Science.gov

Sample records for insulin receptor loss

  1. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone.

    PubMed

    Thrailkill, Kathryn; Bunn, R Clay; Lumpkin, Charles; Wahl, Elizabeth; Cockrell, Gael; Morris, Lindsey; Kahn, C Ronald; Fowlkes, John; Nyman, Jeffry S

    2014-01-01

    Type 1 diabetes mellitus (T1D) is associated with decreased bone mineral density, a deficit in bone structure, and subsequently an increased risk of fragility fracture. These clinical observations, paralleled by animal models of T1D, suggest that the insulinopenia of T1D has a deleterious effect on bone. To further examine the action of insulin signaling on bone development, we generated mice with an osteoprogenitor-selective (osterix-Cre) ablation of the insulin receptor (IR), designated OIRKO. OIRKO mice exhibited an 80% decrease in IR in osteoblasts. Prenatal elimination of IR did not affect fetal survival or gross morphology. However, loss of IR in mouse osteoblasts resulted in a postnatal growth-constricted phenotype. By 10-12 weeks of age, femurs of OIRKO mice were more slender, with a thinner diaphyseal cortex and, consequently, a decrease in whole bone strength when subjected to bending. In male mice alone, decreased metaphyseal trabecular bone, with thinner and more rodlike trabeculae, was also observed. OIRKO mice did not, however, exhibit abnormal glucose tolerance. The skeletal phenotype of the OIRKO mouse appeared more severe than that of previously reported bone-specific IR knockdown models, and confirms that insulin receptor expression in osteoblasts is critically important for proper bone development and maintenance of structural integrity.

  2. Deletion of 3 basepairs resulting in the loss of lysine-121 in the insulin receptor alpha-subunit in a patient with leprechaunism: binding, phosphorylation, and biological activity.

    PubMed

    Jospe, N; Zhu, J; Liu, R; Livingston, J N; Furlanetto, R W

    1994-11-01

    We have identified a novel mutation of the human insulin receptor gene in a previously unreported patient with leprechaunism, leprechaun Rochester. This mutation consists of deletion of three nucleotides (GAA) in exon 2 and results in loss of the lysine-121 in the putative ligand-binding domain of the alpha-subunit. To analyze this mutation, we prepared a corresponding mutant insulin receptor by site-directed mutagenesis and expressed the receptor in Chinese hamster ovary cells. Although the mutant receptor displayed normal insulin binding, abnormalities were found in autophosphorylation and in phosphorylation of endogenous and exogenous protein substrates. These abnormalities consisted of increased basal kinase activity, but blunted insulin-stimulated responsiveness. Importantly, cells that expressed the mutant receptor showed markedly decreased insulin- and serum-stimulated DNA synthesis compared to untransfected control cells and cells transfected with the wild-type insulin receptor. These findings suggest that deletion of lysine-121 in conjunction with a presumed, but thus far unidentified, second mutant allele contributed significantly to the lethal insulin-resistant state in this patient with leprechaunism.

  3. Developmental aspects of the rat brain insulin receptor: loss of sialic acid and fluctuation in number characterize fetal development

    SciTech Connect

    Brennan, W.A. Jr.

    1988-06-01

    In this study, I have investigated the structure of the rat brain insulin receptor during fetal development. There is a progressive decrease in the apparent molecular size of the brain alpha-subunit during development: 130K on day 16 of gestation, 126K at birth, and 120K in the adult. Glycosylation was investigated as a possible reason for the observed differences in the alpha-subunit molecular size. The results show that the developmental decrease in the brain alpha-subunit apparent molecular size is due to a parallel decrease in sialic acid content. This was further confirmed by measuring the retention of autophosphorylated insulin receptors on wheat germ agglutinin (WGA)-Sepharose. An inverse correlation between developmental age and retention of /sup 32/P-labeled insulin receptors on the lectin column was observed. Insulin binding increases 6-fold between 16 and 20 days of gestation (61 +/- 25 (+/- SE) fmol/mg protein and 364 +/- 42 fmol/mg, respectively). Thereafter, binding in brain membranes decreases to 150 +/- 20 fmol/mg by 2 days after birth, then reaches the adult level of 63 +/- 15 fmol/mg. In addition, the degree of insulin-stimulated autophosphorylation closely parallels the developmental changes in insulin binding. Between 16 and 20 days of fetal life, insulin-stimulated phosphorylation of the beta-subunit increases 6-fold. Thereafter, the extent of phosphorylation decreases rapidly, reaching adult values identical with those in 16-day-old fetal brain. These results suggest that the embryonic brain possesses competent insulin receptors whose expression changes markedly during fetal development. This information should be important in defining the role of insulin in the developing nervous system.

  4. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin.

    PubMed

    Reiter, Chad E N; Wu, Xiaohua; Sandirasegarane, Lakshman; Nakamura, Makoto; Gilbert, Kirk A; Singh, Ravi S J; Fort, Patrice E; Antonetti, David A; Gardner, Thomas W

    2006-04-01

    Diabetic retinopathy is characterized by early onset of neuronal cell death. We previously showed that insulin mediates a prosurvival pathway in retinal neurons and that normal retina expresses a highly active basal insulin receptor/Akt signaling pathway that is stable throughout feeding and fasting. Using the streptozotocin-induced diabetic rat model, we tested the hypothesis that diabetes diminishes basal retinal insulin receptor signaling concomitantly with increased diabetes-induced retinal apoptosis. The expression, phosphorylation status, and/or kinase activity of the insulin receptor and downstream signaling proteins were investigated in retinas of age-matched control, diabetic, and insulin-treated diabetic rats. Four weeks of diabetes reduced basal insulin receptor kinase, insulin receptor substrate (IRS)-1/2-associated phosphatidylinositol 3-kinase, and Akt kinase activity without altering insulin receptor or IRS-1/2 expression or tyrosine phosphorylation. After 12 weeks of diabetes, constitutive insulin receptor autophosphorylation and IRS-2 expression were reduced, without changes in p42/p44 mitogen-activated protein kinase or IRS-1. Sustained systemic insulin treatment of diabetic rats prevented loss of insulin receptor and Akt kinase activity, and acute intravitreal insulin administration restored insulin receptor kinase activity. Insulin treatment restored insulin receptor-beta autophosphorylation in rat retinas maintained ex vivo, demonstrating functional receptors and suggesting loss of ligand as a cause for reduced retinal insulin receptor/Akt pathway activity. These results demonstrate that diabetes progressively impairs the constitutive retinal insulin receptor signaling pathway through Akt and suggests that loss of this survival pathway may contribute to the initial stages of diabetic retinopathy.

  5. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  6. Characterization of the chicken muscle insulin receptor

    SciTech Connect

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-12-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific /sup 125/I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of /sup 125/I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific /sup 125/I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens.

  7. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids.

    PubMed Central

    Vidal-Puig, A J; Considine, R V; Jimenez-Liñan, M; Werman, A; Pories, W J; Caro, J F; Flier, J S

    1997-01-01

    The peroxisome proliferator activated receptor (PPAR gamma) plays a key role in adipogenesis and adipocyte gene expression and is the receptor for the thiazolidinedione class of insulin-sensitizing drugs. The tissue expression and potential for regulation of human PPAR gamma gene expression in vivo are unknown. We have cloned a partial human PPAR gamma cDNA, and established an RNase protection assay that permits simultaneous measurements of both PPAR gamma1 and PPAR gamma2 splice variants. Both gamma1 and gamma2 mRNAs were abundantly expressed in adipose tissue. PPAR gamma1 was detected at lower levels in liver and heart, whereas both gamma1 and gamma2 mRNAs were expressed at low levels in skeletal muscle. To examine the hypothesis that obesity is associated with abnormal adipose tissue expression of PPAR gamma, we quantitated PPARgamma mRNA splice variants in subcutaneous adipose tissue of 14 lean and 24 obese subjects. Adipose expression of PPARgamma 2 mRNA was increased in human obesity (14.25 attomol PPAR gamma2/18S in obese females vs 9.9 in lean, P = 0.003). This increase was observed in both male and females. In contrast, no differences were observed in PPAR gamma1/18S mRNA expression. There was a strong positive correlation (r = 0.70, P < 0.001) between the ratio of PPAR gamma2/gamma1 and the body mass index of these patients. We also observed sexually dimorphic expression with increased expression of both PPAR gamma1 and PPAR gamma2 mRNAs in the subcutaneous adipose tissue of women compared with men. To determine the effect of weight loss on PPAR gamma mRNA expression, seven additional obese subjects were fed a low calorie diet (800 Kcal) until 10% weight loss was achieved. Mean expression of adipose PPAR gamma2 mRNA fell 25% (P = 0.0250 after a 10% reduction in body weight), but then increased to pretreatment levels after 4 wk of weight maintenance. Nutritional regulation of PPAR gamma1 was not seen. In vitro experiments revealed a synergistic effect of

  8. Insulin receptors in the mammary gland

    SciTech Connect

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of /sup 125/I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less /sup 125/I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less /sup 125/I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands.

  9. Role of insulin and insulin receptor in learning and memory.

    PubMed

    Zhao, W Q; Alkon, D L

    2001-05-25

    As one of the most extensively studied protein hormones, insulin and its receptor have been known to play key roles in a variety of important biological functions. Until recent years, the functions of insulin and insulin receptor (IR) in the central nervous system (CNS) have largely remained unclear. IR is abundantly expressed in several specific brain regions that govern fundamental behaviors such as food intake, reproduction and high cognition. The IR from the periphery and CNS exhibit differences in both structure and function. In addition to that from the peripheral system, locally synthesized insulin in the brain has also been identified. Accumulated evidence has demonstrated that insulin/IR plays important roles in associative learning, as suggested by results from both interventive and correlative studies. Interruption of insulin production and IR activity causes deficits in learning and memory formation. Abnormal insulin/IR levels and activities are seen in Alzheimer's dementia, whereas administration of insulin significantly improves the cognitive performance of these patients. The synaptic bases for the action of insulin/IR include modifying neurotransmitter release processes at various types of presynaptic terminals and modulating the activities of both excitatory and inhibitory postsynaptic receptors such as NMDA and GABA receptors, respectively. At the molecular level, insulin/IR participates in regulation of learning and memory via activation of specific signaling pathways, one of which is shown to be associated with the formation of long-term memory and is composed of intracellular molecules including the shc, Grb-r/SOS, Ras/Raf, and MEK/MAP kinases. Cross-talk with another IR pathway involving IRS1, PI3 kinase, and protein kinase C, as well as with the non-receptor tyrosine kinase pp60c-src, may also be associated with memory processing.

  10. Insulin receptors in normal and disease states.

    PubMed

    Grunberger, G; Taylor, S I; Dons, R F; Gorden, P

    1983-03-01

    The binding of insulin to its receptor has been studied under various physiological and pathological conditions. Quantitative studies have involved human circulating cells such as monocytes and erythrocytes, adipocytes, placental cells, and cultured cells such as fibroblasts and transformed lymphocytes. In animals, other target tissues such as liver and muscle have been studied and correlated with the human studies. Various physiological conditions such as diurnal rhythm, diet, age, exercise and the menstrual cycle affect insulin binding; in addition, many drugs perturb the receptor interaction. Disease affecting the insulin receptor can be divided into five general categories: (1) Receptor regulation--this involves diseases characterized by hyper- or hypoinsulinaemia. Hyperinsulinaemia in the basal state usually leads to receptor 'down' regulation as seen in obesity, type II diabetes, acromegaly and islet cell tumours. Hypoinsulinaemia such as seen in anorexia nervosa or type I diabetes may lead to elevated binding. (2) Antireceptor antibodies--these immunoglobulins bind to the receptor and competitively inhibit insulin binding. They may act as agonists, antagonists or partial agonists. (3) Genetic diseases which produce fixed alterations in both freshly isolated and cultured cells. (4) Diseases of receptor specificity where insulin may bind with different affinity to its own receptor or related receptors such as receptors for insulin-like growth factors. (5) Disease of affinity modulation where physical factors such as pH, temperature, ions, etc. may modify binding. In this review, we have considered primarily abnormality in insulin receptor binding. There are numerous other functions of the receptor such as coupling and transmission of the biological signal. These mechanisms are frequently referred to as postreceptor events, but more properly should be referred to as postbinding events since the receptor subserves other functions in addition to recognition and

  11. Amyloid beta oligomers induce impairment of neuronal insulin receptors.

    PubMed

    Zhao, Wei-Qin; De Felice, Fernanda G; Fernandez, Sara; Chen, Hui; Lambert, Mary P; Quon, Michael J; Krafft, Grant A; Klein, William L

    2008-01-01

    Recent studies have indicated an association between Alzheimer's disease (AD) and central nervous system (CNS) insulin resistance. However, the cellular mechanisms underlying the link between these two pathologies have not been elucidated. Here we show that signal transduction by neuronal insulin receptors (IR) is strikingly sensitive to disruption by soluble Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in AD brain and have recently been implicated as primary candidates for initiating deterioration of synapse function, composition, and structure. Using mature cultures of hippocampal neurons, a preferred model for studies of synaptic cell biology, we found that ADDLs caused a rapid and substantial loss of neuronal surface IRs specifically on dendrites bound by ADDLs. Removal of dendritic IRs was associated with increased receptor immunoreactivity in the cell body, indicating redistribution of the receptors. The neuronal response to insulin, measured by evoked IR tyrosine autophosphorylation, was greatly inhibited by ADDLs. Inhibition also was seen with added glutamate or potassium-induced depolarization. The effects on IR function were completely blocked by NMDA receptor antagonists, tetrodotoxin, and calcium chelator BAPTA-AM. Downstream from the IR, ADDLs induced a phosphorylation of Akt at serine473, a modification associated with neurodegenerative and insulin resistance diseases. These results identify novel factors that affect neuronal IR signaling and suggest that insulin resistance in AD brain is a response to ADDLs, which disrupt insulin signaling and may cause a brain-specific form of diabetes as part of an overall pathogenic impact on CNS synapses.

  12. Human blood-brain barrier insulin receptor.

    PubMed

    Pardridge, W M; Eisenberg, J; Yang, J

    1985-06-01

    A new model system for characterizing the human brain capillary, which makes up the blood-brain barrier (BBB) in vivo, is described in these studies and is applied initially to the investigation of the human BBB insulin receptor. Autopsy brains were obtained from the pathologist between 22-36 h postmortem and were used to isolate human brain microvessels which appeared intact on both light and phase microscopy. The microvessels were positive for human factor 8 and for a BBB-specific enzyme marker, gamma-glutamyl transpeptidase. The microvessels avidly bound insulin with a high-affinity dissociation constant, KD = 1.2 +/- 0.5 nM. The human brain microvessels internalized insulin based on acid-wash assay, and 75% of insulin was internalized at 37 degrees C. The microvessels transported insulin to the medium at 37 degrees C with a t1/2 = approximately 70 min. Little of the 125I-insulin was metabolized by the microvessels under these conditions based on the elution profile of the medium extract over a Sephadex G-50 column. Plasma membranes were obtained from the human brain microvessels and these membranes were enriched in membrane markers such as gamma-glutamyl transpeptidase or alkaline phosphatase. The plasma membranes bound 125I-insulin with and ED50 = 10 ng/ml, which was identical to the 50% binding point in intact microvessels. The human BBB plasma membranes were solubilized in Triton X-100 and were adsorbed to a wheat germ agglutinin Sepharose affinity column, indicating the BBB insulin receptor is a glycoprotein. Affinity cross-linking of insulin to the plasma membranes revealed a 127K protein that specifically binds insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The neuronal insulin receptor in its environment.

    PubMed

    Gralle, Matthias

    2017-02-01

    Insulin is known mainly for its effects in peripheral tissues, such as the liver, skeletal muscles and adipose tissue, where the activation of the insulin receptor (IR) has both short-term and long-term effects. Insulin and the IR are also present in the brain, and since there is evidence that neuronal insulin signaling regulates synaptic plasticity and that it is impaired in disease, this pathway might be the key to protection or reversal of symptoms, especially in Alzheimer's disease. However, there are controversies about the importance of the neuronal IR, partly because biophysical data on its activation and signaling are much less complete than for the peripheral IR. This review briefly summarizes the neuronal IR signaling in health and disease, and then focuses on known differences between the neuronal and peripheral IR with regard to alternative splicing and glycosylation, and lack of data with respect to phosphorylation and membrane subdomain localization. Particularities in the neuronal IR itself and its environment may have consequences for downstream signaling and impact synaptic plasticity. Furthermore, establishing the relative importance of insulin signaling through IR or through hybrids with its homolog, the insulin-like growth factor 1 receptor, is crucial for evaluating the consequences of brain IR activation. An improved biophysical understanding of the neuronal IR may help predict the consequences of insulin-targeted interventions.

  14. Functional characterization of insulin receptor gene mutations contributing to Rabson-Mendenhall syndrome - phenotypic heterogeneity of insulin receptor gene mutations.

    PubMed

    Jiang, Shan; Fang, Qichen; Zhang, Feng; Wan, Hui; Zhang, Rong; Wang, Congrong; Bao, Yuqian; Zhang, Lei; Ma, Xiaojing; Lu, Junxi; Gao, Fei; Xiang, Kunsan; Jia, Weiping

    2011-01-01

    Rabson-Mendenhall syndrome (RMS) is a rare disorder that presents as severe insulin resistance as a result of mutations present in the insulin receptor (INSR). A Chinese girl with RMS presented with profound diabetes, hyperinsulinemia, acanthosis nigricans, hirsutism, and abnormalities of teeth and nails. Direct sequencing of the patient's INSR detected heterozygote mutations at Arg83Gln (R83Q) and Ala1028Val (A1028V), with the former representing a novel mutation. Functional studies of Chinese hamster ovary (CHO) cells transfected with wild-type (WT) and mutant forms of INSR were performed to evaluate the effects of these mutations on receptor expression and activation. Receptor expression, insulin binding activity, and phosphorylation of the R83Q variant were comparable to WT. In contrast, expression of the A1028V receptor was much lower than that of WT INSR, and impairment of insulin binding and autophosphorylation were nearly commensurate with the decrease in expression detected. Reductions in the phosphorylation of IRS-1, Akt, and Erk1/2 (60%, 40%, and 50% of WT, respectively) indicate that the A1028V receptor contributes to impaired signal transduction. In conclusion, INSR mutations associated with RMS were identified. Moreover, the A1028V mutation associated with a decrease in expression of INSR potentially accounts for loss of function of the INSR.

  15. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists.

  16. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels

    PubMed Central

    Nagarajan, Arvindhan; Petersen, Max C.; Nasiri, Ali R.; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J.; Green, Michael R.; Shulman, Gerald I.; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  17. Insulin-receptor phosphotyrosyl-protein phosphatases.

    PubMed Central

    King, M J; Sale, G J

    1988-01-01

    Calmodulin-dependent protein phosphatase has been proposed to be an important phosphotyrosyl-protein phosphatase. The ability of the enzyme to attack autophosphorylated insulin receptor was examined and compared with the known ability of the enzyme to act on autophosphorylated epidermal-growth-factor (EGF) receptor. Purified calmodulin-dependent protein phosphatase was shown to catalyse the complete dephosphorylation of phosphotyrosyl-(insulin receptor). When compared at similar concentrations, 32P-labelled EGF receptor was dephosphorylated at greater than 3 times the rate of 32P-labelled insulin receptor; both dephosphorylations exhibited similar dependence on metal ions and calmodulin. Native phosphotyrosyl-protein phosphatases in cell extracts were also characterized. With rat liver, heart or brain, most (75%) of the native phosphatase activity against both 32P-labelled insulin and EGF receptors was recovered in the particulate fraction of the cell, with only 25% in the soluble fraction. This subcellular distribution contrasts with results of previous studies using artificial substrates, which found most of the phosphotyrosyl-protein phosphatase activity in the soluble fraction of the cell. Properties of particulate and soluble phosphatase activity against 32P-labelled insulin and EGF receptors are reported. The contribution of calmodulin-dependent protein phosphatase activity to phosphotyrosyl-protein phosphatase activity in cell fractions was determined by utilizing the unique metal-ion dependence of calmodulin-dependent protein phosphatase. Whereas Ni2+ (1 mM) markedly activated the calmodulin-dependent protein phosphatase, it was found to inhibit potently both particulate and soluble phosphotyrosyl-protein phosphatase activity. In fractions from rat liver, brain and heart, total phosphotyrosyl-protein phosphatase activity against both 32P-labelled receptors was inhibited by 99.5 +/- 6% (mean +/- S.E.M., 30 observations) by Ni2+. Results of Ni2+ inhibition

  18. SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity

    PubMed Central

    Schmidt, Vanessa; Schulz, Nadja; Yan, Xin; Schürmann, Annette; Kempa, Stefan; Kern, Matthias; Blüher, Matthias; Poy, Matthew N.

    2016-01-01

    In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer’s disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA. PMID:27322061

  19. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  20. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory.

  1. Immunological demonstration of the accumulation of insulin, but not insulin receptors, in nuclei of insulin-treated cells

    SciTech Connect

    Soler, A.P.; Thompson, K.A.; Smith, R.M.; Jarett, L. )

    1989-09-01

    Although insulin is known to regulate nuclear-related processes, such as cell growth and gene transcription, the mechanisms involved are poorly understood. Previous studies suggested that translocation of insulin or its receptor to cell nuclei might be involved in some of these processes. The present investigation demonstrated that intact insulin, but not the insulin receptor, accumulated in nuclei of insulin-treated cells. Cell fractionation studies demonstrated that the nuclear accumulation of {sup 125}I-labeled insulin was time-, temperature-, and insulin-concentration-dependent. Electron microscopic immunocytochemistry demonstrated that the insulin that accumulated in the nucleus was immunologically intact and associated with the heterochromatin. Only 1% of the {sup 125}I-labeled insulin extracted from isolated nuclei was eluted from a Sephadex G-50 column as {sup 125}I-labeled tyrosine. Plasma membrane insulin receptors were not detected in the nucleus by immuno electron microscopy or when wheat germ agglutinin-purified extracts of the nuclei were subjected to PAGE, electrotransfer, and immunoblotting with anti-insulin receptor antibodies. These results suggested that internalized insulin dissociated from its receptor and accumulated in the nucleus without its membrane receptor. The authors propose that some of insulin's effects on nuclear function may be caused by the translocation of the intact and biologically active hormone to the nucleus and its binding to nuclear components in the heterochromatin.

  2. Human insulin prepared by recombinant DNA techniques and native human insulin interact identically with insulin receptors.

    PubMed Central

    Keefer, L M; Piron, M A; De Meyts, P

    1981-01-01

    Human insulin synthesized from A and B chains separately produced in Escherichia coli from cloned synthetic genes (prepared by the Eli Lilly Research Laboratories, Indianapolis, IN) was characterized by examining its interaction with human cultured lymphocytes, human circulating erythrocytes in vitro, and isolated rat fat cells. The binding behavior of the biosynthetic insulin with human cells was indistinguishable from that of native human or porcine insulins, with respect to affinity, association and dissociation kinetics, negative cooperativity, and the down-regulation of lymphocyte receptors. Similarly, the biosynthetic insulin was as potent as the native insulins in stimulating lipogenesis in isolated rat fat cells. We also examined the receptor binding characteristics of 125I-labeled human and porcine insulins monoiodinated solely at Tyr-A14, which were obtained by means of high-performance liquid chromatography of the iodination reaction mixture (this material was prepared by B. Frank, Eli Lilly Research Laboratories). In all aspects studied, the pure [TyrA14-125I]iodoinsulins were superior as tracers to the monoiodoinsulin purified by the more conventional method of gel filtration. PMID:7015337

  3. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    SciTech Connect

    Wang, Feng; Yang, Yong

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  4. Inhibition of insulin receptor gene expression and insulin signaling by fatty acid: interplay of PKC isoforms therein.

    PubMed

    Dey, Debleena; Mukherjee, Mohua; Basu, Dipanjan; Datta, Malabika; Roy, Sib Sankar; Bandyopadhyay, Arun; Bhattacharya, Samir

    2005-01-01

    Fatty acids are known to play a key role in promoting the loss of insulin sensitivity causing insulin resistance and type 2 diabetes. However, underlying mechanism involved here is still unclear. Incubation of rat skeletal muscle cells with palmitate followed by I(125)- insulin binding to the plasma membrane receptor preparation demonstrated a two-fold decrease in receptor occupation. In searching the cause for this reduction, we found that palmitate inhibition of insulin receptor (IR) gene expression effecting reduced amount of IR protein in skeletal muscle cells. This was followed by the inhibition of insulin-stimulated IRbeta tyrosine phosphorylation that consequently resulted inhibition of insulin receptor substrate 1 (IRS 1) and IRS 1 associated phosphatidylinositol-3 kinase (PI3 Kinase), phosphoinositide dependent kinase-1 (PDK 1) phosphorylation. PDK 1 dependent phosphorylation of PKCzeta and Akt/PKB were also inhibited by palmitate. Surprisingly, although PKCepsilon phosphorylation is PDK1 dependent, palmitate effected its constitutive phosphorylation independent of PDK1. Time kinetics study showed translocation of palmitate induced phosphorylated PKCepsilon from cell membrane to nuclear region and its possible association with the inhibition of IR gene transcription. Our study suggests one of the pathways through which fatty acid can induce insulin resistance in skeletal muscle cell.

  5. Combining a GLP-1 receptor agonist and basal insulin: study evidence and practical considerations.

    PubMed

    Carris, Nicholas W; Taylor, James R; Gums, John G

    2014-12-01

    Most patients with diabetes mellitus require multiple medications to achieve glycemic goals. Considering this and the increasing incidence of type 2 diabetes worldwide, the need for effective combination therapy is pressing. Basal insulin and glucagon-like peptide 1 (GLP-1) receptor agonists are frequently used to treat type 2 diabetes. Though both classes of medication are exclusively injectable, which may cause initial hesitation from providers, evidence for their combined use is substantial. This review summarizes the theoretical benefit, supporting evidence, and implementation of a combined basal insulin-GLP-1 receptor agonist regimen. Basal insulin added to a GLP-1 receptor agonist reduces hemoglobin A1c (HbA1c) without weight gain or significantly increased hypoglycemia. A GLP-1 receptor agonist added to basal insulin reduces HbA1c and body weight. Compared with the addition of meal-time insulin to basal insulin, a GLP-1 receptor agonist produces similar or greater reduction in HbA1c, weight loss instead of weight gain, and less hypoglycemia. Gastrointestinal adverse events are common with GLP-1 receptor agonists, especially during initiation and titration. However, combination with basal insulin is not expected to augment expected adverse events that come with using a GLP-1 receptor agonist. Basal insulin can be added to a GLP-1 receptor agonist with a slow titration to target goal fasting plasma glucose. In patients starting a GLP-1 receptor agonist, the dose of basal insulin should be decreased by 20 % in patients with an HbA1c ≤8 %. The evidence from 15 randomized prospective studies supports the combined use of a GLP-1 receptor agonist with basal insulin in a broad range of patients with uncontrolled type 2 diabetes.

  6. Simulation model of defective insulin receptors as byproducts of receptor recycling.

    PubMed

    Kurbel, B; Kurbel, S; Kristek, Z; Jakić, M; Jurić, M; Sulava, D

    1997-08-01

    Our simulation model assumes that the defective insulin-binding receptors in non-insulin-dependent diabetes (NIDDM) patients result from functional receptor recycling. The model is a short program written in MS DOS 5.0 Qbasic. MODEL DESIGN: Receptors with intracellular portions damaged in the process of recycling are considered defective since they bind insulin but do mediate insulin effects, or recycle. Their occurrence depends on the average activation rate of functional receptors. The insulin-binding receptors (defective and functional) are objects of slow and time-dependent turnover defined by the turnover rate. Recycled receptors rejoin functional receptors or enter the pool of defective receptors. The waste in the functional receptors' pool is covered by a limited amount of newly synthesized receptors. The defective receptors often accumulate in cases of increased activation of functional receptors. SIMULATION RESULTS: The insulin-binding receptor quantity is determined, in the model, only by the number of newly synthesized receptors, reflecting the intensity of insulin stimulation. Synthesis is increased following variable insulin stimulations and decreased after sustained, intensive insulin stimulation. The number of functional receptors inversely reflects the average activation rate of functional receptors compared with the insulin-binding receptors turnover rate. High activation rates can diminish the proportion of functional receptors to less than 5% of that of all insulin-binding receptors. The model predicts that cells bearing only functional receptors show progressively shortened half-lives of receptors, reflecting the receptor activation intensity. On the other hand, cells bearing both defective and functional receptors show stable receptors' half-lives (20-36% of the defective receptors' half-life). Simulation results suggest that reduced functional receptor proportions in NIDDM patients might reflect the imbalance between the activation of

  7. Insulin-Dependent Regulation of Insulin Receptor Concentrations: A Direct Demonstration in Cell Culture

    PubMed Central

    Gavin, James R.; Roth, Jesse; Neville, David M.; De Meyts, Pierre; Buell, Donald N.

    1974-01-01

    Chronic (5-16 hr) exposure of cultured human lymphocytes to 10-8 M insulin at 37° in vitro produced a decrease in insulin receptor concentrations unaccounted for by simple occupancy of sites; acute exposure (0-2 hr) was without effect. These results reproduced observations in vivo where chronic hyperinsulinemia (e.g., 10-8 M insulin in the circulation of obese insulinresistant hyperglycemic mice) is associated with a substantial reduction in the concentration of insulin receptors per cell, while acute hyperinsulinemia in vivo has no effect on receptor concentration. These data suggest a reciprocal relationship between insulin in the extracellular fluid and the concentration of insulin receptors per cell, which is mediated at the target cell itself by intracellular insulin-sensitive regulatory processes and directly affects target-cell sensitivity to hormone. PMID:4359334

  8. Changes of insulin effect on lipogenesis and insulin binding receptors during hypokinesia

    NASA Astrophysics Data System (ADS)

    Macho, L.; Fickova, M.; Zorad, S.

    The effect of hypokinesia on insulin action and insulin binding to specific receptors in fat cells was studied. Male Wistar rats were exposed to hypokinesia in special adjustable plastic cages for 1, 7, 21 and 60 days, and the stimulatory effect of insulin (10 and 100 mU) on the incorporation of radiocarbon labelled glucose into lipids of fat tissue and the binding of insulin to receptors of isolated adipocytes was estimated. The stimulation of lipogenesis by insulin was slightly diminished after hypokinesia for 1 day, however, an important increase of insulin action was found in rats exposed to hypokinesia for 60 days. The decrease of insulin binding capacity of the number of binding sites per cell and of the insulin receptor density was found after 1 day of hypokinesia. In rats exposed to hypokinesia for 60 days, in agreement with the higher stimulatory affect of insulin, an increase of insulin receptor density was observed. These results showed that hypokinesia has an important influence on stimulatory action of insulin and on insulin receptors in adipocytes.

  9. Insulin phosphorylates calmodulin in preparations of solubilized rat hepatocyte insulin receptors

    SciTech Connect

    Sacks, D.B.; McDonald, J.M.

    1987-05-01

    It has previously been shown that insulin stimulates the phosphorylation of calmodulin in adipocyte insulin receptor preparations. Here they demonstrate that insulin also stimulates the phosphorylation of calmodulin in wheat germ lectin-enriched insulin receptor preparations obtained from rat hepatocytes. Standard phosphorylation assays were performed at 30C in the presence of 50mM Tris-HCl (pH 7.5), 0.1% (v/v) Triton X-100, 1mM EGTA, 50 M (el-TSP)ATP, 5mM MgCl2, 0.25 M polylysine, 1.2 M calmodulin and various CaS and insulin concentrations. The phosphorylation of calmodulin was determined by SDS-PAGE and autoradiography. Phosphorylation of calmodulin had an absolute requirement for insulin receptors, insulin and certain basic proteins. Phosphorylation was maximal above 13 nM insulin and at submicromolar CaS concentrations, whereas supramicromolar CaS concentrations were inhibitory. As was observed in the adipocyte insulin receptor system, calmodulin phosphorylation was dependent upon the presence of co-factors, such as polylysine, histone H/sub f/2b and protamine sulfate. The role played by these co-factors has not yet been established. These data suggest that both CaS and calmodulin participate in post receptor insulin events in hepatocytes.

  10. [A case of leprechaunism with extreme insulin resistance due to a primary defect in insulin receptors].

    PubMed

    Goji, K; Takata, Y; Kobayashi, M

    1985-09-20

    This report describes a 3-month-old female infant with the typical physical features of leprechaunism. The patient demonstrated glucose intolerance and marked hyperinsulinemia (4600 microU/ml). Since an intravenous insulin injection (actrapid insulin: 0.15 U/kg) caused no significant decrease in the blood glucose level, the presence of insulin resistance was suggested. Neither insulin antibodies nor insulin receptor antibodies were were found in the patient's plasma, and other circulating insulin antagonists such as glucagon, growth hormone, and cortisol were within normal limits. [125I]Insulin binding to the erythrocytes from the patient was as low as 1.02% (control infants: 4.89 +/- 1.08% [mean +/- SD]). [125I]Insulin binding to the cultured transformed lymphocytes from the patient was similarly reduced to 3.58% (control: 20.9 +/- 2.71% [mean +/- SD]). From these findings we concluded that the insulin resistance was due to a primary defect in insulin receptors. Interestingly, transient remissions of the patient's glucose intolerance and hyperinsulinemia were observed during a year of follow-up study. The insulin tolerance test which was performed at the remission period showed an improvement in insulin resistance. However, the insulin binding defect to erythrocytes remained unchanged even at the remission period. The exact cause of these remissions was not clear and remained to be elucidated.

  11. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    PubMed Central

    Root-Bernstein, Robert; Podufaly, Abigail; Dillon, Patrick F.

    2014-01-01

    Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance. PMID:25101056

  12. Insulin receptor: Interaction with nonreceptor glycoprotein from liver cell membranes

    PubMed Central

    Maturo, Joseph M.; Hollenberg, Morley D.

    1978-01-01

    In crude receptor preparations (either particulate or soluble) of rat liver membranes, the insulin receptor exhibits complicated binding kinetics (two binding plateaus, half-saturated at approximately 60 pM and 700 pM insulin) and an apparent chromatographic heterogeneity, suggested by the presence of two detectable, soluble insulin-binding components with apparent Stokes radii of 72 Å and 38 Å. In contrast, the insulin receptor isolated by affinity chromatography exhibits a simple binding isotherm (half-maximal saturation of binding at 700 pM insulin) without evidence for negative cooperativity and behaves as a single component (apparent Stokes radius of 38 Å) upon chromatography on Sepharose 6B. The apparent discrepancies between the properties of the unpurified insulin receptor and the affinity-purified receptor can be attributed to the presence in crude preparations of a nonreceptor constituent(s) having properties consistent with those of a membrane glycoprotein. A glycoprotein fraction from such crude soluble membrane preparations, freed from insulin receptor and subsequently partially purified using concanavalin-A-agarose, when combined with affinity-purified insulin receptor, causes both a reappearance of the complicated binding kinetics and an increase in the receptor's apparent Stokes radius from 38 Å to 72 Å. Similar results are observed for a glycoprotein fraction obtained from rat adipocyte membranes but are not observed for an identical fraction isolated from human erythrocyte membranes. We conclude that the insulin receptor in rat liver membranes can interact with another nonreceptor membrane glycoprotein that may represent either a nonrecognition moiety of the receptor oligomer or an effector molecule to the biological action of insulin. PMID:277909

  13. A 3-basepair in-frame deletion ({Delta}Leu{sup 999}) in exon 17 of the insulin receptor gene in a family with insulin resistance

    SciTech Connect

    Awata, T.; Matsumoto, C.; Iwamoto, Y.

    1994-12-01

    We studied a woman with acanthosis nigricans and insulin resistance. The patient`s Epstein-Barr virus-transformed lymphocytes revealed slightly decreased insulin binding and markedly decreased insulin-stimulated autophosphorylation of the insulin receptor. The nucleotide sequence analysis of the patient`s genomic DNA revealed a 3-basepair in-frame deletion of one allele, resulting in the loss of leucine at position 999 of the insulin receptor ({Delta}Leu{sup 999}). The messenger ribonucleic acid transcripts from the mutant allele in the patient`s lymphocytes were not decreased. Insulin-stimulated autophosphorylation of the insulin receptor from cells expressing {Delta}Leu{sup 999} mutant insulin receptor complementary DNA was markedly decreased. The proband, her mother, elder brother, and younger brother, who were heterozygous for this mutation, showed moderate or marked hyperinsulinemia during oral glucose tolerance tests. Although fasting glucose levels were normal and fasting insulin values were preserved in all subjects with the mutation for the 8-yr period of observation, a tendancy of progressive increase in postload glucose levels were observed. These results suggest that the {Delta}Leu{sup 999} mutation, which reduces tyrosine kinase activity, was responsible for insulin resistance and contributed to postload hyperglycemia. 27 refs., 3 figs., 1 tab.

  14. Insulin and Insulin-like Growth Factor II Differentially Regulate Endocytic Sorting and Stability of Insulin Receptor Isoform A*

    PubMed Central

    Morcavallo, Alaide; Genua, Marco; Palummo, Angela; Kletvikova, Emilia; Jiracek, Jiri; Brzozowski, Andrzej M.; Iozzo, Renato V.; Belfiore, Antonino; Morrione, Andrea

    2012-01-01

    The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3–10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R−/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R−/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R−/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyrB26]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli. PMID:22318726

  15. The insulin receptor concept and its relation to the treatment of diabetes.

    PubMed

    Ward, G M

    1987-02-01

    The initial step in insulin action is binding to specific receptors. Two covalent receptor modifications possibly involved in producing pharmacodynamic effects as a result of insulin receptor binding are autophosphorylation and disulphide insulin binding. Insulin receptor numbers are 'down regulated' by insulin, but this effect may be minimised by pulsatile insulin secretion. Insulin receptor affinity is modulated rapidly by fasting, exercise and dietary composition. In non-insulin-dependent diabetes coupling of receptor binding to bioeffects is impaired. Binding is also reduced in those subjects with hyperinsulinaemia and non-insulin-dependent diabetes. Insulin-dependent diabetics have reduced insulin sensitivity, which is only partially reversed by conventional insulin therapy. 'Post-binding defects' in some diabetics could be related to defective covalent receptor modifications resulting from genetic receptor defects. High carbohydrate diets improve diabetes control through effects on the binding and coupling defects. In addition to stimulating insulin secretion, oral hypoglycaemics stimulate post-binding insulin action in vivo and in vitro. Insulin therapy in diabetes also tends to reverse post-binding defects. Pulsatile insulin delivery is more effective in lowering blood sugar than continuous administration, and produces less 'down regulation' of receptors. Combined insulin and sulphonylurea drugs reduce insulin requirements only in insulin-dependent diabetics with some endogenous insulin secretion, whereas metformin reduces insulin requirement in C-peptide negative insulin-dependent diabetes mellitus.

  16. Insulin Receptor Signaling in Normal and Insulin-Resistant States

    PubMed Central

    Boucher, Jérémie; Kleinridders, André; Kahn, C. Ronald

    2014-01-01

    In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications. PMID:24384568

  17. Defect in cooperativity in insulin receptors from a patient with a congenital form of extreme insulin resistance.

    PubMed Central

    Taylor, S I; Leventhal, S

    1983-01-01

    Previously, we have described a novel qualitative defect in insulin receptors from a patient with a genetic form of extreme insulin resistance (leprechaunism). Receptors from this insulin-resistant child are characterized by two abnormalities: (a) an abnormally high binding affinity for insulin, and (b) a markedly reduced sensitivity of 125I-insulin binding to alterations in pH and temperature. In this paper, we have investigated the kinetic mechanism of this abnormality in steady-state binding. The increased binding affinity for 125I-insulin results from a decrease in the dissociation rate of the hormone-receptor complex. In addition, the cooperative interactions among insulin binding sites are defective with insulin receptors from this child with leprechaunism. With insulin receptors on cultured lymphocytes from normal subjects, both negative and positive cooperativity may be observed. Porcine insulin accelerates the dissociation of the hormone-receptor complex (negative cooperativity). In contrast, certain insulin analogs such as desoctapeptide-insulin and desalanine-desasparagine-insulin retard the dissociation of the hormone-receptor complex (positive cooperativity). With insulin receptors from the leprechaun child, positive cooperativity could not be demonstrated, although negative cooperativity appeared to be normal. It seems likely that the same genetic defect may be responsible for the abnormalities in both insulin sensitivity and positive cooperativity. PMID:6345588

  18. β-Adrenergic Receptor and Insulin Resistance in the Heart.

    PubMed

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Overstimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs overstimulation leads to induction of insulin resistance in the heart.

  19. β-Adrenergic Receptor and Insulin Resistance in the Heart

    PubMed Central

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Over-stimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR over-stimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs over-stimulation leads to induction of insulin resistance in the heart. PMID:28035081

  20. Insulin action is blocked by a monoclonal antibody that inhibits insulin receptor kinase

    SciTech Connect

    Morgan, D.O.; Ho, L.; Korn, L.J.; Roth, R.A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor ..beta.. subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor ..beta.. subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  1. Insulin Action is Blocked by a Monoclonal Antibody That Inhibits the Insulin Receptor Kinase

    NASA Astrophysics Data System (ADS)

    Morgan, David O.; Ho, Lisa; Korn, Laurence J.; Roth, Richard A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor β subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens, and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor β subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  2. Insulin-like Receptor and Insulin-like Peptide Are Localized at Neuromuscular Junctions in Drosophila

    PubMed Central

    Gorczyca, Michael; Augart, Carolyn; Budnik, Vivian

    2015-01-01

    Insulin and insulin-like growth factor (IGF) receptors are members of the tyrosine kinase family of receptors, and are thought to play an important role in the development and differentiation of neurons. Here we report the presence of an insulin-like peptide and an insulin receptor (dlnsR) at the body wall neuromuscular junction of developing Drosophila larvae. dlnsR-like immunoreactivity was found in all body wall muscles at the motor nerve branching regions, where it surrounded synaptic boutons. The identity of this immunoreactivity as a dlnsR was confirmed by two additional schemes, in vivo binding of labeled insulin and immunolocalization of phosphotyrosine. Both methods produced staining patterns markedly similar to dlnsR-like immunoreactivity. The presence of a dlnsR in whole larvae was also shown by receptor binding assays. This receptor was more specific for insulin (>25-fold) than for IGF II, and did not appear to bind IGF I. Among the 30 muscle fibers per hemisegment, insulin-like immunoreactivity was found only on one fiber, and was localized to a subset of morphologically distinct synaptic boutons. Staining in the CNS was limited to several cell bodies in the brain lobes and in a segmental pattern throughout most of the abdominal ganglia, as well as in varicosities along the neuropil areas of the ventral ganglion and brain lobes. Insulin-like peptide and dlnsR were first detected by early larval development, well after neuromuscular transmission begins. The developmental significance of an insulin-like peptide and its receptor at the neuromuscular junction is discussed. PMID:8366341

  3. Loss of CTRP5 improves insulin action and hepatic steatosis.

    PubMed

    Lei, Xia; Rodriguez, Susana; Petersen, Pia S; Seldin, Marcus M; Bowman, Caitlyn E; Wolfgang, Michael J; Wong, G William

    2016-06-01

    The gene that encodes C1q/TNF-related protein 5 (CTRP5), a secreted protein of the C1q family, is mutated in individuals with late-onset retinal degeneration. CTRP5 is widely expressed outside the eye and also circulates in plasma. Its physiological role in peripheral tissues, however, has yet to be elucidated. Here, we show that Ctrp5 expression is modulated by fasting and refeeding, and by different diets, in mice. Adipose expression of CTRP5 was markedly upregulated in obese and diabetic humans and in genetic and dietary models of obesity in rodents. Furthermore, human CTRP5 expression in the subcutaneous fat depot positively correlated with BMI. A genetic loss-of-function mouse model was used to address the metabolic function of CTRP5 in vivo. On a standard chow diet, CTRP5-deficient mice had reduced fasting insulin but were otherwise comparable with wild-type littermate controls in body weight and adiposity. However, when fed a high-fat diet, CTRP5-deficient animals had attenuated hepatic steatosis and improved insulin action. Loss of CTRP5 also improved the capacity of chow-fed aged mice to respond to subsequent high-fat feeding, as evidenced by decreased insulin resistance. In cultured adipocytes and myotubes, recombinant CTRP5 treatment attenuated insulin-stimulated Akt phosphorylation. Our results provide the first genetic and physiological evidence for CTRP5 as a negative regulator of glucose metabolism and insulin sensitivity. Inhibition of CTRP5 action may result in the alleviation of insulin resistance associated with obesity and diabetes.

  4. Clarification of signaling pathways mediated by insulin and insulin-like growth factor I receptors in fibroblasts from patients with specific defect in insulin receptor.

    PubMed

    Sasaoka, T; Kobayashi, M; Takata, Y; Ishibashi, O; Iwasaki, M; Shigeta, Y; Goji, K; Hisatomi, A

    1988-11-01

    Receptor binding and biological action of insulin and insulin-like growth factor I (IGF-I) were studied in fibroblasts from a patient with leprechaunism and a patient with type A syndrome of insulin resistance. Insulin binding was reduced to 18.8 and 27.7% of control value, respectively. In contrast, IGF-I binding was normal in both patients. In competitive binding studies, IGF-I had 0.2% of the ability of insulin to compete with 125I-labeled insulin binding, and insulin had 0.1% of the ability of IGF-I to compete with 125I-labeled IGF-I binding in control subjects and patient fibroblasts. The dose-response curves of insulin stimulation assessed by glucose incorporation and alpha-aminoisobutyric acid uptake showed normal responsiveness, and ED50 was significantly shifted to the right in fibroblasts from both patients. However, normal responsiveness and sensitivity were observed in thymidine incorporation studies. For IGF-I, dose-response curves of glucose incorporation, alpha-aminoisobutyric acid uptake, and thymidine incorporation were all normal in both patients. These results indicate that 1) the defect is specific to the insulin-receptor binding in these patients, 2) insulin and IGF-I activate glucose incorporation and alpha-aminoisobutyric acid uptake mainly through their own specific receptors, but 3) the IGF-I receptor appears to have a more important role in stimulating thymidine incorporation than the insulin receptor in physiological condition or, alternatively, an unknown postreceptor process with cascade signal transmission may overcome the decreased insulin-receptor binding to produce a normal dose-response curve.

  5. Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1.

    PubMed

    Hennige, Anita M; Stefan, Norbert; Kapp, Katja; Lehmann, Rainer; Weigert, Cora; Beck, Alexander; Moeschel, Klaus; Mushack, Joanne; Schleicher, Erwin; Häring, Hans-Ulrich

    2006-06-01

    Insulin resistance in skeletal muscle is found in obesity and type 2 diabetes. A mechanism for impaired insulin signaling in peripheral tissues is the inhibition of insulin action through serine phosphorylation of insulin receptor substrate (Irs) proteins that abolish the coupling of Irs proteins to the activated insulin receptor. Recently, we described serine-318 as a protein kinase C (PKC)-dependent phosphorylation site in Irs1 (Ser-318) activated by hyperinsulinemia. Here we show in various cell models that the adipose hormone leptin, a putative mediator in obesity-related insulin resistance, promotes phosphorylation of Ser-318 in Irs1 by a janus kinase 2, Irs2, and PKC-dependent pathway. Mutation of Ser-318 to alanine abrogates the inhibitory effect of leptin on insulin-induced Irs1 tyrosine phosphorylation and glucose uptake in L6 myoblasts. In C57Bl/6 mice, Ser-318 phosphorylation levels in muscle tissue were enhanced by leptin and insulin administration in lean animals while in diet-induced obesity Ser-318 phosphorylation levels were already up-regulated in the basal state, and further stimulation was diminished. In analogy, in lymphocytes of obese hyperleptinemic human subjects basal Ser-318 phosphorylation levels were increased compared to lean individuals. During a hyperinsulinemic euglycemic clamp, the increment in Ser-318 phosphorylation observed in lean individuals was absent in obese. In summary, these data suggest that phosphorylation of Ser-318 in Irs1 mediates the inhibitory signal of leptin on the insulin-signaling cascade in obese subjects.

  6. Hepatic structural enhancement and insulin resistance amelioration due to AT1 receptor blockade

    PubMed Central

    Souza-Mello, Vanessa

    2017-01-01

    Over the last decade, the role of renin-angiotensin system (RAS) on the development of obesity and its comorbidities has been extensively addressed. Both circulating and local RAS components are up-regulated in obesity and involved in non-alcoholic fatty liver disease onset. Pharmacological manipulations of RAS are viable strategies to tackle metabolic impairments caused by the excessive body fat mass. Renin inhibitors rescue insulin resistance, but do not have marked effects on hepatic steatosis. However, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ARB) yield beneficial hepatic remodeling. ARBs elicit body mass loss and normalize insulin levels, tackling insulin resistance. Also, this drug class increases adiponectin levels, besides countering interleukin-6, tumoral necrosis factor-alpha, and transforming growth factor-beta 1. The latter is essential to prevent from liver fibrosis. When conjugated with peroxisome proliferator-activated receptor (PPAR)-alpha activation, ARB fully rescues fatty liver. These effects might be orchestrated by an indirect up-regulation of MAS receptor due to angiotensin II receptor type 1 (AT1R) blockade. These associations of ARB with PPAR activation and ACE2-angiotensin (ANG) (1-7)-MAS receptor axis deserve a better understanding. This editorial provides a brief overview of the current knowledge regarding AT1R blockade effects on sensitivity to insulin and hepatic structural alterations as well as the intersections of AT1R blockade with peroxisome proliferator-activated receptor activation and ACE2-ANG (1-7) - MAS receptor axis. PMID:28144388

  7. Hepatic structural enhancement and insulin resistance amelioration due to AT1 receptor blockade.

    PubMed

    Souza-Mello, Vanessa

    2017-01-18

    Over the last decade, the role of renin-angiotensin system (RAS) on the development of obesity and its comorbidities has been extensively addressed. Both circulating and local RAS components are up-regulated in obesity and involved in non-alcoholic fatty liver disease onset. Pharmacological manipulations of RAS are viable strategies to tackle metabolic impairments caused by the excessive body fat mass. Renin inhibitors rescue insulin resistance, but do not have marked effects on hepatic steatosis. However, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers (ARB) yield beneficial hepatic remodeling. ARBs elicit body mass loss and normalize insulin levels, tackling insulin resistance. Also, this drug class increases adiponectin levels, besides countering interleukin-6, tumoral necrosis factor-alpha, and transforming growth factor-beta 1. The latter is essential to prevent from liver fibrosis. When conjugated with peroxisome proliferator-activated receptor (PPAR)-alpha activation, ARB fully rescues fatty liver. These effects might be orchestrated by an indirect up-regulation of MAS receptor due to angiotensin II receptor type 1 (AT1R) blockade. These associations of ARB with PPAR activation and ACE2-angiotensin (ANG) (1-7)-MAS receptor axis deserve a better understanding. This editorial provides a brief overview of the current knowledge regarding AT1R blockade effects on sensitivity to insulin and hepatic structural alterations as well as the intersections of AT1R blockade with peroxisome proliferator-activated receptor activation and ACE2-ANG (1-7) - MAS receptor axis.

  8. Solubilized placental membrane protein inhibits insulin receptor tyrosine kinase activity

    SciTech Connect

    Strout, H.V. Jr.; Slater, E.E.

    1987-05-01

    Regulation of insulin receptor (IR) tyrosine kinase (TK) activity may be important in modulating insulin action. Utilizing an assay which measures IR phosphorylation of angiotensin II (AII), the authors investigated whether fractions of TX-100 solubilized human placental membranes inhibited IR dependent AII phosphorylation. Autophosphorylated IR was incubated with membrane fractions before the addition of AII, and kinase inhibition measured by the loss of TSP incorporated in AII. An inhibitory activity was detected which was dose, time, and temperature dependent. The inhibitor was purified 200-fold by sequential chromatography on wheat germ agglutinin, DEAE, and hydroxyapatite. This inhibitory activity was found to correlate with an 80 KD protein which was electroeluted from preparative slab gels and rabbit antiserum raised. Incubation of membrane fractions with antiserum before the IRTK assay immunoprecipitated the inhibitor. Protein immunoblots of crude or purified fractions revealed only the 80 KD protein. Since IR autophosphorylation is crucial to IRTK activity, the authors investigated the state of IR autophosphorylation after treatment with inhibitor; no change was detected by phosphoamino acid analysis.

  9. Recombinant canine single chain insulin analogues: insulin receptor binding capacity and ability to stimulate glucose uptake.

    PubMed

    Adams, Jamie P; Holder, Angela L; Catchpole, Brian

    2014-12-01

    Virtually all diabetic dogs require exogenous insulin therapy to control their hyperglycaemia. In the UK, the only licensed insulin product currently available is a purified porcine insulin preparation. Recombinant insulin is somewhat problematic in terms of its manufacture, since the gene product (preproinsulin) undergoes substantial post-translational modification in pancreatic β cells before it becomes biologically active. The aim of the present study was to develop recombinant canine single chain insulin (SCI) analogues that could be produced in a prokaryotic expression system and which would require minimal processing. Three recombinant SCI constructs were developed in a prokaryotic expression vector, by replacing the insulin C-peptide sequence with one encoding a synthetic peptide (GGGPGKR), or with one of two insulin-like growth factor (IGF)-2 C-peptide coding sequences (human: SRVSRRSR; canine: SRVTRRSSR). Recombinant proteins were expressed in the periplasmic fraction of Escherichia coli and assessed for their ability to bind to the insulin and IGF-1 receptors, and to stimulate glucose uptake in 3T3-L1 adipocytes. All three recombinant SCI analogues demonstrated preferential binding to the insulin receptor compared to the IGF-1 receptor, with increased binding compared to recombinant canine proinsulin. The recombinant SCI analogues stimulated glucose uptake in 3T3-L1 adipocytes compared to negligible uptake using recombinant canine proinsulin, with the canine insulin/cIGF-2 chimaeric SCI analogue demonstrating the greatest effect. Thus, biologically-active recombinant canine SCI analogues can be produced relatively easily in bacteria, which could potentially be used for treatment of diabetic dogs.

  10. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity

    PubMed Central

    Kubota, Naoto; Kubota, Tetsuya; Kajiwara, Eiji; Iwamura, Tomokatsu; Kumagai, Hiroki; Watanabe, Taku; Inoue, Mariko; Takamoto, Iseki; Sasako, Takayoshi; Kumagai, Katsuyoshi; Kohjima, Motoyuki; Nakamuta, Makoto; Moroi, Masao; Sugi, Kaoru; Noda, Tetsuo; Terauchi, Yasuo; Ueki, Kohjiro; Kadowaki, Takashi

    2016-01-01

    Hepatic insulin signalling involves insulin receptor substrates (Irs) 1/2, and is normally associated with the inhibition of gluconeogenesis and activation of lipogenesis. In diabetes and obesity, insulin no longer suppresses hepatic gluconeogenesis, while continuing to activate lipogenesis, a state referred to as ‘selective insulin resistance'. Here, we show that ‘selective insulin resistance' is caused by the differential expression of Irs1 and Irs2 in different zones of the liver. We demonstrate that hepatic Irs2-knockout mice develop ‘selective insulin resistance', whereas mice lacking in Irs1, or both Irs1 and Irs2, develop ‘total insulin resistance'. In obese diabetic mice, Irs1/2-mediated insulin signalling is impaired in the periportal zone, which is the primary site of gluconeogenesis, but enhanced in the perivenous zone, which is the primary site of lipogenesis. While hyperinsulinaemia reduces Irs2 expression in both the periportal and perivenous zones, Irs1 expression, which is predominantly in the perivenous zone, remains mostly unaffected. These data suggest that ‘selective insulin resistance' is induced by the differential distribution, and alterations of hepatic Irs1 and Irs2 expression. PMID:27708333

  11. Insulin receptor changes in type 2 diabetes after short term insulin treatment.

    PubMed

    Rizkalla, S W; Weissbrodt, P; Tchobroutsky, G; Slama, G

    1985-10-01

    We have studied erythrocyte insulin receptor changes before and after 8 days of continuous subcutaneous insulin infusion by a pump in 11 uncontrolled obese non-insulin-dependent diabetics (type 2), diet and drug resistant for at least three months previously. All the patients were hospitalized. On day 1 of the study, their oral hypoglycemic agents were stopped and hypocaloric diet (1000 Kcal/day) was maintained (strictly reinforced). This period of reinforced treatment was not accompanied by correction of hyperglycemia. On day 9 patients were placed for 12 hours on artificial pancreas in order to bring their fasting blood glucose levels down to normal values. Then they were submitted to a continuous subcutaneous insulin infusion (CSII) for the following 8 days. There was a significant decrease in mean fasting plasma glucose (P less than 0.001) and a rise in insulin (P less than 0.05) levels after insulin treatment. Mean specific insulin binding was also significantly increased (P less than 0.01). The increase in binding (with insulin therapy) correlated with the fall in fasting hyperglycemia (r = 0.786, P less than 0.01). In addition, the increase in binding correlated negatively with changes in fasting plasma insulin levels (r = -0.867, P less than 0.01), under treatment, on one hand and with the dose of exogenous insulin administered (r = -0.681, P less than 0.05) on the other hand. There was no correlation between binding and fasting plasma insulin levels (before and after insulin therapy), or between diabetes duration and any of the previous parameters.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action

    PubMed Central

    Eldar-Finkelman, Hagit; Krebs, Edwin G.

    1997-01-01

    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance. PMID:9275179

  13. Signal transduction through the IL-4 and insulin receptor families.

    PubMed

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    SciTech Connect

    Niessen, Markus . E-mail: markus.niessen@usz.ch; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-02-15

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the {beta}-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.

  15. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    ERIC Educational Resources Information Center

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  16. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    SciTech Connect

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  17. Dysregulation of Insulin Secretion in Children With Congenital Hyperinsulinism due to Sulfonylurea Receptor Mutations

    PubMed Central

    Grimberg, A.; Ferry, R.J.; Kelly, A.; Koo-McCoy, S.; Polonsky, K.; Glaser, B.; Permutt, M.A.; Aguilar-Bryan, L.; Stafford, D.; Thornton, P.S.; Baker, L.; Stanley, Charles A.

