoes receptor-mediated endocytosis and consequent degradation. An inactive insulin derivative that is not recognized by the receptor has a longer circulation life, but obviously is biologically impotent. (Fmoc)2 insulin is an insulin derivative purified through high-performance liquid chromatography in which two 9-fluorenylmethoxycarbonyl (Fmoc) moieties are covalently linked to the (alpha-amino group of phenylalanine B1 and the epsilon-amino group of lysine B29. It has 1-2% of the biological potency and receptor binding capacity of the native hormone. After incubation, (Fmoc)2 insulin undergoes a time-dependent spontaneous conversion to fully active insulin in aqueous solution at 37 degrees C and a pH range of 7-8.5. At pH 7.4, the conversion proceeds slowly (t1/2 = 12 +/- 1 days) and biological activity is generated gradually. A single subcutaneous administration of (Fmoc)2 insulin to streptozocin-treated diabetic rats normalized their blood glucose levels and maintained the animals in an anabolic state over 2-3 days. A broad shallow peak of immunoreactive insulin was found to persist in circulation over this period. To confirm further that the long-acting effect of (Fmoc)2 insulin proceeds via slow release in the blood circulation itself, we administered native insulin, NPH insulin, or the (Fmoc)2 derivative intraperitoneally. The rats recovered from hypoglycemia at t1/2 = 8.0 +/- 0.3 and 10 +/- 0.4 h after administration of native and NPH insulin, respectively. In contrast, (Fmoc)2 insulin was active for a significantly longer time, with an extended onset of t1/2 = 26 +/- 1h, and a glucose-lowering effect even 40 h after administration. (Fmoc)2 insulin was also found to be more resistant to proteolysis. Finally, we found that (Fmoc)2 insulin does not induce antigenic effects. In summary, we present here a

  17. Intracellular presence of insulin and its phosphorylated receptor in non-small cell lung cancer.

    PubMed

    Mattarocci, Stefano; Abbruzzese, Claudia; Mileo, Anna M; Visca, Paolo; Antoniani, Barbara; Alessandrini, Gabriele; Facciolo, Francesco; Felsani, Armando; Radulescu, Razvan T; Paggi, Marco G

    2009-12-01

    Insulin has been known for a long time to influence the growth and differentiation of normal and transformed cells. In order to delineate the role of insulin specifically in non-small cell lung cancer (NSCLC), we have now searched by immunohistochemistry (IHC) for the presence of insulin in NSCLC samples. Among the 112 samples we studied, 30 were found to contain insulin, which was detected in the form of intracytoplasmic granula. Moreover, its expression significantly correlated with (a) the morphological/histopathological subtype of NSCLC, being more frequent in adenocarcinomas; (b) the grade of tumor differentiation, displaying an increase in low-grade carcinomas; (c) tumor size, occurring predominantly in smaller tumors; (d) the presence of phosphorylated, activated insulin receptor; (e) the median patient age, being present in relatively younger individuals. Furthermore and interestingly, surrounding atypical adenomatous hyperplastic areas and normal alveolar pneumocytes scored insulin-positive in some of the insulin-negative tumors. In addition, PCR exploration for insulin transcripts in some samples positive for immunoreactive insulin was negative, indicating a possibly exogenous origin for the intracellular insulin in our NSCLC cohort. Taken together, our data suggest that an intracellular insulin activity is important for the progression of low-grade human lung adenocarcinomas.

  18. Effects of glucose, insulin and triiodothyroxine on leptin and leptin receptor expression and the effects of leptin on activities of enzymes related to glucose metabolism in grass carp (Ctenopharyngodon idella) hepatocytes.

    PubMed

    Lu, Rong-Hua; Zhou, Yi; Yuan, Xiao-Chen; Liang, Xu-Fang; Fang, Liu; Bai, Xiao-Li; Wang, Min; Zhao, Yu-Hua

    2015-08-01

    Leptin is an important regulator of appetite and energy expenditure in mammals, but its role in fish metabolism control is poorly understood. Our previous studies demonstrated that leptin has an effect on the regulation of food intake and energy expenditure as well as lipid metabolism (stimulation of lipolysis and inhibition of adipogenesis) in the grass carp Ctenopharyngodon idella. To further investigate the role of leptin in fish, the effects of glucose, insulin and triiodothyroxine (T3) on the expression levels of leptin and leptin receptor (Lepr) and the effects of leptin on the activities of critical glucose metabolism enzymes in grass carp hepatocytes were evaluated in the present study. Our data indicated that leptin gene expression was induced by glucose in a dose-dependent manner, while Lepr gene expression exhibited a biphasic change. A high dose of insulin (100 ng/mL) significantly up-regulated the expression of leptin and Lepr. Leptin expression was markedly up-regulated by a low concentration of T3 but inhibited by a high concentration of T3. T3 up-regulated Lepr expression in a dose-dependent manner. Together, these data suggest that leptin had a close relationship with three factors (glucose, insulin and T3) and might participate in the regulation of glucose metabolism in grass carp. In addition, we also found that leptin affected the activities of key enzymes that are involved in glucose metabolism, which might be mediated by insulin receptor substrate-phosphoinositol 3-kinase signaling.

  19. Methanolic leaf extract of Gymnema sylvestre augments glucose uptake and ameliorates insulin resistance by upregulating glucose transporter-4, peroxisome proliferator-activated receptor-gamma, adiponectin, and leptin levels in vitro

    PubMed Central

    Kumar, Puttanarasaiah Mahesh; Venkataranganna, Marikunte V.; Manjunath, Kirangadur; Viswanatha, Gollapalle L.; Ashok, Godavarthi

    2016-01-01

    Aims: The present study was undertaken to evaluate the effect of methanolic leaf extract of Gymnema sylvestre (MLGS) on glucose transport (GLUT) and insulin resistance in vitro. Materials and Methods: Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and GLUT-4 expression were assessed in L6 myotubes for concluding the GLUT activity, and adiponectin and leptin expression was studied in 3T3 L1 murine adipocyte cell line to determine the effect of MLGS (250-750 μg/ml) on insulin resistance. Results: The findings of the experiments have demonstrated a significant and dose-dependent increase in glucose uptake in all the tested concentrations of MLGS, further the glucose uptake activity of MLGS (750 μg/ml) was at par with rosiglitazone (50 μg/ml). Concomitantly, MLGS has shown enhanced GLUT-4 and PPAR-γ gene expressions in L6 myotubes. Furthermore, cycloheximide (CHX) had completely abolished the glucose uptake activity of MLGS when co-incubated, which further confirmed that glucose uptake activity of MLGS was linked to enhanced expression of GLUT-4 and PPAR-γ. In addition, in another experimental set, MLGS showed enhanced expression of adiponectin and leptin, thus confirms the ameliorative effect of MLGS on insulin resistance. Conclusion: These findings suggest that MLGS has an enhanced glucose uptake activity in L6 myotubes, and ameliorate the insulin resistance in 3T3 L1 murine adipocyte cell line in vitro. PMID:27104035

  20. Methanolic leaf extract of Gymnema sylvestre augments glucose uptake and ameliorates insulin resistance by upregulating glucose transporter-4, peroxisome proliferator-activated receptor-gamma, adiponectin, and leptin levels in vitro.

    PubMed

    Kumar, Puttanarasaiah Mahesh; Venkataranganna, Marikunte V; Manjunath, Kirangadur; Viswanatha, Gollapalle L; Ashok, Godavarthi

    2016-01-01

    The present study was undertaken to evaluate the effect of methanolic leaf extract of Gymnema sylvestre (MLGS) on glucose transport (GLUT) and insulin resistance in vitro. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and GLUT-4 expression were assessed in L6 myotubes for concluding the GLUT activity, and adiponectin and leptin expression was studied in 3T3 L1 murine adipocyte cell line to determine the effect of MLGS (250-750 μg/ml) on insulin resistance. The findings of the experiments have demonstrated a significant and dose-dependent increase in glucose uptake in all the tested concentrations of MLGS, further the glucose uptake activity of MLGS (750 μg/ml) was at par with rosiglitazone (50 μg/ml). Concomitantly, MLGS has shown enhanced GLUT-4 and PPAR-γ gene expressions in L6 myotubes. Furthermore, cycloheximide (CHX) had completely abolished the glucose uptake activity of MLGS when co-incubated, which further confirmed that glucose uptake activity of MLGS was linked to enhanced expression of GLUT-4 and PPAR-γ. In addition, in another experimental set, MLGS showed enhanced expression of adiponectin and leptin, thus confirms the ameliorative effect of MLGS on insulin resistance. These findings suggest that MLGS has an enhanced glucose uptake activity in L6 myotubes, and ameliorate the insulin resistance in 3T3 L1 murine adipocyte cell line in vitro.

  1. Human Y-79 Retinoblastoma Cells Exhibit Specific Insulin Receptors.

    DTIC Science & Technology

    1985-01-01

    receptor. The Scatchard plot of, inulin competition data was curvilinear and was resolved in a high affinity Kd M) - low capacity ( ~ 3,000 sites/cell...containing insulin receptor antibodies (Flier et al 1977) was a gift of Dr. Philip Gorden, Diabetes Branch, NIADDK, NIH. Eagle’s minimum essential medium...Houten, M., Posner, B.I., White, R.J., Ohgaku, S., Horvat, A., and Hemmelgarn, E. (1983) Binding of insulin by monkey and pig hypothalamus. Diabetes 32

  2. A 3-basepair in-frame deletion ({Delta}Leu{sup 999}) in exon 17 of the insulin receptor gene in a family with insulin resistance

    SciTech Connect

    Awata, T.; Matsumoto, C.; Iwamoto, Y.

    1994-12-01

    We studied a woman with acanthosis nigricans and insulin resistance. The patient`s Epstein-Barr virus-transformed lymphocytes revealed slightly decreased insulin binding and markedly decreased insulin-stimulated autophosphorylation of the insulin receptor. The nucleotide sequence analysis of the patient`s genomic DNA revealed a 3-basepair in-frame deletion of one allele, resulting in the loss of leucine at position 999 of the insulin receptor ({Delta}Leu{sup 999}). The messenger ribonucleic acid transcripts from the mutant allele in the patient`s lymphocytes were not decreased. Insulin-stimulated autophosphorylation of the insulin receptor from cells expressing {Delta}Leu{sup 999} mutant insulin receptor complementary DNA was markedly decreased. The proband, her mother, elder brother, and younger brother, who were heterozygous for this mutation, showed moderate or marked hyperinsulinemia during oral glucose tolerance tests. Although fasting glucose levels were normal and fasting insulin values were preserved in all subjects with the mutation for the 8-yr period of observation, a tendancy of progressive increase in postload glucose levels were observed. These results suggest that the {Delta}Leu{sup 999} mutation, which reduces tyrosine kinase activity, was responsible for insulin resistance and contributed to postload hyperglycemia. 27 refs., 3 figs., 1 tab.