    2012-01-01

    Mutations in the high-affinity sulfonylurea receptor (SUR)-1 cause one of the severe recessively inherited diffuse forms of congenital hyperinsulinism or, when associated with loss of heterozygosity, focal adenomatosis. We hypothesized that SUR1 mutations would render the β-cell insensitive to sulfonylureas and to glucose. Stimulated insulin responses were compared among eight patients with diffuse hyperinsulinism (two mutations), six carrier parents, and ten normal adults. In the patients with diffuse hyperinsulinism, the acute insulin response to intravenous tolbutamide was absent and did not overlap with the responses seen in either adult group. There was positive, albeit significantly blunted, acute insulin response to intravenous dextrose in the patients with diffuse hyperinsulinism. Graded infusions of glucose, to raise and then lower plasma glucose concentrations over 4 h, caused similar rises in blood glucose but lower peak insulin levels in the hyperinsulinemic patients. Loss of acute insulin response to tolbutamide can identify children with diffuse SUR1 defects. The greater response to glucose than to tolbutamide indicates that ATP-sensitive potassium (KATP) channel–independent pathways are involved in glucose-mediated insulin release in patients with diffuse SUR1 defects. The diminished glucose responsiveness suggests that SUR1 mutations and lack of KATP channel activity may contribute to the late development of diabetes in patients with hyperinsulinism independently of subtotal pancreatectomy. PMID:11272143

  18. Combination therapy with GLP-1 receptor agonists and basal insulin: a systematic review of the literature

    PubMed Central

    Balena, R; Hensley, I E; Miller, S; Barnett, A H

    2013-01-01

    Treatment algorithms for type 2 diabetes call for intensification of therapy over time as the disease progresses and glycaemic control worsens. If diet, exercise and oral antihyperglycaemic medications (OAMs) fail to maintain glycaemic control then basal insulin is added and ultimately prandial insulin may be required. However, such an intensification strategy carries risk of increased hypoglycaemia and weight gain, both of which are associated with worse long-term outcomes. An alternative strategy is to intensify therapy by the addition of a short-acting glucagon-like peptide-1 receptor agonist (GLP-1 RA) rather than prandial insulin. Short-acting GLP-1 RAs such as exenatide twice daily are particularly effective at reducing postprandial glucose while basal insulin has a greater effect on fasting glucose, providing a physiological rationale for this complementary approach. This review analyzes the latest randomized controlled clinical trials of insulin/GLP-1 RA combination therapy and examines results from ‘real-world’ use of the combinations as reported through observational and clinical practice studies. The most common finding across all types of studies was that combination therapy improved glycaemic control without weight gain or an increased risk of hypoglycaemia. Many studies reported weight loss and a reduction in insulin use when a GLP-1 RA was added to existing insulin therapy. Overall, the relative degree of benefit to glycaemic control and weight was influenced by the insulin titration employed in conjunction with the GLP-1 RA. The greatest glycaemic benefits were observed in studies with structured titration of insulin to glycaemic targets while the greatest weight benefits were observed in studies with a protocol-specified focus on insulin sparing. The adverse event profile of GLP-1 RAs in the reviewed trials was similar to that reported with GLP-1 RAs as monotherapy or in combination with OAMs with gastrointestinal events being the most commonly

  19. p75 neurotrophin receptor regulates glucose homeostasis and insulin sensitivity

    PubMed Central

    Baeza-Raja, Bernat; Li, Pingping; Le Moan, Natacha; Sachs, Benjamin D.; Schachtrup, Christian; Davalos, Dimitrios; Vagena, Eirini; Bridges, Dave; Kim, Choel; Saltiel, Alan R.; Olefsky, Jerrold M.; Akassoglou, Katerina

    2012-01-01

    Insulin resistance is a key factor in the etiology of type 2 diabetes. Insulin-stimulated glucose uptake is mediated by the glucose transporter 4 (GLUT4), which is expressed mainly in skeletal muscle and adipose tissue. Insulin-stimulated translocation of GLUT4 from its intracellular compartment to the plasma membrane is regulated by small guanosine triphosphate hydrolases (GTPases) and is essential for the maintenance of normal glucose homeostasis. Here we show that the p75 neurotrophin receptor (p75NTR) is a regulator of glucose uptake and insulin resistance. p75NTR knockout mice show increased insulin sensitivity on normal chow diet, independent of changes in body weight. Euglycemic-hyperinsulinemic clamp studies demonstrate that deletion of the p75NTR gene increases the insulin-stimulated glucose disposal rate and suppression of hepatic glucose production. Genetic depletion or shRNA knockdown of p75NTR in adipocytes or myoblasts increases insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, overexpression of p75NTR in adipocytes decreases insulin-stimulated glucose transport. In adipocytes, p75NTR forms a complex with the Rab5 family GTPases Rab5 and Rab31 that regulate GLUT4 trafficking. Rab5 and Rab31 directly interact with p75NTR primarily via helix 4 of the p75NTR death domain. Adipocytes from p75NTR knockout mice show increased Rab5 and decreased Rab31 activities, and dominant negative Rab5 rescues the increase in glucose uptake seen in p75NTR knockout adipocytes. Our results identify p75NTR as a unique player in glucose metabolism and suggest that signaling from p75NTR to Rab5 family GTPases may represent a unique therapeutic target for insulin resistance and diabetes. PMID:22460790

  20. A mutation in the insulin receptor gene that impairs transport of the receptor to the plasma membrane and causes insulin-resistant diabetes.

    PubMed Central

    Accili, D; Frapier, C; Mosthaf, L; McKeon, C; Elbein, S C; Permutt, M A; Ramos, E; Lander, E; Ullrich, A; Taylor, S I

    1989-01-01

    Insulin binds to a receptor on the cell surface, thereby triggering a biological response within the target cell. Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. We have studied a family in which two sisters have a genetic form of insulin-resistant diabetes mellitus. The technique of homozygosity mapping has been used to demonstrate that the mutation causing diabetes in this consanguineous family is genetically linked to the insulin receptor gene. The two insulin-resistant sisters are homozygous for a mutation encoding substitution of valine for phenylalanine at position 382 in the alpha-subunit of the insulin receptor. Transfection of mutant insulin receptor cDNA into NIH3T3 cells demonstrated that the Val382 mutation impaired post-translational processing and retarded transport of the insulin receptor to the plasma membrane. Thus, the mutation causes insulin resistance by decreasing the number of insulin receptors on the surface of the patients' cells. Images PMID:2573522

  1. Direct method for detection and characterization of cell surface receptors for insulin by means of 125I-labeled autoantibodies against the insulin receptor.

    PubMed Central

    Jarrett, D B; Roth, J; Kahn, C R; Flier, J S

    1976-01-01

    Autoantibodies directed against the cell surface receptors for insulin are found in some patients with extreme insulin resistance. These antibodies specifically inhibit the binding of insulin to its receptor. A purified IgG fraction from one patient's plasma was labeled with 125I. The 125I-labeled antireceptor antibody, which initially represented about 0.3% of the total 125I-IgG, was enriched by selective adsorption and subsequent elution from cells rich in insulin receptors. The 125I-antireceptor antibody bound to cells and the binding was inhibited by whole plasma and purified IgG from this patient, as well as whole plasma from another patient with autoantibodies to the insulin receptor. Insulins that differed 300-fold in biological potency and affinity inhibited binding of 125I-antireceptor antibody in direct proportion to their ability to bind to the insulin receptor. The binding of 125I-antireceptor antibody was closely correlated with the binding of 125I-insulin over a wide range of receptor concentrations on different cell types. Experimentally induced reduction of the insulin receptor concentration was associated with parallel decreases in the binding of 125I-antireceptor antibody and 125I-insulin. The preparation of 125I-antireceptor antibody with a high specific activity by cytoadsorption and elution has provided a sensitive method for the detection of receptors and autoantibodies to cell surface components. PMID:1069300

  2. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    SciTech Connect

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  3. Cannabinoids Inhibit Insulin Receptor Signaling in Pancreatic β-Cells

    PubMed Central

    Kim, Wook; Doyle, Máire E.; Liu, Zhuo; Lao, Qizong; Shin, Yu-Kyong; Carlson, Olga D.; Kim, Hee Seung; Thomas, Sam; Napora, Joshua K.; Lee, Eun Kyung; Moaddel, Ruin; Wang, Yan; Maudsley, Stuart; Martin, Bronwen; Kulkarni, Rohit N.; Egan, Josephine M.

    2011-01-01

    OBJECTIVE Optimal glucose homeostasis requires exquisitely precise adaptation of the number of insulin-secreting β-cells in the islets of Langerhans. Insulin itself positively regulates β-cell proliferation in an autocrine manner through the insulin receptor (IR) signaling pathway. It is now coming to light that cannabinoid 1 receptor (CB1R) agonism/antagonism influences insulin action in insulin-sensitive tissues. However, the cells on which the CB1Rs are expressed and their function in islets have not been firmly established. We undertook the current study to investigate if intraislet endogenous cannabinoids (ECs) regulate β-cell proliferation and if they influence insulin action. RESEARCH DESIGN AND METHODS We measured EC production in isolated human and mouse islets and β-cell line in response to glucose and KCl. We evaluated human and mouse islets, several β-cell lines, and CB1R-null (CB1R−/−) mice for the presence of a fully functioning EC system. We investigated if ECs influence β-cell physiology through regulating insulin action and demonstrated the therapeutic potential of manipulation of the EC system in diabetic (db/db) mice. RESULTS ECs are generated within β-cells, which also express CB1Rs that are fully functioning when activated by ligands. Genetic and pharmacologic blockade of CB1R results in enhanced IR signaling through the insulin receptor substrate 2-AKT pathway in β-cells and leads to increased β-cell proliferation and mass. CB1R antagonism in db/db mice results in reduced blood glucose and increased β-cell proliferation and mass, coupled with enhanced IR signaling in β-cells. Furthermore, CB1R activation impedes insulin-stimulated IR autophosphorylation on β-cells in a Gαi-dependent manner. CONCLUSIONS These findings provide direct evidence for a functional interaction between CB1R and IR signaling involved in the regulation of β-cell proliferation and will serve as a basis for developing new therapeutic interventions to

  4. Hepatocyte insulin receptor is a calmodulin binding protein and is functionally inhibited by calmidazolium

    SciTech Connect

    Arnold, T.P.; Pollet, R.J.

    1986-05-01

    Insulin-induced autophosphorylation of the insulin receptor and changes in intracellular Ca/sup + +/ have been proposed as possible mediators of insulin action in target tissues. The authors have investigated the association of the 17kD calcium binding protein calmodulin with the insulin receptor solubilized from rat liver plasma membranes. Insulin receptors solubilized in 0.1% Triton X-100 exhibited strong binding to calmodulin-agarose affinity columns in the presence of 100..mu..M calcium and could be eluded with 100..mu..M ethelene glycol-bis (amino ethel ether) Tetra Acetic Acid (EGTA) with an 80% yield in insulin binding activity. In addition, /sup 125/I-Calmodulin was shown to bind to wheat germ agglutinin purified solubilized receptors, was specifically inhibited by EGTA (100 ..mu..M) and/or calmidazolium (10 ..mu..M) and was found to be insulin-dependent (max 10/sup -10/ M insulin). SDS-polyacrylamide gel electrophoresis data suggests that /sup 125/I-calmodulin may be associated with the 92 kD beta-subunit of the insulin receptor, consistent with the cytoplasmic domain of this subunit. While they have confirmed previous reports that the addition of calcium and calmodulin to solubilized insulin receptors preparations produces no demonstrable change in receptor phosphorylation, the addition of the calmodulin inhibitor calmidazolium did show more than 50% inhibition of insulin stimulated receptor phosphorylation, suggesting that a domain of the calmodulin molecule may be very tightly associated with the insulin receptor. These results indicate that calmodulin binds tightly and specifically to the insulin receptor of the hepatocyte and is insulin dependent. The findings also suggest that this interaction may be functionally significant in mediating insulin-induced receptor phosphorylation as well as other insulin actions. Thus, calmodulin may play a major role as an intracellular contributor to insulin action.

  5. Brain Deletion of Insulin Receptor Substrate 2 Disrupts Hippocampal Synaptic Plasticity and Metaplasticity

    PubMed Central

    Costello, Derek A.; Claret, Marc; Al-Qassab, Hind; Plattner, Florian; Irvine, Elaine E.; Choudhury, Agharul I.; Giese, K. Peter; Withers, Dominic J.; Pedarzani, Paola

    2012-01-01

    Objective Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2). Research Design and Methods To study neuronal function and synaptic plasticity in the absence of confounding factors such as hyperglycaemia, we used a mouse model with a central nervous system- (CNS)-restricted deletion of IRS-2 (NesCreIrs2KO). Results We report a deficit in NMDA receptor-dependent synaptic plasticity in the hippocampus of NesCreIrs2KO mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by the previous activity of a synapse. These plasticity changes are associated with reduced basal phosphorylation of the NMDA receptor subunit NR1 and of downstream targets of the PI3K pathway, the protein kinases Akt and GSK-3β. Conclusions These findings reveal molecular and cellular mechanisms that might underlie cognitive deficits linked to specific defects of neuronal insulin signalling. PMID:22383997

  6. Loss of Hepatic CEACAM1: A Unifying Mechanism Linking Insulin Resistance to Obesity and Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Heinrich, Garrett; Ghadieh, Hilda E.; Ghanem, Simona S.; Muturi, Harrison T.; Rezaei, Khadijeh; Al-Share, Qusai Y.; Bowman, Thomas A.; Zhang, Deqiang; Garofalo, Robert S.; Yin, Lei; Najjar, Sonia M.

    2017-01-01

    The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, in particular in the context of its relationship to insulin resistance and visceral obesity. Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in mice has resolved some of the related questions. CEACAM1 promotes insulin clearance by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links NAFLD to insulin resistance and obesity. PMID:28184213

  7. Targeting Insulin Receptor with a Novel Internalizing Aptamer

    PubMed Central

    Iaboni, Margherita; Fontanella, Raffaela; Rienzo, Anna; Capuozzo, Maria; Nuzzo, Silvia; Santamaria, Gianluca; Catuogno, Silvia; Condorelli, Gerolama; de Franciscis, Vittorio; Esposito, Carla Lucia

    2016-01-01

    Nucleic acid-based aptamers are emerging as therapeutic antagonists of disease-associated proteins such as receptor tyrosine kinases. They are selected by an in vitro combinatorial chemistry approach, named Systematic Evolution of Ligands by Exponential enrichment (SELEX), and thanks to their small size and unique chemical characteristics, they possess several advantages over antibodies as diagnostics and therapeutics. In addition, aptamers that rapidly internalize into target cells hold as well great potential for their in vivo use as delivery tools of secondary therapeutic agents. Here, we describe a nuclease resistant RNA aptamer, named GL56, which specifically recognizes the insulin receptor (IR). Isolated by a cell-based SELEX method that allows enrichment for internalizing aptamers, GL56 rapidly internalizes into target cells and is able to discriminate IR from the highly homologous insulin-like growth factor receptor 1. Notably, when applied to IR expressing cancer cells, the aptamer inhibits IR dependent signaling. Given the growing interest in the insulin receptor as target for cancer treatment, GL56 reveals a novel molecule with great translational potential as inhibitor and delivery tool for IR-dependent cancers. PMID:27648925

  8. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    PubMed

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines.

  9. Corticosterone-induced insulin resistance is not associated with alterations of insulin receptor number and kinase activity in chicken kidney.

    PubMed

    Bisbis, S; Taouis, M; Derouet, M; Chevalier, B; Simon, J

    1994-12-01

    Chicken renal insulin receptors have been recently characterized; their number and kinase activities vary in response to altered nutritional status. In the present study, the effect of chronic corticosterone treatment was examined in 5-week-old chickens. The development of an insulin resistance following corticosterone was suggested after 1 and 2 weeks of treatment by a significant increases in plasma insulin levels (1.63 +/- 0.13 vs 0.56 +/- 0.14 ng insulin/ml in controls) and in renal cytosolic phosphoenolpyruvate carboxykinase activity (17.2 +/- 0.8 vs 13.7 +/- 0.7 nm/mn/mg tissue in controls). No significant changes were present at the level of insulin receptor number and kinase activity. Therefore, in kidney and, as previously observed, in muscles, corticosterone can induce insulin resistance at postreceptor steps in the cascade of events leading to insulin action.

  10. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance

    PubMed Central

    Petersen, Max C.; Madiraju, Anila K.; Gassaway, Brandon M.; Marcel, Michael; Nasiri, Ali R.; Butrico, Gina; Marcucci, Melissa J.; Zhang, Dongyan; Abulizi, Abudukadier; Zhang, Xian-Man; Philbrick, William; Hubbard, Stevan R.; Samuel, Varman T.; Rinehart, Jesse

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-ε (PKCε) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCε inhibition of INSR kinase activity is unknown. Here, we used mass spectrometry to identify the phosphorylation site Thr1160 as a PKCε substrate in the functionally critical INSR kinase activation loop. We hypothesized that Thr1160 phosphorylation impairs INSR kinase activity by destabilizing the active configuration of the INSR kinase, and our results confirmed this prediction by demonstrating severely impaired INSR kinase activity in phosphomimetic T1160E mutants. Conversely, the INSR T1160A mutant was not inhibited by PKCε in vitro. Furthermore, mice with a threonine-to-alanine mutation at the homologous residue Thr1150 (InsrT1150A mice) were protected from high fat diet–induced hepatic insulin resistance. InsrT1150A mice also displayed increased insulin signaling, suppression of hepatic glucose production, and increased hepatic glycogen synthesis compared with WT controls during hyperinsulinemic clamp studies. These data reveal a critical pathophysiological role for INSR Thr1160 phosphorylation and provide further mechanistic links between PKCε and INSR in mediating NAFLD-induced hepatic insulin resistance. PMID:27760050

  11. Insulin Receptor Isoform Variations in Prostate Cancer Cells

    PubMed Central

    Perks, Claire M.; Zielinska, H. A.; Wang, Jing; Jarrett, Caroline; Frankow, A.; Ladomery, Michael R.; Bahl, Amit; Rhodes, Anthony; Oxley, Jon; Holly, Jeff M. P.

    2016-01-01

    Men who develop prostate cancer (PCa) increasingly have one of the co-morbidities associated with a Western lifestyle that are characterized by hyperinsulinemia, hyperglycemia and increased expression of insulin-like growth factors-I (IGF-I) and IGF-II. Each have been associated with poor prognosis and more aggressive cancers that exhibit increased metabolism and increased glucose uptake. The insulin receptor (IR) has two splice isoforms IR-A and IR-B: IR-A has a higher affinity for IGF-II comparable to that for insulin, whereas the IR-B isoform predominantly just binds to insulin. In this study, we assessed alterations in the IR-A and IR-B isoform ratio and associated changes in cell proliferation and migration of PCa cell lines following exposure to altered concentrations of glucose and treatment with IGF-II and insulin. We observed that where IR-B predominated insulin had a greater effect on migration than IGF-II and IGF-II was more effective when IR-A was the main isoform. With regard to proliferation IGF-II was more effective than insulin regardless of which isoform was dominant. We assessed the abundance of the IR isoforms both in vivo and in vitro and observed that the majority of the tissue samples and cell lines expressed more IR-A than IR-B. Alterations in the isoforms in response to changes in their hormonal milieu could have a profound impact on how malignant cells behave and play a role in promoting carcinogenesis. A greater understanding of the mechanisms underlying changes in alternative splicing of the IR may provide additional targets for future cancer therapies. PMID:27733843

  12. Molecular Recognition of Insulin by a Synthetic Receptor

    SciTech Connect

    Chinai, Jordan M.; Taylor, Alexander B.; Ryno, Lisa M.; Hargreaves, Nicholas D.; Morris, Christopher A.; Hart, P. John; Urbach, Adam R.

    2011-08-29

    The discovery of molecules that bind tightly and selectively to desired proteins continues to drive innovation at the interface of chemistry and biology. This paper describes the binding of human insulin by the synthetic receptor cucurbit[7]uril (Q7) in vitro. Isothermal titration calorimetry and fluorescence spectroscopy experiments show that Q7 binds to insulin with an equilibrium association constant of 1.5 x 10{sup 6} M{sup -1} and with 50-100-fold selectivity versus proteins that are much larger but lack an N-terminal aromatic residue, and with >1000-fold selectivity versus an insulin variant lacking the N-terminal phenylalanine (Phe) residue. The crystal structure of the Q7{center_dot}insulin complex shows that binding occurs at the N-terminal Phe residue and that the N-terminus unfolds to enable binding. These findings suggest that site-selective recognition is based on the properties inherent to a protein terminus, including the unique chemical epitope presented by the terminal residue and the greater freedom of the terminus to unfold, like the end of a ball of string, to accommodate binding. Insulin recognition was predicted accurately from studies on short peptides and exemplifies an approach to protein recognition by targeting the terminus.

  13. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors.

    PubMed

    Marshall, S

    1985-11-05

    Adipocytes process insulin through either of two pathways: a retroendocytotic pathway that culminates in the release of intact insulin, and a degradative pathway that terminates in the intracellular catabolism and release of degraded ligand. Mechanistically, these pathways were found to differ in several ways. First, temporal differences were found in the rate at which intact and degraded products were extruded. After 125I-insulin was preloaded into the cell interior, intact ligand was completely released during the first 10 min (t 1/2 = 2 min), whereas degraded insulin was released at a much slower rate over 1 h (t 1/2 greater than 8 min). Secondly, it was found that chloroquine profoundly inhibited the insulin degradative pathway, resulting in the intracellular accumulation of intact ligand and a reduction in the release of degraded products. In contrast, however, chloroquine was without effect on the retroendocytotic processing of insulin. Based on the known actions of chloroquine, it appears that retroendocytosis of insulin does not involve vesicular acidification or dissociation of the insulin-receptor complex and that insulin is most likely carried to the cell exterior in the same vesicles (either receptor-bound or free) as those mediating recycling receptors. Interestingly, accumulation of undergraded insulin within chloroquine-treated cells did not result in the release of additional intact ligand, suggesting that once insulin enters the degradative compartment it is committed to catabolism and cannot exit the cell through the retroendocytotic pathway. A third difference was revealed by the finding that extracellular unlabeled insulin (100 ng/ml) markedly accelerated the rate at which preloaded 125I-insulin was released from adipocytes (t 1/2 of 3 min versus 7 min in controls cells). Analysis of the composition of the released products revealed that extracellular insulin rapidly augmented (over 10 min) in a dose-dependent manner (5-200 ng/ml) the amount of

  14. Deletion of exon 3 of the insulin receptor gene in a kindred with a familial form of insulin resistance

    SciTech Connect

    Wertheimer, E.; Barbetti, F.; Accili, D.; Taylor, S.I.; Litvin, Y.; Ebstein, R.P.; Bennet, E.R.

    1994-05-01

    Molecular scanning techniques, such as denaturing gradient gel electrophoresis (DGGE), greatly facilitate screening candidate genes for mutations. The authors have used DGGE to screen for mutations in the insulin receptor gene in a family in which four of five daughters were affected by type A insulin resistance in association with acanthosis nigricans and hyperandrogenism. DGGE did not detect mutations in any of the 22 exons of the insulin receptor gene. Nevertheless, Southern blot analysis suggested that there was a deletion of exon 3 in the other paternal allele of the insulin receptor gene. Analysis of the father`s cDNA confirmed that exon 3 was deleted from mRNA molecules derived from one of his two alleles of the insulin receptor gene. Furthermore, the father was found to be hemizygous for a polymorphic sequence (GAC{sup Asp} at codon 234) in exon 3 that was not inherited by any of the five daughters. Instead, all five daughters inherited the paternal allele with the deletion mutation. They did not detect mutations in the mother`s insulin receptor gene. Furthermore, the clinical syndrome did not segregate with either of the mother`s two alleles of the insulin receptor gene. Although the youngest daughter inherited the mutant allele from her father, she was not clinically affected. The explanation for the incomplete penetrance is not known. These results emphasize the importance of specifically searching for deletion mutations when screening candidate genes for mutations. Furthermore, the existence of apparently asymptomatic carriers of mutations in the insulin receptor gene, such as the father in the present study, suggests that the prevalence of mutations in the insulin receptor gene may be higher than would be predicted on the basis of the observed prevalence of patients with extreme insulin resistance. 34 refs., 6 figs., 1 tab.

  15. Impaired insulin signaling and mechanisms of memory loss.

    PubMed

    Bloemer, Jenna; Bhattacharya, Subhrajit; Amin, Rajesh; Suppiramaniam, Vishnu

    2014-01-01

    Insulin is secreted from the β-cells of the pancreas and helps maintain glucose homeostasis. Although secreted peripherally, insulin also plays a profound role in cognitive function. Increasing evidence suggests that insulin signaling in the brain is necessary to maintain health of neuronal cells, promote learning and memory, decrease oxidative stress, and ultimately increase neuronal survival. This chapter summarizes the different facets of insulin signaling necessary for learning and memory and additionally explores the association between cognitive impairment and central insulin resistance. The role of impaired insulin signaling in the advancement of cognitive dysfunction is relevant to the current debate of whether the shared pathophysiological mechanisms between diabetes and cognitive impairment implicate a direct relationship. Here, we summarize a vast amount of literature that suggests a strong association between impaired brain insulin signaling and cognitive impairment.

  16. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects.

    PubMed Central

    Goodyear, L J; Giorgino, F; Sherman, L A; Carey, J; Smith, R J; Dohm, G L

    1995-01-01

    To determine whether the impaired insulin-stimulated glucose uptake in obese individuals is associated with altered insulin receptor signaling, we measured both glucose uptake and early steps in the insulin action pathway in intact strips of human skeletal muscle. Biopsies of rectus abdominus muscle were taken from eight obese and eight control subjects undergoing elective surgery (body mass index 52.9 +/- 3.6 vs 25.7 +/- 0.9). Insulin-stimulated 2-deoxyglucose uptake was 53% lower in muscle strips from obese subjects. Additional muscle strips were incubated in the basal state or with 10(-7) M insulin for 2, 15, or 30 min. In the lean subjects, tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), measured by immunoblotting with anti-phosphotyrosine antibodies, was significantly increased by insulin at all time points. In the skeletal muscle from the obese subjects, insulin was less effective in stimulating tyrosine phosphorylation (maximum receptor and IRS-1 phosphorylation decreased by 35 and 38%, respectively). Insulin stimulation of IRS-1 immunoprecipitable phosphatidylinositol 3-kinase (PI 3-kinase) activity also was markedly lower in obese subjects compared with controls (10- vs 35-fold above basal, respectively). In addition, the obese subjects had a lower abundance of the insulin receptor, IRS-1, and the p85 subunit of PI 3-kinase (55, 54, and 64% of nonobese, respectively). We conclude that impaired insulin-stimulated glucose uptake in skeletal muscle from severely obese subjects is accompanied by a deficiency in insulin receptor signaling, which may contribute to decreased insulin action. Images PMID:7537758

  17. Insulin receptor binding and protein kinase activity in muscles of trained rats

    SciTech Connect

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-02-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing approx. 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise ( SVI). Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training.

  18. Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats.

    PubMed

    Moraes, Danilo Alves; Venancio, Daniel Paulino; Suchecki, Deborah

    2014-11-01

    Studies have shown a gradual reduction of sleep time in the general population, accompanied by increased food intake, representing a risk for developing obesity, type II diabetes and cardiovascular disease. Rats subjected to paradoxical sleep deprivation (PSD) exhibit feeding and metabolic alterations, both of which are regulated by the communication between peripheral signals and the hypothalamus. This study aimed to investigate the daily change of 96 h of PSD-induced food intake, body weight, blood glucose, plasma insulin and leptin concentrations and the expression of their receptors in the hypothalamus of Wistar rats. Food intake was assessed during the light and dark phases and was progressively increased in sleep-deprived animals, during the light phase. PSD produced body weight loss, particularly on the first day, and decreased plasma insulin and leptin levels, without change in blood glucose levels. Reduced leptin levels were compensated by increased expression of leptin receptors in the hypothalamus, whereas no compensations occurred in insulin receptors. The present results on body weight loss and increased food intake replicate previous studies from our group. The fact that reduced insulin levels did not lead to compensatory changes in hypothalamic insulin receptors, suggests that this hormone may be, at least in part, responsible for PSD-induced dysregulation in energy metabolism.

  19. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    PubMed

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways.

  20. Amplification and analysis of promoter region of insulin receptor gene in a patient with leprechaunism associated with severe insulin resistance.

    PubMed

    Haruta, T; Imamura, T; Iwanishi, M; Egawa, K; Goji, K; Kobayashi, M

    1995-04-01

    A patient with leprechaunism associated with severe insulin resistance was studied to identify the molecular and genetic basis for insulin resistance. Insulin binding and surface labeling of transformed lymphocytes prepared from the patient showed a significantly decreased insulin receptor number on the cell surface. Southern blot analysis of the insulin receptor gene showed no evidence of large insertions or deletions. Furthermore, direct sequencing of all 22 exons and exon-intron junctions of the insulin receptor gene failed to show any missense mutations, nonsense mutations, or mutations at exon-intron junctions. However, Northern blot analysis indicated significantly decreased insulin receptor mRNA expression in the patient's cells. Moreover, restriction endonuclease digestion of the amplified cDNA suggested that the expression levels of one allele were less efficient than the other. These findings suggested that the regulatory region of the insulin receptor gene might have abnormalities. Therefore, we examined the 5' flanking region of the insulin receptor gene. Southern blot analysis showed no major deletions or insertions between positions -1,823 and -2 relative to the translation initiation site. A 5' flanking region of the insulin receptor gene spanning positions -881 approximately +7 was amplified by polymerase chain reaction (PCR) and introduced into a reporter plasmid carrying the human growth hormone (hGH) gene. The nucleotide sequence of the amplified fragment showed two polymorphic sites at positions -603 and -500 in the patient, as well as in normal subjects. No other abnormal sequence was found in the patient. Promoter activity measured by hGH expression in transfected mouse L cells was not influenced by the polymorphism at position -603 located in a cluster of GC boxes.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells.

    PubMed Central

    Milazzo, G; Yip, C C; Maddux, B A; Vigneri, R; Goldfine, I D

    1992-01-01

    We studied the nature of insulin receptor binding in MCF-7 breast cancer cells. In both intact cells and solubilized receptor preparations, high-affinity insulin binding was seen. However, unlabeled insulin-like growth factor-I (IGF-I) was five-fold more potent in inhibiting 125I-insulin binding than insulin itself. With monoclonal antibodies to the insulin receptor, 30% of 125I-insulin binding was inhibited. In contrast when alpha-IR3, a monoclonal antibody that recognizes typical IGF-I receptor, was employed over 60% of 125I-insulin binding was inhibited. The B29-MAB-125I-insulin photoprobe was then cross-linked to MCF-7 membranes. Cross-linking was inhibited by both unlabeled insulin and IGF-I. Further, the B29-MAB-125I-insulin photoprobe cross-linked to MCF-7 membranes was strongly immunoprecipitated by alpha-IR3. Employing sequential affinity chromatography with insulin-Affi-gel followed by insulin receptor monoclonal antibody agarose, atypical insulin binding activity was separated from insulin receptor binding activity. This atypical receptor had intrinsic tyrosine kinase activity. Both insulin and IGF-I stimulated the phosphorylation of the receptor's beta subunit. In MCF-7 cells both IGF-I and insulin stimulated [3H]thymidine incorporation; alpha-IR3 blocked all of the IGF-I effect but only 50-60% of the insulin effect. This study demonstrates in MCF-7 cells that, in addition to typical insulin and IGF-I receptors, there is another receptor that binds both insulin and IGF-I with high affinity. Images PMID:1311720

  2. Linking Functional Domains of the Human Insulin Receptor with the Bacterial Aspartate Receptor

    NASA Astrophysics Data System (ADS)

    Ellis, Leland; Morgan, David O.; Koshland, Daniel E.; Clauser, Eric; Moe, Gregory R.; Bollag, Gideon; Roth, Richard A.; Rutter, William J.

    1986-11-01

    A hybrid receptor has been constructed that is composed of the extracellular domain of the human insulin receptor fused to the transmembrane and cytoplasmic domains of the bacterial aspartate chemoreceptor. This hybrid protein can be expressed in rodent (CHO) cells and displays several functional features comparable to wild-type insulin receptor. It is localized to the cell surface, binds insulin with high affinity, forms oligomers, and is recognized by conformation-specific monoclonal antibodies. Although most of the expressed protein accumulates as a 180-kDa proreceptor, some processed 135-kDa receptor can be detected on the cell surface by covalent cross-linking. Expression of the hybrid receptor inhibits the insulin-activated uptake of 2-deoxyglucose by CHO cells. Thus, this hybrid is partially functional and can be processed; however, it is incapable of native transmembrane signaling. The results indicate that the intact domains of different types of receptors can retain some of the native features in a hybrid molecule but specific requirements will need to be satisfied for transmembrane signaling.

  3. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    SciTech Connect

    Vikram, Ajit; Jena, Gopabandhu

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  4. Sweet-taste receptors, low-energy sweeteners, glucose absorption and insulin release.

    PubMed

    Renwick, Andrew G; Molinary, Samuel V

    2010-11-01

    The present review explores the interactions between sweeteners and enteroendocrine cells, and consequences for glucose absorption and insulin release. A combination of in vitro, in situ, molecular biology and clinical studies has formed the basis of our knowledge about the taste receptor proteins in the glucose-sensing enteroendocrine cells and the secretion of incretins by these cells. Low-energy (intense) sweeteners have been used as tools to define the role of intestinal sweet-taste receptors in glucose absorption. Recent studies using animal and human cell lines and knockout mice have shown that low-energy sweeteners can stimulate intestinal enteroendocrine cells to release glucagon-like peptide-1 and glucose-dependent insulinotropic peptide. These studies have given rise to major speculations that the ingestion of food and beverages containing low-energy sweeteners may act via these intestinal mechanisms to increase obesity and the metabolic syndrome due to a loss of equilibrium between taste receptor activation, nutrient assimilation and appetite. However, data from numerous publications on the effects of low-energy sweeteners on appetite, insulin and glucose levels, food intake and body weight have shown that there is no consistent evidence that low-energy sweeteners increase appetite or subsequent food intake, cause insulin release or affect blood pressure in normal subjects. Thus, the data from extensive in vivo studies in human subjects show that low-energy sweeteners do not have any of the adverse effects predicted by in vitro, in situ or knockout studies in animals.

  5. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  6. Basal Insulin Use With GLP-1 Receptor Agonists.

    PubMed

    Anderson, Sarah L; Trujillo, Jennifer M

    2016-08-01

    IN BRIEF The combination of basal insulin and a glucagon-like peptide 1 receptor agonist is becoming increasingly common and offers several potential benefits to patients with type 2 diabetes. Clinical studies have demonstrated improved glycemic control and low risks of hypoglycemia and weight gain with the combination, which provides a safe and effective alternative to basal-bolus insulin with less treatment burden. Fixed-ratio combination products that administer both agents in a single injection are in the pipeline and will offer additional options for clinicians and patients. This review focuses on the rationale for, clinical evidence on, and implications of using this combination of therapies in the treatment of type 2 diabetes.

  7. Pharmacologic inhibition of ghrelin receptor signaling is insulin sparing and promotes insulin sensitivity.

    PubMed

    Longo, Kenneth A; Govek, Elizabeth K; Nolan, Anna; McDonagh, Thomas; Charoenthongtrakul, Soratree; Giuliana, Derek J; Morgan, Kristen; Hixon, Jeffrey; Zhou, Chaoseng; Kelder, Bruce; Kopchick, John J; Saunders, Jeffrey O; Navia, Manuel A; Curtis, Rory; DiStefano, Peter S; Geddes, Brad J

    2011-10-01

    Ghrelin influences a variety of metabolic functions through a direct action at its receptor, the GhrR (GhrR-1a). Ghrelin knockout (KO) and GhrR KO mice are resistant to the negative effects of high-fat diet (HFD) feeding. We have generated several classes of small-molecule GhrR antagonists and evaluated whether pharmacologic blockade of ghrelin signaling can recapitulate the phenotype of ghrelin/GhrR KO mice. Antagonist treatment blocked ghrelin-induced and spontaneous food intake; however, the effects on spontaneous feeding were absent in GhrR KO mice, suggesting target-specific effects of the antagonists. Oral administration of antagonists to HFD-fed mice improved insulin sensitivity in both glucose tolerance and glycemic clamp tests. The insulin sensitivity observed was characterized by improved glucose disposal with dramatically decreased insulin secretion. It is noteworthy that these results mimic those obtained in similar tests of HFD-fed GhrR KO mice. HFD-fed mice treated for 56 days with antagonist experienced a transient decrease in food intake but a sustained body weight decrease resulting from decreased white adipose, but not lean tissue. They also had improved glucose disposal and a striking reduction in the amount of insulin needed to achieve this. These mice had reduced hepatic steatosis, improved liver function, and no evidence of systemic toxicity relative to controls. Furthermore, GhrR KO mice placed on low- or high-fat diets had lifespans similar to the wild type, emphasizing the long-term safety of ghrelin receptor blockade. We have therefore demonstrated that chronic pharmacologic blockade of the GhrR is an effective and safe strategy for treating metabolic syndrome.

  8. Characterization of insulin receptors in chicken kidneys: effect of nutritional status.

    PubMed

    Bisbis, S; Derouet, M; Simon, J

    1994-10-01

    In chickens, the kidneys actively contribute to gluconeogenesis. A cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK) is present in this tissue but is absent in liver. Cytosolic renal PEPCK is nutritionally and hormonally controlled which indicates a likely contribution of insulin in the control of this enzyme (and other renal functions). The present studies characterize renal insulin receptors in the chicken. The effects of the following nutritional conditions were examined: fed, 48 hr fasted, and 24 hr refed following a 48-hr fast. PEPCK activity was increased by the 48-hr fast and returned to normal after refeeding. Specific binding of 125I-insulin to renal membranes was time-, temperature-, and protein-dependent. Unlabeled insulin was more potent than IGF-1 in inhibiting 125I-insulin binding; the ratio of potencies for insulin and IGF-1, however, was dependent upon the nutritional state. Insulin binding was significantly higher (P < 0.05) following 48 hr fasting and lower (P < 0.05) following refeeding compared to ad libitum feeding. Receptor affinity was similar irrespective of the nutritional state. Solubilized and wheat germ agglutinin purified renal insulin receptors were devoid of ATPase activity in contrast to hepatic receptors. The sizes of alpha- and beta-subunits of renal receptors were similar to those of hepatic receptors: 135 and 95 kDa, respectively. Insulin-stimulated autophosphorylation of the beta-subunit was decreased, although not significantly, by prolonged fasting. Phosphorylation of artificial substrate: poly(Glu-Tyr) 4:1 was significantly decreased by the 48-hr fast at high insulin concentrations (10 and 100 nM). Kinase activities of renal insulin receptors from fed or refed chickens were very similar. In conclusion, typical insulin receptors are present in chicken kidneys. These receptors exhibit a regulation at the level of their number and kinase activity in a fashion similar to that found for hepatic receptors. The present

  9. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    PubMed

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  10. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    SciTech Connect

    Randazzo, P.A.; Jarett, L. )

    1990-09-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.

  11. Insulin dose adjustments with add-on glucagon-like peptide-1 receptor (GLP-1R) agonists in clinical practice.

    PubMed

    Artigas, Carla Francés; Stokes, Victoria; Tan, Garry D; Theodorakis, Michael J

    2015-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are gaining ground as therapeutic modalities in combination with insulin in patients with type 2 diabetes mellitus. Exploiting the multiple benefits of incretin-based therapies in certain patient populations, especially in those who would benefit most from potential weight loss or prevention of body weight gain, has provided a valuable add-on option in diabetes management. However, caution needs to be exercised when initiating such a double injectable therapy, as evidence indicates that, in most instances, the insulin dose needs to be re-adjusted. The majority of published studies suggest reduction of insulin dose, especially related to the 'bolus' component; however, some have also recommended that insulin dose should actually be increased, but we found no credible evidence to support the latter. An important determinant of the titration process is the insulin formulation already in use at baseline. As more potent and long-acting GLP-1RAs are introduced, optimal insulin dose scaling is a major challenge, especially in a primary setting. We provide an overview of the current knowledge in this rapidly changing field. Based on currently reported evidence, a reduction of basal insulin by 10% and a decrease of prandial insulin by 30 - 40% is recommended on addition of GLP-1RAs.

  12. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    SciTech Connect

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-12

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor ..cap alpha.. subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-(..gamma..-/sup 32/P)triphosphate, a protein of 95 kilodaltons representing the insulin receptor ..beta.. subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins.

  13. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation.

    PubMed

    Tanti, Jean-François; Jager, Jennifer

    2009-12-01

    Insulin receptor substrates (IRS) serine phosphorylation is a time-controlled physiological feedback mechanism in insulin signaling that is hijacked by metabolic and inflammatory stresses to promote insulin resistance. Kinases, including IKKbeta, JNK, ERK, mTOR, and S6K, activated by the inducers of insulin resistance induce uncontrolled IRS serine phosphorylation. Studies with genetically modified mice reveal that these kinases integrate signals from metabolic and inflammatory stresses in adipose tissue, liver, and hypothalamus leading to peripheral and central insulin resistance. Moreover, IKKbeta/NF-kappaB and JNK1 pathways in myeloid cells represent a core mechanism involved in inflammation linked to obesity. These kinases are thus potential drug targets against insulin resistance and the targeting of the IKKbeta/NF-kappaB or the JNK pathway may evolve into future diabetes medication.

  14. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    PubMed

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  15. [Insulin and glucocorticoid binding by blood cell receptors after hydrocortisone administration in rabbits].

    PubMed

    Tikhonova, N E; Tatarinova, G Sh

    1989-07-01

    Repeated i.v. administration of hydrocortisone (10 mg/kg) revealed an increase in the resistance against insulin although endogenous corticosterone was decreased in 33 male rabbits. The insulin- and dexamethasone-binding receptors of erythrocytes and mononuclear leucocytes. changed after 3-7 hydrocortisone injections, the binding increasing for insulin and diminishing for dexamethasone.

  16. Insulin Receptor Signaling in Long-Term Memory Consolidation Following Spatial Learning

    ERIC Educational Resources Information Center

    Dou, Jing-Tao; Chen, Min; Dufour, Franck; Alkon, Daniel L.; Zhao, Wei-Qin

    2005-01-01

    Evidence has shown that the insulin and insulin receptor (IR) play a role in cognitive function. However, the detailed mechanisms underlying insulin's action on learning and memory are not yet understood. Here we investigated changes in long-term memory-associated expression of the IR and downstream molecules in the rat hippocampus. After…

  17. Hyperinsulinemia is Associated with Increased Soluble Insulin Receptors Release from Hepatocytes

    PubMed Central

    Hiriart, Marcia; Sanchez-Soto, Carmen; Diaz-Garcia, Carlos Manlio; Castanares, Diana T.; Avitia, Morena; Velasco, Myrian; Mas-Oliva, Jaime; Macias-Silva, Marina; González-Villalpando, Clicerio; Delgado-Coello, Blanca; Sosa-Garrocho, Marcela; Vidaltamayo, Román; Fuentes-Silva, Deyanira

    2014-01-01

    It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR) has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration, and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l−1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia, the amount of this soluble receptor increases and this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance. PMID:24995000

  18. Dissociation of insulin receptor phosphorylation and stimulation of glucose transport in BC3H-1 myocytes

    SciTech Connect

    Mojsilovic, L.P.; Standaert, M.L.; Rosic, N.K.; Pollet, R.J.

    1986-05-01

    The authors have investigated insulin receptor phosphorylation in differentiated cultured BC3H-1 myocytes. As for other insulin-responsive cell systems in partially purified wheat germ agglutinin receptor preparations, insulin stimulates the phosphorylation of its own receptor (95K ..beta..-subunits) in a dose dependent manner (0-400 nM), as identified by immunoprecipitation with antiinsulin receptor antibodies and SDS-PAGE. In the same preparations they show that 12-0-tetradecanyl phorbol acetate (TPA), which in many respect ..beta..-subunits in the same dose dependent manner (0-5 ..mu..M). In addition, antiinsulin receptor antibodies (B-10) also induced phosphorylation of mimics insulin action, also induced phosphorylation of the insulin receptor and HPLC tryptic maps of the /sup 32/P-labeled ..beta..-subunit were identical to those for insulin-induced receptor phosphorylation. However, while insulin and TPA are potent stimulators of glucose transport in these muscle cells, the antireceptor antibodies alone failed to provoke glucose transport at any concentration. The specificity and activity of these antibodies were confirmed in their system by their ability to inhibit insulin binding and insulin-stimulated glucose transport in a concentration-dependent manner. Their results indicate that phosphorylation of insulin receptor is not a crucial event in mediating insulin action, at least with respect to glucose transport. While the effects of the B-10 antibody in the BC3H-1 myocyte differ from those in the adipocyte, their results provide independent confirmation of their essential conclusion that phosphorylation of the insulin receptor may not be necessary nor sufficient for its acute action in promoting glucose transport.

  19. Ligand-dependent intersubunit association with the insulin receptor complex activates its intrinsic kinase activity

    SciTech Connect

    Boeni-Schnetzler, M.; Kaligian, A.; DelVecchio, R.; Pilch, P.F.

    1988-05-15

    Insulin receptor halves (..cap alpha beta..) were obtained upon selective reduction of the holoreceptor (..cap alpha../sub 2/..beta../sub 2/) and were isolated in concentrated form. Autophosphorylation of concentrated ..cap alpha beta.. receptor halves can be stimulated by insulin an average of 4.0-fold, whereas nonreduced holoreceptor can be stimulated 5.4-fold. If ..cap alpha beta.. half-receptors are immobilized on wheat germ agglutinin-agarose, no insulin-stimulated autophosphorylation is observed, whereas immobilized holoreceptor retains insulin responsiveness. Treatment of ..cap alpha beta.. half-receptors with glutathione in the presence of insulin results in reoxidation to the holoreceptor form (..cap alpha../sub 2/..beta../sub 2/) with an efficiency of 60-70% as visualized by immunoblotting, thus providing evidence that two ..cap alpha beta.. halves are in close physical proximity. This reoxidation reaction, which is evident prior to autophosphorylation, is rapid and strictly dependent on the presence of insulin, consistent with the hypothesis that insulin promotes the association of two ..cap alpha beta.. halves. Furthermore, the insulin-induced reoxidation reaction and the insulin-induced autophosphorylation show the same dose dependence suggesting that the noncovalent association of ..cap alpha beta.. half-receptors upon insulin binding is a prerequisite for insulin-stimulated autophosphorylation in concentrated ..gamma beta.. half-receptor preparations. If the ..cap alpha beta.. half-receptor forms are phosphorylated in the presence of an anti-phosphotyrosine antibody and separated from nonphosphorylated ..cap alpha beta.. receptors, we observe that the phosphorylated ..cap alpha beta.. receptor halves contain bound insulin.

  20. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    SciTech Connect

    Klaassen, J.K.

    1986-01-01

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of (/sup 125/I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred.

  1. Genomic organization and expression of insulin receptors in grass carp, Ctenopharyngodon idellus.

    PubMed

    Cai, Wenjing; Liang, Xu-fang; Yuan, Xiaochen; Li, Aixuan; He, Yuhui; He, Shan

    2016-01-01

    Insulin receptors have been demonstrated to be involved in embryogenesis, food intake regulation and glucose metabolism in several fish, while more researchis needed for further understanding. In this study, the complete coding sequence (CDS) of insulin receptor a (insra) gene and insulin receptor b (insrb) gene in grass carp were obtained, the CDS were 4068 bp and 4514 bp in length, encoding 1355 aa protein and 1351 aa protein. Both of insra and insrb in grass carp showed high amino acid identities with other fish. Insra and insrb genes were widely expressed in all tested tissues with an overlapping but distinct expressions. The high levels of insra mRNA were distributed in hindgut and heart tissues. The insrb gene showed the highest expression levels in liver and hindgut. We also proved that two forms of grass carp insulin receptors participate in the regulation of blood glucose and might act differently. Phylogenetic analysis confirmed that different isoforms of fish insulin receptors are derived from two distinct genes, which was inconsistent with the generation of mammalian insulin receptors. Synteny analyses of insulin receptor genes showed that genes surrounding the insulin receptor genes were conserved in fish. Arhgef18, PEX11G, humanC19orf45 genes were highly conserved among mammal species. However, no conserved synteny was observed among fish, mammals, avians and amphibians.

  2. Tyrosine phosphorylation of phosphoinositide-dependent kinase 1 by the insulin receptor is necessary for insulin metabolic signaling.

    PubMed

    Fiory, Francesca; Alberobello, Anna Teresa; Miele, Claudia; Oriente, Francesco; Esposito, Iolanda; Corbo, Vincenzo; Ruvo, Menotti; Tizzano, Barbara; Rasmussen, Thomas E; Gammeltoft, Steen; Formisano, Pietro; Beguinot, Francesco

    2005-12-01

    In L6 myoblasts, insulin receptors with deletion of the C-terminal 43 amino acids (IR(Delta43)) exhibited normal autophosphorylation and IRS-1/2 tyrosine phosphorylation. The L6 cells expressing IR(Delta43) (L6(IRDelta43)) also showed no insulin effect on glucose uptake and glycogen synthase, accompanied by a >80% decrease in insulin induction of 3-phosphoinositide-dependent protein kinase 1 (PDK-1) activity and tyrosine phosphorylation and of protein kinase B (PKB) phosphorylation at Thr(308). Insulin induced the phosphatidylinositol 3 kinase-dependent coprecipitation of PDK-1 with wild-type IR (IR(WT)), but not IR(Delta43). Based on overlay blotting, PDK-1 directly bound IR(WT), but not IR(Delta43). Insulin-activated IR(WT), and not IR(Delta43), phosphorylated PDK-1 at tyrosines 9, 373, and 376. The IR C-terminal 43-amino-acid peptide (C-terminal peptide) inhibited in vitro PDK-1 tyrosine phosphorylation by the IR. Tyr-->Phe substitution prevented this inhibitory action. In the L6(hIR) cells, the C-terminal peptide coprecipitated with PDK-1 in an insulin-stimulated fashion. This peptide simultaneously impaired the insulin effect on PDK-1 coprecipitation with IR(WT), on PDK-1 tyrosine phosphorylation, on PKB phosphorylation at Thr(308), and on glucose uptake. Upon insulin exposure, PDK-1 membrane persistence was significantly reduced in L6(IRDelta43) compared to control cells. In L6 cells expressing IR(WT), the C-terminal peptide also impaired insulin-dependent PDK-1 membrane persistence. Thus, PDK-1 directly binds to the insulin receptor, followed by PDK-1 activation and insulin metabolic effects.

  3. Activation of insulin signal transduction pathway and anti-diabetic activity of small molecule insulin receptor activators.

    PubMed

    Qureshi, S A; Ding, V; Li, Z; Szalkowski, D; Biazzo-Ashnault, D E; Xie, D; Saperstein, R; Brady, E; Huskey, S; Shen, X; Liu, K; Xu, L; Salituro, G M; Heck, J V; Moller, D E; Jones, A B; Zhang, B B

    2000-11-24

    We recently described the identification of a non-peptidyl fungal metabolite (l-783,281, compound 1), which induced activation of human insulin receptor (IR) tyrosine kinase and mediated insulin-like effects in cells, as well as decreased blood glucose levels in murine models of Type 2 diabetes (Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y., Royo, I., Vilella, D., Diez, M. T. , Pelaez, F., Ruby, C., Kendall, R. L., Mao, X., Griffin, P., Calaycay, J., Zierath, J. R., Heck, J. V., Smith, R. G. & Moller, D. E. (1999) Science 284, 974-977). Here we report the characterization of an active analog (compound 2) with enhanced IR kinase activation potency and selectivity over related receptors (insulin-like growth factor I receptor, epidermal growth factor receptor, and platelet-derived growth factor receptor). The IR activators stimulated tyrosine kinase activity of partially purified native IR and recombinant IR tyrosine kinase domain. Administration of the IR activators to mice was associated with increased IR tyrosine kinase activity in liver. In vivo oral treatment with compound 2 resulted in significant glucose lowering in several rodent models of diabetes. In db/db mice, oral administration of compound 2 elicited significant correction of hyperglycemia. In a streptozotocin-induced diabetic mouse model, compound 2 potentiated the glucose-lowering effect of insulin. In normal rats, compound 2 improved oral glucose tolerance with significant reduction in insulin release following glucose challenge. A structurally related inactive analog (compound 3) was not effective on insulin receptor activation or glucose lowering in db/db mice. Thus, small molecule IR activators exert insulin mimetic and sensitizing effects in cells and in animal models of diabetes. These results have implications for the future development of new therapies for diabetes mellitus.

  4. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression.

    PubMed

    Kong, Wei-Jia; Zhang, Hao; Song, Dan-Qing; Xue, Rong; Zhao, Wei; Wei, Jing; Wang, Yue-Ming; Shan, Ning; Zhou, Zhen-Xian; Yang, Peng; You, Xue-Fu; Li, Zhuo-Rong; Si, Shu-Yi; Zhao, Li-Xun; Pan, Huai-Ning; Jiang, Jian-Dong

    2009-01-01

    Natural product berberine (BBR) has been reported to have hypoglycemic and insulin-sensitizing activities; however, its mechanism remains unclear. This study was designed to investigate the molecular mechanism of BBR against insulin resistance. Here, we identify insulin receptor (InsR) as a target of BBR to increase insulin sensitivity. In cultured human liver cells, BBR increased InsR messenger RNA (mRNA) and protein expression in a dose- and time-dependent manner. Berberine increased InsR expression in the L6 rat skeletal muscle cells as well. Berberine-enhanced InsR expression improved cellular glucose consumption only in the presence of insulin. Silencing InsR gene with small interfering RNA or blocking the phosphoinositol-3-kinase diminished this effect. Berberine induced InsR gene expression through a protein kinase C (PKC)-dependent activation of its promoter. Inhibition of PKC abolished BBR-caused InsR promoter activation and InsR mRNA transcription. In animal models, treatment of type 2 diabetes mellitus rats with BBR lowered fasting blood glucose and fasting serum insulin, increased insulin sensitivity, and elevated InsR mRNA as well as PKC activity in the liver. In addition, BBR lowered blood glucose in KK-Ay type 2 but not in NOD/LtJ type 1 diabetes mellitus mice that were insulin deficient. Our results suggest that BBR is a unique natural medicine against insulin resistance in type 2 diabetes mellitus and metabolic syndrome.

  5. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance.

    PubMed

    Mauer, Jan; Chaurasia, Bhagirath; Plum, Leona; Quast, Thomas; Hampel, Brigitte; Blüher, Matthias; Kolanus, Waldemar; Kahn, C Ronald; Brüning, Jens C

    2010-05-06

    A major component of obesity-related insulin resistance is the establishment of a chronic inflammatory state with invasion of white adipose tissue by mononuclear cells. This results in the release of pro-inflammatory cytokines, which in turn leads to insulin resistance in target tissues such as skeletal muscle and liver. To determine the role of insulin action in macrophages and monocytes in obesity-associated insulin resistance, we conditionally inactivated the insulin receptor (IR) gene in myeloid lineage cells in mice (IR(Deltamyel)-mice). While these animals exhibit unaltered glucose metabolism on a normal diet, they are protected from the development of obesity-associated insulin resistance upon high fat feeding. Euglycemic, hyperinsulinemic clamp studies demonstrate that this results from decreased basal hepatic glucose production and from increased insulin-stimulated glucose disposal in skeletal muscle. Furthermore, IR(Deltamyel)-mice exhibit decreased concentrations of circulating tumor necrosis factor (TNF) alpha and thus reduced c-Jun N-terminal kinase (JNK) activity in skeletal muscle upon high fat feeding, reflecting a dramatic reduction of the chronic and systemic low-grade inflammatory state associated with obesity. This is paralleled by a reduced accumulation of macrophages in white adipose tissue due to a pronounced impairment of matrix metalloproteinase (MMP) 9 expression and activity in these cells. These data indicate that insulin action in myeloid cells plays an unexpected, critical role in the regulation of macrophage invasion into white adipose tissue and in the development of obesity-associated insulin resistance.

  6. Increased levels of insulin and insulin-like growth factor-1 hybrid receptors and decreased glycosylation of the insulin receptor alpha- and beta-subunits in scrapie-infected neuroblastoma N2a cells.

    PubMed

    Nielsen, Daniel; Gyllberg, Hanna; Ostlund, Pernilla; Bergman, Tomas; Bedecs, Katarina

    2004-06-01

    We have previously shown that ScN2a cells (scrapie-infected neuroblastoma N2a cells) express 2-fold- and 4-fold-increased levels of IR (insulin receptor) and IGF-1R (insulin-like growth factor-1 receptor) respectively. In addition, the IR alpha- and beta-subunits are aberrantly processed, with apparent molecular masses of 128 and 85 kDa respectively, as compared with 136 and 95 kDa in uninfected N2a cells. Despite the 2-fold increase in IR protein, the number of (125)I-insulin-binding sites was slightly decreased in ScN2a cells [Ostlund, Lindegren, Pettersson and Bedecs (2001) Brain Res. 97, 161-170]. In order to determine the cellular localization of IR in ScN2a cells, surface biotinylation was performed, showing a correct IR trafficking and localization to the cell surface. The present study shows for the first time that neuroblastoma N2a cells express significant levels of IR-IGF-1R hybrid receptors, and in ScN2a cells the number of hybrid receptors was 2-fold higher than that found in N2a cells, potentially explaining the apparent loss of insulin-binding sites due to a lower affinity for insulin compared with the homotypic IR. Furthermore, the decreased molecular mass of IR subunits in ScN2a cells is not caused by altered phosphorylation or proteolytic processing, but rather by altered glycosylation. Enzymic deglycosylation of immunoprecipitated IR from N2a and ScN2a cells with endoglycosidase H, peptide N-glycosidase F and neuraminidase all resulted in subunits with increased electrophoretic mobility; however, the 8-10 kDa shift remained. Combined enzymic or chemical deglycosylation using anhydrous trifluoromethane sulphonic acid treatment ultimately showed that the IR alpha- and beta-subunits from ScN2a cells are aberrantly glycosylated. The increased formation of IR-IGF-1R hybrids in ScN2a cells may be part of a neuroprotective response to prion infection. The degree and functional significance of aberrantly glycosylated proteins in ScN2a cells remain to be

  7. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    PubMed

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  8. Short-term in vivo inhibition of insulin receptor substrate-1 expression leads to insulin resistance, hyperinsulinemia, and increased adiposity.