  3. Aldosterone Stimulates Elastogenesis in Cardiac Fibroblasts via Mineralocorticoid Receptor-independent Action Involving the Consecutive Activation of Gα13, c-Src, the Insulin-like Growth Factor-I Receptor, and Phosphatidylinositol 3-Kinase/Akt*

    PubMed Central

    Bunda, Severa; Wang, Yanting; Mitts, Thomas F.; Liu, Peter; Arab, Sara; Arabkhari, Majid; Hinek, Aleksander

    2009-01-01

    We previously demonstrated that aldosterone, which stimulates collagen production through the mineralocorticoid receptor (MR)-dependent pathway, also induces elastogenesis via a parallel MR-independent mechanism involving insulin-like growth factor-I receptor (IGF-IR) signaling. The present study provides a more detailed explanation of this signaling pathway. Our data demonstrate that small interfering RNA-driven elimination of MR in cardiac fibroblasts does not inhibit aldosterone-induced IGF-IR phosphorylation and subsequent increase in elastin production. These results exclude the involvement of the MR in aldosterone-induced increases in elastin production. Results of further experiments aimed at identifying the upstream signaling component(s) that might be activated by aldosterone also eliminate the putative involvement of pertussis toxin-sensitive Gαi proteins, which have previously been shown to be responsible for some MR-independent effects of aldosterone. Instead, we found that small interfering RNA-dependent elimination of another heterotrimeric G protein, Gα13, eliminates aldosterone-induced elastogenesis. We further demonstrate that aldosterone first engages Gα13 and then promotes its transient interaction with c-Src, which constitutes a prerequisite step for aldosterone-dependent activation of the IGF-IR and propagation of consecutive downstream elastogenic signaling involving phosphatidylinositol 3-kinase/Akt. In summary, the data we present reveal new details of an MR-independent cellular signaling pathway through which aldosterone stimulates elastogenesis in human cardiac fibroblasts. PMID:19372600

  4. Mitochondrial H2O2 as an enable signal for triggering autophosphorylation of insulin receptor in neurons

    PubMed Central

    2013-01-01

    Background Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the insulin receptor during the autophosphorylation process in neurons remain unexplored to date. Results Experiments were carried out in culture of rat cerebellar granule neurons. Kinetic study showed that the insulin-induced H2O2 signal precedes receptor autophosphorylation and represents a single spike with a peak at 5–10 s and duration of less than 30 s. Mitochondrial complexes II and, to a lesser extent, I are involved in generation of the H2O2 signal. The mechanism by which insulin triggers the H2O2 signal involves modulation of succinate dehydrogenase activity. Insulin dose–response for receptor autophosphorylation is well described by hyperbolic function (Hill coefficient, nH, of 1.1±0.1; R2=0.99). N-acetylcysteine (NAC), a scavenger of H2O2, dose-dependently inhibited receptor autophosphorylation. The observed dose response is highly sigmoidal (Hill coefficient, nH, of 8.0±2.3; R2=0.97), signifying that insulin receptor autophosphorylation is highly ultrasensitive to the H2O2 signal. These results suggest that autophosphorylation occurred as a gradual response to increasing insulin concentrations, only if the H2O2 signal exceeded a certain threshold. Both insulin-stimulated receptor autophosphorylation and H2O2 generation were inhibited by pertussis toxin, suggesting that a pertussis toxin-sensitive G protein may link the insulin receptor to the H2O2-generating system in neurons during the autophosphorylation process. Conclusions In this study, we demonstrated for

  5. Recycling of photoaffinity-labeled insulin receptors in rat adipocytes. Dissociation of insulin-receptor complexes is not required for receptor recycling

    SciTech Connect

    Huecksteadt, T.; Olefsky, J.M.; Brandenberg, D.; Heidenreich, K.A.

    1986-07-05

    We have used an iodinated, photoreactive analog of insulin, /sup 125/I-B2(2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, to covalently label insulin receptors on the cell surface of isolated rat adipocytes. Following internalization of the labeled insulin-receptor complexes at 37/sup 0/C, we measured the rate and extent of recycling of these complexes using trypsin to distinguish receptors on the cell surface from those inside the cell. The return of internalized photoaffinity-labeled receptors to the cell surface was very rapid at 37/sup 0/C proceeding with an apparent t 1/2 of 6 min. About 95% of the labeled receptors present in the cell 20 min after the initiation of endocytosis returned to the cell surface by 40 min. Recycling was slower at 25 and 16/sup 0/C compared to 37/sup 0/C and essentially negligible at 12/sup 0/C or in the presence of energy depleters. Addition of excess unlabeled insulin had no effect on the recycling of photoaffinity-labeled insulin receptor complexes, whereas monensin, chloroquine, and Tris partially inhibited this process. These data indicate that dissociation of insulin from internalized receptors is not necessary for insulin receptor recycling. Furthermore, agents which have been shown to prevent vesicular acidification inhibit the recycling of insulin receptors by a mechanism other than prevention of ligand dissociation.

  6. Mapping surface structures of the human insulin receptor with monoclonal antibodies: localization of main immunogenic regions to the receptor kinase domain.

    PubMed

    Morgan, D O; Roth, R A

    1986-03-25

    A panel of 37 monoclonal antibodies to the human insulin receptor has been used to characterize the receptor's major antigenic regions and their relationship to receptor functions. Three antibodies recognized extracellular surface structures, including the insulin binding site and a region not associated with insulin binding. The remaining 34 monoclonal antibodies were directed against the cytoplasmic domain of the receptor beta subunit. Competitive binding studies demonstrated that four antigenic regions (beta 1, beta 2, beta 3, and beta 4) are found on this domain. Sixteen of the antibodies were found to be directed against beta 1, nine against beta 2, seven against beta 3, and two against beta 4. Antibodies to all four regions inhibited the receptor-associated protein kinase activity to some extent, although antibodies directed against the beta 2 region completely inhibited the kinase activity of the receptor both in the autophosphorylation reaction and in the phosphorylation of an exogenous substrate, histone. Antibodies to the beta 2 region also did not recognize autophosphorylated receptor. In addition, antibodies to this same region recognized the receptor for insulin-like growth factor I (IGF-I) as well as the insulin receptor. In contrast, antibodies to other cytoplasmic regions did not recognize the IGF-I receptor as well as the insulin receptor. These results indicate that the major immunogenic regions of the insulin receptor are located on the cytoplasmic domain of the receptor beta subunit and are associated with the tyrosine-specific kinase activity of the receptor. In addition, these results suggest that a portion of the insulin receptor is highly homologous to that of the IGF-I receptor.

  7. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation

    PubMed Central

    Saisana, Marina; Griffin, S. Michael; May, Felicity E.B.

    2016-01-01

    Amplification of seven oncogenes: HER2, EGFR, FGFR1, FGFR2, MET, KRAS and IGF1R has been identified in gastric cancer. The first five are targeted therapeutically in patients with HER2-positivity, FGFR2- or MET-amplification but the majority of patients are triple-negative and require alternative strategies. Our aim was to evaluate the importance of the IGF1R tyrosine kinase in triple-negative gastric cancer with and without oncogenic KRAS, BRAF or PI3K3CA mutations. Cell lines and metastatic tumor cells isolated from patients expressed IGF1R, and insulin-like growth factor-1 (IGF-1) activated the PI3-kinase/Akt and Ras/Raf/MAP-kinase pathways. IGF-1 protected triple-negative cells from caspase-dependent apoptosis and anoikis. Protection was mediated via the PI3-kinase/Akt pathway. Remarkably, IGF-1-dependent cell survival was greater in patient samples. IGF-1 stimulated triple-negative gastric cancer cell growth was prevented by IGF1R knockdown and Ras/Raf/MAP-kinase pathway inhibition. The importance of the receptor in cell line and metastatic tumor cell growth in serum-containing medium was demonstrated by knockdown and pharmacological inhibition with figitumumab. The proportions of cells in S-phase and mitotic-phase, and Ras/Raf/MAP-kinase pathway activity, were reduced concomitantly. KRAS-addicted and BRAF-impaired gastric cancer cells were particularly susceptible. In conclusion, IGF1R and the IGF signal transduction pathway merit consideration as potential therapeutic targets in patients with triple-negative gastric cancer. PMID:27437872

  8. A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia.

    PubMed

    Agrawal, Rahul; Tyagi, Ethika; Shukla, Rakesh; Nath, Chandishwar

    2009-03-01

    In the present study, role of brain insulin receptors (IRs) in memory functions and its correlation with acetylcholinesterase (AChE) activity and oxidative stress in different brain regions were investigated in intracerebroventricular (ICV) streptozotocin (STZ) induced dementia model. Rats were treated with STZ (3 mg/kg, ICV) on day 1 and 3. Donepezil (5 mg/kg po) and melatonin (20 mg/kg ip) were administered in pre- and post-treatment schedules. Morris water maze test was done on day 14 and animals were sacrificed on day 21 from 1st STZ injection. Memory deficit was found in STZ group as indicated by no significant decrease in latency time antagonized by donepezil and melatonin. IR protein level was found significantly increased in trained group as compared to control, whereas STZ decreased IR level significantly as compared to trained rats in hippocampus which indicates that IR is associated with memory functions. STZ induced decrease in IR was reversed by melatonin but not by donepezil. Melatonin per se did not show any significant change in IR level as compared to control. AChE activity (DS and SS fraction) was found to be increased in hippocampus in STZ group as compared to trained which was inhibited by donepezil and melatonin. Increase in MDA level and decrease in GSH level were obtained in STZ group indicating oxidative stress, which was attenuated by donepezil and melatonin. Effectiveness of antioxidant, melatonin but not of anti-cholinesterase, donepezil against STZ induced changes in IR indicates that IR is more affected with oxidative stress than cholinergic changes.

  9. Insulin-like Receptor and Insulin-like Peptide Are Localized at Neuromuscular Junctions in Drosophila

    PubMed Central

    Gorczyca, Michael; Augart, Carolyn; Budnik, Vivian

    2015-01-01

    Insulin and insulin-like growth factor (IGF) receptors are members of the tyrosine kinase family of receptors, and are thought to play an important role in the development and differentiation of neurons. Here we report the presence of an insulin-like peptide and an insulin receptor (dlnsR) at the body wall neuromuscular junction of developing Drosophila larvae. dlnsR-like immunoreactivity was found in all body wall muscles at the motor nerve branching regions, where it surrounded synaptic boutons. The identity of this immunoreactivity as a dlnsR was confirmed by two additional schemes, in vivo binding of labeled insulin and immunolocalization of phosphotyrosine. Both methods produced staining patterns markedly similar to dlnsR-like immunoreactivity. The presence of a dlnsR in whole larvae was also shown by receptor binding assays. This receptor was more specific for insulin (>25-fold) than for IGF II, and did not appear to bind IGF I. Among the 30 muscle fibers per hemisegment, insulin-like immunoreactivity was found only on one fiber, and was localized to a subset of morphologically distinct synaptic boutons. Staining in the CNS was limited to several cell bodies in the brain lobes and in a segmental pattern throughout most of the abdominal ganglia, as well as in varicosities along the neuropil areas of the ventral ganglion and brain lobes. Insulin-like peptide and dlnsR were first detected by early larval development, well after neuromuscular transmission begins. The developmental significance of an insulin-like peptide and its receptor at the neuromuscular junction is discussed. PMID:8366341

  10. Hepatic structural enhancement and insulin resistance amelioration due to AT1 receptor blockade.

    PubMed

    Souza-Mello, Vanessa

    2017-01-18

    Over the last decade, the role of renin-angiotensin system (RAS) on the development of obesity and its comorbidities has been extensively addressed. Both circulating and local RAS components are up-regulated in obesity and involved in non-alcoholic fatty liver disease onset. Pharmacological manipulations of RAS are viable strategies to tackle metabolic impairments caused by the excessive body fat mass. Renin inhibitors rescue insulin resistance, but do not have marked effects on hepatic steatosis. However, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ARB) yield beneficial hepatic remodeling. ARBs elicit body mass loss and normalize insulin levels, tackling insulin resistance. Also, this drug class increases adiponectin levels, besides countering interleukin-6, tumoral necrosis factor-alpha, and transforming growth factor-beta 1. The latter is essential to prevent from liver fibrosis. When conjugated with peroxisome proliferator-activated receptor (PPAR)-alpha activation, ARB fully rescues fatty liver. These effects might be orchestrated by an indirect up-regulation of MAS receptor due to angiotensin II receptor type 1 (AT1R) blockade. These associations of ARB with PPAR activation and ACE2-angiotensin (ANG) (1-7)-MAS receptor axis deserve a better understanding. This editorial provides a brief overview of the current knowledge regarding AT1R blockade effects on sensitivity to insulin and hepatic structural alterations as well as the intersections of AT1R blockade with peroxisome proliferator-activated receptor activation and ACE2-ANG (1-7) - MAS receptor axis.

  11. Hepatic structural enhancement and insulin resistance amelioration due to AT1 receptor blockade

    PubMed Central

    Souza-Mello, Vanessa

    2017-01-01

    Over the last decade, the role of renin-angiotensin system (RAS) on the development of obesity and its comorbidities has been extensively addressed. Both circulating and local RAS components are up-regulated in obesity and involved in non-alcoholic fatty liver disease onset. Pharmacological manipulations of RAS are viable strategies to tackle metabolic impairments caused by the excessive body fat mass. Renin inhibitors rescue insulin resistance, but do not have marked effects on hepatic steatosis. However, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ARB) yield beneficial hepatic remodeling. ARBs elicit body mass loss and normalize insulin levels, tackling insulin resistance. Also, this drug class increases adiponectin levels, besides countering interleukin-6, tumoral necrosis factor-alpha, and transforming growth factor-beta 1. The latter is essential to prevent from liver fibrosis. When conjugated with peroxisome proliferator-activated receptor (PPAR)-alpha activation, ARB fully rescues fatty liver. These effects might be orchestrated by an indirect up-regulation of MAS receptor due to angiotensin II receptor type 1 (AT1R) blockade. These associations of ARB with PPAR activation and ACE2-angiotensin (ANG) (1-7)-MAS receptor axis deserve a better understanding. This editorial provides a brief overview of the current knowledge regarding AT1R blockade effects on sensitivity to insulin and hepatic structural alterations as well as the intersections of AT1R blockade with peroxisome proliferator-activated receptor activation and ACE2-ANG (1-7) - MAS receptor axis. PMID:28144388

  12. Evidence that insulin and guanosine triphosphate regulate dephosphorylation of the beta-subunit of the insulin receptor in sarcolemma membranes isolated from skeletal muscle.

    PubMed Central

    Horn, R S; Lystad, E; Adler, A; Walaas, O

    1986-01-01

    When sarcolemma membranes isolated from rat skeletal muscle were incubated with [gamma-32P]ATP, a membrane protein of apparent Mr 95,000 was rapidly phosphorylated, with the 32P content reaching a maximum within 2 s. On the basis of immunoprecipitation with anti-insulin-receptor antiserum, phosphoamino acid analysis and Mr, this protein probably represents the beta-subunit of the insulin receptor. Similarly, on incubation of the membrane with adenosine 5'-[gamma-[35S]thio] triphosphate the 95 kDa protein was thiophosphorylated, indicating thiophosphorylation of the beta-subunit of the insulin receptor on the basis of immunoprecipitation studies. The effect of insulin on the phosphorylation of this protein in the membrane was studied. Insulin induced a 20% decrease in the 32P labelling of the protein when the membranes were phosphorylated for 10 s. This insulin effect was dose-dependent, with half-maximal effect obtained at 2-3 nM-insulin. Addition of GTP, but not GDP or guanosine 5'-[beta, gamma-imido]triphosphate, enhanced the effect to 35% inhibition, with half-maximal effect of GTP obtained at 0.5 microM. GTP had no effect on the phosphorylation of the protein in the absence of insulin. Analysis of this insulin effect showed that insulin increased the rate of dephosphorylation of the 95 kDa protein in the membrane. In contrast, insulin had no effect on thiophosphorylation of the 95 kDa membrane protein after incubation with adenosine 5'-[gamma-[35S]thio]triphosphate. Since thiophosphorylated proteins are less sensitive to phosphatase action, these investigations suggest that insulin stimulated a protein phosphatase activity in a GTP-dependent manner. The possibility that GTP-regulatory proteins are involved in the action of insulin on the phosphorylation of the insulin receptor and other membrane proteins is discussed. Images Fig. 1. Fig. 3. PMID:3521589

  13. Correlation between insulin-induced estrogen receptor methylation and atherosclerosis.

    PubMed

    Min, Jia; Weitian, Zhong; Peng, Cai; Yan, Peng; Bo, Zhang; Yan, Wang; Yun, Bai; Xukai, Wang

    2016-11-10

    Hyperinsulinemia and insulin resistance have been recently recognized as an important cause of atherosclerosis. Clinical studies have also found that expression of the estrogen receptor is closely related to the incidence of atherosclerosis. This study investigate the effects of insulin and estrogen receptor α (ER-α) in atherosclerosis. Double knockout ApoE/Lepr mice were given intraperitoneal injections of insulin, and their aortae were harvested for hematoxylin-eosin staining and immunohistochemical analysis. In addition, vascular smooth muscle cells (VSMCs) were treated with insulin or infected with a lentivirus encoding exogenous ER-α, and changes in gene expression were detected by real-time polymerase chain reaction and western blotting. The methylation levels of the ER-α gene were tested using bisulfite sequencing PCR, and flow cytometry and EdU assay were used to measure VSMCs proliferation. Our results showed that insulin can induce the formation of atherosclerosis. Gene expression analysis revealed that insulin promotes the expression of DNA methyltransferases and inhibits ER-α expression, while 5-aza-2'-deoxycytidine can inhibit this effect of insulin. Bisulfite sequencing PCR analysis showed that methylation of the ER-α second exon region increased in VSMCs treated with insulin. The results also showed that ER-α can inhibit VSMCs proliferation. Our data suggest that insulin promotes the expression of DNA methyltransferases, induces methylation of ER-α second exon region and decreases the expression of ER-α, thereby interfering with estrogen regulation of VSMCs proliferation, resulting in atherosclerosis.

  14. Solution structure of human insulin-like growth factor II; recognition sites for receptors and binding proteins.

    PubMed Central

    Terasawa, H; Kohda, D; Hatanaka, H; Nagata, K; Higashihashi, N; Fujiwara, H; Sakano, K; Inagaki, F

    1994-01-01

    The three-dimensional structure of human insulin-like growth factor II was determined at high resolution in aqueous solution by NMR and simulated annealing based calculations. The structure is quite similar to those of insulin and insulin-like growth factor I, which consists of an alpha-helix followed by a turn and a strand in the B-region and two antiparallel alpha-helices in the A-region. However, the regions of Ala1-Glu6, Pro31-Arg40 and Thr62-Glu67 are not well-defined for lack of distance constraints, possibly due to motional flexibility. Based on the resultant structure and the results of structure-activity relationships, we propose the interaction sites of insulin-like growth factor II with the type 2 insulin-like growth factor receptor and the insulin-like growth factor binding proteins. These sites partially overlap with each other at the opposite side of the putative binding surface to the insulin receptor and the type 1 insulin-like growth factor receptor. We also discuss the interaction modes of insulin-like growth factor II with the insulin receptor and the type 1 insulin-like growth factor receptor. Images PMID:7527339

  15. Insulin receptor substrate 1 is required for insulin-mediated mitogenic signal transduction.

    PubMed Central

    Rose, D W; Saltiel, A R; Majumdar, M; Decker, S J; Olefsky, J M

    1994-01-01

    Insulin treatment of mammalian cells immediately stimulates the tyrosine phosphorylation of a cellular protein of 185 kDa referred to as pp185 or IRS-1 (insulin receptor substrate 1). The potential role of the IRS-1 protein in insulin signaling has been examined by microinjecting affinity-purified antibodies into living cells. Stably transfected Rat-1 fibroblasts, which overexpress the human insulin receptor, were microinjected and subsequently stimulated with insulin or other growth factors. Progression through the cell cycle was monitored by using a single-cell assay, which employs bromodeoxyuridine labeling of DNA and analysis with immunofluorescence microscopy. Microinjection of anti-IRS-1 antibody completely inhibited incorporation of bromodeoxyuridine into the nuclei of cells stimulated with insulin or insulin-like growth factor I but did not affect cells stimulated with serum or a variety of purified growth factors. These studies indicate that IRS-1 is a critical component of the insulin and insulin-like growth factor I signaling pathways, which lead to DNA synthesis and cell growth. Images Fig. 1 Fig. 2 PMID:8290602

  16. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    NASA Astrophysics Data System (ADS)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hertz Hansen, Per; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-04-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular -subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases.