    PubMed

    Araújo, Eliana P; De Souza, Cláudio T; Gasparetti, Alessandra L; Ueno, Mirian; Boschero, Antonio C; Saad, Mário J A; Velloso, Lício A

    2005-03-01

    Insulin receptor substrate-1 (IRS-1) has an important role as an early intermediary between the insulin and IGF receptors and downstream molecules that participate in insulin and IGF-I signal transduction. Here we employed an antisense oligonucleotide (IRS-1AS) to inhibit whole-body expression of IRS-1 in vivo and evaluate the consequences of short-term inhibition of IRS-1 in Wistar rats. Four days of treatment with IRS-1AS reduced the expression of IRS-1 by 80, 75, and 65% (P < 0.05) in liver, skeletal muscle, and adipose tissue, respectively. This was accompanied by a 40% (P < 0.05) reduction in the constant of glucose decay during an insulin tolerance test, a 78% (P < 0.05) reduction in glucose consumption during a hyperinsulinemic-euglycemic clamp, and a 90% (P < 0.05) increase in basal plasma insulin level. The metabolic effects produced by IRS-1AS were accompanied by a significant reduction in insulin-induced [Ser (473)] Akt phosphorylation in liver (85%, P < 0.05), skeletal muscle (40%, P < 0.05), and adipose tissue (85%, P < 0.05) and a significant reduction in insulin-induced tyrosine phosphorylation of ERK in liver (20%, P < 0.05) and skeletal muscle (30%, P < 0.05). However, insulin-induced tyrosine phosphorylation of ERK was significantly increased (60%, P < 0.05) in adipose tissue of IRS-1AS-treated rats. In rats treated with IRS-1AS for 8 d, a 100% increase (P < 0.05) in relative epididymal fat weight and a 120% (P < 0.05) increase in nuclear expression of peroxisome proliferator-activated receptor-gamma were observed. Thus, acute inhibition of IRS-1 expression in rats leads to insulin resistance accompanied by activation of a growth-related pathway exclusively in white adipose tissue.

  9. Insulin-independent role of adiponectin receptor signaling in Drosophila germline stem cell maintenance.

    PubMed

    Laws, Kaitlin M; Sampson, Leesa L; Drummond-Barbosa, Daniela

    2015-03-15

    Adipocytes have key endocrine roles, mediated in large part by secreted protein hormones termed adipokines. The adipokine adiponectin is well known for its role in sensitizing peripheral tissues to insulin, and several lines of evidence suggest that adiponectin might also modulate stem cells/precursors. It remains unclear, however, how adiponectin signaling controls stem cells and whether this role is secondary to its insulin-sensitizing effects or distinct. Drosophila adipocytes also function as an endocrine organ and, although no obvious adiponectin homolog has been identified, Drosophila AdipoR encodes a well-conserved homolog of mammalian adiponectin receptors. Here, we generate a null AdipoR allele and use clonal analysis to demonstrate an intrinsic requirement for AdipoR in germline stem cell (GSC) maintenance in the Drosophila ovary. AdipoR null GSCs are not fully responsive to bone morphogenetic protein ligands from the niche and have a slight reduction in E-cadherin levels at the GSC-niche junction. Conversely, germline-specific overexpression of AdipoR inhibits natural GSC loss, suggesting that reduction in adiponectin signaling might contribute to the normal decline in GSC numbers observed over time in wild-type females. Surprisingly, AdipoR is not required for insulin sensitization of the germline, leading us to speculate that insulin sensitization is a more recently acquired function than stem cell regulation in the evolutionary history of adiponectin signaling. Our findings establish Drosophila female GSCs as a new system for future studies addressing the molecular mechanisms whereby adiponectin receptor signaling modulates stem cell fate.

  10. Tissue localization of Drosophila melanogaster insulin receptor transcripts during development.

    PubMed Central

    Garofalo, R S; Rosen, O M

    1988-01-01

    The Drosophila melanogaster insulin receptor (Drosophila insulin receptor homolog [dIRH]) is similar to its mammalian counterpart in deduced amino acid sequence, subunit structure, and ligand-stimulated protein tyrosine kinase activity. The function of this receptor in D. melanogaster is not yet known. However, a role in development is suggested by the observations that levels of insulin-stimulated kinase activity and expression of dIRH mRNA are maximal during Drosophila midembryogenesis. In this study, a 2.9-kilobase (kb) cDNA clone corresponding to both the dIRH tyrosine kinase domain and some of the 3' untranslated sequence was used to determine the tissue distribution of dIRH mRNA during development. Two principal mRNAs of 11 and 8.6 kb hybridized with the dIRH cDNA in Northern (RNA) blot analysis. The abundance of the 8.6-kb mRNA increased transiently in early embryos, whereas the 11-kb species was most abundant during midembryogenesis. A similar pattern of expression was previously determined by Northern analysis, using a dIRH genomic clone (L. Petruzzelli, R. Herrera, R. Arenas-Garcia, R. Fernandez, M. J. Birnbaum, and O. M. Rosen, Proc. Natl. Acad. Sci. USA 83:4710-4714, 1986). In situ hybridization revealed dIRH transcripts in the ovaries of adult flies, in which the transcripts appeared to be synthesized by nurse cells for eventual storage as maternal RNA in the mature oocyte. Throughout embryogenesis, dIRH transcripts were ubiquitously expressed, although after midembryogenesis, higher levels were detected in the developing nervous system. Nervous system expression remained elevated throughout the larval stages and persisted in the adult, in which the cortex of the brain and ganglion cells were among the most prominently labeled tissues. In larvae, the imaginal disk cells exhibited comparatively high levels of dIRH mRNA expression. The broad distribution of dIRH mRNA in embryos and imaginal disks is compatible with a role for dIRH in anabolic processes

  11. Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance.

    PubMed

    Cerqueira, Fernanda M; da Cunha, Fernanda M; Caldeira da Silva, Camille C; Chausse, Bruno; Romano, Renato L; Garcia, Camila C M; Colepicolo, Pio; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2011-10-01

    Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity. Short-term calorie restriction and intermittent feeding presented similar results relative to glucose tolerance. Surprisingly, long-term intermittent feeding promoted glucose intolerance, without a loss in insulin receptor phosphorylation. Intermittent feeding substantially increased insulin receptor nitration in both intra-abdominal adipose tissue and muscle, a modification associated with receptor inactivation. All restricted diets enhanced nitric oxide synthase levels in the insulin-responsive adipose tissue and skeletal muscle. However, whereas calorie restriction improved tissue redox state, food restriction and intermittent feedings did not. In fact, long-term intermittent feeding resulted in largely enhanced tissue release of oxidants. Overall, our results show that restricted diets are significantly different in their effects on glucose tolerance and redox state when adopted long-term. Furthermore, we show that intermittent feeding can lead to oxidative insulin receptor inactivation and glucose intolerance.

  12. Arg972 insulin receptor substrate-1 enhances tumor necrosis factor-α-induced apoptosis in osteoblasts.

    PubMed

    You, Yunhui; Liu, Shiqing; Peng, Lijuan; Long, Mei; Deng, Hongxiang; Zhao, Hongjun

    2015-07-01

    The presence of Arg972 insulin receptor substrate-1 (IRS-1) is associated with impaired insulin/IRS-1 signaling to activate phosphatidylinositol-3 kinase (PI3K). Tumor necrosis factor-α (TNF-α), an inflammatory cytokine with a central role in the pathogenesis of rheumatoid arthritis (RA), induces apoptosis in osteoblasts, which are the principal cell type responsible for bone loss in RA. In our previous study, an association between Arg972 IRS-1 and a high risk and severity of RA was identified. In the present study, the effects of Arg972 IRS-1 and IRS-1 on TNF-α-induced apoptosis in human osteoblasts were examined. Normal and RA osteoblasts were stably transfected with Arg972 IRS-1 and IRS-1. In addition, cells were stably transduced with IRS-1-shRNA to knock down IRS1. Following stimulation with 10 nM insulin for 30 min, the stable overexpression of Arg972 IRS-1 and knock down of IRS-1 significantly decreased IRS-1-associated PI3K activity and Akt activation/phosphorylation at serine 473 (ser473) and enhanced TNF-α-induced apoptosis in normal and in RA osteoblasts. By contrast, the stable overexpression of IRS-1 significantly increased the levels of IRS-1-associated PI3K activity and Akt phosphorylation (ser473) and inhibited TNF-α-induced apoptosis, which was eliminated by pretreatment with 50 µn BJM120, a selective PI3K inhibitor, for 30 min. In conclusion, the present study provided the first evidence, to the best of our knowledge, that insulin stimulation of Arg972 IRS-1 and IRS-1 enhanced and inhibited TNF-α-induced apoptosis, respectively in normal and RA osteoblasts by a PI3K‑dependent mechanism. These findings suggest that insulin/IRS-1 signaling is important in the pathogenesis of RA.

  13. Biphasic modulation of insulin receptor substrate-1 during goitrogenesis.

    PubMed

    Grozovsky, R; Morales, M M; Carvalho, D P

    2007-05-01

    Insulin receptor substrate-1 (IRS-1) is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I) receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH) to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 +/- 0.28; methimazole (MMI) 21d = 51.02 +/- 6.02 ng/mL, N = 12 rats), when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 +/- 1.21; MMI 5d = 32.83 +/- 1.48; MMI 7d = 31.1 +/- 3.25; MMI 10d = 33.8 +/- 1.25; MMI 14d = 45.5 +/- 2.56; MMI 18d = 53.0 +/- 3.01; MMI 21d = 61.9 +/- 3.92 mg, N = 9-15 animals per group) and serum TSH levels (C = 1.57 +/- 0.2; MMI 5d = 9.95 +/- 0.74; MMI 7d = 10.38 +/- 0.84; MMI 10d = 17.72 +/- 1.47; MMI 14d = 25.65 +/- 1.23; MMI 18d = 35.38 +/- 3.69; MMI 21d = 31.3 +/- 2.7 ng/mL, N = 9-15 animals per group). Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent

  14. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  15. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    SciTech Connect

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F. )

    1988-04-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of {sup 125}I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase.

  16. Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro

    SciTech Connect

    White, M.F.; Takayama, S.; Kahn, C.R.

    1985-08-05

    Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of (TSP)phosphoserine or (TSP)phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with (gamma-TSP)ATP and MnS , very little phosphorylation occurred in the absence of insulin.

  17. Tyrosine phosphorylation of the insulin receptor is not required for receptor internalization: studies in 2,4-dinitrophenol-treated cells

    SciTech Connect

    Backer, J.M.; Kahn, C.R.; White, M.F.

    1989-05-01

    The relation between insulin-stimulated autophosphorylation of the insulin receptor and internalization of the receptor was studied in Fao rat hepatoma cells. Treatment of Fao cells with 2,4-dinitrophenol for 45 min depleted cellular ATP by 80% and equally inhibited insulin-stimulated receptor autophosphorylation, as determined by immunoprecipitation of surface-iodinated or (/sup 32/P)phosphate-labeled cells with anti-phosphotyrosine antibody. In contrast, internalization of the insulin receptor and internalization and degradation of /sup 125/I-labeled insulin by 2,4-dinitrophenol-treated cells were normal. These data show that autophosphorylation of the insulin receptor is not required for the receptor-mediated internalization of insulin in Fao cells and suggest that insulin receptor recycling is independent of autophosphorylation.

  18. Nuclear Receptors Resolve Endoplasmic Reticulum Stress to Improve Hepatic Insulin Resistance

    PubMed Central

    2017-01-01

    Chronic endoplasmic reticulum (ER) stress culminating in proteotoxicity contributes to the development of insulin resistance and progression to type 2 diabetes mellitus. Pharmacologic interventions targeting several different nuclear receptors have emerged as potential treatments for insulin resistance. The mechanistic basis for these antidiabetic effects has primarily been attributed to multiple metabolic and inflammatory functions. Here we review recent advances in our understanding of the association of ER stress with insulin resistance and the role of nuclear receptors in promoting ER stress resolution and improving insulin resistance in the liver. PMID:28236381

  19. In situ autoradiography and ligand-dependent tyrosine kinase activity reveal insulin receptors and insulin-like growth factor I receptors in prepancreatic chicken embryos.

    PubMed Central

    Girbau, M; Bassas, L; Alemany, J; de Pablo, F

    1989-01-01

    We previously reported specific cross-linking of 125I-labeled insulin and 125I-labeled insulin-like growth factor I (IGF-I) to the alpha subunit of their respective receptors in chicken embryos of 20 somites and older. To achieve adequate sensitivity and localize spatially the receptors in younger embryos, we adapted an autoradiographic technique using whole-mounted chicken blastoderms. Insulin receptors and IGF-I receptors were expressed and could be localized as early as gastrulation, before the first somite is formed. Relative density was analyzed by a computer-assisted image system, revealing overall slightly higher binding of IGF-I than of insulin. Structures rich in both types of receptors were predominantly of ectodermal origin: Hensen's node in gastrulating embryos and neural folds, neural tube and optic vesicles during neurulation. The signal transduction capability of the receptors in early organogenesis was assessed by their ability to phosphorylate the exogenous substrate poly(Glu80Tyr20). Ligand-dependent tyrosine phosphorylation was demonstrable with both insulin and IGF-I in glycoprotein-enriched preparations from embryos at days 2 through 6 of embryogenesis. There was a developmentally regulated change in ligand-dependent tyrosine kinase activity, with a sharp increase from day 2 to day 4, in contrast with a small increase in the ligand binding. Binding of 125I-labeled IGF-I was, with the solubilized receptors, severalfold higher than binding of 125I-labeled insulin. However, the insulin-dependent phosphorylation was as high as the IGF-I-dependent phosphorylation at each developmental stage. Images PMID:2548191

  20. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes

    SciTech Connect

    Loennroth, P.; Assmundsson, K.; Eden, S.; Enberg, G.; Gause, I.; Hall, K.; Smith, U.

    1987-06-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of /sup 125/I-labeled IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC/sub 50/ for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells.). However, the maximal incremental effect of insulin on IGH-II binding was reduced approx. = 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced, but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approx. = 30 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGH-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGH-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding.

  1. Functionally significant insulin-like growth factor I receptor mutations in centenarians

    PubMed Central

    Suh, Yousin; Atzmon, Gil; Cho, Mi-Ook; Hwang, David; Liu, Bingrong; Leahy, Daniel J.; Barzilai, Nir; Cohen, Pinchas

    2008-01-01

    Rather than being a passive, haphazard process of wear and tear, lifespan can be modulated actively by components of the insulin/insulin-like growth factor I (IGFI) pathway in laboratory animals. Complete or partial loss-of-function mutations in genes encoding components of the insulin/IGFI pathway result in extension of life span in yeasts, worms, flies, and mice. This remarkable conservation throughout evolution suggests that altered signaling in this pathway may also influence human lifespan. On the other hand, evolutionary tradeoffs predict that the laboratory findings may not be relevant to human populations, because of the high fitness cost during early life. Here, we studied the biochemical, phenotypic, and genetic variations in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls and demonstrated a gender-specific increase in serum IGFI associated with a smaller stature in female offspring of centenarians. Sequence analysis of the IGF1 and IGF1 receptor (IGF1R) genes of female centenarians showed overrepresentation of heterozygous mutations in the IGF1R gene among centenarians relative to controls that are associated with high serum IGFI levels and reduced activity of the IGFIR as measured in transformed lymphocytes. Thus, genetic alterations in the human IGF1R that result in altered IGF signaling pathway confer an increase in susceptibility to human longevity, suggesting a role of this pathway in modulation of human lifespan. PMID:18316725

  2. Knockout of Vasohibin-1 Gene in Mice Results in Healthy Longevity with Reduced Expression of Insulin Receptor, Insulin Receptor Substrate 1, and Insulin Receptor Substrate 2 in Their White Adipose Tissue

    PubMed Central

    Takeda, Eichi; Suzuki, Yasuhiro; Yamada, Tetsuya; Katagiri, Hideki

    2017-01-01

    Vasohibin-1 (Vash1), originally isolated as an endothelium-derived angiogenesis inhibitor, has a characteristic of promoting stress tolerance in endothelial cells (ECs). We therefore speculated that the lack of the vash1 gene would result in a short lifespan. However, to our surprise, vash1−/− mice lived significantly longer with a milder senescence phenotype than wild-type (WT) mice. We sought the cause of this healthy longevity and found that vash1−/− mice exhibited mild insulin resistance along with reduced expression of the insulin receptor (insr), insulin receptor substrate 1 (irs-1), and insulin receptor substrate 2 (irs-2) in their white adipose tissue (WAT) but not in their liver or skeletal muscle. The expression of vash1 dominated in the WAT among those 3 organs. Importantly, vash1−/− mice did not develop diabetes even when fed a high-fat diet. These results indicate that the expression of vash1 was required for the normal insulin sensitivity of the WAT and that the target molecules for this activity were insr, irs1, and irs2. The lack of vash1 caused mild insulin resistance without the outbreak of overt diabetes and might contribute to healthy longevity. PMID:28367331

  3. Molecular Basis of Signaling Specificity of Insulin and IGF Receptors: Neglected Corners and Recent Advances

    PubMed Central

    Siddle, Kenneth

    2011-01-01

    Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of “metabolic” and “mitogenic” responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to “metabolic” and “mitogenic” responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in “metabolic” or “mitogenic” signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears

  4. Insulin Dissociates the Effects of Liver X Receptor on Lipogenesis, Endoplasmic Reticulum Stress, and Inflammation*

    PubMed Central

    Sun, Xiaowei; Haas, Mary E.; Miao, Ji; Mehta, Abhiruchi; Graham, Mark J.; Crooke, Rosanne M.; de Barros, Jean-Paul Pais; Wang, Jian-Guo; Aikawa, Masanori; Masson, David; Biddinger, Sudha B.

    2016-01-01

    Diabetes is characterized by increased lipogenesis as well as increased endoplasmic reticulum (ER) stress and inflammation. The nuclear hormone receptor liver X receptor (LXR) is induced by insulin and is a key regulator of lipid metabolism. It promotes lipogenesis and cholesterol efflux, but suppresses endoplasmic reticulum stress and inflammation. The goal of these studies was to dissect the effects of insulin on LXR action. We used antisense oligonucleotides to knock down Lxrα in mice with hepatocyte-specific deletion of the insulin receptor and their controls. We found, surprisingly, that knock-out of the insulin receptor and knockdown of Lxrα produced equivalent, non-additive effects on the lipogenic genes. Thus, insulin was unable to induce the lipogenic genes in the absence of Lxrα, and LXRα was unable to induce the lipogenic genes in the absence of insulin. However, insulin was not required for LXRα to modulate the phospholipid profile, or to suppress genes in the ER stress or inflammation pathways. These data show that insulin is required specifically for the lipogenic effects of LXRα and that manipulation of the insulin signaling pathway could dissociate the beneficial effects of LXR on cholesterol efflux, inflammation, and ER stress from the negative effects on lipogenesis. PMID:26511317

  5. GLP-1 Receptor Agonists: Nonglycemic Clinical Effects in Weight Loss and Beyond

    PubMed Central

    Ryan, Donna; Acosta, Andres

    2015-01-01

    Obective Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day−1 approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. Methods A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. Results GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. Conclusions GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management. PMID:25959380

  6. The effects of digestive enzymes on characteristics of placental insulin receptor. Comparison of particulate and soluble receptor preparations.

    PubMed Central

    Clark, S; DeLuise, M; Larkins, R G; Melick, R A; Harrison, L C

    1978-01-01

    The role of the surrounding membrane structure on the binding characteristics of the insulin receptor was studied by using several digestive enzymes. The effects observed with particulate membrane preparations are compared with those from soluble receptor preparations. beta-Galactosidase and neuraminidase had no effect on insulin binding to either particulate or soluble receptors from human placentae. Exposure to 2 units of phospholipase C/ml increased insulin binding to particulate membranes, but was without effect on the soluble receptor preparation. The increase in binding to particulate membranes was shown to be due to an increase in apparent receptor number. After 5 min exposure to 500 microgram of trypsin/ml there was an increase in insulin binding to the particulate membrane fraction, owing to an increase in receptor affinity. After 15 min exposure to this amount of trypsin, binding decreased, owing to a progressive decrease in receptor availability. In contrast, this concentration of trypsin had no effect on the solubilized receptor preparation. Because of the differential effects of phospholipase C and trypsin on the particulate compared with the solubilized receptor preparations, it is concluded that the effects of these enzymes were due to an effect on the surrounding membrane structure. Changes in receptor configuration due to alterations within the adjoining membrane provide a potential mechanism for mediating short-term alterations in receptor function. PMID:100106

  7. Pleiotropic effects of insulin and GLP-1 receptor agonists: Potential benefits of the association.

    PubMed

    Cariou, B

    2015-12-01

    The combination of basal insulin and glucagon-like peptide-1 receptor agonists (GLP-1RAs) is an emerging option for patients with type 2 diabetes (T2D). GLP-1RAs have been shown to improve glycaemic control with a low risk of hypoglycaemia and to promote body weight loss. However, GLP-1 receptors (GLP-1Rs) are widely expressed in extrapancreatic tissues and could sustain pleiotropic actions of GLP-1RAs beyond glycaemic control. The underlying molecular mechanisms maintaining these extrapancreatic actions of GLP-1 are complex, and involve GLP-1R signalling in both the brain and several peripheral tissues. The present review focuses specifically on the role of GLP-1RAs in the cardiovascular system and liver. Preclinical data in rodents and pilot studies in humans suggest that GLP-1RAs may have potential beneficial effects on heart function, blood pressure, postprandial lipaemia, liver steatosis and non-alcoholic steatohepatitis (NASH). Long-term studies are now warranted to determine the safety and clinical relevance of the association between insulin and GLP-1RAs in T2D.

  8. Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential

    SciTech Connect

    Patterson, Timothy J.; Rice, Robert H. . E-mail: rhrice@ucdavis.edu

    2007-05-15

    Previous work has suggested that arsenic exposure contributes to skin carcinogenesis by preserving the proliferative potential of human epidermal keratinocytes, thereby slowing the exit of putative target stem cells into the differentiation pathway. To find a molecular basis for this action, present work has explored the influence of arsenite on keratinocyte responses to epidermal growth factor (EGF). The ability of cultured keratinocytes to found colonies upon passaging several days after confluence was preserved by arsenite and EGF in an additive fashion, but neither was effective when the receptor tyrosine kinase activity was inhibited. Arsenite prevented the loss of EGF receptor protein and phosphorylation of tyrosine 1173, preserving its capability to signal. The level of nuclear {beta}-catenin was higher in cells treated with arsenite and EGF in parallel to elevated colony forming ability, and expression of a dominant negative {beta}-catenin suppressed the increase in both colony forming ability and yield of putative stem cells induced by arsenite and EGF. As judged by expression of three genes regulated by {beta}-catenin, this transcription factor had substantially higher activity in the arsenite/EGF-treated cells. Trivalent antimony exhibited the same effects as arsenite. A novel finding is that insulin in the medium induced the loss of EGF receptor protein, which was largely prevented by arsenite exposure.

  9. Effects of sleep restriction on glucose control and insulin secretion during diet-induced weight loss

    PubMed Central

    Nedeltcheva, A. V.; Imperial, J. G.; Penev, P. D.

    2012-01-01

    Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-hour blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean [SD] age 41 [5] y; BMI 27.4 [2.0] kg/m2) completed two 14-day treatments with hypocaloric diet and 8.5 or 5.5-h nighttime sleep opportunity in random order 7 [3] months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free-fatty acids (FFA), and 24-hour blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 [0.3] BMI units) during each treatment. Bedtime restriction reduced sleep by 131 [30] min/day. Recurrent sleep curtailment decreased 24-hour serum insulin concentrations (i.e. enhanced 24-hour insulin economy) without changes in oral glucose tolerance and 24-hour glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA which suppressed normally following glucose ingestion, and lower total and LDL cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-hour insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability. PMID:22513492

  10. Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure.

    PubMed

    Pratt, Emily B; Yan, Fei-Fei; Gay, Joel W; Stanley, Charles A; Shyng, Show-Ling

    2009-03-20

    The beta-cell ATP-sensitive potassium (K(ATP)) channel composed of sulfonylurea receptor SUR1 and potassium channel Kir6.2 serves a key role in insulin secretion regulation by linking glucose metabolism to cell excitability. Mutations in SUR1 or Kir6.2 that decrease channel function are typically associated with congenital hyperinsulinism, whereas those that increase channel function are associated with neonatal diabetes. Here we report that two hyperinsulinism-associated SUR1 missense mutations, R74W and E128K, surprisingly reduce channel inhibition by intracellular ATP, a gating defect expected to yield the opposite disease phenotype neonatal diabetes. Under normal conditions, both mutant channels showed poor surface expression due to retention in the endoplasmic reticulum, accounting for the loss of channel function phenotype in the congenital hyperinsulinism patients. This trafficking defect, however, could be corrected by treating cells with the oral hypoglycemic drugs sulfonylureas, which we have shown previously to act as small molecule chemical chaperones for K(ATP) channels. The R74W and E128K mutants thus rescued to the cell surface paradoxically exhibited ATP sensitivity 6- and 12-fold lower than wild-type channels, respectively. Further analyses revealed a nucleotide-independent decrease in mutant channel intrinsic open probability, suggesting the mutations may reduce ATP sensitivity by causing functional uncoupling between SUR1 and Kir6.2. In insulin-secreting cells, rescue of both mutant channels to the cell surface led to hyperpolarized membrane potentials and reduced insulin secretion upon glucose stimulation. Our results show that sulfonylureas, as chemical chaperones, can dictate manifestation of the two opposite insulin secretion defects by altering the expression levels of the disease mutants.

  11. Sulfonylurea Receptor 1 Mutations That Cause Opposite Insulin Secretion Defects with Chemical Chaperone Exposure*S⃞

    PubMed Central

    Pratt, Emily B.; Yan, Fei-Fei; Gay, Joel W.; Stanley, Charles A.; Shyng, Show-Ling

    2009-01-01

    The β-cell ATP-sensitive potassium (KATP) channel composed of sulfonylurea receptor SUR1 and potassium channel Kir6.2 serves a key role in insulin secretion regulation by linking glucose metabolism to cell excitability. Mutations in SUR1 or Kir6.2 that decrease channel function are typically associated with congenital hyperinsulinism, whereas those that increase channel function are associated with neonatal diabetes. Here we report that two hyperinsulinism-associated SUR1 missense mutations, R74W and E128K, surprisingly reduce channel inhibition by intracellular ATP, a gating defect expected to yield the opposite disease phenotype neonatal diabetes. Under normal conditions, both mutant channels showed poor surface expression due to retention in the endoplasmic reticulum, accounting for the loss of channel function phenotype in the congenital hyperinsulinism patients. This trafficking defect, however, could be corrected by treating cells with the oral hypoglycemic drugs sulfonylureas, which we have shown previously to act as small molecule chemical chaperones for KATP channels. The R74W and E128K mutants thus rescued to the cell surface paradoxically exhibited ATP sensitivity 6- and 12-fold lower than wild-type channels, respectively. Further analyses revealed a nucleotide-independent decrease in mutant channel intrinsic open probability, suggesting the mutations may reduce ATP sensitivity by causing functional uncoupling between SUR1 and Kir6.2. In insulin-secreting cells, rescue of both mutant channels to the cell surface led to hyperpolarized membrane potentials and reduced insulin secretion upon glucose stimulation. Our results show that sulfonylureas, as chemical chaperones, can dictate manifestation of the two opposite insulin secretion defects by altering the expression levels of the disease mutants. PMID:19151370

  12. Differential Effects of Camel Milk on Insulin Receptor Signaling - Toward Understanding the Insulin-Like Properties of Camel Milk.

    PubMed

    Abdulrahman, Abdulrasheed O; Ismael, Mohammad A; Al-Hosaini, Khaled; Rame, Christelle; Al-Senaidy, Abdulrahman M; Dupont, Joëlle; Ayoub, Mohammed Akli

    2016-01-01

    Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.

  13. Differential Effects of Camel Milk on Insulin Receptor Signaling – Toward Understanding the Insulin-Like Properties of Camel Milk

    PubMed Central

    Abdulrahman, Abdulrasheed O.; Ismael, Mohammad A.; Al-Hosaini, Khaled; Rame, Christelle; Al-Senaidy, Abdulrahman M.; Dupont, Joëlle; Ayoub, Mohammed Akli

    2016-01-01

    Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications. PMID:26858689

  14. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation.

    PubMed

    De Meyts, Pierre

    2015-04-01

    Progress in solving the structure of insulin bound to its receptor has been slow and stepwise, but a milestone has now been reached with a refined structure of a complex of insulin with a "microreceptor" that contains the primary binding site. The insulin receptor is a dimeric allosteric enzyme that belongs to the family of receptor tyrosine kinases. The insulin binding process is complex and exhibits negative cooperativity. Biochemical evidence suggested that insulin, through two distinct binding sites, crosslinks two receptor sites located on each α subunit. The structure of the unliganded receptor ectodomain showed a symmetrical folded-over conformation with an antiparallel disposition. Further work resolved the detailed structure of receptor site 1, both without and with insulin. Recently, a missing piece in the puzzle was added: the C-terminal portion of insulin's B-chain known to be critical for binding and negative cooperativity. Here I discuss these findings and their implications.

  15. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  16. Restoration of insulin secretion in pancreatic islets of protein-deficient rats by reduced expression of insulin receptor substrate (IRS)-1 and IRS-2.

    PubMed

    Araujo, E P; Amaral, M E C; Filiputti, E; De Souza, C T; Laurito, T L; Augusto, V D; Saad, M J A; Boschero, A C; Velloso, L A; Carneiro, E M

    2004-04-01

    Autocrine and paracrine insulin signaling may participate in the fine control of insulin secretion. In the present study, tissue distribution and protein amounts of the insulin receptor and its major substrates, insulin receptor substrate (IRS)-1 and IRS-2, were evaluated in a model of impaired glucose-induced insulin secretion, the protein-deficient rat. Immunoblot and RT-PCR studies showed that the insulin receptor and IRS-2 expression are increased, whilst IRS-1 protein and mRNA contents are decreased in pancreatic islets of protein-deficient rats. Immunohistochemical studies revealed that the insulin receptor and IRS-1 and -2 are present in the great majority of islet cells; however, the greatest staining was localized at the periphery, suggesting a co-localization with non-insulin-secreting cells. Exogenous insulin stimulation of isolated islets promoted higher insulin receptor and IRS-1 and -2 tyrosine phosphorylation in islets from protein-deficient rats, as compared with controls. Moreover, insulin-induced IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activity are increased in islets of protein-deficient rats. The reduction of IRS-1 and IRS-2 protein expression in islets isolated from protein-deficient rats by the use of antisense IRS-1 or IRS-2 phosphorthioate-modified oligonucleotides partially restored glucose-induced insulin secretion. Thus, the impairment of insulin cell signaling through members of the IRS family of proteins in isolated rat pancreatic islets improves glucose-induced insulin secretion. The present data reinforced the role of insulin paracrine and autocrine signaling in the control of its own secretion.

  17. Characterization of a second ligand binding site of the insulin receptor

    SciTech Connect

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan . E-mail: jonathan.whittaker@case.edu

    2006-08-18

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the {alpha} subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K {sub d} of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.

  18. Decreased Insulin Receptors but Normal Glucose Metabolism in Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    de Pirro, Roberto; Lauro, Renato; Testa, Ivano; Ferretti, Ginofabrizio; de Martinis, Carlo; Dellantonio, Renzo

    1982-04-01

    Compared to matched controls, 17 patients with Duchenne muscular dystrophy showed decreased insulin binding to monocytes due to decreased receptor concentration. These patients showed no signs of altered glucose metabolism and retrospective analysis of the clinical records of a further 56 such patients revealed no modification in carbohydrate metabolism. These data suggest that reduced insulin receptor number does not produce overt modifications of glucose metabolism in Duchenne muscular dystrophy.

  19. Role of β-Adrenergic Receptor Regulation of TNF-α and Insulin Signaling in Retinal Müller Cells

    PubMed Central

    Walker, Robert J.; Anderson, Nancy M.; Jiang, Youde; Bahouth, Suleiman

    2011-01-01

    Purpose. The goal of this study was to determine the relationship of TNF-α and the downregulation of insulin receptor signaling in retinal Müller cells cultured under hyperglycemic conditions and the role of β-adrenergic receptors in regulating these responses. Methods. Retinal Müller cells were cultured in normal (5 mM) or high (25 mM) glucose until 80% confluent and then were reduced to 2% serum for 18 to 24 hours. The cells were then treated with 10 μM salmeterol followed by Western blot analysis or ELISA. For TNF-α inhibitory studies, the cells were treated with 5 ng/mL of TNF-α for 30 minutes or by a 30-minute pretreatment with TNF-α followed by salmeterol for 6 hours. In the TNF-α short hairpin (sh)RNA experiments, the cells were cultured until 90% confluent, followed by transfection with TNF-α shRNA for 18 hours. Results. TNF-α-only treatments of Müller cells resulted in significant decreases of tyrosine phosphorylation of the insulin receptor and Akt in high-glucose conditions. Salmeterol (10 μM), a β-2-adrenergic receptor agonist, significantly increased phosphorylation of both insulin receptor and Akt. TNF-α shRNA significantly decreased phosphorylation of IRS-1Ser307, which was further decreased after salmeterol+TNF-α shRNA. Both TNF-α shRNA and salmeterol significantly reduced death of the retinal Müller cells. Conclusions. These studies demonstrate that β-adrenergic receptor agonists in vitro can restore the loss of insulin receptor activity noted in diabetes. By decreasing the levels of TNF-α and decreasing the phosphorylation of IRS-1Ser307 while increasing tyrosine phosphorylation of insulin receptor, these results suggest a possible mechanism by which restoration of β-adrenergic receptor signaling may protect the retina against diabetes-induced damage. PMID:22110065

  20. Structure of the insulin receptor ectodomain reveals a folded-over conformation.

    PubMed

    McKern, Neil M; Lawrence, Michael C; Streltsov, Victor A; Lou, Mei-Zhen; Adams, Timothy E; Lovrecz, George O; Elleman, Thomas C; Richards, Kim M; Bentley, John D; Pilling, Patricia A; Hoyne, Peter A; Cartledge, Kellie A; Pham, Tam M; Lewis, Jennifer L; Sankovich, Sonia E; Stoichevska, Violet; Da Silva, Elizabeth; Robinson, Christine P; Frenkel, Maurice J; Sparrow, Lindsay G; Fernley, Ross T; Epa, V Chandana; Ward, Colin W

    2006-09-14

    The insulin receptor is a phylogenetically ancient tyrosine kinase receptor found in organisms as primitive as cnidarians and insects. In higher organisms it is essential for glucose homeostasis, whereas the closely related insulin-like growth factor receptor (IGF-1R) is involved in normal growth and development. The insulin receptor is expressed in two isoforms, IR-A and IR-B; the former also functions as a high-affinity receptor for IGF-II and is implicated, along with IGF-1R, in malignant transformation. Here we present the crystal structure at 3.8 A resolution of the IR-A ectodomain dimer, complexed with four Fabs from the monoclonal antibodies 83-7 and 83-14 (ref. 4), grown in the presence of a fragment of an insulin mimetic peptide. The structure reveals the domain arrangement in the disulphide-linked ectodomain dimer, showing that the insulin receptor adopts a folded-over conformation that places the ligand-binding regions in juxtaposition. This arrangement is very different from previous models. It shows that the two L1 domains are on opposite sides of the dimer, too far apart to allow insulin to bind both L1 domains simultaneously as previously proposed. Instead, the structure implicates the carboxy-terminal surface of the first fibronectin type III domain as the second binding site involved in high-affinity binding.

  1. Intracellular presence of insulin and its phosphorylated receptor in non-small cell lung cancer.

    PubMed

    Mattarocci, Stefano; Abbruzzese, Claudia; Mileo, Anna M; Visca, Paolo; Antoniani, Barbara; Alessandrini, Gabriele; Facciolo, Francesco; Felsani, Armando; Radulescu, Razvan T; Paggi, Marco G

    2009-12-01

    Insulin has been known for a long time to influence the growth and differentiation of normal and transformed cells. In order to delineate the role of insulin specifically in non-small cell lung cancer (NSCLC), we have now searched by immunohistochemistry (IHC) for the presence of insulin in NSCLC samples. Among the 112 samples we studied, 30 were found to contain insulin, which was detected in the form of intracytoplasmic granula. Moreover, its expression significantly correlated with (a) the morphological/histopathological subtype of NSCLC, being more frequent in adenocarcinomas; (b) the grade of tumor differentiation, displaying an increase in low-grade carcinomas; (c) tumor size, occurring predominantly in smaller tumors; (d) the presence of phosphorylated, activated insulin receptor; (e) the median patient age, being present in relatively younger individuals. Furthermore and interestingly, surrounding atypical adenomatous hyperplastic areas and normal alveolar pneumocytes scored insulin-positive in some of the insulin-negative tumors. In addition, PCR exploration for insulin transcripts in some samples positive for immunoreactive insulin was negative, indicating a possibly exogenous origin for the intracellular insulin in our NSCLC cohort. Taken together, our data suggest that an intracellular insulin activity is important for the progression of low-grade human lung adenocarcinomas.

  2. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity.

    PubMed

    Spite, Matthew; Hellmann, Jason; Tang, Yunan; Mathis, Steven P; Kosuri, Madhavi; Bhatnagar, Aruni; Jala, Venkatakrishna R; Haribabu, Bodduluri

    2011-08-15

    Chronic inflammation is an underlying factor linking obesity with insulin resistance. Diet-induced obesity promotes an increase in circulating levels of inflammatory monocytes and their infiltration into expanding adipose tissue. Nevertheless, the endogenous pathways that trigger and sustain chronic low-grade inflammation in obesity are incompletely understood. In this study, we report that a high-fat diet selectively increases the circulating levels of CD11b(+) monocytes in wild-type mice that express leukotriene B(4) receptor, BLT-1, and that this increase is abolished in BLT-1-null mice. The accumulation of classically activated (M1) adipose tissue macrophages (ATMs) and the expression of proinflammatory cytokines and chemokines (i.e., IL-6 and Ccl2) was largely blunted in adipose tissue of obese BLT-1(-/-) mice, whereas the ratio of alternatively activated (M2) ATMs to M1 ATMs was increased. Obese BLT-1(-/-) mice were protected from systemic glucose and insulin intolerance and this was associated with a decrease in inflammation in adipose tissue and liver and a decrease in hepatic triglyceride accumulation. Deletion of BLT-1 prevented high fat-induced loss of insulin signaling in liver and skeletal muscle. These observations elucidate a novel role of chemoattractant receptor, BLT-1, in promoting monocyte trafficking to adipose tissue and promoting chronic inflammation in obesity and could lead to the identification of new therapeutic targets for treating insulin resistance in obesity.

  3. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors.

    PubMed

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane-solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane-solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.

  4. The Macrophage A2b Adenosine Receptor Regulates Tissue Insulin Sensitivity

    PubMed Central

    Koupenova, Milka; Carroll, Shannon; Ravid, Katya

    2014-01-01

    High fat diet (HFD)-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR), an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice. PMID:24892847

  5. The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity.

    PubMed

    Chan, Chi Bun; Liu, Xia; He, Kunyan; Qi, Qi; Jung, Dae Y; Kim, Jason K; Ye, Keqiang

    2011-07-01

    Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.

  6. Insulin-induced myosin light-chain phosphorylation during receptor capping in IM-9 human B-lymphoblasts.

    PubMed Central

    Majercik, M H; Bourguignon, L Y

    1988-01-01

    We have examined further the interaction between insulin surface receptors and the cytoskeleton of IM-9 human lymphoblasts. Using immunocytochemical techniques, we determined that actin, myosin, calmodulin and myosin light-chain kinase (MLCK) are all accumulated directly underneath insulin-receptor caps. In addition, we have now established that the concentration of intracellular Ca2+ (as measured by fura-2 fluorescence) increases just before insulin-induced receptor capping. Most importantly, we found that the binding of insulin to its receptor induces phosphorylation of myosin light chain in vivo. Furthermore, a number of drugs known to abolish the activation properties of calmodulin, such as trifluoperazine (TFP) or W-7, strongly inhibit insulin-receptor capping and myosin light-chain phosphorylation. These data imply that an actomyosin cytoskeletal contraction, regulated by Ca2+/calmodulin and MLCK, is involved in insulin-receptor capping. Biochemical analysis in vitro has revealed that IM-9 insulin receptors are physically associated with actin and myosin; and most interestingly, the binding of insulin-receptor/cytoskeletal complex significantly enhances the phosphorylation of the 20 kDa myosin light chain. This insulin-induced phosphorylation is inhibited by calmodulin antagonists (e.g. TFP and W-7), suggesting that the phosphorylation is catalysed by MLCK. Together, these results strongly suggest that MLCK-mediated myosin light-chain phosphorylation plays an important role in regulating the membrane-associated actomyosin contraction required for the collection of insulin receptors into caps. Images Fig. 2. Fig. 4. PMID:3048249

  7. Melatonin improves insulin sensitivity independently of weight loss in old obese rats.

    PubMed

    Zanuto, Ricardo; Siqueira-Filho, Mário A; Caperuto, Luciana C; Bacurau, Reury F P; Hirata, Emiko; Peliciari-Garcia, Rodrigo A; do Amaral, Fernanda Gaspar; Marçal, Anderson C; Ribeiro, Luciene M; Camporez, João P G; Carpinelli, Angelo Rafael; Bordin, Silvana; Cipolla-Neto, José; Carvalho, Carla R O

    2013-09-01

    In aged rats, insulin signaling pathway (ISP) is impaired in tissues that play a pivotal role in glucose homeostasis, such as liver, skeletal muscle, and adipose tissue. Moreover, the aging process is also associated with obesity and reduction in melatonin synthesis from the pineal gland and other organs. The aim of the present work was to evaluate, in male old obese Wistar rats, the effect of melatonin supplementation in the ISP, analyzing the total protein amount and the phosphorylated status (immunoprecipitation and immunoblotting) of the insulin cascade components in the rat hypothalamus, liver, skeletal muscle, and periepididymal adipose tissue. Melatonin was administered in the drinking water for 8- and 12 wk during the night period. Food and water intake and fasting blood glucose remained unchanged. The insulin sensitivity presented a 2.1-fold increase both after 8- and 12 wk of melatonin supplementation. Animals supplemented with melatonin for 12 wk also presented a reduction in body mass. The acute insulin-induced phosphorylation of the analyzed ISP proteins increased 1.3- and 2.3-fold after 8- and 12 wk of melatonin supplementation. The total protein content of the insulin receptor (IR) and the IR substrates (IRS-1, 2) remained unchanged in all investigated tissues, except for the 2-fold increase in the total amount of IRS-1 in the periepididymal adipose tissue. Therefore, the known age-related melatonin synthesis reduction may also be involved in the development of insulin resistance and the adequate supplementation could be an important alternative for the prevention of insulin signaling impairment in aged organisms.

  8. Evidence that insulin and guanosine triphosphate regulate dephosphorylation of the beta-subunit of the insulin receptor in sarcolemma membranes isolated from skeletal muscle.

    PubMed Central

    Horn, R S; Lystad, E; Adler, A; Walaas, O

    1986-01-01

    When sarcolemma membranes isolated from rat skeletal muscle were incubated with [gamma-32P]ATP, a membrane protein of apparent Mr 95,000 was rapidly phosphorylated, with the 32P content reaching a maximum within 2 s. On the basis of immunoprecipitation with anti-insulin-receptor antiserum, phosphoamino acid analysis and Mr, this protein probably represents the beta-subunit of the insulin receptor. Similarly, on incubation of the membrane with adenosine 5'-[gamma-[35S]thio] triphosphate the 95 kDa protein was thiophosphorylated, indicating thiophosphorylation of the beta-subunit of the insulin receptor on the basis of immunoprecipitation studies. The effect of insulin on the phosphorylation of this protein in the membrane was studied. Insulin induced a 20% decrease in the 32P labelling of the protein when the membranes were phosphorylated for 10 s. This insulin effect was dose-dependent, with half-maximal effect obtained at 2-3 nM-insulin. Addition of GTP, but not GDP or guanosine 5'-[beta, gamma-imido]triphosphate, enhanced the effect to 35% inhibition, with half-maximal effect of GTP obtained at 0.5 microM. GTP had no effect on the phosphorylation of the protein in the absence of insulin. Analysis of this insulin effect showed that insulin increased the rate of dephosphorylation of the 95 kDa protein in the membrane. In contrast, insulin had no effect on thiophosphorylation of the 95 kDa membrane protein after incubation with adenosine 5'-[gamma-[35S]thio]triphosphate. Since thiophosphorylated proteins are less sensitive to phosphatase action, these investigations suggest that insulin stimulated a protein phosphatase activity in a GTP-dependent manner. The possibility that GTP-regulatory proteins are involved in the action of insulin on the phosphorylation of the insulin receptor and other membrane proteins is discussed. Images Fig. 1. Fig. 3. PMID:3521589

  9. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  10. Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding.

    PubMed

    Mynarcik, D C; Williams, P F; Schaffer, L; Yu, G Q; Whittaker, J

    1997-07-25

    Insulin and insulin-like growth factor 1 (IGF-1) are peptides that share nearly 50% sequence homology. However, although their cognate receptors also exhibit significant overall sequence homology, the affinity of each peptide for the non-cognate receptor is 2-3 orders of magnitude lower than for the cognate receptor. The molecular basis for this discrimination is unclear, as are the molecular mechanisms underlying ligand binding. We have recently identified a major ligand binding site of the insulin receptor by alanine scannning mutagenesis. These studies revealed that a number of amino acids critical for insulin binding are conserved in the IGF-1 receptor, suggesting that they may play a role in ligand binding. We therefore performed alanine mutagenesis of these amino acids to determine whether this is the case. cDNAs encoding alanine-substituted secreted recombinant IGF-1 receptors were expressed in 293 EBNA cells, and the ligand binding properties of the expressed proteins were evaluated. Mutation of Phe701 resulted in a receptor with undetectable IGF-1 binding; alanine substitution of the corresponding amino acid of the insulin receptor, Phe714, produces a 140-fold reduction in affinity for insulin. Mutation of Asp8, Asn11, Phe58, Phe692, Glu693, His697, and Asn698 produces a 3.5-6-fold reduction in affinity for IGF-1. In contrast, alanine mutation of the corresponding amino acids of the insulin receptor with the exception of Asp12 produces reductions in affinity that are 50-fold or greater. The affinity of insulin for these mutants relative to wild type receptor was similar to that of their relative affinity for IGF-1 with two exceptions; the IC50 values for insulin binding to the mutants of Arg10, which has normal affinity for IGF-1, and His697, which has a 6-fold reduction in affinity for IGF-1, were both at least 2 orders of magnitude greater than for wild type receptor. The Kd values for insulin of the corresponding alanine mutants of the insulin receptor

  11. A Comparative Structural Bioinformatics Analysis of the Insulin Receptor Family Ectodomain Based on Phylogenetic Information

    PubMed Central

    Rentería, Miguel E.; Gandhi, Neha S.; Vinuesa, Pablo; Helmerhorst, Erik; Mancera, Ricardo L.

    2008-01-01

    The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals. PMID:18989367

  12. Effect of H1- and H2-histamine receptor blockade on postexercise insulin sensitivity

    PubMed Central

    Pellinger, Thomas K; Dumke, Breanna R; Halliwill, John R

    2013-01-01

    Following a bout of dynamic exercise, humans experience sustained postexercise vasodilatation in the previously exercised skeletal muscle which is mediated by activation of histamine (H1 and H2) receptors. Skeletal muscle glucose uptake is also enhanced following dynamic exercise. Our aim was to determine if blunting the vasodilatation during recovery from exercise would have an adverse effect on blood glucose regulation. Thus, we tested the hypothesis that insulin sensitivity following exercise would be reduced with H1- and H2-receptor blockade versus control (no blockade). We studied 20 healthy young subjects (12 exercise; eight nonexercise sham) on randomized control and H1- and H2-receptor blockade (fexofenadine and ranitidine) days. Following 60 min of upright cycling at 60% VO2 peak or nonexercise sham, subjects consumed an oral glucose tolerance beverage (1.0 g/kg). Blood glucose was determined from “arterialized” blood samples (heated hand vein). Postexercise whole-body insulin sensitivity (Matsuda insulin sensitivity index) was reduced 25% with H1- and H2-receptor blockade (P < 0.05), whereas insulin sensitivity was not affected by histamine receptor blockade in the sham trials. These results indicate that insulin sensitivity following exercise is blunted by H1- and H2-receptor blockade and suggest that postexercise H1- and H2-receptor–mediated skeletal muscle vasodilatation benefits glucose regulation in healthy humans. PMID:24303118

  13. Removal of melatonin receptor type 1 induces insulin resistance in the mouse.

    PubMed

    Contreras-Alcantara, Susana; Baba, Kenkichi; Tosini, Gianluca

    2010-09-01

    The incidence of obesity, insulin resistance, and type 2 diabetes (T2D) is increasing at an alarming rate worldwide. Emerging experimental evidence suggests that the hormone melatonin plays an important role in the regulation of glucose metabolisms. In this study, we report that removal of melatonin receptor type 1 (MT1) significantly impairs the ability of mice to metabolize glucose and such inability is probably due to an increased insulin resistance in these mice. Our data suggest that MT1 receptors are implicated in the pathogenesis of T2D and open the door for a detailed exploration on the mechanisms by which MT1 receptors signaling may affect glucose metabolism.

  14. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia

    PubMed Central

    Caravaggio, Fernando; Hahn, Margaret; Nakajima, Shinichiro; Gerretsen, Philip; Remington, Gary; Graff-Guerrero, Ariel

    2017-01-01

    Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia – even prior to antipsychotic use – seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal

  15. B Cell Receptor Affinity for Insulin Dictates Autoantigen Acquisition and B Cell Functionality in Autoimmune Diabetes

    PubMed Central

    Packard, Thomas A.; Smith, Mia J.; Conrad, Francis J.; Johnson, Sara A.; Getahun, Andrew; Lindsay, Robin S.; Hinman, Rochelle M.; Friedman, Rachel S.; Thomas, James W.; Cambier, John C.

    2016-01-01

    B cells have been strongly implicated in the development of human type 1 diabetes and are required for disease in the NOD mouse model. These functions are dependent on B cell antigen receptor (BCR) specificity and expression of MHC, implicating linked autoantigen recognition and presentation to effector T cells. BCR-antigen affinity requirements for participation in disease are unclear. We hypothesized that BCR affinity for the autoantigen insulin differentially affects lymphocyte functionality, including tolerance modality and the ability to acquire and become activated in the diabetogenic environment. Using combined transgenic and retrogenic heavy and light chain to create multiple insulin-binding BCRs, we demonstrate that affinity for insulin is a critical determinant of the function of these autoreactive cells. We show that both BCR affinity for insulin and genetic background affect tolerance induction in immature B cells. We also find new evidence that may explain the enigmatic ability of B cells expressing 125 anti-insulin BCR to support development of TID in NOD mice despite a reported affinity beneath requirements for binding insulin at in vivo concentrations. We report that when expressed as an antigen receptor the affinity of 125 is much higher than determined by measurements of the soluble form. Finally, we show that in vivo acquisition of insulin requires both sufficient BCR affinity and permissive host/tissue environment. We propose that a confluence of BCR affinity, pancreas environment, and B cell tolerance-regulating genes in the NOD animal allows acquisition of insulin and autoimmunity. PMID:27834793

  16. Nuclear SREBP-1a causes loss of pancreatic {beta}-cells and impaired insulin secretion

    SciTech Connect

    Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru; Ishikawa, Mayumi; Kato, Toyonori; Matsuzaka, Takashi; Nakagawa, Yoshimi; Yahagi, Naoya; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2009-01-16

    Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic {beta}-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, {beta}{epsilon}{tau}{alpha}2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of {beta}-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous {beta}-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts {beta}-cell mass and function.

  17. The insulin receptor juxtamembrane region contains two independent tyrosine/beta-turn internalization signals

    PubMed Central

    1992-01-01

    We have investigated the role of tyrosine residues in the insulin receptor cytoplasmic juxtamembrane region (Tyr953 and Tyr960) during endocytosis. Analysis of the secondary structure of the juxtamembrane region by the Chou-Fasman algorithms predicts that both the sequences GPLY953 and NPEY960 form tyrosine-containing beta-turns. Similarly, analysis of model peptides by 1-D and 2-D NMR show that these sequences form beta-turns in solution, whereas replacement of the tyrosine residues with alanine destabilizes the beta-turn. CHO cell lines were prepared expressing mutant receptors in which each tyrosine was mutated to phenylalanine or alanine, and an additional mutant contained alanine at both positions. These mutations had no effect on insulin binding or receptor autophosphorylation. Replacements with phenylalanine had no effect on the rate of [125I]insulin endocytosis, whereas single substitutions with alanine reduced [125I]insulin endocytosis by 40-50%. Replacement of both tyrosines with alanine reduced internalization by 70%. These data suggest that the insulin receptor contains two tyrosine/beta-turns which contribute independently and additively to insulin-stimulated endocytosis. PMID:1500426

  18. G Protein–Coupled Receptor Kinase 2 Plays a Relevant Role in Insulin Resistance and Obesity

    PubMed Central

    Garcia-Guerra, Lucia; Nieto-Vazquez, Iria; Vila-Bedmar, Rocio; Jurado-Pueyo, María; Zalba, Guillermo; Díez, Javier; Murga, Cristina; Fernández-Veledo, Sonia; Mayor, Federico; Lorenzo, Margarita

    2010-01-01

    OBJECTIVE Insulin resistance is associated with the pathogenesis of metabolic disorders as type 2 diabetes and obesity. Given the emerging role of signal transduction in these syndromes, we set out to explore the possible role that G protein–coupled receptor kinase 2 (GRK2), first identified as a G protein–coupled receptor regulator, could have as a modulator of insulin responses. RESEARCH DESIGN AND METHODS We analyzed the influence of GRK2 levels in insulin signaling in myoblasts and adipocytes with experimentally increased or silenced levels of GRK2, as well as in GRK2 hemizygous animals expressing 50% lower levels of this kinase in three different models of insulin resistance: tumor necrosis factor-α (TNF-α) infusion, aging, and high-fat diet (HFD). Glucose transport, whole-body glucose and insulin tolerance, the activation status of insulin pathway components, and the circulating levels of important mediators were measured. The development of obesity and adipocyte size with age and HFD was analyzed. RESULTS Altering GRK2 levels markedly modifies insulin-mediated signaling in cultured adipocytes and myocytes. GRK2 levels are increased by ∼2-fold in muscle and adipose tissue in the animal models tested, as well as in lymphocytes from metabolic syndrome patients. In contrast, hemizygous GRK2 mice show enhanced insulin sensitivity and do not develop insulin resistance by TNF-α, aging, or HFD. Furthermore, reduced GRK2 levels induce a lean phenotype and decrease age-related adiposity. CONCLUSIONS Overall, our data identify GRK2 as an important negative regulator of insulin effects, key to the etiopathogenesis of insulin resistance and obesity, which uncovers this protein as a potential therapeutic target in the treatment of these disorders. PMID:20627936

  19. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  20. Design of a selective insulin receptor tyrosine kinase inhibitor and its effect on glucose uptake and metabolism in intact cells

    SciTech Connect

    Saperstein, R.; Vicario, P.P.; Strout, H.V.; Brady, E.; Slater, E.E.; Greenlee, W.J.; Onedyka, D.L.; Patchett, A.A.; Hangauer, D.G. )

    1989-06-27

    An inhibitor of the insulin receptor tyrosine kinase (IRTK), (hydroxy-2-napthalenylmethyl)phosphonic acid, was designed and synthesized and was shown to be an inhibitor of the biological effects of insulin in vitro. With a wheat germ purified human placental insulin receptor preparation, this compound inhibited the insulin-stimulated autophosphorylation of the 95-kDa {beta}-subunit of the insulin receptor. The ability of the kinase to phosphorylate an exogenous peptide substrate, angiotensin II, was also inhibited. Half-maximal inhibition of basal and insulin-stimulated human placental IRTK activity was found at concentrations of 150 and 100 {mu}M, respectively, with 2 mM angiotensin II as the peptide substrate. The inhibitor was found to be specific for tyrosine kinases over serine kinases and noncompetitive with ATP. The inhibitor was converted into various (acyloxy)methyl prodrugs in order to achieve permeability through cell membranes. These prodrugs inhibited insulin-stimulated autophosphorylation of the insulin receptor 95-kDa {beta}-subunit in intact CHO cells transfected with human insulin receptor. Inhibition of insulin-stimulated glucose oxidation in isolated rat adipocytes and 2-deoxyglucose uptake into CHO cells was observed with these prodrugs. The data provide additional evidence for the involvement of the insulin receptor tyrosine kinase in the regulation of glucose uptake and metabolism. These results and additional data reported herein suggest that this class of prodrugs and inhibitors will be useful for modulating the activity of a variety of tyrosine kinases.

  1. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    SciTech Connect

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  2. Insulin receptor aggregation and autophosphorylation in the presence of cationic polyamino acids

    SciTech Connect

    Kohanski, R.A. )

    1989-12-15

    Aggregation and autophosphorylation of the insulin receptor-protein kinase, from cultured 3T3-L1 adipocytes, were studied in the presence of cationic polyamino acids. Poly-L-lysine and poly-L-arginine produced the following effects with the purified receptor: first, the autophosphorylation rate was increased by polycations. Half-maximal stimulation was proportional to polymer length. The rate enhancement was greater at lower ATP concentrations. Second, near-endpoint (equilibrium) autophosphorylation was greater in the presence of the polycations. Polycations inhibited the reverse reaction: ADP + phosphoreceptor yielding ATP + aporeceptor. Third, the (32P)phosphopeptides generated by trypsin digestion of the 32P-beta-subunit, showed that no new autophosphorylation sites resulted from the presence of polycations. Fourth, the polycations, but not insulin, promoted receptor aggregation, and phosphoreceptor aggregated more readily than aporeceptor. Insulin receptor enriched through the wheat germ agglutinin eluate step was compared with purified receptor. Higher concentrations of poly-L-arginine were required to stimulate autophosphorylation and to promote aggregation. Finally, several polycation-dependent substrates present in the wheat germ agglutinin eluate co-aggregated with the insulin receptor. Polycation-stimulated receptor autophosphorylation is linked to a lower KM,app for ATP, but substrate phosphorylation may require the aggregation.

  3. The increase in serum 25-hydroxyvitamin D following weight loss does not contribute to the improvement in insulin sensitivity, insulin secretion and β-cell function.