  17. Effects of a combination of puerarin, baicalin and berberine on the expression of proliferator-activated receptor-γ and insulin receptor in a rat model of nonalcoholic fatty liver disease

    PubMed Central

    ZHAO, WEIHAN; LIU, LIJUAN; WANG, YUNLIANG; MAO, TANGYOU; LI, JUNXIANG

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a prevalent disease, with a clinical spectrum ranging from simple fatty liver disease to nonalcoholic steatohepatitis and cirrhosis. Puerarin, baicalin and berberine are herbal products widely used in Asia, which are believed to possess therapeutic benefits for alleviating the symptoms of NAFLD. In the present study, a rat model of NAFLD, induced by a high-fat diet, was established and orthographical experimentation was used to investigate the effects of various combinations of puerarin, baicalin and berberine on the hepatic expression of proliferator-activated receptor (PPAR)-γ and insulin receptor (IR). The present study demonstrated that serum levels of total cholesterol, alanine transaminase and low-density lipoproteins were significantly decreased in the puerarin-dominated groups (P<0.05 vs. the model group), whereas the concentrations of tumor necrosis factor-α and interleukin-6 were significantly improved in the baicalin- and berberine-dominated groups (P<0.05 vs. the model group). Furthermore, as compared with the control group, the levels of PPAR-γ/IR mRNA and protein expression were significantly decreased in the model group (P<0.01), and significantly increased in the rosiglitazone group and some of the orthogonal experiment groups (P<0.01). In conclusion, a combination of puerarin, baicalin and berberine induced favorable effects on NAFLD by upregulating hepatic PPAR-γ and IR expression levels, and different proportions of monomer compositions exerted variable positive effects on various stages of NAFLD. PMID:26889237

  18. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.

    PubMed

    Guo, Cathy A; Guo, Shaodong

    2017-06-01

    The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.

  19. Metabolism of covalent receptor-insulin complexes by 3T3-L1 adipocytes. Synthesis and use of photosensitive insulin analogs to study insulin receptor metabolism in cell culture.

    PubMed

    Reed, B C

    1983-04-10

    To facilitate labeling cell surface insulin receptors and analyzing their metabolism by 3T3-L1 adipocytes, a characterization of both the interaction of photosensitive insulin analogs with 3T3-L1 adipocytes and the conditions for photocross-linking these derivatives to the insulin receptor are described. The synthesis and purification of two photoaffinity analogs of insulin are presented. Both B29-lysine- and A1-glycine-substituted N-(2-nitro-4-azidophenyl)glycyl insulin compete with 125I-insulin for binding to 3T3-L1 adipocytes, and the B29-derivative retains a biological activity similar to that for native insulin. An apparatus developed for these studies permits photolysis of cells in monolayer culture using the visible region of the lamp emission spectrum. Activation of the photoderivative by this apparatus occurs with a half-life of approximately 15 s and permits rapid photolabeling of a single species of receptor of 300,000 Da. The conditions for photolabeling permit a measurement of the turnover of covalent receptor-insulin complexes by 3T3-L1 adipocytes in monolayer culture. Degradation of this complex occurs as an apparent first order process with a half-life of 7 h. A comparison with previous studies (Reed, B. C., Ronnett, G. V., Clements, P. R., and Lane, M. D. (1981) J. Biol. Chem 256, 3917-3925; Ronnett, G. V., Knutson, V. P., and Lane, M. D. (1982) J. Biol. Chem. 257, 4285-4291) indicates that in a "down-regulated" state, 3T3-L1 adipocytes degrade covalent receptor-hormone complexes with kinetics similar to those for the degradation of dissociable receptor-hormone complexes.

  20. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians.

    PubMed

    Ek, J; Andersen, G; Urhammer, S A; Hansen, L; Carstensen, B; Borch-Johnsen, K; Drivsholm, T; Berglund, L; Hansen, T; Lithell, H; Pedersen, O

    2001-09-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) diabetes mellitus among Scandinavian Caucasians. The Pro12Ala polymorphism was examined using PCR-RFLP Whole-body insulin sensitivity measured under hyperinsulinaemic-euglycaemic conditions was estimated in a population-based sample of 616 glucose tolerant Swedish Caucasian men at age 70. In addition, insulin sensitivity index was measured using IVGTT and Bergman minimal modelling in a population-based sample of 364 young healthy Danish Caucasians. Finally, we evaluated whether the polymorphism predicted Type II diabetes and IGT in 841 seventy-year-old Swedish men. A case-control study was carried out in 654 unrelated Danish Type II diabetic patients and 742 Danish glucose tolerant subjects matched for age and sex. Whole-body insulin sensitivity was significantly improved in carriers compared with non-carriers of the Ala-allele of the codon 12 polymorphism in Swedish Caucasian men (6.0+/-2.5 vs 5.6+/-2.5 mg kg(-1) x min(-1) x mU/l](-1) x 100, p = 0.044). The same tendency, but not significant, was observed in the insulin sensitivity index among the group of young healthy Danish Caucasians. The incidence of Type II diabetes and IGT among the Swedish subjects at the age of 70 was similar in the three genotype-groups of the Pro12Ala variant and the Ala-allele was not related to a lower prevalence of Type II diabetes in Danish Caucasians. The Ala-allele of the PPAR-gamma2 polymorphism is associated with improved whole body insulin sensitivity among Swedish Caucasians.

  1. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    PubMed Central

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  2. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    PubMed Central

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  3. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    PubMed

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration.

  4. A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information

    PubMed Central

    Rentería, Miguel E.; Gandhi, Neha S.; Vinuesa, Pablo; Helmerhorst, Erik; Mancera, Ricardo L.

    2008-01-01

    The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals. PMID:18989367

  5. A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1

    PubMed Central

    Ozes, Osman Nidai; Akca, Hakan; Mayo, Lindsey D.; Gustin, Jason A.; Maehama, Tomohiko; Dixon, Jack E.; Donner, David B.

    2001-01-01

    Tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) by the insulin receptor permits this docking protein to interact with signaling proteins that promote insulin action. Serine phosphorylation uncouples IRS-1 from the insulin receptor, thereby inhibiting its tyrosine phosphorylation and insulin signaling. For this reason, there is great interest in identifying serine/threonine kinases for which IRS-1 is a substrate. Tumor necrosis factor (TNF) inhibited insulin-promoted tyrosine phosphorylation of IRS-1 and activated the Akt/protein kinase B serine-threonine kinase, a downstream target for phosphatidylinositol 3-kinase (PI 3-kinase). The effect of TNF on insulin-promoted tyrosine phosphorylation of IRS-1 was blocked by inhibition of PI 3-kinase and the PTEN tumor suppessor, which dephosphorylates the lipids that mediate PI 3-kinase functions, whereas constitutively active Akt impaired insulin-promoted IRS-1 tyrosine phosphorylation. Conversely, TNF inhibition of IRS-1 tyrosine phosphorylation was blocked by kinase dead Akt. Inhibition of IRS-1 tyrosine phosphorylation by TNF was blocked by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a downstream target of Akt. mTOR induced the serine phosphorylation of IRS-1 (Ser-636/639), and such phosphorylation was inhibited by rapamycin. These results suggest that TNF impairs insulin signaling through IRS-1 by activation of a PI 3-kinase/Akt/mTOR pathway, which is antagonized by PTEN. PMID:11287630

  6. Insulin stimulates the biosynthesis of chiro-inositol-containing phospholipids in a rat fibroblast line expressing the human insulin receptor.

    PubMed Central

    Pak, Y; Paule, C R; Bao, Y D; Huang, L C; Larner, J

    1993-01-01

    HIRc-B cells (rat fibroblasts expressing the human insulin receptor) were incubated with myo-[3H]inositol for 48 hr, and the biosynthesis of chiro-[3H]inositol was investigated in the absence and presence of insulin following a time course up to 60 min. After phase separation, treatment with insulin for 15 min caused a 2.2-fold increase in the specific radioactivity of chiro-[3H]inositol-containing phospholipids in contrast to a 1.2-fold increase in the specific radioactivity of myo-[3H]inositol-containing phospholipids. No insulin-mediated change in the specific radioactivity was observed in the inositol phosphates or free inositols. Further detailed analysis of individual [3H]inositol-containing phospholipids demonstrated marked increases in specific activity of the chiro-[3H]inositol phospholipids after 15 min of incubation with insulin: phosphatidylinositol 4-phosphate and 4,5-bisphosphate, 4.2-fold; lysophosphatidylinositol, 1.5-fold; phosphatidylinositol, 3.2-fold. In contrast, myo-[3H]inositol-containing phospholipids demonstrated relatively small increases (1.1- to 1.4-fold) after 5 min of incubation with insulin. These findings indicate that insulin stimulates de novo synthesis of chiro-inositol-containing phospholipids at the inositol phospholipid level. Images Fig. 2 Fig. 3 PMID:8356081

  7. Insulin-receptor kinase is enhanced in placentas from non-insulin-dependent diabetic women with large-for-gestational-age babies.

    PubMed

    Takayama-Hasumi, S; Yoshino, H; Shimisu, M; Minei, S; Sanaka, M; Omori, Y

    1994-01-01

    The function of insulin receptor and IGF-1 receptor was investigated in placentas from 10 healthy control mothers, 8 diabetic mothers with appropriate-for-gestational-age babies (AGA group) and 9 diabetic mothers with large-for-gestational-age babies (LGA group). None of the diabetic mothers were obese before pregnancy; their blood glucose was well controlled during pregnancy and glycosylated HbA1c was 6.52 +/- 0.71% (M +/- S.E.). Insulin and IGF-1 receptors were partially purified from placentas using wheat germ agglutinin chromatography. The insulin-binding capacity was significantly increased in both the AGA and the LGA groups compared to the control, whereas the IGF-1 binding capacity was similar in the three groups. Autophosphorylation studies were performed with partially purified receptors equalized for similar binding capacity, then immunoprecipitated with anti-insulin receptor antibody or anti-IGF-1 receptor antibody. Insulin-stimulated 32P-incorporation into the insulin receptor beta-subunit was increased by 133% in the LGA group versus the control, whereas incorporation in the AGA group was equivalent to the control. Insulin-stimulated tyrosine kinase activity of the receptor preparation for histone H2B phosphorylation was also significantly increased in the LGA group compared to the control. 32P-incorporation into beta-subunit IGF-1 receptor and IGF-1-stimulated tyrosine kinase activity did not show any significant differences among the three groups. The data in the present study suggest that elevated insulin receptor kinase might be involved in fetal overgrowth in diabetic mothers.

  8. Insulin and epidermal growth factor receptors in rat liver after administration of the hepatocarcinogen 2-acetylaminofluorene: ligand binding and autophosphorylation

    SciTech Connect

    Hwang, D.L.; Roitman, A.; Carr, B.I.; Barseghian, G.; Lev-Ran, A.

    1986-04-01

    The livers of male F344 rats which were fed 0.02% 2-acetylaminofluorene (2-AAF) for two days or more had decreased binding of insulin and epidermal growth factor (EGF) to their hepatic receptors in microsomal and Golgi fractions. Hepatic receptors which were partially purified from carcinogen-fed rats by Triton X-100 solubilization and wheat germ agglutinin affinity column chromatography also had decreased binding activity compared to receptors from normal rats. Scatchard analysis indicated that the decrease in insulin receptor binding was due to decreased receptor number whereas the change in EGF receptor binding was attributed to decreased receptor affinity. Insulin receptor phosphokinase activity was also decreased in 2-AAF-fed rats and correlated with the decrease in receptor binding. EGF receptor phosphokinase activity was unchanged in 2-AAF-fed rats when stimulated with a high concentration (1 microM) of EGF but was decreased when stimulated with low concentrations (0.01-0.1 microM) of EGF. No EGF or insulin competing activity for receptor binding was found using acid-ethanol extracts of 2-AAF-altered liver. These results suggest that 2-AAF causes different alterations in the insulin and EGF receptors of the rat liver.

  9. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element.

    PubMed

    Vashisth, Harish; Abrams, Cameron F

    2013-06-01

    Insulin regulates blood glucose levels in higher organisms by binding to and activating insulin receptor (IR), a constitutively homodimeric glycoprotein of the receptor tyrosine kinase (RTK) superfamily. Therapeutic efforts in treating diabetes have been significantly impeded by the absence of structural information on the activated form of the insulin/IR complex. Mutagenesis and photo-crosslinking experiments and structural information on insulin and apo-IR strongly suggest that the dual-chain insulin molecule, unlike the related single-chain insulin-like growth factors, binds to IR in a very different conformation than what is displayed in storage forms of the hormone. In particular, hydrophobic residues buried in the core of the folded insulin molecule engage the receptor. There is also the possibility of plasticity in the receptor structure based on these data, which may in part be due to rearrangement of the so-called CT-peptide, a tandem hormone-binding element of IR. These possibilities provide opportunity for large-scale molecular modeling to contribute to our understanding of this system. Using various atomistic simulation approaches, we have constructed all-atom structural models of hormone/receptor complexes in the presence of CT in its crystallographic position and a thermodynamically favorable displaced position. In the "displaced-CT" complex, many more insulin-receptor contacts suggested by experiments are satisfied, and our simulations also suggest that R-insulin potentially represents the receptor-bound form of hormone. The results presented in this work have further implications for the design of receptor-specific agonists/antagonists.

  10. Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

    PubMed Central

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851

  11. Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium.

    PubMed

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-06-01

    To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine(1177) phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A(2A)-adenosine receptor antagonist). Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO-dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A(2A)-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.

  12. Amyloid beta oligomers induce impairment of neuronal insulin receptors.

    PubMed

    Zhao, Wei-Qin; De Felice, Fernanda G; Fernandez, Sara; Chen, Hui; Lambert, Mary P; Quon, Michael J; Krafft, Grant A; Klein, William L

    2008-01-01

    Recent studies have indicated an association between Alzheimer's disease (AD) and central nervous system (CNS) insulin resistance. However, the cellular mechanisms underlying the link between these two pathologies have not been elucidated. Here we show that signal transduction by neuronal insulin receptors (IR) is strikingly sensitive to disruption by soluble Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in AD brain and have recently been implicated as primary candidates for initiating deterioration of synapse function, composition, and structure. Using mature cultures of hippocampal neurons, a preferred model for studies of synaptic cell biology, we found that ADDLs caused a rapid and substantial loss of neuronal surface IRs specifically on dendrites bound by ADDLs. Removal of dendritic IRs was associated with increased receptor immunoreactivity in the cell body, indicating redistribution of the receptors. The neuronal response to insulin, measured by evoked IR tyrosine autophosphorylation, was greatly inhibited by ADDLs. Inhibition also was seen with added glutamate or potassium-induced depolarization. The effects on IR function were completely blocked by NMDA receptor antagonists, tetrodotoxin, and calcium chelator BAPTA-AM. Downstream from the IR, ADDLs induced a phosphorylation of Akt at serine473, a modification associated with neurodegenerative and insulin resistance diseases. These results identify novel factors that affect neuronal IR signaling and suggest that insulin resistance in AD brain is a response to ADDLs, which disrupt insulin signaling and may cause a brain-specific form of diabetes as part of an overall pathogenic impact on CNS synapses.

  13. Rab5 activity regulates GLUT4 sorting into insulin-responsive and non-insulin-responsive endosomal compartments: a potential mechanism for development of insulin resistance.

    PubMed

    Tessneer, Kandice L; Jackson, Robert M; Griesel, Beth A; Olson, Ann Louise

    2014-09-01

    Glucose transporter isoform 4 (GLUT4) is the insulin-responsive glucose transporter mediating glucose uptake in adipose and skeletal muscle. Reduced GLUT4 translocation from intracellular storage compartments to the plasma membrane is a cause of peripheral insulin resistance. Using a chronic hyperinsulinemia (CHI)-induced cell model of insulin resistance and Rab5 mutant overexpression, we determined these manipulations altered endosomal sorting of GLUT4, thus contributing to the development of insulin resistance. We found that CHI induced insulin resistance in 3T3-L1 adipocytes by retaining GLUT4 in a Rab5-activity-dependent compartment that is unable to equilibrate with the cell surface in response to insulin. Furthermore, CHI-mediated retention of GLUT4 in this non-insulin-responsive compartment impaired filling of the transferrin receptor (TfR)-positive and TfR-negative insulin-responsive storage compartments. Our data suggest that hyperinsulinemia may inhibit GLUT4 by chronically maintaining GLUT4 in the Rab5 activity-dependent endosomal pathway and impairing formation of the TfR-negative and TfR-positive insulin-responsive GLUT4 pools. This model suggests that an early event in the development of insulin-resistant glucose transport in adipose tissue is to alter the intracellular localization of GLUT4 to a compartment that does not efficiently equilibrate with the cell surface when insulin levels are elevated for prolonged periods of time.

  14. Insulin receptor kinase-independent signaling via tyrosine phosphorylation of phosphatase PHLPP1.

    PubMed

    Zhang, Manchao; Riedel, Heimo

    2009-05-01

    Most insulin responses correlate well with insulin receptor (IR) Tyr kinase activation; however, critical exceptions to this concept have been presented. Specific IR mutants and stimulatory IR antibodies demonstrate a lack of correlation between IR kinase activity and specific insulin responses in numerous independent studies. IR conformation changes in response to insulin observed with various IR antibodies define an IR kinase-independent signal that alters the C-terminus. IR-related receptors in lower eukaryotes that lack a Tyr kinase point to an alternative mechanism of IR signaling earlier in evolution. However, the implied IR kinase-independent signaling mechanism remained obscure at the molecular level. Here we begin to define the molecular basis of an IR-dependent but IR kinase-independent insulin signal that is equally transmitted by a kinase-inactive mutant IR. This insulin signal results in Tyr phosphorylation and catalytic activation of phosphatase PHLPP1 via a PI 3-kinase-independent, wortmannin-insensitive signaling pathway. Dimerized SH2B1/PSM is a critical activator of the IR kinase and the resulting established insulin signal. In contrast it is an inhibitor of the IR kinase-independent insulin signal and disruption of SH2B1/PSM dimer binding to IR potentiates this signal. Dephosphorylation of Akt2 by PHLPP1 provides an alternative, SH2B1/PSM-regulated insulin-signaling pathway from IR to Akt2 of opposite polarity and distinct from the established PI 3-kinase-dependent signaling pathway via IRS proteins. In combination, both pathways should allow the opposing regulation of Akt2 activity at two phosphorylation sites to specifically define the insulin signal in the background of interfering Akt-regulating signals, such as those controlling cell proliferation and survival.

  15. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization.

    PubMed

    Parimala, Mabel; Debjani, M; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family - Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues.

  16. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    PubMed Central

    Parimala, Mabel; Debjani, M.; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family – Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  17. Structural basis of the aberrant receptor binding properties of hagfish and lamprey insulins.

    PubMed

    Sajid, Waseem; Holst, Patricia A; Kiselyov, Vladislav V; Andersen, Asser S; Conlon, J Michael; Kristensen, Claus; Kjeldsen, Thomas; Whittaker, Jonathan; Chan, Shu J; De Meyts, Pierre

    2009-12-01

    The insulin from the Atlantic hagfish (Myxine glutinosa) has been one of the most studied insulins from both a structural and a biological viewpoint; however, some aspects of its biology remain controversial, and there has been no satisfying structural explanation for its low biological potency. We have re-examined the receptor binding kinetics, as well as the metabolic and mitogenic properties, of this phylogenetically ancient insulin, as well as that from another extant representative of the ancient chordates, the river lamprey (Lampetra fluviatilis). Both insulins share unusual binding kinetics and biological properties with insulin analogues that have single mutations at residues that contribute to the hexamerization surface. We propose and demonstrate by reciprocal amino acid substitutions between hagfish and human insulins that the reduced biological activity of hagfish insulin results from unfavorable substitutions, namely, A10 (Ile to Arg), B4 (Glu to Gly), B13 (Glu to Asn), and B21 (Glu to Val). We likewise suggest that the altered biological activity of lamprey insulin may reflect substitutions at A10 (Ile to Lys), B4 (Glu to Thr), and B17 (Leu to Val). The substitution of Asp at residue B10 in hagfish insulin and of His at residue A8 in both hagfish and lamprey insulins may help compensate for unfavorable changes in other regions of the molecules. The data support the concept that the set of unusual properties of insulins bearing certain mutations in the hexamerization surface may reflect those of the insulins evolutionarily closer to the ancestral insulin gene product.