    PubMed

    Thibault, Véronique; Morisset, Anne-Sophie; Brown, Christine; Carpentier, André C; Baillargeon, Jean-Patrice; Langlois, Marie-France; Gagnon, Claudia

    2015-07-01

    Serum 25-hydroxyvitamin D (25(OH)D) concentrations have been reported to increase following weight loss. Moreover, both weight loss and higher serum 25(OH)D concentrations have been associated with a lower risk of developing type 2 diabetes. The objective of the present study was to determine whether the increase in serum 25(OH)D concentration following weight loss is associated with improved insulin sensitivity, insulin secretion and disposition index (β-cell function). Data from two prospective lifestyle modification studies had been combined. Following a lifestyle-modifying weight loss intervention for 1 year, eighty-four men and women with prediabetes and a BMI ≥ 27 kg/m(2) were divided based on weight loss at 1 year: < 5% (non-responders, n 56) and ≥ 5% (responders, n 28). The association between the change in serum 25(OH)D concentration and changes in insulin sensitivity (homeostasis model assessment of insulin sensitivity (HOMA%S) and Matsuda), insulin secretion (AUC of C-peptide) and disposition index after adjustment for weight loss was examined. Participants in the responders' group lost on average 9.5% of their weight when compared with non-responders who lost only 0.8% of weight. Weight loss in responders resulted in improved insulin sensitivity (HOMA%S, P = 0.0003) and disposition index (P = 0.02); however, insulin secretion remained unchanged. The rise in serum 25(OH)D concentration following weight loss in responders was significantly higher than that in non-responders (8.9 (SD 12.5) v. 3.6 (SD 10.7) nmol/l, P = 0.05). However, it had not been associated with amelioration of insulin sensitivity and β-cell function, even after adjustment for weight loss and several confounders. In conclusion, the increase in serum 25(OH)D concentration following weight loss does not contribute to the improvement in insulin sensitivity or β-cell function.

  4. Insulin-receptor kinase is enhanced in placentas from non-insulin-dependent diabetic women with large-for-gestational-age babies.

    PubMed

    Takayama-Hasumi, S; Yoshino, H; Shimisu, M; Minei, S; Sanaka, M; Omori, Y

    1994-01-01

    The function of insulin receptor and IGF-1 receptor was investigated in placentas from 10 healthy control mothers, 8 diabetic mothers with appropriate-for-gestational-age babies (AGA group) and 9 diabetic mothers with large-for-gestational-age babies (LGA group). None of the diabetic mothers were obese before pregnancy; their blood glucose was well controlled during pregnancy and glycosylated HbA1c was 6.52 +/- 0.71% (M +/- S.E.). Insulin and IGF-1 receptors were partially purified from placentas using wheat germ agglutinin chromatography. The insulin-binding capacity was significantly increased in both the AGA and the LGA groups compared to the control, whereas the IGF-1 binding capacity was similar in the three groups. Autophosphorylation studies were performed with partially purified receptors equalized for similar binding capacity, then immunoprecipitated with anti-insulin receptor antibody or anti-IGF-1 receptor antibody. Insulin-stimulated 32P-incorporation into the insulin receptor beta-subunit was increased by 133% in the LGA group versus the control, whereas incorporation in the AGA group was equivalent to the control. Insulin-stimulated tyrosine kinase activity of the receptor preparation for histone H2B phosphorylation was also significantly increased in the LGA group compared to the control. 32P-incorporation into beta-subunit IGF-1 receptor and IGF-1-stimulated tyrosine kinase activity did not show any significant differences among the three groups. The data in the present study suggest that elevated insulin receptor kinase might be involved in fetal overgrowth in diabetic mothers.

  5. Tyrosine-specific phosphorylation of calmodulin by the insulin receptor kinase purified from human placenta.

    PubMed Central

    Sacks, D B; Fujita-Yamaguchi, Y; Gale, R D; McDonald, J M

    1989-01-01

    It has previously been demonstrated that calmodulin can be phosphorylated in vitro and in vivo by both tyrosine-specific and serine/threonine protein kinase. We demonstrate here that the insulin receptor tyrosine kinase purified from human placenta phosphorylates calmodulin. The highly purified receptors (prepared by insulin-Sepharose chromatography) were 5-10 times more effective in catalysing the phosphorylation of calmodulin than an equal number of partially purified receptors (prepared by wheat-germ agglutinin-Sepharose chromatography). Phosphorylation occurred exclusively on tyrosine residues, up to a maximum of 1 mol [0.90 +/- 0.14 (n = 5)] of phosphate incorporated/mol of calmodulin. Phosphorylation of calmodulin was dependent on the presence of certain basic proteins and divalent cations. Some of these basic proteins, i.e. polylysine, polyarginine, polyornithine, protamine sulphate and histones H1 and H2B, were also able to stimulate the phosphorylation of calmodulin via an insulin-independent activation of the receptor tyrosine kinase. Addition of insulin further increased incorporation of 32P into calmodulin. The magnitude of the effect of insulin was dependent on the concentration and type of basic protein used, ranging from 0.5- to 9.0-fold stimulation. Maximal phosphorylation of calmodulin was obtained at an insulin concentration of 10(-10) M, with half-maximal effect at 10(-11) M. Either Mg2+ or Mn2+ was necessary to obtain phosphorylation, but Mg2+ was far more effective than Mn2+. In contrast, maximal phosphorylation of calmodulin was observed in the absence of Ca2+. Inhibition of phosphorylation was observed as free Ca2+ concentration exceeded 0.1 microM, with almost complete inhibition at 30 microM free Ca2+. The Km for calmodulin was approx. 0.1 microM. To gain further insight into the effects of basic proteins in this system, we examined the binding of calmodulin to the insulin receptor and the polylysine. Calmodulin binds to the insulin

  6. Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor

    PubMed Central

    Xuan, Shouhong; Kitamura, Tadahiro; Nakae, Jun; Politi, Katerina; Kido, Yoshiaki; Fisher, Peter E.; Morroni, Manrico; Cinti, Saverio; White, Morris F.; Herrera, Pedro L.; Accili, Domenico; Efstratiadis, Argiris

    2002-01-01

    Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase of β cell mass and impaired glucose-dependent insulin release. β cell proliferation and secretion are thought to be regulated by signaling through receptor tyrosine kinases. In this regard, we sought to examine the potential proliferative and/or antiapoptotic role of IGFs in β cells by tissue-specific conditional mutagenesis ablating type 1 IGF receptor (IGF1R) signaling. Unexpectedly, lack of functional IGF1R did not affect β cell mass, but resulted in age-dependent impairment of glucose tolerance, associated with a decrease of glucose- and arginine-dependent insulin release. These observations reveal a requirement of IGF1R-mediated signaling for insulin secretion. PMID:12370279

  7. Disruption of Growth Hormone Receptor Prevents Calorie Restriction from Improving Insulin Action and Longevity

    PubMed Central

    Bonkowski, Michael S.; Dominici, Fernando P.; Arum, Oge; Rocha, Juliana S.; Al Regaiey, Khalid A.; Westbrook, Reyhan; Spong, Adam; Panici, Jacob; Masternak, Michal M.; Kopchick, John J.; Bartke, Andrzej

    2009-01-01

    Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR) is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO) in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15%) CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30%) CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT) in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT) in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice. PMID:19234595

  8. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40*

    PubMed Central

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole; Grundmann, Manuel; Mielenz, Manfred; Sauerwein, Helga; Christiansen, Elisabeth; Due-Hansen, Maria E.; Ulven, Trond; Ullrich, Susanne; Gomeza, Jesús; Drewke, Christel; Kostenis, Evi

    2011-01-01

    Among dietary components, conjugated linoleic acids (CLAs) have attracted considerable attention as weight loss supplements in the Western world because they reduce fat stores and increase muscle mass. However, a number of adverse effects are also ascribed to the intake of CLAs such as aggravation of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2 diabetes. Using different recombinant cellular systems engineered to stably express FFA1 and a set of diverse functional assays including the novel, label-free non-invasive dynamic mass redistribution technology (Corning® Epic® biosensor), both CLA isomers cis-9, trans-11-CLA and trans-10, cis-12-CLA were found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1−/− knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components in widely used nutraceuticals, a finding with significant implication for development of FFA1 modulators to treat type 2 diabetes. PMID:21339298

  9. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    NASA Astrophysics Data System (ADS)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  10. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element.

    PubMed

    Vashisth, Harish; Abrams, Cameron F

    2013-06-01

    Insulin regulates blood glucose levels in higher organisms by binding to and activating insulin receptor (IR), a constitutively homodimeric glycoprotein of the receptor tyrosine kinase (RTK) superfamily. Therapeutic efforts in treating diabetes have been significantly impeded by the absence of structural information on the activated form of the insulin/IR complex. Mutagenesis and photo-crosslinking experiments and structural information on insulin and apo-IR strongly suggest that the dual-chain insulin molecule, unlike the related single-chain insulin-like growth factors, binds to IR in a very different conformation than what is displayed in storage forms of the hormone. In particular, hydrophobic residues buried in the core of the folded insulin molecule engage the receptor. There is also the possibility of plasticity in the receptor structure based on these data, which may in part be due to rearrangement of the so-called CT-peptide, a tandem hormone-binding element of IR. These possibilities provide opportunity for large-scale molecular modeling to contribute to our understanding of this system. Using various atomistic simulation approaches, we have constructed all-atom structural models of hormone/receptor complexes in the presence of CT in its crystallographic position and a thermodynamically favorable displaced position. In the "displaced-CT" complex, many more insulin-receptor contacts suggested by experiments are satisfied, and our simulations also suggest that R-insulin potentially represents the receptor-bound form of hormone. The results presented in this work have further implications for the design of receptor-specific agonists/antagonists.

  11. Insulin receptor kinase-independent signaling via tyrosine phosphorylation of phosphatase PHLPP1.

    PubMed

    Zhang, Manchao; Riedel, Heimo

    2009-05-01

    Most insulin responses correlate well with insulin receptor (IR) Tyr kinase activation; however, critical exceptions to this concept have been presented. Specific IR mutants and stimulatory IR antibodies demonstrate a lack of correlation between IR kinase activity and specific insulin responses in numerous independent studies. IR conformation changes in response to insulin observed with various IR antibodies define an IR kinase-independent signal that alters the C-terminus. IR-related receptors in lower eukaryotes that lack a Tyr kinase point to an alternative mechanism of IR signaling earlier in evolution. However, the implied IR kinase-independent signaling mechanism remained obscure at the molecular level. Here we begin to define the molecular basis of an IR-dependent but IR kinase-independent insulin signal that is equally transmitted by a kinase-inactive mutant IR. This insulin signal results in Tyr phosphorylation and catalytic activation of phosphatase PHLPP1 via a PI 3-kinase-independent, wortmannin-insensitive signaling pathway. Dimerized SH2B1/PSM is a critical activator of the IR kinase and the resulting established insulin signal. In contrast it is an inhibitor of the IR kinase-independent insulin signal and disruption of SH2B1/PSM dimer binding to IR potentiates this signal. Dephosphorylation of Akt2 by PHLPP1 provides an alternative, SH2B1/PSM-regulated insulin-signaling pathway from IR to Akt2 of opposite polarity and distinct from the established PI 3-kinase-dependent signaling pathway via IRS proteins. In combination, both pathways should allow the opposing regulation of Akt2 activity at two phosphorylation sites to specifically define the insulin signal in the background of interfering Akt-regulating signals, such as those controlling cell proliferation and survival.

  12. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.

    PubMed

    Dillon, James; Holden-Dye, Lindy; O'Connor, Vincent; Hopper, Neil A

    2016-06-01

    Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm's food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm's response to changes in food availability in the environment.

  13. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin receptor substrates (IRSs) are signaling adaptors that play a major role in the metabolic and mitogenic actions of insulin and insulin-like growth factors. Reports have recently noted increased levels, or activity, of IRSs in many human cancers, and some have linked this to poor patient prog...

  14. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle

    NASA Technical Reports Server (NTRS)

    Hilder, Thomas L.; Tou, Janet C L.; Grindeland, Richard E.; Wade, Charles E.; Graves, Lee M.

    2003-01-01

    c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.

  15. Replacement of insulin receptor tyrosine residues 1162 and 1163 does not alter the mitogenic effect of the hormone

    SciTech Connect

    Debant, A.; Clauser, E.; Ponzio, G.; Filloux, C.; Auzan, C.; Contreres, J.O.; Rossi, B. )

    1988-11-01

    Chinese hamster ovary transfectants that express insulin receptors in which tyrosine residues 1162 and 1163 were replaced by phenylalanine exhibit a total inhibition of the insulin-mediated tyrosine kinase activity toward exogenous substrates; this latter activity is associated with total inhibition of the hypersensitivity reported for insulin in promoting 2-deoxyglucose uptake. The authors now present evidence that the twin tyrosines also control the insulin-mediated stimulation of glycogen synthesis. Surprisingly, this type of Chinese hamster ovary transfectant is as hypersensitive to insulin for its mitogenic effect as are Chinese hamster ovary cells expressing many intact insulin receptors. Such data suggest that (i) the insulin mitogenic effect routes through a different pathway than insulin uses to activate the transport and metabolism of glucose and (ii) the mitogenic effect of insulin is not controlled by the twin tyrosines. At the molecular level, the solubilized mutated receptor has not insulin-dependent tyrosine kinase activity, whereas this receptor displays measurable insulin-stimulated phosphorylation of its {beta} subunit in {sup 32}P-labeled cells. The authors therefore propose that the autocatalytic phosphorylating activity of the receptor reports a cryptic tyrosine kinase activity that cannot be visualized by the use of classical exogenous substrates.

  16. Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels

    PubMed Central

    Qiu, Jian; Zhang, Chunguang; Borgquist, Amanda; Nestor, Casey C; Smith, Arik W.; Bosch, Martha A.; Ku, Stephen; Wagner, Edward J.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    SUMMARY Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin receptor and insulin receptor are coupled to activation of phosphatidylinositide3-kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that similar to leptin, purified insulin depolarized POMC, and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn2+, which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis. PMID:24703699

  17. Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors.

    PubMed

    Wang, X Y; Bergdahl, K; Heijbel, A; Liljebris, C; Bleasdale, J E

    2001-02-28

    One strategy to treat the insulin resistance that is central to type II diabetes mellitus may be to maintain insulin receptors (IR) in the active (tyrosine phosphorylated) form. Because protein tyrosine phosphatase 1B (PTP1B) binds and subsequently dephosphorylates IR, inhibitors of PTP1B-IR binding are potential insulin 'sensitizers.' A Scintillation Proximity Assay (SPA) was developed to characterize and quantitate PTP1B-IR binding. Human IR were solubilized and captured on wheat germ agglutinin (WGA)-coated SPA beads. Subsequent binding of human, catalytically inactive [35S] PTP1B Cys(215)/Ser (PTP1B(C215S)) to the lectin-anchored IR results in scintillation from the SPA beads that can be quantitated. Binding of PTP1B to IR was pH- and divalent cation-sensitive. Ca(2+) and Mn(2+), but not Mg(2+), dramatically attenuated the loss of PTP1B-IR binding observed when pH was raised from 6.2 to 7.8. PTP1B binding to IR from insulin-stimulated cells was much greater than to IR from unstimulated cells and was inhibited by either an antiphosphotyrosine antibody or treatment of IR with alkaline phosphatase, suggesting that tyrosine phosphorylation of IR is required for PTP1B binding. Phosphopeptides modeled after various IR phosphotyrosine domains each only partially inhibited PTP1B-IR binding, indicating that multiple domains of IR are likely involved in binding PTP1B. However, competitive displacement of [35S]PTP1B(C215S) by PTP1B(C215S) fitted best to a single binding site with a K(d) in the range 100-1000 nM, depending upon pH and divalent cations. PNU-200898, a potent and selective inhibitor of PTP1B whose orientation in the active site of PTP1B has been solved, competitively inhibited catalysis and PTP1B-IR binding with equal potency. The results of this novel assay for PTP1B-IR binding suggest that PTP1B binds preferentially to tyrosine phosphorylated IR through its active site and that binding may be susceptible to therapeutic disruption by small molecules.

  18. Mitochondrial H2O2 as an enable signal for triggering autophosphorylation of insulin receptor in neurons

    PubMed Central

    2013-01-01

    Background Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the insulin receptor during the autophosphorylation process in neurons remain unexplored to date. Results Experiments were carried out in culture of rat cerebellar granule neurons. Kinetic study showed that the insulin-induced H2O2 signal precedes receptor autophosphorylation and represents a single spike with a peak at 5–10 s and duration of less than 30 s. Mitochondrial complexes II and, to a lesser extent, I are involved in generation of the H2O2 signal. The mechanism by which insulin triggers the H2O2 signal involves modulation of succinate dehydrogenase activity. Insulin dose–response for receptor autophosphorylation is well described by hyperbolic function (Hill coefficient, nH, of 1.1±0.1; R2=0.99). N-acetylcysteine (NAC), a scavenger of H2O2, dose-dependently inhibited receptor autophosphorylation. The observed dose response is highly sigmoidal (Hill coefficient, nH, of 8.0±2.3; R2=0.97), signifying that insulin receptor autophosphorylation is highly ultrasensitive to the H2O2 signal. These results suggest that autophosphorylation occurred as a gradual response to increasing insulin concentrations, only if the H2O2 signal exceeded a certain threshold. Both insulin-stimulated receptor autophosphorylation and H2O2 generation were inhibited by pertussis toxin, suggesting that a pertussis toxin-sensitive G protein may link the insulin receptor to the H2O2-generating system in neurons during the autophosphorylation process. Conclusions In this study, we demonstrated for

  19. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  20. Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor.

    PubMed Central

    Doudna, J A; Cech, T R; Sullenger, B A

    1995-01-01

    Autoimmunity often involves the abnormal targeting of self-antigens by antibodies, leading to tissue destruction and other pathologies. This process could potentially be disrupted by small ligands that bind specifically to autoantibodies and inhibit their interaction with the target antigen. Here we report the identification of an RNA sequence that binds a mouse monoclonal antibody specific for an autoantigenic epitope of human insulin receptor. The RNA ligand binds specifically and with high affinity (apparent Kd congruent to 2 nM) to the anti-insulin receptor antibody and not to other mouse IgGs. The RNA can also act as a decoy, blocking the antibody from binding the insulin receptor. Thus, it probably binds near the combining site on the antibody. Strikingly, the RNA cross-reacts with autoantibodies from patients with extreme insulin resistance. One simple explanation is that the selected RNA may structurally mimic the antigenic epitope on the insulin receptor protein. These results suggest that decoy RNAs may be used in the treatment of autoimmune diseases. Images Fig. 1 Fig. 4 Fig. 5 PMID:7534420

  1. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands: A population-based study

    SciTech Connect

    `t Hart, L.M.; Maassen, J.A.; Does, F.E.E. van der

    1996-11-01

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in a minor fraction of the NIDDM population. The goal of the present study was to examine whether insulin-receptor mutations contribute to the development of NIDDM. We examined 161 individuals with NIDDM and 538 healthy controls from the population-based Rotterdam study for the presence of mutations in the insulin-receptor gene by SSCP. A heterozygous mutation changing valine-985 into methionine was detected in 5.6% of diabetic subjects and in 1.3% of individuals with normal oral glucose tolerance test. Adjusted for age, gender, and body-mass index, this revealed a relative risk for diabetes of 4.49 (95% confidence interval 1.59-12.25) for Met-985 carriers. When the total study group was analyzed, the prevalence of the mutation increased with increasing serum glucose levels (test for trend P < .005). We conclude that the Met-985 insulin-receptor variant associates with hyperglycemia and represents a risk factor for NIDDM. 30 refs., 3 figs., 1 tab.

  2. The insulin-like growth factor 1 receptor in cancer: old focus, new future.

    PubMed

    Hartog, Hermien; Wesseling, Jelle; Boezen, H Marike; van der Graaf, Winette T A

    2007-09-01

    The importance of insulin-like growth factor 1 receptor (IGF-1R) signalling in malignant behaviour of tumour cells is well established. Currently, development of drugs targeting the IGF-1R as anticancer treatment is emerging. Several IGF-1R targeting strategies are being investigated in phases I and II clinical trials. Interactions of IGF-1R with insulin receptor, however, might complicate efficiency and tolerability of such drugs. This review describes mechanisms, recent developments and potential limitations of IGF-1R antibodies and tyrosine kinase inhibitors.

  3. Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

    PubMed Central

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851

  4. Circadian Misalignment Augments Markers of Insulin Resistance and Inflammation, Independently of Sleep Loss

    PubMed Central

    Leproult, Rachel; Holmbäck, Ulf; Van Cauter, Eve

    2014-01-01

    Shift workers, who are exposed to irregular sleep schedules resulting in sleep deprivation and misalignment of circadian rhythms, have an increased risk of diabetes relative to day workers. In healthy adults, sleep restriction without circadian misalignment promotes insulin resistance. To determine whether the misalignment of circadian rhythms that typically occurs in shift work involves intrinsic adverse metabolic effects independently of sleep loss, a parallel group design was used to study 26 healthy adults. Both interventions involved 3 inpatient days with 10-h bedtimes, followed by 8 inpatient days of sleep restriction to 5 h with fixed nocturnal bedtimes (circadian alignment) or with bedtimes delayed by 8.5 h on 4 of the 8 days (circadian misalignment). Daily total sleep time (SD) during the intervention was nearly identical in the aligned and misaligned conditions (4 h 48 min [5 min] vs. 4 h 45 min [6 min]). In both groups, insulin sensitivity (SI) significantly decreased after sleep restriction, without a compensatory increase in insulin secretion, and inflammation increased. In male participants exposed to circadian misalignment, the reduction in SI and the increase in inflammation both doubled compared with those who maintained regular nocturnal bedtimes. Circadian misalignment that occurs in shift work may increase diabetes risk and inflammation, independently of sleep loss. PMID:24458353

  5. The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity

    PubMed Central

    Lou, Meizhen; Garrett, Thomas P. J.; McKern, Neil M.; Hoyne, Peter A.; Epa, V. Chandana; Bentley, John D.; Lovrecz, George O.; Cosgrove, Leah J.; Frenkel, Maurice J.; Ward, Colin W.

    2006-01-01

    The insulin receptor (IR) and the type-1 insulin-like growth factor receptor (IGF1R) are homologous multidomain proteins that bind insulin and IGF with differing specificity. Here we report the crystal structure of the first three domains (L1–CR–L2) of human IR at 2.3 Å resolution and compare it with the previously determined structure of the corresponding fragment of IGF1R. The most important differences seen between the two receptors are in the two regions governing ligand specificity. The first is at the corner of the ligand-binding surface of the L1 domain, where the side chain of F39 in IR forms part of the ligand binding surface involving the second (central) β-sheet. This is very different to the location of its counterpart in IGF1R, S35, which is not involved in ligand binding. The second major difference is in the sixth module of the CR domain, where IR contains a larger loop that protrudes further into the ligand-binding pocket. This module, which governs IGF1-binding specificity, shows negligible sequence identity, significantly more α-helix, an additional disulfide bond, and opposite electrostatic potential compared to that of the IGF1R. PMID:16894147

  6. The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity.

    PubMed

    Lou, Meizhen; Garrett, Thomas P J; McKern, Neil M; Hoyne, Peter A; Epa, V Chandana; Bentley, John D; Lovrecz, George O; Cosgrove, Leah J; Frenkel, Maurice J; Ward, Colin W

    2006-08-15

    The insulin receptor (IR) and the type-1 insulin-like growth factor receptor (IGF1R) are homologous multidomain proteins that bind insulin and IGF with differing specificity. Here we report the crystal structure of the first three domains (L1-CR-L2) of human IR at 2.3 A resolution and compare it with the previously determined structure of the corresponding fragment of IGF1R. The most important differences seen between the two receptors are in the two regions governing ligand specificity. The first is at the corner of the ligand-binding surface of the L1 domain, where the side chain of F39 in IR forms part of the ligand binding surface involving the second (central) beta-sheet. This is very different to the location of its counterpart in IGF1R, S35, which is not involved in ligand binding. The second major difference is in the sixth module of the CR domain, where IR contains a larger loop that protrudes further into the ligand-binding pocket. This module, which governs IGF1-binding specificity, shows negligible sequence identity, significantly more alpha-helix, an additional disulfide bond, and opposite electrostatic potential compared to that of the IGF1R.

  7. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 Receptor-insulin receptor substrate and STAT3 signaling

    PubMed Central

    Sanchez-Lopez, Elsa; Flashner-Abramson, Efrat; Shalapour, Shabnam; Zhong, Zhenyu; Taniguchi, Koji; Levitzki, Alexander; Karin, Michael

    2015-01-01

    The tumor microenvironment (TME) exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility and invasion. Insulin-like growth factor-1 (IGF-1) and Signal transducer and activator of transcription 3 (STAT3) stimulate colorectal cancer (CRC) development and progression via cell autonomous and microenvironmental effects. Using a unique inhibitor, NT157, which targets both IGF-1 receptor (IGF-1R) and STAT3, we show that these pathways regulate many TME functions associated with sporadic colonic tumorigenesis in CPC-APC mice, in which cancer development is driven by loss of the Apc tumor suppressor gene. NT157 causes a substantial reduction in tumor burden by affecting cancer cells, cancer-associated fibroblasts (CAF) and myeloid cells. Decreased cancer cell proliferation and increased apoptosis were accompanied by inhibition of CAF activation and decreased inflammation. Furthermore, NT157 inhibited expression of pro-tumorigenic cytokines, chemokines and growth factors, including IL-6, IL-11 and IL-23 as well as CCL2, CCL5, CXCL7, CXCL5, ICAM1 and TGFβ; decreased cancer cell migratory activity and reduced their proliferation in the liver. NT157 represents a new class of anti-cancer drugs that affect both the malignant cell and its supportive microenvironment. PMID:26364612

  8. Regression of acanthosis nigricans correlates with disappearance of anti-insulin receptor autoantibodies and achievement of euglycemia in type B insulin resistance syndrome.

    PubMed

    Fareau, Gilbert G; Maldonado, Mario; Oral, Elif; Balasubramanyam, Ashok

    2007-05-01

    Autoantibodies directed against specific epitopes in the insulin receptor are rarely the cause of either recurrent hypoglycemia or a severe form of insulin resistance (type B insulin resistance). Type B insulin resistance occurs more commonly in women of African heritage and is frequently associated with a history of other autoimmune diseases. We present the unusual case of a 61-year-old African American woman with a background of autoimmune hypothyroidism and autoimmune hepatitis who developed type 2 diabetes mellitus and marked facial acanthosis nigricans (AN) over a period of weeks. Despite treatment with multiple oral antidiabetic agents, she rapidly developed severe, recalcitrant hyperglycemia and ketoacidosis, requiring hospitalization and intravenous insulin administration for 4 weeks at rates of up to 180 U/h. Immunologic testing revealed a high titer of anti-insulin receptor autoantibodies of both immunoglobulin G and immunoglobulin A classes. After a recurrence of diabetic ketoacidosis despite aggressive management, the patient was treated with a short course of cyclophosphamide; within 10 weeks, she experienced striking improvement of her hyperglycemia as well as marked regression of the AN lesions. Subsequently, the patient also experienced episodes of fasting hypoglycemia, which resolved with a brief course of glucocorticoids. She has since remained euglycemic with no therapy for 5 years. We have documented, for the first time, regression of AN in temporal association with disappearance of circulating anti-insulin receptor autoantibodies and achievement of euglycemia in a patient with type B insulin resistance.

  9. Insulin receptor isoform A ameliorates long-term glucose intolerance in diabetic mice

    PubMed Central

    Diaz-Castroverde, Sabela; Gómez-Hernández, Almudena; Fernández, Silvia; García-Gómez, Gema; Di Scala, Marianna; González-Aseguinolaza, Gloria; Fernández-Millán, Elisa; González-Rodríguez, Águeda; García-Bravo, María; Chambon, Pierre; Álvarez, Carmen; Perdomo, Liliana; Beneit, Nuria; Benito, Manuel

    2016-01-01

    ABSTRACT Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion. Previous in vitro data showed that insulin receptor isoform A, but not B, favours basal glucose uptake through its specific association with endogenous GLUT1/2 in murine hepatocytes and beta cells. With this background, we hypothesized that hepatic expression of insulin receptor isoform A in a mouse model of type 2 diabetes could potentially increase the glucose uptake of these cells, decreasing the hyperglycaemia and therefore ameliorating the diabetic phenotype. To assure this hypothesis, we have developed recombinant adeno-associated viral vectors expressing insulin receptor isoform A (IRA) or isoform B (IRB) under the control of a hepatocyte­-specific promoter. Our results demonstrate that in the long term, hepatic expression of IRA in diabetic mice is more efficient than IRB in ameliorating glucose intolerance. Consequently, it impairs the induction of compensatory mechanisms through beta cell hyperplasia and/or hypertrophy that finally lead to beta cell failure, reverting the diabetic phenotype in about 8 weeks. Our data suggest that long-term hepatic expression of IRA could be a promising therapeutic approach for the treatment of type 2 diabetes mellitus. PMID:27562101

  10. Insulin receptor isoform A ameliorates long-term glucose intolerance in diabetic mice.

    PubMed

    Diaz-Castroverde, Sabela; Gómez-Hernández, Almudena; Fernández, Silvia; García-Gómez, Gema; Di Scala, Marianna; González-Aseguinolaza, Gloria; Fernández-Millán, Elisa; González-Rodríguez, Águeda; García-Bravo, María; Chambon, Pierre; Álvarez, Carmen; Perdomo, Liliana; Beneit, Nuria; Escribano, Oscar; Benito, Manuel

    2016-11-01

    Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion. Previous in vitro data showed that insulin receptor isoform A, but not B, favours basal glucose uptake through its specific association with endogenous GLUT1/2 in murine hepatocytes and beta cells. With this background, we hypothesized that hepatic expression of insulin receptor isoform A in a mouse model of type 2 diabetes could potentially increase the glucose uptake of these cells, decreasing the hyperglycaemia and therefore ameliorating the diabetic phenotype. To assure this hypothesis, we have developed recombinant adeno-associated viral vectors expressing insulin receptor isoform A (IRA) or isoform B (IRB) under the control of a hepatocyte--specific promoter. Our results demonstrate that in the long term, hepatic expression of IRA in diabetic mice is more efficient than IRB in ameliorating glucose intolerance. Consequently, it impairs the induction of compensatory mechanisms through beta cell hyperplasia and/or hypertrophy that finally lead to beta cell failure, reverting the diabetic phenotype in about 8 weeks. Our data suggest that long-term hepatic expression of IRA could be a promising therapeutic approach for the treatment of type 2 diabetes mellitus.

  11. Naturally occurring amino acid substitutions at Arg1174 in the human insulin receptor result in differential effects on receptor biosynthesis and hybrid formation, leading to discordant clinical phenotypes.

    PubMed

    Rau, H; Kocova, M; O'Rahilly, S; Whitehead, J P

    2000-07-01

    Missense mutations in the tyrosine kinase domain of the human insulin receptor frequently result in a dominantly inherited form of insulin resistance. We noted a marked disparity in the clinical phenotypes of our study subjects with different missense mutations at the same residue (Arg1174) of the insulin receptor. Subjects with a tryptophan substitution (W) were only moderately hyperinsulinemic, whereas those with a glutamine substitution (Q) had severe clinical and biochemical insulin resistance. Studies were undertaken to explore the molecular mechanisms underlying these differences. Both W and Q mutant receptors bound insulin normally but were kinase inactive. The W mutation resulted in more rapid degradation of newly synthesized mutant receptor, which contrasted with the near-normal biosynthesis of the Q receptor. The propensity of the W receptor to form hybrids with the cotransfected wild-type (WT) receptor was also markedly impaired compared with the Q receptor, to an extent greater than could be explained by lower steady-state expression. Thus, the more clinically benign consequences of the heterozygous W mutant receptor are likely to relate to its impaired biosynthesis and/or reduced capacity to form hybrids with WT receptors. In addition to providing an explanation for the milder phenotype of 1174W versus 1174Q carriers, these studies provide further support for the notion that the dominant-negative effect of insulin receptor tyrosine kinase mutations involves the competition between inactive mutant homodimers and WT/mutant hybrids with active WT homodimers for both ligands and intracellular substrates.

  12. Insulin receptor autophosphorylation in cultured myoblasts correlates to glucose disposal in Pima Indians.

    PubMed

    Youngren, J F; Goldfine, I D; Pratley, R E

    1999-05-01

    In a previous study [Youngren, J. F., I. D. Goldfire, and R. E. Pratley. Am. J. Physiol. 273 (Endocrinol. Metab. 36): E276-E283, 1997] of skeletal muscle biopsies from insulin-resistant, nondiabetic Pima Indians, we demonstrated that diminished insulin receptor (IR) autophosphorylation correlated with in vivo insulin resistance. In the present study, to determine whether decreased IR function is a primary trait of muscle, and not secondary to an altered in vivo environment, we cultured myoblasts from 17 nondiabetic Pima Indians in whom insulin-stimulated glucose disposal (M) was measured during hyperinsulinemic-euglycemic glucose clamps. Myoblast IR autophosphorylation was determined by a highly sensitive ELISA. IR autophosphorylation directly correlated with M (r = 0.56, P = 0.02) and inversely correlated with the fasting plasma insulin (r = -0.58, P < 0.05). The relationship between M and IR autophosphorylation remained significant after M was adjusted for the effects of percent body fat (partial r = 0.53, P < 0.04). The relationship between insulin resistance and the capacity for myoblast IR autophosphorylation in nondiabetic Pima Indians suggests that variations in IR-signaling capacity may be intrinsic characteristics of muscle that contribute to the genetic component determining insulin action in this population.

  13. Down-regulation of cell surface insulin receptor and insulin receptor substrate-1 phosphorylation by inhibitor of 90-kDa heat-shock protein family: endoplasmic reticulum retention of monomeric insulin receptor precursor with calnexin in adrenal chromaffin cells.

    PubMed

    Saitoh, Tomokazu; Yanagita, Toshihiko; Shiraishi, Seiji; Yokoo, Hiroki; Kobayashi, Hideyuki; Minami, Shin-Ichi; Onitsuka, Toshio; Wada, Akihiko

    2002-10-01

    Treatment (>/=6 h) of cultured bovine adrenal chromaffin cells with geldanamycin (GA) or herbimycin A (HA), an inhibitor of the 90-kDa heat-shock protein (Hsp90) family, decreased cell surface (125)I-insulin binding. The effect of GA was concentration (EC(50) = 84 nM)- and time (t(1/2) = 8.5 h)-dependent; GA (1 microM for 24 h) lowered the B(max) value of (125)I-insulin binding by 80%, without changing the K(d) value. Western blot analysis showed that GA (>/=3 h) lowered insulin receptor (IR) level by 83% (t(1/2) = 7.4 h; EC(50) = 74 nM), while raising IR precursor level by 100% (t(1/2) = 7.9 h; EC(50) = 300 nM). Pulse-label followed by reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that monomeric IR precursor (~190 kDa) developed into the homodimeric IR precursor (approximately 380 kDa) and the mature alpha(2)beta(2) IR (~410 kDa) in nontreated cells, but not in GA-treated cells; in GA-treated cells, the homodimerization-incompetent form of monomeric IR precursor was degraded via endoplasmic reticulum (ER)-associated protein degradation. Immunoprecipitation followed by immunoblot analysis showed that IR precursor was associated with calnexin (CNX) to a greater extent in GA-treated cells, compared with nontreated cells. GA had no effect on IR mRNA levels and internalization rate of cell surface IRs. In GA-treated cells, insulin-induced tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was attenuated by 77%, with no change in IRS-1 level. Thus, inhibition of the Hsp90 family by GA or HA interrupts homodimerization of monomeric IR precursor in the ER and increases retention of monomeric IR precursor with CNX; this event retards cell surface expression of IR and attenuates insulin-induced activation of IRS-1.

  14. Protein kinase C-alpha regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3 epsilon.

    PubMed

    Oriente, Francesco; Andreozzi, Francesco; Romano, Chiara; Perruolo, Giuseppe; Perfetti, Anna; Fiory, Francesca; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro

    2005-12-09

    Protein kinase C (PKC)-alpha exerts a regulatory function on insulin action. We showed by overlay blot that PKCalpha directly binds a 180-kDa protein, corresponding to IRS-1, and a 30-kDa molecular species, identified as 14-3-3epsilon. In intact NIH-3T3 cells overexpressing insulin receptors (3T3-hIR), insulin selectively increased PKCalpha co-precipitation with IRS-1, but not with IRS-2, and with 14-3-3epsilon, but not with other 14-3-3 isoforms. Overexpression of 14-3-3epsilon in 3T3-hIR cells significantly reduced IRS-1-bound PKCalpha activity, without altering IRS-1/PKCalpha co-precipitation. 14-3-3epsilon overexpression also increased insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation, followed by increased activation of Raf1, ERK1/2, and Akt/protein kinase B. Insulin-induced glycogen synthase activity and thymidine incorporation were also augmented. Consistently, selective depletion of 14-3-3epsilon by antisense oligonucleotides caused a 3-fold increase of IRS-1-bound PKCalpha activity and a similarly sized reduction of insulin receptor and IRS-1 tyrosine phosphorylation and signaling. In turn, selective inhibition of PKCalpha expression by antisense oligonucleotides reverted the negative effect of 14-3-3epsilon depletion on insulin signaling. Moreover, PKCalpha inhibition was accompanied by a >2-fold decrease of insulin degradation. Similar results were also obtained by overexpressing 14-3-3epsilon. Thus, in NIH-3T3 cells, insulin induces the formation of multimolecular complexes, including IRS-1, PKCalpha, and 14-3-3epsilon. The presence of 14-3-3epsilon in the complex is not necessary for IRS-1/PKCalpha interaction but modulates PKCalpha activity, thereby regulating insulin signaling and degradation.

  15. Aptamer-based single-molecule imaging of insulin receptors in living cells

    NASA Astrophysics Data System (ADS)

    Chang, Minhyeok; Kwon, Mijin; Kim, Sooran; Yunn, Na-Oh; Kim, Daehyung; Ryu, Sung Ho; Lee, Jong-Bong

    2014-05-01

    We present a single-molecule imaging platform that quantitatively explores the spatiotemporal dynamics of individual insulin receptors in living cells. Modified DNA aptamers that specifically recognize insulin receptors (IRs) with a high affinity were selected through the SELEX process. Using quantum dot-labeled aptamers, we successfully imaged and analyzed the diffusive motions of individual IRs in the plasma membranes of a variety of cell lines (HIR, HEK293, HepG2). We further explored the cholesterol-dependent movement of IRs to address whether cholesterol depletion interferes with IRs and found that cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin reduces the mobility of IRs. The aptamer-based single-molecule imaging of IRs will provide better understanding of insulin signal transduction through the dynamics study of IRs in the plasma membrane.

  16. Insilico docking study of compounds elucidated from helicteres isora fruits with ampkinase- insulin receptor

    PubMed Central

    Vennila, Subramanium; Bupesh, Giridharan; Saravanamurali, Krishnan; SenthilKumar, Viajayan; SenthilRaja, Ramalingam; Saran, Natarajan; Magesh, Sachidanandam

    2014-01-01

    Insulin receptor (IR) proteins were essential intracellular signaling peptides in the insulin action cascade. Insulin receptor substrate proteins (IRS-1and IRS-2) serve and regulate the insulin level in the normal insulin action. The broad role of IRS-1 and IRS-2 in cell growth and survival reveals a common regulatory pathway linking development, somatic growth, fertility, neuronal proliferation, and aging to the core mechanisms used by vertebrates for nutrient sensing. Such type of proteins were cyclic adenosine monophosphate-activated protein kinase, this proteins play a key role in the insulin response and regulation. Type -2 Diabetes mellitus occurs during prolonged periods of peripheral insulin resistance due to inactivation of IRS proteins. The compounds isolated from the medicinal plants were safer than synthetic drugs and possess high bio activity. In the present study, four compounds were elucidated from fruits of Helicteres isora. The elucidated compounds were evaluated for the antidiabetic activity using in silico docking study. The receptor was analyzed for the active site and pocket finder tools. The aminoacids such as Phenylalanine, Lysine, Glutamic acid and Asparigine were predicted as active site binding residues. Docking studies were done through Autodock 4 software. All the compounds from fruits of Helicteres isora showed good docking profiles with AMP Kinase, except compound-3 (1,2,3,4-tetrahydro-1,5,6,8-tetramethyl-7-(2-methylprop-1-enylnaphthalene-4-ylpivalate). Finally the result from the study demonstrates that the HS-1, HS-2 and HS-4 posses potent anti diabetic activity against type-2 diabetes mellitus through drug action on AMP kinase cascade system. PMID:24966532

  17. Insilico docking study of compounds elucidated from helicteres isora fruits with ampkinase- insulin receptor.

    PubMed

    Vennila, Subramanium; Bupesh, Giridharan; Saravanamurali, Krishnan; SenthilKumar, Viajayan; SenthilRaja, Ramalingam; Saran, Natarajan; Magesh, Sachidanandam

    2014-01-01

    Insulin receptor (IR) proteins were essential intracellular signaling peptides in the insulin action cascade. Insulin receptor substrate proteins (IRS-1and IRS-2) serve and regulate the insulin level in the normal insulin action. The broad role of IRS-1 and IRS-2 in cell growth and survival reveals a common regulatory pathway linking development, somatic growth, fertility, neuronal proliferation, and aging to the core mechanisms used by vertebrates for nutrient sensing. Such type of proteins were cyclic adenosine monophosphate-activated protein kinase, this proteins play a key role in the insulin response and regulation. Type -2 Diabetes mellitus occurs during prolonged periods of peripheral insulin resistance due to inactivation of IRS proteins. The compounds isolated from the medicinal plants were safer than synthetic drugs and possess high bio activity. In the present study, four compounds were elucidated from fruits of Helicteres isora. The elucidated compounds were evaluated for the antidiabetic activity using in silico docking study. The receptor was analyzed for the active site and pocket finder tools. The aminoacids such as Phenylalanine, Lysine, Glutamic acid and Asparigine were predicted as active site binding residues. Docking studies were done through Autodock 4 software. All the compounds from fruits of Helicteres isora showed good docking profiles with AMP Kinase, except compound-3 (1,2,3,4-tetrahydro-1,5,6,8-tetramethyl-7-(2-methylprop-1-enylnaphthalene-4-ylpivalate). Finally the result from the study demonstrates that the HS-1, HS-2 and HS-4 posses potent anti diabetic activity against type-2 diabetes mellitus through drug action on AMP kinase cascade system.

  18. Contraction inhibits insulin-stimulated insulin receptor substrate-1/2-associated phosphoinositide 3-kinase activity, but not protein kinase B activation or glucose uptake, in rat muscle.

    PubMed Central

    Whitehead, J P; Soos, M A; Aslesen, R; O'rahilly, S; Jensen, J

    2000-01-01

    The initial stages of insulin-stimulated glucose uptake are thought to involve tyrosine phosphorylation of insulin receptor substrates (IRSs), which recruit and activate phosphoinositide 3-kinase (PI 3-kinase), leading to the activation of protein kinase B (PKB) and other downstream effectors. In contrast, contraction stimulates glucose uptake via a PI 3-kinase-independent mechanism. The combined effects of insulin and contraction on glucose uptake are additive. However, it has been reported that contraction causes a decrease in insulin-stimulated IRS-1-associated PI 3-kinase activity. To investigate this paradox, we have examined the effects of contraction on insulin-stimulated glucose uptake and proximal insulin-signalling events in isolated rat epitrochlearis muscle. Stimulation by insulin or contraction produced a 3-fold increase in glucose uptake, with the effects of simultaneous treatment by insulin and contraction being additive. Wortmannin completely blocked the additive effect of insulin in contracting skeletal muscle, indicating that this is a PI 3-kinase-dependent effect. Insulin-stimulated recruitment of PI 3-kinase to IRS-1 was unaffected by contraction; however, insulin produced no discernible increase in PI 3-kinase activity in IRS-1 or IRS-2 immunocomplexes in contracting skeletal muscle. Consistent with this, contraction inhibited insulin-stimulated p70(S6K) activation. In contrast, insulin-stimulated activation of PKB was unaffected by contraction. Thus, in contracting skeletal muscle, insulin stimulates glucose uptake and activates PKB, but not p70(S6K), by a PI 3-kinase-dependent mechanism that is independent of changes in IRS-1- and IRS-2-associated PI 3-kinase activity. PMID:10903138

  19. Insulin

    MedlinePlus

    ... container that can be closed like a laundry detergent bottle. Check the expiration date on the insulin ... in a hard container like an empty laundry detergent bottle or a metal coffee can. Make sure ...

  20. Localization of the mosquito insulin receptor homolog (MIR) in reproducing yellow fever mosquitoes (Aedes aegypti).

    PubMed

    Helbling, P; Graf, R

    1998-12-01

    The female mosquito takes a blood meal to produce a batch of eggs. Initiation of egg maturation and growth of oocytes is governed by several endocrine factors. Peptide factors from the brain are involved in this process and some are also responsible for the induction of ecdysone secretion. The latter appears to be required to maintain a high rate of vitellogenin synthesis. By analogy with the known functions of insulin-like molecules (e.g. bombyxins) which in insects activate the secretion of ecdysteroids, we have postulated that there is an insulin receptor homolog responsible for activation of endysone secretion in the ovary. We have recently cloned the mosquito homolog (MIR) and are now investigating its spatial and temporal distribution. Here, we have localized the insulin receptor (MIR) both at the mRNA and protein level using in situ-hybridization and immunocytochemistry. The receptor is expressed before a blood meal mainly in the nurse cells of ovaries. After a meal, follicle and nurse cells contain mRNA coding for the receptor. The intensity of expression rises in the follicle cells until they degenerate during choriogenesis. Immunocytochemical localization confirms the in situ data: the protein is present before and after a meal. Both methods confirm our previous findings by Northern blot analysis, in which the ovary was found to be the main source of the receptor mRNA. The dynamics of receptor mRNA are related to the dynamics of ecdysone secretion and its action on physiological processes.

  1. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    SciTech Connect

    Kabuta, Tomohiro; Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro; Asano, Tomoichiro; Wada, Keiji; Takahashi, Shin-Ichiro

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  2. A new EcoRI polymorphism for the insulin receptor gene

    SciTech Connect

    Accili, D.; Elbein, S.; McKeon, C.; Taylor, S.I. )

    1989-01-25

    A 550 bp BamHI-Pst I fragment encompassing bp 1,926-2,476 of the human insulin receptor cDNA was obtained. EcoRI identifies a two allele polymorphism, with bands of 5.8 and 5.5 kb. Co-dominant segregation was demonstrated in one Venezuelan pedigree.

  3. A peroxovanadium compound induces Xenopus oocyte maturation: inhibition by a neutralizing anti-insulin receptor antibody.

    PubMed

    Cummings, C; Zhu, L; Sorisky, A; Liu, X J

    1996-05-01

    Synthetic peroxovanadium compounds are a new class of potent inhibitors of protein phosphotyrosine phosphatases. These compounds exhibit insulin-like activity both in vitro and in experimental animals. However, the molecular mechanism by which these compounds exert their biological effect is not well defined. We demonstrate here that several of these compounds induce Xenopus oocyte maturation in vitro, as indicated by germinal vesicle breakdown. Using one of these compounds for further studies, we show that the induction is dose-dependent and is accompanied by activation of maturation promoting factor as well as activation of Xenopus MAP kinase. Like insulin, bpV(pic) causes an acute accumulation of PI(3,4,5)P3 (phosphotidylinositol-3,4,5-trisphosphate), a product of PI 3-kinase. More importantly, bpV(pic)-induced oocyte maturation was abolished by microinjection of a neutralizing monoclonal anti-insulin receptor antibody (17A3) into oocytes or preincubation of oocytes with a PI 3-kinase inhibitor (wortmannin). These results suggest that bpV(pic) acts upstream of the Xenopus IGF-1 receptor in the induction of meiotic maturation, presumably by neutralizing an inhibitory protein tyrosine phosphatase(s) that may regulate the receptor. Finally, using an oocyte-follicle cell complex that responded to human chorionic gonadotropin (hCG) to undergo GVBD, we showed that injection of 17A3 anti-insulin receptor antibody into oocytes did not affect hCG-induced oocyte maturation.

  4. A single night of partial sleep loss impairs fasting insulin sensitivity but does not affect cephalic phase insulin release in young men.

    PubMed

    Cedernaes, Jonathan; Lampola, Lauri; Axelsson, Emil K; Liethof, Lisanne; Hassanzadeh, Sara; Yeganeh, Adine; Broman, Jan-Erik; Schiöth, Helgi B; Benedict, Christian

    2016-02-01

    The present study sought to investigate whether a single night of partial sleep deprivation (PSD) would alter fasting insulin sensitivity and cephalic phase insulin release (CPIR) in humans. A rise in circulating insulin in response to food-related sensory stimulation may prepare tissues to break down ingested glucose, e.g. by stimulating rate-limiting glycolytic enzymes. In addition, given insulin's anorexigenic properties once it reaches the brain, the CPIR may serve as an early peripheral satiety signal. Against this background, in the present study 16 men participated in two separate sessions: one night of PSD (4.25 h sleep) versus one night of full sleep (8.5 h sleep). In the morning following each sleep condition, subjects' oral cavities were rinsed with a 1-molar sucrose solution for 45 s, preceded and followed by blood sampling for repeated determination of plasma glucose and serum insulin concentrations (-3, +3, +5, +7, +10 and +20 min). Our main result was that PSD, compared with full sleep, was associated with significantly higher peripheral insulin resistance, as indicated by a higher fasting homeostasis model assessment of insulin resistance index (+16%, P = 0.025). In contrast, no CPIR was observed in any of the two sleep conditions. Our findings indicate that a single night of PSD is already sufficient to impair fasting insulin sensitivity in healthy men. In contrast, brief oral cavity rinsing with sucrose solution did not change serum insulin concentrations, suggesting that a blunted CPIR is an unlikely mechanism through which acute sleep loss causes metabolic perturbations during morning hours in humans.

  5. Inherent insulin sensitivity is a major determinant of multimeric adiponectin responsiveness to short-term weight loss in extreme obesity.

    PubMed

    Mai, Stefania; Walker, Gillian E; Brunani, Amelia; Guzzaloni, Gabriele; Grossi, Glenda; Oldani, Alberto; Aimaretti, Gianluca; Scacchi, Massimo; Marzullo, Paolo

    2014-07-24

    High molecular weight (HMW-A) adiponectin levels mirror alterations in glucose homeostasis better than medium (MMW-A) and low molecular weight (LMW-A) components. In 25 patients with wide-range extreme obesity (BMI 40-77 kg/m(2)), we aimed to explore if improvements of multimeric adiponectin following 4-wk weight loss reflect baseline OGTT-derived insulin sensitivity (ISIOGTT) and disposition index (DIOGTT). Compared to 40 lean controls, adiponectin oligomers were lower in extreme obesity (p < 0.001) and, within this group, HMW-A levels were higher in insulin-sensitive (p < 0.05) than -resistant patients. In obese patients, short-term weight loss did not change total adiponectin levels and insulin resistance, while the distribution pattern of adiponectin oligomers changed due to significant increment of HMW-A (p < 0.01) and reduction of MMW-A (p < 0.05). By multivariate analysis, final HMW-A levels were significantly related to baseline ISIOGTT and final body weight (adjusted R(2) = 0.41). Our data suggest that HMW adiponectin may reflect baseline insulin sensitivity appropriately in the context of extreme obesity. Especially, we documented that HMW-A is promptly responsive to short-term weight loss prior to changes in insulin resistance, by a magnitude that is proportioned to whole body insulin sensitivity. This may suggest an insulin sensitivity-dependent control operated by HMW-A on metabolic dynamics of patients with extreme obesity.

  6. Insulin and epidermal growth factor receptors in rat liver after administration of the hepatocarcinogen 2-acetylaminofluorene: ligand binding and autophosphorylation

    SciTech Connect

    Hwang, D.L.; Roitman, A.; Carr, B.I.; Barseghian, G.; Lev-Ran, A.

    1986-04-01

    The livers of male F344 rats which were fed 0.02% 2-acetylaminofluorene (2-AAF) for two days or more had decreased binding of insulin and epidermal growth factor (EGF) to their hepatic receptors in microsomal and Golgi fractions. Hepatic receptors which were partially purified from carcinogen-fed rats by Triton X-100 solubilization and wheat germ agglutinin affinity column chromatography also had decreased binding activity compared to receptors from normal rats. Scatchard analysis indicated that the decrease in insulin receptor binding was due to decreased receptor number whereas the change in EGF receptor binding was attributed to decreased receptor affinity. Insulin receptor phosphokinase activity was also decreased in 2-AAF-fed rats and correlated with the decrease in receptor binding. EGF receptor phosphokinase activity was unchanged in 2-AAF-fed rats when stimulated with a high concentration (1 microM) of EGF but was decreased when stimulated with low concentrations (0.01-0.1 microM) of EGF. No EGF or insulin competing activity for receptor binding was found using acid-ethanol extracts of 2-AAF-altered liver. These results suggest that 2-AAF causes different alterations in the insulin and EGF receptors of the rat liver.

  7. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    PubMed Central

    2011-01-01

    Background We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust

  8. Insulin Receptor Processing and Lipid Composition of Erythrocyte Membrane in Patients with Hyperlipidemia.

    PubMed

    Masella, R.; Cantafora, A.; Maffì, D.; Volpe, R.; Ginnetti, M.G.; Ricci, G.; Mace, N.L.; Buxton, G.M.; Peterson, S.W.

    1995-08-01

    The aim of this study was to determine whether the common forms of dyslipidemia could affect either the lipid composition or insulin receptor processing (down-regulation) of erythrocytes. The study included 22 patients with type IIa hypercholesterolemia, 15 patients with type IV hypertriglyceridemia and 12 patients with type IIb hyperlipidemia. Ten normolipidemic subjects were used as controls. Their erythrocyte membranes were analyzed for lipid composition and insulin receptor down-regulation. The results show that all the hyperlipidemias investigated were characterized by significant increases in the cholesterol to phospholipid molar ratio (0.56 +/- 0.08 in controls and 1.11 +/- 0.13, 1.09 +/- 0.14, 1.04 +/- 0.15, p < 0.001, in types IIa, IIb and IV, respectively). Surface insulin receptors of type IIa and IIb patients did not appear to down-regulate when compared to normal subjects, but rather up-regulated (+65.2% in controls, -1.0% and -8.7%, p < 0.001, in type IIa and IIb patients, respectively). Patients with type IV hypertriglyceridemia showed a residual capacity for insulin receptor internalization (10.7% down-regulation). Membranes of all the patients contained a higher proportion of phosphatidylethanolamine; the molar ratio of sphingomyelin to phosphatidylcholine was significantly higher in types IIb than in controls (1.22 +/- 0.11 and 1.12 +/- 0.10, p < 0.05, respectively); all the patients showed a lower content of polyunsaturated fatty acids in the major glycerophospholipid classes. However, type IV hypertriglyceridemics showed less variations, especially in the phosphatidylserine fraction. These results indicate that the alterations in lipoprotein pattern may affect both the lipid membrane equilibria and the processing ability of surface insulin receptors. Copyright 1995 S. Karger AG, Basel

  9. Regulation of gonadotropin receptors, gonadotropin responsiveness, and cell multiplication by somatomedin-C and insulin in cultured pig Leydig cells

    SciTech Connect

    Bernier, M.; Chatelain, P.; Mather, J.P.; Saez, J.M.

    1986-11-01

    The author have investigated the effects of insulin and somatomedin-C/insulin like growth factor I(Sm-C) in purified porcine Leydig cells in vitro on gonadotrophins (hCG) receptor number, hCG responsiveness (cAMP and testosterone production), and thymidine incorporation into DNA. Leydig cells cultured in a serum-free medium containing transferrin, vitamin E, and insulin (5 ..mu..g/ml) maintained fairly constant both hCG receptors and hCG responsiveness. When they were cultured for 3 days in the same medium without insulin, there was a dramatic decline (more than 80%) in both hCG receptor number and hCG responsiveness. However the cAMP but not the testosterone response to forskolin was normal. Both insulin and Sm-C at nanomolar concentrations prevent the decline of both hCG receptors and hCG-induced cAMP production. At nanomolar concentrations, Sm-C and insulin enhanced hCG-induced testosterone production but the effect of Sm-C was significantly higher than that of insulin. However, the effect of insulin at higher concentrations (5 ..mu..g/ml) was significantly higher than that of Sm-C at 50 ng/ml. In contrast, at nanomolar concentrations only Sm-C stimulated (/sup 3/H)-thymidine incorporation into DNA and cell multiplication, the stimulatory effect of insulin on these parameters, was seen only at micromolar concentrations. These results indicate that both Sm-C and insulin acting through the receptors increase Leydig cell steroidogenic responsiveness to hCG by increasing hCG receptor number and improving some step beyond cAMP formation. In contrast, the mitogenic effects of insulin are mediated only through Sm-C receptors.

  10. Single-Nucleotide Polymorphism on Exon 17 of Insulin Receptor Gene Influences Insulin Resistance in PCOS: A Pilot Study on North Indian Women.

    PubMed

    Gangopadhyay, Sukanya; Agrawal, Nitin; Batra, Aruna; Kabi, Bhaskar Charan; Gupta, Akash

    2016-04-01

    Polycystic ovarian syndrome (PCOS), a major cause of infertility, is also strongly associated with insulin resistance. Defects in insulin receptor signaling are considered as one of the major molecular pathogeneses for insulin resistance. To investigate the possible mechanism of this signaling defect at genetic level, single-nucleotide polymorphism (SNP) [His 1085 C/T] at the exon 17 of insulin receptor gene (INSR) was studied in this pilot study. Polymerase chain reaction was performed on leucocytic DNA of women diagnosed with PCOS, selected from the outpatient department of Safdarjung Hospital, New Delhi, using suitable primer to amplify a region on INSR. An equal number of age-matched healthy women were selected as controls. SNP analysis was performed with restriction enzyme length polymorphism technique using Pm II enzyme. Serum insulin level was measured by ELISA kit and HOMA-IR was calculated mathematically. A higher frequency of the CC genotype was observed in PCOS women than in controls. Also, HOMA-IR, a tool for estimating insulin resistance, was significantly high in PCOS women with the CC genotype. C1008T SNP at exon 17 of INSR is associated with insulin resistance in Indian women with PCOS. Presence of CC genotype (C1085T) could be developed as a marker for insulin resistance and metabolic complications in PCOS women.

  11. Absence of glucagon and insulin action reveals a role for the GLP-1 receptor in endogenous glucose production.

    PubMed

    Jun, Lucy S; Millican, Rohn L; Hawkins, Eric D; Konkol, Debra L; Showalter, Aaron D; Christe, Michael E; Michael, M Dodson; Sloop, Kyle W

    2015-03-01

    The absence of insulin results in oscillating hyperglycemia and ketoacidosis in type 1 diabetes. Remarkably, mice genetically deficient in the glucagon receptor (Gcgr) are refractory to the pathophysiological symptoms of insulin deficiency, and therefore, studies interrogating this unique model may uncover metabolic regulatory mechanisms that are independent of insulin. A significant feature of Gcgr-null mice is the high circulating concentrations of GLP-1. Hence, the objective of this report was to investigate potential noninsulinotropic roles of GLP-1 in mice where GCGR signaling is inactivated. For these studies, pancreatic β-cells were chemically destroyed by streptozotocin (STZ) in Gcgr(-/-):Glp-1r(-/-) mice and in Glp-1r(-/-) animals that were subsequently treated with a high-affinity GCGR antagonist antibody that recapitulates the physiological state of Gcgr ablation. Loss of GLP-1 action substantially worsened nonfasting glucose concentrations and glucose tolerance in mice deficient in, and undergoing pharmacological inhibition of, the GCGR. Further, lack of the Glp-1r in STZ-treated Gcgr(-/-) mice elevated rates of endogenous glucose production, likely accounting for the differences in glucose homeostasis. These results support the emerging hypothesis that non-β-cell actions of GLP-1 analogs may improve metabolic control in patients with insulinopenic diabetes.

  12. Regulator of insulin receptor affinity in rat skeletal muscle sarcolemmal vesicles

    SciTech Connect

    Whitson, R.H.; Barnard, K.J.; Kaplan, S.A.; Itakura, K.

    1986-05-01

    Wheat germ agglutinin (WGA) affinity purification of detergent solubilized insulin receptors (IR) from rat skeletal muscle sarcolemmal vesicles resulted in an apparent increase in total insulin binding activity of greater than 5-fold, suggesting that an inhibitory component had been removed. This was verified when the flow-through fraction from the WGA column was dialyzed and added back to the partially purified receptor. The addition of a 100-fold dilution of the inhibitor preparation caused a 50% reduction in binding to trace amounts of /sup 125/I-insulin. Scatchard analysis revealed that the effect of the inhibitor was to decrease the affinity of the muscle IR. The inhibitor appeared to be tissue specific, inasmuch as the I/sub 50/'s for WGA-purified IR from rat fat and liver were 10 times the I/sub 50/ for muscle IR. The I/sub 50/ for insulin binding to intact IM-9 cells was 30 times the value for muscle IR. The inhibitor eluted in the void volume of Sephadex G-50 columns. Its activity was not destroyed by heating at 90/sup 0/C for 10 minutes, or by prolonged incubation with trypsin or dithiothreitol. The inhibitor described here may have a role in modulating insulin sensitivity in skeletal muscle.

  13. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats

    PubMed Central

    Zhang, Zhenwen; Fang, Penghua; He, Biao; Guo, Lili; Runesson, Johan; Langel, Ülo; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2016-01-01

    Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats. PMID:27127795

  14. The Novel Endocrine Disruptor Tolylfluanid Impairs Insulin Signaling in Primary Rodent and Human Adipocytes through a Reduction in Insulin Receptor Substrate-1 Levels

    PubMed Central

    Sargis, Robert M.; Neel, Brian A.; Brock, Clifton O.; Lin, Yuxi; Hickey, Allison T.; Carlton, Daniel A.; Brady, Matthew J.

    2012-01-01

    Emerging data suggest that environmental endocrine disrupting chemicals (EDCs) may contribute to the pathophysiology of obesity and diabetes. In prior work, the phenylsulfamide fungicide tolylfluanid (TF) was shown to augment adipocyte differentiation, yet its effects on mature adipocyte metabolism remain unknown. Because of the central role of adipose tissue in global energy regulation, the present study tested the hypothesis that TF modulates insulin action in primary rodent and human adipocytes. Alterations in insulin signaling in primary mammalian adipocytes were determined by the phosphorylation of Akt, a critical insulin signaling intermediate. Treatment of primary murine adipose tissue in vitro with 100 nM TF for 48 h markedly attenuated acute insulin-stimulated Akt phosphorylation in a strain- and species-independent fashion. Perigonadal, perirenal, and mesenteric fat were all sensitive to TF-induced insulin resistance. A similar TF-induced reduction in insulin-stimulated Akt phosphorylation was observed in primary human subcutaneous adipose tissue. TF-treatment led to a potent and specific reduction in insulin receptor substrate-1 (IRS-1) mRNA and protein levels, a key upstream mediator of insulin’s diverse metabolic effects. In contrast, insulin receptor-β, phosphatidylinositol 3-kinase, and Akt expression were unchanged, indicating a specific abrogation of insulin signaling. Additionally, TF-treated adipocytes exhibited altered endocrine function with a reduction in both basal and insulin-stimulated leptin secretion. These studies demonstrate that TF induces cellular insulin resistance in primary murine and human adipocytes through a reduction of IRS-1 expression and protein stability, raising concern about the potential for this fungicide to disrupt metabolism and thereby contribute to the pathogenesis of diabetes. PMID:22387882

  15. Assay of phosphotyrosyl protein phosphatase using synthetic peptide 1142-1153 of the insulin receptor.

    PubMed

    King, M J; Sale, G J

    1988-09-12

    Synthetic peptide 1142-1153 of the insulin receptor was phosphorylated on tyrosine by the insulin receptor and found to be a potent substrate for dephosphorylation by rat liver particulate and soluble phosphotyrosyl protein phosphatases. Apparent Km values were approximately 5 microM. Vm values (nmol phosphate removed/min per mg protein) were 0.62 (particulate) and 0.2 (soluble). This corresponds to 80% of total activity being membrane-associated, indicating that membrane-bound phosphatases are important receptor phosphatases. The phosphatase activities were distinct from acid and alkaline phosphatase. In conclusion peptide 1142-1153 provides a useful tool for the further study and characterization of phosphotyrosyl protein phosphatases.

  16. Impairment of the liver insulin receptor autoactivation cascade at full-term pregnancy in the rat.

    PubMed

    Martinez, C; Molero, J C; Ruiz, P; Del Arco, A; Andres, A; Carrascosa, J M

    1995-10-15

    Partially purified liver insulin receptors from full-term pregnant rats show decreased autophosphorylation rates if compared with receptors from virgins. We studied the molecular mechanism of this phenomenon, looking at possible structural and functional changes of several domains. The ATP-binding domain seems to be unaltered in receptors from pregnant rats since Km for ATP was similar to that observed in virgins. In contrast, the Vmax. is decreased some 45%, suggesting changes in the kinase domain. Truncation of a fragment of 10 kDa from the C-terminal tail does not normalize the kinase activity in receptors from pregnant rats, suggesting that this domain is not involved in the inhibitory regulation. Treatment with alkaline phosphatase increases the [32P]Pi incorporation into receptors from pregnant rats; however, the autophosphorylation remains lower than that observed in virgin rats. Tryptic phosphopeptide maps of phosphorylated receptors show that the same phosphopeptides are present in receptors from virgin and pregnant rats. However, the progression through the autoactivation cascade in the kinase domain is impaired in receptors from pregnant rats. Differences in the cleavage by trypsin at the two alternative sites in the kinase domain were observed, indicating possible structural changes in receptors from pregnant rats that could be related to the impairment of the autoactivation cascade. Integrity of the alpha- and beta-subunits, as well as differential expression of the two receptor isotypes, were shown to be unaltered. We conclude that (1) the decreased autophosphorylation rate of the liver insulin receptor from pregnant rats is associated with the impairment of its autoactivation cascade, probably as a consequence of the basal Ser/Thr phosphorylation; and (2) the inhibition of the autoactivation cascade does not account for the overall inhibition of autophosphorylation observed in receptors from pregnant rats.

  17. G protein–coupled receptor 21 deletion improves insulin sensitivity in diet-induced obese mice

    PubMed Central

    Osborn, Olivia; Oh, Da Young; McNelis, Joanne; Sanchez-Alavez, Manuel; Talukdar, Saswata; Lu, Min; Li, PingPing; Thiede, Lucinda; Morinaga, Hidetaka; Kim, Jane J.; Heinrichsdorff, Jan; Nalbandian, Sarah; Ofrecio, Jachelle M.; Scadeng, Miriam; Schenk, Simon; Hadcock, John; Bartfai, Tamas; Olefsky, Jerrold M.

    2012-01-01

    Obesity-induced inflammation is a key component of systemic insulin resistance, which is a hallmark of type 2 diabetes. A major driver of this inflammation/insulin resistance syndrome is the accumulation of proinflammatory macrophages in adipose tissue and liver. We found that the orphan GPCR Gpr21 was highly expressed in the hypothalamus and macrophages of mice and that whole-body KO of this receptor led to a robust improvement in glucose tolerance and systemic insulin sensitivity and a modest lean phenotype. The improvement in insulin sensitivity in the high-fat diet–fed (HFD-fed) Gpr21 KO mouse was traced to a marked reduction in tissue inflammation caused by decreased chemotaxis of Gpr21 KO macrophages into adipose tissue and liver. Furthermore, mice lacking macrophage expression of Gpr21 were protected from HFD-induced inflammation and displayed improved insulin sensitivity. Results of in vitro chemotaxis studies in human monocytes suggested that the defect in chemotaxis observed ex vivo and in vivo in mice is also translatable to humans. Cumulatively, our data indicate that GPR21 has a critical function in coordinating macrophage proinflammatory activity in the context of obesity-induced insulin resistance. PMID:22653059

  18. Involvement of PRMT1 in hnRNPQ activation and internalization of insulin receptor

    SciTech Connect

    Iwasaki, Hiroaki

    2008-07-25

    Insulin signaling in skeletal L6 myotubes is known to be affected by arginine methylation catalyzed by protein N-arginine methyltransferase 1 (PRMT1), however, the mechanism by which this occurs has not yet been defined. This study aimed to determine the exact substrate involved in the methylation and regulating insulin signaling in cells. Insulin enhanced arginine methylation of a 66-kDa protein (p66) concomitant with translocation of PRMT1 to the membrane fraction. Peptide mass fingerprinting identified p66 as a heterogeneous nuclear ribonucleoprotein, hnRNPQ that was bound to and methylated by PRMT1. Pharmacological inhibition of methylation (MTA) and small interfering RNA against PRMT1 (PRMT1-siRNA) attenuated insulin-stimulated tyrosine phosphorylation of hnRNPQ and insulin receptor (IR), and the interaction between hnRNPQ and IR. MTA, PRMT1-siRNA, and hnRNPQ-siRNA inhibited internalization of IR in the same manner. These data suggest that the PRMT1-mediated methylation of hnRNPQ is implicated in IR trafficking and insulin signaling in skeletal L6 myotubes.

  19. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway.

    PubMed

    Lo, Hsin-Yi; Ho, Tin-Yun; Li, Chia-Cheng; Chen, Jaw-Chyun; Liu, Jau-Jin; Hsiang, Chien-Yun

    2014-09-10

    Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice.

  20. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction.

    PubMed

    Sang, Ming; Li, Chengjun; Wu, Wei; Li, Bin

    2016-07-10

    The insulin and insulin-like signaling (IIS) pathway exists in a wide range of organisms from mammals to invertebrates and regulates several vital physiological functions. A phylogenetic analysis have indicated that insulin receptors have been duplicated at least twice among vertebrates, whereas only one duplication occurred in insects before the differentiation of Coleoptera, Hymenoptera, and Hemiptera. Thus, we cloned two putative insulin receptor genes, T.cas-ir1 and T.cas-ir2, from T. castaneum and determined that T.cas-ir1 is most strongly expressed during the late adult and early pupal stages, whereas T.cas-ir2 is most strongly expressed during the late larval stage. We found that larval RNAi against T.cas-ir1 and T.cas-ir2 causes 100% and 42.0% insect death, respectively, and that parental RNAi against T.cas-ir1 and T.cas-ir2 leads to 100% and 33.3% reductions in beetle fecundity, respectively. The hatching rate of ds-ir2 insects was 66.2%. Moreover, RNAi against these two genes increased the expression of the pkc, foxo, jnk, cdc42, ikk, and mekk genes but decreased erk gene expression. Despite these similarities, these two genes act via distinct regulatory pathways. These results indicate that these two receptors have functionally diverged with respect to the development and reproduction of T. castaneum, even though they retain some common regulatory signaling pathways.

  1. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation

    PubMed Central

    Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho

    2015-01-01

    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346

  2. Signal regulatory protein-α interacts with the insulin receptor contributing to muscle wasting in chronic kidney disease.

    PubMed

    Thomas, Sandhya S; Dong, Yanjun; Zhang, Liping; Mitch, William E

    2013-08-01

    Insulin resistance from chronic kidney disease (CKD) stimulates muscle protein wasting but mechanisms causing this resistance are controversial. To help resolve this, we used microarray analyses to identify initiators of insulin resistance in the muscles of mice with CKD, glucose intolerance, and insulin resistance. CKD raised mRNAs of inflammatory cytokines in muscles and there was a 5.2-fold increase in signal regulatory protein-α (SIRP-α), a transmembrane glycoprotein principally present in muscle membranes. By immunoprecipitation we found it interacts with the insulin receptor and insulin receptor substrate-1 (IRS-1). Treatment of myotubes with a mixture of inflammatory cytokines showed that SIRP-α expression was increased by a NF-κB-dependent pathway. Blockade of NF-κB using a small-molecule chemical inhibitor or a dominant-negative IKKβ reduced cytokine-induced SIRP-α expression. The overexpression of SIRP-α in myotubes impaired insulin signaling and raised proteolysis while SIRP-α knockdown with siRNAs in skeletal muscle cells increased tyrosine phosphorylation of the insulin receptor and IRS-1 despite inclusion of cytokines. This led to increased p-Akt and suppression of protein degradation. Thus, SIRP-α is part of a novel mechanism for inflammation-mediated insulin resistance in muscle. In catabolic conditions with impaired insulin signaling, targeting SIRP-α may improve insulin sensitivity and prevent muscle atrophy.

  3. Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity

    SciTech Connect

    Goren, H.J.; White, M.F.; Khan, C.R.

    1987-04-21

    The authors have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the ..beta..-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22/sup 0/C with low concentrations of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the ..beta..-subunit was carried out before and after digestion, and the (/sup 32/P)phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the ..beta..-subunit (..cap alpha..Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the (/sup 32/P)phosphate originally found in the ..beta..-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. To determined the structural requirements for kinase activity, the insulin receptor was subjected to tryptic digestion for 30 s-30 min, such that the receptor was composed exclusively of 85- and 70-kDa fragments of the ..beta..-subunit. The 85-kDa fragment exhibited autophosphorylation at pY1, pY1a, and pY4. Both the 85- and 70-kDa fragments phosphorylated tyrosine residues in a synthetic decapeptide that has the sequence of the C-terminal domain of the ..beta..-subunit of human insulin rare in the receptor.

  4. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  5. Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss.

    PubMed

    Marinho, R; Ropelle, E R; Cintra, D E; De Souza, C T; Da Silva, A S R; Bertoli, F C; Colantonio, E; D'Almeida, V; Pauli, J R

    2012-07-01

    Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3β) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1α association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3β phosphorylation levels and glycogen content at 24 h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss.

  6. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus.

    PubMed

    van Asseldonk, Edwin J P; van Poppel, Pleun C M; Ballak, Dov B; Stienstra, Rinke; Netea, Mihai G; Tack, Cees J

    2015-10-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes.

  7. Insulin receptor substrate-2 phosphorylation is necessary for protein kinase C zeta activation by insulin in L6hIR cells.

    PubMed

    Oriente, F; Formisano, P; Miele, C; Fiory, F; Maitan, M A; Vigliotta, G; Trencia, A; Santopietro, S; Caruso, M; Van Obberghen, E; Beguinot, F

    2001-10-05

    We have investigated glycogen synthase (GS) activation in L6hIR cells expressing a peptide corresponding to the kinase regulatory loop binding domain of insulin receptor substrate-2 (IRS-2) (KRLB). In several clones of these cells (B2, F4), insulin-dependent binding of the KRLB to insulin receptors was accompanied by a block of IRS-2, but not IRS-1, phosphorylation, and insulin receptor binding. GS activation by insulin was also inhibited by >70% in these cells (p < 0.001). The impairment of GS activation was paralleled by a similarly sized inhibition of glycogen synthase kinase 3 alpha (GSK3 alpha) and GSK3 beta inactivation by insulin with no change in protein phosphatase 1 activity. PDK1 (a phosphatidylinositol trisphosphate-dependent kinase) and Akt/protein kinase B (PKB) activation by insulin showed no difference in B2, F4, and in control L6hIR cells. At variance, insulin did not activate PKC zeta in B2 and F4 cells. In L6hIR, inhibition of PKC zeta activity by either a PKC zeta antisense or a dominant negative mutant also reduced by 75% insulin inactivation of GSK3 alpha and -beta (p < 0.001) and insulin stimulation of GS (p < 0.002), similar to Akt/PKB inhibition. In L6hIR, insulin induced protein kinase C zeta (PKC zeta) co-precipitation with GSK3 alpha and beta. PKC zeta also phosphorylated GSK3 alpha and -beta. Alone, these events did not significantly affect GSK3 alpha and -beta activities. Inhibition of PKC zeta activity, however, reduced Akt/PKB phosphorylation of the key serine sites on GSK3 alpha and -beta by >80% (p < 0.001) and prevented full GSK3 inactivation by insulin. Thus, IRS-2, not IRS-1, signals insulin activation of GS in the L6hIR skeletal muscle cells. In these cells, insulin inhibition of GSK3 alpha and -beta requires dual phosphorylation by both Akt/PKB and PKC zeta.

  8. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    PubMed Central

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-01-01

    The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms. PMID:25286859

  9. A potential role for lamellar insulin-like growth factor-1 receptor in the pathogenesis of hyperinsulinaemic laminitis.

    PubMed

    de Laat, Melody A; Pollitt, Christopher C; Kyaw-Tanner, Myat T; McGowan, Catherine M; Sillence, Martin N

    2013-08-01

    The reason why a sustained high concentration of insulin induces laminitis in horses remains unclear. Cell proliferation occurs in the lamellae during insulin-induced laminitis and in other species high concentrations of insulin can activate receptors for the powerful cell mitogen, insulin-like growth factor (IGF)-1. The first aim of this study was to determine if IGF-1 receptors (IGF-1R) are activated in the hoof during insulin-induced laminitis. Gene expression for IGF-1R and the insulin receptor (InsR) was measured using qRT-PCR, in lamellar tissue from control horses and from horses undergoing a prolonged euglycaemic, hyperinsulinaemic clamp (p-EHC), during the mid-developmental (24h) and acute (46 h) phases of insulin-induced laminitis. Gene expression for both receptors was decreased 13-32-fold (P<0.05) at both time-points in the insulin-treated horses. A second aim was to determine if the down-regulation of the receptor genes could be accounted for by an increase in circulating IGF-1. Serum IGF-1 was measured at 0, 10, 25 and 46 h post-treatment in horses given a p-EHC for approximately 46 h, and in matched controls administered a balanced, electrolyte solution. There was no increase in serum IGF-1 concentrations during the p-EHC, consistent with down-regulation of both receptors by insulin. Stimulation of the IGF-1R by insulin may lead to inappropriate lamellar epidermal cell proliferation and lamellar weakening, a potential mechanism for hyperinsulinaemic laminitis. Targeting this receptor may provide insights into the pathogenesis or identify a novel therapy for hyperinsulinaemic laminitis.

  10. Internalization and activation of the rat liver insulin receptor kinase in vivo.

    PubMed

    Khan, M N; Baquiran, G; Brule, C; Burgess, J; Foster, B; Bergeron, J J; Posner, B I

    1989-08-05

    The preparation of clearly delineated plasmalemma (PM) and endosomal subcellular fractions from rat liver has allowed us to compare insulin receptor (IR) kinase activity at the cell surface and in hepatic endosomes (ENs) as a function of dose and time after injected insulin. Tyrosine kinase activity in PM and ENs was measured, after solubilization and partial purification by wheat germ agglutinin chromatography (lectin-purified), using poly(Glu:Tyr) as substrate. Following the injection of a subsaturating dose of insulin (1.5 micrograms/100 g body weight), lectin-purified receptor showed peak activation at 30 s in PM and at 2 min in ENs. As observed previously (Khan, M. N., Savoie, S., Bergeron, J. J. M., and Posner, B. I. (1986) J. Biol. Chem. 261, 8462-8472) autophosphorylation activity was also augmented following insulin injection. In a pattern virtually identical to that of exogenous kinase activity, autophosphorylation attained peak activity at 30 s in PM and at 2 min in ENs. The time course of IR autophosphorylation in intact membranes was very similar to that observed for lectin purified receptors and was seen with an injected insulin dose as low as 150 ng/100 g body weight. Phosphatase treatment of the solubilized endosomal receptor abolished its enhanced activity. Hence, insulin treatment led to in vivo receptor phosphorylation which was reflected in the enhancement of both tyrosine kinase and autophosphorylation activities. Significant differences in the phosphorylation activities of PM and ENs were observed. Phosphoamino acid analyses revealed that the activated IR of intact PM was autophosphorylated in vitro, at both serine (55%) and tyrosine (45%) residues; whereas the activated IR of intact ENs was phosphorylated in vitro exclusively on tyrosine autophosphorylation specific activity for the activated IR of ENs was 3- to 4-fold that of the IR of PM. This was observed for the lectin purified IRs as well as for IRs of intact cell fractions. The reduced

  11. Diabetes mellitus caused by mutations in human insulin: analysis of impaired receptor binding of insulins Wakayama, Los Angeles and Chicago using pharmacoinformatics.

    PubMed

    Islam, Md Ataul; Bhayye, Sagar; Adeniyi, Adebayo A; Soliman, Mahmoud E S; Pillay, Tahir S

    2017-03-01

    Several naturally occuring mutations in the human insulin gene are associated with diabetes mellitus. The three known mutant molecules, Wakayama, Los Angeles and Chicago were evaluated using molecular docking and molecular dynamics (MD) to analyse mechanisms of deprived binding affinity for insulin receptor (IR). Insulin Wakayama, is a variant in which valine at position A3 is substituted by leucine, while in insulin Los Angeles and Chicago, phenylalanine at positions B24 and B25 is replaced by serine and leucine, respectively. These mutations show radical changes in binding affinity for IR. The ZDOCK server was used for molecular docking, while AMBER 14 was used for the MD study. The published crystal structure of IR bound to natural insulin was also used for MD. The binding interactions and MD trajectories clearly explained the critical factors for deprived binding to the IR. The surface area around position A3 was increased when valine was substituted by leucine, while at positions B24 and B25 aromatic amino acid phenylalanine replaced by non-aromatic serine and leucine might be responsible for fewer binding interactions at the binding site of IR that leads to instability of the complex. In the MD simulation, the normal mode analysis, rmsd trajectories and prediction of fluctuation indicated instability of complexes with mutant insulin in order of insulin native insulin < insulin Chicago < insulin Los Angeles < insulin Wakayama molecules which corresponds to the biological evidence of the differing affinities of the mutant insulins for the IR.

  12. A Tale of Two Receptors: Insulin and Insulin-Like Growth Factor Signaling in Cancer

    PubMed Central

    Yee, Douglas

    2014-01-01

    Summary Inhibition of the type I IGF receptor (IGF1R) has been the focus of numerous clinical trials. Two reports in this issue describe the results of phase I trials of an IGF1R tyrosine kinase inhibitor OSI-906. This commentary will describe the complex endocrine changes induced by these types of agents. PMID:25303978

  13. Diet-Genotype Interactions in the Development of the Obese, Insulin-Resistant Phenotype of C57BL/6J Mice Lacking Melanocortin-3 or -4 Receptors

    PubMed Central

    Sutton, Gregory M.; Trevaskis, James L.; Hulver, Matthew W.; McMillan, Ryan P.; Markward, Nathan J.; Babin, M. Josephine; Meyer, Emily A.; Butler, Andrew A.

    2009-01-01

    Loss of brain melanocortin receptors (Mc3rKO and Mc4rKO) causes increased adiposity and exacerbates diet-induced obesity (DIO). Little is known about how Mc3r or Mc4r genotype, diet, and obesity affect insulin sensitivity. Insulin resistance, assessed by insulin and glucose tolerance tests, Ser307 phosphorylation of insulin receptor substrate 1, and activation of protein kinase B, was examined in control and DIO wild-type (WT), Mc3rKO and Mc4rKO C57BL/6J mice. Mc4rKO mice were hyperphagic and had increased metabolic efficiency (weight gain per kilojoule consumed) relative to WT; both parameters increased further on high-fat diet. Obesity of Mc3rKO was more dependent on fat intake, involving increased metabolic efficiency. Fat mass of DIO Mc3rKO and Mc4rKO was similar, although Mc4rKO gained weight more rapidly. Mc4rKO develop hepatic insulin resistance and severe hepatic steatosis with obesity, independent of diet. DIO caused further deterioration of insulin action in Mc4rKO of either sex and, in male Mc3rKO, compared with controls, associated with increased fasting insulin, severe glucose intolerance, and reduced insulin signaling in muscle and adipose tissue. DIO female Mc3rKO exhibited very modest perturbations in glucose metabolism and insulin sensitivity. Consistent with previous data suggesting impaired fat oxidation, both Mc3rKO and Mc4rKO had reduced muscle oxidative metabolism, a risk factor for weight gain and insulin resistance. Energy expenditure was, however, increased in Mc4rKO compared with Mc3rKO and controls, perhaps due to hyperphagia and metabolic costs associated with rapid growth. In summary, DIO affects insulin sensitivity more severely in Mc4rKO compared with Mc3rKO, perhaps due to a more positive energy balance. PMID:16469808

  14. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    SciTech Connect

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji ); Inazawa, J.; Nakamura, Yusuke ); Ariyama, Takeshi ); Wands, J.R. )

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  15. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  16. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, andMetSrisk and whether plasma fatty acids,...

  17. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption.

    PubMed

    Pipatpiboon, Noppamas; Pintana, Hiranya; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2013-03-01

    High-fat diet (HFD) consumption has been demonstrated to cause peripheral and neuronal insulin resistance, and brain mitochondrial dysfunction in rats. Although the dipeptidyl peptidase-4 inhibitor, vildagliptin, is known to improve peripheral insulin sensitivity, its effects on neuronal insulin resistance and brain mitochondrial dysfunction caused by a HFD are unknown. We tested the hypothesis that vildagliptin prevents neuronal insulin resistance, brain mitochondrial dysfunction, learning and memory deficit caused by HFD. Male rats were divided into two groups to receive either a HFD or normal diet (ND) for 12 weeks, after which rats in each group were fed with either vildagliptin (3 mg/kg/day) or vehicle for 21 days. The cognitive function was tested by the Morris Water Maze prior to brain removal for studying neuronal insulin receptor (IR) and brain mitochondrial function. In HFD rats, neuronal insulin resistance and brain mitochondrial dysfunction were demonstrated, with impaired learning and memory. Vildagliptin prevented neuronal insulin resistance by restoring insulin-induced long-term depression and neuronal IR phosphorylation, IRS-1 phosphorylation and Akt/PKB-ser phosphorylation. It also improved brain mitochondrial dysfunction and cognitive function. Vildagliptin effectively restored neuronal IR function, increased glucagon-like-peptide 1 levels and prevented brain mitochondrial dysfunction, thus attenuating the impaired cognitive function caused by HFD.

  18. Insulin receptor substrate 2 is a negative regulator of memory formation

    PubMed Central

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O’Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, K. Peter

    2015-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1- receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre- deleter mouse lines respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation. PMID:21597043

  19. Defective insulin secretion by chronic glucagon receptor activation in glucose intolerant mice.

    PubMed

    Ahlkvist, Linda; Omar, Bilal; Valeur, Anders; Fosgerau, Keld; Ahrén, Bo

    2016-03-01

    Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized; however, the effect of long-term GCGR activation on β-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2 weeks) infused with the stable glucagon analog ZP-GA-1 and challenged with oral glucose and intravenous glucose±glucagon-like peptide 1 (GLP1). Islets were isolated to evaluate the insulin secretory response to glucose±GLP1 and their pancreas were collected for immunohistochemical analysis. Two weeks of ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP1. Also, we observed increased β-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of β-cell function during development of type 2 diabetes.

  20. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents

    PubMed Central

    Yasuda, Shin-ichiro; Tsuchida, Takuma; Oguma, Takahiro; Marley, Anna; Wennberg-Huldt, Charlotte; Hovdal, Daniel; Fukuda, Hajime; Yoneyama, Yukimi; Sasaki, Kazuyo; Johansson, Anders; Lundqvist, Sara; Brengdahl, Johan; Isaacs, Richard J.; Brown, Daniel; Geschwindner, Stefan; Benthem, Lambertus; Priest, Claire; Turnbull, Andrew

    2015-01-01

    Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents. PMID:26720709

  1. Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma

    PubMed Central

    Meissburger, Bettina; Ukropec, Jozef; Roeder, Eva; Beaton, Nigel; Geiger, Matthias; Teupser, Daniel; Civan, Burcak; Langhans, Wolfgang; Nawroth, Peter P; Gasperikova, Daniela; Rudofsky, Gottfried; Wolfrum, Christian

    2011-01-01

    Obesity is a well-known risk factor for the development of secondary complications such as type 2 diabetes. However, only a part of the obese population develops secondary metabolic disorders. Here, we identify the transcription factor retinoid-related orphan receptor gamma (RORγ) as a negative regulator of adipocyte differentiation through expression of its newly identified target gene matrix metalloproteinase 3. In vivo differentiation of adipocyte progenitor cells from Rorγ-deficient mice is enhanced and obese Rorγ−/− mice show decreased adipocyte sizes. These small adipocytes are highly insulin sensitive, leading to an improved control of circulating free fatty acids. Ultimately, Rorγ−/− mice are protected from hyperglycemia and insulin resistance in the state of obesity. In adipose stromal-vascular fraction from obese human subjects, Rorγ expression is correlated with adipocyte size and negatively correlated with adipogenesis and insulin sensitivity. Taken together, our findings identify RORγ as a factor, which controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. RORγ might therefore serve as a novel pharmaceutical target to treat obesity-associated insulin resistance. PMID:21853531

  2. Effect of combined hormonal and insulin therapy on the steroid hormone receptors and growth factors signalling in diabetic mice prostate.

    PubMed

    Fávaro, Wagner J; Cagnon, Valéria H A

    2010-12-01

    Diabetes causes harmful effects on prostatic morphology and function. However, there still are doubts about the occurrence of various diseases in the prostate, as well as abnormal angiogenesis in relation to diabetes. Thus, the aim of this study was to correlate and quantify the level of the steroid hormone receptors and the angiogenic and antiangiogenic factors in non-obese diabetic mice (Nod) after combined hormonal and insulin therapy. Sixty mice were divided into six groups after 20 days of diabetes: the control group received 0.9% NaCl, as did the diabetic group. The diabetic-insulin group received insulin, the diabetic-testosterone group received testosterone cypionate, the diabetic-oestrogen group received 17β-oestradiol, and the diabetic-insulin-testosterone-oestrogen group received insulin, testosterone and oestrogen simultaneously. After 20 days, the ventral lobe was processed for immunocytochemical and hormonal analyses. The results showed that the lowest serum testosterone and androgen receptor levels were found in the diabetic group and the highest testosterone and androgen receptor levels in the diabetic-insulin-testosterone-oestrogen group. The serum oestrogen level and its receptor showed changes opposite to those of testosterone and its receptor. The endostatin reactivity was mainly decreased in diabetic mice. The greatest IGFR-1 and VEGF reactivities occurred in diabetic mice. Thus, diabetes led to the prostatic hormonal imbalance, affecting molecular dynamics and angiogenesis in this organ. Combined insulin and steroid hormone therapy partially restored the hormonal and angiogenic imbalance caused by diabetes.

  3. Development of receptors for insulin and insulin-like growth factor-I in head and brain of chick embryos: Autoradiographic localization

    SciTech Connect

    Bassas, L.; Girbau, M.; Lesniak, M.A.; Roth, J.; de Pablo, F. )

    1989-11-01

    In whole brain of chick embryos insulin receptors are highest at the end of embryonic development, while insulin-like growth factor-I (IGF-I) receptors dominate in the early stages. These studies provided evidence for developmental regulation of both types of receptors, but they did not provide information on possible differences between brain regions at each developmental stage or within one region at different embryonic ages. We have now localized the specific binding of (125I)insulin and (125I)IGF-I in sections of head and brain using autoradiography and computer-assisted densitometric analysis. Embryos have been studied from the latter part of organogenesis (days 6 and 12) through late development (day 18, i.e. 3 days before hatching), and the binding patterns have been compared with those in the adult brain. At all ages the binding of both ligands was to discrete anatomical regions. Interestingly, while in late embryos and adult brain the patterns of (125I)insulin and (125I) IGF-I binding were quite distinct, in young embryos both ligands showed very similar localization of binding. In young embryos the retina and lateral wall of the growing encephalic vesicles had the highest binding of both (125I)insulin and (125I)IGF-I. In older embryos, as in the adult brain, insulin binding was high in the paleostriatum augmentatum and molecular layer of the cerebellum, while IGF-I binding was prominent in the hippocampus and neostriatum. The mapping of receptors in a vertebrate embryo model from early prenatal development until adulthood predicts great overlap in any possible function of insulin and IGF-I in brain development, while it anticipates differential localized actions of the peptides in the mature brain.

  4. Imidazolines stimulate release of insulin from RIN-5AH cells independently from imidazoline I1 and I2 receptors.

    PubMed

    Olmos, G; Kulkarni, R N; Haque, M; MacDermot, J

    1994-09-01

    The effect on insulin release of efaroxan, an alpha 2-adrenoceptor antagonist and a highly potent drug at imidazoline I1 receptors, and the effects of seven other imidazoline compounds selective for the imidazoline I1 or I2 receptors, were studied in the rat insulinoma cell line RIN-5AH. The cells released insulin in response to glucose (0.3-10 mM), and efaroxan (100 microM) potentiated glucose-induced insulin release. (-)-Adrenaline completely displaced the binding of [125I]p-iodoclonidine to membranes of RIN-5AH cells, indicating that these cells do not express imidazoline I1 receptors. Cirazoline and idazoxan (100 microM), both highly potent drugs at imidazoline I2 receptors, and the guanidines guanoxan and amiloride (200 microM), also promoted insulin release from RIN-5AH cells. Irreversible blockade of imidazoline I2 receptors with 10 microM clorgyline did not prevent the stimulatory effects of cirazoline or idazoxan; however, these compounds completely reversed the inhibition by diazoxide (250 microM), an opener of ATP-dependent K+ channels (K+ATP channels), of glucose-induced insulin release. These data indicate that the imidazoline/guanidine compounds promote insulin release from RIN-5AH cells, by interacting with a novel binding site related to K+ATP channels that does not represent any of the known imidazoline I1 or I2 receptors.

  5. Interaction mechanism of insulin-like peptide 5 with relaxin family peptide receptor 4.

    PubMed

    Hu, Meng-Jun; Wei, Dian; Shao, Xiao-Xia; Wang, Jia-Hui; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2017-04-01

    Insulin-like peptide 5 (INSL5) is a gut peptide hormone belonging to the insulin/relaxin superfamily. It is implicated in the regulation of food intake and glucose homeostasis by activating relaxin family peptide receptor 4 (RXFP4). Previous studies have suggested that the B-chain is important for INSL5 activity against RXFP4. However, functionalities of the B-chain residues have not yet been systematically studied. In the present work, we conducted alanine-scanning mutagenesis of the B-chain residues of human INSL5 to obtain an overview of their contributions. Binding and activation assays of these INSL5 mutants with human RXFP4 identified two essential exposed B-chain C-terminal residues (B23Arg and B24Trp) and one important exposed central B-chain residue (B16Ile). These three determinant residues together with the C-terminal carboxylate moiety probably constitute a central receptor-binding patch that forms critical hydrophobic and electrostatic interactions with RXFP4 during INSL5 binding. Some other exposed residues, including B10Glu, B12Ile, B13Arg, B17Tyr, B21Ser, and B22Ser, made minor contributions to INSL5 function. These auxiliary residues are scattered around the edge of the central receptor-binding patch, and thus form a peripheral receptor-binding patch on the surface of INSL5. Our present work provides new insights into the interaction mechanism of INSL5 with its receptor RXFP4.

  6. Relationships between changes in leptin and insulin resistance levels in obese individuals following weight loss.

    PubMed

    Wang, Tsu-Nai; Chang, Wen-Tsan; Chiu, Yu-Wen; Lee, Chun-Ying; Lin, Kun-Der; Cheng, Yu Yao; Su, Yi-Ju; Chung, Hsin-Fang; Huang, Meng-Chuan

    2013-08-01

    Obesity can augment insulin resistance (IR), leading to increased risk of diabetes and heart disease. Leptin, ghrelin, and various fatty acids present in the cell membrane may modulate IR. In this study, we aimed to investigate the impact of weight loss on IR, serum leptin/ghrelin levels, and erythrocyte fatty acids, and studied the associations between changes in these variables. A total of 35 obese (body mass index ≥ 27) adults participated in a weight loss program for 3 months. IR was assessed using homeostasis model assessment for insulin resistance (HOMA-IR). The obese participants had a mean weight loss of 5.6 ± 3.8 kg followed by a 16.7% and 23.3% reduction in HOMA-IR and leptin (p < 0.001) levels, and an 11.3% increase in ghrelin levels (p = 0.005). The level of erythrocyte saturates decreased by 2.8%, while the level of n-3 polyunsaturates increased by 16.8% (all p < 0.05). The changes in leptin levels (-5.63 vs. -1.57 ng/mL) were significantly different (p = 0.004) in those with improved IR (changes in HOMA-IR < 0) than those without improvement (changes in HOMA-IR ≥ 0), though there were no differences in the changes of ghrelin (p = 0.120) and erythrocyte fatty acids (all p > 0.05) levels. After adjusting for age, gender, changes in ghrelin, and body fat, we found a significant correlation between decreases in leptin and less risk of no improvement in HOMA-IR levels [odds ratio (OR) = 0.69, p = 0.039]. In conclusion, a moderate weight reduction in obese participants over a short period significantly improved IR. This weight reduction concomitantly decreased serum leptin, increased ghrelin, and elevated some erythrocyte unsaturates. Only leptin correlated independently with IR improvement upon multivariable logistic regression analysis, which indicates that leptin may play a role in the modulation of IR following weight loss.

  7. APS, an adapter protein with a PH and SH2 domain, is a substrate for the insulin receptor kinase.

    PubMed Central

    Ahmed, Z; Smith, B J; Kotani, K; Wilden, P; Pillay, T S

    1999-01-01

    APS (adapter protein with a PH and SH2 domain) is the newest member of a family of tyrosine kinase adapter proteins including SH2-B and Lnk. We previously identified SH2-B as an insulin-receptor-binding protein and substrate [Kotani, Wilden and Pillay (1998) Biochem J. 335, 103-109]. Here we show that APS interacts with the insulin receptor kinase activation loop through its SH2 domain and insulin stimulates the tyrosine-phosphorylation of APS. Furthermore, the phosphorylation of activation-loop tyrosine residues 1158 and 1162 are required for this interaction. PMID:10417330

  8. The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling.

    PubMed

    Bennis, Mohammed T; Schneider, Augusto; Victoria, Berta; Do, Andrew; Wiesenborn, Denise S; Spinel, Lina; Gesing, Adam; Kopchick, John J; Siddiqi, Shadab A; Masternak, Michal M

    2017-02-01

    Growth hormone receptor knockout mice (GHRKO) are characterized by high insulin sensitivity and extended lifespan. Interestingly, the secretory activity of visceral fat in GHRKO mice is altered, stimulating whole body insulin sensitivity. In this study, we transplanted normal (N) mice with visceral fat pads from GHRKO or N mice to determine the role of visceral fat on the insulin signaling. We found that the transplant of visceral fat from GHRKO mice to N mice (N-GHRKO) improved whole body insulin sensitivity when comparing with sham-operated mice (N-S) and with mice that received visceral fat from N mice (N-N). This was associated with increased hepatic insulin sensitivity as observed by the increased phosphorylated insulin receptor and increased hepatic expression of Pparα and Pparγ. In conclusion, we demonstrated that visceral fat transplant from GHRKO mice into normal mice enhanced insulin sensitivity and glucose tolerance. These results further confirm the differential physiological role played by visceral adipose tissue from GH receptor deficient mice, indicating that the increase of this fat depot can be associated with beneficial effects on insulin signaling and longevity.

  9. Vitamin D3 restores altered cholinergic and insulin receptor expression in the cerebral cortex and muscarinic M3 receptor expression in pancreatic islets of streptozotocin induced diabetic rats.

    PubMed

    Kumar, Peeyush T; Antony, Sherin; Nandhu, Mohan S; Sadanandan, Jayanarayanan; Naijil, George; Paulose, Chiramadathikudiyil S

    2011-05-01

    Nutritional therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. The study evaluates the effect of vitamin D(3) in preventing the altered function of cholinergic, insulin receptors and GLUT3 in the cerebral cortex of diabetic rats. Muscarinic M3 acetylcholine receptors in pancreas control insulin secretion. Vitamin D(3) treatment in M3 receptor regulation in the pancreatic islets was also studied. Radioreceptor binding assays and gene expression was done in the cerebral cortex of male Wistar rats. Immunocytochemistry of muscarinic M3 receptor was studied in the pancreatic islets using specific antibodies. Y-maze was used to evaluate the exploratory and spatial memory. Diabetes induced a decrease in muscarinic M1, insulin and vitamin D receptor expression and an increase in muscarinic M3, α7 nicotinic acetylcholine receptor, acetylcholine esterase and GLUT3 expression. Vitamin D(3) and insulin treatment reversed diabetes-induced alterations to near control. Diabetic rats showed a decreased Y-maze performance while vitamin D(3) supplementation improved the behavioural deficit. In conclusion, vitamin D(3) shows a potential therapeutic effect in normalizing diabetes-induced alterations in cholinergic, insulin and vitamin D receptor and maintains a normal glucose transport and utilisation in the cortex. In addition vitamin D(3) modulated muscarinic M3 receptors activity in pancreas and plays a pivotal role in controlling insulin secretion. Hence our findings proved, vitamin D(3) supplementation as a potential nutritional therapy in ameliorating diabetes mediated cortical dysfunctions and suggest an interaction between vitamin D(3) and muscarinic M3 receptors in regulating insulin secretion from pancreas.

  10. Adaptations of leptin, ghrelin or insulin during weight loss as predictors of weight regain: a review of current literature

    PubMed Central

    Strohacker, K; McCaffery, JM; MacLean, PS; Wing, RR

    2014-01-01

    Numerous laboratory studies involving both animal and human models indicate that weight loss induces changes in leptin, ghrelin and insulin sensitivity, which work to promote weight regain. It is unclear, however, whether these biological changes serve as a biomarker for predicting weight regain in free-living humans in which biological, behavioral and environmental factors are likely at play. We identified 12 studies published between January 1995 and December 2011 that reported changes in leptin, ghrelin or insulin during intentional weight loss with a follow-up period to assess regain. Two of the nine studies examining leptin suggested that larger decreases were associated with greater regain, three studies found the opposite (smaller decreases were associated with greater regain), whereas four studies found no significant relationship; none of the studies supported the hypothesis that increases in ghrelin during weight loss were associated with regain. One study suggested that improvements in insulin resistance were associated with weight gain, but five subsequent studies reported no association. Changes in leptin, ghrelin or insulin sensitivity, taken alone, are not sufficient to predict weight regain following weight loss in free-living humans. In future studies, it is important to include a combination of physiological, behavioral and environmental variables in order to identify subgroups at greatest risk of weight regain. PMID:23801147

  11. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    SciTech Connect

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.

    1988-06-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked (/sup 125/I)iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions (/sup 125/I)iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less.

  12. Supplemental dietary protein for grazing dairy cows: reproduction, condition loss, plasma metabolites, and insulin.

    PubMed

    Chapa, A M; McCormick, M E; Fernandez, J M; French, D D; Ward, J D; Beatty, J F

    2001-04-01

    An experiment was conducted over a 2-yr period to investigate the influence of grain crude protein (CP) and rumen undegradable protein (RUP) concentration on reproduction and energy status of dairy cows grazing annual ryegrass (Lolium multiflorum) and oats (Avena sativa). Holstein cows (n = 122) were blocked by calving group [partum (0 d postpartum) vs. postpartum (41 +/- 19 d postpartum at study initiation)] and assigned to grain supplements containing high CP [22.8% of dry matter (DM)], moderate CP (16.6%), or moderate CP (16.2%)] supplemented with RUP from blood meal and corn gluten meal. Postpartum condition loss was greater and first-service pregnancy rate was lower for partum-group cows receiving high CP grain supplements compared with control cows receiving moderate CP supplements. The RUP supplements reduced grain consumption, increased days to first estrus, and reduced first-service pregnancy rate of partum-group cows. The reproduction of postpartum group cows was unaffected by protein supplements. Plasma urea nitrogen was higher for cows fed high CP diets, but plasma ammonia nitrogen, glycated hemoglobin, nonesterified fatty acids, beta-hydoxybutyrate, glucose, and insulin concentrations were similar to cows fed moderate CP. Excess postpartum condition loss, coupled with inconsistent protein supplement effects on days to first service and first-service pregnancy rate, suggest that energy deprivation may have contributed to the low fertility experienced by grazing cows in this study.

  13. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells.

    PubMed

    Harmon, Jamie S; Stein, Roland; Robertson, R Paul

    2005-03-25

    Glucose toxicity in pancreatic islet beta cells causes loss of insulin gene expression, content, and secretion due to loss of binding of transcription factors, most notably PDX-1 and RIPE-3b1 activator, to the promoter region of the insulin gene. Recently, RIPE-3b1 activator was cloned and identified as the mammalian homologue of avian MafA/Maf-L (MafA). This enabled us to carry out more extensive studies of the role of MafA in glucotoxicity than were hitherto possible. Northern analysis of glucotoxic HIT-T15 cells revealed normal amounts of MafA mRNA, but Western analysis demonstrated a 97 +/- 1% reduction in MafA protein (p < 0.0001). The proteasome is a likely site for MafA degradation as lactacystin, an irreversible proteasome inhibitor, caused an accumulation of MafA protein. Antioxidants have previously been shown to prevent the adverse effects of glucose toxicity on beta cell function both in vivo and in vitro. In the current study, chronic culturing of HIT-T15 cells with the antioxidant N-acetylcysteine (NAC) prevented loss of MafA protein (late passage = 18.9 +/- 10.4% of early passage, p < 0.001; late passage with NAC = 68.7 +/- 19.7% of early passage, p = not significant) and loss of DNA binding (late passage = 63.7 +/- 9% of early passage, p < 0.02; late passage with NAC = 116 +/- 10% of early passage, p = not significant). Additionally, transient transfection of PDX-1 or MafA cDNA into glucotoxic cells increased PDX-1 and MafA protein levels and individually increased insulin promoter activity (untreated = 34%, PDX-1 = 70%, MafA = 78%; percentage of activity of early passage cells), whereas the combined transfection of MafA and PDX-1 completely restored insulin promoter activity. This recovery of promoter activity following transient transfection had no effect on endogenous insulin mRNA. However, adenoviral infection of MafA and PDX-1 significantly increased endogenous insulin mRNA levels by 93% (121 +/- 9 versus 233 +/- 18 density light units; n = 5

  14. GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

    PubMed Central

    Rosenbloom, Arlan L.; Balasubramanian, Priya; Teran, Enrique; Guevara-Aguirre, Marco; Guevara, Carolina; Procel, Patricio; Alfaras, Irene; De Cabo, Rafael; Di Biase, Stefano; Narvaez, Luis; Saavedra, Jannette

    2015-01-01

    Context: Ecuadorian subjects with GH receptor deficiency (GHRD) have not developed diabetes, despite obesity. Objective: We sought to determine the metabolic associations for this phenomenon. Design: Four studies were carried out: 1) glucose, lipid, adipocytokine concentrations; 2) metabolomics evaluation; 3) metabolic responses to a high-calorie meal; and 4) oral glucose tolerance tests. Setting: Clinical Research Institute in Quito, Ecuador. Subjects: Adults homozygous for the E180 splice mutation of the GH receptor (GHRD) were matched for age, gender, and body mass index with unaffected control relatives (C) as follows: study 1, 27 GHRD and 35 C; study 2, 10 GHRD and 10 C; study 3, seven GHRD and 11 C; and study 4, seven GHRD and seven C. Results: Although GHRD subjects had greater mean percentage body fat than controls, their fasting insulin, 2-hour blood glucose, and triglyceride levels were lower. The indicator of insulin sensitivity, homeostasis model of assessment 2%S, was greater (P < .0001), and the indicator of insulin resistance, homeostasis model of assessment 2-IR, was lower (P = .0025). Metabolomic differences between GHRD and control subjects were consistent with their differing insulin sensitivity, including postprandial decreases of branched-chain amino acids that were more pronounced in controls. High molecular weight and total adiponectin concentrations were greater in GHRD (P = .0004 and P = .0128, respectively), and leptin levels were lower (P = .02). Although approximately 65% the weight of controls, GHRD subjects consumed an identical high-calorie meal; nonetheless, their mean glucose concentrations were lower, with mean insulin levels one-third those of controls. Results of the 2-hour oral glucose tolerance test were similar. Main Outcome Measures: Measures of insulin sensitivity, adipocytokines, and energy metabolites. Conclusions: Without GH counter-regulation, GHRD is associated with insulin efficiency and obesity. Lower leptin levels

  15. Computational Analysis of Damaging Single-Nucleotide Polymorphisms and Their Structural and Functional Impact on the Insulin Receptor

    PubMed Central

    Mahmud, Zabed; Malik, Syeda Umme Fahmida; Ahmed, Jahed

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) associated with complex disorders can create, destroy, or modify protein coding sites. Single amino acid substitutions in the insulin receptor (INSR) are the most common forms of genetic variations that account for various diseases like Donohue syndrome or Leprechaunism, Rabson-Mendenhall syndrome, and type A insulin resistance. We analyzed the deleterious nonsynonymous SNPs (nsSNPs) in INSR gene based on different computational methods. Analysis of INSR was initiated with PROVEAN followed by PolyPhen and I-Mutant servers to investigate the effects of 57 nsSNPs retrieved from database of SNP (dbSNP). A total of 18 mutations that were found to exert damaging effects on the INSR protein structure and function were chosen for further analysis. Among these mutations, our computational analysis suggested that 13 nsSNPs decreased protein stability and might have resulted in loss of function. Therefore, the probability of their involvement in disease predisposition increases. In the lack of adequate prior reports on the possible deleterious effects of nsSNPs, we have systematically analyzed and characterized the functional variants in coding region that can alter the expression and function of INSR gene. In silico characterization of nsSNPs affecting INSR gene function can aid in better understanding of genetic differences in disease susceptibility. PMID:27840822

  16. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults

    PubMed Central

    Barry, William E; Thummel, Carl S

    2016-01-01

    Although mutations in HNF4A were identified as the cause of Maturity Onset Diabetes of the Young 1 (MODY1) two decades ago, the mechanisms by which this nuclear receptor regulates glucose homeostasis remain unclear. Here we report that loss of Drosophila HNF4 recapitulates hallmark symptoms of MODY1, including adult-onset hyperglycemia, glucose intolerance and impaired glucose-stimulated insulin secretion (GSIS). These defects are linked to a role for dHNF4 in promoting mitochondrial function as well as the expression of Hex-C, a homolog of the MODY2 gene Glucokinase. dHNF4 is required in the fat body and insulin-producing cells to maintain glucose homeostasis by supporting a developmental switch toward oxidative phosphorylation and GSIS at the transition to adulthood. These findings establish an animal model for MODY1 and define a developmental reprogramming of metabolism to support the energetic needs of the mature animal. DOI: http://dx.doi.org/10.7554/eLife.11183.001 PMID:27185732

  17. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis

    PubMed Central

    O’Neill, Brian T.; Lee, Kevin Y.; Klaus, Katherine; Softic, Samir; Krumpoch, Megan T.; Stanford, Kristin I.; Robinson, Matthew M.; Cai, Weikang; Kleinridders, Andre; Pereira, Renata O.; Hirshman, Michael F.; Accili, Domenico; Goodyear, Laurie J.; Nair, K. Sreekumaran

    2016-01-01

    Diabetes strongly impacts protein metabolism, particularly in skeletal muscle. Insulin and IGF-1 enhance muscle protein synthesis through their receptors, but the relative roles of each in muscle proteostasis have not been fully elucidated. Using mice with muscle-specific deletion of the insulin receptor (M-IR–/– mice), the IGF-1 receptor (M-IGF1R–/– mice), or both (MIGIRKO mice), we assessed the relative contributions of IR and IGF1R signaling to muscle proteostasis. In differentiated muscle, IR expression predominated over IGF1R expression, and correspondingly, M-IR–/– mice displayed a moderate reduction in muscle mass whereas M-IGF1R–/– mice did not. However, these receptors serve complementary roles, such that double-knockout MIGIRKO mice displayed a marked reduction in muscle mass that was linked to increases in proteasomal and autophagy-lysosomal degradation, accompanied by a high-protein-turnover state. Combined muscle-specific deletion of FoxO1, FoxO3, and FoxO4 in MIGIRKO mice reversed increased autophagy and completely rescued muscle mass without changing proteasomal activity. These data indicate that signaling via IR is more important than IGF1R in controlling proteostasis in differentiated muscle. Nonetheless, the overlap of IR and IGF1R signaling is critical to the regulation of muscle protein turnover, and this regulation depends on suppression of FoxO-regulated, autophagy-mediated protein degradation. PMID:27525440

  18. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins

    PubMed Central

    Hakuno, Fumihiko; Fukushima, Toshiaki; Yoneyama, Yosuke; Kamei, Hiroyasu; Ozoe, Atsufumi; Yoshihara, Hidehito; Yamanaka, Daisuke; Shibano, Takashi; Sone-Yonezawa, Meri; Yu, Bu-Chin; Chida, Kazuhiro; Takahashi, Shin-Ichiro

    2015-01-01

    Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases. PMID:26074875

  19. Treating Diabetes Mellitus: Pharmacophore Based Designing of Potential Drugs from Gymnema sylvestre against Insulin Receptor Protein

    PubMed Central

    Hossain, Mohammad Uzzal; Khan, Md. Arif; Rakib-Uz-Zaman, S. M.; Ali, Mohammad Tuhin; Islam, Md. Saidul; Keya, Chaman Ara; Salimullah, Md.

    2016-01-01

    Diabetes mellitus (DM) is one of the most prevalent metabolic disorders which can affect the quality of life severely. Injectable insulin is currently being used to treat DM which is mainly associated with patient inconvenience. Small molecules that can act as insulin receptor (IR) agonist would be better alternatives to insulin injection. Herein, ten bioactive small compounds derived from Gymnema sylvestre (G. sylvestre) were chosen to determine their IR binding affinity and ADMET properties using a combined approach of molecular docking study and computational pharmacokinetic elucidation. Designing structural analogues were also performed for the compounds associated with toxicity and less IR affinity. Among the ten parent compounds, six were found to have significant pharmacokinetic properties with considerable binding affinity towards IR while four compounds were associated with toxicity and less IR affinity. Among the forty structural analogues, four compounds demonstrated considerably increased binding affinity towards IR and less toxicity compared with parent compounds. Finally, molecular interaction analysis revealed that six parent compounds and four analogues interact with the active site amino acids of IR. So this study would be a way to identify new therapeutics and alternatives to insulin for diabetic patients. PMID:27034931

  20. Treating Diabetes Mellitus: Pharmacophore Based Designing of Potential Drugs from Gymnema sylvestre against Insulin Receptor Protein.

    PubMed

    Hossain, Mohammad Uzzal; Khan, Md Arif; Rakib-Uz-Zaman, S M; Ali, Mohammad Tuhin; Islam, Md Saidul; Keya, Chaman Ara; Salimullah, Md

    2016-01-01

    Diabetes mellitus (DM) is one of the most prevalent metabolic disorders which can affect the quality of life severely. Injectable insulin is currently being used to treat DM which is mainly associated with patient inconvenience. Small molecules that can act as insulin receptor (IR) agonist would be better alternatives to insulin injection. Herein, ten bioactive small compounds derived from Gymnema sylvestre (G. sylvestre) were chosen to determine their IR binding affinity and ADMET properties using a combined approach of molecular docking study and computational pharmacokinetic elucidation. Designing structural analogues were also performed for the compounds associated with toxicity and less IR affinity. Among the ten parent compounds, six were found to have significant pharmacokinetic properties with considerable binding affinity towards IR while four compounds were associated with toxicity and less IR affinity. Among the forty structural analogues, four compounds demonstrated considerably increased binding affinity towards IR and less toxicity compared with parent compounds. Finally, molecular interaction analysis revealed that six parent compounds and four analogues interact with the active site amino acids of IR. So this study would be a way to identify new therapeutics and alternatives to insulin for diabetic patients.

  1. Insulin receptor regulates food intake through sulfakinin signaling in the red flour beetle, Tribolium castaneum.

    PubMed

    Lin, Xianyu; Yu, Na; Smagghe, Guy

    2016-06-01

    Insects obtain energy and nutrients via feeding to support growth and development. The insulin signaling pathway is involved in the regulation of feeding; however, the underlying mechanisms are not fully understood. Here, we show that insulin signaling regulates food intake via crosstalk with neuropeptide sulfakinin in the red flour beetle, Tribolium castaneum. Silencing of the insulin receptor (InR) decreased the food intake in the penultimate and final instar stages, leading to a decrease of weight gain and mortality during larval-pupal metamorphosis. Interestingly, the knockdown of InR co-occurred with an increased expression of sulfakinin (sk), a gene encoding neuropeptide SK functioning as a satiety signal. In parallel, double silencing of sk and InR eliminated the inhibitory effect on food intake as induced by silencing of InR and the larvae died as prepupae. In conclusion, this study shows, for the first time, that the insulin/InR signaling regulates food intake through the sulfakinin signaling pathway in the larval stages of this important model and pest insect, indicating a novel target for pest control.

  2. Aerobic exercise plus weight loss improves insulin sensitivity and increases skeletal muscle glycogen synthase activity in older men.

    PubMed

    Ryan, Alice S; Katzel, Leslie I; Prior, Steven J; McLenithan, John C; Goldberg, Andrew P; Ortmeyer, Heidi K

    2014-07-01

    The purpose of this study was to determine the effects of 6-month aerobic exercise training + weight loss (AEX + WL) on basal and insulin activation of glycogen synthase, basal citrate synthase activity, and Akt and AS160 phosphorylation in older, overweight/obese insulin-resistant men (n = 14; 63 ± 2 years; body mass index, 32 ± kg/m(2)). Muscle samples of the vastus lateralis were collected before and during a 3-hour 80 mU/m(2)/min hyperinsulinemic-euglycemic clamp. AEX + WL increased VO2max by 11% (p < .05) and decreased body weight (-9%, p < .001). AEX + WL increased basal citrate synthase activity by 46% (p < .01) and insulin activation of independent (2.9-fold) and fractional (2.3-fold) activities (both p < .001) of glycogen synthase. AEX + WL had no effect on phosphorylation of Akt or AS160. Glucose utilization (M) improved 25% (p < .01), and the change tended to be related to the increase in insulin activation of glycogen synthase fractional activity (r = .50, p = .08) following AEX + WL. In summary, AEX + WL has a robust effect on insulin activation of skeletal muscle glycogen synthase activity that likely contributes to improved glucose utilization in older insulin-resistant men.