  18. Effect of H1- and H2-histamine receptor blockade on postexercise insulin sensitivity

    PubMed Central

    Pellinger, Thomas K; Dumke, Breanna R; Halliwill, John R

    2013-01-01

    Following a bout of dynamic exercise, humans experience sustained postexercise vasodilatation in the previously exercised skeletal muscle which is mediated by activation of histamine (H1 and H2) receptors. Skeletal muscle glucose uptake is also enhanced following dynamic exercise. Our aim was to determine if blunting the vasodilatation during recovery from exercise would have an adverse effect on blood glucose regulation. Thus, we tested the hypothesis that insulin sensitivity following exercise would be reduced with H1- and H2-receptor blockade versus control (no blockade). We studied 20 healthy young subjects (12 exercise; eight nonexercise sham) on randomized control and H1- and H2-receptor blockade (fexofenadine and ranitidine) days. Following 60 min of upright cycling at 60% VO2 peak or nonexercise sham, subjects consumed an oral glucose tolerance beverage (1.0 g/kg). Blood glucose was determined from “arterialized” blood samples (heated hand vein). Postexercise whole-body insulin sensitivity (Matsuda insulin sensitivity index) was reduced 25% with H1- and H2-receptor blockade (P < 0.05), whereas insulin sensitivity was not affected by histamine receptor blockade in the sham trials. These results indicate that insulin sensitivity following exercise is blunted by H1- and H2-receptor blockade and suggest that postexercise H1- and H2-receptor–mediated skeletal muscle vasodilatation benefits glucose regulation in healthy humans. PMID:24303118

  19. Tissue localization of Drosophila melanogaster insulin receptor transcripts during development.

    PubMed Central

    Garofalo, R S; Rosen, O M

    1988-01-01

    The Drosophila melanogaster insulin receptor (Drosophila insulin receptor homolog [dIRH]) is similar to its mammalian counterpart in deduced amino acid sequence, subunit structure, and ligand-stimulated protein tyrosine kinase activity. The function of this receptor in D. melanogaster is not yet known. However, a role in development is suggested by the observations that levels of insulin-stimulated kinase activity and expression of dIRH mRNA are maximal during Drosophila midembryogenesis. In this study, a 2.9-kilobase (kb) cDNA clone corresponding to both the dIRH tyrosine kinase domain and some of the 3' untranslated sequence was used to determine the tissue distribution of dIRH mRNA during development. Two principal mRNAs of 11 and 8.6 kb hybridized with the dIRH cDNA in Northern (RNA) blot analysis. The abundance of the 8.6-kb mRNA increased transiently in early embryos, whereas the 11-kb species was most abundant during midembryogenesis. A similar pattern of expression was previously determined by Northern analysis, using a dIRH genomic clone (L. Petruzzelli, R. Herrera, R. Arenas-Garcia, R. Fernandez, M. J. Birnbaum, and O. M. Rosen, Proc. Natl. Acad. Sci. USA 83:4710-4714, 1986). In situ hybridization revealed dIRH transcripts in the ovaries of adult flies, in which the transcripts appeared to be synthesized by nurse cells for eventual storage as maternal RNA in the mature oocyte. Throughout embryogenesis, dIRH transcripts were ubiquitously expressed, although after midembryogenesis, higher levels were detected in the developing nervous system. Nervous system expression remained elevated throughout the larval stages and persisted in the adult, in which the cortex of the brain and ganglion cells were among the most prominently labeled tissues. In larvae, the imaginal disk cells exhibited comparatively high levels of dIRH mRNA expression. The broad distribution of dIRH mRNA in embryos and imaginal disks is compatible with a role for dIRH in anabolic processes

  20. Hypoglycemic effect of insulin-like growth factor-1 in mice lacking insulin receptors.

    PubMed Central

    Di Cola, G; Cool, M H; Accili, D

    1997-01-01

    We have investigated the metabolic actions of recombinant human IGF-1 in mice genetically deficient of insulin receptors (IR-/-). After intraperitoneal administration, IGF-1 caused a prompt and sustained decrease of plasma glucose levels in IR-/- mice. Plasma free fatty acid concentrations were unaffected. Interestingly, the effects of IGF-1 were identical in normal mice (IR+/+) and in IR-/- mice. Despite decreased glucose levels, IR-/- mice treated with IGF-1 died within 2-3 d of birth, like sham-treated IR-/- controls. In skeletal muscle, IGF-1 treatment caused phosphorylation of IGF-1 receptors and increased the levels of the phosphatidylinositol-3-kinase p85 subunit detected in antiphosphotyrosine immunoprecipitates, consistent with the possibility that IGF-1 stimulates glucose uptake in a phosphatidylinositol-3-kinase-dependent manner. IGF-1 receptor phosphorylation and coimmunoprecipitation of phosphatidylinositol3-kinase by antiphosphotyrosine antibodies was also observed in liver, and was associated with a decrease in mRNA levels of the key gluconeogenetic enzyme phosphoenolpyruvate carboxykinase. Thus, the effect of IGF-1 on plasma glucose levels may be accounted for by increased peripheral glucose use and by inhibition of hepatic gluconeogenesis. These data indicate that IGF-1 can mimic insulin's effects on glucose metabolism by acting through its own receptor. The failure of IGF-1 to rescue the lethal phenotype due to lack of insulin receptors suggests that IGF-1 receptors cannot effectively mediate all the metabolic actions of insulin receptors. PMID:9153298

  1. Naturally occurring amino acid substitutions at Arg1174 in the human insulin receptor result in differential effects on receptor biosynthesis and hybrid formation, leading to discordant clinical phenotypes.

    PubMed

    Rau, H; Kocova, M; O'Rahilly, S; Whitehead, J P

    2000-07-01

    Missense mutations in the tyrosine kinase domain of the human insulin receptor frequently result in a dominantly inherited form of insulin resistance. We noted a marked disparity in the clinical phenotypes of our study subjects with different missense mutations at the same residue (Arg1174) of the insulin receptor. Subjects with a tryptophan substitution (W) were only moderately hyperinsulinemic, whereas those with a glutamine substitution (Q) had severe clinical and biochemical insulin resistance. Studies were undertaken to explore the molecular mechanisms underlying these differences. Both W and Q mutant receptors bound insulin normally but were kinase inactive. The W mutation resulted in more rapid degradation of newly synthesized mutant receptor, which contrasted with the near-normal biosynthesis of the Q receptor. The propensity of the W receptor to form hybrids with the cotransfected wild-type (WT) receptor was also markedly impaired compared with the Q receptor, to an extent greater than could be explained by lower steady-state expression. Thus, the more clinically benign consequences of the heterozygous W mutant receptor are likely to relate to its impaired biosynthesis and/or reduced capacity to form hybrids with WT receptors. In addition to providing an explanation for the milder phenotype of 1174W versus 1174Q carriers, these studies provide further support for the notion that the dominant-negative effect of insulin receptor tyrosine kinase mutations involves the competition between inactive mutant homodimers and WT/mutant hybrids with active WT homodimers for both ligands and intracellular substrates.

  2. B Cell Receptor Affinity for Insulin Dictates Autoantigen Acquisition and B Cell Functionality in Autoimmune Diabetes

    PubMed Central

    Packard, Thomas A.; Smith, Mia J.; Conrad, Francis J.; Johnson, Sara A.; Getahun, Andrew; Lindsay, Robin S.; Hinman, Rochelle M.; Friedman, Rachel S.; Thomas, James W.; Cambier, John C.

    2016-01-01

    B cells have been strongly implicated in the development of human type 1 diabetes and are required for disease in the NOD mouse model. These functions are dependent on B cell antigen receptor (BCR) specificity and expression of MHC, implicating linked autoantigen recognition and presentation to effector T cells. BCR-antigen affinity requirements for participation in disease are unclear. We hypothesized that BCR affinity for the autoantigen insulin differentially affects lymphocyte functionality, including tolerance modality and the ability to acquire and become activated in the diabetogenic environment. Using combined transgenic and retrogenic heavy and light chain to create multiple insulin-binding BCRs, we demonstrate that affinity for insulin is a critical determinant of the function of these autoreactive cells. We show that both BCR affinity for insulin and genetic background affect tolerance induction in immature B cells. We also find new evidence that may explain the enigmatic ability of B cells expressing 125 anti-insulin BCR to support development of TID in NOD mice despite a reported affinity beneath requirements for binding insulin at in vivo concentrations. We report that when expressed as an antigen receptor the affinity of 125 is much higher than determined by measurements of the soluble form. Finally, we show that in vivo acquisition of insulin requires both sufficient BCR affinity and permissive host/tissue environment. We propose that a confluence of BCR affinity, pancreas environment, and B cell tolerance-regulating genes in the NOD animal allows acquisition of insulin and autoimmunity. PMID:27834793

  3. Insulin receptor changes in type 2 diabetes after short term insulin treatment.

    PubMed

    Rizkalla, S W; Weissbrodt, P; Tchobroutsky, G; Slama, G

    1985-10-01

    We have studied erythrocyte insulin receptor changes before and after 8 days of continuous subcutaneous insulin infusion by a pump in 11 uncontrolled obese non-insulin-dependent diabetics (type 2), diet and drug resistant for at least three months previously. All the patients were hospitalized. On day 1 of the study, their oral hypoglycemic agents were stopped and hypocaloric diet (1000 Kcal/day) was maintained (strictly reinforced). This period of reinforced treatment was not accompanied by correction of hyperglycemia. On day 9 patients were placed for 12 hours on artificial pancreas in order to bring their fasting blood glucose levels down to normal values. Then they were submitted to a continuous subcutaneous insulin infusion (CSII) for the following 8 days. There was a significant decrease in mean fasting plasma glucose (P less than 0.001) and a rise in insulin (P less than 0.05) levels after insulin treatment. Mean specific insulin binding was also significantly increased (P less than 0.01). The increase in binding (with insulin therapy) correlated with the fall in fasting hyperglycemia (r = 0.786, P less than 0.01). In addition, the increase in binding correlated negatively with changes in fasting plasma insulin levels (r = -0.867, P less than 0.01), under treatment, on one hand and with the dose of exogenous insulin administered (r = -0.681, P less than 0.05) on the other hand. There was no correlation between binding and fasting plasma insulin levels (before and after insulin therapy), or between diabetes duration and any of the previous parameters.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. UV activation of receptor tyrosine kinase activity.

    PubMed

    Coffer, P J; Burgering, B M; Peppelenbosch, M P; Bos, J L; Kruijer, W

    1995-08-03

    The exposure of mammalian cells to ultraviolet radiation (UV) may lead to DNA damage resulting in mutation and thus possibly cancer, while irradiation can further act as a potent tumor promoter. In addition UV induces p21ras-mediated signalling leading to activation of transcription factors such as AP-1 and NF-kappa B, as well as activation of the Src tyrosine kinase. This 'UV-response' has been well studied in mammalian cells and furthermore is conserved in yeast, however the most upstream components of this signal transduction pathway have remained elusive. Here we show that UV rapidly activates both the EGF receptor and insulin receptor, as shown by tyrosine phosphorylation of these receptors. We demonstrate that this activation is due to autophosphorylation as it only occurs in cells containing receptors with a functional kinase domain. We have further analysed the propagation of the UV-induced signal to downstream events such as, IRS-1 and Shc tyrosine phosphorylation, phosphatidylinositol 3-kinase activation, leukotriene synthesis, MAP kinase activation and gene induction all of which are activated by UV irradiation. Importantly, we demonstrate that in cells expressing a 'kinase-dead' receptor mutant the UV-response is inhibited, blocking leukotriene synthesis, MAP kinase activation and transcriptional induction. Furthermore, prior-stimulation of cells with UV appears to reduce further responsiveness to addition of growth factor suggesting a common signaling pathway. These data demonstrate a critical role for receptor-mediated events in regulating the response mammalian cells to UV exposure.