  3. Aerobic Exercise Plus Weight Loss Improves Insulin Sensitivity and Increases Skeletal Muscle Glycogen Synthase Activity in Older Men

    PubMed Central

    Katzel, Leslie I.; Prior, Steven J.; McLenithan, John C.; Goldberg, Andrew P.; Ortmeyer, Heidi K.

    2014-01-01

    The purpose of this study was to determine the effects of 6-month aerobic exercise training + weight loss (AEX + WL) on basal and insulin activation of glycogen synthase, basal citrate synthase activity, and Akt and AS160 phosphorylation in older, overweight/obese insulin-resistant men (n = 14; 63 ± 2 years; body mass index, 32 ± kg/m2). Muscle samples of the vastus lateralis were collected before and during a 3-hour 80 mU/m2/min hyperinsulinemic-euglycemic clamp. AEX + WL increased VO2max by 11% (p < .05) and decreased body weight (−9%, p < .001). AEX + WL increased basal citrate synthase activity by 46% (p < .01) and insulin activation of independent (2.9-fold) and fractional (2.3-fold) activities (both p < .001) of glycogen synthase. AEX + WL had no effect on phosphorylation of Akt or AS160. Glucose utilization (M) improved 25% (p < .01), and the change tended to be related to the increase in insulin activation of glycogen synthase fractional activity (r = .50, p = .08) following AEX + WL. In summary, AEX + WL has a robust effect on insulin activation of skeletal muscle glycogen synthase activity that likely contributes to improved glucose utilization in older insulin-resistant men. PMID:24357038

  4. The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity

    PubMed Central

    Akpan, Imo; Goncalves, Marcus D.; Dhir, Ravindra; Yin, Xiaoyan; Pistilli, Emidio; Bogdanovich, Sasha; Khurana, Tejvir; Ucran, Jeffrey; Lachey, Jennifer; Ahima, Rexford S.

    2009-01-01

    Myostatin, also known as Growth and Differentiation Factor 8, is a secreted protein that inhibits muscle growth. Disruption of myostatin signaling increases muscle mass and decreases glucose, but it is unclear whether these changes are related. We treated mice on chow and high-fat diets with a soluble activin receptor type IIB (ActRIIB.Fc) which is a putative endogenous signaling receptor for myostatin and other ligands of the TGF-β superfamily. After 4 weeks, RAP-031 increased lean and muscle mass, grip strength, and contractile force. RAP-031 enhanced the ability of insulin to suppress glucose production under clamp conditions in high-fat fed mice, but did not significantly change insulin-mediated glucose disposal. The hepatic insulin sensitizing effect of RAP-031 treatment was associated with increased adiponectin levels. RAP-031 treatment for 10 weeks further increased muscle mass and drastically reduced fat content in mice on either chow or high-fat diet. RAP-031 suppressed hepatic glucose production and increased peripheral glucose uptake in chow fed mice. In contrast, RAP-031 suppressed glucose production with no apparent change in glucose disposal in high-fat diet mice. Our findings demonstrate that disruption of ActRIIB signaling is a viable pharmacological approach for treating obesity and diabetes. PMID:19668253

  5. [Treatment strategy for elderly diabetic patient with insulin or GLP-1 receptor agonist].

    PubMed

    Ando, Yasuyo

    2013-11-01

    It has been established that diabetes is an independent risk factor for microvascular and macrovascular complications, and many studies indicate that diabetic subjects are at greater risk of dementia, depression and fracture. Risk reductions for microvascular, macrovascular and death were observed by intensive therapy using insulin or oral diabetic agents. But a history of hypoglycemia was increased myocardial infarction, mortality, dementia and fracture. So it is important that optimum glycemic control has to be achieved without hypoglycemia. Treatment with a long-acting basal insulin analogue or glucagon-like peptide-1(GLP-1) receptor agonist, provide effective glycemic control without serious hypoglycemia in elderly patients. Self-monitoring of blood glucose might be effective in improving glycemic control in elderly patients, and it is useful for the diagnosis of hypoglycemia.

  6. Insulin Receptor Substrate-1 Associates with Small Nucleolar RNA Which Contributes to Ribosome Biogenesis

    PubMed Central

    Ozoe, Atsufumi; Sone, Meri; Fukushima, Toshiaki; Kataoka, Naoyuki; Chida, Kazuhiro; Asano, Tomoichiro; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2014-01-01

    Insulin receptor substrates (IRSs) are well known to play crucial roles in mediating intracellular signals of insulin-like growth factors (IGFs)/insulin. Previously, we showed that IRS-1 forms high molecular mass complexes containing RNAs. To identify RNAs in IRS-1 complexes, we performed ultraviolet (UV) cross-linking and immunoprecipitation analysis using HEK293 cells expressing FLAG–IRS-1 and FLAG–IRS-2. We detected the radioactive signals in the immunoprecipitates of FLAG–IRS-1 proportional to the UV irradiation, but not in the immunoprecipitates of FLAG–IRS-2, suggesting the direct contact of RNAs with IRS-1. RNAs cross-linked to IRS-1 were then amplified by RT-PCR, followed by sequence analysis. We isolated sequence tags attributed to 25 messenger RNAs and 8 non-coding RNAs, including small nucleolar RNAs (snoRNAs). We focused on the interaction of IRS-1 with U96A snoRNA (U96A) and its host Rack1 (receptor for activated C kinase 1) pre-mRNA. We confirmed the interaction of IRS-1 with U96A, and with RACK1 pre-mRNA by immunoprecipitation with IRS-1 followed by Northern blotting or RT-PCR analyses. Mature U96A in IRS-1−/− mouse embryonic fibroblasts was quantitatively less than WT. We also found that a part of nuclear IRS-1 is localized in the Cajal body, a nuclear subcompartment where snoRNA mature. The unanticipated function of IRS-1 in snoRNA biogenesis highlights the potential of RNA-associated IRS-1 complex to open a new line of investigation to dissect the novel mechanisms regulating IGFs/insulin-mediated biological events. PMID:24624118

  7. Essential role of PSM/SH2-B variants in insulin receptor catalytic activation and the resulting cellular responses.

    PubMed

    Zhang, Manchao; Deng, Youping; Tandon, Ruchi; Bai, Cheng; Riedel, Heimo

    2008-01-01

    The positive regulatory role of PSM/SH2-B downstream of various mitogenic receptor tyrosine kinases or gene disruption experiments in mice support a role of PSM in the regulation of insulin action. Here, four alternative PSM splice variants and individual functional domains were compared for their role in the regulation of specific metabolic insulin responses. We found that individual PSM variants in 3T3-L1 adipocytes potentiated insulin-mediated glucose and amino acid transport, glycogenesis, lipogenesis, and key components in the metabolic insulin response including p70 S6 kinase, glycogen synthase, glycogen synthase kinase 3 (GSK3), Akt, Cbl, and IRS-1. Highest activity was consistently observed for PSM alpha, followed by beta, delta, and gamma with decreasing activity. In contrast, dominant-negative peptide mimetics of the PSM Pro-rich, pleckstrin homology (PH), or src homology 2 (SH2) domains inhibited any tested insulin response. Potentiation of the insulin response originated at the insulin receptor (IR) kinase level by PSM variant-specific regulation of the Km (ATP) whereas the Vmax remained unaffected. IR catalytic activation was inhibited by peptide mimetics of the PSM SH2 or dimerization domain (DD). Either peptide should disrupt the complex of a PSM dimer linked to IR via SH2 domains as proposed for PSM activation of tyrosine kinase JAK2. Either peptide abolished downstream insulin responses indistinguishable from PSM siRNA knockdown. Our results implicate an essential role of the PSM variants in the activation of the IR kinase and the resulting metabolic insulin response. PSM variants act as internal IR ligands that in addition to potentiating the insulin response stimulate IR catalytic activation even in the absence of insulin.

  8. Chronic Exposure to Nicotine Enhances Insulin Sensitivity through α7 Nicotinic Acetylcholine Receptor-STAT3 Pathway

    PubMed Central

    Wang, Pei; Song, Jie; Le, Ying-Ying; Viollet, Benoit; Miao, Chao-Yu

    2012-01-01

    This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment of Sprague-Dawley rats with nicotine (3 mg/kg/day) for 6 weeks reduced 43% body weight gain and 65% blood insulin level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day) to antagonize peripheral nicotinic receptors except for α7 nicotinic acetylcholine receptor (α7-nAChR) had no effect on the insulin sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was abrogated in α7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day), a selective α7-nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice but also in AMP-activated kinase-α2 knockout mice, an animal model of insulin resistance with no sign of inflammation. Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating α7-nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance. PMID:23251458

  9. BACE2 plays a role in the insulin receptor trafficking in pancreatic ß-cells.

    PubMed

    Casas, Silvia; Casini, Paola; Piquer, Sandra; Altirriba, Jordi; Soty, Maud; Cadavez, Lisa; Gomis, Ramon; Novials, Anna

    2010-12-01

    BACE1 (β-site amyloidogenic cleavage of precursor protein-cleaving enzyme 1) is a β-secretase protein that plays a central role in the production of the β-amyloid peptide in the brain and is thought to be involved in the Alzheimer's pathogenesis. In type 2 diabetes, amyloid deposition within the pancreatic islets is a pathophysiological hallmark, making crucial the study in the pancreas of BACE1 and its homologous BACE2 to understand the pathological mechanisms of this disease. The objectives of the present study were to characterize the localization of BACE proteins in human pancreas and determine their function. High levels of BACE enzymatic activity were detected in human pancreas. In normal human pancreas, BACE1 was observed in endocrine as well as in exocrine pancreas, whereas BACE2 expression was restricted to β-cells. Intracellular analysis using immunofluorescence showed colocalization of BACE1 with insulin and BACE2 with clathrin-coated vesicles of the plasma membrane in MIN6 cells. When BACE1 and -2 were pharmacologically inhibited, BACE1 localization was not altered, whereas BACE2 content in clathrin-coated vesicles was increased. Insulin internalization rate was reduced, insulin receptor β-subunit (IRβ) expression was decreased at the plasma membrane and increased in the Golgi apparatus, and a significant reduction in insulin gene expression was detected. Similar results were obtained after specific BACE2 silencing in MIN6 cells. All these data point to a role for BACE2 in the IRβ trafficking and insulin signaling. In conclusion, BACE2 is hereby presented as an important enzyme in β-cell function.

  10. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression

    PubMed Central

    Cai, Weikang; Sakaguchi, Masaji; Kleinridders, Andre; Gonzalez-Del Pino, Gonzalo; Dreyfuss, Jonathan M.; O'Neill, Brian T.; Ramirez, Alfred K.; Pan, Hui; Winnay, Jonathon N.; Boucher, Jeremie; Eck, Michael J.; Kahn, C. Ronald

    2017-01-01

    Despite a high degree of homology, insulin receptor (IR) and IGF-1 receptor (IGF1R) mediate distinct cellular and physiological functions. Here, we demonstrate how domain differences between IR and IGF1R contribute to the distinct functions of these receptors using chimeric and site-mutated receptors. Receptors with the intracellular domain of IGF1R show increased activation of Shc and Gab-1 and more potent regulation of genes involved in proliferation, corresponding to their higher mitogenic activity. Conversely, receptors with the intracellular domain of IR display higher IRS-1 phosphorylation, stronger regulation of genes in metabolic pathways and more dramatic glycolytic responses to hormonal stimulation. Strikingly, replacement of leucine973 in the juxtamembrane region of IR to phenylalanine, which is present in IGF1R, mimics many of these signalling and gene expression responses. Overall, we show that the distinct activities of the closely related IR and IGF1R are mediated by their intracellular juxtamembrane region and substrate binding to this region. PMID:28345670

  11. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    SciTech Connect

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-10-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation.

  12. Identification and Characterization of an Insulin-Like Receptor Involved in Crustacean Reproduction.

    PubMed

    Sharabi, O; Manor, R; Weil, S; Aflalo, E D; Lezer, Y; Levy, T; Aizen, J; Ventura, T; Mather, P B; Khalaila, I; Sagi, A

    2016-02-01

    Sexual differentiation and maintenance of masculinity in crustaceans has been suggested as being regulated by a single androgenic gland (AG) insulin-like peptide (IAG). However, downstream elements involved in the signaling cascade remain unknown. Here we identified and characterized a gene encoding an insulin-like receptor in the prawn Macrobrachium rosenbergii (Mr-IR), the first such gene detected in a decapod crustacean. In mining for IRs and other insulin signaling-related genes, we constructed a comprehensive M. rosenbergii transcriptomic library from multiple sources. In parallel we sequenced the complete Mr-IR cDNA, confirmed in the wide transcriptomic library. Mr-IR expression was detected in most tissues in both males and females, including the AG and gonads. To study Mr-IR function, we performed long-term RNA interference (RNAi) silencing in young male prawns. Although having no effect on growth, Mr-IR silencing advanced the appearance of a male-specific secondary trait. The most noted effects of Mr-IR silencing were hypertrophy of the AG and the associated increased production of Mr-IAG, with an unusual abundance of immature sperm cells being seen in the distal sperm duct. A ligand blot assay using de novo recombinant Mr-IAG confirmed the existence of a ligand-receptor interaction. Whereas these results suggest a role for Mr-IR in the regulation of the AG, we did not see any sexual shift after silencing of Mr-IR, as occurred when the ligand-encoding Mr-IAG gene was silenced. This suggests that sexual differentiation in crustaceans involve more than a single Mr-IAG receptor, emphasizing the complexity of sexual differentiation and maintenance.

  13. Effect of combined hormonal and insulin therapy on the steroid hormone receptors and growth factors signalling in diabetic mice prostate

    PubMed Central

    Fávaro, Wagner J; Cagnon, Valéria H A

    2010-01-01

    Diabetes causes harmful effects on prostatic morphology and function. However, there still are doubts about the occurrence of various diseases in the prostate, as well as abnormal angiogenesis in relation to diabetes. Thus, the aim of this study was to correlate and quantify the level of the steroid hormone receptors and the angiogenic and antiangiogenic factors in non-obese diabetic mice (Nod) after combined hormonal and insulin therapy. Sixty mice were divided into six groups after 20 days of diabetes: the control group received 0.9% NaCl, as did the diabetic group. The diabetic-insulin group received insulin, the diabetic-testosterone group received testosterone cypionate, the diabetic-oestrogen group received 17β-oestradiol, and the diabetic-insulin–testosterone–oestrogen group received insulin, testosterone and oestrogen simultaneously. After 20 days, the ventral lobe was processed for immunocytochemical and hormonal analyses. The results showed that the lowest serum testosterone and androgen receptor levels were found in the diabetic group and the highest testosterone and androgen receptor levels in the diabetic-insulin–testosterone–oestrogen group. The serum oestrogen level and its receptor showed changes opposite to those of testosterone and its receptor. The endostatin reactivity was mainly decreased in diabetic mice. The greatest IGFR-1 and VEGF reactivities occurred in diabetic mice. Thus, diabetes led to the prostatic hormonal imbalance, affecting molecular dynamics and angiogenesis in this organ. Combined insulin and steroid hormone therapy partially restored the hormonal and angiogenic imbalance caused by diabetes. PMID:21039986

  14. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    SciTech Connect

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-05-05

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. (Phe/sup -1/, Val/sup 1/, Asn/sup 2/, Gln/sup 3/, His/sup 4/, Ser/sup 8/, His/sup 9/, Glu/sup 12/, Tyr/sup 15/, Leu/sup 16/)IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. (Gln/sup 3/, Ala/sup 4/) IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. (Tyr/sup 15/, Leu/sup 16/) IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, (Gln/sup 3/, Ala/sup 4/, Tyr/sup 15/,Leu/sup 16/)IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.

  15. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    PubMed Central

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  16. Prostaglandin A2 Enhances Cellular Insulin Sensitivity via a Mechanism that Involves the Orphan Nuclear Receptor NR4A3

    PubMed Central

    Zhu, X.; Walton, R. G.; Tian, L.; Luo, N.; Ho, S-R.; Fu, Y.; Garvey, W. T.

    2014-01-01

    We have previously reported that members of the NR4A family of orphan nuclear receptors can augment insulin’s ability to stimulate glucose transport in adipocytes. In the current study, we endeavored to test for an insulin-sensitizing effect in muscle cells and to identify a potential transactivator. Lentiviral constructs were used to engineer both hyperexpression and shRNA silencing of NR4A3 in C2C12 myocytes. The NR4A3 hyper-expression construct led to a significant increase in glucose transport rates in the presence of maximal insulin while the NR4A3 knock-down exhibited a significant reduction in insulin-stimulated glucose transport rates. Consistently, insulin-mediated AKT phosphorylation was increased by NR4A3 hyperexpression and decreased following shRNA NR4A3 suppression. Then, we examined effects of prostaglandin A2 (PGA2) on insulin action and NR4A3 transactivation. PGA2 augmented insulin-stimulated glucose uptake in C2C12 myocytes and AKT phosphorylation after 12-h treatment, without significant effects on basal transport or basal AKT phosphorylation. More importantly, we demonstrated that PGA2 led to a greater improvement in insulin-stimulated glucose rates in NR4A3 overexpressing C2C12 myocytes, when compared with Lac-Z controls stimulated with insulin and PGA2. Moreover, the sensitizing effect of PGA2 was significantly diminished in NR4A3 knockdown myocytes compared to scramble controls. These results show for the first time that: (i) PGA2 augments insulin action in myocytes as manifested by enhanced stimulation of glucose transport and AKT phosphorylation; and (ii) the insulin sensitizing effect is dependent upon the orphan nuclear receptor NR4A3. PMID:23104421

  17. Insulin-stimulated Na/sup +/ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    SciTech Connect

    Blazer-Yost, B.L.; Cox, M.

    1987-05-01

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (approx. 0.5-5.0 ..mu..M) stimulates net mucosal to serosal Na/sup +/ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10..mu..M) of the epithelial Na/sup +/ channel blocker amiloride. Insulin-stimulated Na/sup +/ transport does not require new protein synthesis since it is actinomycin-D (10..mu..g/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by /sup 35/S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulin induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64..mu..M) stimulate Na/sup +/ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF/sub 1/ stimulate Na/sup +/ transport in this tissue support the latter contention.

  18. Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome.

    PubMed

    Glatter, Timo; Schittenhelm, Ralf B; Rinner, Oliver; Roguska, Katarzyna; Wepf, Alexander; Jünger, Martin A; Köhler, Katja; Jevtov, Irena; Choi, Hyungwon; Schmidt, Alexander; Nesvizhskii, Alexey I; Stocker, Hugo; Hafen, Ernst; Aebersold, Ruedi; Gstaiger, Matthias

    2011-11-08

    Genetic analysis in Drosophila melanogaster has been widely used to identify a system of genes that control cell growth in response to insulin and nutrients. Many of these genes encode components of the insulin receptor/target of rapamycin (InR/TOR) pathway. However, the biochemical context of this regulatory system is still poorly characterized in Drosophila. Here, we present the first quantitative study that systematically characterizes the modularity and hormone sensitivity of the interaction proteome underlying growth control by the dInR/TOR pathway. Applying quantitative affinity purification and mass spectrometry, we identified 97 high confidence protein interactions among 58 network components. In all, 22% of the detected interactions were regulated by insulin affecting membrane proximal as well as intracellular signaling complexes. Systematic functional analysis linked a subset of network components to the control of dTORC1 and dTORC2 activity. Furthermore, our data suggest the presence of three distinct dTOR kinase complexes, including the evolutionary conserved dTTT complex (Drosophila TOR, TELO2, TTI1). Subsequent genetic studies in flies suggest a role for dTTT in controlling cell growth via a dTORC1- and dTORC2-dependent mechanism.

  19. Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome

    PubMed Central

    Glatter, Timo; Schittenhelm, Ralf B; Rinner, Oliver; Roguska, Katarzyna; Wepf, Alexander; Jünger, Martin A; Köhler, Katja; Jevtov, Irena; Choi, Hyungwon; Schmidt, Alexander; Nesvizhskii, Alexey I; Stocker, Hugo; Hafen, Ernst; Aebersold, Ruedi; Gstaiger, Matthias

    2011-01-01

    Genetic analysis in Drosophila melanogaster has been widely used to identify a system of genes that control cell growth in response to insulin and nutrients. Many of these genes encode components of the insulin receptor/target of rapamycin (InR/TOR) pathway. However, the biochemical context of this regulatory system is still poorly characterized in Drosophila. Here, we present the first quantitative study that systematically characterizes the modularity and hormone sensitivity of the interaction proteome underlying growth control by the dInR/TOR pathway. Applying quantitative affinity purification and mass spectrometry, we identified 97 high confidence protein interactions among 58 network components. In all, 22% of the detected interactions were regulated by insulin affecting membrane proximal as well as intracellular signaling complexes. Systematic functional analysis linked a subset of network components to the control of dTORC1 and dTORC2 activity. Furthermore, our data suggest the presence of three distinct dTOR kinase complexes, including the evolutionary conserved dTTT complex (Drosophila TOR, TELO2, TTI1). Subsequent genetic studies in flies suggest a role for dTTT in controlling cell growth via a dTORC1- and dTORC2-dependent mechanism. PMID:22068330

  20. The antidiabetic agent sodium tungstate activates glycogen synthesis through an insulin receptor-independent pathway.

    PubMed

    Domínguez, Jorge E; Muñoz, M Carmen; Zafra, Delia; Sanchez-Perez, Isabel; Baqué, Susanna; Caron, Martine; Mercurio, Ciro; Barberà, Albert; Perona, Rosario; Gomis, Ramon; Guinovart, Joan J

    2003-10-31

    Sodium tungstate is a powerful antidiabetic agent when administered orally. In primary cultured hepatocytes, tungstate showed insulin-like actions, which led to an increase in glycogen synthesis and accumulation. However, this compound did not significantly alter the insulin receptor activation state or dephosphorylation rate in cultured cells (CHO-R) or in primary hepatocytes, in either short or long term treatments. In contrast, at low concentrations, tungstate induced a transient strong activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) after 5-10 min of treatment, in a similar way to insulin. Moreover, this compound did not significantly delay or inhibit the dephosphorylation of ERK1/2. ERK1/2 activation triggered a cascade of downstream events, which included the phosphorylation of p90rsk and glycogen synthase-kinase 3beta. Experiments with a specific inhibitor of ERK1/2 activation and kinase assays indicate that these proteins were directly involved in the stimulation of glycogen synthase and glycogen synthesis induced by tungstate without a direct involvement of protein kinase B (PKB/Akt). These results show a direct involvement of ERK1/2 in the mechanism of action of tungstate at the hepatic level.

  1. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor.

    PubMed

    Zeitz, Ute; Weber, Karin; Soegiarto, Desi W; Wolf, Eckhard; Balling, Rudi; Erben, Reinhold G

    2003-03-01

    It was the aim of this study to further explore the functional role of vitamin D in the endocrine pancreas. By gene targeting, we have recently generated mice in which a lacZ reporter gene is driven by the endogenous vitamin D receptor (VDR) promoter. These mice express a functionally inactive mutant VDR. Pancreatic islets but not exocrine pancreas cells showed strong lacZ reporter gene expression in mutant mice. To rule out possible influences of hypocalcemia on pancreatic endocrine function, a rescue diet enriched with calcium, phosphorus, and lactose was fed to wild-type (WT) and VDR mutant mice. The rescue diet normalized body weight and mineral homeostasis in VDR mutants. In glucose tolerance tests, baseline blood glucose levels were unchanged in fasting VDR mutants. However, blood glucose was elevated after oral or subcutaneous glucose loading, and maximum serum insulin levels were reduced by approximately 60% in VDR mutants vs. WT mice on either diet. In addition, insulin mRNA levels were decreased in VDR mutant mice on both diets, whereas pancreatic beta cell mass, islet architecture, and islet neogenesis were normal. These findings clearly establish a molecular role of the vitamin D-responsive elements in pancreatic insulin synthesis and secretion in vivo.

  2. Rhodopsin-Regulated Insulin Receptor Signaling Pathway in Rod Photoreceptor Neurons

    PubMed Central

    Rajala, Raju V.S.; Anderson, Robert E.

    2010-01-01

    The retina is an integral part of the central nervous system and retinal cells are known to express insulin receptors (IR), although their function is not known. This article describes recent studies that link the photoactivation of rhodopsin to tyrosine phosphorylation of the IR and subsequent activation of phosphoinositide 3-kinase (PI3K), a neuron survival factor. Our studies suggest that the physiological role of this process is to provide neuroprotection of the retina against light-damage by activating proteins that protect against stress-induced apoptosis. We focus mainly on our recently identified regulation of the IR pathway through the G-protein-coupled receptor rhodopsin. Various mutant and knockout proteins of phototransduction cascade have been used to study the light-induced activation of the retinal IR. Our studies suggest that rhodopsin may have additional previously uncharacterized signaling functions in photoreceptors. PMID:20407846

  3. Effects of meal composition on postprandial incretin, glucose and insulin responses after surgical and medical weight loss

    PubMed Central

    Brown, T. T.; Cheskin, L. J.; Choi, P.; Moran, T. H.; Peterson, L.; Matuk, R.; Steele, K. E.

    2015-01-01

    Summary Background Meal tolerance tests are frequently used to study dynamic incretin and insulin responses in the postprandial state; however, the optimal meal that is best tolerated and suited for hormonal response following surgical and medical weight loss has yet to be determined. Objective To evaluate the tolerability and effectiveness of different test meals in inducing detectable changes in markers of glucose metabolism in individuals who have undergone a weight loss intervention. Methods Six individuals who underwent surgical or medical weight loss (two Roux‐en‐Y gastric bypass, two sleeve gastrectomy and two medical weight loss) each completed three meal tolerance tests using liquid‐mixed, solid‐mixed and high‐fat test meals. The tolerability of each test meal, as determined by the total amount consumed and palatability, as well as fasting and meal‐stimulated glucagon‐like peptide, glucose‐dependent insulinotropic polypeptide, insulin and glucose were measured. Results Among the six individuals, the liquid‐mixed meal was better and more uniformly tolerated with a median meal completion rate of 99%. Among the four bariatric surgical patients, liquid‐mixed meal stimulated on average a higher glucagon‐like peptide (percent difference: 83.7, 89), insulin secretion (percent difference: 155.1, 158.7) and glucose‐dependent insulinotropic polypeptide (percent difference: 113.5, 34.3) compared with solid‐mixed and high‐fat meals. Conclusions The liquid‐mixed meal was better tolerated with higher incretin and insulin response compared with the high‐fat and solid‐mixed meals and is best suited for the evaluation of stimulated glucose homeostasis. PMID:27774253

  4. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus.

    PubMed

    Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz

    2012-01-01

    Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.

  5. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    SciTech Connect

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-03-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human /sup 125/-I-IGF-II (10 pM) was incubated for 16 hrs at 4/sup 0/C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA/sub 1/-CA/sub 2/ and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of /sup 125/I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning.

  6. The location and characterisation of the O-linked glycans of the human insulin receptor.

    PubMed

    Sparrow, Lindsay G; Gorman, Jeffrey J; Strike, Phillip M; Robinson, Christine P; McKern, Neil M; Epa, V Chandana; Ward, Colin W

    2007-02-01

    O-linked glycosylation is a post-translational and post-folding event involving exposed S/T residues at beta-turns or in regions with extended conformation. O-linked sites are difficult to predict from sequence analyses compared to N-linked sites. Here we compare the results of chemical analyses of isolated glycopeptides with the prediction using the neural network prediction method NetOGlyc3.1, a procedure that has been reported to correctly predict 76% of O-glycosylated residues in proteins. Using the heavily glycosylated human insulin receptor as the test protein six sites of mucin-type O-glycosylation were found at residues T744, T749, S757, S758, T759, and T763 compared to the three sites (T759 and T763- correctly, T756- incorrectly) predicted by the neural network method. These six sites occur in a 20 residue segment that begins nine residues downstream from the start of the insulin receptor beta-chain. This region which also includes N-linked glycosylation sites at N742 and N755, is predicted to lack secondary structure and is followed by residues 765-770, the known linear epitope for the monoclonal antibody 18-44.

  7. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice.

    PubMed

    Mavalli, Mahendra D; DiGirolamo, Douglas J; Fan, Yong; Riddle, Ryan C; Campbell, Kenneth S; van Groen, Thomas; Frank, Stuart J; Sperling, Mark A; Esser, Karyn A; Bamman, Marcas M; Clemens, Thomas L

    2010-11-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions in myofiber number and area as well as accompanying deficiencies in functional performance. Defective skeletal muscle development, in both GHR and IGF-1R mutants, was attributable to diminished myoblast fusion and associated with compromised nuclear factor of activated T cells import and activity. Strikingly, mice lacking GHR developed metabolic features that were not observed in the IGF-1R mutants, including marked peripheral adiposity, insulin resistance, and glucose intolerance. Insulin resistance in GHR-deficient myotubes derived from reduced IR protein abundance and increased inhibitory phosphorylation of IRS-1 on Ser 1101. These results identify distinct signaling pathways through which GHR regulates skeletal muscle development and modulates nutrient metabolism.

  8. Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype

    PubMed Central

    Liu, Xianglan; Magee, Daniel; Wang, Chuansong; McMurphy, Travis; Slater, Andrew; During, Matthew; Cao, Lei

    2014-01-01

    Adipose tissue plays an essential role in metabolic homeostasis and holds promise as an alternative depot organ in gene therapy. However, efficient methods of gene transfer into adipose tissue in vivo have yet to be established. Here, we assessed the transduction efficiency to fat depots by a family of novel engineered hybrid capsid serotypes (Rec1~4) recombinant adeno-associated viral (AAV) vectors in comparison with natural serotypes AAV1, AAV8, and AAV9. Rec2 serotype led to widespread transduction in both brown fat and white fat with the highest efficiency among the seven serotypes tested. As a proof-of-efficacy, Rec2 serotype was used to deliver Cre recombinase to adipose tissues of insulin receptor floxed animals. Insulin receptor knockdown led to decreased fat pad mass and morphological and molecular changes in the targeted depot. These novel hybrid AAV vectors can serve as powerful tools to genetically manipulate adipose tissue and provide valuable vehicles to gene therapy targeting adipose tissue. PMID:25383359

  9. Loss of regular oscillatory insulin secretion in islet cell antibody positive non-diabetic subjects.

    PubMed

    Bingley, P J; Matthews, D R; Williams, A J; Bottazzo, G F; Gale, E A

    1992-01-01

    Basal insulin secretion was compared in nine islet-cell antibody positive, non-diabetic first-degree relatives of children with Type 1 (insulin-dependent) diabetes mellitus and nine normal control subjects matched for age, sex and weight. Acute insulin responses to a 25 g intravenous glucose tolerance test were similar in the two groups (243 (198-229) vs 329 (285-380) mU.l-1 x 10 min-1, mean (+/- SE), p = 0.25). Fasting plasma insulin was assayed in venous samples taken at one min intervals for 2 h. Time series analysis was used to demonstrate oscillatory patterns in plasma insulin. Autocorrelation showed that regular oscillatory activity was generally absent in the islet-cell antibody-positive group, whereas a regular 13 min cycle was shown in control subjects (p less than 0.0001). Fourier transformation did, however, show a 13 min spectral peak in the islet-cell antibody positive group, consistent with intermittent pulsatility. We conclude that overall oscillatory patterns of basal insulin secretion are altered in islet-cell antibody positive subjects even when the acute insulin response is within the normal range.

  10. Role of endosomal trafficking dynamics on the regulation of hepatic insulin receptor activity: models for Fao cells.

    PubMed

    Hori, Sharon S; Kurland, Irwin J; DiStefano, Joseph J

    2006-05-01

    Evidence indicates that endosomal insulin receptor (IR) trafficking plays a role in regulating insulin signal transduction. To evaluate its importance, we developed a series of biokinetic models for quantifying activated surface and endosomal IR dynamics from published experimental data. Starting with a published two-compartment Fao hepatoma model, a four-pool model was formulated that depicts IR autophosphorylation after receptor binding, IR endosomal internalization/trafficking, insulin dissociation from and dephosphorylation of internalized IR, and recycling of unliganded, dephosphorylated IR to the plasma membrane. Quantification required three additional data sets, two measured, but unmodeled by the same group. A five-pool model created to include endosomal trafficking of the nonphosphorylated insulin-IR complex was fitted using the same data sets, augmented with another published data set. Creation of a six-pool model added the physiologically relevant dissociation of insulin ligand from the activated endosomal IR. More importantly, all three models, validated against additional data not used in model fitting, predict that, mechanistically, internalization of activated IR is a rate-limiting step, at least under the receptor saturating conditions of the fitting data. This rate includes the transit time to a site where insulin dissociation from and/or dephosphorylation of the IR occurs by docking with protein-tyrosine phosphatases (PTPases), or where a sufficient conformational change occurs in the IR, perhaps due to insulin-IR dissociation, where associated PTPases may complete IR dephosphorylation. Our new models indicate that key events in endosomal IR trafficking have significance in mediating IR activity, possibly serving to regulate insulin signal transduction.

  11. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain*

    PubMed Central

    Hexnerová, Rozálie; Křížková, Květoslava; Fábry, Milan; Sieglová, Irena; Kedrová, Kateřina; Collinsová, Michaela; Ullrichová, Pavlína; Srb, Pavel; Williams, Christopher; Crump, Matthew P.; Tošner, Zdeněk; Jiráček, Jiří; Veverka, Václav; Žáková, Lenka

    2016-01-01

    Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains. PMID:27510031

  12. Relative expression of the p75 neurotrophin receptor, tyrosine receptor kinase A, and insulin receptor in SH-SY5Y neuroblastoma cells and hippocampi from Alzheimer's disease patients.

    PubMed

    Ito, Shingo; Ménard, Michel; Atkinson, Trevor; Brown, Leslie; Whitfield, James; Chakravarthy, Balu

    2016-12-01

    We have previously shown in SH-SY5Y human neuroblastoma cells that the expressions of basal (75 kDa) and high molecular weight (HMW; 85 kDa) isoforms of the p75 neurotrophic receptor (p75NTR) are stimulated by amyloid-β peptide1-42 oligomers (AβOs) via the insulin-like growth factor-1 receptor (IGF-1R). On the other hand, it is known that AβOs inhibit insulin receptor (IR) signaling. The purpose of the present study was to determine the involvement of IR signaling in the regulation of p75 neurotrophin receptor (p75NTR) protein isoform expression in cultured SH-SY5Y cells and in hippocampi from late-stage human Alzheimer's disease (AD) brains. Interestingly, insulin induced the expression of basal and HMW p75NTR isoforms in SH-SY5Y cells, suggesting the presence of cross-talk between the IR and IGF-1R for the regulation of p75NTR expression. Reducing IR signaling with an IR kinase inhibitor (AG 1024) or IR-targeted siRNAs increased HMW p75NTR expression and reduced tyrosine receptor kinase-A (Trk-A) expression as well as postsynaptic density protein 95 (PSD95) expression in SH-SY5Y cells. Both basal and HMW p75NTR isoforms were increased in the hippocampi of post-mortem late-stage human AD brains (relative to non-AD brains), and the protein expression of HMW p75NTR was negatively associated with Trk-A expression, PSD95 expression, and IR expression. Thus, increased p75NTR expression, specifically an increased p75NTR-to-Trk-A ratio, is likely to play a role in synaptic loss and neuronal cell death in late-stage AD. Collectively, these findings suggest that increased expression of the p75NTR due to IR signaling inhibition by AβOs might be involved in the pathology of AD.

  13. Upregulated insulin secretion in insulin-resistant mice: evidence of increased islet GLP1 receptor levels and GPR119-activated GLP1 secretion.

    PubMed

    Ahlkvist, L; Brown, K; Ahrén, B

    2013-06-01

    We previously demonstrated that the overall incretin effect and the β-cell responsiveness to glucagon-like peptide-1 (GLP1) are increased in insulin-resistant mice and may contribute to the upregulated β-cell function. Now we examined whether this could, first, be explained by increased islet GLP1 receptor (GLP1R) protein levels and, secondly, be leveraged by G-protein-coupled receptor 119 (GPR119) activation, which stimulates GLP1 secretion. Female C57BL/6J mice, fed a control (CD, 10% fat) or high-fat (HFD, 60% fat) diet for 8 weeks, were anesthetized and orally given a GPR119 receptor agonist (GSK706A; 10 mg/kg) or vehicle, followed after 10 min with gavage with a liquid mixed meal (0.285 kcal). Blood was sampled for determination of glucose, insulin, intact GLP1, and glucagon, and islets were isolated for studies on insulin and glucagon secretion and GLP1R protein levels. In HFD vs CD mice, GPR119 activation augmented the meal-induced increase in the release of both GLP1 (AUCGLP1 81±9.6 vs 37±6.9 pM×min, P=0.002) and insulin (AUCINS 253±29 vs 112±19 nM×min, P<0.001). GPR119 activation also significantly increased glucagon levels in both groups (P<0.01) with, however, no difference between the groups. By contrast, GPR119 activation did not affect islet hormone secretion from isolated islets. Glucose elimination after meal ingestion was significantly increased by GPR119 activation in HFD mice (0.57±0.04 vs 0.43±0.03% per min, P=0.014) but not in control mice. Islet GLP1R protein levels was higher in HFD vs CD mice (0.8±0.1 vs 0.5±0.1, P=0.035). In conclusion, insulin-resistant mice display increased islet GLP1R protein levels and augmented meal-induced GLP1 and insulin responses to GPR119 activation, which results in increased glucose elimination. We suggest that the increased islet GLP1R protein levels together with the increased GLP1 release may contribute to the upregulated β-cell function in insulin resistance.

  14. Hepatic protein phosphotyrosine phosphatase. Dephosphorylation of insulin and epidermal growth factor receptors in normal and alloxan diabetic rats.

    PubMed Central

    Gruppuso, P A; Boylan, J M; Posner, B I; Faure, R; Brautigan, D L

    1990-01-01

    Polypeptide hormone signal transmission by receptor tyrosine kinases requires the rapid reversal of tyrosine phosphorylation by protein phosphotyrosine phosphatases (PPTPases). We studied hepatic PPTPases in the rat with emphasis on acute and chronic regulation by insulin. PPTPase activity with artificial substrates ([32P]Tyr-reduced, carboxyamidomethylated, and maleylated lysozyme and [32P]Tyr-poly[glutamic acid:tyrosine] 4:1) was present in distinct membrane, cytoskeletal, and cytosolic fractions. These PPTPase activities were unaffected by alloxan diabetes. Acute administration of insulin to normal animals also did not change PPTPase activity in liver plasma membranes or endosomal membranes. Although alloxan diabetes did not affect PPTPase activity measured with artificial substrates or with epidermal growth factor receptors, a decrease in insulin receptor dephosphorylation was noted. Dephosphorylation of hepatic receptors from normal and diabetic rats by membrane PPTPase from control rats was similar. These results indicate that alloxan diabetes does not lead to a generalized effect on hepatic PPTPase activity, although a substrate-specific decrease in activity with the insulin receptor may occur. Images PMID:2161429

  15. Relative weight of glucose, insulin and parathyroid hormone in the urinary loss of phosphate by chronically diabetic rats.

    PubMed

    Locatto, M E; Di Loreto, V; Fernández, M C; Caferra, D; Puche, R C

    1997-10-01

    This report deals with the relationships between glucose (G) and insulin on the tubular transport of phosphate (P) in chronically diabetic rats with high plasma levels of parathyroid hormone (PTH). Alloxan-induced diabetes leads to phosphorus depletion of the soft tissues. This phenomenon appears associated with weight loss and negative P balances caused by the increased urinary P excretion. Administration of 2 IU of insulin/100 g body weight (bw) to diabetic rats normalized their P balance and body weight. The effect of parathyroid function on the P metabolism of diabetic rats was investigated with balance experiments. Diabetic rats, intact or thyroparathyroidectomized (TPTX), have a greater urinary excretion of P than their controls. However, in control rats, the ratio intact:TPTX for urinary P is 1.0:0.76, showing the antiphosphaturic effect of parathyroid ablation. For diabetic animals, on the other hand, the ratio is 1.0:1.44. The simultaneous deficit of insulin and PTH thus quadruples the urinary P loss, instead of compensating for each other. The contribution of insulin deficit and hyperglycemia to the defect in tubular reabsorption (TRP) was investigated with clearance experiments (done on anesthetized, perfused rats). Five experimental groups were used: Controls (C), diabetics (D), controls + glucose (C + G), diabetics + insulin (D + I) and diabetics + insulin + glucose (D + I + G). All experimental groups showed a linear relationship between the TRP of P and G. The regression equation for C is significantly different (F = 40.1, P < 0.001) from that of D animals. The slope value measure the number of mumoles of P per mumol of G reabsorbed. For C and D rats, the ratio P:G approximates 1:4 and 1:20, respectively. The increase in P:G ratios represents the competition between both substrates for tubular resorption. Glycemias up to 11 mM (C and D + I) exist concurrent with the P:G ratio 1:4 Glycemias above 25 mM (D, C + G and D + I + G) produce a P:G ratio of 1

  16. The insulin receptor is required for the development of the Drosophila peripheral nervous system.

    PubMed

    Dutriaux, Annie; Godart, Aurélie; Brachet, Anna; Silber, Joël

    2013-01-01

    The Insulin Receptor (InR) in Drosophila presents features conserved in its mammalian counterparts. InR is required for growth; it is expressed in the central and embryonic nervous system and modulates the time of differentiation of the eye photoreceptor without altering cell fate. We show that the InR is required for the formation of the peripheral nervous system during larval development and more particularly for the formation of sensory organ precursors (SOPs) on the fly notum and scutellum. SOPs arise in the proneural cluster that expresses high levels of the proneural proteins Achaete (Ac) and Scute (Sc). The other cells will become epidermis due to lateral inhibition induced by the Notch (N) receptor signal that prevents its neighbors from adopting a neural fate. In addition, misexpression of the InR or of other components of the pathway (PTEN, Akt, FOXO) induces the development of an abnormal number of macrochaetes that are Drosophila mechanoreceptors. Our data suggest that InR regulates the neural genes ac, sc and sens. The FOXO transcription factor which is localized in the cytoplasm upon insulin uptake, displays strong genetic interaction with the InR and is involved in Ac regulation. The genetic interactions between the epidermal growth factor receptor (EGFR), Ras and InR/FOXO suggest that these proteins cooperate to induce neural gene expression. Moreover, InR/FOXO is probably involved in the lateral inhibition process, since genetic interactions with N are highly significant. These results show that the InR can alter cell fate, independently of its function in cell growth and proliferation.

  17. Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans

    PubMed Central

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia; Christiansen, Elisabeth; Due-Hansen, Maria E.; Grundmann, Manuel; Machicao, Fausto; Peter, Andreas; Kostenis, Evi; Ulven, Trond; Fritsche, Andreas; Häring, Hans-Ulrich; Ullrich, Susanne

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists. PMID:23378609

  18. Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist.

    PubMed

    Lewis, J T; Dayanandan, B; Habener, J F; Kieffer, T J

    2000-10-01

    A novel GIP receptor antagonist was developed to evaluate the acute role of glucose-dependent insulinotropic polypeptide (GIP) in the insulin response to oral glucose in rats. Antisera to an extracellular epitope of the GIP receptor (GIPR) detected immunoreactive GIPR on rat pancreatic beta-cells. Purified GIPR antibody (GIPR Ab) specifically displaced GIP binding to the receptor and blocked GIP-mediated increases in intracellular cAMP. When delivered to rats by ip injection, GIPR Ab had a half-life of approximately 4 days. Treatment with GIPR Ab (1 microg/g BW) blocked the potentiation of glucose-stimulated insulin secretion by GIP (60 pmol) but not glucagon-like peptide-1 (GLP-1, 60 pmol) in anesthetized rats. The insulin response to oral glucose was delayed in conscious unrestrained rats that were pretreated with GIPR Ab. Plasma insulin levels were approximately 35% lower at 10 min in GIPR Ab treated animals compared with controls. As a result, the glucose excursion was greater in the GIPR Ab treated group. Fasting plasma glucose levels were not altered by GIPR Ab. We conclude that release of GIP following oral glucose may act as an anticipatory signal to pancreatic beta-cells to promote rapid release of insulin for glucose disposal.

  19. The G Protein-coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice*

    PubMed Central

    Meister, Jaroslawna; Le Duc, Diana; Ricken, Albert; Burkhardt, Ralph; Thiery, Joachim; Pfannkuche, Helga; Polte, Tobias; Grosse, Johannes; Schöneberg, Torsten; Schulz, Angela

    2014-01-01

    UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion. PMID:24993824

  20. Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates.

    PubMed

    Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C

    2013-08-01

    The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes. Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates that have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: metabolism/glucose uptake, mitogenesis/growth, and aging/longevity. While IR functions in a seemingly pleiotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan.

  1. Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways.

    PubMed

    Long, Yun Chau; Cheng, Zhiyong; Copps, Kyle D; White, Morris F

    2011-02-01

    Coordination of skeletal muscle growth and metabolism with nutrient availability is critical for metabolic homeostasis. To establish the role of insulin-like signaling in this process, we used muscle creatine kinase (MCK)-Cre to disrupt expression of insulin receptor substrates Irs1 and Irs2 in mouse skeletal/cardiac muscle. In 2-week-old mice, skeletal muscle masses and insulin responses were slightly affected by Irs1, but not Irs2, deficiency. In contrast, the combined deficiency of Irs1 and Irs2 (MDKO mice) severely reduced skeletal muscle growth and Akt→mTOR signaling and caused death by 3 weeks of age. Autopsy of MDKO mice revealed dilated cardiomyopathy, reflecting the known requirement of insulin-like signaling for cardiac function (P. G. Laustsen et al., Mol. Cell. Biol. 27:1649-1664, 2007). Impaired growth and function of MDKO skeletal muscle were accompanied by increased Foxo-dependent atrogene expression and amino acid release. MDKO mice were resistant to injected insulin, and their isolated skeletal muscles showed decreased insulin-stimulated glucose uptake. Glucose utilization in MDKO mice and isolated skeletal muscles was shifted from oxidation to lactate production, accompanied by an elevated AMP/ATP ratio that increased AMP-activated protein kinase (AMPK)→acetyl coenzyme A carboxylase (ACC) phosphorylation and fatty acid oxidation. Thus, insulin-like signaling via Irs1/2 is essential to terminate skeletal muscle catabolic/fasting pathways in the presence of adequate nutrition.

  2. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  3. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids.

    PubMed

    Dominguez, Gustavo A; Quattro, Joseph M; Denslow, Nancy D; Kroll, Kevin J; Prucha, Melinda S; Porak, Wesley F; Grier, Harry J; Sabo-Attwood, Tara L

    2012-09-01

    Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.

  4. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    SciTech Connect

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  5. Cannabinoids inhibit insulin secretion and cytosolic Ca2+ oscillation in islet beta-cells via CB1 receptors.

    PubMed

    Nakata, Masanori; Yada, Toshihiko

    2008-01-10

    Obesity is the main risk factor for the development of metabolic syndrome. Endogenous cannabinoids act on the cannabinoid type 1 (CB1) receptor, a GPCR, and stimulate appetite via central and peripheral actions, while blockade of CB1 receptor reduces body weight in humans. In this study, we aimed to explore a role of the peripheral endocannabinoid system in insulin secretion, which could be important in the metabolic effects of the cannabinoid-CB1 system. We found that mRNA for CB1 receptor, but not CB2 receptor, was expressed in mouse pancreatic islets using RT-PCR. Immunohistochemical study revealed that CB1 receptor was expressed in beta-cells. Furthermore, anandamide and a CB1 agonist, arachidonylcyclopropylamide (ACPA), inhibited glucose-induced insulin secretion from mouse pancreatic islets. Both anandamide and ACPA inhibited glucose-induced cytosolic Ca(2+) oscillation in mouse pancreatic beta-cells. These results demonstrate a novel peripheral action of cannabinoids to inhibit insulin secretion via CB1 receptors.

  6. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477

  7. Structure and function of the type 1 insulin-like growth factor receptor.

    PubMed

    Adams, T E; Epa, V C; Garrett, T P; Ward, C W

    2000-07-01

    The type 1 insulin-like growth factor receptor (IGF-1R), a transmembrane tyrosine kinase, is widely expressed across many cell types in foetal and postnatal tissues. Activation of the receptor following binding of the secreted growth factor ligands IGF-1 and IGF-2 elicits a repertoire of cellular responses including proliferation, and the protection of cells from programmed cell death or apoptosis. As a result, signalling through the IGF-1R is the principal pathway responsible for somatic growth in foetal mammals, whereas somatic growth in postnatal animals is achieved through the synergistic interaction of growth hormone and the IGFs. Forced overexpression of the IGF-1R results in the malignant transformation of cultured cells: conversely, downregulation of IGF-1R levels can reverse the transformed phenotype of tumour cells, and may render them sensitive to apoptosis in vivo. Elevated levels of IGF-IR are observed in a variety of human tumour types, whereas epidemiological studies implicate the IGF-1 axis as a predisposing factor in the pathogenesis of human breast and prostate cancer. The IGF-1R has thus emerged as a therapeutic target for the development of antitumour agents. Recent progress towards the elucidation of the three-dimensional structure of the extracellular domain of the IGF-1R represents an opportunity for the rational assembly of small molecule antagonists of receptor function for clinical use.

  8. [Peroxisome proliferator-activated receptors (PPARs) in obesity and insulin resistance development].

    PubMed

    Alemán, Gabriela; Torres, Nimbe; Tovar, Armando R

    2004-01-01

    The peroxisome proliferator-activated receptors (PPARs) are a family of nuclear transcription factors that belong to the steroid receptor superfamily. PPARs family includes PPARalpha, PPARbeta/delta, PPARgamma1 and PPARgamma2. PPARs form an heterodimer with the 9-cis retinoic acid receptor (RXR) and bind to response elements present in target genes activated by these transcription factors. PPARs control the expression of genes involved in fatty acid synthesis, oxidation and storage. PPARs are present in most tissues, where PPARalpha is most abundant in liver and skeletal muscle, whereas PPARgamma is found mainly in adipose tissue. Natural ligands for PPARs are polyunsaturated fatty acids (PUFAs) and some eicosanoids, however they are also activated by compounds such as fibrates and thiazolidinediones (TZDs). In this review is shown the different PPARs isoforms, identification, and regulation of their expression and activity. Also shows which are the natural ligands, and the chemical compounds that activate PPARs. Finally, it shows the target genes activated by the different isoforms of PPARs, the metabolic integration between the different PPAR isoforms to maintain a balance between fatty acid synthesis and oxidation and the association with the development of obesity and insulin resistance. Also shows information about the nutritional requirements of PUFAs that are the main natural ligands of PPARs.

  9. Inverse relationship between insulin receptor expression and progression in renal cell carcinoma.

    PubMed

    Takahashi, Makoto; Inoue, Takamitsu; Huang, Mingguo; Numakura, Kazuyuki; Tsuruta, Hiroshi; Saito, Mitsuru; Maeno, Atsushi; Nakamura, Eijiro; Narita, Shintaro; Tsuchiya, Norihiko; Habuchi, Tomonori

    2017-05-01

    We investigated the relationship among serum insulin level, insulin receptor (IR) expression in renal cell carcinoma (RCC), and outcomes in patients with RCC who underwent nephrectomy. We also explored the role of insulin signaling in RCC progression in a murine RCC allograft RENCA model using metformin to treat hyperinsulinemia induced by a high-carbohydrate diet. Clinically, the IR expression level in RCC tissue was significantly lower in patients with tumor stage pT2-4 and/or distant metastases. The IR expression level in RCC tissue was significantly lower in patients with preoperative serum C-peptide levels greater than or equal to the median than in patients with levels less than the median. High IR expression level was significantly associated with better disease-free and overall survival after nephrectomy. The IR expression level was significantly higher in murine subcutaneous flank tumors of the low-carbohydrate diet group and high-carbohydrate diet plus metformin group than of the high‑carbohydrate diet group. In vivo progression of murine tumors was not significantly enhanced by hyperinsulinemia induced by a high-carbohydrate diet and was significantly inhibited by metformin in both the low- and high‑carbohydrate diet groups. IR expression in RCC tissue was inversely associated with cancer progression in the clinical and murine experimental model studies. The clinical and murine allograft model study results suggested that hyperinsulinemia does not promote RCC progression. Decreased IR expression in high‑stage RCC tumors with poor prognosis may be the result of downregulation induced by the host's hyperinsulinemia.

  10. Insulin Receptor Substrate-4 Binds to Slingshot-1 Phosphatase and Promotes Cofilin Dephosphorylation*

    PubMed Central

    Homma, Yuta; Kanno, Shin-ichiro; Sasaki, Kazutaka; Nishita, Michiru; Yasui, Akira; Asano, Tomoichiro; Ohashi, Kazumasa; Mizuno, Kensaku

    2014-01-01

    Cofilin plays an essential role in cell migration and morphogenesis by enhancing actin filament dynamics via its actin filament-severing activity. Slingshot-1 (SSH1) is a protein phosphatase that plays a crucial role in regulating actin dynamics by dephosphorylating and reactivating cofilin. In this study, we identified insulin receptor substrate (IRS)-4 as a novel SSH1-binding protein. Co-precipitation assays revealed the direct endogenous binding of IRS4 to SSH1. IRS4, but not IRS1 or IRS2, was bound to SSH1. IRS4 was bound to SSH1 mainly through the unique region (amino acids 335–400) adjacent to the C terminus of the phosphotyrosine-binding domain of IRS4. The N-terminal A, B, and phosphatase domains of SSH1 were bound to IRS4 independently. Whereas in vitro phosphatase assays revealed that IRS4 does not directly affect the cofilin phosphatase activity of SSH1, knockdown of IRS4 increased cofilin phosphorylation in cultured cells. Knockdown of IRS4 decreased phosphatidylinositol 3-kinase (PI3K) activity, and treatment with an inhibitor of PI3K increased cofilin phosphorylation. Akt preferentially phosphorylated SSH1 at Thr-826, but expression of a non-phosphorylatable T826A mutant of SSH1 did not affect insulin-induced cofilin dephosphorylation, and an inhibitor of Akt did not increase cofilin phosphorylation. These results suggest that IRS4 promotes cofilin dephosphorylation through sequential activation of PI3K and SSH1 but not through Akt. In addition, IRS4 co-localized with SSH1 in F-actin-rich membrane protrusions in insulin-stimulated cells, which suggests that the association of IRS4 with SSH1 contributes to localized activation of cofilin in membrane protrusions. PMID:25100728

  11. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression.

    PubMed

    Zhang, Hao; Wei, Jing; Xue, Rong; Wu, Jin-Dan; Zhao, Wei; Wang, Zi-Zheng; Wang, Shu-Kui; Zhou, Zheng-Xian; Song, Dan-Qing; Wang, Yue-Ming; Pan, Huai-Ning; Kong, Wei-Jia; Jiang, Jian-Dong

    2010-02-01

    Our previous work demonstrated that berberine (BBR) increases insulin receptor (InsR) expression and improves glucose utility both in vitro and in animal models. Here, we study the InsR-up-regulating and glucose-lowering activities of BBR in humans. Our results showed that BBR increased InsR messenger RNA and protein expression in a variety of human cell lines, including CEM, HCT-116, SW1990, HT1080, 293T, and hepatitis B virus-transfected human liver cells. Accordingly, insulin-stimulated phosphorylations of InsR beta-subunit and Akt were increased after BBR treatment in cultured cells. In the clinical study, BBR significantly lowered fasting blood glucose (FBG), hemoglobin A(1c), triglyceride, and insulin levels in patients with type 2 diabetes mellitus (T2DM). The FBG- and hemoglobin A(1c)-lowering efficacies of BBR were similar to those of metformin and rosiglitazone. In the BBR-treated patients, the percentages of peripheral blood lymphocytes that express InsR were significantly elevated after therapy. Berberine also lowered FBG effectively in chronic hepatitis B and hepatitis C patients with T2DM or impaired fasting glucose. Liver function was improved greatly in these patients by showing reduction of liver enzymes. Our results confirmed the activity of BBR on InsR in humans and its relationship with the glucose-lowering effect. Together with our previous report, we strongly suggest BBR as an ideal medicine for T2DM with a mechanism different from metformin and rosiglitazone.

  12. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  13. Acute treatment with XMetA activates hepatic insulin receptors and lowers blood glucose in normal mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been proposed that monoclonal antibodies may become therapeutics for metabolic diseases such as diabetes mellitus. We have previously characterized an allosteric monoclonal antibody to the human insulin receptor (IR), XMetA, that activated metabolic signaling leading to enhanced glucose tran...

  14. A novel, rapid, inhibitory effect of insulin on α1β2γ2s γ-aminobutyric acid type A receptors

    PubMed Central

    Williams, Daniel B.

    2008-01-01

    In the CNS, GABA and insulin seem to contribute to similar processes, including neuronal survival; learning and reward; and energy balance and food intake. It is likely then that insulin and GABA may interact, perhaps at the GABAA receptor. One such interaction has already been described [39]; in it a micromolar concentration of insulin causes the insertion of GABAA receptors into the cell membrane, increasing GABA current. I have discovered another effect of insulin on GABAA currents. Using a receptor isoform α1β2γ2s that is the likely main neuronal GABAA isoform expressed recombinantly in Xenopus oocytes, insulin inhibits GABA induced current when applied simultaneously with low concentrations of GABA. Insulin will significantly inhibit currents induced by EC30–50 concentrations of GABA by about 38%. Insulin is potent in this effect; IC50 of insulin was found to be about 4.3 ×10−10 M. The insulin effect on the GABA dose responses looked like that of an antagonist similar to bicuculline or β-carbolines. However, an effect of phosphorylation on the GABAA from the insulin receptor signal transduction pathway cannot yet be dismissed. PMID:18672028

  15. Hormones and Obesity: Changes in Insulin and Growth Hormone Secretion Following Surgically Induced Weight Loss

    PubMed Central

    Crockford, P. M.; Salmon, P. A.

    1970-01-01

    Ten obese patients were subjected to insulin tolerance tests (0.2 unit per kg. regular insulin intravenously) and/or treadmill exercise tolerance testing (2.6 m.p.h. at 11° angulation) before and after surgically induced weight reduction. Immunoreactive growth hormone (IRGH) responses returned to normal with weight reduction in all but one—a grossly obese woman studied relatively early in the postoperative period when still far from the ideal body weight. Five of these patients and two additional subjects had intravenous glucose tolerance tests (0.5 g. per kg.) before and after weight reduction. In all, there was a significant diminution in immunoreactive insulin (IRI) values, accompained by little or no change in the glucose disappearance rate (KG) and a significant improvement in insulin effectiveness as indicated by the calculated “insulinogenic index”. It was concluded that the abnormalities in IRGH and IRI secretion, as well as the insulin resistance in obesity, are probably secondary and not of primary importance in the etiology of this disorder. PMID:5430052

  16. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    PubMed

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families.

  17. Type I insulin-like growth factor receptor signaling in hematological malignancies

    PubMed Central

    Vishwamitra, Deeksha; George, Suraj Konnath; Shi, Ping; Kaseb, Ahmed O.; Amin, Hesham M.

    2017-01-01

    The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma. PMID:27661006

  18. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons

    PubMed Central

    Giuffrida, Maria L.; Tomasello, Marianna F.; Pandini, Giuseppe; Caraci, Filippo; Battaglia, Giuseppe; Busceti, Carla; Di Pietro, Paola; Pappalardo, Giuseppe; Attanasio, Francesco; Chiechio, Santina; Bagnoli, Silvia; Nacmias, Benedetta; Sorbi, Sandro; Vigneri, Riccardo; Rizzarelli, Enrico; Nicoletti, Ferdinando; Copani, Agata

    2015-01-01

    ß-amyloid (Aß1−42) is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1−42self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer's disease (AD). However, Aß1−42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1−42 in neuronal function is largely unknown. We report that the monomer of Aß1−42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1−42 was added. These data suggest that Aß1−42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1−42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice. PMID:26300732

  19. Sensorineural hearing loss in insulin-like growth factor I-null mice: a new model of human deafness.

    PubMed

    Cediel, R; Riquelme, R; Contreras, J; Díaz, A; Varela-Nieto, I

    2006-01-01

    It has been reported that mutations in the gene encoding human insulin-like growth factor-I (IGF-I) cause syndromic hearing loss. To study the precise role of IGF-I in auditory function and to hypothesize the possible morphological and electrophysiological changes that may occur in the human inner ear, we have analysed the auditory brainstem response in a mouse model of IGF-I deficiency. We show here that homozygous Igf-1(-/-) mice present an all-frequency involved bilateral sensorineural hearing loss. Igf-1(-/-) mice also present a delayed response to acoustic stimuli; this increases along the auditory pathway, indicating a contribution of the central nervous system to the hearing loss in Igf-1(-/-) mice. These results support the use of the Igf-1(-/-) mouse as a new model for the study of human syndromic deafness.

  20. Neuronal Androgen Receptor Regulates Insulin Sensitivity via Suppression of Hypothalamic NF-κB–Mediated PTP1B Expression

    PubMed Central

    Yu, I-Chen; Lin, Hung-Yun; Liu, Ning-Chun; Sparks, Janet D.; Yeh, Shuyuan; Fang, Lei-Ya; Chen, Lumin; Chang, Chawnshang

    2013-01-01

    Clinical investigations highlight the increased incidence of metabolic syndrome in prostate cancer (PCa) patients receiving androgen deprivation therapy (ADT). Studies using global androgen receptor (AR) knockout mice demonstrate that AR deficiency results in the development of insulin resistance in males. However, mechanisms by which AR in individual organs coordinately regulates insulin sensitivity remain unexplored. Here we tested the hypothesis that functional AR in the brain contributes to whole-body insulin sensitivity regulation and to the metabolic abnormalities developed in AR-deficient male mice. The mouse model selectively lacking AR in the central nervous system and AR-expressing GT1-7 neuronal cells were established and used to delineate molecular mechanisms in insulin signaling modulated by AR. Neuronal AR deficiency leads to reduced insulin sensitivity in middle-aged mice. Neuronal AR regulates hypothalamic insulin signaling by repressing nuclear factor-κB (NF-κB)–mediated induction of protein-tyrosine phosphatase 1B (PTP1B). Hypothalamic insulin resistance leads to hepatic insulin resistance, lipid accumulation, and visceral obesity. The functional deficiency of AR in the hypothalamus leads to male mice being more susceptible to the effects of high-fat diet consumption on PTP1B expression and NF-κB activation. These findings suggest that in men with PCa undergoing ADT, reduction of AR function in the brain may contribute to insulin resistance and visceral obesity. Pharmacotherapies targeting neuronal AR and NF-κB may be developed to combat the metabolic syndrome in men receiving ADT and in elderly men with age-associated hypogonadism. PMID:23139353

  1. Acute Treatment With XMetA Activates Hepatic Insulin Receptors and Lowers Blood Glucose in Normal Mice.

    PubMed

    Bedinger, Daniel H; Kieffer, Dorothy A; Goldfine, Ira D; Roell, Marina K; Adams, Sean H

    2015-09-01

    It has been proposed that monoclonal antibodies may become therapeutics for metabolic diseases such as diabetes mellitus. We have previously characterized an allosteric monoclonal antibody to the human insulin receptor (IR), XMetA, that activated metabolic signaling leading to enhanced glucose transport in cultured cells, and chronically reduced fasting blood glucose levels in mouse models of diabetes mellitus. Under acute dosing conditions, the large size of an IR-binding antibody like XMetA (∼ 150 kDa) could lead to a more rapid access into liver, an insulin sensitive tissue with well-fenestrated capillaries, when compared to other insulin sensitive tissues with non-fenestrated capillaries, such as muscle and adipose. Thus, in the present study we administered XMetA (10 mg/kg) and insulin (0.5 U/kg) via IV injection, and for 90 min compared their effects on blood glucose lowering and IR activation in three of the major insulin-sensitive tissues of the normal fasted mouse: liver, adipose, and muscle. Like insulin, XMetA lowered blood glucose levels, although the effect was less rapid. Insulin activated IR autophosphorylation and Akt phosphorylation in liver, fat, and muscle. In contrast, IR activation by XMetA was primarily observed in the liver. Both insulin and XMetA lowered β-hydroxybutyrate levels in plasma; however, only insulin reduced both non-esterified fatty acids (NEFA) and glycerol concentrations. These data indicate that, in normal mice, acute glucose regulation by XMetA is largely mediated by its action on the liver.

  2. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells.

    PubMed

    Dai, Feihan F; Bhattacharjee, Alpana; Liu, Ying; Batchuluun, Battsetseg; Zhang, Ming; Wang, Xinye Serena; Huang, Xinyi; Luu, Lemieux; Zhu, Dan; Gaisano, Herbert; Wheeler, Michael B

    2015-10-09

    GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.

  3. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells

    PubMed Central

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-01-01

    Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic β cells. In the present study, we have identified the expression of TGR5 in pancreatic β cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated Gαs and caused an increase in intracellular cAMP and Ca2+. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective Gαs inhibitor) or U73122 (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, U73122 or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on Gs/cAMP/Ca2+ pathway. 8-pCPT-2′-O-Me-cAMP, a cAMP analogue, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic β cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis. PMID:23022524

  4. Silencing of Two Insulin Receptor Genes Disrupts Nymph-Adult Transition of Alate Brown Citrus Aphid

    PubMed Central

    Ding, Bi-Yue; Shang, Feng; Zhang, Qiang; Xiong, Ying; Yang, Qun; Niu, Jin-Zhi; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Insulin receptors play key roles in growth, development, and polymorphism in insects. Here, we report two insulin receptor genes (AcInR1 and AcInR2) from the brown citrus aphid, Aphis (Toxoptera) citricidus. Transcriptional analyses showed that AcInR1 increased during the nymph–adult transition in alate aphids, while AcInR2 had the highest expression level in second instar nymphs. AcInR1 is important in aphid development from fourth instar nymphs to adults as verified by dsRNA feeding mediated RNAi. The silencing of AcInR1 or/and AcInR2 produced a variety of phenotypes including adults with normal wings, malformed wings, under-developed wings, and aphids failing to develop beyond the nymphal stages. Silencing of AcInR1 or AcInR2 alone, and co-silencing of both genes, resulted in 73% or 60%, and 87% of aphids with problems in the transition from nymph to normal adult. The co-silencing of AcInR1 and AcInR2 resulted in 62% dead nymphs, but no mortality occurred by silencing of AcInR1 or AcInR2 alone. Phenotypes of adults in the dsInR1 and dsInR2 were similar. The results demonstrate that AcInR1 and AcInR2 are essential for successful nymph–adult transition in alate aphids and show that RNAi methods may be useful for the management of this pest. PMID:28230772

  5. Combined and individual tumor-specific expression of insulin-like growth factor-I receptor, insulin receptor and phospho-insulin-like growth factor-I receptor/insulin receptor in primary breast cancer: Implications for prognosis in different treatment groups.

    PubMed

    Björner, Sofie; Rosendahl, Ann H; Simonsson, Maria; Markkula, Andrea; Jirström, Karin; Borgquist, Signe; Rose, Carsten; Ingvar, Christian; Jernström, Helena

    2017-02-07

    Clinical trials examining insulin-like growth factor-I receptor (IGF1R)-targeting strategies have emphasized that better predictive biomarkers are required to improve patient selection.Immunohistochemical tumor-specific protein expression of IGF1R, insulin receptor (InsR), and phosphorylated IGF1R/InsR (pIGF1R/InsR) individually and combined in relation to breast cancer prognosis was evaluated in a population-based cohort of 1,026 primary invasive breast cancer patients without preoperative treatment diagnosed in Sweden. IGF1R (n = 923), InsR (n = 900), and pIGF1R/InsR (n = 904) combined cytoplasmic and membrane staining was dichotomized. IGF1Rstrong/InsRmod/strong/pIGF1R/InsRpos tumors were borderline associated with 2-fold risk for events, HRadj (2.00; 95%CI 0.96-4.18). Combined IGF1R and pIGF1R/InsR status only impacted prognosis in patients with InsRmod/strong expressing tumors (Pinteraction = 0.041). IGF1Rstrong expression impacted endocrine treatment response differently depending on patients' age and type of endocrine therapy. Phospho-IGF1R/InsRpos was associated with lower risk for events among non-endocrine-treated patients irrespective of ER status, HRadj (0.32; 95%CI 0.16-0.63), but not among endocrine-treated patients (Pinteraction = 0.024). In non-endocrine-treated patients, pIGF1R/InsRpos was associated with lower risk for events after radiotherapy, HRadj (0.31; 95%CI 0.12-0.80), and chemotherapy, HRadj (0.29; 95%CI 0.09-0.99). This study highlights the complexity of IGF hetero-and homodimer signaling network and its interplay with endocrine treatment, suggesting that combinations of involved factors may improve patient selection for IGF1R-targeted therapy.

  6. Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer.

    PubMed

    Blanquart, Christophe; Achi, Josepha; Issad, Tarik

    2008-10-01

    The insulin receptor (IR) is composed of two alpha-chains that bind ligands and two beta-chains that possess an intracellular tyrosine kinase activity. The IR is expressed in cells as two isoforms containing or not exon 11 (IRB and IRA, respectively). Several mRNA studies have demonstrated that the two isoforms are co-expressed in different tissues and in several cancer cells. IRA/IRB hybrid receptors, constituting of an alphabeta-chain from IRA and an alphabeta-chain from IRB, are likely to occur in cells co-expressing both isoforms, but their study has been hampered by the lack of specific tools. In previous work, we used BRET to study IR and IGF1R homodimers and heterodimers. Here, we have used BRET to characterize IRA/IRB hybrids. BRET saturation experiments showed that IRA/IRB hybrids are randomly formed in cells. Moreover, by co-transfecting HEK-293 cells with a luciferase-tagged kinase-dead version of one isoform and a wild-type untagged version of the other isoform, we showed that IRA/IRB hybrids can recruit, upon ligand stimulation, a YFP-tagged intracellular partner. Finally, using BRET, we have studied ligand-induced conformational changes within IRA/IRB hybrids. Dose-response experiments showed that hybrid receptors bind IGF-2 with the same affinity than IRA homodimers, whereas they bind IGF-1 with a lower affinity. Altogether, our data indicate that IRA/IRB hybrid receptors can form in cells co-expressing both IR isoforms, that they are capable of recruiting intracellular partners upon ligand stimulation, and that they have pharmacological properties more similar to those of IRA than those of IRB homodimers with regards to IGF-2.

  7. Two null alleles for the insulin receptor and a concomitant defect of the epidermal growth factor receptor in a severe form of leprechaunism

    SciTech Connect

    Longo, N.; Langley, S.D.; Griffin, L.D.; Elsas, L.J.

    1994-09-01

    Leprechaunism is an autosomal recessive disorder caused by mutations in the insulin receptor gene and characterized by growth restriction and severe insulin-resistance. Here we report the characterization of a female patient, GE, who died at 7 weeks of age with a severe form of this syndrome. {sup 126}I-Insulin binding to fibroblasts from patient GE, her mother and father was reduced to 5, 40, and 28 percent of controls, respectively. Analysis of other tyrosine kinase receptors indicated that the proband`s cells had a concomitant defect in EGF binding, which was reduced to 20-40% of matched controls. Binding of IGF-I and PDGF-AA was normal in the proband`s cells. Defective EGF binding was due to decreased affinity for EGF (K{sub D} =6.8 nM, normal range 0.5-1.5 nM) with a minor reduction in the number of EGF binding sites. Reduced EGF binding in the proband`s fibroblasts was accompanied by decreased ability of EGF to simulate DNA synthesis and by reduced in vitro growth. EGF binding was normal in fibroblasts cultured from both parents. Analysis of the insulin receptor gene by PCR amplification using primers flanking each of the 22 exons and direct DNA sequencing identified two different mutations in patient GE. The paternal allele had a single nucleotide insertion in exon 10 which changed the codon for Thr 657 (ACC) to Asp (GAC) in the insulin repector cDNA. The resulting frame shift produced a premature STOP codon in position 665. The maternal mutation was an insertion of a single nucleotide in exon 10 which converted the codon for Cys 682 (TGC) to a STOP codon (TAG). We conclude that patient GE was a compound heterozygote for two null alleles in the insulin receptor gene. The concomitant partial defect in the EGF receptor may be secondary to the complete absence of functional insulin receptors which in turn may further impair growth.

  8. PCSK7 Genotype Modifies Effect of a Weight-Loss Diet on 2-Year Changes of Insulin Resistance: The POUNDS LOST Trial

    PubMed Central

    Huang, Tao; Huang, Jinyan; Qi, Qibin; Li, Yanping; Bray, George A.; Rood, Jennifer; Sacks, Frank M.

    2015-01-01

    OBJECTIVE A common variant rs236918 in the PCSK7 gene has the strongest association with iron homeostasis and is related to insulin resistance. Dietary carbohydrate (CHO) modulates the genetic effect on insulin resistance. We examined whether 2-year weight-loss diets modify the effect of PCSK7 genetic variants on changes in fasting insulin levels and insulin resistance in a randomized, controlled trial. RESEARCH DESIGN AND METHODS Data were analyzed in the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial, which is a randomized, controlled 2-year weight-loss trial using diets that differed in macronutrient proportions. PCSK7 rs236918 was genotyped in 730 overweight or obese adults (80% whites) in this trial. We assessed the progression in fasting insulin and glucose levels, and insulin resistance by genotypes. RESULTS During the 6-month weight-loss phase, the PCSK7 rs236918 G allele was significantly associated with greater decreases in fasting insulin levels in the high–dietary CHO group (P for interaction = 0.04), while the interaction for changes in HOMA-insulin resistance (HOMA-IR) (P for interaction = 0.06) did not reach significant levels in white subjects. The G allele was significantly associated with a greater decrease in fasting insulin levels and HOMA-IR in response to high dietary CHO levels (P = 0.02 and P = 0.03, respectively). From 6 months to 2 years (weight-regain phase), the interactions became attenuated due to the regaining of weight (P for interactions = 0.08 and 0.06, respectively). In addition, we observed similar and even stronger results in the whole-study samples from the trial. CONCLUSIONS Our data suggest that PCSK7 genotypes may interact with dietary CHO intake on changes in insulin sensitivity in the white Americans. PMID:25504030

  9. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling.

    PubMed

    Kuo, Taiyi; Lew, Michelle J; Mayba, Oleg; Harris, Charles A; Speed, Terence P; Wang, Jen-Chywan

    2012-07-10

    Glucocorticoids elicit a variety of biological responses in skeletal muscle, including inhibiting protein synthesis and insulin-stimulated glucose uptake and promoting proteolysis. Thus, excess or chronic glucocorticoid exposure leads to muscle atrophy and insulin resistance. Glucocorticoids propagate their signal mainly through glucocorticoid receptors (GR), which, upon binding to ligands, translocate to the nucleus and bind to genomic glucocorticoid response elements to regulate the transcription of nearby genes. Using a combination of chromatin immunoprecipitation sequencing and microarray analysis, we identified 173 genes in mouse C2C12 myotubes. The mouse genome contains GR-binding regions in or near these genes, and gene expression is regulated by glucocorticoids. Eight of these genes encode proteins known to regulate distinct signaling events in insulin/insulin-like growth factor 1 pathways. We found that overexpression of p85α, one of these eight genes, caused a decrease in C2C12 myotube diameters, mimicking the effect of glucocorticoids. Moreover, reducing p85α expression by RNA interference in C2C12 myotubes significantly compromised the ability of glucocorticoids to inhibit Akt and p70 S6 kinase activity and reduced glucocorticoid induction of insulin receptor substrate 1 phosphorylation at serine 307. This phosphorylation is associated with insulin resistance. Furthermore, decreasing p85α expression abolished glucocorticoid inhibition of protein synthesis and compromised glucocorticoid-induced reduction of cell diameters in C2C12 myotubes. Finally, a glucocorticoid response element was identified in the p85α GR-binding regions. In summary, our studies identified GR-regulated transcriptional networks in myotubes and showed that p85α plays a critical role in glucocorticoid-induced insulin resistance and muscle atrophy in C2C12 myotubes.

  10. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin.

    PubMed Central

    Wu, X; Fan, Z; Masui, H; Rosen, N; Mendelsohn, J

    1995-01-01

    Both EGF and insulin, or IGF, stimulate the growth of many cell types by activating receptors that contain tyrosine kinase activities. A monoclonal antibody (mAb 225) against the EGF receptor produced in this laboratory has been shown to competitively inhibit EGF binding and block activation of receptor tyrosine kinase. Here we report that a human colorectal carcinoma cell line, DiFi, which expresses high levels of EGF receptors on plasma membranes, can be induced to undergo G1 cell cycle arrest and programmed cell death (apoptosis) when cultured with mAb 225 at concentrations that saturate EGF receptors. Addition of IGF-1 or high concentrations of insulin can delay apoptosis induced by mAb 225, while the G1 arrest cannot be reversed by either IGF-1 or insulin. Insulin/IGF-1 cannot activate EGF receptor tyrosine kinase that has been inhibited by mAb 225. Moreover, an mAb against the IGF-1 receptor, which has little direct effect on DiFi cell growth, can block the capacity of insulin/IGF-1 to delay apoptosis induced by mAb 225, suggesting that the insulin/IGF-1-mediated delay of apoptosis is acting through the IGF-1 receptor. In contrast, insulin/IGF-1 cannot delay the apoptosis caused by the DNA damaging agent, cisplatin. The results indicate that EGF receptor activation is required both for cell cycle progression and for prevention of apoptosis in DiFi cells, and that a signal transduction pathway shared by receptors for insulin/IGF-1 and EGF may be involved in regulating apoptosis triggered by blockade of the EGF receptor. Images PMID:7706497

  11. Phosphatidylinositol 3'-kinase associates with an insulin receptor substrate-1 serine kinase distinct from its intrinsic serine kinase.

    PubMed Central

    Cengel, K A; Kason, R E; Freund, G G

    1998-01-01

    Serine phosphorylation of insulin receptor substrate-1 (IRS-1) has been proposed as a counter-regulatory mechanism in insulin and cytokine signalling. Here we report that IRS-1 is phosphorylated by a wortmannin insensitive phosphatidylinositol 3'-kinase (PI 3-kinase)-associated serine kinase (PAS kinase) distinct from PI 3-kinase serine kinase. We found that PI 3-kinase immune complexes contain 5-fold more wortmannin-insensitive serine kinase activity than SH2-containing protein tyrosine phosphatase-2 (SHP2) and IRS-1 immune complexes. Affinity chromatography of cell lysates with a glutathione S-transferase fusion protein for the p85 subunit of PI 3-kinase showed that PAS kinase associated with the p85 subunit of PI 3-kinase. This interaction required unoccupied SH2 domain(s) but did not require the PI 3-kinase p110 subunit binding domain. In terms of function, PAS kinase phosphorylated IRS-1 and, after insulin stimulation, PAS kinase phosphorylated IRS-1 in PI 3-kinase-IRS-1 complexes. Phosphopeptide mapping showed that insulin-dependent in vivo sites of IRS-1 serine phosphorylation were comparable to those of PAS kinase phosphorylated IRS-1. More importantly, PAS kinase-dependent phosphorylation of IRS-1 reduced by 4-fold the ability of IRS-1 to act as an insulin receptor substrate. Taken together, these findings indicate that: (a) PAS kinase is distinct from the intrinsic serine kinase activity of PI 3-kinase, (b) PAS kinase associates with the p85 subunit of PI 3-kinase through SH2 domain interactions, and (c) PAS kinase is an IRS-1 serine kinase that can reduce the ability of IRS-1 to serve as an insulin receptor substrate. PMID:9761740

  12. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase C{epsilon}

    SciTech Connect

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir . E-mail: smrbhattacharya@gmail.com

    2007-06-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKC{epsilon} was also inhibited. Surprisingly, phosphorylation of cytosolic PKC{epsilon} was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKC{epsilon} translocation inhibitor peptide, {epsilon}V1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKC{epsilon} migration to implement palmitate effect. Experimental evidences indicate that phospho-PKC{epsilon} adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity.

  13. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  14. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to impairment of vasodilator action of insulin

    PubMed Central

    Jang, Hyun-Ju; Hwang, Daniel H.

    2015-01-01

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Activation of Toll-like receptor 4 (TLR4) induces proinflammatory response and endoplasmic reticulum (ER) stress. Saturated fatty acids (SFA) activate TLR4, which induces ER stress and endothelial dysfunction. Therefore, we determined whether TLR4-mediated ER stress is an obligatory step mediating SFA-induced endothelial dysfunction. Palmitate stimulated proinflammatory responses and ER stress, and this was suppressed by knockdown of TLR4 in primary human aortic endothelial cells (HAEC). Next, we examined the role of TLR4 in vasodilatory responses in intact vessels isolated from wild-type (WT, C57BL/6) and TLR4-KO mice after feeding high-fat (HFD) or normal chow diet (NCD) for 12 wk. Arterioles isolated from HFD WT mice exhibited impaired insulin-stimulated vasodilation compared with arterioles isolated from NCD WT mice. Deficiency of TLR4 was protective from HFD-induced impairment of insulin-stimulated vasodilation. There were no differences in acetylcholine (Ach)- or sodium nitroprusside (SNP)-stimulated vasodilation between the two groups. Furthermore, we examined whether ER stress is involved in SFA-induced impairment of vasodilator actions of insulin. Infusion of palmitate showed the impairment of vasodilatory response to insulin, which was ameliorated by coinfusion with tauroursodeoxycholic acid (TUDCA), an ER stress suppressor. Taken together, the results suggest that TLR4-induced ER stress may be an obligatory step mediating the SFA-mediated endothelial dysfunction. PMID:26522062

  15. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    PubMed

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  16. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    PubMed

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[(14)C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia.

  17. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery

    PubMed Central

    Coen, Paul M.; Menshikova, Elizabeth V.; Distefano, Giovanna; Zheng, Donghai; Tanner, Charles J.; Standley, Robert A.; Helbling, Nicole L.; Dubis, Gabriel S.; Ritov, Vladimir B.; Xie, Hui; Desimone, Marisa E.; Smith, Steven R.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Houmard, Joseph A.

    2015-01-01

    Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery–induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity. PMID:26293505

  18. Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure

    PubMed Central

    Ising, Christina; Koehler, Sybille; Brähler, Sebastian; Merkwirth, Carsten; Höhne, Martin; Baris, Olivier R; Hagmann, Henning; Kann, Martin; Fabretti, Francesca; Dafinger, Claudia; Bloch, Wilhelm; Schermer, Bernhard; Linkermann, Andreas; Brüning, Jens C; Kurschat, Christine E; Müller, Roman-Ulrich; Wiesner, Rudolf J; Langer, Thomas; Benzing, Thomas; Brinkkoetter, Paul Thomas

    2015-01-01

    Mitochondrial dysfunction and alterations in energy metabolism have been implicated in a variety of human diseases. Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondrial inner membrane. Here, we provide a link between PHB2 deficiency and hyperactive insulin/IGF-1 signaling. Deletion of PHB2 in podocytes of mice, terminally differentiated cells at the kidney filtration barrier, caused progressive proteinuria, kidney failure, and death of the animals and resulted in hyperphosphorylation of S6 ribosomal protein (S6RP), a known mediator of the mTOR signaling pathway. Inhibition of the insulin/IGF-1 signaling system through genetic deletion of the insulin receptor alone or in combination with the IGF-1 receptor or treatment with rapamycin prevented hyperphosphorylation of S6RP without affecting the mitochondrial structural defect, alleviated renal disease, and delayed the onset of kidney failure in PHB2-deficient animals. Evidently, perturbation of insulin/IGF-1 receptor signaling contributes to tissue damage in mitochondrial disease, which may allow therapeutic intervention against a wide spectrum of diseases. PMID:25643582

  19. A Novel Approach to Identify Two Distinct Receptor Binding Surfaces of Insulin-like Growth Factor II*S⃞

    PubMed Central

    Alvino, Clair L.; McNeil, Kerrie A.; Ong, Shee Chee; Delaine, Carlie; Booker, Grant W.; Wallace, John C.; Whittaker, Jonathan; Forbes, Briony E.

    2009-01-01

    Very little is known about the residues important for the interaction of insulin-like growth factor II (IGF-II) with the type 1 IGF receptor (IGF-1R) and the insulin receptor (IR). Insulin, to which IGF-II is homologous, is proposed to cross-link opposite halves of the IR dimer through two receptor binding surfaces, site 1 and site 2. In the present study we have analyzed the contribution of IGF-II residues equivalent to insulin's two binding surfaces toward the interaction of IGF-II with the IGF-1R and IR. Four “site 1” and six “site 2” analogues were produced and analyzed in terms of IGF-1R and IR binding and activation. The results show that Val43, Phe28, and Val14 (equivalent to site 1) are critical to IGF-1R and IR binding, whereas mutation to alanine of Gln18 affects only IGF-1R and not IR binding. Alanine substitutions at Glu12, Asp15, Phe19, Leu53, and Glu57 analogues resulted in significant (>2-fold) decreases in affinity for both the IGF-1R and IR. Furthermore, taking a novel approach using a monomeric, single-chain minimized IGF-1R we have defined a distinct second binding surface formed by Glu12, Phe19, Leu53, and Glu57 that potentially engages the IGF-1R at one or more of the FnIII domains. PMID:19139090

  20. Proteomic analysis of the palmitate-induced myotube secretome reveals involvement of the annexin A1-formyl peptide receptor 2 (FPR2) pathway in insulin resistance.

    PubMed

    Yoon, Jong Hyuk; Kim, Dayea; Jang, Jin-Hyeok; Ghim, Jaewang; Park, Soyeon; Song, Parkyong; Kwon, Yonghoon; Kim, Jaeyoon; Hwang, Daehee; Bae, Yoe-Sik; Suh, Pann-Ghill; Berggren, Per-Olof; Ryu, Sung Ho

    2015-04-01

    Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1- formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity.

  1. Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse.

    PubMed

    Kamei, Noriyasu; Tanaka, Misa; Choi, Hayoung; Okada, Nobuyuki; Ikeda, Takamasa; Itokazu, Rei; Takeda-Morishita, Mariko

    2017-03-06

    Insulin is now considered to be a new drug candidate for treating dementias, such as Alzheimer's disease, whose pathologies are linked to insulin resistance in the brain. Our recent work has clarified that a noncovalent strategy involving cell-penetrating peptides (CPPs) can increase the direct transport of insulin from the nasal cavity into the brain parenchyma. The present study aimed to determine whether the brain insulin level increased by intranasal coadministration of insulin with the CPP penetratin has potential for treating dementia. The pharmacological actions of insulin were investigated at different stages of memory impairment using a senescence-accelerated mouse-prone 8 (SAMP8) model. The results of spatial learning tests suggested that chronic intranasal administration of insulin with l-penetratin to SAMP8 slowed the progression of memory loss in the early stage of memory impairment. However, contrary to expectations, this strategy using penetratin was ineffective in recovering the severe cognitive dysfunction in the progressive stage, which involves brain accumulation of amyloid β (Aβ). Immunohistological examination of hippocampal regions of samples from SAMP8 in the progressive stage suggested that accelerated nose-to-brain insulin delivery had a partial neuroprotective function but unexpectedly increased Aβ plaque deposition in the hippocampus. These findings suggest that the efficient nose-to-brain delivery of insulin combined with noncovalent CPP strategy has different effects on dementia during the mild and progressive stages of cognitive dysfunction.

  2. Desensitization of the insulin receptor by antireceptor antibodies in vivo is blocked by treatment of mice with beta-adrenergic agonists.

    PubMed

    Elias, D; Rapoport, M; Cohen, I R; Shechter, Y

    1988-06-01

    In previous studies we reported that immunization of mice with ungulate insulins induced the development of antiinsulin antibodies, which include an idiotype that appeared to recognize the part of the insulin molecule recognized by the hormone receptor. The antiinsulin antibodies of this idiotype were replaced spontaneously by antiidiotypic antibodies. The antiidiotypic antibodies, which persisted for about 14 d, mimicked insulin and functioned as antibodies to the insulin receptor. They induced down regulation, desensitization and refractoriness of the insulin receptor and disturbances in glucose homeostasis in vivo (Shechter, Y., D. Elias, R. Maron, and I.R. Cohen., 1984; Elias, D., R. Maron, I.R. Cohen, and Y. Shechter. 1984, J. Biol. Chem. 259: 6411-6419). We now report that effects of the antiidiotypic antibodies on the insulin receptor effector system can be modified pharmacologically. Administration of the beta-adrenergic agonist isoproterenol during the period of insulin resistance (days 26-40 after primary immunization), largely restored fat cell responsiveness to insulin, and eliminated the appearance of fasting hyperglycemia. This restoration appeared to be caused by inhibition of both insulin receptor desensitization and refractoriness. In contrast, down regulation of insulin receptors was not reversed by isoproterenol treatment in vivo. The effects of treatment with isoproterenol persisted for 2-4 d after termination of treatment. The beta-antagonist, propranolol and more so, the beta 1a-antagonist metoprolol, specifically blocked the effect of isoproterenol at a molar ratio of 3-10:1. Oral administration of the cAMP phosphodiesterase inhibitor, aminophylline, was also effective in inhibiting the development of desensitization in fat cells. These results indicate that treatment with beta 1-adrenergic agonists in vivo, or other agents that elevate cellular cAMP levels, can inhibit the development of the "postbinding" defects induced by insulin

  3. Regulation of insulin receptor phosphorylation in the brains of prenatally stressed rats: New insight into the benefits of antidepressant drug treatment.

    PubMed

    Głombik, Katarzyna; Ślusarczyk, Joanna; Trojan, Ewa; Chamera, Katarzyna; Budziszewska, Bogusława; Lasoń, Władysław; Basta-Kaim, Agnieszka

    2017-02-01

    A growing body of evidence supports the involvement of disturbances in the brain insulin pathway in the pathogenesis of depression. On the other hand, data concerning the impact of antidepressant drug therapy on brain insulin signaling remain scare and insufficient. We determinated the influence of chronic treatment with antidepressant drugs (imipramine, fluoxetine and tianeptine) on the insulin signaling pathway of the brain of adult prenatally stressed rats. 3-month-old prenatally stressed and control rats were treated for 21 days with imipramine, fluoxetine or tianeptine (10mg/kg/day i.p.).The impact of chronic antidepressant administration was examined in forced swim test. In the frontal cortex and hippocampus, the mRNA and protein expression of insulin, insulin receptor, insulin receptor substrates (IRS-1,IRS-2) and adaptor proteins (Shc1, Grb2) before and after drugs administration were measured.Rats exposed prenatally to stressful stimuli displayed depressive-like disturbances, which were attenuated by antidepressant drug administration. We did not reveal the impact of prenatal stress or antidepressant treatment on insulin and the insulin receptor expression in the examined structures. We revealed that diminished insulin receptor phosphorylation evoked by the prenatal stress procedure was attenuated by drugs treatment. We demonstrated that the favorable effect of antidepressans on insulin receptor phosphorylation in the frontal cortex was mainly related with the normalization of serine312 and tyrosine IRS-1 phosphorylation, while in the hippocampus, it was related with the adaptor proteins Shc1/Grb2. It can be suggested that the behavioral effectiveness of antidepressant drug therapy may be related with the beneficial impact of antidepressant on insulin receptor phosphorylation pathways.

  4. Activation of oncogenic tyrosine kinase signaling promotes insulin receptor-mediated cone photoreceptor survival

    PubMed Central

    Rajala, Ammaji; Wang, Yuhong; Rajala, Raju V.S.

    2016-01-01

    In humans, daylight vision is primarily mediated by cone photoreceptors. These cells die in age-related retinal degenerations. Prolonging the life of cones for even one decade would have an enormous beneficial effect on usable vision in an aging population. Photoreceptors are postmitotic, but shed 10% of their outer segments daily, and must synthesize the membrane and protein equivalent of a proliferating cell each day. Although activation of oncogenic tyrosine kinase and inhibition of tyrosine phosphatase signaling is known to be essential for tumor progression, the cellular regulation of this signaling in postmitotic photoreceptor cells has not been studied. In the present study, we report that a novel G-protein coupled receptor–mediated insulin receptor (IR) signaling pathway is regulated by non-receptor tyrosine kinase Src through the inhibition of protein tyrosine phosphatase IB (PTP1B). We demonstrated the functional significance of this pathway through conditional deletion of IR and PTP1B in cones, in addition to delaying the death of cones in a mouse model of cone degeneration by activating the Src. This is the first study demonstrating the molecular mechanism of a novel signaling pathway in photoreceptor cells, which provides a window of opportunity to save the dying cones in retinal degenerative diseases. PMID:27391439

  5. The insulin-sensitive glucose transporter (GLUT4) is involved in early bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor.

    PubMed

    Maor, G; Karnieli, E

    1999-04-01

    Children with uncontrolled type I (insulin-dependent) diabetes mellitus are characterized by a slow growth rate, which improves upon adequate therapy. While skeletal growth is an energy-consuming process involving high glucose utilization, the role of glucose transporters (GLUT) and their regulation in the bone formation process are not yet fully understood. Thus, we studied both in vivo and in vitro early endochondral bone formation in control and streptozotocin-induced young diabetic mice. Using in situ hybridization and immunohistochemistry techniques, we demonstrated the novel existence of the insulin-sensitive glucose transporter (GLUT4), as well as GLUT1, in juvenile-derived murine mandibular condyles and in the humeral growth plate-two models for endochondral bone formation. Insulin-like growth factor (IGF) I receptors (IGF-I-R), but not insulin receptors (IR), were shown to have cellular distribution similar to GLUT4, being more abundant in mature chondrocytes. Further, in the skeletal growth centers of streptozotocin-induced diabetic mice, GLUT4, IGF-I, and IGF-I and insulin receptor levels, but not GLUT1 were markedly reduced. The decrease in GLUT4 and in IGF-I and insulin receptors was associated with severe histological changes in the mandibular condyles and humeral growth plate. Insulin therapy restored IR levels to normalcy, whereas IGF-I-R and GLUT4 levels were only partially recovered. Thus, GLUT4 and IGF-I-R have a potential role in early bone growth in mice. Further, during early bone growth GLUT4 may be regulated through the IGF-I receptor rather than via the insulin receptor. We propose that skeletal growth retardation in type I diabetes may be associated with reduced expression of the GLUT4 and IGF-I receptor in the bone growth center.

  6. Muscleblind-like 1 activates insulin receptor exon 11 inclusion by enhancing U2AF65 binding and splicing of the upstream intron.

    PubMed

    Echeverria, Gloria V; Cooper, Thomas A

    2014-02-01

    Alternative splicing regulates developmentally and tissue-specific gene expression programs, disruption of which have been implicated in numerous diseases. Muscleblind-like 1 (MBNL1) regulates splicing transitions, which are disrupted on loss of MBNL1 function in myotonic dystrophy type 1 (DM1). One such event is MBNL1-mediated activation of insulin receptor exon 11 inclusion, which requires an intronic enhancer element downstream of exon 11. The mechanism of MBNL1-mediated activation of exon inclusion is unknown. We developed an in vitro splicing assay, which robustly recapitulates MBNL1-mediated splicing activation of insulin receptor exon 11 and found that MBNL1 activates removal of the intron upstream of exon 11 upon binding its functional response element in the downstream intron. MBNL1 enhances early spliceosome assembly as evidenced by enhanced complex A formation and binding of U2 small nuclear ribonucleoprotein auxiliary factor 65 kDa subunit (U2AF65) on the upstream intron. We demonstrated that neither the 5' splice site nor exon 11 sequences are required for MBNL1-activated U2AF65 binding. Interestingly, the 5' splice site is required for MBNL1-mediated activation of upstream intron removal, although MBNL1 has no effect on U1 snRNA recruitment. These results suggest that MBNL1 directly activates binding of U2AF65 to enhance upstream intron removal to ultimately activate alternative exon inclusion.

  7. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome

    PubMed Central

    Sistrun, Sakita N.; Morel, Kelley S.; Nestler, John E.

    2016-01-01

    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS (n = 16) and normal (n = 15) women underwent 8 weeks of a hypocaloric diet. The Matsuda index, area under the curve DCI-IPG (AUCDCI-IPG), AUCinsulin, and AUCDCI-IPG/AUCinsulin were measured during a 2 hr OGTT at baseline and 8 weeks. Results. PCOS women had lower AUCDCI-IPG/AUCinsulin at baseline and a significant relationship between AUCDCI-IPG/AUCinsulin and Matsuda index (p = 0.0003), which was not present in controls. Weight loss was similar between PCOS (−4.08 kg) and normal women (−4.29 kg, p = 0.6281). Weight loss in PCOS women did not change the relationship between AUCDCI-IPG/AUCinsulin and Matsuda index (p = 0.0100), and this relationship remained absent in control women. Conclusion. The association between AUCDCI-IPG/AUCinsulin and insulin sensitivity was only found in PCOS but not in normal women, and this relationship was unaffected by weight loss. DCI and its messenger may contribute to insulin resistance in PCOS independent of obesity. PMID:27721826

  8. Acute stress or systemic insulin injection increases flunitrazepam sensitive-GABAA receptor density in synaptosomes of chick forebrain: Modulation by systemic epinephrine.

    PubMed

    Cid, Mariana Paula; Arce, Augusto; Salvatierra, Nancy Alicia

    2008-03-01

    Interactions between acute stress and systemic insulin and epinephrine on GABAA receptor density in the forebrain were studied. Here, 10 day-old chicks were intraperitoneally injected with insulin, epinephrine or vehicle and then immediately stressed by partial water immersion for 15 min and killed by decapitation. Non-stressed controls were similarly injected, then returned to their rearing boxes for 15 min and then killed. Forebrains were dissected and GABAA receptor density was measured ex vivo in synaptosomes by 3[H]-flunitrazepam binding assay. In non-stressed chicks, insulin at 1.25, 2.50 and 5.00 IU/kg of body weight (non-hypoglycemic doses) increased Bmax by 33, 53 and 44% compared to saline, respectively. A similar increase of 41% was observed in receptor density after stress. However, the insulin effect was not additive to the stress-induced increase suggesting that both effects occur through similar mechanisms. In contrast, epinephrine, at 0.25 and 0.5 mg/kg did not induce any changes in Bmax in non-stressed chicks. Nevertheless, after stress these doses increased the receptor density by about 13 and 27%, respectively. Similarly, the same epinephrine doses co-administered with insulin (2.50 IU/kg), increased the receptor density by about 20% compared to insulin alone. These results suggest that systemic epinephrine, perhaps by evoking central norepinephrine release, modulates the increase in forebrain GABAA receptor binding induced by both insulin and stress.

  9. Venus Kinase Receptors at the Crossroads of Insulin Signaling: Their Role in Reproduction for Helminths and Insects.

    PubMed

    Dissous, Colette

    2015-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (TKs) first discovered in the human parasite Schistosoma. They contain an extracellular Venus FlyTrap module similar to the ligand-binding domain of G protein-coupled receptors of class C and an intracellular TK domain similar to that of insulin receptors. VKRs are present from cnidarians to echinoderms. They were shown to be activated by amino-acids, to induce insulin-like intracellular pathways, and to be highly expressed in larvae and in gonads of helminths and insects. The function of VKR in gametogenesis was demonstrated in schistosomes by VKR silencing and recent studies in Aedes aegypti have confirmed the importance of VKR in mosquito egg formation. AaeVKR was shown to bind to ovary ecdysteroidogenic hormone and to activate the production of ecdysteroids by the ovary, independently of signaling mediated by insulin-like peptides. These new data confirm and specify the function of VKRs in the reproduction of helminths and insects and they open interesting perspectives for elucidating the role of VKRs in other models. VKR targeting would also provide opportunities for the control of parasites and various vector-borne infectious diseases.

  10. The insulin-sensitivity sulphonylurea receptor variant is associated with thyrotoxic paralysis.

    PubMed

    Rolim, Ana Luiza R; Lindsey, Susan C; Kunii, Ilda S; Crispim, Felipe; Moisés, Regina Célia M S; Maciel, Rui M B; Dias-da-Silva, Magnus R

    2014-10-01

    Thyrotoxicosis is the most common cause of the acquired flaccid muscle paralysis in adults called thyrotoxic periodic paralysis (TPP) and is characterised by transient hypokalaemia and hypophosphataemia under high thyroid hormone levels that is frequently precipitated by carbohydrate load. The sulphonylurea receptor 1 (SUR1 (ABCC8)) is an essential regulatory subunit of the β-cell ATP-sensitive K(+) channel that controls insulin secretion after feeding. Additionally, the SUR1 Ala1369Ser variant appears to be associated with insulin sensitivity. We examined the ABCC8 gene at the single nucleotide level using PCR-restriction fragment length polymorphism (RFLP) analysis to determine its allelic variant frequency and calculated the frequency of the Ala1369Ser C-allele variant in a cohort of 36 Brazilian TPP patients in comparison with 32 controls presenting with thyrotoxicosis without paralysis (TWP). We verified that the frequency of the alanine 1369 C-allele was significantly higher in TPP patients than in TWP patients (61.1 vs 34.4%, odds ratio (OR)=3.42, P=0.039) and was significantly more common than the minor allele frequency observed in the general population from the 1000 Genomes database (61.1 vs 29.0%, OR=4.87, P<0.005). Additionally, the C-allele frequency was similar between TWP patients and the general population (34.4 vs 29%, OR=1.42, P=0.325). We have demonstrated that SUR1 alanine 1369 variant is associated with allelic susceptibility to TPP. We suggest that the hyperinsulinaemia that is observed in TPP may be linked to the ATP-sensitive K(+)/SUR1 alanine variant and, therefore, contribute to the major feedforward precipitating factors in the pathophysiology of TPP.

  11. Susceptibility to Apoptosis in Insulin-like Growth Factor-I Receptor-deficient Brown Adipocytes

    PubMed Central

    Valverde, Angela M.; Mur, Cecilia; Brownlee, Michael; Benito, Manuel

    2004-01-01

    Fetal brown adipocytes are insulin-like growth factor-I (IGF-I) target cells. To assess the importance of the IGF-I receptor (IGF-IR) in brown adipocytes during fetal life, we have generated immortalized brown adipocyte cell lines from the IGF-IR-/- mice. Using this experimental model, we demonstrate that the lack of IGF-IR in fetal brown adipocytes increased the susceptibility to apoptosis induced by serum withdrawal. Culture of cells in the absence of serum and growth factors produced rapid DNA fragmentation (4 h) in IGF-IR-/- brown adipocytes, compared with the wild type (16 h). Consequently, cell viability was decreased more rapidly in fetal brown adipocytes in the absence of IGF-IR. Furthermore, caspase-3 activity was induced much earlier in cells lacking IGF-IR. At the molecular level, IGF-IR deficiency in fetal brown adipocytes altered the balance of the expression of several proapoptotic (Bcl-xS and Bim) and antiapoptotic (Bcl-2 and Bcl-xL) members of the Bcl-2 family. This imbalance was irreversible even though in IGF-IR-reconstituted cells. Likewise, cytosolic cytochrome c levels increased rapidly in IGF-IR-deficient cells compared with the wild type. A rapid entry of Foxo1 into the nucleus accompanied by a rapid exit from the cytosol and an earlier activation of caspase-8 were observed in brown adipocytes lacking IGF-IR upon serum deprivation. Activation of caspase-8 was inhibited by 50% in both cell types by neutralizing anti-Fas-ligand antibody. Adenoviral infection of wild-type brown adipocytes with constitutively active Foxol (ADA) increased the expression of antiapoptotic genes, decreased Bcl-xL and induced caspase-8 and -3 activities, with the final outcome of DNA fragmentation. Up-regulation of uncoupling protein-1 (UCP-1) expression in IGF-IR-deficient cells by transduction with PGC-1α or UCP-1 ameliorated caspase-3 activation, thereby retarding apoptosis. Finally, insulin treatment prevented apoptosis in both cell types. However, the survival

  12. Characterization of ligand binding and processing by bombesin receptors in an insulin-secreting cell line.

    PubMed Central

    Swope, S L; Schonbrunn, A

    1987-01-01

    Bombesin is a tetradecapeptide which stimulates insulin secretion in vivo by isolated islets and by HIT-T15 cells, a clonal line of hamster pancreatic-islet cells. In the present study we have used [125I-Tyr4]bombesin to characterize bombesin receptors in HIT-T15 cells. [125I-Tyr4]Bombesin binding was time- and temperature-dependent: maximum binding occurred after 45 min, 90 min and 10 h at 37, 22 and 4 degrees C respectively. Thereafter, cell-associated radioactivity declined at 37 degrees C and 22 degrees C but not at 4 degrees C. Scatchard analysis of [125I-Tyr4]bombesin binding measured at 4 degrees C showed that HIT-T15 cells contain a single class of binding sites (approximately equal to 85000/cell) with an apparent Kd of 0.9 +/- 0.11 nM. Structurally unrelated neuropeptides did not compete for [125I-Tyr4]bombesin binding. However, the relative potencies of bombesin and four bombesin analogues in inhibiting the binding of [125I-Tyr4]bombesin correlated with their ability to stimulate insulin release. Receptor-mediated processing of [125I-Tyr4]bombesin was examined by using an acid wash (0.2 M-acetic acid/0.5 M-NaCl, pH 2.5) to dissociate surface-bound peptide from the cells. Following [125I-Tyr4]bombesin binding at 4 degrees C, more than 85% of the cell-associated radioactivity could be released by acid. When the temperature was then increased to 37 degrees C, the bound radioactivity was rapidly (t1/2 less than 3 min) converted into an acid-resistant state. These results indicate that receptor-bound [125I-Tyr4]bombesin is internalized in a temperature-dependent manner. In fact, the entire ligand-receptor complex appeared to be internalized, since pretreatment of cells with 100 nM-bombesin for 90 min at 37 degrees C decreased the subsequent binding of [125I-Tyr4]bombesin by 90%. The chemical nature of the cell-associated radioactivity was determined by reverse-phase chromatography of the material extracted from cells after a 30 min binding incubation at 37

  13. Recruitment of GABA(A) receptors and fearfulness in chicks: modulation by systemic insulin and/or epinephrine.

    PubMed

    Cid, Mariana Paula; Toledo, Carolina Maribel; Salvatierra, Nancy Alicia

    2013-02-01

    One-day-old chicks were individually assessed on their latency to peck pebbles, and categorized as low latency (LL) or high latency (HL) according to fear. Interactions between acute stress and systemic insulin and epinephrine on GABA(A) receptor density in the forebrain were studied. At 10 days of life, LL and HL chicks were intraperitoneally injected with insulin, epinephrine or saline, and immediately after stressed by partial water immersion for 15 min and killed by decapitation. Forebrains were dissected and the GABA(A) receptor density was measured ex vivo by the (3)[H]-flunitrazepam binding assay in synaptosomes. In non-stressed chicks, insulin (non-hypoglycemic dose) at 2.50 IU/kg of body weight incremented the Bmax by 40.53% in the HL chicks compared to saline group whereas no significant differences were observed between individuals in the LL subpopulation. Additionally, insulin increased the Bmax (23.48%) in the HL group with respect to the LL ones, indicating that the insulin responses were different according to the anxiety of each category. Epinephrine administration (0.25 and 0.50mg/kg) incremented the Bmax in non-stressed chicks, in the LL group by about 37% and 33%, respectively, compared to ones injected with saline. In the stressed chicks, 0.25mg/kg bw epinephrine increased the Bmax significantly in the HL group by about 24% compared to saline, suggesting that the effect of epinephrine was only observed in the HL group under acute stress conditions. Similarly, the same epinephrine doses co-administered with insulin increased the receptor density in both subpopulations and also showed that the highest dose of epinephrine did not further increase the maximum density of GABA(A)R in HL chicks. These results suggest that systemic epinephrine, perhaps by evoking central norepinephrine release, modulated the increase in the forebrain GABA(A) receptor recruitment induced by both insulin and stress in different ways depending on the subpopulation

  14. Tyrosine phosphorylation of two cytosolic proteins of 50 kDa and 35 kDa in rat liver by insulin-receptor kinase in vitro.

    PubMed Central

    Kwok, Y C; Yip, C C

    1987-01-01

    Insulin-receptor tyrosine kinase can phosphorylate a variety of artificial substrates in vitro. Its physiological substrate(s), however, remains unknown. In the present study, we show that immobilized insulin receptors phosphorylate tyrosine residues of two cytosolic proteins of 50 kDa and 35 kDa in rat liver. Phosphorylation of these two proteins required Mn2+- or Mg2+-ATP as the phosphate donor. Phosphorylation was time- and temperature-dependent. Furthermore, the rate of phosphorylation of the two proteins was related to the autophosphorylated state of the insulin receptor. The pI of the phosphorylated 50 kDa and 35 kDa proteins was 5.4 and 5.6 respectively. These proteins were present in low abundance. They were not related to each other, nor to the insulin receptor, as demonstrated by in-gel proteolytic digestion and by immunoprecipitation using antibodies produced against them. They were specific substrates for the insulin receptor kinase, since they were not phosphorylated by epidermal-growth-factor-receptor kinase. These observations suggest that the 50 kDa and 35 kDa cytosolic proteins may be endogenous substrates for the insulin-receptor kinase. Images Fig. 1. Fig. 2. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. PMID:2829823

  15. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss.

    PubMed

    van der Zwaal, Esther M; de Weijer, Barbara A; van de Giessen, Elsmarieke M; Janssen, Ignace; Berends, Frits J; van de Laar, Arnold; Ackermans, Mariette T; Fliers, Eric; la Fleur, Susanne E; Booij, Jan; Serlie, Mireille J

    2016-07-01

    In several studies reduced striatal dopamine D2/3 receptor (D2/3R) availability was reported in obese subjects compared to lean controls. Whether this is a reversible phenomenon remained uncertain. We previously determined the short-term effect of Roux-en-Y gastric bypass surgery (RYGB) on striatal D2/3R availability (using [(123)I]IBZM SPECT) in 20 morbidly obese women. Striatal D2/3R availability was lower compared to controls at baseline, and remained unaltered after 6 weeks, despite significant weight loss. To determine whether long-term bariatric surgery-induced weight loss normalizes striatal D2/3R binding, we repeated striatal D2/3R binding measurements at least 2 years after RYGB in 14 subjects of the original cohort. In addition, we assessed long-term changes in body composition, eating behavior and fasting plasma levels of leptin, ghrelin, insulin and glucose. Mean body mass index declined from 46±7kg/m(2) to 32±6kg/m(2), which was accompanied by a significant increase in striatal D2/3R availability (p=0.031). Striatal D2/3R availability remained significantly reduced compared to the age-matched controls (BMI 22±2kg/m(2); p=0.01). Changes in striatal D2/3R availability did not correlate with changes in body weight/fat, insulin sensitivity, ghrelin or leptin levels. Scores on eating behavior questionnaires improved and changes in the General Food Craving Questionnaire-State showed a borderline significant correlation with changes in striatal D2/3R availability. These findings show that striatal D2/3R availability increases after long-term bariatric-surgery induced weight loss, suggesting that reduced D2/3R availability in obesity is a reversible phenomenon.

  16. Cricket body size is altered by systemic RNAi against insulin signaling components and epidermal growth factor receptor.

    PubMed

    Dabour, Noha; Bando, Tetsuya; Nakamura, Taro; Miyawaki, Katsuyuki; Mito, Taro; Ohuchi, Hideyo; Noji, Sumihare

    2011-09-01

    A long-standing problem of developmental biology is how body size is determined. In Drosophila melanogaster, the insulin/insulin-like growth factor (I/IGF) and target of rapamycin (TOR) signaling pathways play important roles in this process. However, the detailed mechanisms by which insect body growth is regulated are not known. Therefore, we have attempted to utilize systemic nymphal RNA interference (nyRNAi) to knockdown expression of insulin signaling components including Insulin receptor (InR), Insulin receptor substrate (chico), Phosphatase and tensin homologue (Pten), Target of rapamycin (Tor), RPS6-p70-protein kinase (S6k), Forkhead box O (FoxO) and Epidermal growth factor receptor (Egfr) and observed the effects on body size in the Gryllus bimaculatus cricket. We found that crickets treated with double-stranded RNA (dsRNA) against Gryllus InR, chico, Tor, S6k and Egfr displayed smaller body sizes, while Gryllus FoxO nyRNAi-ed crickets exhibited larger than normal body sizes. Furthermore, RNAi against Gryllus chico and Tor displayed slow growth and RNAi against Gryllus chico displayed longer lifespan than control crickets. Since no significant difference in ability of food uptake was observed between the Gryllus chico(nyRNAi) nymphs and controls, we conclude that the adult cricket body size can be altered by knockdown of expressions of Gryllus InR, chico, Tor, S6k, FoxO and Egfr by systemic RNAi. Our results suggest that the cricket is a promising model to study mechanisms underlying controls of body size and life span with RNAi methods.

  17. CCR2 knockout exacerbates cerulein-induced chronic pancreatitis with hyperglycemia via decreased GLP-1 receptor expression and insulin secretion.

    PubMed

    Nakamura, Yuji; Kanai, Takanori; Saeki, Keita; Takabe, Miho; Irie, Junichiro; Miyoshi, Jun; Mikami, Yohei; Teratani, Toshiaki; Suzuki, Takahiro; Miyata, Naoteru; Hisamatsu, Tadakazu; Nakamoto, Nobuhiro; Yamagishi, Yoshiyuki; Higuchi, Hajime; Ebinuma, Hirotoshi; Hozawa, Shigenari; Saito, Hidetsugu; Itoh, Hiroshi; Hibi, Toshifumi

    2013-04-15

    Glucagon-like peptide-1 (GLP-1) promotes insulin release; however, the relationship between the GLP-1 signal and chronic pancreatitis is not well understood. Here we focus on chemokine (C-C motif) ligand 2 (CCL2) and its receptor (CCR2) axis, which regulates various immune cells, including macrophages, to clarify the mechanism of GLP-1-mediated insulin secretion in chronic pancreatitis in mice. One and multiple series of repetitive cerulein administrations were used to induce acute and chronic cerulein pancreatitis, respectively. Acute cerulein-administered CCR2-knockout (KO) mice showed suppressed infiltration of CD11b(+)Gr-1(low) macrophages and pancreatic inflammation and significantly upregulated insulin secretion compared with paired wild-type (WT) mice. However, chronic cerulein-administered CCR2-KO mice showed significantly increased infiltration of CD11b(+)/Gr-1(-) and CD11b(+)/Gr-1(high) cells, but not CD11b(+)/Gr-1(low) cells, in pancreas with severe inflammation and significantly decreased insulin secretion compared with their WT counterparts. Furthermore, although serum GLP-1 levels in chronic cerulein-administered WT and CCR2-KO mice were comparably upregulated after cerulein administrations, GLP-1 receptor levels in pancreases of chronic cerulein-administered CCR2-KO mice were significantly lower than in paired WT mice. Nevertheless, a significantly higher hyperglycemia level in chronic cerulein-administered CCR2-KO mice was markedly restored by treatment with a GLP-1 analog to a level comparable to the paired WT mice. Collectively, the CCR2/CCL2 axis-mediated CD11b(+)-cell migration to the pancreas is critically involved in chronic pancreatitis-mediated hyperglycemia through the modulation of GLP-1 receptor expression and insulin secretion.

  18. Independent signaling by Drosophila insulin receptor for axon guidance and growth

    PubMed Central

    Li, Caroline R.; Guo, Dongyu; Pick, Leslie

    2014-01-01

    The Drosophila insulin receptor (DInR) regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin receptor substrate proteins IRS1–4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail), important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock binding sites were in separate portions of the C-tail from the previously identified Chico binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all five NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. These animals resembled chico mutants, supporting the notion that DInR interacts directly with Chico in vivo to control body size. Mutation of these five NPXY motifs did not affect photoreceptor axon guidance, segregating the roles of DInR in the

  19. Peroxisome Proliferator-activated Receptor γ Regulates Genes Involved in Insulin/Insulin-like Growth Factor Signaling and Lipid Metabolism during Adipogenesis through Functionally Distinct Enhancer Classes*

    PubMed Central

    Oger, Frédérik; Dubois-Chevalier, Julie; Gheeraert, Céline; Avner, Stéphane; Durand, Emmanuelle; Froguel, Philippe; Salbert, Gilles; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme

    2014-01-01

    The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ is a transcription factor whose expression is induced during adipogenesis and that is required for the acquisition and control of mature adipocyte functions. Indeed, PPARγ induces the expression of genes involved in lipid synthesis and storage through enhancers activated during adipocyte differentiation. Here, we show that PPARγ also binds to enhancers already active in preadipocytes as evidenced by an active chromatin state including lower DNA methylation levels despite higher CpG content. These constitutive enhancers are linked to genes involved in the insulin/insulin-like growth factor signaling pathway that are transcriptionally induced during adipogenesis but to a lower extent than lipid metabolism genes, because of stronger basal expression levels in preadipocytes. This is consistent with the sequential involvement of hormonal sensitivity and lipid handling during adipocyte maturation and correlates with the chromatin structure dynamics at constitutive and activated enhancers. Interestingly, constitutive enhancers are evolutionary conserved and can be activated in other tissues, in contrast to enhancers controlling lipid handling genes whose activation is more restricted to adipocytes. Thus, PPARγ utilizes both broadly active and cell type-specific enhancers to modulate the dynamic range of activation of genes involved in the adipogenic process. PMID:24288131

  20. Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination.