  5. Cannabinoid receptor type 1 mediates high-fat diet-induced insulin resistance by increasing forkhead box O1 activity in a mouse model of obesity.

    PubMed

    Chen, Chin-Chang; Lee, Tzung-Yan; Kwok, Ching-Fai; Hsu, Yung-Pei; Shih, Kuang-Chung; Lin, Yan-Jie; Ho, Low-Tone

    2016-03-01

    Hepatic glucose production is promoted by forkhead box O1 (FoxO1) under conditions of insulin resistance. The overactivity of cannabinoid receptor type 1 (CB1R) partly causes increased liver fat deposits and metabolic dysfunction in obese rodents by decreasing mitochondrial function. The aim of the present study was to investigate the role of FoxO1 in CB1R-mediated insulin resistance through the dysregulation of mitochondrial function in the livers of mice with high-fat diet (HFD)-induced obesity. For this purpose, male C57BL/6 mice were randomly assigned to groups and either fed a standard diet (STD), a HFD, or a HFD with 1-week treatment of the CB1R inverse agonist, AM251, at 1 or 5 mg/kg. For in vitro experiments, AML12 hepatocytes were incubated with FoxO1 siRNA prior to challenge with arachidonyl-2'-chloroethylamide (ACEA) or a high concentration of free fatty acids (HFFA). Plasma parameters were analyzed using colorimetric methods. Liver histopathology and hepatic status markers were examined. The HFD-fed mice exhibited an increase in CB1R levels in the liver. Moreover, in response to increased hepatic oxidative stress, the HFD-fed mice also displayed hepatic mitochondrial dysfunction, as indicated by the decreased mRNA levels of carnitine palmitoyltransferase-1 (CPT-1), mitochondrial transcription factor A (TFAM), nuclear respiratory factor-1 (NRF-1) and citrate synthase. On the contrary, these effects in the HFD-fed mice were reversed by treatment with 5 mg/kg AM251. The administration of AM251 suppressed the induction of FoxO1, phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) expression in the livers of the mice fed a HFD by enhancing the phosphorylation of insulin signaling cascades thus, further lowering the high level of the homeostatic model assessment of insulin resistance (HOMA‑IR) index. In our in vitro experiments, transfection with FoxO1 siRNA prevented the HFFA- and ACEA-induced decrease in the gene expression of

  6. Structural and Biochemical Characterization of the KRLB Region in Insulin Receptor Substrate-2

    SciTech Connect

    Wu,J.; Tseng, Y.; Xu, C.; Neubert, T.; White, M.; Hubbard, S.

    2008-01-01

    Insulin receptor substrates 1 and 2 (IRS1 and -2) are crucial adaptor proteins in mediating the metabolic and mitogenic effects of insulin and insulin-like growth factor 1. These proteins consist of a pleckstrin homology domain, a phosphotyrosine binding domain and a C-terminal region containing numerous sites of tyrosine, serine and threonine phosphorylation. Previous yeast two-hybrid studies identified a region unique to IRS2, termed the kinase regulatory-loop binding (KRLB) region, which interacts with the tyrosine kinase domain of the insulin receptor. Here we present the crystal structure of the insulin receptor kinase in complex with a 15-residue peptide from the KRLB region. In the structure, this segment of IRS2 is bound in the kinase active site with Tyr628 positioned for phosphorylation. Although Tyr628 was phosphorylated by the insulin receptor, its catalytic turnover was poor, resulting in kinase inhibition. Our studies indicate that the KRLB region functions to limit tyrosine phosphorylation of IRS2.

  7. Polyphenols activate energy sensing network in insulin resistant models.

    PubMed

    Mutlur Krishnamoorthy, Radika; Carani Venkatraman, Anuradha

    2017-09-25

    Unhealthy diet deficient in fruits and vegetables but rich in calories is considered to be one factor responsible for the increased prevalence of insulin resistance and type 2 diabetes (T2D). The consumption of fast foods and soft drinks increases fructose consumption per se and this is of major concern since prolonged fructose intake induces insulin resistance and thereby T2D. The energy homeostasis is regulated by a network consisting of "fuel gauze" called AMP-activated protein kinase (AMPK), the NAD(+) dependent type III deacetylase (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) which is disrupted in T2D. The present study was aimed to investigate the action of naringenin and quercetin on energy sensing molecules in insulin resistant models. L6 myotubes and albino Wistar rats were rendered insulin resistant with palmitate and fructose respectively. Naringenin, quercetin or metformin were used for treatment. Fructose and palmitate treatment resulted in insulin resistance as evidenced by decreased glucose transporter 4 (GLUT4) translocation. The translocation of GLUT4, phosphorylation of AMPK and the expression of SIRT1 and PGC-1α which were reduced in insulin resistant cells, were increased upon treatment with polyphenols. Further, naringenin and quercetin showed binding affinity with energy sensing molecules. We conclude that drugs from natural resources that target energy sensing molecules might be helpful to prevent insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-L1 adipocytes by an insulin-receptor mediated process

    SciTech Connect

    Smith, R.M.; Jarett, L.

    1987-01-01

    Monomeric ferritin-labeled insulin (F/sub m/-Ins), a biologically active, electron-dense marker of occupied insulin receptors, was used to characterize the internalization of insulin in 3T3-L1 adipocytes. F/sub m/-Ins bound specifically to insulin receptors and was internalized in a time- and temperature-dependent manner. In the nucleus, several F/sub m/-Ins particles usually were found in the same general location-near nuclear pores, associated with the periphery of the condensed chromatin. Addition of a 250-fold excess of unlabeled insulin or incubation at 15/sup 0/C reduced the number of F/sub m/-Ins particles found in nuclei after 90 min by 99% or 92%, respectively. Nuclear accumulation of unlabeled ferritin was only 2% of that found with F/sub m/-Ins after 90 min at 37/sup 0/C. Biochemical experiments utilizing /sup 125/I-labeled insulin and subcellular fractionation indicated that intact 3T3-L1 adipocytes internalized insulin rapidly and that approx. = 3% of the internalized ligand accumulated in nuclei after 1 hr. These data provide biochemical and high-resolution ultrastructural evidence that 3T3-L1 adipocytes accumulate potentially significant amounts of insulin in nuclei by an insulin receptor-mediated process. The transport of insulin or the insulin-receptor complex to nuclei in this cell or in others may be directly involved in the long-term biological effects of insulin - in particular, in the control of DNA and RNA synthesis.

  9. Protein kinase C-alpha regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3 epsilon.

    PubMed

    Oriente, Francesco; Andreozzi, Francesco; Romano, Chiara; Perruolo, Giuseppe; Perfetti, Anna; Fiory, Francesca; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro

    2005-12-09

    Protein kinase C (PKC)-alpha exerts a regulatory function on insulin action. We showed by overlay blot that PKCalpha directly binds a 180-kDa protein, corresponding to IRS-1, and a 30-kDa molecular species, identified as 14-3-3epsilon. In intact NIH-3T3 cells overexpressing insulin receptors (3T3-hIR), insulin selectively increased PKCalpha co-precipitation with IRS-1, but not with IRS-2, and with 14-3-3epsilon, but not with other 14-3-3 isoforms. Overexpression of 14-3-3epsilon in 3T3-hIR cells significantly reduced IRS-1-bound PKCalpha activity, without altering IRS-1/PKCalpha co-precipitation. 14-3-3epsilon overexpression also increased insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation, followed by increased activation of Raf1, ERK1/2, and Akt/protein kinase B. Insulin-induced glycogen synthase activity and thymidine incorporation were also augmented. Consistently, selective depletion of 14-3-3epsilon by antisense oligonucleotides caused a 3-fold increase of IRS-1-bound PKCalpha activity and a similarly sized reduction of insulin receptor and IRS-1 tyrosine phosphorylation and signaling. In turn, selective inhibition of PKCalpha expression by antisense oligonucleotides reverted the negative effect of 14-3-3epsilon depletion on insulin signaling. Moreover, PKCalpha inhibition was accompanied by a >2-fold decrease of insulin degradation. Similar results were also obtained by overexpressing 14-3-3epsilon. Thus, in NIH-3T3 cells, insulin induces the formation of multimolecular complexes, including IRS-1, PKCalpha, and 14-3-3epsilon. The presence of 14-3-3epsilon in the complex is not necessary for IRS-1/PKCalpha interaction but modulates PKCalpha activity, thereby regulating insulin signaling and degradation.

  10. MG53-IRS-1 (Mitsugumin 53-Insulin Receptor Substrate-1) Interaction Disruptor Sensitizes Insulin Signaling in Skeletal Muscle.

    PubMed

    Lee, Hyun; Park, Jung-Jin; Nguyen, Nga; Park, Jun Sub; Hong, Jin; Kim, Seung-Hyeob; Song, Woon Young; Kim, Hak Joong; Choi, Kwangman; Cho, Sungchan; Lee, Jae-Seon; Kim, Bong-Woo; Ko, Young-Gyu

    2016-12-23

    Mitsugumin 53 (MG53) is an E3 ligase that interacts with and ubiquitinates insulin receptor substrate-1 (IRS-1) in skeletal muscle; thus, an MG53-IRS-1 interaction disruptor (MID), which potentially sensitizes insulin signaling with an elevated level of IRS-1 in skeletal muscle, is an excellent candidate for treating insulin resistance. To screen for an MID, we developed a bimolecular luminescence complementation system using an N-terminal luciferase fragment fused with IRS-1 and a C-terminal luciferase fragment fused with an MG53 C14A mutant that binds to IRS-1 but does not have E3 ligase activity. An MID, which was discovered using the bimolecular luminescence complementation system, disrupted the molecular association of MG53 with IRS-1, thus abolishing MG53-mediated IRS-1 ubiquitination and degradation. Thus, the MID sensitized insulin signaling and increased insulin-elicited glucose uptake with an elevated level of IRS-1 in C2C12 myotubes. These data indicate that this MID holds promise as a drug candidate for treating insulin resistance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. G Protein–Coupled Receptor Kinase 2 Plays a Relevant Role in Insulin Resistance and Obesity

    PubMed Central

    Garcia-Guerra, Lucia; Nieto-Vazquez, Iria; Vila-Bedmar, Rocio; Jurado-Pueyo, María; Zalba, Guillermo; Díez, Javier; Murga, Cristina; Fernández-Veledo, Sonia; Mayor, Federico; Lorenzo, Margarita