    PubMed

    Trojanek, Joanna; Ho, Thu; Del Valle, Luis; Nowicki, Michal; Wang, Jin Ying; Lassak, Adam; Peruzzi, Francesca; Khalili, Kamel; Skorski, Tomasz; Reiss, Krzysztof

    2003-11-01

    The receptor for insulin-like growth factor I (IGF-IR) controls normal and pathological growth of cells. DNA repair pathways represent an unexplored target through which the IGF-IR signaling system might support pathological growth leading to cellular transformation. However, this study demonstrates that IGF-I stimulation supports homologous recombination-directed DNA repair (HRR). This effect involves an interaction between Rad51 and the major IGF-IR signaling molecule, insulin receptor substrate 1 (IRS-1). The binding occurs within the cytoplasm, engages the N-terminal domain of IRS-1, and is attenuated by IGF-I-mediated IRS-1 tyrosine phosphorylation. In the absence of IGF-I stimulation, or if mutated IGF-IR fails to phosphorylate IRS-1, localization of Rad51 to the sites of damaged DNA is diminished. These results point to a direct role of IRS-1 in HRR and suggest a novel role for the IGF-IR/IRS-1 axis in supporting the stability of the genome.

  1. Developmental regulation of insulin-like growth factor-I and growth hormone receptor gene expression.

    PubMed

    Shoba, L; An, M R; Frank, S J; Lowe, W L

    1999-06-25

    During development, the insulin-like growth factor I (IGF-I) gene is expressed in a tissue specific manner; however, the molecular mechanisms governing its developmental regulation remain poorly defined. To examine the hypothesis that expression of the growth hormone (GH) receptor accounts, in part, for the tissue specific expression of the IGF-I gene during development, the developmental regulation of IGF-I and GH receptor gene expression in rat tissues was examined. The level of IGF-I and GH receptor mRNA was quantified in RNA prepared from rats between day 17 of gestation (E17) and 17 months of age (17M) using an RNase protection assay. Developmental regulation of IGF-I gene expression was tissue specific with four different patterns of expression seen. In liver, IGF-I mRNA levels increased markedly between E17 and postnatal day 45 (P45) and declined thereafter. In contrast, in brain, skeletal muscle and testis, IGF-I mRNA levels decreased between P5 and 4M but were relatively unchanged thereafter. In heart and kidney, a small increase in IGF-I mRNA levels was observed between the early postnatal period and 4 months, whereas in lung, minimal changes were observed during development. The changes in GH receptor mRNA levels were, in general, coordinate with the changes in IGF-I mRNA levels, except in skeletal muscle. Interestingly, quantification of GH receptor levels by Western blot analysis in skeletal muscle demonstrated changes coordinate with IGF-I mRNA levels. The levels of the proteins which mediate GH receptor signaling (STAT1, -3, and -5, and JAK2) were quantified by Western blot analysis. These proteins also are expressed in a tissue specific manner during development. In some cases, the pattern of expression was coordinate with IGF-I gene expression, whereas in others it was discordant. To further define molecular mechanisms for the developmental regulation of IGF-I gene expression, protein binding to IGFI-FP1, a protein binding site that is in the major

  2. Modulatory effect of insulin on T cell receptor mediated calcium signaling is blunted in long lasting type 1 diabetes mellitus.

    PubMed

    Demkow, Urszula; Winklewski, Paweł; Ciepiela, Olga; Popko, Katarzyna; Lipińska, Anna; Kucharska, Anna; Michalska, Beata; Wąsik, Maria

    2012-01-01

    Insulin significantly influences Ca(2+) signals evoked by various stimulants. In type 1 recent onset diabetes mellitus the proliferative response of T cells is significantly decreased. The number of clinical trials exploring the role of anti-CD3 monoclonal antibodies (mAb) as a therapeutic agent in recent onset diabetes mellitus type 1 is increasing last years. Therefore, a better understanding of the interplay between T cell receptor (TCR) dependent Ca(2+) increase, and insulin is of vital clinical significance. The aim of the study was to assess the effect of insulin on TCR evoked Ca(2+) responses in T lymphocytes obtained from healthy volunteers and patients suffering from long lasting diabetes mellitus type 1. Analysis was performed with use of the flow cytometer. We demonstrated that T cells ability to mobilize Ca(2+) was significantly reduced in long lasting diabetes mellitus type 1. Ca(2+) decrease achieved by the long term incubation with anti-CD3 mAb in T cells from healthy volunteers was restored by insulin. Strong interrelationship between baseline Ca(2+) level and plateau phase response to TCR stimulation was observed in the cytoplasm of cells pre-incubated with insulin from both healthy subjects and diabetic patients (r = 0.95, p < 0.0001 and r = 0.94, p < 0.0001, respectively). We postulate the existence of the interplay between TCR mediated activation and insulin. The TCR-insulin interplay is blunted in long lasting diabetes mellitus type 1. These observations may have an important implication for future therapeutic options in diabetes.

  3. Suppression of the Insulin Receptors in Adult Schistosoma japonicum Impacts on Parasite Growth and Development: Further Evidence of Vaccine Potential

    PubMed Central

    You, Hong; Gobert, Geoffrey N.; Cai, Pengfei; Mou, Rong; Nawaratna, Sujeevi; Fang, Guofu; Villinger, Francois; McManus, Donald P.

    2015-01-01

    To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines. PMID:25961574

  4. Extension of Drosophila lifespan by cinnamon through a sex-specific dependence on the insulin receptor substrate chico.

    PubMed

    Schriner, Samuel E; Kuramada, Steven; Lopez, Terry E; Truong, Stephanie; Pham, Andrew; Jafari, Mahtab

    2014-12-01

    Cinnamon is a spice commonly used worldwide to flavor desserts, fruits, cereals, breads, and meats. Numerous health benefits have been attributed to its consumption, including the recent suggestion that it may decrease blood glucose levels in people with diabetes. Insulin signaling is an integral pathway regulating the lifespan of laboratory organisms, such as worms, flies, and mice. We posited that if cinnamon truly improved the clinical signs of diabetes in people that it would also act on insulin signaling in laboratory organisms and increase lifespan. We found that cinnamon did extend lifespan in the fruit fly, Drosophila melanogaster. However, it had no effect on the expression levels of the 3 aging-related Drosophila insulin-like peptides nor did it alter sugar, fat, or soluble protein levels, as would be predicted. In addition, cinnamon exhibited no protective effects in males against oxidative challenges. However, in females it did confer a protective effect against paraquat, but sensitized them to iron. Cinnamon provided no protective effect against desiccation and starvation in females, but sensitized males to both. Interestingly, cinnamon protected both sexes against cold, sensitized both to heat, and elevated HSP70 expression levels. We also found that cinnamon required the insulin receptor substrate to extend lifespan in males, but not females. We conclude that cinnamon does not extend lifespan by improving stress tolerance in general, though it does act, at least in part, through insulin signaling.

  5. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance.

    PubMed

    Lee, Eunjung; Jung, Dae Young; Kim, Jong Hun; Patel, Payal R; Hu, Xiaodi; Lee, Yongjin; Azuma, Yoshihiro; Wang, Hsun-Fan; Tsitsilianos, Nicholas; Shafiq, Umber; Kwon, Jung Yeon; Lee, Hyong Joo; Lee, Ki Won; Kim, Jason K

    2015-08-01

    Insulin resistance is a major characteristic of obesity and type 2 diabetes, but the underlying mechanism is unclear. Recent studies have shown a metabolic role of capsaicin that may be mediated via the transient receptor potential vanilloid type-1 (TRPV1) channel. In this study, TRPV1 knockout (KO) and wild-type (WT) mice (as controls) were fed a high-fat diet (HFD), and metabolic studies were performed to measure insulin and leptin action. The TRPV1 KO mice became more obese than the WT mice after HFD, partly attributed to altered energy balance and leptin resistance in the KO mice. The hyperinsulinemic-euglycemic clamp experiment showed that the TRPV1 KO mice were more insulin resistant after HFD because of the ∼40% reduction in glucose metabolism in the white and brown adipose tissue, compared with that in the WT mice. Leptin treatment failed to suppress food intake, and leptin-mediated hypothalamic signal transducer and activator of transcription (STAT)-3 activity was blunted in the TRPV1 KO mice. We also found that the TRPV1 KO mice were more obese and insulin resistant than the WT mice at 9 mo of age. Taken together, these results indicate that lacking TRPV1 exacerbates the obesity and insulin resistance associated with an HFD and aging, and our findings further suggest that TRPV1 has a major role in regulating glucose metabolism and hypothalamic leptin's effects in obesity.

  6. Suppression of the Insulin Receptors in Adult Schistosoma japonicum Impacts on Parasite Growth and Development: Further Evidence of Vaccine Potential.

    PubMed

    You, Hong; Gobert, Geoffrey N; Cai, Pengfei; Mou, Rong; Nawaratna, Sujeevi; Fang, Guofu; Villinger, Francois; McManus, Donald P

    2015-05-01

    To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines.

  7. Two steps of insulin receptor internalization depend on different domains of the beta-subunit [published erratum appears in J Cell Biol 1993 Nov;123(4):1047

    PubMed Central

    1993-01-01

    The internalization of signaling receptors such as the insulin receptor is a complex, multi-step process. The aim of the present work was to determine the various steps in internalization of the insulin receptor and to establish which receptor domains are implicated in each of these by the use of receptors possessing in vitro mutations. We find that kinase activation and autophosphorylation of all three regulatory tyrosines 1146, 1150, and 1151, but not tyrosines 1316 and 1322 in the COOH-terminal domain, are required for the ligand-specific stage of the internalization process; i.e., the surface redistribution of the receptor from microvilli where initial binding occurs to the nonvillous domain of the cell. Early intracellular steps in insulin signal transduction involving the activation of phosphatidylinositol 3'-kinase are not required for this redistribution. The second step of internalization consists in the anchoring of the receptors in clathrin- coated pits. In contrast to the first ligand specific step, this step is common to many receptors including those for transport proteins and occurs in the absence of kinase activation and receptor autophosphorylation, but requires a juxta-membrane cytoplasmic segment of the beta-subunit of the receptor including a NPXY sequence. Thus, there are two independent mechanisms controlling insulin receptor internalization which depend on different domains of the beta-subunit. PMID:8376461

  8. Insulin, leptin, and adiponectin receptors in colon: regulation relative to differing body adiposity independent of diet and in response to dimethylhydrazine.

    PubMed

    Drew, Janice E; Farquharson, Andrew J; Padidar, Sara; Duthie, Garry G; Mercer, Julian G; Arthur, John R; Morrice, Philip C; Barrera, Lawrence N

    2007-10-01

    Obesity has recently become a focus of research to elucidate diet and lifestyle factors as important risk factors for colon cancer. Altered levels of insulin, leptin, and adiponectin have been identified as potential candidates increasing colon cancer risk within the prevailing obesogenic environment. There has been considerable research to characterize signaling via these hormones in the brain, liver, and adipose tissue; however, very little is known of their emerging role in peripheral signaling, particularly in epithelial tissues. This study profiles insulin, leptin, and adipokine receptors in the rat colon, revealing novel microanatomical location of these receptors and thereby supporting a potential role in regulating colonic tissue. Potential involvement of insulin, leptin, and adiponectin receptors in increased risk of colon cancer was investigated using Sprague-Dawley rats, either resistant or susceptible to diet-induced obesity. Regulation of insulin, leptin, and adiponectin receptors as a consequence of differing levels of adiposity was assessed regionally in the colon in response to treatment with the chemical carcinogen 1,2-dimethylhydrazine (DMH). However, significantly increased fat mass, increased levels of plasma insulin, leptin, and triglycerides, previously associated with an increased risk of colon cancer, were not associated with promotion of precancerous lesions in the experimental rats or deregulation of insulin, leptin, or adiponectin receptors. These findings do not support a direct link between the deregulation of insulin and adipokine levels observed in obese rats and an increased risk of colon carcinogenesis.

  9. Down-regulation of insulin receptor substrates (IRS)-1 and IRS-2 and Src homologous and collagen-like protein Shc gene expression by insulin in skeletal muscle is not associated with insulin resistance or type 2 diabetes.

    PubMed

    Huang, Xudong; Vaag, Allan; Hansson, Mona; Groop, Leif

    2002-01-01

    To examine whether altered gene expression of insulin receptor substrates (IRS)-1 and IRS-2 and Src homologous and collagen-like protein Shc is an inherited trait and is associated with muscle insulin resistance or type 2 diabetes, we measured mRNA levels of these genes by a relative quantitative RT-PCR method in muscle biopsies taken before and after an insulin clamp from 12 monozygotic twin pairs discordant for type 2 diabetes and 12 control subjects. Insulin-stimulated glucose uptake was decreased both in the diabetic and nondiabetic twin, compared with healthy control subjects (5.2 +/- 0.7 and 8.5 +/- 0.8 vs. 11.4 +/- 0.9 mg/kg x min(-1); P < 0.01 and P < 0.02, respectively). Basal mRNA levels of IRS-1, IRS-2, and Shc were similar in the diabetic and nondiabetic twins as well as in the control subjects. Insulin decreased mRNA expression of IRS-1 by 72% (from 0.75 +/- 0.06 to 0.21 +/- 0.04 relative units; P < 0.001), IRS-2 by 71% (from 0.55 +/- 0.10 to 0.16 +/- 0.08 relative units; P < 0.03), and Shc by 25% (from 0.95 +/- 0.04 to 0.71 +/- 0.04 relative units; P < 0.01) vs. baseline as demonstrated in the control subjects. The postclamp Shc mRNA level was slightly higher in the diabetic twins (P = 0.05) but similar in the nondiabetic twins, as compared with the control subjects, whereas postclamp IRS-1 and IRS-2 mRNA levels were similar between the study groups. There was an inverse correlation between postclamp Shc mRNA concentration and glucose uptake (r = -0.53, P = 0.01; n = 22) in the controls and nondiabetic twins. However, the decrease in Shc gene expression by insulin was not significantly different between the study groups. In conclusion, because insulin down-regulates IRS-1, IRS-2, and Shc gene expression in skeletal muscle in diabetic and nondiabetic monozygotic twins and control subjects to the same extent, it is unlikely that expression of these genes is an inherited trait or contributes to skeletal muscle insulin resistance.

  10. Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression.

    PubMed

    Mehta, Vineet; Parashar, Arun; Sharma, Arun; Singh, Tiratha Raj; Udayabanu, Malairaman

    2017-03-01

    Chronic stress is associated with impaired neuronal functioning, altered insulin signaling, and behavioral dysfunction. Quercetin has shown neuroprotective and antidiabetic effects, besides modulating cognition and insulin signaling. Therefore, in the present study, we explored whether or not quercetin ameliorates stress-mediated cognitive dysfunction and explored the underlying mechanism. Swiss albino male mice were subjected to an array of unpredicted stressors for 21days, during which 30mg/kg quercetin treatment was given orally. The effect of chronic unpredicted stress (CUS) and quercetin treatment on cognition were evaluated using novel object recognition (NOR) and Morris water maze (MWM) tests. Hippocampal neuronal integrity was observed by histopathological examination. Blood glucose, serum corticosterone, and insulin levels were measured by commercial kits and insulin resistance was evaluated in terms of HOMA-IR index. Hippocampal insulin signaling was determined by immunofluorescence staining. CUS induced significant cognitive dysfunction (NOR and MWM) and severely damaged hippocampal neurons, especially in the CA3 region. Quercetin treatment alleviated memory dysfunction and rescued neurons from CUS-mediated damage. Fasting blood glucose, serum corticosterone, and serum insulin were significantly elevated in stressed animals, besides, having significantly higher HOMA-IR index, suggesting the development of insulin resistance. Quercetin treatment alleviated insulin resistance and attenuated altered biochemical parameters. CUS markedly down-regulated insulin signaling in CA3 region and quercetin treatment improved neuronal GLUT4 expression, which seemed to be independent of insulin and insulin receptor levels. These results suggest that intact insulin functioning in the hippocampus is essential for cognitive functions and quercetin improves CUS-mediated cognitive dysfunction by modulating hippocampal insulin signaling.

  11. Loss of functional GABAA receptors in the Alzheimer diseased brain

    PubMed Central

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Miledi, Ricardo

    2012-01-01

    The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on changes, if any, in the electrophysiological properties of human native GABA receptors as a consequence of AD. To gain such information, we have microtransplanted cell membranes, isolated from temporal cortices of control and AD brains, into Xenopus oocytes, and recorded the electrophysiological activity of the transplanted GABA receptors. We found an age-dependent reduction of GABA currents in the AD brain. This reduction was larger when the AD membranes were obtained from younger subjects. We also found that GABA currents from AD brains have a faster rate of desensitization than those from non-AD brains. Furthermore, GABA receptors from AD brains were slightly, but significantly, less sensitive to GABA than receptors from non-AD brains. The reduction of GABA currents in AD was associated with reductions of mRNA and protein of the principal GABA receptor subunits normally present in the temporal cortex. Pairwise analysis of the transcripts within control and AD groups and analyses of the proportion of GABA receptor subunits revealed down-regulation of α1 and γ2 subunits in AD. In contrast, the proportions of α2, β1, and γ1 transcripts were up-regulated in the AD brains. Our data support a functional remodeling of GABAergic neurotransmission in the human AD brain. PMID:22691495

  12. Insulin-Like Growth Factor 1 Receptor Is a Prognostic Factor in Classical Hodgkin Lymphoma

    PubMed Central

    Liang, Zheng; Diepstra, Arjan; Xu, Chuanhui; van Imhoff, Gustaaf; Plattel, Wouter; Van Den Berg, Anke; Visser, Lydia

    2014-01-01

    The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines. PMID:24489919

  13. Insulin-like growth factor 1 receptor is a prognostic factor in classical Hodgkin lymphoma.

    PubMed

    Liang, Zheng; Diepstra, Arjan; Xu, Chuanhui; van Imhoff, Gustaaf; Plattel, Wouter; Van Den Berg, Anke; Visser, Lydia

    2014-01-01

    The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines.

  14. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    SciTech Connect

    Tomblin, Justin K.; Salisbury, Travis B.

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  15. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor.

    PubMed

    Fabre, Benjamin; Pícha, Jan; Vaněk, Václav; Selicharová, Irena; Chrudinová, Martina; Collinsová, Michaela; Žáková, Lenka; Buděšínský, Miloš; Jiráček, Jiří

    2016-12-12

    We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds. Our effort resulted in the discovery of two compounds, which were able to weakly induce the autophosphorylation of IR and weakly bind to this receptor at a 0.1 mM concentration. Despite these modest biological results, which well document the well-known difficulty in modulating protein-protein interactions, this study represents a unique example of targeting the IR with a set of nonpeptide compounds that were specifically designed and synthesized for this purpose. We believe that this work can open new perspectives for the development of next-generation insulin mimetics based on the scaffold structure.

  16. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease

    PubMed Central

    Kapogiannis, Dimitrios; Boxer, Adam; Schwartz, Janice B.; Abner, Erin L.; Biragyn, Arya; Masharani, Umesh; Frassetto, Lynda; Petersen, Ronald C.; Miller, Bruce L.; Goetzl, Edward J.

    2015-01-01

    Insulin resistance causes diminished glucose uptake in similar regions of the brain in Alzheimer’s disease (AD) and type 2 diabetes mellitus (DM2). Brain tissue studies suggested that insulin resistance is caused by low insulin receptor signaling attributable to its abnormal association with more phospho (P)-serine-type 1 insulin receptor substrate (IRS-1) and less P-tyrosine-IRS-1. Plasma exosomes enriched for neural sources by immunoabsorption were obtained once from 26 patients with AD, 20 patients with DM2, 16 patients with frontotemporal dementia (FTD), and matched case control subjects. At 2 time points, they were obtained from 22 others when cognitively normal and 1 to 10 yr later when diagnosed with AD. Mean exosomal levels of extracted P-serine 312-IRS-1 and P-pan-tyrosine-IRS-1 by ELISA and the ratio of P-serine 312-IRS-1 to P-pan-tyrosine-IRS-1 (insulin resistance factor, R) for AD and DM2 and P-serine 312-IRS-1 and R for FTD were significantly different from those for case control subjects. The levels of R for AD were significantly higher than those for DM2 or FTD. Stepwise discriminant modeling showed correct classification of 100% of patients with AD, 97.5% of patients with DM2, and 84% of patients with FTD. In longitudinal studies of 22 patients with AD, exosomal levels of P-serine 312-IRS-1, P-pan-tyrosine-IRS-1, and R were significantly different 1 to 10 yr before and at the time of diagnosis compared with control subjects. Insulin resistance reflected in R values from this blood test is higher for patients with AD, DM2, and FTD than case control subjects; higher for patients with AD than patients with DM2 or FTD; and accurately predicts development of AD up to 10 yr prior to clinical onset.—Kapogiannis, D., Boxer, A., Schwartz, J. B., Abner, E. L., Biragyn, A., Masharani, U., Frassetto, L., Petersen, R. C., Miller, B. L., Goetzl, E. J. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of

  17. The insulin-like growth factor I receptor regulates glucose transport by astrocytes.

    PubMed

    Hernandez-Garzón, Edwin; Fernandez, Ana M; Perez-Alvarez, Alberto; Genis, Laura; Bascuñana, Pablo; Fernandez de la Rosa, Ruben; Delgado, Mercedes; Angel Pozo, Miguel; Moreno, Estefania; McCormick, Peter J; Santi, Andrea; Trueba-Saiz, Angel; Garcia-Caceres, Cristina; Tschöp, Matthias H; Araque, Alfonso; Martin, Eduardo D; Torres Aleman, Ignacio

    2016-11-01

    Previous findings indicate that reducing brain insulin-like growth factor I receptor (IGF-IR) activity promotes ample neuroprotection. We now examined a possible action of IGF-IR on brain glucose transport to explain its wide protective activity, as energy availability is crucial for healthy tissue function. Using (18) FGlucose PET we found that shRNA interference of IGF-IR in mouse somatosensory cortex significantly increased glucose uptake upon sensory stimulation. In vivo microscopy using astrocyte specific staining showed that after IGF-IR shRNA injection in somatosensory cortex, astrocytes displayed greater increases in glucose uptake as compared to astrocytes in the scramble-injected side. Further, mice with the IGF-IR knock down in astrocytes showed increased glucose uptake in somatosensory cortex upon sensory stimulation. Analysis of underlying mechanisms indicated that IGF-IR interacts with glucose transporter 1 (GLUT1), the main facilitative glucose transporter in astrocytes, through a mechanism involving interactions with the scaffolding protein GIPC and the multicargo transporter LRP1 to retain GLUT1 inside the cell. These findings identify IGF-IR as a key modulator of brain glucose metabolism through its inhibitory action on astrocytic GLUT1 activity. GLIA 2016;64:1962-1971.

  18. Physiologic and weight-focused treatment strategies for managing type 2 diabetes mellitus: the metformin, glucagon-like peptide-1 receptor agonist, and insulin (MGI) approach.

    PubMed

    Nadeau, Daniel A

    2013-05-01

    The prevalence of type 2 diabetes mellitus (T2DM) is rising in association with an increase in obesity rates. Current treatment options for patients with T2DM include lifestyle modifications and numerous antidiabetic medications. Despite the availability of effective and well-tolerated treatments, many patients do not achieve recommended glycemic targets. Lack of efficacy is complicated by the wide range of available agents and little specificity in treatment guidelines, thus challenging clinicians to understand the relative benefits and risks of individual options for each patient. In this article, lifestyle intervention strategies and current antidiabetic agents are evaluated for their efficacy, safety, and weight-loss potential. Because of the heterogeneous and progressive nature of T2DM, physicians should advocate approaches that emphasize weight management, limit the risk of hypoglycemia and adverse events, and focus on the core pathophysiologic defects in patients with T2DM. A healthy, plant-based diet that is low in saturated fat and refined carbohydrates but high in whole grains, vegetables, legumes, and fruits, coupled with resistance and aerobic exercise regimens, are recommended for patients with T2DM. When necessary, drug intervention, described in this article as the MGI (metformin, glucagon-like peptide-1 receptor agonist, and insulin) approach, should begin with metformin and progress to the early addition of glucagon-like peptide-1 receptor agonists because of their weight loss potential and ability to target multiple pathophysiologic defects in patients with T2DM. For most patients, treatments that induce weight gain and hypoglycemia should be avoided. Long-acting insulin should be initiated if glycemic control is not achieved with metformin and glucagon-like peptide-1 receptor agonist combination therapy, focusing on long-acting insulin analogs that induce the least weight gain and have the lowest hypoglycemic risk. Ultimately, a patient

  19. Evaluation of hearing loss in juvenile insulin dependent patients with diabetes mellitus

    PubMed Central

    Okhovat, Sayyed Ahmadreza; Moaddab, Mohammad Hassan; Okhovat, Sayyed Hanif; Al-Azab, Anwar Abdullah Ali; Saleh, Fadhl Ali Ahmad; Oshaghi, Samira; Abdeyazdan, Zahra

    2011-01-01

    BACKGROUND: Diabetes mellitus is one of the most important epidemics of our era. Complications of this disease are diverse and include retinopathy, nephropathy and neuropathy. This study has been designed to evaluate hearing loss patterns in young children suffering from IDDM and define risk factors for this complication. METHODS: This descriptive analytic study includes 200 youngsters divided into two groups: 100 patients in diabetic group and 100 healthy individual in control group. Hearing thresholds are determined in 250, 500, 1000, 2000, 4000 and 8000 Hz and metabolic controls are evaluated as average of one year HbA1C, dividing diabetic group into well control and poor control subgroups. RESULTS: Twenty one out of 100 patients in diabetic group showed significant hearing loss. Hearing loss is correlated with metabolic control, showing less loss in patients with HbA1C less than 7.5%. Results showed that hearing loss is not related to sex of patients but duration of disease (more or less than 5 years) affects degree of hearing loss in some frequencies. CONCLUSIONS: Hearing loss in children suffering from IDDM is sensorineural, bilateral and symmetrical and is related to the duration of disease and state of metabolic control (HbA1C). PMID:22091228

  20. The bovine mannose 6-phosphate/insulin-like growth factor II receptor. The role of arginine residues in mannose 6-phosphate binding.

    PubMed

    Dahms, N M; Rose, P A; Molkentin, J D; Zhang, Y; Brzycki, M A

    1993-03-15

    The extracytoplasmic region of the bovine cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-II receptor) consists of 15 homologous repeating domains, each of which is approximately 147 residues in length. The receptor contains two high affinity mannose 6-phosphate (Man-6-P) binding sites and our recent studies (Westlund, B., Dahms, N. M., and Kornfeld, S. (1991) J. Biol. Chem. 266, 23233-23239) have localized these two binding sites to domains 1-3 and 7-11. To further define the location of the Man-6-P binding sites and to determine the role of specific arginine residues in Man-6-P binding, site-directed mutagenesis was utilized to create truncated soluble forms of the M6P/IGF-II receptor in conjunction with either conservative (Lys) or nonconservative (Ala) replacement of arginine residues. These mutants were expressed transiently in COS-1 cells and assayed for their ability to bind phosphomannosyl residues by affinity chromatography. Analysis of the ligand binding activity of carboxyl-terminal truncated forms of the receptor's extracytoplasmic region demonstrated that the second Man-6-P binding site is contained within domains 7-9. Substitution of Arg435 in domain 3 of the amino-terminal binding site and Arg1334 in domain 9 of the second binding site results in a dramatic loss of ligand binding activity. However, substitutions at positions 435 and/or 1334 did not affect the secretion, glycosylation, or immunoreactivity of these truncated proteins. Taken together, these results indicate that Arg435 and Arg1334 are essential components of the M6P/IGF-II receptor's high affinity Man-6-P binding sites.

  1. Protein kinase C activators selectively inhibit insulin-stimulated system A transport activity in skeletal muscle at a post-receptor level.

    PubMed Central

    Gumà, A; Camps, M; Palacín, M; Testar, X; Zorzano, A

    1990-01-01

    We have investigated the role of phorbol esters on different biological effects induced by insulin in muscle, such as activation of system A transport activity, glucose utilization and insulin receptor function. System A transport activity was measured by monitoring the uptake of the system A-specific analogue alpha-(methyl)aminoisobutyric acid (MeAIB), by intact rat extensor digitorum longus muscle. The addition of 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.5 microM) for 60 or 180 min did not modify basal MeAIB uptake by muscle, suggesting that insulin signalling required to stimulate MeAIB transport does not involve protein kinase C activation. However, TPA added 30 min before insulin (100 nM) markedly inhibited insulin-stimulated MeAIB uptake. The addition of polymyxin B (0.1 mM) or H-7 (1 mM), protein kinase C inhibitors, alone or in combination with TPA leads to impairment of insulin-stimulated MeAIB uptake. This paradoxical pattern is incompatible with a unique action of Polymyxin B or H-7 on protein kinase C activity. Therefore these agents are not suitable tools with which to investigate whether a certain insulin effect is mediated by protein kinase C. TPA did not cause a generalized inhibition of insulin action. Thus both TPA and insulin increased 3-O-methylglucose uptake by muscle, and their effects were not additive. Furthermore, TPA did not modify insulin-stimulated lactate production by muscle. In keeping with this selective modification of insulin action, treatment of muscles with TPA did not modify insulin receptor binding or kinase activities. In conclusion, phorbol esters do not mimic insulin action on system A transport activity; however, they markedly inhibit insulin-stimulated amino acid transport, with no modification of insulin receptor function in rat skeletal muscle. It is suggested that protein kinase C activation causes a selective post-receptor modification on the biochemical pathway by which insulin activates system A amino acid

  2. Cholinergic and glutamergic receptor functional regulation in long-term, low dose somatotropin and insulin treatment to ageing rats: rejuvenation of brain function.

    PubMed

    Balakrishnan, Savitha; Mathew, Jobin; Paulose, C S

    2010-01-15

    The role of somatotropin and insulin treatment in the regulation of neurotransmitter levels in the ageing brain is not fully established. We evaluated the long-term, low dose effects of somatotropin and insulin on acetylcholine and glutamate receptor subtypes functional regulation in the cerebral cortex of young (4-16 weeks) and old rats (60-90 weeks). Somatotropin and insulin treated young rats showed significant upregulation in muscarinic M1 and M3 expression whereas in old rats, somatotropin and insulin treatment downregulated M1 and M3 expression. N-methyl-D-aspartate and metabotropic glutamate receptor gene expression were significantly downregulated with somatotropin treatment while insulin treatment showed upregulation in both young and old rats. Acetylcholine esterase activity showed a decrease with age and after somatotropin and insulin treatment, the activity increased in both young and old rats. Electroencephalogram studies confirmed the brain wave activity in both young and old somatotropin and insulin treated rats. The results highlight long-term low dose somatotropin and insulin treatment in regulating cholinergic and glutamergic receptors subtypes in ageing rats and rejuvenation of brain function.

  3. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues.

    PubMed

    Grunberger, G; Robert, A; Carpentier, J L; Dayer, J M; Roth, A; Stevenson, H C; Orci, L; Gorden, P

    1985-08-01

    Circulating monocytes bind 125I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver.

  4. Insulin receptor binding to erythrocytes in the first half of pregnancy is increased in healthy pregnant women as compared with non-pregnant or gestational diabetic women.

    PubMed

    Schmon, B; Desoye, G; Friedl, H; Hofmann, H; Weiss, P A; Hagmüller, K

    1993-11-30

    Insulin binding to erythrocytes was measured longitudinally by a competitive radioreceptor assay in 21 healthy pregnant (HP) and 20 well-controlled gestational diabetic women (GD) in 4-week intervals throughout pregnancy and at day 4 post-partum. Maximum insulin binding (maxbdg) at weeks 8-14 was increased (P < 0.001) in HP (median: 6.0%) but not in GD (median: 2.7%) as compared with non-pregnant control subjects (C) (median: 3.6%; previously reported: Clin. Chim. Acta 1992;207:57-71) due to an increased number of high-affinity insulin receptors. Throughout gestation the binding decreased continuously, to reach at term the levels found in C. In GD maxbdg remained close to the level of C throughout pregnancy. Binding differences between HP and GD were independent of the body mass index. Maxbdg did not differ between diet- and insulin-treated patients. It was higher in women whose offspring had low umbilical cord insulin levels (< 10 mu units/ml). The findings suggest that (a) higher insulin binding in HP could contribute to the improved glucose tolerance in early pregnancy and (b) the lack of increase in insulin binding during early pregnancy in gestational diabetes might be one factor leading to the manifestation of the disease in late pregnancy. However, it must be kept in mind that insulin receptors on erythrocytes do not necessarily resemble those on the major target tissues of insulin.

  5. Insulin Receptor Signaling in the GnRH Neuron Plays a Role in the Abnormal GnRH Pulsatility of Obese Female Mice

    PubMed Central

    DiVall, Sara A.; Herrera, Danny; Sklar, Bonnie; Wu, Sheng; Wondisford, Fredric; Radovick, Sally; Wolfe, Andrew

    2015-01-01

    Infertility associated with obesity is characterized by abnormal hormone release from reproductive tissues in the hypothalamus, pituitary, and ovary. These tissues maintain insulin sensitivity upon peripheral insulin resistance. Insulin receptor signaling may play a role in the dysregulation of gonadotropin-releasing hormone (GnRH) secretion in obesity, but the interdependence of hormone secretion in the reproductive axis and the multi-hormone and tissue dysfunction in obesity hinders investigations of putative contributing factors to the disrupted GnRH secretion. To determine the role of GnRH insulin receptor signaling in the dysregulation of GnRH secretion in obesity, we created murine models of diet-induced obesity (DIO) with and without intact insulin signaling in the GnRH neuron. Obese control female mice were infertile with higher luteinizing hormone levels and higher GnRH pulse amplitude and total pulsatile secretion compared to lean control mice. In contrast, DIO mice with a GnRH specific knockout of insulin receptor had improved fertility, luteinizing hormone levels approaching lean mice, and GnRH pulse amplitude and total secretion similar to lean mice. Pituitary responsiveness was similar between genotypes. These results suggest that in the obese state, insulin receptor signaling in GnRH neurons increases GnRH pulsatile secretion and consequent LH secretion, contributing to reproductive dysfunction. PMID:25780937

  6. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet

    PubMed Central

    El-Zeftawy, Marwa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) “NS” or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling. PMID:27579151

  7. Membrane receptor cross talk in gonadotropin-, IGF-I-, and insulin-mediated steroidogenesis in fish ovary: An overview.

    PubMed

    Mukherjee, Dilip; Majumder, Suravi; Roy Moulik, Sujata; Pal, Puja; Gupta, Shreyasi; Guha, Payel; Kumar, Dhynendra

    2017-01-01

    Gonadal steroidogenesis is critical for survival and reproduction of all animals. The pathways that regulate gonadal steroidogenesis are therefore conserved among animals from the steroidogenic enzymes to the intracellular signaling molecules and G protein-coupled receptors (GPCRs) that mediate the activity of these enzymes. Regulation of fish ovarian steroidogenesis in vitro by gonadotropin (GtH) and GPCRs revealed interaction between adenylate cyclase and calcium/calmodulin-dependent protein kinases (CaMKs) and also MAP kinase pathway. Recent studies revealed another important pathway in GtH-induced fish ovarian steroidogenesis: cross talk between GPCRs and membrane receptor tyrosine kinases. Gonadotropin binding to Gαs-coupled membrane receptor in fish ovary leads to production of cAMP which in turn trans-activate the membrane-bound epidermal growth factor receptor (EGFR). This is followed by activation of ERK1/2 signaling that promotes steroid production. Interestingly, GtH-induced trans-activation of EGFR in the fish ovary uniquely requires matrix-metalloproteinase-mediated release of EGF. Inhibition of these proteases blocks GtH-induced steroidogenesis. Increased cAMP production in fish ovarian follicle upregulate follicular cyp19a1a mRNA expression and aromatase activity leading to increased biosynthesis of 17β-estradiol (E2). Evidence for involvement of SF-1 protein in inducing cyp19a1a mRNA and aromatase activity has also been demonstrated. In addition to GtH, insulin-like growth factor (IGF-I) and bovine insulin can alone induced steroidogenesis in fish ovary. In intact follicles and isolated theca cells, IGF-I and insulin had no effect on GtH-induced testosterone and 17a,hydroxysprogeaterone production. GtH-stimulated E2 and 17,20bdihydroxy-4-pregnane 3-one production in granulosa cells however, was significantly increased by IGF-I and insulin. Both IGF-I and insulin mediates their signaling via receptor tyrosine kinases leading to activation of PI3

  8. Impact of Oxidative Stress and Peroxisome Proliferator–Activated Receptor γ Coactivator-1α in Hepatic Insulin Resistance

    PubMed Central

    Kumashiro, Naoki; Tamura, Yoshifumi; Uchida, Toyoyoshi; Ogihara, Takeshi; Fujitani, Yoshio; Hirose, Takahisa; Mochizuki, Hideki; Kawamori, Ryuzo; Watada, Hirotaka

    2008-01-01

    OBJECTIVE—Recent studies identified accumulation of reactive oxygen species (ROS) as a common pathway causing insulin resistance. However, whether and how the reduction of ROS levels improves insulin resistance remains to be elucidated. The present study was designed to define this mechanism. RESEARCH DESIGN AND METHODS—We investigated the effect of overexpression of superoxide dismutase (SOD)1 in liver of obese diabetic model (db/db) mice by adenoviral injection. RESULTS—db/db mice had high ROS levels in liver. Overexpression of SOD1 in liver of db/db mice reduced hepatic ROS and blood glucose level. These changes were accompanied by improvement in insulin resistance and reduction of hepatic gene expression of phosphoenol-pyruvate carboxykinase and peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), which is the main regulator of gluconeogenic genes. The inhibition of hepatic insulin resistance was accompanied by attenuation of phosphorylation of cAMP-responsive element-binding protein (CREB), which is a main regulator of PGC-1α expression, and attenuation of Jun NH2-terminal kinase (JNK) phosphorylation. Simultaneously, overexpression of SOD1 in db/db mice enhanced the inactivation of forkhead box class O1, another regulator of PGC-1α expression, without the changes of insulin-induced Akt phosphorylation in liver. In hepatocyte cell lines, ROS induced phosphorylation of JNK and CREB, and the latter, together with PGC-1α expression, was inhibited by a JNK inhibitor. CONCLUSIONS—Our results indicate that the reduction of ROS is a potential therapeutic target of liver insulin resistance, at least partly by the reduced expression of PGC-1α. PMID:18487450

  9. Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion*

    PubMed Central

    Ziegler, Amber N.; Chidambaram, Shravanthi; Forbes, Briony E.; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R. PMID:24398690

  10. Six cases with severe insulin resistance (SIR) associated with mutations of insulin receptor: Is a Bartter-like syndrome a feature of congenital SIR?

    PubMed

    Grasso, Valeria; Colombo, Carlo; Favalli, Valeria; Galderisi, Alfonso; Rabbone, Ivana; Gombos, Sara; Bonora, Enzo; Massa, Ornella; Meschi, Franco; Cerutti, Franco; Iafusco, Dario; Bonfanti, Riccardo; Monciotti, Carla; Barbetti, Fabrizio

    2013-12-01

    Biallelic insulin receptor (INSR) gene mutations cause congenital syndromes of severe insulin resistance (SIR) known as Donohue syndrome (DS) and Rabson-Mendenhall syndrome (RMS). At presentation, DS and RMS are difficult to differentiate since they share many clinical features; however, while patients with DS usually die within 1 year of birth, individuals classified as RMS can reach adult age. INSR mutations can be also found in pubertal females with hyperinsulinism, hyperandrogenism, and acanthosis nigricans (type A SIR). We studied the INSR gene in five subjects with congenital SIR and in a patient with type A SIR. Nine biallelic INSR gene mutations (eight novels, including an in-frame deletion of INSR signal peptide) were identified in patients with congenital SIR; a heterozygous, spontaneous INSR mutation was detected in the patient with type A SIR. Two probands, presenting severe hirsutism at birth, died at the age of 3 months and were classified as DS, while other 2, currently 2 and 3 years old, were diagnosed with RMS (patients 3 and 4). The fifth patient with congenital SIR died when 14 months old. Nephrocalcinosis, hyperaldosteronism, hyperreninemia, and hypokalemia, in the absence of hypertension, were discovered in patients 3 and 5 when 24 and 4 months old, respectively. Patient 3, now 3 years/3 months old, still shows hyperreninemic hyperaldosteronism requiring potassium supplementation. We conclude that renal abnormalities resembling antenatal Bartter's syndrome type II, recently reported also by others, is a common observation in patients with congenital SIR.

  11. Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells.

    PubMed

    Qiu, Xiaoliang; Dowling, Abigail R; Marino, Joseph S; Faulkner, Latrice D; Bryant, Benjamin; Brüning, Jens C; Elias, Carol F; Hill, Jennifer W

    2013-03-01

    Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR(ΔKiss) mice). IR(ΔKiss) females showed a delay in vaginal opening and in first estrus, whereas IR(ΔKiss) males also exhibited late sexual maturation. Correspondingly, LH levels in IR(ΔKiss) mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states.

  12. Molecular scanning for mutations in the insulin receptor substrate-1 (IRS-1) gene in Turkish with type 2 diabetes mellitus.

    PubMed

    Orkunoglu Suer, Funda E; Mergen, Hatice; Bolu, Erol; Ozata, Metin

    2005-10-01

    Insulin receptor substrate-1 (IRS-1) is an endogenous substrate for the insulin receptor tyrosine kinase, which plays a key role in insulin signaling. Recent studies have identified several polymorphisms in the human IRS-1 gene (Irs-1) that are increased in prevalence among type 2 diabetic patients. To determine whether variation in the Irs-1 contributes to genetic susceptibility to type 2 diabetes in Turkish people, PCR-RFLP and DNA sequencing method were utilized to analyze the coding region of Irs-1 in 70 subject and 116 control patients. Three missense mutations were detected (Gly972Arg, Ala512Pro, Ser892Gly). There was no significant association found with any of these variants and diabetes. The Gly972Arg mutation, however, was relatively more common in with 10/70 diabetic patients and 15/116 non-diabetic controls being heterozygous and 1/70 being and 0/116 non-diabetic controls being homozygous for this variant. As a conclusion, Ala512Pro, Ser892Gly mutations were rare and Met613Val, Ser1043Tyr and Cys1095Tyr mutations were not found in the populations studied. Gly972Arg is more common than other known mutations in our population but may not be a major determinant in genetic susceptibility to type 2 diabetes.

  13. Molecular variation and evolution of the tyrosine kinase domains of insulin receptor IRa and IRb genes in Cyprinidae.

    PubMed

    Kong, XiangHui; Wang, XuZhen; He, ShunPing

    2011-07-01

    The insulin receptor (IR) gene plays an important role in regulating cell growth, differentiation and development. In the present study, DNA sequences of insulin receptor genes, IRa and IRb, were amplified and sequenced from 37 representative species of the Cyprinidae and from five outgroup species from non-cyprinid Cypriniformes. Based on coding sequences (CDS) of tyrosine kinase regions of IRa and IRb, molecular evolution and phylogenetic relationships were analyzed to better understand the characteristics of IR gene divergence in the family Cyprinidae. IRa and IRb were clustered into one lineage in the gene tree of the IR gene family, reconstructed using the unweighted pair group method with arithmetic mean (UPGMA). IRa and IRb have evolved into distinct genes after IR gene duplication in Cyprinidae. For each gene, molecular evolution analyses showed that there was no significant difference among different groups in the reconstructed maximum parsimony (MP) tree of Cyprinidae; IRa and IRb have been subjected to similar evolutionary pressure among different lineages. Although the amino acid sequences of IRa and IRb tyrosine kinase regions were highly conserved, our analyses showed that there were clear sequence variations between the tyrosine kinase regions of IRa and IRb proteins. This indicates that IRa and IRb proteins might play different roles in the insulin signaling pathway.

  14. Deletion of Macrophage Mineralocorticoid Receptor Protects Hepatic Steatosis and Insulin Resistance through ERα/HGF/MET Pathway.

    PubMed

    Zhang, Yu-Yao; Li, Chao; Yao, Gao-Feng; Du, Lin-Juan; Liu, Yuan; Zheng, Xiao-Jun; Yan, Shuai; Sun, Jian-Yong; Liu, Yan; Liu, Ming-Zhu; Zhang, Xiaoran; Wei, Gang; Tong, Wenxin; Chen, Xiaobei; Wu, Yong; Sun, Shuyang; Liu, Suling; Ding, Qiurong; Yu, Ying; Yin, Huiyong; Duan, Sheng-Zhong

    2017-03-21

    Although the importance of macrophages in nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) has been recognized, it remains elusive how macrophages impact hepatocytes. Mineralocorticoid receptor (MR) has been implied to play important roles in NAFLD and T2DM. However, cellular and molecular mechanisms are largely unknown. Here we report that myeloid MR knockout (MRKO) improves glucose intolerance, insulin resistance, and hepatic steatosis in obese mice. Estrogen signaling is sufficient and necessary for such improvements. Hepatic gene and protein expression suggests that MRKO reduces hepatic lipogenesis and lipid storage. In the presence of estrogen, MRKO in macrophages decreases lipid accumulation and increases insulin sensitivity of hepatocytes through hepatic-growth-factor (HGF)/Met signaling. MR directly regulates estrogen receptor 1 (Esr1, encoding ERα) in macrophages. Knockdown of hepatic Met eliminates the beneficial effects of MRKO in female obese mice. These findings identify a novel MR/ERα/HGF/Met pathway that conveys metabolic signaling from macrophages to hepatocytes in hepatic steatosis and insulin resistance, and provide potential new therapeutic strategies for NAFLD and T2DM.

  15. Deletion of Macrophage Vitamin D Receptor Promotes Insulin Resistance and Monocyte Cholesterol Transport to Accelerate Atherosclerosis in Mice

    PubMed Central

    Oh, Jisu; Riek, Amy E.; Darwech, Isra; Funai, Katsuhiko; Shao, JianSu; Chin, Kathleen; Sierra, Oscar L.; Carmeliet, Geert; Ostlund, Richard E.; Bernal-Mizrachi, Carlos

    2015-01-01

    Summary Intense effort has been devoted to understanding predisposition to chronic systemic inflammation as this contributes to cardiometabolic disease. We demonstrate that deletion of the macrophage vitamin D receptor (VDR) in mice (KODMAC) is sufficient to induce insulin resistance by promoting M2 macrophage accumulation in the liver, as well as increase cytokine secretion and hepatic glucose production. Moreover, VDR deletion increases atherosclerosis by enabling lipid-laden M2 monocytes to adhere, migrate, and carry cholesterol into the atherosclerotic plaque, and by increasing macrophage cholesterol uptake and esterification. Increased foam cell formation results from lack of VDR-SERCA2b interaction, causing SERCA dysfunction, activation of ER stress-CaMKII-JNKp-PPARγ signaling, and induction of the scavenger receptors CD36 and SR-A1. BM transplant of VDR-expressing cells into KODMAC mice improved insulin sensitivity, suppressed atherosclerosis, and decreased foam cell formation. The immunomodulatory effects of vitamin D in macrophages are thus critical in diet-induced insulin resistance and atherosclerosis in mice. Graphical Abstract PMID:25801026

  16. Skeletal muscle peroxisome proliferator- activated receptor-gamma expression in obesity and non- insulin-dependent diabetes mellitus.

    PubMed Central

    Kruszynska, Y T; Mukherjee, R; Jow, L; Dana, S; Paterniti, J R; Olefsky, J M

    1998-01-01

    The two isoforms of peroxisome proliferator-activated receptor-gamma (PPARgamma1 and PPARgamma2), are ligand-activated transcription factors that are the intracellular targets of a new class of insulin sensitizing agents, the thiazolidinediones. The observation that thiazolidinediones enhance skeletal muscle insulin sensitivity in obesity and in patients with non-insulin-dependent diabetes mellitus (NIDDM), by activating PPARgamma, and possibly by inducing its expression, suggests that PPARgamma expression in skeletal muscle plays a key role in determining tissue sensitivity to insulin, and that PPARgamma expression may be decreased in insulin resistant subjects. We used a sensitive ribonuclease protection assay, that permits simultaneous measurement of the two isoforms, to examine the effects of obesity and NIDDM, and the effects of insulin, on skeletal muscle levels of PPARgamma1 and PPARgamma2 mRNA. We studied seven patients with NIDDM (body mass index, 32+/-1 kg/m2), seven lean (24+/-1 kg/m2), and six obese (36+/-1 kg/m2) normal subjects. Biopsies from the vastus lateralis muscle were taken before and after a 5-h hyperinsulinemic (80 mU/m2 per minute) euglycemic clamp. The obese controls and NIDDM patients were insulin resistant with glucose disposal rates during the last 30 min of the clamp that were 67 and 31%, respectively, of those found in the lean controls. PPARgamma1, but not PPARgamma2 mRNA was detected in skeletal muscle at 10-15% of the level found in adipose tissue. No difference was found in PPARgamma1 levels between the three groups, and there was no change in PPARgamma1 levels after 5 h of hyperinsulinemia. In obese subjects, PPARgamma1 correlated with clamp glucose disposal rates (r = 0.92, P < 0.01). In the lean and NIDDM patients, muscle PPARgamma1 levels correlated with percentage body fat (r = 0.76 and r = 0.82, respectively, both P < 0.05) but not with body mass index. In conclusion: (a) skeletal muscle PPARgamma1 expression does not differ

  17. N-linked glycans of the human insulin receptor and their distribution over the crystal structure.

    PubMed

    Sparrow, Lindsay G; Lawrence, Michael C; Gorman, Jeffrey J; Strike, Phillip M; Robinson, Christine P; McKern, Neil M; Ward, Colin W

    2008-04-01

    The human insulin receptor (IR) homodimer is heavily glycosylated and contains a total of 19 predicted N-linked glycosylation sites in each monomer. The recent crystal structure of the IR ectodomain shows electron density consistent with N-linked glycosylation at the majority of sites present in the construct. Here, we describe a refined structure of the IR ectodomain that incorporates all of the N-linked glycans and reveals the extent to which the attached glycans mask the surface of the IR dimer from interaction with antibodies or other potential therapeutic binding proteins. The usefulness of Fab complexation in the crystallization of heavily glycosylated proteins is also discussed. The compositions of the glycans on IR expressed in CHO-K1 cells and the glycosylation deficient Lec8 cell line were determined by protease digestion, glycopeptide purification, amino acid sequence analysis, and mass spectrometry. Collectively the data reveal: multiple species of complex glycan at residues 25, 255, 295, 418, 606, 624, 742, 755, and 893 (IR-B numbering); multiple species of high-mannose glycan at residues 111 and 514; a single species of complex glycan at residue 671; and a single species of high-mannose glycan at residue 215. Residue 16 exhibited a mixture of complex, hybrid, and high-mannose glycan species. Of the remaining five predicted N-linked sites, those at residues 397 and 906 were confirmed by amino acid sequencing to be glycosylated, while that at residue 78 and the atypical (NKC) site at residue 282 were not glycosylated. The peptide containing the final site at residue 337 was not recovered but is seen to be glycosylated in the electron density maps of the IR ectodomain. The model of the fully glycosylated IR reveals that the sites carrying high-mannose glycans lie at positions of relatively low steric accessibility.

  18. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss

    PubMed Central

    Schmitz, J.; Evers, N.; Awazawa, M.; Nicholls, H.T.; Brönneke, H.S.; Dietrich, A.; Mauer, J.; Blüher, M.; Brüning, J.C.

    2016-01-01

    Objective Obesity represents a major risk factor for the development of type 2 diabetes mellitus, atherosclerosis and certain cancer entities. Treatment of obesity is hindered by the long-term maintenance of initially reduced body weight, and it remains unclear whether all pathologies associated with obesity are fully reversible even upon successfully maintained weight loss. Methods We compared high fat diet-fed, weight reduced and lean mice in terms of body weight development, adipose tissue and liver insulin sensitivity as well as inflammatory gene expression. Moreover, we assessed similar parameters in a human cohort before and after bariatric surgery. Results Compared to lean animals, mice that demonstrated successful weight reduction showed increased weight gain following exposure to ad libitum control diet. However, pair-feeding weight-reduced mice with lean controls efficiently stabilized body weight, indicating that hyperphagia was the predominant cause for the observed weight regain. Additionally, whereas glucose tolerance improved rapidly after weight loss, systemic insulin resistance was retained and ameliorated only upon prolonged pair-feeding. Weight loss enhanced insulin action and resolved pro-inflammatory gene expression exclusively in the liver, whereas visceral adipose tissue displayed no significant improvement of metabolic and inflammatory parameters compared to obese mice. Similarly, bariatric surgery in humans (n = 55) resulted in massive weight reduction, improved hepatic inflammation and systemic glucose homeostasis, while adipose tissue inflammation remained unaffected and adipocyte-autonomous insulin action only exhibit minor improvements in a subgroup of patients (42%). Conclusions These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue

  19. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    SciTech Connect

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.; Pessin, J.E.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.

  20. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway.

    PubMed

    Li, Yunsheng; Kim, Jaekyung; Li, Jing; Liu, Fang; Liu, Xueqing; Himmeldirk, Klaus; Ren, Yulin; Wagner, Thomas E; Chen, Xiaozhuo

    2005-10-21

    Insulin mimetics from natural sources are potential therapeutics that can act alone or supplement insulin and other anti-diabetic drugs in the prevention and treatment of diabetes. We recently reported the insulin-like glucose transport stimulatory activity of tannic acid (TA) in 3T3-L1 adipocytes. In this study, we find that chemically synthesized 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose (beta-PGG), one of the components of TA, as well as its natural anomer alpha-PGG possess activity. Mechanistic studies in adipocytes with alpha-PGG, the more potent of the two anomers, reveal that inhibitors that block the insulin-mediated glucose transport, including one that inhibits the insulin receptor (IR), also completely abolish the glucose transport activated by alpha-PGG. In addition, alpha-PGG induces phosphorylation of the IR and Akt, activates PI 3-kinase, and stimulates membrane translocation of GLUT 4. Receptor binding studies indicate that alpha-PGG binds to the IR and affects the binding between insulin and IR by reducing the maximum binding of insulin to IR without significantly altering the binding affinity of insulin to IR. Western blotting analysis of the products of a cross-linking reaction suggests that alpha-PGG may bind to IR at a site located on the alpha-subunit of the receptor. Animal studies demonstrate that PGG reduces blood glucose levels and improves glucose tolerance in diabetic and obese animals. Our results suggest that PGG may serve as a model for the development of new types of anti-diabetic and anti-metabolic syndrome therapeutics.

  1. Association of insulin receptor genetic variants with polycystic ovary syndrome in a population of women from Central Europe.

    PubMed

    Hanzu, Felicia A; Radian, Serban; Attaoua, Redha; Ait-El-Mkadem, Samira; Fica, Simona; Gheorghiu, Monica; Coculescu, Mihai; Grigorescu, Florin

    2010-11-01

    To assess the role of the insulin receptor gene in polycystic ovary syndrome (PCOS) we performed a case-control study in a female population (n=226) from Central Europe by examining the genetic associations of single nucleotide polymorphisms (rs8107575, rs2245648, rs2245649, rs2963, rs2245655, and rs2962) and inferred haplotypes around exon 9 of this gene. The ancestral T allele of single nucleotide polymorphism rs2963 or the corresponding haplotype (GGTC-C) showed association with PCOS with odds ratio 2.99, 95% confidence interval 1.4-6.3, independent of obesity but related to the presence of Acanthosis nigricans and insulin resistance, metabolic syndrome, or hyperandrogeny, thus providing a frame for future fine mapping of the susceptibility loci in PCOS.

  2. Effect of adrenergic receptor blockade on cortisol and GH response to insulin-induced hypoglycemia in man.

    PubMed

    Jezová-Repceková, D; Klimes, I; Jurcovicová, J; Vigas, M

    1979-02-01

    The effect of several drugs presumably influencing central catecholaminergic receptors on plasma cortisol and GH response to insulin-induced hypoglycemia was studied in healthy adult males. The intravenous infusion of alpha-adrenergic blocking agents tolazoline or phentolamine supressed plasma cortisol and GH response to insulin-induced hypoglycemia. After an infusion of beta-adrenergic antagonist propranolol both hypoglycemia and rise in plasma cortisol and GH were prolonged. Finally, the administration of dopaminergic blocker pimozide failed to affect the plasma cortisol response, but slightly suppressed the enhancement of GH release during hypoglycemia. Caution is recommended before making suggestions about neuroendocrine regulations from the data obtained after systemic administration of drugs. Nevertheless, it may be concluded that the hypothesis on the inhibitory role of the central alpha-adrenergic system on ACTH secretion suggested in rats and dogs was not confirmed by our results obtained in man.

  3. The beta2 adrenergic receptor Gln27Glu polymorphism affects insulin resistance in patients with heart failure: possible modulation by choice of beta blocker.

    PubMed

    Vardeny, Orly; Detry, Michelle A; Moran, John J M; Johnson, Maryl R; Sweitzer, Nancy K

    2008-12-01

    Insulin resistance is prevalent in heart failure (HF) patients, and beta2 adrenergic receptors (beta2-AR) are involved in glucose homeostasis. We hypothesized that beta2-AR Gln27Glu and Arg16Gly polymorphisms affect insulin resistance in HF patients, and we explored if effects of beta2-AR polymorphisms on glucose handling are modified by choice of beta blocker. We studied 30 nondiabetic adults with HF and a history of systolic dysfunction; 15 were receiving metoprolol succinate, and 15 were receiving carvedilol. We measured fasting glucose, insulin, and insulin resistance, and we determined beta2-AR genotypes at codons 27 and 16. The cohort was insulin resistant with a mean HOMA-IR score of 3.4 (95% CI, 2.3 to 4.5; normal value, 1.0). Patients with the Glu27Glu genotype exhibited higher insulin and HOMA-IR compared to individuals carrying a Gln allele (P = 0.019). Patients taking carvedilol demonstrated lower insulin resistance if also carrying a wild-type allele at codon 27 (fasting insulin, 9.8 +/- 10.5 versus 20.5 +/- 2.1 for variant, P = 0.072; HOMA-IR, 2.4 +/- 2.7 versus 5.1 +/- 0.6, P = 0.074); those on metoprolol succinate had high insulin resistance irrespective of genotype. The beta2-AR Glu27Glu genotype may be associated with higher insulin concentrations and insulin resistance in patients with HF. Future studies are needed to confirm whether treatment with carvedilol may be associated with decreased insulin and insulin resistance in beta2-AR codon 27 Gln carriers.

  4. In skeletal muscle advanced glycation end products (AGEs) inhibit insulin action and induce the formation of