    2010-01-01

    OBJECTIVE Insulin resistance is associated with the pathogenesis of metabolic disorders as type 2 diabetes and obesity. Given the emerging role of signal transduction in these syndromes, we set out to explore the possible role that G protein–coupled receptor kinase 2 (GRK2), first identified as a G protein–coupled receptor regulator, could have as a modulator of insulin responses. RESEARCH DESIGN AND METHODS We analyzed the influence of GRK2 levels in insulin signaling in myoblasts and adipocytes with experimentally increased or silenced levels of GRK2, as well as in GRK2 hemizygous animals expressing 50% lower levels of this kinase in three different models of insulin resistance: tumor necrosis factor-α (TNF-α) infusion, aging, and high-fat diet (HFD). Glucose transport, whole-body glucose and insulin tolerance, the activation status of insulin pathway components, and the circulating levels of important mediators were measured. The development of obesity and adipocyte size with age and HFD was analyzed. RESULTS Altering GRK2 levels markedly modifies insulin-mediated signaling in cultured adipocytes and myocytes. GRK2 levels are increased by ∼2-fold in muscle and adipose tissue in the animal models tested, as well as in lymphocytes from metabolic syndrome patients. In contrast, hemizygous GRK2 mice show enhanced insulin sensitivity and do not develop insulin resistance by TNF-α, aging, or HFD. Furthermore, reduced GRK2 levels induce a lean phenotype and decrease age-related adiposity. CONCLUSIONS Overall, our data identify GRK2 as an important negative regulator of insulin effects, key to the etiopathogenesis of insulin resistance and obesity, which uncovers this protein as a potential therapeutic target in the treatment of these disorders. PMID:20627936

  12. G protein-coupled receptor kinase 2 plays a relevant role in insulin resistance and obesity.

    PubMed

    Garcia-Guerra, Lucia; Nieto-Vazquez, Iria; Vila-Bedmar, Rocio; Jurado-Pueyo, María; Zalba, Guillermo; Díez, Javier; Murga, Cristina; Fernández-Veledo, Sonia; Mayor, Federico; Lorenzo, Margarita

    2010-10-01

    Insulin resistance is associated with the pathogenesis of metabolic disorders as type 2 diabetes and obesity. Given the emerging role of signal transduction in these syndromes, we set out to explore the possible role that G protein-coupled receptor kinase 2 (GRK2), first identified as a G protein-coupled receptor regulator, could have as a modulator of insulin responses. We analyzed the influence of GRK2 levels in insulin signaling in myoblasts and adipocytes with experimentally increased or silenced levels of GRK2, as well as in GRK2 hemizygous animals expressing 50% lower levels of this kinase in three different models of insulin resistance: tumor necrosis factor-α (TNF-α) infusion, aging, and high-fat diet (HFD). Glucose transport, whole-body glucose and insulin tolerance, the activation status of insulin pathway components, and the circulating levels of important mediators were measured. The development of obesity and adipocyte size with age and HFD was analyzed. Altering GRK2 levels markedly modifies insulin-mediated signaling in cultured adipocytes and myocytes. GRK2 levels are increased by ∼2-fold in muscle and adipose tissue in the animal models tested, as well as in lymphocytes from metabolic syndrome patients. In contrast, hemizygous GRK2 mice show enhanced insulin sensitivity and do not develop insulin resistance by TNF-α, aging, or HFD. Furthermore, reduced GRK2 levels induce a lean phenotype and decrease age-related adiposity. Overall, our data identify GRK2 as an important negative regulator of insulin effects, key to the etiopathogenesis of insulin resistance and obesity, which uncovers this protein as a potential therapeutic target in the treatment of these disorders.

  13. Insulin Directly Regulates Steroidogenesis via Induction of the Orphan Nuclear Receptor DAX-1 in Testicular Leydig Cells*

    PubMed Central

    Ahn, Seung Won; Gang, Gil-Tae; Kim, Yong Deuk; Ahn, Ryun-Sup; Harris, Robert A.; Lee, Chul-Ho; Choi, Hueng-Sik

    2013-01-01

    Testosterone level is low in insulin-resistant type 2 diabetes. Whether this is due to negative effects of high level of insulin on the testes caused by insulin resistance has not been studied in detail. In this study, we found that insulin directly binds to insulin receptors in Leydig cell membranes and activates phospho-insulin receptor-β (phospho-IR-β), phospho-IRS1, and phospho-AKT, leading to up-regulation of DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) gene expression in the MA-10 mouse Leydig cell line. Insulin also inhibits cAMP-induced and liver receptor homolog-1 (LRH-1)-induced steroidogenic enzyme gene expression and steroidogenesis. In contrast, knockdown of DAX-1 reversed insulin-mediated inhibition of steroidogenesis. Whether insulin directly represses steroidogenesis through regulation of steroidogenic enzyme gene expression was assessed in insulin-injected mouse models and high fat diet-induced obesity. In insulin-injected mouse models, insulin receptor signal pathway was activated and subsequently inhibited steroidogenesis via induction of DAX-1 without significant change of luteinizing hormone or FSH levels. Likewise, the levels of steroidogenic enzyme gene expression and steroidogenesis were low, but interestingly, the level of DAX-1 was high in the testes of high fat diet-fed mice. These results represent a novel regulatory mechanism of steroidogenesis in Leydig cells. Insulin-mediated induction of DAX-1 in Leydig cells of testis may be a key regulatory step of serum sex hormone level in insulin-resistant states. PMID:23589295

  14. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells.

    PubMed

    Ahn, Seung Won; Gang, Gil-Tae; Kim, Yong Deuk; Ahn, Ryun-Sup; Harris, Robert A; Lee, Chul-Ho; Choi, Hueng-Sik

    2013-05-31

    Testosterone level is low in insulin-resistant type 2 diabetes. Whether this is due to negative effects of high level of insulin on the testes caused by insulin resistance has not been studied in detail. In this study, we found that insulin directly binds to insulin receptors in Leydig cell membranes and activates phospho-insulin receptor-β (phospho-IR-β), phospho-IRS1, and phospho-AKT, leading to up-regulation of DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) gene expression in the MA-10 mouse Leydig cell line. Insulin also inhibits cAMP-induced and liver receptor homolog-1 (LRH-1)-induced steroidogenic enzyme gene expression and steroidogenesis. In contrast, knockdown of DAX-1 reversed insulin-mediated inhibition of steroidogenesis. Whether insulin directly represses steroidogenesis through regulation of steroidogenic enzyme gene expression was assessed in insulin-injected mouse models and high fat diet-induced obesity. In insulin-injected mouse models, insulin receptor signal pathway was activated and subsequently inhibited steroidogenesis via induction of DAX-1 without significant change of luteinizing hormone or FSH levels. Likewise, the levels of steroidogenic enzyme gene expression and steroidogenesis were low, but interestingly, the level of DAX-1 was high in the testes of high fat diet-fed mice. These results represent a novel regulatory mechanism of steroidogenesis in Leydig cells. Insulin-mediated induction of DAX-1 in Leydig cells of testis may be a key regulatory step of serum sex hormone level in insulin-resistant states.

  15. Crystal Structure of a Complex Between Protein Tyrosine Phosphatase 1B and the Insulin Receptor Tyrosine Kinase

    SciTech Connect

    Li,S.; Depetris, R.; Barford, D.; Chernoff, J.; Hubbard, S.

    2005-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a highly specific negative regulator of insulin receptor signaling in vivo. The determinants of PTP1B specificity for the insulin receptor versus other receptor tyrosine kinases are largely unknown. Here, we report a crystal structure at 2.3 Angstroms resolution of the catalytic domain of PTP1B (trapping mutant) in complex with the phosphorylated tyrosine kinase domain of the insulin receptor (IRK). The crystallographic asymmetric unit contains two PTP1B-IRK complexes that interact through an IRK dimer interface. Rather than binding to a phosphotyrosine in the IRK activation loop, PTP1B binds instead to the opposite side of the kinase domain, with the phosphorylated activation loops sequestered within the IRK dimer. The crystal structure provides evidence for a noncatalytic mode of interaction between PTP1B and IRK, which could be important for the selective recruitment of PTP1B to the insulin receptor.

  16. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex.

    PubMed

    Záková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J; Turkenburg, Johan P; Jiráček, Jiří; Brzozowski, Andrzej M

    2014-10-01

    The structural characterization of the insulin-insulin receptor (IR) interaction still lacks the conformation of the crucial B21-B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  17. Theoretical and Computational Studies of Peptides and Receptors of the Insulin Family

    PubMed Central

    Vashisth, Harish

    2015-01-01

    Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins. PMID:25680077

  18. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors.

    PubMed

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane-solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane-solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.

  19. Activation of Peroxisome Proliferator-Activated Receptor γ (PPARγ) by Rosiglitazone Suppresses Components of the Insulin-Like Growth Factor Regulatory System in Vitro and in Vivo

    PubMed Central

    Lecka-Czernik, B.; Ackert-Bicknell, C.; Adamo, M. L.; Marmolejos, V.; Churchill, G. A.; Shockley, K. R.; Reid, I. R.; Grey, A.; Rosen, C. J.

    2007-01-01

    Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor γ (PPARγ). Stimulation of PPARγ suppresses bone formation and enhances marrow adipogenesis. We hypothesized that activation of PPARγ down-regulates components of the IGF regulatory system, leading to impaired osteoblast function. Rosi treatment (1 μM) of a marrow stromal cell line (UAMS-33) transfected with empty vector (U-33/c) or with PPARγ2 (U-33/γ2) were analyzed by microarray. Rosi reduced IGF-I, IGF-II, IGFBP-4, and the type I and II IGF receptor (IGF1R and IGF2R) expression at 72 h in U-33/γ2 compared with U-33/c cells (P < 0.01); these findings were confirmed by RT-PCR. Rosi reduced secreted IGF-I from U-33/γ2 cells by 75% (P < 0.05). Primary marrow stromal cells (MSCs) extracted from adult (8 months) and old (24 months) C57BL/6J (B6) mice were treated with Rosi (1 μM) for 48 h. IGF-I, IGFBP-4, and IGF1R transcripts were reduced in Rosi-treated MSCs compared with vehicle (P < 0.01) and secreted IGF-I was also suppressed (P < 0.05). B6 mice treated with Rosi (20 mg/kg·d) for short duration (i.e. 4 d), and long term (i.e. 7 wk) had reduced serum IGF-I; this was accompanied by markedly suppressed IGF-I transcripts in the liver and peripheral fat of treated animals. To determine whether Rosi affected circulating IGF-I in humans, we measured serum IGF-I, IGFBP-2, and IGFBP-3 at four time points in 50 postmenopausal women randomized to either Rosi (8 mg/d) or placebo. Rosi-treated subjects had significantly lower IGF-I at 8 wk than baseline (−25%, P < 0.05), and at 16 wk their levels were reduced 14% vs. placebo (P = 0.15). We conclude that Rosi suppresses IGF-I expression in bone and liver; these changes could affect skeletal acquisition through endocrine and paracrine pathways. PMID:17122083

  20. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    PubMed Central

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we g